WO2013150942A1 - 超電導線 - Google Patents

超電導線 Download PDF

Info

Publication number
WO2013150942A1
WO2013150942A1 PCT/JP2013/059119 JP2013059119W WO2013150942A1 WO 2013150942 A1 WO2013150942 A1 WO 2013150942A1 JP 2013059119 W JP2013059119 W JP 2013059119W WO 2013150942 A1 WO2013150942 A1 WO 2013150942A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal oxide
superconducting
oxide insulating
substrate
Prior art date
Application number
PCT/JP2013/059119
Other languages
English (en)
French (fr)
Inventor
裕子 早瀬
福島 弘之
英之 畠山
良和 奥野
義則 長洲
樋口 優
久樹 坂本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to US14/236,119 priority Critical patent/US20150024942A1/en
Priority to KR1020147002320A priority patent/KR20140082634A/ko
Priority to JP2014509123A priority patent/JP6133273B2/ja
Publication of WO2013150942A1 publication Critical patent/WO2013150942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/36Insulated conductors or cables characterised by their form with distinguishing or length marks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0128Manufacture or treatment of composite superconductor filaments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating

Definitions

  • the present invention relates to a superconducting wire.
  • Japanese Patent No. 4423708 discloses a superconducting wire in which the stabilization layer (around) described in JP 2011-154790 A and the like is further covered with an insulating layer (copper oxide layer) obtained by oxidizing the copper layer. Has been.
  • Japanese Patent Application Laid-Open No. 2011-233294 discloses a superconducting wire in which the periphery of the superconducting wire is covered with an insulating layer (resin tape).
  • the stabilization layer is covered with an insulating layer as in Japanese Patent No. 4423708 and Japanese Patent Application Laid-Open No. 2011-233294.
  • the identification mark on the stabilization layer or the like cannot be visually recognized, and it becomes difficult to distinguish the substrate side and the superconducting layer side after all.
  • the present invention has been made in view of the above-described facts, and an object of the present invention is to provide a superconducting wire that can easily distinguish the substrate side and the superconducting layer side even if the stabilization layer is covered with an insulating layer. To do.
  • a superconducting wire comprising: an insulating layer having an identification part for identifying the substrate side and the superconducting layer side.
  • the stabilization layer includes a metal element, and the insulating layer includes a metal oxide insulating portion that is formed at least on the superconducting layer side as the identification portion and includes an oxide of the metal element.
  • the metal oxide insulating part includes, as the identification part, a first metal oxide insulating part formed on the superconducting layer side and a second metal oxide insulating part formed on the substrate side.
  • ⁇ 5> The superconducting wire according to any one of ⁇ 2> to ⁇ 4>, wherein a thickness of the metal oxide insulating portion is smaller than a thickness of the stabilization layer.
  • the metal oxide insulating portion includes an end identifying portion that identifies one end and the other end in the longitudinal direction of the superconducting wire or one end and the other end in the short direction of the superconducting wire.
  • the superconducting wire according to any one of 2> to ⁇ 6>.
  • ⁇ 8> The superconducting wire according to any one of ⁇ 1> to ⁇ 7>, wherein the surface roughness of the insulating layer on the superconducting layer side is different from the surface roughness of the insulating layer on the substrate side.
  • ⁇ 9> The superconducting wire according to any one of ⁇ 1> to ⁇ 8>, wherein the Vickers hardness on the superconducting layer side in the insulating layer is different from the Vickers hardness on the substrate side in the insulating layer.
  • the present invention it is possible to provide a superconducting wire that can easily distinguish between the substrate side and the superconducting layer side even if the stabilization layer is covered with an insulating layer.
  • FIG. 1 is a perspective view showing a laminated structure of superconducting wires according to an embodiment of the present invention.
  • FIG. 2 is an end view of the superconducting wire shown in FIG. 1. It is a figure which shows the surface by the side of the superconducting layer of the superconducting wire shown in FIG. It is a figure which shows the surface at the side of the board
  • FIG. 3A is a diagram illustrating a part of the manufacturing process of the metal oxide insulating portion.
  • FIG. 3B is a diagram illustrating a part of the manufacturing process of the metal oxide insulating portion continued from FIG. 3A.
  • FIG. 3C is a diagram illustrating a part of the manufacturing process of the metal oxide insulating portion continued from FIG. 3B.
  • FIG. 4A is a diagram illustrating a part of another manufacturing process of the metal oxide insulating portion.
  • FIG. 4B is a diagram illustrating a part of another manufacturing process of the metal oxide insulating portion continued from FIG. 4A.
  • FIG. 4C is a diagram illustrating a part of another manufacturing process of the metal oxide insulating portion continued from FIG. 4B. It is a figure which shows the modification of the superconducting wire which concerns on embodiment of this invention. It is a figure which shows the other modification of the superconducting wire which concerns on embodiment of this invention.
  • FIG. 1 is a perspective view showing a laminated structure of superconducting wires 1 according to an embodiment of the present invention.
  • the superconducting wire 1 has a laminated structure in which an intermediate layer 20, a superconducting layer 30, a stabilizing layer 40, and an insulating layer 50 are sequentially laminated on one main surface 10A side in the thickness T direction of the substrate 10. have.
  • the substrate 10 has a tape shape extending in the direction of arrow L (hereinafter referred to as the longitudinal L direction) in the drawing.
  • the substrate 10 is a low magnetic metal substrate or ceramic substrate.
  • a metal such as Co, Cu, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, Cr, or Ag, which is excellent in strength and heat resistance, or an alloy thereof is used.
  • Particularly preferred are stainless steel, Hastelloy (registered trademark), and other nickel-based alloys that are excellent in corrosion resistance and heat resistance.
  • Various ceramics may be arranged on these various metal materials.
  • MgO, SrTiO 3 , yttrium stabilized zirconia, or the like is used as a material of the ceramic substrate.
  • the intermediate layer 20 is a layer provided between the substrate 10 and the superconducting layer 30 in order to achieve, for example, high biaxial orientation in the superconducting layer 30.
  • Such an intermediate layer 20 has, for example, physical values such as a coefficient of thermal expansion and a lattice constant that are intermediate values between the substrate 10 and the superconductor constituting the superconducting layer 30.
  • the intermediate layer 20 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of layers are not limited. For example, as shown in FIG.
  • a bed layer 22 containing amorphous Gd 2 Zr 2 O 7- ⁇ ( ⁇ is an oxygen non-stoichiometric amount) and the like Then, a forced orientation layer 24 containing crystalline MgO or the like and formed by the IBAD method, an LMO layer 26 containing LaMnMO 3 + ⁇ ( ⁇ is an oxygen non-stoichiometric amount), and a cap layer 28 containing CeO 2 or the like are sequentially stacked.
  • the configuration may be as follows.
  • the superconducting layer 30 is provided (deposited) on the surface of the intermediate layer 20 in the thickness direction, and includes an oxide superconductor, particularly a copper oxide superconductor.
  • an oxide superconductor particularly a copper oxide superconductor.
  • REBa 2 Cu 3 O 7- ⁇ referred to as RE superconductor
  • the RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Y is preferable because it is difficult to cause substitution with the Ba site.
  • is an oxygen non-stoichiometric amount and is, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint that the superconducting transition temperature is high.
  • the oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
  • the stabilization layer 40 covers at least the surface 30A of the superconducting layer 30 and the other main surface 10B of the substrate 10.
  • the stabilization layer 40 preferably contains a metal element such as copper.
  • a metal element such as copper.
  • the stabilization layer 40 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of layers are not limited. For example, as shown in FIG. 1, a silver stabilization layer 42 made of silver and a copper stabilization layer 44 made of copper are sequentially stacked. Also good.
  • the insulating layer 50 covers the stabilization layer 40 and has an identification part for identifying the substrate 10 side and the superconducting layer 30 side.
  • Examples of the identification unit for identifying the substrate 10 side and the superconducting layer 30 side include the following means (1) to (5). Note that these means may be combined.
  • An identification mark for identifying the substrate 10 side and the superconducting layer 30 side is provided on the insulating layer 50.
