WO2013150985A1 - 油圧回路及びその油圧回路に用いる複合弁 - Google Patents

油圧回路及びその油圧回路に用いる複合弁 Download PDF

Info

Publication number
WO2013150985A1
WO2013150985A1 PCT/JP2013/059661 JP2013059661W WO2013150985A1 WO 2013150985 A1 WO2013150985 A1 WO 2013150985A1 JP 2013059661 W JP2013059661 W JP 2013059661W WO 2013150985 A1 WO2013150985 A1 WO 2013150985A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
passage
hydraulic
tank
stop valve
Prior art date
Application number
PCT/JP2013/059661
Other languages
English (en)
French (fr)
Inventor
幸雄 上▲西▼
祐治 近藤
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to US14/236,089 priority Critical patent/US9416798B2/en
Priority to CN201380002490.2A priority patent/CN103717915A/zh
Priority to KR1020147001438A priority patent/KR20140143735A/ko
Priority to EP13772490.2A priority patent/EP2749777B1/en
Publication of WO2013150985A1 publication Critical patent/WO2013150985A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0832Modular valves
    • F15B13/0839Stacked plate type valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/005Filling or draining of fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/41536Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/611Diverting circuits, e.g. for cooling or filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/864Failure of an output member, e.g. actuator or motor failure

