WO2013147354A1 - 무시멘트 고강도 부정형 내화물 - Google Patents

무시멘트 고강도 부정형 내화물 Download PDF

Info

Publication number
WO2013147354A1
WO2013147354A1 PCT/KR2012/002461 KR2012002461W WO2013147354A1 WO 2013147354 A1 WO2013147354 A1 WO 2013147354A1 KR 2012002461 W KR2012002461 W KR 2012002461W WO 2013147354 A1 WO2013147354 A1 WO 2013147354A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
amorphous refractory
high strength
weight
strength
Prior art date
Application number
PCT/KR2012/002461
Other languages
English (en)
French (fr)
Inventor
임경란
박상환
김창삼
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2013147354A1 publication Critical patent/WO2013147354A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/105Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/106Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a cementless high-strength amorphous refractory material that includes a barium aluminate and a dispersant in addition to a refractory agent including Al 2 O 3 and SiC and an alumina sol binder to greatly improve the molding strength of the amorphous refractory material.
  • the amorphous refractory of the present invention is useful for application to linings in contact with slag in furnaces and gasifiers.
  • Indefinite refractory materials are preferred to refractory bricks, where the gap between bricks is a problem, but improvements in life span, material selection, and construction methods are still required.
  • Amorphous refractory materials generally comprise a refractory agent consisting of an oxide, carbide or mixture thereof and a binder which combines the refractory agent.
  • Cement binders have been mainly used as binders in the refractory, but cement binders contain calcium oxide (CaO) in addition to the disadvantage of long drying time due to the slow evaporation of water, thereby reducing the viscosity of slag by reacting with slag at high temperature. It has the disadvantage of facilitating penetration into the refractory to promote erosion of the refractory. Accordingly, low calcium alumina cement having a low calcium content is preferred as an inorganic binder included in the refractory material.
  • Phosphate amorphous refractory uses mono-aluminum phosphate as a binder and magnesium oxide (MgO) as a curing agent, which can be applied in a combustion furnace but is not preferred to be applied to a gas-deficient gasifier.
  • MgO magnesium oxide
  • P 2 O 5 -MgO-based monolithic refractory material is a low melting point compound is produced, the mono-aluminum phosphate because it is water soluble, and the strength of the non-uniform by moving to the surface, in the high-temperature reducing atmosphere, the strength being a P 2 O 5 volatilization decreases
  • the disadvantage is that it becomes uneven or uneven.
  • phosphate amorphous refractory is not suitable for forming a refractory structure.
  • Hydrated alumina is mainly composed of ⁇ -alumina powder and contains ⁇ -alumina which reacts easily with water, and a small amount of CaO and SiO 2 .
  • water-soluble alumina binders include AlphaBond 300 and 500 of the Almatis Alcoa Industrial Chemicals Division.
  • Alphabond 300 the average particle size of alumina is 2.3 ⁇ m and the CaO content is less than 0.1 wt%.
  • Alphabond 500 has an average particle size of 5.2 ⁇ m and a CaO content of 0.6 wt%.
  • a refractory material in which a hydratable alumina binder is used has a disadvantage of having low strength (1.2 to 2.0 MPa) in the region of 800 ° C. to 1200 ° C. in which water is dehydrated and no bond between ceramics is generated.
  • Japanese Laid-Open Patent Publication No. 2004-168580 discloses an SiC-containing amorphous refractory material used for lining of a furnace by including an aluminum cement binder in a refractory agent containing Al 2 O 3 and SiC.
  • it is characterized by an amorphous refractory prepared using SiC fine powder ( ⁇ 5 ⁇ m) and alumina ( ⁇ 1 ⁇ m), silica ( ⁇ 1 ⁇ m) and a small amount of alumina cement (1.5%), and the SiC content of 5 ⁇ m or less It is disclosed that it is 3 to 10 weight%, and it is disclosed that the effect which improved the fluidity
  • the inventors of the present disclosure have disclosed an amorphous refractory material including an alumina sol binder and a refractory agent including Al 2 O 3 and SiC in Korean Patent Application Publication No. 2011-104713.
  • the alumina sol binder By using the alumina sol binder, it is easy to contact between the fire-resistant due to the inherent fluidity of the sol (Sol) to improve the bonding properties, and also eliminates the problems caused by the use of cement because it does not use a cement binder, as well as alumina sol As the gel is formed as a thin film, the drying is fast and there is an advantage that no crack occurs in the drying process.
  • An object of the present invention is to provide a novel amorphous refractory material which can significantly improve the handling strength without using cement or phosphate binder and using only alumina binder.
  • an object of the present invention is to provide a novel amorphous refractory material that can selectively include barium aluminate inorganic additives in the alumina sol binder to impart working fluidity and greatly improve drying and sintering strength.
  • the present invention is a refractory mixture containing Al 2 O 3 and SiC; Binders of alumina sol; Inorganic additives of barium aluminate; And a cementless high strength amorphous refractory comprising a dispersant.