  • a mark such as “O” or “X” or a character such as “front” or “back” as an identification mark is provided on the surface 50A of the insulating layer 50 on the superconducting layer 30 side or the surface 50B of the insulating layer 50 on the substrate 10 side.
  • the substrate 10 side and the superconducting layer 30 side can be identified through the superconducting wire user's vision.
  • the substrate 10 side and the superconducting layer 30 side can be distinguished not only visually but also through tactile sense.
  • the superconducting wire 1 is used as a coil or a three-dimensional identification mark may become an obstacle during use, it is preferable to make the identification mark as thin as possible so that it can be identified through tactile sense.
  • the roughness of the surface 50A on the superconducting layer 30 side in the insulating layer 50 is made different from the roughness of the surface 50B on the substrate 10 side.
  • the roughness of the surface 50A on the superconducting layer 30 side (arithmetic average roughness Ra) is obtained by polishing the surface 50A or the surface 50B or changing the material of the insulating layer 50 on the superconducting layer 30 side and the substrate 10 side.
  • the roughness (arithmetic average roughness Ra) of the surface 50B on the substrate 10 side in the insulating layer 50 are made different. Due to the difference in the roughness Ra, the substrate 10 side and the superconducting layer 30 side can be distinguished through the tactile sense of the superconducting wire user.
  • the surface 50A to be wound and the surface 50B come into contact with each other, and there is a specific effect that winding deviation can be prevented by the difference in the roughness Ra. Will play.
  • the roughness Ra of the surface 50A on the superconducting layer 30 side and the roughness Ra of the surface 50B on the substrate 10 side of the insulating layer 50 can be recognized by any superconducting wire user through a tactile sense. It is preferable that there is a difference of 10 ⁇ m or more.
  • the difference is 500 ⁇ m or less, preferably 100 ⁇ m or less.
  • the hardness of the insulating layer 50 on the superconducting layer 30 side is different from the hardness of the insulating layer 50 on the substrate 10 side. Specifically, by changing the material of the insulating layer 50 on the superconducting layer 30 side and the substrate 10 side, the Vickers hardness on the superconducting layer 30 side in the insulating layer 50 and the Vickers hardness on the substrate 10 side in the insulating layer 50 are made different. . Due to the difference in Vickers hardness, the substrate 10 side and the superconducting layer 30 side can be distinguished through the superconducting wire user's sense of touch.
  • the difference between the Vickers hardness on the superconducting layer 30 side and the Vickers hardness on the substrate 10 side is at least Hv30 or more, preferably Hv150 or more, from the viewpoint that any superconducting wire user can grasp the difference in surface roughness through touch. Preferably there is. Moreover, since it is desirable that the hardness is such that it does not cause a problem when applied to an application device, the difference is Hv 1000 or less, preferably Hv 500 or less.
  • R is formed at the corner of the insulating layer 50, or the curvature of R on the superconducting layer 30 side in the insulating layer 50 is made different from the curvature of R on the substrate 10 side in the insulating layer 50.
  • R is formed at one corner of the insulating layer 50 on the superconducting layer 30 side and the insulating layer 50 on the substrate 10 side.
  • the curvature of R on the superconducting layer 30 side in the insulating layer 50 and the curvature of R on the substrate 10 side in the insulating layer 50 are made different. Thereby, the substrate 10 side and the superconducting layer 30 side can be identified through the visual and tactile senses of the superconducting wire user.
  • Different colors are used for the surface 50A on the superconducting layer 30 side of the insulating layer 50 and the surface 50B on the substrate 10 side.
  • the material of the insulating layer 50 is changed on the superconducting layer 30 side and the substrate 10 side, or the reflectance is changed by changing the roughness Ra on the superconducting layer 30 side and the substrate 10 side in the same manner as in the above (2).
  • the insulation tape to be the insulating layer 50 is wound to change the reflectance by changing the thickness of the insulating layer 50 on the superconducting layer 30 side and the substrate 10 side, or at least the superconducting layer 30 side in the insulating layer 50 as described later.
  • the surface 50A on the superconducting layer 30 side in the insulating layer 50 and the substrate 10 side The color is different from that of the surface 50B.
  • the substrate 10 side and the superconducting layer 30 side can be identified through the visual perception of the superconducting wire user.
  • the metal oxide insulating portion is provided, the adhesion between the insulating layer 50 and the stabilization layer 40 is increased and the substrate 10 is more resistant to pulling in the longitudinal L direction than when the insulating tape is simply wound.
  • the insulating layer 50 other than the superconducting layer 30 side is formed of an insulating tape or the like.
  • the metal oxide insulating portion is formed on the entire surface of the stabilization layer 40 (copper stabilization layer 44), and the first metal formed on the superconducting layer 30 side as an identification portion.
  • An oxide insulating part 50C and a second metal oxide insulating part 50D formed on the substrate 10 side are provided, and the colors of the first metal oxide insulating part 50C and the second metal oxide insulating part 50D are different from each other. (See FIGS. 2B and 2C).
  • the thickness of the first metal oxide insulating part 50C may be different from the thickness of the second metal oxide insulating part 50D.
  • the thickness of the first metal oxide insulating portion 50C is preferably larger than the thickness of the second metal oxide insulating portion 50D. Since it is necessary to protect the superconducting layer 30 more than the substrate 10, the protection can be enhanced by making the thickness of the first metal oxide insulating part 50C larger than that of the second metal oxide insulating part 50D. Because. Further, it is possible to prevent peeling of the insulating layer 50 and the stabilization layer 40 on the superconducting layer 30 side that needs to be protected. Further, since a current flows through the superconducting layer 30 when the superconducting wire 1 is used, the insulating layer 50 on the superconducting layer 30 side needs to have higher insulating characteristics.
  • the thickness of the first metal oxide insulating part 50C is made larger than the thickness of the second metal oxide insulating part 50D, and the insulation characteristic of the first metal oxide insulating part 50C is made to be the same as that of the second metal oxide insulating part 50D. It is preferable to make it higher than the insulating characteristics.
  • the first metal oxide insulating part 50C and the second metal oxide insulating part 50D, particularly the first metal oxide insulating part 50C, are preferably smaller than the thickness of the stabilization layer 40.
  • the first metal oxide insulating part 50C and the second metal oxide insulating part 50D can be obtained by oxidizing the stabilization layer 40, and this metal is obtained from the metal element of the stabilization layer 40. Since metal oxides formed by oxidizing elements are generally more brittle, it is possible to suppress a decrease in mechanical strength by ensuring a stronger thickness of the stabilization layer 40. is there.
  • the metal element (copper element in the embodiment) and the oxide of the metal element (copper oxide in the embodiment) of the stabilization layer 40 are present. It is preferable to provide a composition gradient layer in which the ratio of the metal element oxide to the single metal element is continuously increased toward the metal oxide insulating portion. This is because the adhesion between the insulating layer 50 and the stabilization layer 40 is enhanced.
  • the first metal oxide insulating part 50C and the second metal oxide insulating part 50D formed on the substrate 10 side are included, and the first metal oxide insulating part 50C and the second metal are provided.
  • the surface shape of the first metal oxide insulating portion 50C (surface 50A on the superconducting layer 30 side) and the second metal oxide insulating portion 50D (substrate 10 side) By changing the surface shape of the surface 50B), the reflectance in the visible region may be controlled to have a different color.
  • 3A to 3C are diagrams showing a part of the manufacturing process of the metal oxide insulating portion.
  • the dotted line in a figure shows the boundary line of the area
  • a preconducting superconducting wire 1A in which the periphery of the substrate 10, the intermediate layer 20, and the superconducting layer 30 is sequentially covered with a silver stabilizing layer 42 and a copper stabilizing layer 44 is prepared.
  • the periphery of the copper stabilizing layer 44 excluding the surface of the copper stabilizing layer 44 on the superconducting layer 30 side is covered with a masking tape 60, and the surface of the copper stabilizing layer 44 on the superconducting layer 30 side is oxidized. Then, a copper oxide layer 70 is obtained (see FIGS. 3A and 3B).