Definitions

  • the present invention is a circuit in which hydraulic oil does not circulate only by moving through the circuit, such as a reciprocating hydraulic cylinder circuit used in a sluice drive device or factory equipment, or circulated like a hydraulic motor circuit. Enables maintenance of other hydraulic equipment such as valves, hydraulic cylinders, hydraulic motors, etc. connected to the hydraulic circuit, etc. as needed, or performs various functions such as flushing of the hydraulic equipment operating circuit or emergency operation
  • the present invention relates to a hydraulic circuit that can be used and a composite valve used in the hydraulic circuit.
  • one of the sluices driven by a hydraulic cylinder is a fall gate device installed across a river.
  • This overturning gate device is intended for effective use of river water resources by controlling the amount of overturning of the overturning gate installed across the river, to prevent mixing of seawater and fresh water at the estuary, and installed on the coast to prevent tide Used for purposes.
  • Factory equipment includes various types of hydraulic equipment used in machining centers.
  • a tipping gate device for effective use of water resources is provided with a pier on both sides of a tipping gate installed across a river, a shaft to which the tipping gate is fixed, and a shaft fixed to the shaft.
  • a cam that is rotated by a hydraulic cylinder is installed, and the amount of overturn is controlled by a cam shaft that is rotated by a hydraulic cylinder provided in the pier.
  • the machining center has a hydraulic clamper for fixing the workpiece.
  • the drive circuit of the reciprocating hydraulic cylinder used as the drive source of the overturning gate is divided by the hydraulic cylinder, and the hydraulic oil (volume of the hydraulic cylinder) necessary for moving the hydraulic cylinder is a circuit. Since it reciprocates inside, the hydraulic fluid in the drive circuit and the hydraulic cylinder is stagnant. Therefore, if the operating time is extended, it will be activated by contaminants such as dust burned into the drive circuit and hydraulic cylinder, or burned debris from the diesel explosion that explodes when air that has entered from the seal part of the hydraulic cylinder is adiabatically compressed in the hydraulic cylinder and explodes. Oil is contaminated.
  • hydraulic equipment such as factory equipment also has malfunctions in control equipment such as control valves and speed control valves due to contamination of hydraulic oil contaminated with metal powder due to breakage of the seal or friction between the rotating part of the hydraulic motor and the main body.
  • control equipment such as control valves and speed control valves due to contamination of hydraulic oil contaminated with metal powder due to breakage of the seal or friction between the rotating part of the hydraulic motor and the main body.
  • the control device that has malfunctioned due to the hydraulic oil contaminated with contaminants (contamination) needs to be disassembled and cleaned to eliminate the cause of malfunction and to be able to control the hydraulic cylinder.
  • the control device needs to be inspected and serviced before it malfunctions to prevent malfunction.
  • hydraulic equipment such as hydraulic cylinders and hydraulic motors need to be repaired so that the malfunction is eliminated and the malfunction is not caused when the malfunction occurs due to the contamination.
  • the technology shown in FIG. 9 has been widely known as a circuit for repair, inspection, maintenance, disassembly and cleaning, or periodic inspection of the control device.
  • the hydraulic circuit of Non-Patent Document 1 shown in FIG. 9 is a hydraulic cylinder circuit, but may be a hydraulic motor, and therefore, it is described as a hydraulic cylinder on behalf of hydraulic equipment.
  • the hydraulic circuit shown in FIG. 9 includes a lower laminated valve 87 constituted by a maintenance valve 81 and a maintenance valve 86, an upper laminated valve 88 constituted by a speed adjusting valve element 83, a load check valve element 84, and an electromagnetic switching valve element 85.
  • a hydraulic circuit in which a hydraulic source 10 and a hydraulic cylinder 60 are connected to a pile-up type stacked valve 80 is shown.
  • the hydraulic pressure oil discharged from the hydraulic pump 11 of the hydraulic pressure source 10 of the circuit passes through the maintenance valve body 86 of the lower laminated valve 87 from the manifold 89, passes through the stop valves 81a and 81b of the maintenance valve 81, and passes through the maintenance valves 81a and 81b. It passes through the speed adjustment valve body 82 and reaches the electromagnetic switching valve 85a of the electromagnetic switching valve body 85.
  • the supply direction of the hydraulic oil is switched to the hydraulic device 60 by the electromagnetic switching valve 85a, and the hydraulic pressure of the hydraulic device 60 passes through the speed adjustment valves 82a and 82b of the speed adjustment valve body 82 and the stop valves 86a and 86b of the maintenance valve body 86. In this configuration, the cylinder 61 is supplied and discharged.
  • the hydraulic oil from the hydraulic source 10 is supplied and discharged by moving the rod 65 of the hydraulic cylinder 61 to the left and right by the operation of the electromagnetic switching valve 85a of the electromagnetic switching valve body 85.
  • the conventional technology having such a configuration action is used when various valves of the upper laminated valve 88 in which the precision equipment that is a control device for the pile-up type laminated valve 80 is troubled or inspected and maintained. If necessary, the stop valves 81a and 81b of the maintenance valve 81 and the stop valves 86a and 86b of the maintenance valve 86 are closed to close the circuits of the hydraulic power source 10 and the hydraulic equipment 60, and the pile-up type stacked valve 80. The upper laminated valve 88 is removed for repair, inspection and maintenance.
  • the hydraulic circuit using the hydraulic cylinder circuit and the pile-up type laminated valve 80 used in the circuit described in Non-Patent Document 1 described above is a maintenance valve for repairing, checking, and servicing the upper laminated valve 88. Since the circuit is closed by 81 and the maintenance valve 86, there is a problem that the hydraulic cylinder 61 cannot be trial run and the circuit flushed during the repair, inspection, and repair period of the upper laminated valve 88. That is, when repairing, checking, or repairing the laminated valve, it is necessary to stop the hydraulic power source.
  • the present invention repairs a laminated valve while driving the hydraulic power source even when repairing, checking, or servicing the laminated valve of the hydraulic circuit, or when repairing or inspecting an operating device to which hydraulic oil is supplied or discharged by the circuit.
  • the present invention provides a hydraulic circuit capable of simultaneously performing inspection, maintenance, repair, inspection, maintenance and hydraulic flushing of hydraulic equipment.
  • the hydraulic circuit according to the present invention includes a hydraulic source configured by a tank that stores hydraulic oil, a hydraulic pump that is connected to the tank and generates hydraulic pressure oil, and hydraulic pressure that is connected to the hydraulic source and is supplied from the hydraulic source. And a first stop valve and a second valve that are provided close to the hydraulic device and open and close the first supply / discharge circuit and the second supply / discharge circuit to the hydraulic device.
  • a multi-function valve provided with a bypass circuit having a third stop valve, disposed on the stacked valve side of the first stop valve and the second stop valve, the hydraulic source, the stacked valve, and the multi-function valve;
  • a multi-function valve side first passage comprising a multi-function valve side first stop valve that opens and closes between the multi-function valve and the stacked valve;
  • a multifunction valve side second passage having a multifunction valve side second stop valve for opening and closing between the function valve and the stacked valve; a hydraulic pump;
  • the pump-side passage having a pump-side stop valve that opens and closes with a layer valve, the tank-side passage with a tank-side stop valve that opens and closes between the tank and the stacking valve, and the pump side
  • a pump-side bypass circuit having a pump-side bypass stop valve that branches on the pump side of the stop valve and opens and closes between the multi-function valve side first passage; and the multifunction valve that branches off on the tank side of the tank-side stop valve
  • the hydraulic circuit of the present invention includes a hydraulic power source configured by a tank for storing hydraulic oil, a hydraulic pump connected to the tank and generating hydraulic pressure oil, and the hydraulic pressure oil connected to the hydraulic pressure source from the hydraulic source.
  • a laminated valve having a direction switching valve for controlling supply / discharge of hydraulic equipment, and a first stop valve provided close to the hydraulic equipment for opening / closing a first supply / discharge circuit and a second supply / discharge circuit for the hydraulic equipment;
  • a multi-function valve including a second stop valve, a bypass circuit having a third stop valve arranged on the stacked valve side of the first stop valve and the second stop valve, the hydraulic source, the stacked valve, and the multi-function
  • a multi-function valve side first passage comprising a multi-function valve side first stop valve configured to open and close between the multi-function valve and the stacked valve;
  • a multifunction valve side second passage provided with a multifunction valve side second stop valve for opening and closing between the multifunction valve and the laminated valve; and a hydraulic pump
  • a hydraulic source comprising a tank for storing hydraulic oil, a hydraulic pump connected to the tank and generating hydraulic pressure oil, and a direction switching valve connected to the hydraulic source and controlling supply / discharge of the hydraulic pressure oil to hydraulic equipment
  • a laminated valve, a first stop valve and a second stop valve which are provided close to the hydraulic device and open and close the first supply / discharge circuit and the second supply / discharge circuit for the hydraulic device, and the first stop valve and the second stop valve.
  • a multi-function valve including a bypass circuit disposed on the laminated valve side of the two-stop valve and having a third stop valve, and a composite valve connecting the hydraulic source, the multi-layer valve and the multi-function valve;
  • a multi-function valve side first passage provided with a multi-function valve side first stop valve for opening and closing the composite valve between the multi-function valve and the stack valve, and between the multi-function valve and the stack valve
  • a multifunction valve-side second passage having a multifunction valve-side second stop valve that opens and closes, and a pump that opens and closes between the hydraulic pump and the stacked valve
  • the pump side passage provided with a side stop valve, the tank side passage provided with a tank side stop valve for opening and closing between the tank and the stacking valve, both the pump side passage and the tank side passage,
  • a directional switching valve is provided that switches connection between both the multifunction valve side first passage and the multifunction valve side second passage.
  • the hydraulic circuit of the present invention includes a hydraulic source, a composite valve, a stacked valve, and a multi-function valve disposed in a hydraulic device, and the composite valve closes between the stacked valve, the hydraulic source, and the multi-function valve, A function of opening / closing between the pump side and tank side of the source and the multifunction valve is provided, and the multifunction valve has a function of opening / closing the supply / discharge circuit of the hydraulic cylinder and bypassing the supply / discharge circuit.
  • the composite valve closes the laminated valve, the hydraulic source and the hydraulic cylinder to separate the laminated valve, so that the laminated valve can be repaired and checked regardless of the situation of the hydraulic cylinder and the hydraulic source. Maintenance can be performed.
  • the composite valve constitutes a circulation circuit that connects the hydraulic pump and multifunction, and in this circulation circuit, the multifunction valve shuts off the supply / discharge circuit of the hydraulic cylinder and constitutes a bypass circuit, so that the discharge pressure of the hydraulic pump Flushing for circulating oil can be performed.
  • the multi-function valve closes its bypass circuit and connects the hydraulic cylinder supply / exhaust circuit to operate the composite valve to connect the hydraulic power source and the hydraulic cylinder so that the hydraulic cylinder can be operated regardless of the stacked valve. I can do it.
  • the hydraulic cylinder can be separated from the supply / discharge circuit by operating the multi-function valve to shut off the supply / discharge circuit, and maintenance, repair, inspection and maintenance can be performed.
  • a hydraulic circuit composed of a hydraulic source, a composite valve, a laminated valve, and a multi-function valve arranged in the hydraulic equipment separates the laminated valve from other equipment by the composite valve. Intrusion of foreign matter (contamination) from other devices can be reliably prevented.
  • various operations such as maintenance and trial operation can be performed on the hydraulic cylinder and its supply / discharge circuit. It is possible to simultaneously perform repair, inspection and maintenance work of the laminated valve and repair, inspection and maintenance work of the hydraulic cylinder and its supply / discharge circuit. Furthermore, it has the effect of preventing foreign matter generated from one work from entering another work during these maintenance work.
  • the double rear valve used in the hydraulic circuit of the present invention includes a p port connected to the hydraulic pump, a t port connected to the tank circuit, an a port connected to the first supply / discharge circuit, and a b port connected to the second supply / discharge circuit.
  • a composite valve body 30a having a p1 port to which the p port is connected, a t1 port to which the t port is connected, an a1 port to which the a port is connected, and a b1 port to which the b port is connected,
  • the composite valve body 30a includes a first left-side passage configuration in which the p-port and the p1 port are connected and a first left-side U-shaped passage is provided, and a pump side stop valve is provided in a lower passage of the first left-side U-shaped passage
  • a first right U-shaped passage and a first T-shaped passage connecting the t port and the t1 port, and a lower passage of the first right U-shaped passage is substantially the same as an upper passage of the first left U-shaped passage.
  • a first right-side passage configuration having a configuration in which both the first T-shaped passage is disposed on substantially the same axis as the lower passage of the first left U-shaped passage and a tank-side bypass stop valve is disposed;
  • a second right side passage structure that connects the a port and the a1 port and includes a second right U-shaped passage, and a second multi-function valve side second stop valve is provided in a lower passage of the second right U shape passage;
  • a b port and the b port are connected to each other, and a second left U-shaped path and a second T-shaped path are provided, and a lower path of the second left U-shaped path is substantially the same axis as an upper path of the second right U-shaped path.
  • a first multi-function valve-side first stop valve is disposed on the line, the second T-shaped passage is disposed on the same axis as the lower passage of the second right U-shaped passage, and a pump-side bypass stop valve is disposed.
  • a second cross-section having two left-side passage configurations, wherein the first cross-section or the second cross-section When the side is rotated 180 degrees in the horizontal direction, the first left passage configuration and the second right passage configuration, and the first right passage configuration and the second left passage configuration are substantially the same, and the first left side of the first cross section
  • the lower passage of the passage configuration is connected by the pump side bypass circuit via the pump side bypass stop valve to the second T-passage of the second cross section, and the lower passage of the second right passage configuration of the second cross section is connected to the tank side bypass circuit
  • the first T-shaped passage of the first cross section is connected via a tank side bypass stop valve.
  • the composite valve with the above configuration is configured such that the circuit integrating the functions is formed on two surfaces, and when one of the surfaces is rotated and overlapped in the longitudinal direction, the circuits integrating the functions are substantially the same. , It is possible to standardize and simplify a circuit that aggregates functions. For this reason, the productivity can be improved.
  • FIG. 1 is a hydraulic circuit diagram of a first embodiment of the present invention.
  • FIG. 3 is a YY sectional view of FIG. 2. ZZ sectional view of FIG. XX sectional drawing of FIG.
  • the hydraulic circuit according to the embodiment of the present invention shown in FIG. 1 includes a hydraulic source 10 including a hydraulic pump 11, a tank 12, and a filter 13, a hydraulic device 60 including a hydraulic cylinder 61, and the hydraulic device 60.
  • a multi-function valve 40 provided in the vicinity, and a manifold 50 in which the hydraulic pressure source 10 and the multi-function valve 40 are connected and the composite valve 30 and the laminated valve 20 are provided on the upper part thereof are configured.
  • the relationship between the multifunction valve 40 and the hydraulic device 60 is that a hydraulic cylinder 61 constituting the multifunction valve 40 and the hydraulic device 60 is directly attached to the cylinder body 62 as shown in Japanese Patent No. 3696850. Since the multi-function valve 40 has a function of performing a flushing operation of the circuit and a function of enabling the hydraulic device 60 to be removed, it is desirable that the multi-function valve 40 be attached to the main body of the hydraulic device as much as possible.
  • the laminated valve 20 mounted on the upper part of the manifold 50 via the composite valve 30 includes a direction switching valve body 21 having a direction switching valve 22 and a load check valve body having two load check valve bodies 23a and 23b. 23 and a speed control valve body 24 composed of speed control valves 24a and 24b for adjusting the operating speed of the hydraulic device 60.