  • the amorphous refractory material of the present invention has an effect of greatly improving the handling strength including compressive strength and bending strength.
  • the sintered body obtained by heat-treating the amorphous refractory material according to the present invention also has a significant improvement in density and strength.
  • FIG. 1 is an XRD pattern of barium aluminate powder obtained after heat treatment of a powder synthesized by a solid phase method using alumina and barium carbonate as the main raw materials at 1000 ° C. and 750 ° C. for 2 hours.
  • the present invention relates to a cemented high strength amorphous refractory, and relates to a cemented high strength amorphous refractory comprising an alumina sol binder, barium aluminate, and a dispersant as essential components in a refractory agent containing Al 2 O 3 and SiC.
  • a mixture of Al 2 O 3 and SiC is used as the fireproofing agent.
  • the mixing ratio of the above-mentioned refractory mixture there is no particular limitation on the mixing ratio of the above-mentioned refractory mixture, and nevertheless, the mixing ratio of Al 2 O 3 : SiC is used in the range of 10:90 to 90: 10% by weight.
  • the Al 2 O 3 is one of the aggregate components constituting the skeleton in the refractory, the finely divided alumina is used to form a bond during sintering plays an effective role in maintaining a high strength in the production of refractory.
  • Al 2 O 3 can be selected and used within the particle diameter of 0.1 ⁇ 6000 ⁇ m range, in the present invention, there is no particular limitation on the particle size of the Al 2 O 3 and the mixing ratio between the particles.
  • the SiC is one of the aggregate components constituting the skeleton in the refractory, it is excellent in thermal conductivity, insoluble in water or acid, chemically inert and very hard, so when used in the furnace, slag contact, etc. It is very useful for maintaining durability by preventing erosion and abrasion when flowing.
  • SiC may be classified into particles having a particle diameter of 1 mm to 10 mm, fine particles of 50 ⁇ m to 1 mm, and fine powder of 50 ⁇ m or less in the present invention. There is no special restriction on the ratio.
  • At least one selected from magnesium oxide, spinel, zirconia, chromia, hafnium oxide and the like, in addition to the mixture of Al 2 O 3 and SiC as the fireproofing agent, may be in the range of 2 to 40% by weight based on the total weight of the fireproofing mixture. It may also be included.
  • an alumina sol is used as the binder.
  • Alumina sol binder gives working fluidity to the refractory mixture and does not use cement containing CaO, so it does not cause erosion by CaO even at high temperature, maintains shape after drying, and hardly shrinkage even after high temperature sintering. Without high strength.
  • the alumina sol is gelled, so that water is volatilized, and thus drying is fast, and even when a small amount of alumina sol is used, the alumina sol forms a thin film.
  • the alumina sol is prepared by hydrolysis with acid and polymerization of boehmite slurry.
  • the acid is selected from nitric acid, hydrochloric acid, acetic acid, formic acid, phosphoric acid, sulfuric acid and the like.
  • the content of the alumina sol included as a binder in the amorphous refractory may be 0.1 to 10 parts by weight, preferably 0.2 to 4 parts by weight based on 100 parts by weight of the refractory mixture, based on the amount of alumina, More preferably, it is used in the range of 0.3 to 1.5 parts by weight. If the content of the alumina sol binder is too small in comparison to the refractory mixture, the alumina sol binder may not function as a binder, and if excessively used in excess, there may be a problem in corrosion resistance and thermal conductivity.
  • the amorphous refractory material of the present invention may be an organic binder such as methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, or latex (latex). It can be included as. Although embodiments of the present invention disclose specific examples using hydroxyethyl cellulose (HEC), the present invention is not limited thereto.
  • the content of the organic binder may be 0.03 to 1.0 parts by weight based on 100 parts by weight of the refractory mixture, preferably 0.05 to 0.5 parts by weight.
  • the organic binder suppresses the flow of the refractory agent that may occur during the drying process and improves the strength of the molded body, but the organic binder that decomposes during the heat treatment process creates pores and may be disadvantageous in terms of strength and thermal conductivity. It is preferable.
  • the amorphous refractory of the present invention includes barium aluminate as an additive.
  • barium aluminate in the refractory, the molding strength such as compressive strength and bending strength of the amorphous refractory material was greatly improved, and the sintered body also had an effect of improving strength and sintered density.
  • Barium aluminate is synthesized by a solid phase method using alumina and barium carbonate as a main raw material, and a barium aluminate having a single crystal phase is prepared by heat treatment in air at 800 ° C to 1500 ° C for 1 to 5 hours.