  • the oxidation treatment include a method of dipping in a strong alkaline boiling type copper / copper alloy black dyeing agent, an ammonia (gas) gas phase method, a copper anodizing method, and a method of heat treatment in an oxidizing atmosphere.
  • the immersion method the ammonia (gas) gas phase method, and the copper anodization method, the oxidation rate is increased, so that it is difficult to control the thickness of the metal oxide insulating portion (copper oxide layer). Therefore, it is preferable to use an ammonia (gas) gas phase method and a copper anodic oxidation method.
  • the dipping method it is possible to easily control the thickness of the metal oxide insulating portion (copper oxide layer) by reducing the concentration of the solution to be used and reducing the coating amount.
  • Ebonol C special liquid can be used as the black dyeing agent.
  • the immersion temperature can be 90 ° C. and the immersion time can be 30 seconds.
  • electrolytic degreasing with an alkaline degreasing material for example, treatment temperature 60 ° C .: treatment time 120 seconds
  • surface activation with sulfuric acid may be performed.
  • the masking tape 60 is removed from the superconducting wire 1A as shown in FIG. 3B.
  • the entire surface of the copper stabilization layer 44 including the copper oxide layer 70 is oxidized.
  • a method of oxidizing the entire surface it is preferable to take the same method as the method of oxidizing the copper stabilizing layer 44 on the superconducting layer 30 side in terms of saving time, but the copper stabilizing layer on the superconducting layer 30 side is preferred.
  • the oxidation treatment may be performed by a method different from the oxidation treatment method 44.
  • a metal oxide insulating portion (copper oxide layer) that becomes the insulating layer 50 is formed around the copper stabilizing layer 44, and the superconducting wire 1 is obtained.
  • the metal oxide insulating portion has a first metal oxide insulating portion 50C formed on the superconducting layer 30 side and a second metal oxide insulating portion 50D formed on the substrate 10 side, and the first metal oxide insulating portion 50D is formed.
  • the thickness of the object insulating portion 50C is larger than the thickness of the second metal oxide insulating portion 50D. For example, if the two immersion conditions are the same, the thickness is about twice as thick.
  • the first metal oxide insulating part 50C appears dark black due to the large thickness
  • the second metal oxide insulating part 50D appears light black due to the small thickness, so that the colors look different from each other.
  • the substrate 10 side and the superconducting layer 30 side can be distinguished.
  • the formation process of the copper stabilization layer 44 and the oxidation treatment process may be performed continuously.
  • a superconducting wire having the silver stabilizing layer 42 as the outermost surface is prepared.
  • This superconducting wire is immersed in a solution of sodium persulfate 100 g / L and sulfuric acid 50 g / L for 30 seconds at room temperature to chemically roughen the surface of the silver stabilizing layer 42 and then washed with water. Further, the superconducting wire washed with water is immersed in a solution of copper sulfate 180 to 250 g / L, sulfuric acid 45 to 65 g / L, chloride ion 20 to 60 mg / L, and the superconducting wire is plated at room temperature.
  • a copper stabilization layer 44 is formed. Mask the one side while transporting the superconducting wire, and apply the black dyeing agent to the non-masked side. At this time, the immersion temperature is 90 ° C., and the immersion time is 30 seconds. Masking may be removed after washing and drying, and the superconducting wire may be oxidized.
  • 4A to 4C are diagrams showing a part of another manufacturing process of the metal oxide insulating portion.
  • the dotted line in a figure shows the boundary line of the area
  • a plating solution for forming the copper stabilizing layer 44 is used as a method of making the surface shape of the first metal oxide insulating portion 50C different from the surface shape (reflectance in the visible region) of the second metal oxide insulating portion 50D.
  • the surface shape of the copper stabilization layer 44 can be controlled by preparing the above.
  • the superconducting layer 30 is provided in the superconducting wire 1B before processing in which the periphery of the substrate 10, the intermediate layer 20, and the superconducting layer 30 is sequentially covered with a silver stabilizing layer 42 and a copper stabilizing layer 44.
  • the periphery of the copper stabilization layer 44 excluding the surface of the copper stabilization layer 44 on the side is covered with a masking tape 60 and immersed in a solution of surface sodium sulfate 100 g / L and sulfuric acid 50 g / L at room temperature for 30 seconds at a superconducting layer 30.
  • the surface of the copper stabilization layer 44 on the side is chemically roughened and washed with water.
  • a plating solution comprising nickel sulfate (NiSO 4 .5H 2 O) 100 g / L (24 g / L as Ni) and cupric sulfate (CuSO 4 .5H 2 O) 4 g / L (1 g / L as Cu)
  • Ni nickel sulfate
  • CuSO 4 .5H 2 O cupric sulfate
  • the anode is subjected to electrolysis at a current density of 2 A / dm 2 for 20 seconds using a platinum-plated titanium mesh that is an insoluble anode, and after the electrolysis, washing and drying are performed.
  • a copper layer (a copper layer exhibiting a uniform black color) 80 having a surface shape different from that of the masked copper stabilization layer 44 is formed on the surface of the copper stabilization layer 44 on the superconducting layer 30 side.
  • the masking tape 60 is removed from the superconducting wire 1A.
  • the entire surface of the copper stabilization layer 44 including the copper layer (a copper layer exhibiting a uniform black color) 80 is oxidized.
  • a metal oxide insulating portion (copper oxide layer) that becomes the insulating layer 50 is formed around the copper stabilizing layer 44, and the superconducting wire 1 is obtained.
  • the metal oxide insulating portion includes a first metal oxide insulating portion 50C formed on the superconducting layer 30 side and a second metal oxide insulating portion 50D formed on the substrate 10 side. Since the color is darker than the color of the other stabilization layer 44 (the reflectance is low), the color (reflectance) of the first metal oxide insulating portion 50C is changed to the second metal oxide insulation by performing the same oxidation treatment. It is darker (lower) than the portion 50D.
  • the first metal oxide insulating part 50C has a lower visible region reflectance than the second metal oxide insulating part 50D and appears dark black, and the first metal oxide insulating part 50C and the second metal oxide insulating part The portion 50D appears to have a different color from each other, and the substrate 10 side and the superconducting layer 30 side can be distinguished.
  • one end portion and the other end portion in the longitudinal L direction of the superconducting wire 1 may be added to the metal oxide insulating portion of the insulating layer 50 or You may make it have the edge part identification part which identifies the one end part and other end part of the transversal direction of the superconducting wire 1.
  • FIG. For example, if one end and the other end in the longitudinal L direction can be identified, it is useful when grasping a characteristic change table from one end to the other end.
  • one end part and the other end part of a transversal direction can be identified, it will be useful when specifying a breakage.
  • a part of the first metal oxide insulating part 50C or the second metal oxide insulating part 50D formed by the oxidation process is further oxidized to give a color. (The color is made darker), and a linear end identification portion 80 extending in the short direction as shown in FIG. 5A or a linear end identification portion 82 extending in the longitudinal L direction as shown in FIG. 5B. Is preferably provided.
  • the copper stabilization layer is used to oxidize copper element to obtain a copper oxide during the oxidation treatment, but the change of the copper stabilization layer or the surface of the copper stabilization layer, A metal layer such as cobalt or iron may be provided to oxidize other metal elements such as cobalt or iron.
  • the metal oxide insulating portion may appear blue or brown instead of black as described in the embodiment.
  • the case where the colors of the first metal oxide insulating part 50C and the second metal oxide insulating part 50D are different from each other in color shading is described, but the color types are different from each other. You may devise oxidation.
  • the oxidation treatment method is adjusted to change the metal valence of the first metal oxide insulating part 50C and the second metal oxide insulating part 50D, for example, the change of the copper stabilization layer or the copper stabilization layer
  • An iron metal layer is arranged on the surface of the first metal oxide, the first metal oxide insulating part 50C is changed to Fe 3 O 4 that looks black, the second metal oxide insulating part 50D is changed to Fe 2 O 3 that looks red, etc. Can be considered.
  • intermediate layer 20 LMO layer 26, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulated Conductors (AREA)