  • the direction switching valve 22 of the direction switching valve body 21 of the stacked valve 20 includes a neutral position 22a, a right switching position 22b, and a left switching position 22c.
  • the composite valve 30 includes a multi-function valve side first passage 31b including a multi-function valve side first stop valve 31a that opens and closes between the multi-function valve 40 and the multi-layer valve 20, a multi-function valve 40, and the multi-layer valve 20.
  • Multi-function valve side second passage 32b having a multi-function valve side second stop valve 32a that opens and closes between the pump and a pump side stop valve 33a that opens and closes between the hydraulic pump 11 and the laminated valve 20
  • a pump side bypass circuit 36b having a pump side bypass stop valve 36a that opens and closes between 1b and a pump that branches between the tank side stop valve 34a and the multifunction valve side second passage 32a.
  • Tank side bypass with side bypass stop valve 35a A configuration in which a road 35b.
  • the multifunction valve side first passage 31b is provided between the b port 37b to which the second supply / discharge circuit 38b is connected and the b1 port 37b1 to which the supply / discharge circuit 24d to the speed control valve 24b is connected. It is the structure opened and closed by the 1st side stop valve 31a.
  • the multifunction valve side second passage 32b is provided between the a port 37a to which the first supply / discharge circuit 38a is connected and the a1 port 37a1 to which the supply / discharge circuit 24c to the speed control valve 24a is connected. It is the structure opened and closed by the side 2nd stop valve 32a. Therefore, when the multifunction valve side first stop valve 31a and the multifunction valve side second passage 32b are closed, the multifunction valve 40 and the stacked valve 20 are disconnected.
  • the pump side passage 33b is provided between the p port 37p to which the pump circuit 10a is connected and the p1 port 37p1 to which the supply / discharge circuit 39a is connected, and is configured to be opened and closed by the pump side stop valve 33a.
  • the tank side passage 34b is provided between the t port 37t connected to the tank circuit 12a and the t1 port 37t1 connected to the supply / discharge circuit 39b, and is configured to be opened and closed by the tank side stop valve 34a. Therefore, when the pump side stop valve 33a and the tank side stop valve 34a are closed, the connection between the stacked valve 20 and the hydraulic source 10 is cut off, and the connection between the stacked valve 20 and the hydraulic source 10 is cut off.
  • the pump-side bypass circuit 36b is provided between the pump-side passage 33b and the multifunction valve-side first passage 31b, and is configured to be opened and closed by the pump-side bypass stop valve 36a.
  • the tank-side bypass circuit 35b It is provided between the passage 34b and the multifunction valve side first passage 31b, and is configured to be opened and closed by a tank side bypass stop valve 35a.
  • the composite valve 70 shown in FIG. 6B has the same structure except for the connection of the pump side bypass circuit 36b and the tank side bypass circuit 35b. That is, the pump-side bypass circuit 36b1 includes the tank-side bypass stop valve 36a1 in a configuration in which the pump-side passage 33b and the multifunction valve-side second passage 32b are connected.
  • the tank-side bypass circuit 35b1 is configured to connect the tank-side passage 34b and the multifunction valve-side first passage 31b and includes a pump-side bypass stop valve 35a1.
  • each stop valve of the composite valve 30 is substantially the same as that of the structure disclosed in FIG. 2A of Japanese Patent Application Laid-Open No. 2011-231924, omitting the multipurpose port. Since the body is a normal poppet-type on-off valve that opens and closes the passage, its detailed description is omitted.
  • the composite valve 30 includes a first cross section 30b shown in FIG. 3 showing a YY cross section of FIG. 2, a second cross section 30c shown in FIG. 4 showing a ZZ cross section, and an XX cross section. 5, which is shown in FIG. 5.
  • the first cross section 30 b and the second cross section 30 c are arranged in parallel, and the two cross sections intersect the third cross section 30 d. In this configuration, the design can be easily performed by arranging valves in each cross section.
  • the first cross section 30b shown in FIG. 3 includes a p port 37p connected to the pump circuit 10a, a p1 port 37p1 connected to the p port 37p via a pump side stop valve 33a and connected to the supply / discharge circuit 39a.
  • the t port 37t is connected to the tank circuit 12a and the t1 port 37t1 is connected to the t port 37t via the tank side stop valve 34a and connected to the supply / discharge circuit 39b.
  • the second cross section 30c shown in FIG. 4 communicates with the b port 37b connected to the second supply / discharge circuit 38b connected to the port 62b of the hydraulic cylinder 61 and the b port 37b via the multifunction valve side first stop valve 31a.
  • the multi-function valve is connected to the b1 port 37b1 connected to the supply / discharge circuit 24d communicating with the speed control valve 24b, the a port 37a connected to the first supply / discharge circuit 38a connected to the port 62a of the hydraulic cylinder 61, and the a port 37a.
  • a port 37a to which a supply / exhaust circuit 24c communicating with the communication speed control valve 24a is connected via the side second stop valve 32a.
  • a third cross section 30d shown in FIG. 5 is a plane that intersects the first cross section 30b and the second cross section 30c, and is multifunctional with the pump side bypass stop valve 36a, the pump side stop valve 33a, and the tank side bypass stop valve 35a.
  • the valve-side second stop valve 32a, the multifunction valve-side first passage 31b, the multifunction valve-side second passage 32b, and the pump-side bypass circuit 36b and the tank-side bypass circuit 35b are arranged.
  • the composite valve 30 improves the ease of workability by adopting a configuration in which the third cross section 30d intersects the two planes of the first cross section 30b and the second cross section 30c.
  • the first cross section 30b shown in FIG. 3 includes a pump-side passage 33b that connects a p-port 37p that opens to the lower plane 46a and a p1 port 37p1 that opens to the upper plane 46b, and a t-port 37t that opens to the lower plane 46a.
  • a tank-side passage 34b that connects a t1 port 37t1 that opens to 46b is provided.
  • the first left-side passage configuration 26 constituted by the pump-side passage 33b includes a first left-side U-shaped passage 26k that is configured by a lower passage 26a1 and an upper passage 26a2 and extends toward the left side surface 46d.
  • the upper passage 26a2 is opened and closed by a pump side stop valve 33a provided on the axis of the lower passage 26a1, and a pump side bypass circuit 36b is opened on the p port 37p side of the lower passage 26a1.
  • the first right side passage structure 27 constituted by the tank side passage 34b is composed of a lower passage 27a1, a middle passage 27a2, and an upper passage 27a3, and extends to the right side 46c by the upper passage 27a3 and the middle passage 27a2.
  • the lower passage 27a1 forms a T-shaped passage 27t branched from the tank side passage 34b.
  • the lower passage 27a1 is configured to be opened and closed by a tank-side bypass stop valve 35a, is formed coaxially with the lower passage 26a1 of the first left-side passage configuration 26, and a tank-side bypass circuit 35b is provided in the tank-side bypass stop valve 35a. It is the structure which opens.
  • the middle passage 27a2 is formed coaxially with the upper passage 26a2 of the first left passage constitution 26 and is provided with a tank side stop valve 34a.
  • the tank side stop valve 34a opens and closes with the upper passage 27a3. .
  • the second cross section 30c shown in FIG. 4 includes a multifunction valve-side first stop valve 31a that connects a b port 37b that opens to the lower flat surface 46a and a b1 port 37b1 that opens to the upper flat surface 46b, and a that opens to the lower flat surface 46a.
  • a multi-function valve side second stop valve 32a for connecting the port 37a and the a1 port 37a1 opened to the upper flat surface 46b is provided.
  • the second right side passage configuration 28 constituted by the multi-function valve side second passage 32b includes a second right U-shaped passage 28k constituted by a lower passage 28a1 and an upper passage 28a2 and extending toward the left side surface 46c.
  • the lower passage 28a1 and the upper passage 28a2 are opened and closed by a multifunction valve-side second stop valve 32a provided on the axis of the lower passage 28a1, and a tank-side bypass circuit 35b is opened on the a port 37a side of the lower passage 28a1. ing.
  • the second left side passage configuration 29 configured by the multifunction valve side first passage 31b is configured by a lower passage 29a1, a middle passage 29a2, and an upper passage 29a3, and extends upward toward the right side 46c by the upper passage 29a3 and the middle passage 29a2.
  • the lower passage 29a1 forms a second T-shaped passage 29t branched from the multifunction valve side first passage 31b.
  • the lower passage 29a1 is configured to be opened and closed by a pump-side bypass stop valve 36a, is formed coaxially with the lower passage 28a1 of the second right-side passage configuration 28, and a pump-side bypass circuit 36b is provided in the pump-side bypass stop valve 36a. It is the structure which opens. Also.
  • the middle passage 29a2 is formed coaxially with the upper passage 28a2 of the second right passage configuration 28, and is provided with a multifunction valve side first stop valve 31a.
  • the multifunction valve side first stop valve 31a is provided as the upper passage 29a3. Open and close between.
  • the third cross section 30d shown in FIG. 5 is a horizontal cross section that includes the tank side bypass stop valve 35a of the first cross section 30b and the pump side bypass stop valve 36a of the second cross section 30c and intersects the second cross section 30c and the first cross section 30b. Yes, the tank-side bypass circuit 35b and the pump-side bypass circuit 36b connect the second cross section 30c and the first cross section 30b.
  • the various stop valves are arranged on the same axis, and the passage connecting the various stop valves is formed in one plane, and further intersects with this plane. It is easy to construct because it is a simple combination of configurations that are connected by two planes. Further, when the first cross section 30b is rotated 180 degrees in the longitudinal direction as indicated by an arrow C in FIG. 3, the first left passage configuration 26, the second right passage configuration 28, the first right passage configuration 27, and the second right passage The configuration 28 is configured to be substantially the same.
  • the multi-function valve 40 is closely attached to the ports 62 a and 62 b of the hydraulic cylinder 61 and opens and closes between the first supply / discharge circuit 38 a connected to the manifold 50 and the port 62 a of the hydraulic cylinder 61.
  • the first stop valve 40a, the second stop valve 40b that opens and closes between the port 62b of the hydraulic cylinder 61 and the second supply / discharge circuit 38b connected to the manifold 50, and the multi-function valve 40 are connected to the first supply / discharge circuit.
  • the bypass circuit 42b is provided with a third stop valve 40c that opens and closes between the valve 38a and the second supply / discharge circuit 38b.
  • the bypass circuit 42b connects the first supply / discharge circuit 38a and the second supply / discharge circuit 38b.
  • the function of making the hydraulic cylinder 61 operate normally (for reciprocal operation) when the third stop valve 40c is closed and the first stop valve 40a and the second stop valve 40b are opened.
  • the hydraulic cylinder 61 can be removed for maintenance, inspection, and repair.
  • the multi-function valve 40 opens and closes a first stop valve 40 a that opens and closes between the port 62 a of the hydraulic cylinder 61 and the first supply / discharge circuit 38 a, and opens and closes between the second supply and discharge circuit 38 b and the port 62 b of the hydraulic cylinder 61.
  • a bypass circuit 42b that branches from the stacked valve 20 side of the first stop valve 40a and the second stop valve 40b and is opened and closed by the third stop valve 40c. Since it is almost the same as the multi-function valve described in Japanese Patent No. 3696850, a detailed description is omitted.
  • the hydraulic cylinder 61 constituting the hydraulic equipment 60 operates in the pull-in direction when the operating pressure oil is supplied to the rod side hydraulic chamber 63a of the main body 62 via the port 62a, and the head side pressure chamber 63b.
  • the rod 65 operates in the pushing direction.
  • the hydraulic oil in the head side pressure chamber 63b of the hydraulic cylinder 61 is combined from the multi-function valve 40 through the second supply / discharge circuit 38b composite valve 30 through the speed control valve body 24 and the load check valve body 23 through the right switching position 22b. Since the valve 30 returns to the tank 12, the rod 65 of the hydraulic cylinder 61 operates in the retracting direction.
  • the tank side bypass stop valve 35a, the pump side bypass stop valve 36a of the composite valve 30 and the third stop valve 40c of the multi-function valve 40 are closed, and the direction switching valve 22 is moved to the left.
  • the switch position 22c is operated, the hydraulic oil is supplied to the head-side pressure chamber 63b and the hydraulic oil in the rod-side hydraulic chamber 63a returns to the tank 12, so that the rod 65 of the hydraulic cylinder 61 operates in the pushing direction.
  • the multi-layer valve side first stop valve 31a, the multi-function valve side second stop valve 32a, and the tank side stop valve 34a of the composite valve 30 are repaired, inspected and serviced. And the pump side stop valve 33a is closed.
  • the composite valve 30 closes between the laminated valve 20 and the hydraulic cylinder 61 and the hydraulic power source 10, so that the laminated valve 20 can be removed from the composite valve 30 for repair, inspection, maintenance and the like.
  • the trial operation of the hydraulic cylinder 61 is performed by opening the pump-side bypass stop valve 35a and the tank-side bypass stop valve 36a during the repair, inspection, and maintenance operations of the laminated valve 20, and the second stop valve 40b and the second stop valve 40 of the multifunction valve 40.
  • the stop valve 40b is opened, hydraulic oil from the hydraulic source 10 is supplied to and discharged from the hydraulic cylinder 61, so that the rod 65 operates in the extending direction.
  • the pump-side bypass stop valve 35a and the tank-side bypass stop valve 36a are opened and the first stop valve 40a and the second stop valve 40b of the multi-function valve 40 are closed at the time of repair, inspection and maintenance operations of the laminated valve 20 described above.
  • the bypass circuit 42b is configured, so that the hydraulic fluid returns from the first supply / discharge circuit 38a to the tank 12 via the bypass circuit 42b and from the second supply / discharge circuit 38b to the composite valve 30. Flushing can be performed.
  • the discharge side of the hydraulic pump 11 is the head side pressure of the hydraulic cylinder 61.
  • the tank 12 is connected to the chamber 63 b and the tank 12 is connected to the rod side hydraulic chamber 63 a of the hydraulic cylinder 61. For this reason, the trial operation of the hydraulic cylinder 61 is only in the direction of extending the rod 65 of the hydraulic cylinder 61.
  • the discharge side of the hydraulic pump 11 is connected to the hydraulic cylinder 61.
  • the tank 12 is connected to the head side pressure chamber 63 a and the tank 12 is connected to the rod side hydraulic chamber 63 b of the hydraulic cylinder 61. For this reason, the trial operation of the hydraulic cylinder 61 is only in the direction in which the rod 65 of the hydraulic cylinder 61 is reduced.
  • FIG. 8 showing a circuit diagram of the second embodiment
  • a direction switching valve 45 By operating this direction switching valve 45, it is possible to perform a trial run in the expansion / contraction direction.
  • the direction switching valve 45 has a structure having three positions, that is, a neutral position 45a, a first switching position 45b, and a second switching position 45c.
  • the direction switching valve 45 is constituted by only one of the neutral position and the first or second switching position. It may be a two-position direction switching valve.
  • the tank side bypass circuit 35b and the pump side bypass circuit 36b are communicated with each other, so that the head side pressure chamber 63b and the hydraulic pump 11 are connected, and the tank 12 and the head side pressure chamber 63b are connected.
  • the rod 65 can be operated in the extending direction.
  • the tank side bypass circuit 35b connects the tank side passage 34b and the multifunction valve side first passage 31b
  • the pump side bypass circuit 36b connects the pump side passage 33b and the multifunction valve side first. Since the two passages 32b communicate with each other, the rod-side hydraulic chamber 63a and the hydraulic pump 11 are connected, and the tank 12 and the rod-side hydraulic chamber 63a are connected, so that the rod 65 can be operated in a contracting direction.
  • the third stop valve 40c of the multi-function valve 40 is opened and the other first stop valve 40a and the second stop valve 40b are closed, the supply and discharge of the hydraulic oil to the hydraulic cylinder 61 is also stopped, but the first supply and discharge is stopped. Since the circuit 38a and the second supply / discharge circuit 38b are connected by the bypass circuit 42b of the multi-function valve 40, the first supply / discharge circuit 38a and the second supply / discharge circuit 38b can be flushed.
  • the hydraulic cylinder 61 of the hydraulic device 60 can completely separate the hydraulic device 60 from the stacked valve 20 and the hydraulic power source 10 by opening only the third stop valve 40c of the multi-function valve 40. Can be serviced.
  • Repair, inspection, and maintenance of the laminated valve 20 and the hydraulic cylinder 61 are performed in a state where the laminated valve 20 and the hydraulic cylinder 61 are securely separated by the composite valve 30 and the multi-function valve 40, so there is no risk of contamination. . Further, it is not necessary to stop the hydraulic power source 10 during repair, inspection, and maintenance, and a flushing circuit can be configured, so that flushing operations can be performed in parallel during repair, inspection, and maintenance. Furthermore, after the repair, inspection, and maintenance of the hydraulic cylinder 61 are completed and attached to the multifunction valve 40 again, the hydraulic cylinder 61 can be trial run and finely operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