  • 1 and 2 attached to the results of X-ray diffraction analysis on the powder obtained after the heat treatment for 2 hours at the heat treatment temperature of 1000 °C and 750 °C, respectively.
  • Figure 1 shows that when the heat treatment for 2 hours at 1000 °C barium aluminate single phase was prepared.
  • barium aluminate precursor mainly composed of XRD patterns of barium carbonate. Both powders can be used as an additive in the amorphous refractory material of the present invention because the barium aluminate precursor is also converted into crystalline barium aluminate at high temperature sintering.
  • the content of barium aluminate included as an additive in the amorphous refractory material of the present invention may be 0.1 to 10 parts by weight with respect to 100 parts by weight of the refractory mixture, preferably 1 to 5 parts by weight. If the content of barium aluminate is too small in comparison with the refractory mixture, the strength of the molded body cannot be increased, and if excessively used, the content of the barium aluminate may be too fast and the work time is too short, so that uniform mixing may be difficult. .
  • a dispersant may be selected and used so that each component constituting the amorphous refractory is evenly dispersed.
  • a dispersing agent it can select from polycarboxylate ether type, a polyacrylic type, etc., and can use.
  • the dispersant may be 0.02 to 1 part by weight based on 100 parts by weight of the refractory mixture, preferably used in the range of 0.05 to 0.5 parts by weight.
  • Each of the components used above is mixed to produce a molded article of amorphous refractory material.
  • the molded product is dried for 2 to 6 hours at room temperature (specifically, 5 ° C to 30 ° C), and then dried again for 3 to 7 hours at a temperature of 60 ° C to 150 ° C. Then, heat treatment at 600 °C to 1500 °C temperature for 2 to 5 hours to prepare a sintered body.
  • Refractory compositions of Al 2 O 3 and SiC used in the examples of the present invention are shown in Table 1 below.
  • ingredient Average particle size Composition ratio (wt%) M M-1 M-2 M-3 Al 2 O 3 750 ⁇ m 0 20 20 5 40 ⁇ m 0 0 0 15 3 ⁇ m 0 3 3 3 3 0.5 ⁇ m 4 7 7 7 SiC 1.25 mm 40 25 45 40 750 ⁇ m 20 20 0 20 90 ⁇ m 10 3 3 3 20 ⁇ m 20 20 5 5 ⁇ m 6 2 2 2 Sum 100 100 100 100 100
  • Refractory mixture M-2 single phase barium aluminate (1000 ° C. calcined powder), hydroxyethyl cellulose (HEC) as an organic binder, polycarboxylate ether (VP 65, BASF, Germany) at the composition ratio shown in Table 2 below
  • HEC hydroxyethyl cellulose
  • VP 65 polycarboxylate ether
  • refractory mixture M-1 single phase barium aluminate (powder calcined at 1000 ° C., hydroxyethyl cellulose (HEC) as a binder, polycarboxylate ether (VP 65, BASF) dispersant) And mixed well, and then a small amount of alumina sol was added and mixed well to form an amorphous slurry, which was formed into a rod of ⁇ 15 ⁇ 15 ⁇ 40 mm 3, which was dried at room temperature and then dried in an oven at 100 ° C. for at least 3 hours. After drying, the mixture was cooled to room temperature to prepare a refractory specimen 1. The specimen 2 was prepared by heating to 800 ° C. at 3 ° C./min for 3 hours, and then cooling to room temperature at 3 ° C./min. It was.
  • Refractory specimens 1 and 2 were prepared by the method described in Examples 3 to 5 using the refractory mixture M-3, and the compressive strengths thereof were measured. The results are shown in Table 4 below. .
  • Refractory specimen 1 was prepared by the method described in Examples 3 to 5 using the refractory mixture M in the composition ratio of Table 6 below.
  • Specimen 2 was prepared by further performing a heat treatment to heat up to 1350 °C at 5 °C / min for 3 hours, and then cooled to room temperature at a rate of 5 °C / min.
  • the compressive strengths of the prepared specimens 1 and 2 were measured, and the results are shown in Table 6 below.
  • the organic binder (HEC) is added to the alumina sol inorganic binder, thereby obtaining an effect of increasing the bending strength, and the dispersant is further included in the bending. It can be seen that the strength can be further improved. This effect is more pronounced in Examples 12 and 13 containing barium aluminate as an essential component, in the case of Examples 12-14, the amount of barium aluminate in the composition of Comparative Example 5, 1,2 parts by weight, respectively Only added, but the bending strength is improved more than two times.
  • the refractory sintered body of the present invention can be seen that the density and strength are kept high.
  • Refractory specimens 1 and 2 were prepared by the method described in Examples 12 to 14 and Comparative Examples 3 to 5 using the refractory mixture M, and the compressive strengths thereof were measured. 7 is shown. However, barium aluminate used the barium aluminate precursor powder obtained by heat-processing at 750 degreeC for 2 hours.
  • the barium aluminate precursor powder also improved the strength and density high.
  • the refractory containing barium aluminate as an essential component the refractory containing the alumina sol binder (Examples 15 and 16) was higher in strength than the refractory containing the alumina sol binder (Comparative Examples 6 and 7). It can be seen that it is maintained. That is, barium aluminate can be seen that the addition effect is maximized when the alumina sol is added to the refractory used as a binder.