Abstract

 超電導線は、基板と、前記基板の一方の主面側に積層した超電導層と、前記超電導層の表面と前記基板の他方の主面を覆う安定化層と、前記安定化層の表面を覆い、前記基板側と前記超電導層側とを識別する識別部を有する絶縁層と、を備える

Description

超電導線
 本発明は、超電導線に関する。
 従来から、基板及び当該基板の一方の主面側に積層した超電導層の周囲を覆う安定化層を有する超電導線が知られている。
 ところが、このような超電導線では、超電導層や基板を視認することができず、超電導線を切断しない限り、基板側と超電導層側を識別することが困難であった。
 そこで、特開2011-154790号公報及び米国特許第7702373号明細書には、基板及び超電導層の周囲を覆う安定化層のうち、基板側に位置する安定化層または超電導層側に位置する安定化層のいずれかの表面に、超電導層が設けられた側を識別するための識別標識が設けられた超電導線が開示されている。
 また、特許第4423708号公報には、特開2011-154790号公報等に記載の安定化層(の周囲)をさらに、銅層を酸化処理した絶縁層(酸化銅層)で覆う超電導線が開示されている。
 同様に、特開2011-233294には、超電導線の周囲を絶縁層(樹脂テープ)で覆う超電導線が開示されている。
 しかしながら、特開2011-154790号公報や米国特許第7702373号明細書に記載の識別標識では、特許第4423708号公報や特開2011-233294号公報のように安定化層を絶縁層で覆った場合、安定化層等にある識別標識を視認することができず、結局、基板側と超電導層側を識別することが困難となる。
 本発明は上記事実に鑑みてなされたものであり、安定化層が絶縁層で覆われていても基板側と超電導層側とを容易に識別することができる超電導線を提供することを目的とする。
 本発明の上記課題は下記の手段によって解決された。
<1>基板と、前記基板の一方の主面側に積層した超電導層と、前記超電導層の表面と前記基板の他方の主面を覆う安定化層と、前記安定化層の表面を覆い、前記基板側と前記超電導層側とを識別する識別部を有する絶縁層と、を備える超電導線。
<2>前記安定化層は、金属元素を含み、前記絶縁層は、前記識別部として、少なくとも前記超電導層側に形成され、前記金属元素の酸化物を含む金属酸化物絶縁部を有する、<1>に記載の超電導線。
<3>前記金属酸化物絶縁部は、前記識別部として、前記超電導層側に形成された第1金属酸化物絶縁部と、前記基板側に形成された第2金属酸化物絶縁部とを有し、前記第1金属酸化物絶縁部と前記第2金属酸化物絶縁部は、互いに色が異なる、<2>に記載の超電導線。
<4>前記第1金属酸化物絶縁部の厚みは、前記第2金属酸化物絶縁部の厚みよりも大きい、<3>に記載の超電導線。
<5>前記金属酸化物絶縁部の厚みは、前記安定化層の厚みよりも小さい、<2>~<4>の何れか1つに記載の超電導線。
<6>前記金属酸化物絶縁部と前記安定化層の間には、前記金属元素と前記金属元素の酸化物とが混在し、且つ、単体の金属元素に対する前記金属元素の酸化物の比率が前記金属酸化物絶縁部に向かって連続的に大きくされた組成傾斜層が設けられている、<2>~<5>の何れか1つに記載の超電導線。
<7>前記金属酸化物絶縁部は、前記超電導線の長手方向の一端部と他端部又は前記超電導線の短手方向の一端部と他端部を識別する端部識別部を有する、<2>~<6>の何れか1つに記載の超電導線。
<8>前記絶縁層における前記超電導層側の表面粗さは、前記絶縁層における前記基板側の表面粗さと異なる、<1>~<7>の何れか1つに記載の超電導線。
<9>前記絶縁層における前記超電導層側のビッカース硬さは、前記絶縁層における前記基板側のビッカース硬さと異なる、<1>~<8>の何れか1つに記載の超電導線。
 本発明によれば、安定化層が絶縁層で覆われていても基板側と超電導層側とを容易に識別することができる超電導線を提供することができた。
図1は、本発明の実施形態に係る超電導線の積層構造を示す斜視図である。 図1に示す超電導線の端面図である。 図1に示す超電導線の超電導層側の面を示す図である。 図1に示す超電導線の基板側の面を示す図である。 図3Aは、金属酸化物絶縁部の製造工程の一部を示す図である。 図3Bは、図3Aから続く、金属酸化物絶縁部の製造工程の一部を示す図である。 図3Cは、図3Bから続く、金属酸化物絶縁部の製造工程の一部を示す図である。 図4Aは、金属酸化物絶縁部の他の製造工程の一部を示す図である。 図4Bは、図4Aから続く、金属酸化物絶縁部の他の製造工程の一部を示す図である。 図4Cは、図4Bから続く、金属酸化物絶縁部の他の製造工程の一部を示す図である。 本発明の実施形態に係る超電導線の変形例を示す図である。 本発明の実施形態に係る超電導線の他の変形例を示す図である。
 以下、添付の図面を参照しながら、本発明の実施形態に係る超電導線を具体的に説明する。なお、各図面を通して、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
<<超電導線の概略構成>>
 図1は、本発明の実施形態に係る超電導線1の積層構造を示す斜視図である。
 図1に示すように、超電導線1は、基板10の厚みT方向の一方の主面10A側に、中間層20、超電導層30、安定化層40、及び絶縁層50が順に積層した積層構造を有している。
 基板10は、図中矢印L方向(以下、長手L方向とする)に伸びるテープ状とされている。この基板10は、低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Cr、Ag等の金属又はこれらの合金が用いられる。特に好ましいのは、耐食性及び耐熱性の点で優れているステンレス、ハステロイ(登録商標)、その他のニッケル系合金である。また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。
 中間層20は、超電導層30において例えば高い2軸配向性を実現するために、基板10と超電導層30の間に設けられる層である。このような中間層20は、例えば、熱膨張率や格子定数等の物理的な特性値が基板10と超電導層30を構成する超電導体との中間的な値を示す。また、中間層20は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、例えば図1に示すように、非晶質のGdZr7-δ(δは酸素不定比量)等を含むベッド層22と、結晶質のMgO等を含みIBAD法により形成された強制配向層24と、LaMnMO3+δ(δは酸素不定比量)を含むLMO層26と、CeO等を含むキャップ層28と、を順に積層した構成となっていてもよい。