油圧回路の積層弁のメンテナンスを可能とする、同時に回路のフラッシング、試運転の各種の機能を発揮させる油圧回路及びその油圧回路に用いる複合弁に関する。 油圧回路に積層弁と油圧源および油圧機器に接続した多機能弁との間に、複合弁を介在させ、この複合弁に油圧源と積層弁間および積層弁と多機能弁の間を開閉する止弁と油圧源と多機能弁との間を開閉する止弁と、この止弁の油圧源側に油圧源と多機能弁との間を開閉する止弁を設けたバイパス回路を設けた構成により、油圧源と積層弁と、フラッシング、油圧機器の修理、検査、整備、試運転を同時に行うことを可能にする。また、複合弁は、その回路構成を画一化することで製作を容易にする。

Description

油圧回路及びその油圧回路に用いる複合弁
 本発明は、水門の駆動装置あるいは工場設備に利用される往復動型の油圧シリンダの回路の様に作動油が回路の中を移動するだけで循環しない回路、あるいは油圧モータの回路の様に循環する油圧回路などに接続する弁類、油圧シリンダ、油圧モータ等その外の油圧機器を随時にメンテナンスを可能にする、あるいは、油圧機器の作動回路のフラッシング、または非常動作などの各種の機能を発揮させることができる油圧回路及びその油圧回路に用いる複合弁に関する。
 例えば油圧シリンダで駆動される水門の一つとしては、河川を横断して設置した転倒ゲート装置がある。この転倒ゲート装置は、河川を横断して設けた転倒ゲートの転倒量を制御して河川の水資源の有効利用目的、河口に設け海水と淡水の混合を防止する目的、海岸に設置して防潮の目的に利用される。また、工場設備としては、マシニングセンターに使用される各種の油圧機器がある。
 水資源の有効利用を図る転倒ゲート装置は、河川を横断して設置した転倒ゲートの両側にピア(pier)を設け、このピア内に前記転倒ゲートが固定されるシャフトと、このシャフトに固定してあり油圧シリンダで回動させられるカムが設置され、前記ピア内に設けた油圧シリンダで回動されるカムのシャフトによりその転倒量が制御される構造である。また、マシニングセンターには、そのワークを固定する油圧クランパーがある。
 この転倒ゲートの駆動源として用いられる往復動型の油圧シリンダの駆動回路は、駆動回路が油圧シリンダで分断されており、油圧シリンダを移動させるに必要な作動油(油圧シリンダの容積分)が回路内を往復するから、駆動回路と油圧シリンダ内の作動油は停滞している。したがって、使用時間が長くなると駆動回路や油圧シリンダの中にゴミ、あるいは油圧シリンダのシール部分から進入した空気が油圧シリンダ内で断熱圧縮され爆発するディーゼル爆発によるシールの焼損破片などの汚染物質で作動油が汚染される。同様に、工場設備などの油圧モータもそのシールの破損あるいは油圧モータの回転部分と本体の摩擦による金属粉により汚染された作動油のコンタミにより制御弁、速度調整弁などの制御機器が作動不良となる問題があった。
 この様に汚染物質(コンタミ)で汚染された作動油により作動不良となった制御機器は、分解清掃して作動不良の原因を排除し、油圧シリンダを制御できるようにする必要がある。また、制御機器は、それが作動不良を起こす前に整備点検を行なって作動不良に至らない様にする必要がある。さらに、油圧シリンダ、油圧モータ等の油圧機器も前記したコンタミにより作動不良が発生した場合には作動不良を解消する必要及び、作動不良が発生しないよう整備点検をする必要がある。従来油圧回路は、この制御機器の修理、点検、整備、分解掃除、あるいは定期検査などの回路は、図9に示される技術が広く知られていた。
 図9に示す非特許文献1の油圧回路は、油圧シリンダの回路であるが、油圧モータであっても良いものであるから、油圧機器を代表して油圧シリンダと記載する。図9に示す油圧回路は、メンテナンス弁81とメンテナンス弁86で構成する下部積層弁87と、速度調整弁体83とロードチェック弁体84と電磁切換弁体85で構成する上部積層弁88で、構成されるパイルアップ型の積層弁80に油圧源10及び油圧シリンダ60を接続した油圧回路が示されている。
 前記回路の油圧源10の油圧ポンプ11が吐出する作動圧油は、マニホールド89から下部積層弁87のメンテナンス弁体86を通過しメンテナンス弁81の止弁81a、81bを経て、上部積層弁88の速度調整弁体82を通過し電磁切換弁体85の電磁切換弁85aに到達する。この作動油は、電磁切換弁85aで油圧機器60への供給方向が切替えられ速度調整弁体82の速度調整弁82a、82b、メンテナンス弁体86の止弁86a、86bを経て油圧機器60の油圧シリンダ61に給排される構成である。
 上記の構成において、油圧源10からの作動油は、電磁切換弁体85の電磁切換弁85aの操作より油圧シリンダ61のロッド65を左右に移動させるよう給排される。
 このような構成作用を有する従来技術は、パイルアップ型の積層弁80の制御機器である精密機器が集約される上部積層弁88の各種の弁が支障を来たした場合、あるいは、点検整備を必要とする場合には、メンテナンス弁81の止弁81a、81bとメンテナンス弁86の止弁86a、86bを閉鎖して油圧源10と油圧機器60の回路を閉鎖してパイルアップ型の積層弁80の上部積層弁88を取り外して修理、点検、整備、を行なう構成であった。
廣瀬バルブ工業株式会社のホームページに上梓されたメンテナンスバルブのカタログ。
 上述した非特許文献1に記載された油圧シリンダの回路とその回路に用いるパイルアップ型の積層弁80を用いた油圧回路は、その上部積層弁88を修理、点検、整備する為に、メンテナンス弁81とメンテナンス弁86でその回路を閉鎖するので、上部積層弁88の修理、点検、補修の期間は、油圧シリンダ61の試運転、回路のフラッシングを行なうことができない問題点を有する。すなわち、積層弁の修理、点検、補修の時は、油圧源を停止する必要があった。
 本発明は、油圧回路の積層弁の修理、点検、整備を行なう時、あるいはその回路により作動油が給排される作動機器の修理点検時においても、油圧源を駆動したままで積層弁の修理、点検、整備、油圧機器の修理、点検、整備及び回路のフラッシングを同時に行なうことが可能な油圧回路を提供するものである。
 本発明の油圧回路は、作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、この油圧源に接続し油圧源からの作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と、前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したバイパス回路を備えた多機能弁と、前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、で構成され、前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、前記前記ポンプ側止弁のポンプ側で分岐し前記多機能弁側第1通路の間を開閉するポンプ側バイパス止弁を備えたポンプ側バイパス回路と、前記タンク側止弁のタンク側で分岐し前記多機能弁側第2通路の間を開閉するタンク側止弁を備えたタンク側バイパス回路を備えたことを特徴とする。
 また、本発明の油圧回路は、作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、この油圧源に接続し油圧源からの作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と、前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したバイパス回路を備えた多機能弁と、前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、で構成され、前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、前記ポンプ側止弁のポンプ側で分岐し前記多機能弁側第2通路の間を開閉するポンプ側バイパス止弁を備えたポンプ側バイパス回路と、前記タンク側止弁のタンク側で分岐し前記多機能弁側第1通路の間を開閉するタンク側止弁を備えたタンク側バイパス回路と、を備えたことを特徴とする。
 作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、この油圧源に接続しその作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と、前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したパイパス回路を備えた多機能弁と、前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、より構成され、前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、前記ポンプ側通路と前記タンク側通路の双方と、多機能弁側第1通路と多機能弁側第2通路の双方の接続を切替える方向切換弁を備えたことを特徴とする。
本発明の油圧回路は、油圧源と複合弁と積層弁と油圧機器に配置した多機能弁とで構成し、複合弁が積層弁と油圧源及び多機能弁の間を閉鎖する機能と、油圧源のポンプ側及びタンク側と多機能弁との間を開閉する機能を備え、多機能弁が油圧シリンダの給排回路の開閉および給排回路をバイパスする機能を備えている。
本発明の油圧回路は、その複合弁が積層弁と油圧源及び油圧シリンダの間を閉鎖して積層弁を分離することで、油圧シリンダと油圧源の状況に関係なく積層弁の修理、点検、整備を行なうことができる。さらに、複合弁が、油圧ポンプと多機能を接続する循環回路を構成し、この循環回路において多機能弁が油圧シリンダの給排回路を遮断しバイパス回路を構成することで、油圧ポンプの吐出圧油を循環させるフラッシングを行なうことができる。さらに、多機能弁がそのバイパス回路を閉鎖し油圧シリンダの給排回路を連通させることで、複合弁を操作して油圧源と油圧シリンダを接続し、油圧シリンダを積層弁に関係なく作動させることが出来る。また、多機能弁を操作して給排回路を遮断することにより油圧シリンダをその給排回路から分離して保守、修理、点検、整備、を行なうことができる。
 このように、油圧源と複合弁と積層弁と油圧機器に配置した多機能弁とで構成した油圧回路は、複合弁により積層弁を他の機器から分離するので修理、点検、整備中に他の機器からの異物(コンタミ)の侵入を確実に防止できる。また、複合弁と多機能弁の操作により、油圧シリンダとその給排回路に各種の保守、試運転などの作動を行なわせることができる。積層弁の修理、点検、整備の作業と油圧シリンダとその給排回路の修理、点検、整備の作業を同時に行うことができる。さらに、これらの保守作業中に、一方の作業から発生する異物を他の作業に侵入させない効果を有する。