Abstract

본 발명은 Al2O3와 SiC를 포함하는 내화제와 알루미나 졸 바인더를 포함하는 내화물에 추가로 바륨 알루미네이트와 분산제를 포함시켜 부정형 내화물의 성형강도를 크게 향상시킨 무시멘트 고강도 부정형 내화물에 관한 것이다. 본 발명의 부정형 내화물은 용광로, 가스화기에서 슬래그와 접촉하는 라이닝에의 적용이 유용하다.

Description

무시멘트 고강도 부정형 내화물
본 발명은 Al2O3와 SiC를 포함하는 내화제와 알루미나 졸 바인더를 포함하는 내화물에 추가로 바륨 알루미네이트와 분산제를 포함시켜 부정형 내화물의 성형강도를 크게 향상시킨 무시멘트 고강도 부정형 내화물에 관한 것이다. 본 발명의 부정형 내화물은 용광로와 가스화기에서 슬래그와 접촉하는 라이닝에의 적용이 유용하다.

부정형 내화물이 벽돌간의 틈새가 문제되는 내화벽돌보다 선호되고는 있으나, 수명연장, 소재선택, 시공방법 등에서는 여전히 개선이 요구되고 있다.
부정형 내화물은 일반적으로 산화물, 탄화물 또는 이들의 혼합물로 이루어진 내화제와 상기 내화제를 결합하는 바인더로 이루어진다. 내화물에 포함되는 바인더로서는 주로 시멘트 바인더가 사용되어 왔으나, 시멘트 바인더는 수분 증발이 느려서 건조 시간이 길다는 단점이외에도 산화칼슘(CaO)을 포함하고 있음으로써 고온에서 슬래그와 반응하여 슬래그의 점도를 낮추게 되어 내화물로의 침투를 용이하게 하여 내화물의 침식을 촉진시키는 단점을 가지고 있다. 이에, 내화물에 포함되는 무기바인더로 칼슘 함량이 낮은 저칼슘 알루미나 시멘트가 선호되고 있다.
이러한 시멘트 바인더를 대체하여 포스페이트 부정형 내화물이 제안되고 있다. 포스페이트 부정형 내화물은 모노-알루미늄 포스페이트를 바인더로 사용하고, 산화마그네슘(MgO)을 경화제로 사용하게 되는데, 연소노에서는 적용이 가능하나 산소가 부족한 가스화기에 적용하기는 바람직하지 못하다. 또한, P2O5-MgO계 부정형 내화물은 저융점 화합물이 생성되고, 모노-알루미늄 포스페이트가 수용성이므로 표면으로 이동함으로써 강도가 불균일하게 되고, 고온 환원 분위기에서는 P2O5가 휘발됨으로써 강도가 저하되거나 불균일하게 되는 단점이 있다. 따라서 포스페이트 부정형 내화물은 내화구조를 형성하는 데 적합하지 않다.
최근에는 수화성 알루미나 바인더를 사용한 부정형 내화물이 개발되었다. 수화성 알루미나는 α-알루미나 분말이 주를 이루고, 쉽게 물과 반응하는 ρ-알루미나와 소량의 CaO와 SiO2가 포함되어 있다. 현재 상업화되어 있는 수화성 알루미나 바인더는 Almatis Alcoa Industrial Chemicals Division의 AlphaBond 300, 500 등이 있다. Alphabond 300의 경우 알루미나의 평균입도가 2.3 ㎛이며, CaO 함량 0.1 중량% 미만이다. Alphabond 500의 경우 평균입도가 5.2 ㎛이며, CaO 함량이 0.6 중량%이다. 그러나 수화성 알루미나 바인더가 사용된 내화물은 수분이 탈수되고, 세라믹간의 결합이 생성되지 않는 800℃ 내지 1200℃ 영역에서 낮은 강도(1.2~2.0 MPa)를 가지는 단점이 있다.
또한, 일본공개특허 제2004-168580호에서는 Al2O3와 SiC를 포함하는 내화제에 알루미늄 시멘트 바인더를 포함시켜 용광로통의 라이닝에 이용하는 SiC 함유 부정형 내화물이 개시되어 있다. 즉, SiC 미분(<5 ㎛)과 알루미나(<1 ㎛), 실리카(<1 ㎛)와 알루미나 시멘트 소량(1.5%)을 사용하여 제조된 부정형 내화물을 특징으로 하고, 5 ㎛ 이하의 SiC 함량이 3~10 중량%인 것으로 개시하고 있으며, 유동성, 내침식, 내마모성을 향상시킨 효과를 얻고 있음이 개시되어 있다.
또한, 본 발명자들은 대한민국 공개특허 제2011-104713호에서 Al2O3와 SiC를 포함하는 내화제와 알루미나 졸 바인더를 포함하는 부정형 내화물을 공개한 바 있다. 알루미나 졸 바인더를 사용함으로써 졸(Sol) 본연의 유동성으로 인하여 내화제 간의 접촉이 용이하도록 하여 결합성을 높여 주고, 또한 시멘트 바인더를 사용하지 않으므로 시멘트 사용으로 인한 문제를 해소시킴은 물론이고, 알루미나 졸이 겔화되면서 박막이 형성되므로 건조가 빠르고 건조과정에서 크랙이 발생하지 않는 장점이 있다. 하지만, 수화성 알루미나 바인더와 마찬가지로 기존의 시멘트 바인더 또는 포스페이트계 바인더가 사용된 내화물에 비하여 낮은 성형체 강도를 나타내므로 취급 강도를 향상시키는 기술개발이 필요하다.

본 발명은 시멘트 또는 포스페이트계 바인더를 사용하지 않으며, 알루미나 바인더만을 사용하면서도 취급강도를 크게 향상시킬 수 있는 새로운 부정형 내화물을 제공하는 것을 목적으로 한다.
즉, 본 발명에서는 알루미나 졸 바인더에 바륨 알루미네이트 무기 첨가제를 선택 포함시켜 작업 유동성을 부여하고, 건조 및 소결 강도를 크게 향상시켜줄 수 있는 새로운 부정형 내화물을 제공하는 것을 목적으로 한다.

상기한 과제 해결을 위하여, 본 발명은 Al2O3와 SiC를 포함하는 내화제 혼합물; 알루미나 졸의 바인더; 바륨 알루미네이트의 무기첨가제; 및 분산제를 포함하는 무시멘트 고강도 부정형 내화물을 그 특징으로 한다.

본 발명의 부정형 내화물은 압축강도, 굽힘강도를 비롯한 취급강도를 크게 향상시키는 효과를 얻고 있다.
본 발명에 따른 부정형 내화물을 열처리하여 얻은 소결체 역시 밀도 및 강도가 크게 향상된 효과를 얻고 있다.

도 1은 알루미나와 탄산바륨을 주원료로 사용하여 고상법으로 합성한 분말을 1000℃와 750℃에서 각각 2시간동안 열처리한 후에 얻어진 바륨 알루미네이트 분말의 XRD 패턴이다.