 超電導層30は、中間層20の厚み方向の表面に設けられ(堆積しており)、酸化物超電導体、特に銅酸化物超電導体を含んでいる。銅酸化物超電導体としては、高温超電導体としてのREBaCu7-δ(RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起き難い等の理由でYであることが好ましい。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
 安定化層40は、少なくとも超電導層30の表面30Aと基板10の他方の主面10Bを覆っている。安定化層40は、好ましくは、銅などの金属元素を含んでいることが好ましい。これら表面30A及び主面10Bだけでなく、超電導層30の側面、中間層20の側面及び基板10の側面を含め、図1に示すように、基板10と中間層20と超電導層30の周囲全体を覆っていてもよい。
 この安定化層40は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、例えば図1に示すように、銀からなる銀安定化層42と、銅からなる銅安定化層44を順に積層した構成となっていてもよい。
 絶縁層50は、安定化層40を覆い、基板10側と超電導層30側とを識別する識別部を有している。
 基板10側と超電導層30側とを識別する識別部としては、例えば以下の手段(1)~(5)が挙げられる。なお、これらの手段を組み合わせてもよい。
(1)絶縁層50に基板10側と超電導層30側とを識別する識別標識を設ける。
 具体的に、識別標識として○や×等のマークや、「表」や「裏」等の文字を絶縁層50における超電導層30側の表面50A、又は絶縁層50における基板10側の表面50Bに印刷や刻印等により設ける。
 この識別標識により、超電導線ユーザの視覚を通じて、基板10側と超電導層30側とが識別可能となる。
 特に、立体的な識別標識を設けるようにすれば、視覚だけでなく触覚を通じて、基板10側と超電導層30側とが識別可能となる。ただし、超電導線1をコイルにするときや使用時に立体的な識別標識が邪魔となる場合もあるので、触覚を通じて識別できる程度に識別標識の厚みを極力薄くした方が好ましい。
(2)絶縁層50における超電導層30側の表面50Aの粗さと基板10側の表面50Bの粗さを異ならせる。
 具体的に、表面50A又は表面50Bを研磨したり、超電導層30側と基板10側で絶縁層50の材料を変えたりして、超電導層30側の表面50Aの粗さ(算術平均粗さRa)と、絶縁層50における基板10側の表面50Bの粗さ(算術平均粗さRa)を異ならせる。
 この粗さRaの相違により、超電導線ユーザの触覚を通じて、基板10側と超電導層30側とが識別可能となる。また、このような超電導線1をコイル化した場合には、巻回する表面50Aと表面50Bが接することになり、これら粗さRaの差によって巻きずれを防止することができるという特有な効果も奏することとなる。
 超電導層30側の表面50Aの粗さRaと、絶縁層50における基板10側の表面50Bの粗さRaは、あらゆる超電導線ユーザでも触覚を通じて表面粗さの相違が把握することができるという観点から、10μm以上の差があることが好ましい。また、応用機器への適用の際に不具合を生じさせない程度の粗さであることが望ましいことから、500μm以下、好ましくは100μm以下の差であるとよい。
(3)絶縁層50における超電導層30側の硬さと、絶縁層50における基板10側の硬さを異ならせる。
 具体的に、超電導層30側と基板10側で絶縁層50の材料を変えることによって、絶縁層50における超電導層30側のビッカース硬さと、絶縁層50における基板10側のビッカース硬さを異ならせる。
 このビッカース硬さの相違により、超電導線ユーザの触覚を通じて、基板10側と超電導層30側とが識別可能となる。
 超電導層30側のビッカース硬さと基板10側のビッカース硬さは、あらゆる超電導線ユーザでも触覚を通じて表面粗さの相違が把握することができるという観点から、少なくともHv30以上、望ましくはHv150以上の差があることが好ましい。また、応用機器への適用の際に不具合を生じさせない程度の硬さであることが望ましいことから、Hv1000以下、好ましくはHv500以下の差であるとよい。
(4)絶縁層50の角部にRを形成したり、絶縁層50における超電導層30側のRの曲率と、絶縁層50における基板10側のRの曲率を異ならせたりする。
 具体的に、絶縁層50における超電導層30側及び絶縁層50における基板10側のいずれか一方の角部にRを形成する。両方の角部にRを形成する場合は、絶縁層50における超電導層30側のRの曲率と、絶縁層50における基板10側のRの曲率を異ならせる。
 これにより、超電導線ユーザの視覚及び触覚を通じて、基板10側と超電導層30側とが識別可能となる。
(5)絶縁層50における超電導層30側の表面50Aと、基板10側の表面50Bとで色を異ならせる。
 具体的に、超電導層30側と基板10側で絶縁層50の材料を変えたり、上記(2)と同様に超電導層30側と基板10側で粗さRaを変えて反射率を変えたり、絶縁層50となる絶縁テープを帯巻きして超電導層30側と基板10側で絶縁層50の厚みを変えて反射率を変えたり、後述するように、絶縁層50において少なくとも超電導層30側に、安定化層40に含まれる金属元素の酸化物(実施形態では銅酸化物)を含む金属酸化物絶縁部を設けたりして、絶縁層50における超電導層30側の表面50Aと、基板10側の表面50Bとで色を異ならせる。
 これにより、超電導線ユーザの視覚を通じて、基板10側と超電導層30側とが識別可能となる。また、金属酸化物絶縁部を設ける場合は、単に絶縁テープを帯巻きする場合に比べて、絶縁層50と安定化層40との密着性が増し、基板10の長手L方向の引っ張りに強くなり、また絶縁層50と安定化層40との間に液体や不純物が入ることを抑制できる。
<<金属酸化物絶縁部の詳細>>
 次に、絶縁層50において少なくとも超電導層30側に、安定化層40に含まれる金属元素の酸化物を含む金属酸化物絶縁部を設ける場合をより詳細に説明する。
 超電導層30側にのみ金属酸化物絶縁部を設ける場合は、超電導層30側以外の絶縁層50は絶縁テープ等で形成される。
 また、図2Aに示すように、上記金属酸化物絶縁部は安定化層40(銅安定化層44)の全面に形成されており、識別部として、超電導層30側に形成された第1金属酸化物絶縁部50Cと基板10側に形成された第2金属酸化物絶縁部50Dとを有し、第1金属酸化物絶縁部50Cと第2金属酸化物絶縁部50Dの色を互いに異ならせてもよい(図2B及び図2C参照)。この色を異ならせるためには、例えば、第1金属酸化物絶縁部50Cの厚みと、第2金属酸化物絶縁部50Dの厚みを異ならせばよい。
 なお、図2Aに示すように、第1金属酸化物絶縁部50Cの厚みは、第2金属酸化物絶縁部50Dの厚みよりも大きい方が好ましい。基板10よりも超電導層30をより保護する必要があるため、第1金属酸化物絶縁部50Cの厚みを第2金属酸化物絶縁部50Dよりも大きくすることで、保護の強化を図ることができるからである。
 また、保護が必要な超電導層30側の絶縁層50や安定化層40の剥離を防止することができるからである。