本発明の油圧回路に用いる複後弁は、油圧ポンプが接続するpポートとタンク回路が接続するtポート及び第1給排回路に接続するaポートと第2給排回路に接続するbポートと、前記pポートが接続するp1ポートと前記tポートが接続するt1ポート及び前記aポートが接続するa1ポートと前記bポートが接続するb1ポートと、を備えた複合弁体30aを有し、この複合弁体30aが、前記pポートと前記p1ポートを接続し第1左コの字形通路を備えこの第1左コの字通路の下方通路にポンプ側止弁を設けた第1左側通路構成と、前記tポートと前記t1ポートを接続し第1右コの字通路と第1T字通路を備え前記第1右コの字通路の下方通路を前記第1左コの字形通路の上方通路とほぼ同一軸線上に配置しタンク側止弁を設けると共に前記第1T字通路を前記第1左コの字形通路の下方通路とほぼ同一軸線上に配置しタンク側バイパス止弁を配置した構成の第1右側通路構成と、を有する第1断面と、前記aポートと前記a1ポートを接続し第2右コの字形通路を備えこの第2右コの字通路の下方通路に多機能弁側第2止弁を設けた第2右側通路構成と、前記bポートと前記bポートを接続し第2左コの字通路と第2T字通路を備え前記第2左コの字通路の下方通路を前記第2右コの字形通路の上方通路とほぼ同一軸線上に配置し多機能弁側第1止弁を設けると共に前記第2T字通路を前記第2右コの字形通路の下方通路と同一軸線上に配置しポンプ側バイパス止弁を配置した構成の第2左側通路構成と、を有する第2断面と、を備え、前記第1断面または第2断面の一方を水平方向に180度回転すると第1左側通路構成第と2右側通路構成及び第1右側通路構成と第2左側通路構成がほぼ同一になるように構成し、前記第1断面の第1左側通路構成の下方通路をポンプ側バイパス回路によりポンプ側バイパス止弁を介して前記第2断面の第2T字通路接続すると共に、前記第2断面の第2右側通路構成の下方通路をタンク側バイパス回路によりタンク側バイパス止弁を介して前記第1断面の第1T字通路接続したこと特徴とする。
 上記構成の複合弁は、2つの面に機能を集約した回路を構成し、その一方の面を長手方向に回転して重ね合わせると、機能を集約した回路がほぼ同一になるように構成したので、機能を集約する回路を画一化しかつ単純化し得ることができる。このため、その生産性の向上を図ることができる効果を有する。
本発明の第1実施形態の油圧回路図。 第1実施形態の複合弁の本体側面図。 図2のY-Y断面図。 図2のZ-Z断面図。 図2のX-X断面図。 第1実施形態の複合弁の回路図。 第1実施形態の複合弁の別の実施例の回路図。 第1実施形態作動説明回路図。 第1実施形態作動説明回路図。 本発明の第2実施形態の油圧回路図。 従来技術の油圧回路図。
 (第1実施形態)
 以下、本発明の好適な実施の形態の第1実施形態を図1~図7に基づいて説明する。
 図1に示す本発明の実施形態である油圧回路は、油圧ポンプ11とタンク12とフィルター13とで構成される油圧源10と、油圧シリンダ61で構成する油圧機器60と、この油圧機器60の近傍に設けた多機能弁40と、前記油圧源10と多機能弁40とが接続しその上部に複合弁30と積層弁20が設けられるマニュホールド50とで構成する。
 前記多機能弁40と油圧機器60の関係は、多機能弁40と油圧機器60を構成する油圧シリンダ61が特許第3696850号に示すように、そのシリンダ本体62に直接取り付けてある。多機能弁40は、回路のフラッシング作用を行なわせる機能と、油圧機器60の取外しを可能とする機能を有するものであるから、なるべく油圧機器の本体に取り付けることが望ましい。
 複合弁30を介してマニュホールド50の上部に積載設置される積層弁20は、方向切換弁22を備えた方向切換弁体21と、2つのロードチェック弁体23a、23b備えたロードチェック弁体23と、油圧機器60の作動速度を調整する速度制御弁24a、24bとで構成される速度制御弁体24とで構成してある。
 前記積層弁20の方向切換弁体21の方向切換弁22は、中立位置22aと右切換位置22b及び左切換位置22cを備えており、電磁操作部22d、22eへの信号の印加により、前記右切換位置22bまたは左切換位置22cの切換位置に切換操作され、電磁操作部22d、22eへの操作信号が印加されない場合はバネによって中立位置22aに保持される構成である。
 複合弁
 複合弁30についてその回路図を図6(a)を参照して説明する。複合弁30は、多機能弁40と積層弁20との間を開閉する多機能弁側第1止弁31aを備えた多機能弁側第1通路31bと、多機能弁40と積層弁20との間を開閉する多機能弁側第2止弁32aを備えた多機能弁側第2通路32bと、油圧ポンプ11と積層弁20との間を開閉するポンプ側止弁33aを備えたポンプ側通路33bと、タンク12と積層弁20との間を開閉するタンク側止弁34aを備えたタンク側通路34bと、ポンプ側止弁33aの油圧ポンプ11側で分岐し多機能弁側第1通路1bとの間を開閉するポンプ側バイパス止弁36aを備えたポンプ側バイパス回路36bと、タンク側止弁34aのタンク側12で分岐し多機能弁側第2通路32aとの間を開閉するポンプ側バイパス止弁35aを備えたタンク側バイパス回路35bとを備えた構成である。
多機能弁側第1通路31bは、第2給排回路38bが接続するbポート37bと速度制御弁24bへの給排回路24dが接続するb1ポート37b1との間に設けてあり、多機能弁側第1止弁31aで開閉される構成である。多機能弁側第2通路32bは、第1給排回路38aが接続するaポート37aと速度制御弁24aへの給排回路24cが接続するa1ポート37a1との間に設けてあり、多機能弁側第2止弁32aで開閉される構成である。従って、多機能弁側第1止弁31aと多機能弁側第2通路32bを閉鎖すると、多機能弁40と積層弁20との間が遮断される。
ポンプ側通路33bは、ポンプ回路10aが接続するpポート37pと給排回路39aが接続するp1ポート37p1との間に設けてあり、ポンプ側止弁33aで開閉される構成である。タンク側通路34bは、タンク回路12aが接続するtポート37tと給排回路39bが接続するt1ポート37t1の間に設けてありタンク側止弁34aで開閉される構成である。従ってポンプ側止弁33aとタンク側止弁34aを閉鎖すると、積層弁20と油圧源10との間が遮断され、積層弁20と油圧源10の間が遮断される。
ポンプ側バイパス回路36bは、ポンプ側通路33bと多機能弁側第1通路31bの間に設けてあり、ポンプ側バイパス止弁36aで開閉される構成であり、タンク側バイパス回路35bは、タンク側通路34bと多機能弁側第1通路31bとの間に設けてあり、タンク側バイパス止弁35aで開閉される構成である。この様に構成すると作動油の流れが図6(a)矢印Aに示すように様に反時計方向の流れとなる。
なお、図6(a)のpポート37pにタンク回路12aを接続し、tポート37tにポンプ回路10aを接続すると図6(b)に示した複合弁70の流れと同様に時計方向の流れとなる。
また、図6(b)に示す複合弁70は、前記したポンプ側バイパス回路36bとタンク側バイパス回路35bの接続が相違するのみでその外は同一構造である。すなわち、ポンプ側バイパス回路36b1は、ポンプ側通路33bと多機能弁側第2通路32bとを接続する構成でタンク側バイパス止弁36a1を備えている。また、タンク側バイパス回路35b1は、タンク側通路34bと多機能弁側第1通路31bを接続する構成でポンプ側バイパス止弁35a1を備えた構成である。
 上記の構成の相違による作動は、複合弁30を作動油が、図6(a)の矢印Aに示すように反時計方向に流れるのに対して、複合弁70の作動油が図6(b)の矢印Bに示すように時計方向の流れる点が相違する。この相違は、作動油の流し方のみでありその外はほぼ同一であるから以後複合弁30について説明し、必要に応じて複合弁70の説明をする。
複合弁30の具体的構成
 複合弁30の具体的構成について、図2~図5に基づいて説明する。なお、複合弁30の各止弁の具体的構造は、特開2011-231924号の図2(a)に開示された構造の多目的ポートを省いた構造とほぼ同一であり、ハンドルの操作により弁体が通路を開閉する通常のポペット型の開閉弁であるから、その詳細説明を省く。
 複合弁30についてその複合弁体30a示す図2に示した3つの断面により具体的構造を説明する。
複合弁30は、図2のY-Y断面を示した図3で表される第1断面30bと、Z―Z断面を示した図4で表される第2断面30cと、X-X断面を示した図5で表される第3断面30dの3つの面で構成されおり、第1断面30bと第2断面30cが平行に設置してあり前記2つの断面と第3断面30dとが交差する構成で、各断面に弁類を配置することにより設計を容易に行なえる構成にしてある。
 図3に示す第1断面30bは、ポンプ回路10aが接続するpポート37pとこのpポート37pにポンプ側止弁33aを介して連通し給排回路39aが接続するp1ポート37p1と、油圧源10のタンク回路12aに接続するtポート37tとこのtポート37tにタンク側止弁34aを介して連通し給排回路39bが接続するt1ポート37t1とで構成する。
 図4に示す第2断面30cは、油圧シリンダ61のポート62bに接続する第2給排回路38bが接続するbポート37bとこのbポート37bに多機能弁側第1止弁31aを介して連通し速度制御弁24bに連通する給排回路24dが接続するb1ポート37b1と、油圧シリンダ61のポート62aに接続する第1給排回路38aが接続するaポート37aとこのaポート37aに多機能弁側第2止弁32aを介して連通し速度制御弁24aに連通する給排回路24cが接続するaポート37aとで構成する。
 図5に示す第3断面30dは、前記第1断面30bと第2断面30cと交差する平面であり、ポンプ側バイパス止弁36aとポンプ側止弁33a、およびタンク側バイパス止弁35aと多機能弁側第2止弁32aと、多機能弁側第1通路31bと多機能弁側第2通路32bおよびポンプ側バイパス回路36bとタンク側バイパス回路35bの各通路が配置された構造である。
 複合弁30は、第1断面30bと第2断面30cの2つの面内を第3断面30dが交差する構成にすることで加工性の容易さを向上させたものである。
 図3に示す第1断面30bは、下平面46aに開口するpポート37pと上平面46bに開口するp1ポート37p1を接続するポンプ側通路33bと、下平面46aに開口するtポート37tと上平面46bに開口するt1ポート37t1を接続するタンク側通路34bを備えている。
 ポンプ側通路33bで構成する第1左側通路構成26は、下方通路26a1と上方通路26a2とで構成され左側面46dに向かって伸びる第1左コの字通路26kを備えており、下方通路26a1と上方通路26a2は下方通路26a1の軸線上に設けたポンプ側止弁33aで開閉されると共に、下方通路26a1のpポート37p側にポンプ側バイパス回路36bを開口させている。
 タンク側通路34bで構成する第1右側通路構成27は、下方通路27a1と中通路27a2と上方通路27a3で構成され、上方通路27a3と中通路27a2で右側面46cに向かって伸びる第1右コの字通路27kを構成しており、下方通路27a1はタンク側通路34bから分岐するT字通路27tを構成する。
 下方通路27a1は、タンク側バイパス止弁35aで開閉される構成であり第1左側通路構成26の下方通路26a1と同軸上に形成してあり、タンク側バイパス止弁35aにタンク側バイパス回路35bが開口する構成である。また、中通路27a2は、第1左側通路構成26の上方通路26a2と同軸上に形成してタンク側止弁34aを設けてあり、このタンク側止弁34aが上方通路27a3との間を開閉する。
 図4に示す第2断面30cは、下平面46aに開口するbポート37bと上平面46bに開口するb1ポート37b1を接続する多機能弁側第1止弁31aと、下平面46aに開口するaポート37aと上平面46bに開口するa1ポート37a1を接続する多機能弁側第2止弁32aを備えている。