본 발명은 무시멘트 고강도 부정형 내화물에 관한 것으로, Al2O3와 SiC를 포함하는 내화제에, 알루미나 졸 바인더, 바륨 알루미네이트, 및 분산제를 필수성분으로 포함하는 무시멘트 고강도 부정형 내화물에 관한 것이다.
본 발명에 따른 부정형 내화물을 구성하는 각 성분에 대해 보다 구체적으로 설명하면 하기와 같다.
본 발명에서는 내화제로서 Al2O3와 SiC의 혼합물을 사용한다. 본 발명에서는 상기란 내화제 혼합물의 혼합비에 특별한 제한을 두지 않으며, 그럼에도 불구하고 굳이 한정한다면 Al2O3 : SiC의 혼합비는 10 : 90 ~ 90 : 10 중량% 범위로 사용한다.
상기 Al2O3는 내화물에서 골격을 이루는 골재 성분의 하나로서, 미분의 알루미나는 소결시 결합을 이루는데 사용되어 내화물 제조시 높은 강도를 유지하는데 유효한 역할을 한다. Al2O3는 입자경이 0.1~6000 ㎛ 범위 내에서 선택 사용할 수 있으며, 본 발명에서는 상기 Al2O3의 입자경 및 입자간의 배합 비율에 대해 특별한 제한을 두지 않는다.
상기 SiC는 내화물에서 골격을 이루는 골재 성분의 하나로서, 물이나 산에 녹지 않고 열전도성이 우수하며, 화학적으로도 비활성이며 매우 단단하다는 특성을 가지므로 용광로, 슬래그 접촉부 등에 사용 시 용융슬래그가 내화물 벽을 흐를 때 침식과 마모가 생기는 것을 막아주어 내구성을 유지하는데 매우 유용하다. SiC는 입자경에 따라 (입자경 1 mm ~ 10 mm), 미립(입자경 50 ㎛ ~ 1 mm) 및 미분(입자경 50 ㎛ 이하)의 입자로 구분될 수 있으며, 본 발명에서는 상기 SiC의 입자경 및 입자간의 배합 비율에 대해 특별한 제한을 두지 않는다.
본 발명에서는 내화제로서 Al2O3와 SiC의 혼합물 이외에도 산화마그네슘, 스피넬, 지르코니아, 크로미아, 산화하프늄 등으로부터 선택된 1종 이상을 내화제 혼합물 전체 중량을 기준으로 2 내지 40 중량% 범위 내에서 추가로 포함할 수도 있다.
본 발명에서는 바인더로서 알루미나 졸을 사용한다. 알루미나 졸 바인더는 내화제 혼합물에 작업 유동성을 주고, CaO가 함유된 시멘트를 사용하는 것이 아니어서 고온에서 사용하더라도 CaO에 의한 침식이 일어나지 아니하며, 건조 후 형상을 유지하고, 고온 소결 이후에도 수축이 거의 일어나지 않고 높은 강도를 나타낸다. 또한, 시멘트 바인더와는 달리 알루미나 졸은 겔화되면서 물이 휘발되므로 건조가 빠르고, 소량의 알루미나 졸의 사용으로도 알루미나 겔이 박막을 형성하게 되므로 건조 시 크랙이 발생하지 않는 장점이 있다.
상기한 알루미나 졸은 보헤마이트 슬러리를 산에 의한 가수분해와 중합과정에 의하여 제조한다. 이때 산은 질산, 염산, 초산, 개미산, 인산, 황산 등으로부터 선택 사용한다.
부정형 내화물에 바인더로서 포함되는 알루미나 졸의 함량은 알루미나의 양을 기준으로 할 때, 내화제 혼합물 100 중량부에 대하여 0.1 내지 10 중량부가 될 수 있으며, 바람직하기로는 0.2 내지 4 중량부가 될 수 있으며, 더욱 바람직하게는 0.3 내지 1.5 중량부 범위로 사용한다. 알루미나 졸 바인더의 함량이 내화제 혼합물에 대비하여 너무 적으면 결합제로서의 역할을 수행할 수 없고, 지나치게 과량으로 사용하게 되면 오히려 내침식성 및 열전도도에 문제가 있을 수 있다.
또한, 본 발명의 부정형 내화물은 바인더로서 상기한 알루미나 졸의 무기 바인더 외에도 메틸 셀룰로즈, 히드록시메틸 셀룰로즈, 히드록시에틸 셀룰로즈(HEC), 히드록시프로필 셀룰로즈, 또는 라텍스(latex) 등의 유기 바인더를 추가로 포함할 수 있다. 본 발명의 실시예에서는 히드록시에틸 셀룰로즈(HEC)를 사용한 구체적인 예를 개시하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 유기 바인더의 함량은 내화제 혼합물 100 중량부에 대하여 0.03 내지 1.0 중량부가 될 수 있으며, 바람직하게는 0.05 내지 0.5 중량부인 것이 바람직하다. 유기바인더는 건조과정에서 일어날 수 있는 내화제의 유동을 억제하며 성형체의 강도를 향상시키나, 열처리 과정에서 분해되는 유기 바인더는 기공을 만들어 강도 및 열전도도면에서 불리 할 수 있기 때문에 가능한 한 소량을 사용하는 것이 바람직하다.
본 발명의 부정형 내화물은 바륨 알루미네이트를 첨가제로 포함한다. 바륨 알루미네이트가 내화물에 포함됨으로써 부정형 내화물의 압축강도, 굽힘강도 등의 성형강도가 크게 향상시키고, 소결체 역시 강도와 소결밀도가 향상된 효과를 얻을 수 있었다.
바륨 알루미네이트는 알루미나와 탄산바륨을 주 원료로 사용하여 고상법으로합성한 것으로, 800℃~1500℃ 온도에서 1 내지 5시간동안 공기 중에서 열처리하여 단일 결정상을 가지는 바륨 알루미네이트를 제조한다. 도 1과 도 2에는 열처리온도 1000℃와 750℃에서 각각 2시간동안 열처리한 후에 얻어진 분말에 대하여 X선 회절분석한 결과를 첨부하였다. 도 1은 1000℃에서 2시간동안 열처리하였을 때, 바륨 알루미네이트 단일상이 제조되었음을 확인할 수 있었다. 반면에 750℃에서 2시간동안 열처리하여 얻은 분말은 탄산바륨의 XRD 패턴이 주를 이루는 바륨 알루미네이트 전구체이었다. 본 발명의 부정형 내화물에는 두 분말 모두 첨가제로 사용할 수 있는 바, 그 이유는 바륨 알루미네이트 전구체 역시 고온 소결시에 결정상 바륨 알루미네이트로 변환하기 때문이다.
본 발명의 부정형 내화물에 첨가제로서 포함되는 바륨 알루미네이트의 함량은 내화제 혼합물 100 중량부에 대하여 0.1 내지 10 중량부가 될 수 있으며, 바람직하기로는 1 내지 5 중량부 범위로 사용한다. 바륨 알루미네이트의 함량이 내화제 혼합물에 대비하여 너무 적으면 성형체 강도를 높힐 수 없고, 지나치게 과량으로 사용하게 되면 오히려 빨리 굳어져 작업시간이 너무 짧아, 균일한 혼합을 얻기도 힘든 문제가 있을 수 있다.
또한, 본 발명에서는 부정형 내화물을 구성하는 각 성분들이 고루 잘 분산되도록 하기 위하여 분산제를 선택 사용할 수도 있다. 분산제로는 폴리카복실레이트 에테르계, 폴리아크릴계 등으로부터 선택 사용할 수 있다. 상기 분산제는 내화제 혼합물 100 중량부에 대하여 0.02 내지 1 중량부가 될 수 있으며, 바람직하기로는 0.05 내지 0.5 중량부 범위로 사용한다.
상기에서 설명한 각 사용성분은 혼합하여 부정형 내화물의 성형체를 제조한다. 상기 성형체는 실온(구체적으로는 5℃~30℃)에서 2 내지 6시간동안 건조하고, 60℃~150℃ 온도에서 3 내지 7시간동안 다시 건조한다. 그런 다음, 600℃~1500℃ 온도에서 2 내지 5시간동안 열처리하여 소결체를 제조한다.
이상에서 설명한 바와 같은 본 발명은 하기의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.