 また、超電導線1の使用時には超電導層30に電流が流れるため、超電導層30側の絶縁層50をより高い絶縁特性とする必要がある。したがって、第1金属酸化物絶縁部50Cの厚みを第2金属酸化物絶縁部50Dの厚みよりも大きくして、第1金属酸化物絶縁部50Cの絶縁特性を第2金属酸化物絶縁部50Dの絶縁特性よりも高くすることが好ましい。
 また、第1金属酸化物絶縁部50C及び第2金属酸化物絶縁部50D、特に第1金属酸化物絶縁部50Cは、安定化層40の厚みよりも小さいことが好ましい。後述するように、第1金属酸化物絶縁部50C及び第2金属酸化物絶縁部50Dは、安定化層40を酸化処理したものを利用することができ、安定化層40の金属元素よりこの金属元素を酸化して形成された金属酸化物の方が一般的に脆いため、より強固な安定化層40の厚みを確保しておくことで、機械的強度の低下を抑制することができるからである。
 また、絶縁層50の金属酸化物絶縁部と安定化層40の間に、安定化層40の金属元素(実施形態では銅元素)と金属元素の酸化物(実施形態では銅酸化物)とが混在し、且つ、当該単体の金属元素に対する金属元素の酸化物の比率が金属酸化物絶縁部に向かって連続的に大きくされた組成傾斜層が設けられていることが好ましい。これにより、絶縁層50と安定化層40の密着性が高まるからである。
 また、図2Aに示すように、第1金属酸化物絶縁部50Cと基板10側に形成された第2金属酸化物絶縁部50Dとを有し、第1金属酸化物絶縁部50Cと第2金属酸化物絶縁部50Dの色を互いに異ならせる他の形態として、第1金属酸化物絶縁部50C(超電導層30側の表面50A)の表面形状と、第2金属酸化物絶縁部50D(基板10側の表面50B)の表面形状を異ならせることにより、可視領域の反射率を制御し、異なる色としてもよい。
<<金属酸化物絶縁部の製造方法>>
 次に、上述した金属酸化物絶縁部の製造方法の一例を説明する。図3A~図3Cは、金属酸化物絶縁部の製造工程の一部を示す図である。なお、図中の点線は銅安定化層44において酸化される領域の境界線又は酸化された領域の境界線を示すものであり、実際に視認できるものではない。
 まず、図3Aに示すように、基板10、中間層20、及び超電導層30の周囲が、銀安定化層42及び銅安定化層44で順に覆われた処理前の超電導線1Aを用意する。
 超電導線1Aにおいて、超電導層30側の銅安定化層44の表面を除く銅安定化層44の周囲をマスキングテープ60で被覆し、超電導層30側の銅安定化層44の表面を酸化処理し、酸化銅層70を得る(図3A及び図3B参照)。酸化処理としては、強アルカリ性煮沸タイプの銅・銅合金黒染め剤に浸漬する方法や、アンモニア(ガス)気相法、銅の陽極酸化法、酸化性雰囲気で熱処理する方法が挙げられる。なお、超電導層30から酸素が抜け出す要因となる高温処理を超電導線1Aに施さなくて済むという観点から、熱処理以外の方法を用いることが好ましい。浸漬方法や、アンモニア(ガス)気相法及び銅の陽極酸化法の中では、酸化速度が速くなるために、金属酸化物絶縁部(酸化銅層)の厚みの制御が難しくなることを防ぐ観点から、アンモニア(ガス)気相法及び銅の陽極酸化法を用いることが好ましい。ただし、浸漬方法の場合には、用いる溶液の濃度を薄く、塗布量を少なくすることで金属酸化物絶縁部(酸化銅層)の厚みを制御しやすくすることが可能である。
 黒染め剤に浸漬する方法では、黒染め剤として例えば、エボノールCスペシャル液を用いることができる。このとき、浸漬条件として例えば浸漬温度を90℃、浸漬時間を30秒とすることができる。また、浸漬の前、特にマスキングテープの前に、アルカリ脱脂材による電解脱脂(例えば処理温度60℃:処理時間120秒)、硫酸による表面活性化を行ってもよい。
 超電導層30側の銅安定化層44の酸化処理をした後は、図3Bに示すように、超電導線1Aからマスキングテープ60を取り外す。
 次に、図3Cに示すように、酸化銅層70を含めて銅安定化層44の全表面を酸化処理する。全表面を酸化処理する方法としては、超電導層30側の銅安定化層44の酸化処理の方法と同一の方法を取る事が手間を省く点で好ましいが、超電導層30側の銅安定化層44の酸化処理の方法と異なる方法で酸化処理を行ってもよい。
 これにより、図2Aに示すように、銅安定化層44の周囲に絶縁層50となる金属酸化物絶縁部(銅酸化物層)が形成され、超電導線1が得られる。そして、金属酸化物絶縁部は、超電導層30側に形成された第1金属酸化物絶縁部50Cと基板10側に形成された第2金属酸化物絶縁部50Dとを有し、第1金属酸化物絶縁部50Cの厚みは第2金属酸化物絶縁部50Dの厚みよりも大きくなり、例えば2回の浸漬条件を同じとすれば、約2倍厚くなる。
 この結果、第1金属酸化物絶縁部50Cは厚みが大きいことにより濃い黒色に見え、第2金属酸化物絶縁部50Dは厚みが小さいことにより薄い黒色に見えて、互いに色が異なって見えるようになり、基板10側と超電導層30側とが識別可能となる。
 また、銅安定化層44の形成工程と、酸化処理工程を連続して行ってもよい。この場合、銀安定化層42が最表面である超電導線を用意する。この超電導線を過硫酸ナトリウム100g/L、硫酸50g/Lの溶液に室温で30秒浸漬して銀安定化層42の表面を化学粗化し、その後水洗を行う。更に、硫酸銅180~250 g/L、硫酸45~65 g/L、塩化物イオン20~60 mg/Lの溶液に水洗された超電導線を浸漬し、室温で超電導線にめっき処理を行い、銅安定化層44を形成する。
超電導線を搬送させながら片面にマスキングを施し、マスキングを行なっていない面に黒染め剤を塗付する。その際の浸漬温度を90℃、浸漬時間を30秒とする。水洗及び乾燥後にマスキングを取り除き、超電導線に対して酸化処理を行なえばよい。
次に、上述した金属酸化物絶縁部の製造方法の他の例を説明する。図4A~図4Cは、金属酸化物絶縁部の他の製造工程の一部を示す図である。なお、図中の点線は銅安定化層44において酸化される領域の境界線又は酸化された領域の境界線を示すものであり、実際に視認できるものではない。
第1金属酸化物絶縁部50Cの表面形状と、第2金属酸化物絶縁部50Dの表面形状(可視領域の反射率)を異ならせる方法としては、銅安定化層44を形成するためのめっき液を調製することによって、銅安定化層44の表面形状を制御することができる。
例えば、図4Aのように、基板10、中間層20、及び超電導層30の周囲が、銀安定化層42及び銅安定化層44で順に覆われた処理前の超電導線1Bにおいて、超電導層30側の銅安定化層44の表面を除く銅安定化層44の周囲をマスキングテープ60で被覆し、表面硫酸ナトリウム100g/L、硫酸50g/Lの溶液に室温で30秒浸漬して超電導層30側の銅安定化層44の表面を化学粗化し、水洗を行う。その後、硫酸ニッケル(NiSO ・5HO)100g/L(Niとして24g/L)、硫酸第2銅(CuSO・5HO)4g/L(Cuとして1g/L)からなるめっき液(pH4.5、30℃)に浸漬し、アノードは、不溶性アノードである白金めっきチタンメッシュを用い、電流密度2A/dmで20秒間電解を行い、電解後、水洗及び乾燥を行う。これにより、図4Bのように、超電導層30側の銅安定化層44の表面に、マスキングされた銅安定化層44とは異なる表面形状の銅層(均一な黒色を呈する銅層)80を形成する。