 多機能弁側第2通路32bで構成する第2右側通路構成28は、下方通路28a1と上方通路28a2とで構成され左側面46cに向かって伸びる第2右コの字通路28kを備えており、下方通路28a1と上方通路28a2は、下方通路28a1の軸線上に設けた多機能弁側第2止弁32aで開閉されると共に、下方通路28a1のaポート37a側にタンク側バイパス回路35bを開口させている。
 多機能弁側第1通路31bで構成する第2左側通路構成29は、下方通路29a1と中通路29a2と上方通路29a3で構成され、上方通路29a3と中通路29a2で右側面46cに向かって伸びる第2コの字通路29kを構成しており、下方通路29a1は多機能弁側第1通路31bから分岐する第2T字通路29tを構成する。
 下方通路29a1は、ポンプ側バイパス止弁36aで開閉される構成であり第2右側通路構成28の下方通路28a1と同軸上に形成してあり、ポンプ側バイパス止弁36aにポンプ側バイパス回路36bが開口する構成である。また。中通路29a2は、第2右側通路構成28の上方通路28a2と同軸上に形成して多機能弁側第1止弁31aを設けてあり、この多機能弁側第1止弁31aが上方通路29a3との間を開閉する。
 図5に示す第3断面30dは、第1断面30bのタンク側バイパス止弁35aと第2断面30cのポンプ側バイパス止弁36aを含み第2断面30cと第1断面30bに交差する水平断面であり、タンク側バイパス回路35bとポンプ側バイパス回路36bが第2断面30cと第1断面30bを連結する構造である。
 この様な構成の複合弁30は、各種の止弁の配置を同一軸線上に配置してありその各種の止弁を接続する通路を一平面内に構成し、さらにこの平面に交差するもう一つの平面で連結する構成の単純な結合であるから構成しやすい。また、図3に矢印Cで示すようにその第1断面30bを長手方向に180度回転すると、第1左側通路構成26と第2右側通路構成28及び第1右側通路構成27と第2右側通路構成28がほぼ同一になるように構成してある。
 多機能弁
 多機能弁40は、油圧シリンダ61のポート62aとポート62bに密接して取り付けてあり、マニュホールド50に接続する第1給排回路38aと油圧シリンダ61のポート62aの間を開閉する第1止弁40aと、マニュホールド50に接続する第2給排回路38bと油圧シリンダ61のポート62bの間を開閉する第2止弁40bと、この多機能弁40は、第1給排回路38aと第2給排回路38bの間を開閉する第3止弁40cを設けたバイパス回路42bを有する構成である。
この多機能弁40は、第1止弁40a、第2止弁40bを閉鎖して第3止弁40cを開くと、第1給排回路38aと第2給排回路38bをバイパス回路42bが連結する機能と、第3止弁40cを閉じ第1止弁40aと第2止弁40bを開くと油圧シリンダ61を通常の作動(往復動作用)にする機能を有する。第1止弁40a、第2止弁40bを閉鎖すると、油圧シリンダ61を外して保守、点検、修理を行なうことができる。
 前記多機能弁40は、油圧シリンダ61のポート62aと第1給排回路38aの間を開閉する第1止弁40aと、第2給排回路38bと油圧シリンダ61のポート62bとの間を開閉する第2止弁40bとこの第1止弁40aと第2止弁40bの積層弁20側から分岐して第3止弁40cで開閉されるバイパス回路42bとを有する構成であり、詳細は、特許第3696850号に記載されている多機能弁とほぼ同一であるから、詳細説明を省く。
 油圧機器
 油圧機器60を構成する油圧シリンダ61は、本体62のロッド側油圧室63aにポート62aを介して作動圧油が供給されるとそのロッド65が引き込み方向に作動し、ヘッド側圧力室63bに作動圧力油が供給されるとロッド65が押し出し方向に作動する構成である。
 第1実施形態作用説明
 図7(a)(b)に基づいて第1実施形態の作用についてのべる。なお、図7(a)(b)は、本発明の作動と関連が薄いので図1のロードチェック弁体23と速度制御弁体24を省いてある。
 通常作動
 図7(a)において、方向切換弁体21の方向切換弁22を操作して油圧シリンダ61を通常動作させる場合は、まず、複合弁30のタンク側バイパス回路35bのタンク側バイパス止弁35aとポンプ側バイパス回路36bのポンプ側バイパス止弁36aを閉じその外の止弁を開いた状態にし、多機能弁40の第3止弁40cを閉じその他の止弁を開いておく状態にする。
複合弁30と多機能弁40を上記の状態にセットして、方向切換弁体21の方向切換弁22を右切換位置22bに操作すると、油圧ポンプ11の作動油が、複合弁30を介して右切換位置22bからロードチェック弁体23、速度制御弁体24を介し第1給排回路38aから多機能弁40を経て、ロッド側油圧室63aに供給される。
 油圧シリンダ61のヘッド側圧力室63bの作動油は、多機能弁40から第2給排回路38b複合弁30を経て速度制御弁体24、ロードチェック弁体23から右切換位置22bを介して複合弁30からタンク12に帰還するので、油圧シリンダ61のロッド65は引き込み方向に作動する。
 図7(a)に示すように、複合弁30のタンク側バイパス止弁35aとポンプ側バイパス止弁36aと多機能弁40の第3止弁40cを閉鎖しておき、方向切換弁22を左切換位置22cに操作すると、ヘッド側圧力室63bに作動油が供給され、ロッド側油圧室63aの作動油がタンク12に帰還するので、油圧シリンダ61のロッド65が押出し方向に作動する。
 すなわち、複合弁30と多機能弁40の状態を上述した状態で保持すると、油圧シリンダ61の動作は方向切換弁体21の方向切換弁22の操作により通常作動となる。
 積層弁の検査、修理、点検、整備及び油圧シリンダ試運転及びフラッシングについてまず、図7(b)により、積層弁20の修理、点検、整備及び油圧シリンダ61の試運転について説明する。
積層弁20の修理、点検、整備は、図7(b)に示すように、複合弁30の多機能弁側第1止弁31aと多機能弁側第2止弁32aおよびタンク側止弁34aとポンプ側止弁33aを閉鎖する。この操作により、複合弁30が積層弁20と油圧シリンダ61および油圧源10の間を閉鎖するので、複合弁30から積層弁20を取り外して修理、点検、整備などを行なうことができる。
油圧シリンダ61の試運転は、上記した積層弁20の修理、点検、整備の操作時にポンプ側バイパス止弁35aとタンク側バイパス止弁36aを開き、多機能弁40の第2止弁40bと第2止弁40bを開くと、油圧シリンダ61に、油圧源10からの作動油の給排がなされるので、ロッド65が伸びる方向に作動する。
また、上記した積層弁20の修理、点検、整備の操作時にポンプ側バイパス止弁35aとタンク側バイパス止弁36aを開き、多機能弁40の第1止弁40aと第2止弁40bを閉じ第3止弁40cを開くとバイパス回路42bが構成されるので、作動油が第1給排回路38aからバイパス回路42bを介して第2給排回路38bから複合弁30を介してタンク12へ還流するフラッシングを行なうことができる。
すなわち、図7(a)(b)に示した第1実施形態の複合弁30は、図6(a)に示した回路構成であるから、油圧ポンプ11の吐出側が油圧シリンダ61のヘッド側圧力室63bに連結し、タンク12が油圧シリンダ61のロッド側油圧室63aに連結する構成である。このために、油圧シリンダ61の試運転は、油圧シリンダ61のロッド65を伸張する方向のみである。
また、図7(a)(b)に示した第1実施形態の複合弁30を、図6(b)に示した複合弁70の回路構成にすると、油圧ポンプ11の吐出側が油圧シリンダ61のヘッド側圧力室63aに連結し、タンク12が油圧シリンダ61のロッド側油圧室63bに連結する構成である。このために、油圧シリンダ61の試運転は、油圧シリンダ61のロッド65を縮小方向のみである。
 第2実施形態
 第2実施形態の回路図を示す図8に示すように、複合弁30のタンク側バイパス止弁35aとポンプ側バイパス止弁36aを、方向切換弁45に置き換えると、油圧シリンダ61は、この方向切換弁45の操作により、伸張、縮小方向への試運転を行なうことができる。なお、方向切換弁45は、中立位置45aと第1切換位置45bと第2切換位置45cの3位置を備えた構造にしたが、中立位置と前記第1または第2切換位置の一方のみで構成する2位置の方向切換弁でもよい。
方向切換弁45を図示の中立位置45aに操作すると、タンク側バイパス回路35bとポンプ側バイパス回路36bが遮断され、油圧シリンダ61は停止位置のままである。
第1切換位置45bに操作すると、タンク側バイパス回路35bがとポンプ側バイパス回路36bが連通されるので、ヘッド側圧力室63bと油圧ポンプ11が接続され、タンク12とヘッド側圧力室63bが接続され、ロッド65を伸張する方向に作動させることが出来る。
また、第2切換位置45cに操作すると、タンク側バイパス回路35bがタンク側通路34bと多機能弁側第1通路31bを接続し、ポンプ側バイパス回路36bがポンプ側通路33bと多機能弁側第2通路32bが連通されるので、ロッド側油圧室63aと油圧ポンプ11が接続され、タンク12とロッド側油圧室63aが接続されるので、ロッド65を縮小する方向に作動させることが出来る。
さらに、多機能弁40の第3止弁40cを開き他の第1止弁40aと第2止弁40bを閉じると、油圧シリンダ61への作動油の給排も停止されるが第1給排回路38aと第2給排回路38bが多機能弁40のバイパス回路42bで接続されるので、第1給排回路38aと第2給排回路38bをフラッシングすることが出来る。
上記のフラッシング作動において、方向切換弁45を第1切換位置45bに操作すると、フラッシングの方向が時計回りとなり、第2切換位置45cに操作すると反時計回りとなる。すなわち、フラッシングの方向を変えることで取れにくい汚染もフラッシングできる可能性がある。
油圧機器60の油圧シリンダ61は、多機能弁40の第3止弁40cのみを開くことで、油圧機器60を積層弁20および油圧源10から完全に分離できるので、油圧シリンダ61の修理、点検、整備を行なうことができる。
上記した積層弁20と油圧シリンダ61の修理、点検、整備は、複合弁30と多機能弁40により、積層弁20と油圧シリンダ61を確実に分離した状態で行うのでコンタミの混入の恐れがない。また、修理、点検、整備中も油圧源10を停止させる必用が無くまたフラッシング回路を構成できるので、修理、点検、整備中にフラッシング作業を並行させることが出来る。さらに、油圧シリンダ61の修理、点検、整備が終了し再び多機能弁40に取り付けた後に、油圧シリンダ61を試運転、微動操作が可能である。
10   油圧源
11   油圧ポンプ
12   タンク
20   積層弁
21   方向切換弁体
22   方向切換弁体
23   ロードチェック弁体
24   速度制御弁体
26   第1左側通路構成
26k  第1左第1左コの字通路
27   第1右側通路構成
27t  第1T字通路
28   第2右側通路構成
28k  第2右コの字通路
29   第2左側通路構成
29k  第2左コの字通路
29t  第2T字通路
30   複合弁
31a  多機能弁側第1止弁
31b  多機能弁側第1通路
32a  多機能弁側第2止弁
33a  ポンプ側止弁
33b  ポンプ側通路
34a  タンク側止弁
34b  タンク側通路
35a  タンク側バイパス止弁
35   タンク側バイパス回路
36a  ポンプ側バイパス止弁
36b  ポンプ側バイパス回路
40   多機能弁
45   方向切換弁
60   油圧機器
61   油圧シリンダ