[실시예]

제조예 1: 내화제 혼합물의 준비
본 발명의 실시예에서 사용되는 Al2O3와 SiC의 내화제 조성은 하기 표 1에 나타내었다.
성분 평균입도 조성비(중량%)
M M-1 M-2 M-3
Al2O3 750 ㎛ 0 20 20 5
40 ㎛ 0 0 0 15
3 ㎛ 0 3 3 3
0.5 ㎛ 4 7 7 7
SiC 1.25 mm 40 25 45 40
750 ㎛ 20 20 0 20
90 ㎛ 10 3 3 3
20 ㎛ 20 20 20 5
5 ㎛ 6 2 2 2
합량 100 100 100 100

실시예 1~2 및 비교예 1~2.
하기 표 2에 나타낸 조성비로 내화제 혼합물 M-2, 단일상 바륨 알루미네이트 (1000℃ 하소분말), 유기 바인더로서 히드록시에틸 셀룰로오즈(HEC), 폴리카복실레이트 에테르(VP 65, BASF사, 독일) 분산제를 넣고 잘 혼합한 다음, 알루미나 졸을 소량씩 첨가하며. 충분히 혼합하여 부정형 슬러리를 만들고, ~15×15×40 ㎣ 크기의 막대로 성형하였다. 상기 성형체는 상온에서 건조한 후 100℃ 오븐에서 3시간 이상 더 건조한 다음 상온으로 식힌 후 취급강도를 보기 위한 내화물 시편을 제조하였다.
상기에서 제조한 내화물 시편은 Instron을 사용하여 cross head speed를 1 mm/min로 하여 압축강도를 측정하였다. 그 결과는 하기 표 2에 나타내었다.
구 분 내화물 조성(중량부) 압축강도
(MPa), 100℃
내화제
(M-2)
BaAl2O3 HEC VP 65 알루미나 졸
실시예 1 100 2 0 0.3 7 18
실시예 2 100 2 0 0.5 8 20
비교예 1 100 0 0 0 8 1.7
비교예 2 100 0 0.05 0 8 2.5

상기 표 2의 결과에 의하면, 바륨 알루미네이트가 첨가된 실시예 1, 2의 내화물 시편은 충분히 높은 압축강도를 가지고 있으나, 바륨 알루미네이트가 첨가되지 않은 비교예 1, 2의 내화물 시편은 압축강도가 2.5 MPa 미만으로 매우 낮음을 알 수 있었다.

실시예 3~5.
하기 표 3에 나타낸 조성비로 내화제 혼합물 M-1, 단일상 바륨 알루미네이트 (1000℃에서 하소한 분말, 유기 바인더로서 히드록시에틸 셀룰로오즈(HEC), 폴리카복실레이트 에테르(VP 65, BASF) 분산제를 넣고 잘 혼합한 다음, 알루미나 졸을 소량씩 첨가하며, 충분히 혼합하여 부정형 슬러리를 만들고, ~15×15×40 ㎣ 크기의 막대로 성형하였다. 상기 성형체는 상온에서 건조한 후 100℃ 오븐에서 3시간 이상 더 건조한 다음 상온으로 식혀 취급강도를 보기 위한 내화물 시편 1을 제조하였다. 시편 2는 3℃/min 속도로 800℃까지 승온하여 3시간 동안 유지한 다음, 3℃/min 속도로 상온까지 냉각하여 제조하였다.
상기에서 제조한 내화물 시편은 Instron을 사용하여 cross head speed를 1 mm/min로 하여 압축강도를 측정하였다. 그 결과는 하기 표 3에 나타내었다.
구 분 내화물 조성(중량부) 압축강도(MPa)
내화제
(M-1)
BaAl2O3 HEC VP 65 알루미나 졸 시편1
(100℃)
시편2
(800℃)
실시예 3 100 2 0 0.3 8 23.4 18.8
실시예 4 100 3 0 0.3 9 23.9 25.1
실시예 5 100 5 0 0.3 9 17.4 25.6

상기 표 3의 결과에 의하면, 바륨 알루미네이트의 함량이 증가할수록 압축강도도 증가하는 경향을 보였으나, 어느 정도 이상의 함량을 초과하면 더 이상의 첨가효과를 기대할 수 없으므로 경제성이 떨어짐을 알 수 있다. 또한, 내화물을 800℃로 열처리하여 얻은 소결체 역시 압축강도가 여전히 우수함을 알 수 있다.

실시예 6~8.
내화제 혼합물 M-3을 사용하여 하기 표 4의 조성비로 상기 실시예 3~5에 기술한 방법으로 내화물 시편 1과 시편 2를 제조하여 압축강도를 측정하였으며, 그 결과는 하기 표 4에 나타내었다.
구 분 내화물 조성(중량부) 압축강도(MPa)
내화제
(M-3)
BaAl2O3 HEC VP 65 알루미나 졸 시편1
(100℃)
시편2
(800℃)
실시예 6 100 2 0 0.5 9 n.a. 15.8
실시예 7 100 2 0 0.3 9 15.1 18.5
실시예 8 100 2 0.05 0.3 8 14.7 16.3

상기 표 4의 결과에 의하면, 바륨 알루미네이트, 분산제, 알루미나 졸 바인더를 같이 사용할 경우 우수한 취급강도를 얻을 수 있으며, 유기바인더(HEC) 첨가는 별로 영향을 미치지 못한다. 성형체를 800℃로 열처리하여 얻은 내화물도 역시 압축강도가 여전히 우수함을 알 수 있다.