そして、図4Bに示すように、超電導線1Aからマスキングテープ60を取り外す。次に、図4Cに示すように、銅層(均一な黒色を呈する銅層)80を含めて銅安定化層44の全表面を酸化処理する。
これにより、図2Aに示すように、銅安定化層44の周囲に絶縁層50となる金属酸化物絶縁部(銅酸化物層)が形成され、超電導線1が得られる。そして、金属酸化物絶縁部は、超電導層30側に形成された第1金属酸化物絶縁部50Cと基板10側に形成された第2金属酸化物絶縁部50Dとを有し、銅層80の色が他の安定化層44の色よりも濃い(反射率が低い)ため、同じ酸化処理を行うことによって、第1金属酸化物絶縁部50Cの色(反射率)は第2金属酸化物絶縁部50Dよりも濃く(低く)なる。
この結果、第1金属酸化物絶縁部50Cは可視領域の反射率が第2金属酸化物絶縁部50Dよりも低く、濃い黒色に見え、第1金属酸化物絶縁部50Cと第2金属酸化物絶縁部50Dは互いに色が異なって見えるようになり、基板10側と超電導層30側とが識別可能となる。
<変形例>
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わされて実施可能である。また、以下の変形例を、適宜、組み合わせてもよい。
 例えば、上記実施形態のように基板10側と超電導層30側を識別するものだけでなく、絶縁層50の金属酸化物絶縁部に、超電導線1の長手L方向の一端部と他端部又は超電導線1の短手方向の一端部と他端部を識別する端部識別部を有するようにしてもよい。例えば、長手L方向の一端部と他端部が識別できれば、一端部から他端部までの特性変化表を把握するとき等に有用となる。また、短手方向の一端部と他端部が識別できれば、破損を特定するとき等に有用となる。
 この場合、他の処理工程を増やさなくて済むという観点から、酸化処理して形成された第1金属酸化物絶縁部50C又は第2金属酸化物絶縁部50Dの一部をさらに酸化処理して色を変化させ(色をより濃くし)、図5Aに示すような短手方向に伸びる直線状の端部識別部80や図5Bに示すような長手L方向に伸びる直線状の端部識別部82を設けることが好ましい。
 また、実施形態では、銅安定化層を用いて、酸化処理の際に、銅元素を酸化して銅酸化物を得ているが、銅安定化層の変わり又は銅安定化層の表面に、コバルトや鉄等の金属層を配してコバルトや鉄等の他の金属元素を酸化してもよい。この場合、金属酸化物絶縁部が実施形態で説明したような黒色でなく、青色や茶色に見えるときもある。
 また、実施形態で説明したように第1金属酸化物絶縁部50Cと第2金属酸化物絶縁部50Dの色が互いに色の濃淡で相違する場合を説明したが、互いに色の種類が相違するように酸化を工夫してもよい。具体的に、酸化処理法を調整して、第1金属酸化物絶縁部50Cと第2金属酸化物絶縁部50Dの金属の価数を変え、例えば、銅安定化層の変わり又は銅安定化層の表面に、鉄の金属層を配し、第1金属酸化物絶縁部50Cを黒色に見えるFeにし、第2金属酸化物絶縁部50Dを赤色に見えるFeにしたりする等が考えられる。
 また、中間層20の全部又は一部(LMO層26等)は、省略することができる。
 日本出願第2012-092803の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  基板と、
     前記基板の一方の主面側に積層した超電導層と、
     前記超電導層の表面と前記基板の他方の主面を覆う安定化層と、
     前記安定化層の表面を覆い、前記基板側と前記超電導層側とを識別する識別部を有する絶縁層と、
     を備える超電導線。
  2.  前記安定化層は、金属元素を含み、
     前記絶縁層は、前記識別部として、少なくとも前記超電導層側に形成され、前記金属元素の酸化物を含む金属酸化物絶縁部を有する、
     請求項1に記載の超電導線。
  3.  前記金属酸化物絶縁部は、前記識別部として、前記超電導層側に形成された第1金属酸化物絶縁部と、前記基板側に形成された第2金属酸化物絶縁部とを有し、
     前記第1金属酸化物絶縁部と前記第2金属酸化物絶縁部は、互いに色が異なる、
     請求項2に記載の超電導線。
  4.  前記第1金属酸化物絶縁部の厚みは、前記第2金属酸化物絶縁部の厚みよりも大きい、 請求項3に記載の超電導線。
  5.  前記金属酸化物絶縁部の厚みは、前記安定化層の厚みよりも小さい、
     請求項2~請求項4の何れか1項に記載の超電導線。
  6.  前記金属酸化物絶縁部と前記安定化層の間には、前記金属元素と前記金属元素の酸化物とが混在し、且つ、単体の金属元素に対する前記金属元素の酸化物の比率が前記金属酸化物絶縁部に向かって連続的に大きくされた組成傾斜層が設けられている、
     請求項2~請求項5の何れか1項に記載の超電導線。
  7.  前記金属酸化物絶縁部は、前記超電導線の長手方向の一端部と他端部又は前記超電導線の短手方向の一端部と他端部を識別する端部識別部を有する、
     請求項2~請求項6の何れか1項に記載の超電導線。
  8.  前記絶縁層における前記超電導層側の表面粗さは、前記絶縁層における前記基板側の表面粗さと異なる、
     請求項1~請求項7の何れか1項に記載の超電導線。
  9.  前記絶縁層における前記超電導層側のビッカース硬さは、前記絶縁層における前記基板側のビッカース硬さと異なる、
     請求項1~請求項8の何れか1項に記載の超電導線。
PCT/JP2013/059119 2012-04-06 2013-03-27 超電導線 WO2013150942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/236,119 US20150024942A1 (en) 2012-04-06 2013-03-27 Superconducting wire
KR1020147002320A KR20140082634A (ko) 2012-04-06 2013-03-27 초전도선
JP2014509123A JP6133273B2 (ja) 2012-04-06 2013-03-27 超電導線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087675 2012-04-06
JP2012-087675 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013150942A1 true WO2013150942A1 (ja) 2013-10-10