Claims (4)

  1.  作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、
     この油圧源に接続し油圧源からの作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と
     前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したバイパス回路を備えた多機能弁と、
     前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、
    より構成され、
     前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、
    前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、
    油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、
    前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、
    前記ポンプ側止弁のポンプ側で分岐し前記多機能弁側第1通路の間を開閉するポンプ側バイパス止弁を備えたポンプ側バイパス回路と、
    前記タンク側止弁のタンク側で分岐し前記多機能弁側第2通路の間を開閉するタンク側止弁を備えたタンク側バイパス回路と
    を備えたことを特徴とする油圧回路。
  2.  作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、
     この油圧源に接続し油圧源からの作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と
     前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したパイパス回路を備えた多機能弁と、
     前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、
    より構成され、
     前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、
     前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、
     油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、
     前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、
     前記ポンプ側止弁のポンプ側で分岐し前記多機能弁側第2通路の間を開閉するポンプ側バイパス止弁を備えたポンプ側バイパス回路と、
     前記タンク側止弁のタンク側で分岐し前記多機能弁側第1通路の間を開閉するタンク側止弁を備えたタンク側バイパス回路と、
    を備えたことを特徴とする油圧回路。
  3.  作動油を貯留するタンクとこのタンクに接続し作動圧油を発生する油圧ポンプで構成する油圧源と、
     この油圧源に接続し油圧源からの作動圧油を油圧機器に給排制御する方向切換弁を備えた積層弁と
     前記油圧機器に近接させて設けてあり油圧機器への第1給排回路と第2給排回路を開閉する第1止弁と第2止弁とこの第1止弁と第2止弁の積層弁側に配置され第3止弁を有したパイパス回路を備えた多機能弁と、
     前記油圧源と前記積層弁と前記多機能弁が接続する複合弁と、
    より構成され、
     前記複合弁が前記多機能弁と前記積層弁との間を開閉する多機能弁側第1止弁を備えた多機能弁側第1通路と、
     前記多機能弁と前記積層弁との間を開閉する多機能弁側第2止弁を備えた多機能弁側第2通路と、
     油圧ポンプと前記積層弁との間を開閉するポンプ側止弁を備えた前記ポンプ側通路と、
     前記タンクと前記積層弁との間を開閉するタンク側止弁を備えた前記タンク側通路と、
    前記ポンプ側通路と前記タンク側通路の双方と、多機能弁側第1通路と多機能弁側第2通路の双方の接続を切替える方向切換弁を備えたことを特徴とする油圧回路。
  4.  油圧ポンプが接続するpポートとタンク回路が接続するtポート及び第1給排回路に接続するaポートと第2給排回路に接続するbポートと、
     前記pポートが接続するp1ポートと前記tポートが接続するt1ポート及び前記aポートが接続するa1ポートと前記bポートが接続するb1ポートと、
    を備えた複合弁体30aを有し、
     この複合弁体30aが、
     前記pポートと前記p1ポートを接続し第1左コの字形通路を備えこの第1左コの字通路の下方通路にポンプ側止弁を設けた第1左側通路構成と、
     前記tポートと前記t1ポートを接続し第1右コの字通路と第1T字通路を備え前記第1右コの字通路の下方通路を前記第1左コの字形通路の上方通路とほぼ同一軸線上に配置しタンク側止弁を設けると共に前記第1T字通路を前記第1左コの字形通路の下方通路とほぼ同一軸線上に配置しタンク側バイパス止弁を配置した構成の第1右側通路構成と、
    を有する第1断面と、
     前記aポートと前記a1ポートを接続し第2右コの字形通路を備えこの第2右コの字通路の下方通路に多機能弁側第2止弁を設けた第2右側通路構成と、
     前記bポートと前記bポートを接続し第2左コの字通路と第2T字通路を備え前記第2左コの字通路の下方通路を前記第2右コの字形通路の上方通路とほぼ同一軸線上に配置し多機能弁側第1止弁を設けると共に前記第2T字通路を前記第2右コの字形通路の下方通路と同一軸線上に配置しポンプ側バイパス止弁を配置した構成の第2左側通路構成と、
    を有する第2断面と、
     を備え
     前記第1断面または第2断面の一方を水平方向に180度回転すると第1左側通路構成と第2右側通路構成及び第1右側通路構成と第2左側通路構成がほぼ同一になるように構成し、前記第1断面の第1左側通路構成の下方通路をポンプ側バイパス回路によりポンプ側バイパス止弁を介して前記第2断面の第2T字通路に接続すると共に、前記第2断面の第2右側通路構成の下方通路をタンク側バイパス回路によりタンク側バイパス止弁を介して前記第1断面の第1T字通路接続したこと特徴とする複合弁。
PCT/JP2013/059661 2012-04-05 2013-03-29 油圧回路及びその油圧回路に用いる複合弁 WO2013150985A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/236,089 US9416798B2 (en) 2012-04-05 2013-03-29 Hydraulic circuit, and combination valve used in same hydraulic circuit
CN201380002490.2A CN103717915A (zh) 2012-04-05 2013-03-29 液压回路以及该液压回路中所使用的复合阀
KR1020147001438A KR20140143735A (ko) 2012-04-05 2013-03-29 유압 회로 및 그 유압 회로에 이용되는 복합 밸브
EP13772490.2A EP2749777B1 (en) 2012-04-05 2013-03-29 Hydraulic circuit, and combination valve used in same hydraulic circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012086768 2012-04-05
JP2012-086768 2012-04-05
JP2013-064386 2013-03-26
JP2013064386A JP6077901B2 (ja) 2012-04-05 2013-03-26 油圧回路及びその油圧回路に用いる複合弁