실시예 9~11.
내화제 혼합물 M을 사용하여 하기 표 5에 나타낸 조성비로 상기 실시예 1~2에서 기술한 방법으로 내화물 시편을 제조하여 압축강도를 측정하였으며, 그 결과는 하기 표 5에 나타내었다.
구 분 내화물 조성(중량부) 압축강도(MPa), 100℃
내화제
(M)
BaAl2O3 HEC VP 65 알루미나 졸
실시예 9 100 2 0 0.3 8.4 18.5
실시예 10 100 2 0 0.3 8.5 18.7
실시예 11 100 3 0 0.3 8.5 26.3

상기 표 5의 결과에 의하면, 유기바인더(HEC) 없이도 우수한 취급강도를 얻을 수 있으며 바륨 알루미네이트 양이 3 중량부로 증가시키면 강도도 함께 향상됨을 알 수 있다.

실시예 12~14 및 비교예 3~5.
내화제 혼합물 M을 사용하여 하기 표 6의 조성비로 상기 실시예 3~5에 기술한 방법으로 내화물 시편 1을 제조하였다. 시편 2는 5 ℃/min로 1350℃까지 승온하여 3시간 동안 열처리한 다음, 5 ℃/min 속도로 상온까지 냉각하는 열처리 과정을 추가로 실시하여 제조하였다. 제조된 시편 1과 시편 2의 압축강도를 측정하였으며, 그 결과는 하기 표 6에 나타내었다.
구 분 내화물 조성(중량부) 시편1,
100℃
시편2, 1350℃
내화제
(M)
BaAl2O3 HEC VP 65 알루미나 졸 굽힘
강도
(MPa)
굽힘
강도
(MPa)
밀도
(g/㎤)
압축
강도
(MPa)
실시예 12 100 1 0.05 0.3 7.5 8.6 52.7 2.64 183
실시예 13 100 2 0 0.3 7.5 8.7 46.5 2.68 200
실시예 14 100 1 0 0.5* 7.8 n.a. 52.7 2.61 175
비교예 3 100 0 0 0 7.5 1.2 26.4 2.52 75.3
비교예 4 100 0 0.05 0 7.9 3.1 32.1 2.56 75.2
비교예 5 100 0 0.05 0.3 7.5 4.0 40 2.60 117
* 분산제로서 VP 65를 대신하여 아크릴계 Darvan C 사용함

상기 표 6의 결과에 의하면, 비교예 3~5의 결과로부터 알루미나 졸 무기바인더에 유기바인더(HEC)가 첨가됨으로써 굽힘강도가 상승되는 효과를 얻을 수 있고, 여기에 분산제가 추가로 포함되어서는 굽힘강도가 보다 향상될 수 있음을 확인할 수 있다. 이러한 효과는 바륨 알루미네이트가 필수성분으로 포함된 실시예 12, 13에서 보다 현격한 차이를 나타내게 되는데, 실시예 12~14의 경우 비교예 5의 조성에 바륨 알루미네이트를 1,2 중량부로 각각 소량 첨가하였을 뿐이나 굽힘강도가 2배 이상 향상된 효과를 얻고 있다. 본 발명의 내화물 소결체는 밀도 및 강도가 높게 유지됨을 알 수 있다.

실시예 15~16 및 비교예 6~7.
내화제 혼합물 M을 사용하여 하기 표 7의 조성비로 상기 실시예 12~14 및 비교예 3~5에 기술한 방법으로 내화물 시편 1과 시편 2를 제조하여 압축강도를 측정하였으며, 그 결과는 하기 표 7에 나타내었다. 단, 바륨 알루미네이트는 750℃에서 2시간 열처리하여 얻어진 바륨 알루미네이트 전구체 분말을 사용하였다.
구 분 내화물 조성(중량부) 시편1,
100℃
시편2, 1350℃
내화제
(M)
BaAl2O3 HEC VP 65 알루미나 졸 굽힘
강도
(MPa)
굽힘
강도
(MPa)
밀도
(g/㎤)
압축
강도
(MPa)
실시예 15 100 1 - 0.3 7.5 0 6.3 51.3 2.67 179
실시예 16 100 2 0.05 0.3 7.5 0 n.a. 38.8 2.67 199
비교예 6 100 1 - 0.3 0 6.5 1.0 37.9 2.69 98
비교예 7 100 2.4 0.05 0.24 0 6.5 2.2 36.1 2.65 106

상기 표 7의 결과에 의하면, 바륨 알루미네이트 전구체 분말 역시 강도 및 밀도을 높게 향상시킴을 확인할 수 있었다. 또한, 바륨 알루미네이트가 필수성분으로 포함된 내화물에 있어, 알루미나 졸 바인더가 포함된 내화물(실시예 15, 16)은 알루미나 졸 바인더가 포함되지 않은 내화물(비교예 6, 7)에 비해 보다 높은 강도를 유지하고 있음을 알 수 있다. 즉, 바륨 알루미네이트는 바인더로서 알루미나 졸이 사용된 내화물에 첨가되었을 때 그 첨가효과가 극대화됨을 알 수 있다.

Claims (8)

  1. Al2O3와 SiC를 포함하는 내화제 혼합물;
    알루미나 졸; 및
    바륨 알루미네이트; 및
    분산제;
    를 포함하는 무시멘트 고강도 부정형 내화물.

  2. 제 1 항에 있어서,
    상기 알루미나 졸은 보헤마이트 슬러리를 산 가수분해 및 중합으로 제조된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  3. 제 1 항 또는 제 2 항에 있어서,
    상기 알루미나 졸은 알루미나의 양을 기준으로 내화제 혼합물 100 중량부에 대하여 0.1 내지 10 중량부 포함된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  4. 제 1 항에 있어서,
    상기 바륨 알루미네이트는 탄산 바륨과 알루미나를 주성분으로하여 고상법으로 합성한 바륨 알루미네이트 또는 이의 전구체임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  5. 제 1 항 또는 제 4 항에 있어서,
    상기 바륨 알루미네이트는 내화제 혼합물 100 중량부에 대하여 0.1 내지 10 중량부 포함된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  6. 제 1 항에 있어서
    상기 분산제는 폴리카복실레이트 에테르계 및 폴리아크릴계 중에서 선택된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  7. 제 1 항 또는 제 6 항에 있어서
    상기 분산제는 내화제 혼합물 100 중량부에 대하여 0.02 내지 1 중량부 포함된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

  8. 제 1 항에 있어서,
    상기 내화제 혼합물은 추가로 산화마그네슘, 스피넬, 지르코니아, 크로미아, 및 산화하프늄 중에서 선택된 1종 이상이 포함된 것임을 특징으로 하는 무시멘트 고강도 부정형 내화물.

PCT/KR2012/002461 2012-03-30 2012-04-02 무시멘트 고강도 부정형 내화물 WO2013147354A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0033223 2012-03-30
KR1020120033223A KR101321944B1 (ko) 2012-03-30 2012-03-30 무시멘트 고강도 부정형 내화물

Publications (1)

Publication Number Publication Date
WO2013147354A1 true WO2013147354A1 (ko) 2013-10-03

Family

ID=49235814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002461 WO2013147354A1 (ko) 2012-03-30 2012-04-02 무시멘트 고강도 부정형 내화물

Country Status (3)

Country Link
US (1) US8815759B2 (ko)
KR (1) KR101321944B1 (ko)
WO (1) WO2013147354A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081847A1 (de) * 2011-08-31 2013-02-28 Siemens Aktiengesellschaft Verfahren zum Herstellen von Feuerfestkeramiken für Gasturbinenanlagen
TWI663126B (zh) 2014-07-09 2019-06-21 法商維蘇威法國公司 包含可磨塗層之輥、其製造方法及其用途
EP3760602A4 (en) * 2018-02-28 2021-11-17 Sumitomo Chemical Company Limited COMPOSITION OF PARTICLES
CN113999027B (zh) * 2021-11-12 2022-10-11 湖南立达高新材料有限公司 一种氧化锌回转窑用刚玉-莫来石浇注料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183674A (ja) * 1995-12-28 1997-07-15 Harima Ceramic Co Ltd 流し込み施工用不定形耐火物
KR20110104713A (ko) * 2010-03-17 2011-09-23 한국과학기술연구원 알루미나 졸 바인더가 첨가된 부정형 내화물
KR101095027B1 (ko) * 2010-03-16 2011-12-20 한국과학기술연구원 알루미나 결합제 부정형 내화물 및 이의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338283B2 (ko) * 1972-05-19 1978-10-14
JPS583998B2 (ja) * 1975-02-15 1983-01-24 ニホンルツボ カブシキガイシヤ フテイケイタイカザイ
JP2004168580A (ja) 2002-11-19 2004-06-17 Jfe Steel Kk 高炉樋用不定形耐火物
KR101303812B1 (ko) * 2012-03-30 2013-09-04 한국과학기술연구원 석탄슬래그 침식에 강한 알루미나 코팅 스핀넬/탄화규소 내화물 조성물 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183674A (ja) * 1995-12-28 1997-07-15 Harima Ceramic Co Ltd 流し込み施工用不定形耐火物
KR101095027B1 (ko) * 2010-03-16 2011-12-20 한국과학기술연구원 알루미나 결합제 부정형 내화물 및 이의 제조 방법
KR20110104713A (ko) * 2010-03-17 2011-09-23 한국과학기술연구원 알루미나 졸 바인더가 첨가된 부정형 내화물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, KI SOON ET AL.: "Studies on the Hydration of Barium Aluminate", JOURNAL OF THE KOREAN CERAMIC SOCIETY., vol. 9, no. 1, 1972, pages 73 - 76 *

Also Published As

Publication number Publication date
KR20130112979A (ko) 2013-10-15
KR101321944B1 (ko) 2013-11-04
US8815759B2 (en) 2014-08-26
US20130260982A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5290125B2 (ja) 不定形耐火物用結合剤及び不定形耐火物
WO2017101827A1 (zh) 镁铝尖晶石砖的制备方法和由该方法制备得到的镁铝尖晶石砖
JP5384025B2 (ja) 不定形耐火物用結合剤及び不定形耐火物
JP2019503958A (ja) 耐火性マグネシアセメント
CN109020520B (zh) 一种抗热震及抗高温蠕变的陶瓷辊棒及其制备方法
JP6499464B2 (ja) 断熱不定形耐火物
KR101321944B1 (ko) 무시멘트 고강도 부정형 내화물
CN111302769A (zh) 一种低铝镁质复合不烧砖及其制备方法
KR100979594B1 (ko) 경성 세라믹 몰딩 바디, 이의 제조방법 및 이의 사용방법
KR101152656B1 (ko) 알루미나 졸 바인더가 첨가된 부정형 내화물
JPH08198649A (ja) カルシウムアルミネート、セメント組成物、及びそれを含有してなる不定形耐火物
KR101262077B1 (ko) 저시멘트 내침식 부정형 내화물
KR101095027B1 (ko) 알루미나 결합제 부정형 내화물 및 이의 제조 방법
EP2272811B1 (en) Binder for monolithic refractory and monolithic refractory
JP2002234776A (ja) 溶鋼取鍋用不定形耐火組成物
KR100910530B1 (ko) 내침식성 및 부착성이 우수한 염기성 건닝 보수용내화조성물
KR20130021284A (ko) 석탄슬래그 침식에 강한 스피넬/탄화규소 내화물 조성물 및 이의 제조방법
JP2000191363A (ja) 耐スポ―リング性スピネル質れんが
KR960004393B1 (ko) 고강도 내화단열 캐스타블 조성물
JP4785824B2 (ja) スポーリング抵抗性と耐侵食性を備えた定形耐火煉瓦とその製造方法及び耐火壁
JP2021147275A (ja) マグネシア−スピネル質耐火れんが
JP3209842B2 (ja) 不定形耐火物
JPH06172044A (ja) アルミナ・スピネル質キャスタブル耐火物
JPH0558713A (ja) セメント及び石灰焼成キルン用ノンクロム質耐火物
Sharma A comparative study between Direct Spinel Addition and In-Situ Spinelisation in a Low Cement High Alumina based Refractory Castable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873044

Country of ref document: EP

Kind code of ref document: A1