Family

ID=49300432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059119 WO2013150942A1 (ja) 2012-04-06 2013-03-27 超電導線

Country Status (5)

Country Link
US (1) US20150024942A1 (ja)
JP (1) JP6133273B2 (ja)
KR (1) KR20140082634A (ja)
CN (2) CN103366894B (ja)
WO (1) WO2013150942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136623A (ja) * 2015-01-16 2016-07-28 住友電気工業株式会社 超電導コイルおよび超電導線材
JP2021034155A (ja) * 2019-08-20 2021-03-01 株式会社フジクラ 超電導線材および超電導線材の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133273B2 (ja) * 2012-04-06 2017-05-24 古河電気工業株式会社 超電導線
KR101459583B1 (ko) * 2013-09-11 2014-11-10 주식회사 서남 초전도체 및 이의 제조 방법
KR102494710B1 (ko) * 2015-09-04 2023-02-02 한국전기연구원 스마트 인슐레이션을 구비하는 고온 초전도 코일, 그에 사용되는 고온 초전도 선재 및 그 제조방법
CN109923624B (zh) * 2016-10-31 2020-09-08 住友电气工业株式会社 超导线材和超导线圈
WO2019165261A1 (en) * 2018-02-23 2019-08-29 Florida State University Research Foundation, Inc. Rare earth barium copper oxide magnet coils and methods
CN109192389B (zh) * 2018-09-26 2020-05-15 广东南缆电缆有限公司 一种用于智能机器人超导输电线的制备方法
JP6743233B1 (ja) * 2019-03-28 2020-08-19 株式会社フジクラ 酸化物超電導線材
CN110797148B (zh) * 2019-10-08 2021-07-30 上海交通大学 适用于无绝缘线圈的超导带材、无绝缘线圈及其制备方法
CN111834043B (zh) * 2020-07-24 2022-02-01 上海超导科技股份有限公司 一种接触电阻可控的高温超导带材结构及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033393A1 (en) * 1998-11-30 2000-06-08 Nordic Superconductor Technologies A/S A method of producing a superconducting tape
JP2000200518A (ja) * 1998-10-26 2000-07-18 Sumitomo Electric Ind Ltd 酸化物超電導線およびその製造方法
US20060223711A1 (en) * 2003-07-03 2006-10-05 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
JP2011154790A (ja) * 2010-01-26 2011-08-11 Sumitomo Electric Ind Ltd 薄膜超電導線材
JP2011159455A (ja) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd 薄膜超電導線材とその製造方法
JP2012043734A (ja) * 2010-08-23 2012-03-01 Fujikura Ltd 酸化物超電導線材およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040381A1 (ja) * 2009-09-29 2011-04-07 古河電気工業株式会社 超電導線材用基板、超電導線材及び超電導線材の製造方法
JP6133273B2 (ja) * 2012-04-06 2017-05-24 古河電気工業株式会社 超電導線

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200518A (ja) * 1998-10-26 2000-07-18 Sumitomo Electric Ind Ltd 酸化物超電導線およびその製造方法
WO2000033393A1 (en) * 1998-11-30 2000-06-08 Nordic Superconductor Technologies A/S A method of producing a superconducting tape
US20060223711A1 (en) * 2003-07-03 2006-10-05 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
JP2011154790A (ja) * 2010-01-26 2011-08-11 Sumitomo Electric Ind Ltd 薄膜超電導線材
JP2011159455A (ja) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd 薄膜超電導線材とその製造方法
JP2012043734A (ja) * 2010-08-23 2012-03-01 Fujikura Ltd 酸化物超電導線材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136623A (ja) * 2015-01-16 2016-07-28 住友電気工業株式会社 超電導コイルおよび超電導線材
JP2021034155A (ja) * 2019-08-20 2021-03-01 株式会社フジクラ 超電導線材および超電導線材の製造方法

Also Published As

Publication number Publication date
CN203397770U (zh) 2014-01-15
KR20140082634A (ko) 2014-07-02
CN103366894A (zh) 2013-10-23
JPWO2013150942A1 (ja) 2015-12-17
CN103366894B (zh) 2016-12-28
JP6133273B2 (ja) 2017-05-24
US20150024942A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6133273B2 (ja) 超電導線
JP5119582B2 (ja) 超電導線材の製造方法および超電導機器
JP4934155B2 (ja) 超電導線材および超電導線材の製造方法
JP2006200034A (ja) 低磁気ヒステリシス損失の二軸配向性金属テープ及びその製造方法
WO2007135831A1 (ja) 超電導薄膜材料および超電導薄膜材料の製造方法
JP6743233B1 (ja) 酸化物超電導線材
CN106961829A (zh) 氧化物超导电线材
JP6743262B1 (ja) 酸化物超電導線材
JP5474339B2 (ja) 超電導線材の前駆体の製造方法、超電導線材の製造方法
JP6349439B1 (ja) 超電導コイル
JP6743232B1 (ja) 酸化物超電導線材
WO2013008851A1 (ja) 超電導薄膜及び超電導薄膜の製造方法
JP2019175551A (ja) 超電導線材および超電導線材の製造方法
JP2012150914A (ja) 高抵抗材複合酸化物超電導線材
JP5739972B2 (ja) 超電導線材の前駆体および超電導線材
JP2019128989A (ja) 超電導線材および超電導線材の製造方法。
JP2019128982A (ja) 超電導線材および超電導線材の製造方法。
JP2017010833A (ja) 酸化物超電導線材および酸化物超電導線材の製造方法
JP2018101536A (ja) 酸化物超電導線材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509123

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002320

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772521

Country of ref document: EP

Kind code of ref document: A1