Publications (1)

Publication Number Publication Date
WO2013150985A1 true WO2013150985A1 (ja) 2013-10-10

Family

ID=49300469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059661 WO2013150985A1 (ja) 2012-04-05 2013-03-29 油圧回路及びその油圧回路に用いる複合弁

Country Status (6)

Country Link
US (1) US9416798B2 (ja)
EP (1) EP2749777B1 (ja)
JP (1) JP6077901B2 (ja)
KR (1) KR20140143735A (ja)
CN (1) CN103717915A (ja)
WO (1) WO2013150985A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864136A (zh) * 2016-05-06 2016-08-17 福州德格索兰机械有限公司 一种电磁阀双回路液压动力站的阀块结构
CN111810477A (zh) * 2020-05-22 2020-10-23 武汉船用机械有限责任公司 用于插销升降装置的液压系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209387B3 (de) * 2014-05-16 2015-09-24 Rausch & Pausch Gmbh Hydrauliksystem
JP2016109210A (ja) * 2014-12-05 2016-06-20 株式会社ユーテック 継手装置
FR3044054B1 (fr) * 2015-11-20 2018-08-10 Db Industries Dispositif de rincage automatique des verins hydrauliques a double effet
DE102016000644A1 (de) * 2016-01-22 2017-07-27 Hydac System Gmbh Schaltungsanordnung
JP6773421B2 (ja) * 2016-02-08 2020-10-21 ナブテスコ株式会社 方向切換弁及び油圧システム
CN106594003B (zh) * 2016-12-05 2019-03-29 山西太钢不锈钢股份有限公司 一种液压油缸清排装置及其清排方法
CN107191420B (zh) * 2017-04-05 2018-07-17 广州中洲环保科技有限公司 一种具有闭环检测柱塞式污泥泵密封实情的液压控制系统
CN109458366B (zh) * 2018-12-25 2023-10-03 淄博大力矿山机械有限公司 一种矿山装载机械气动转液压增压卸料系统
JP7385366B2 (ja) * 2019-03-27 2023-11-22 ダイキン工業株式会社 油圧制御装置
CN112392801A (zh) * 2019-08-02 2021-02-23 上海梅山钢铁股份有限公司 一种防止液压系统捆油装置
US11629736B2 (en) 2020-05-22 2023-04-18 Cnh Industrial America Llc Filter for a hydraulic circuit of an agricultural system
US12085099B1 (en) * 2020-06-18 2024-09-10 Vacuworx Global, LLC Flow control block for use with a vacuum material handler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348991U (ja) * 1976-09-30 1978-04-25
JPS6356304U (ja) * 1986-09-30 1988-04-15
JPS6392804A (ja) * 1986-10-06 1988-04-23 Komatsu Ltd 油圧回路のフラッシング装置
JP3696850B2 (ja) 2001-10-15 2005-09-21 株式会社ユーテック チェックシステム及びチェックシステム付シリンダ
JP2005351430A (ja) * 2004-06-14 2005-12-22 Kubota Corp 差圧制御用ブロック
JP2011231924A (ja) 2010-04-06 2011-11-17 Yuutekku:Kk 油圧回路、それに用いられる止弁、および油圧回路の保守方法
JP2012127493A (ja) * 2010-11-22 2012-07-05 Yuutekku:Kk 油圧シリンダ用制御弁
WO2012144412A1 (ja) * 2011-04-18 2012-10-26 株式会社ユーテック ラムシリンダの油圧回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795178A (en) * 1972-09-11 1974-03-05 R Roche Hydraulic actuator holding system
US6871576B2 (en) * 2003-02-19 2005-03-29 Peter Vari Hydraulic isolation valve
CN101315088B (zh) * 2008-07-17 2010-07-21 江苏科行环境工程技术有限公司 具有卸压保护功能的卧辊磨液压回路系统
JP5351116B2 (ja) * 2010-09-27 2013-11-27 株式会社ユーテック 油圧シリンダ駆動回路用のフラッシング回路
CN104204547A (zh) * 2012-03-22 2014-12-10 优铁工有限公司 液压缸驱动回路用的冲洗回路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348991U (ja) * 1976-09-30 1978-04-25
JPS6356304U (ja) * 1986-09-30 1988-04-15
JPS6392804A (ja) * 1986-10-06 1988-04-23 Komatsu Ltd 油圧回路のフラッシング装置
JP3696850B2 (ja) 2001-10-15 2005-09-21 株式会社ユーテック チェックシステム及びチェックシステム付シリンダ
JP2005351430A (ja) * 2004-06-14 2005-12-22 Kubota Corp 差圧制御用ブロック
JP2011231924A (ja) 2010-04-06 2011-11-17 Yuutekku:Kk 油圧回路、それに用いられる止弁、および油圧回路の保守方法
JP2012127493A (ja) * 2010-11-22 2012-07-05 Yuutekku:Kk 油圧シリンダ用制御弁
WO2012144412A1 (ja) * 2011-04-18 2012-10-26 株式会社ユーテック ラムシリンダの油圧回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749777A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864136A (zh) * 2016-05-06 2016-08-17 福州德格索兰机械有限公司 一种电磁阀双回路液压动力站的阀块结构
CN105864136B (zh) * 2016-05-06 2017-12-08 福建派威克科技有限公司 一种电磁阀双回路液压动力站的阀块结构
CN111810477A (zh) * 2020-05-22 2020-10-23 武汉船用机械有限责任公司 用于插销升降装置的液压系统
CN111810477B (zh) * 2020-05-22 2022-08-12 武汉船用机械有限责任公司 用于插销升降装置的液压系统

Also Published As

Publication number Publication date
US9416798B2 (en) 2016-08-16
JP6077901B2 (ja) 2017-02-08
JP2013231505A (ja) 2013-11-14
CN103717915A (zh) 2014-04-09
US20140190158A1 (en) 2014-07-10
EP2749777A4 (en) 2015-07-01
EP2749777B1 (en) 2016-09-14
KR20140143735A (ko) 2014-12-17
EP2749777A1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6077901B2 (ja) 油圧回路及びその油圧回路に用いる複合弁
JP6040981B2 (ja) 油圧シリンダ駆動回路用のフラッシング回路
KR101642899B1 (ko) 건설기계의 유압회로 및 그 제어장치
US9470324B2 (en) Directional valve and method of operation
KR20150036001A (ko) 건설기계용 유량 컨트롤밸브
CN101542130A (zh) 安全过中心泵/马达
KR100475517B1 (ko) 작업기계의 유압구동장치
KR20110042987A (ko) 유압 컨트롤밸브
KR101641270B1 (ko) 건설기계의 주행 제어시스템
CN107532619B (zh) 流体压控制装置
US12055225B2 (en) Fluid control device
JP5701948B2 (ja) 油圧シリンダ駆動回路用のフラッシング回路
JP2012067903A (ja) 油圧シリンダ駆動回路用のフラッシング回路およびフラッシング方法
CN110785347A (zh) 操舵控制系统
JP2012041953A (ja) 油圧シリンダ駆動回路の作動油交換方法
JP2012067903A5 (ja) 油圧シリンダ駆動回路用のフラッシング回路
WO1995005546A1 (fr) Vanne distributrice d'ecoulement pour circuit hydraulique
US3359868A (en) Hydraulic cylinder assembly
JP2016200205A (ja) 制御弁及びそれを備える流体圧制御装置
KR101032729B1 (ko) 유압배관 내에 잔압 제거용 유압시스템
WO2018173843A1 (ja) 多連方向切換弁
KR100406275B1 (ko) 중장비 옵션장치용 유압회로
US9945494B2 (en) Pneumatic directional valve and method of operation
KR101718836B1 (ko) 건설기계용 유압 제어밸브
KR101779194B1 (ko) 건설장비의 작동유 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147001438

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236089

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013772490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013772490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE