WO2013147201A1 - 潤滑油用基油の製造方法 - Google Patents

潤滑油用基油の製造方法 Download PDF

Info

Publication number
WO2013147201A1
WO2013147201A1 PCT/JP2013/059626 JP2013059626W WO2013147201A1 WO 2013147201 A1 WO2013147201 A1 WO 2013147201A1 JP 2013059626 W JP2013059626 W JP 2013059626W WO 2013147201 A1 WO2013147201 A1 WO 2013147201A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydroisomerization
catalyst
zeolite
reaction
Prior art date
Application number
PCT/JP2013/059626
Other languages
English (en)
French (fr)
Inventor
和章 早坂
圭行 永易
真理絵 岩間
昂志 ▲高▼濱
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201380017198.8A priority Critical patent/CN104245895B/zh
Priority to KR1020147027702A priority patent/KR101577617B1/ko
Priority to JP2013514888A priority patent/JP5998127B2/ja
Publication of WO2013147201A1 publication Critical patent/WO2013147201A1/ja
Priority to ZA2014/06922A priority patent/ZA201406922B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/703MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7042TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7046MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Definitions

  • the present invention relates to a method for producing a base oil for lubricating oil.
  • lubricating oil, light oil, jet fuel, etc. are products in which fluidity at low temperatures is regarded as important. If the base oil used in these products contains a wax component such as normal paraffin or slightly branched isoparaffin, the low-temperature fluidity of the base oil will decrease. Therefore, in the production of base oils, it is desirable to completely or partially remove the wax component. Alternatively, it is desirable to completely or partially convert the wax component to something other than the wax component.
  • a dewaxing technique for removing a wax component from a hydrocarbon oil when producing a base oil for lubricating oil from a petroleum-derived hydrocarbon oil for example, the wax component is extracted with a solvent such as MEK (Methyl Ethyl Ketone) or liquefied propane.
  • MEK Metal Ethyl Ketone
  • a method of removing (solvent dewaxing) is known (see Patent Document 1 below).
  • the aromatic hydrocarbons contained in a large amount in petroleum-derived hydrocarbon oil can be extracted and removed with a solvent such as furfural, N-methyl-2-pyrrolidinone, tetrahydrofuran, etc.
  • a technique for improving the oxidative stability of the base oil for lubricating oil obtained in the above is known (see Patent Document 1 below).
  • the yield of the base oil for lubricating oil is lowered.
  • the extraction of the wax component reduces the lubricant base oil yield by about 10 to 40%
  • the extraction of the aromatic hydrocarbon decreases the yield by about 20 to 40%.
  • the operating cost of the extraction apparatus is high, and the product yield depends on the type of raw material oil.
  • catalytic dewaxing is useful.
  • hydrocarbon oil is brought into contact with a so-called bifunctional catalyst having hydrogenation-dehydrogenation ability and isomerization ability in the presence of hydrogen, and the wax component (normal paraffin) in the hydrocarbon oil is brought into contact. Isomerized to isoparaffin.
  • Contact dewaxing is also useful as a method for improving the low temperature fluidity of lubricating base oils. In order to obtain a fraction suitable for a base oil for lubricating oil by catalytic dewaxing, it is necessary to sufficiently increase the conversion rate of normal paraffin in the hydrocarbon oil.
  • the catalyst used in catalytic dewaxing has both isomerization ability and hydrocarbon resolution. Therefore, in the catalytic dewaxing of hydrocarbon oil, the lightening of the hydrocarbon oil progresses with the increase in the conversion rate of normal paraffin, and it is difficult to obtain a fraction having a desired viscosity index in a high yield. It is. In particular, when a high-quality base oil for lubricating oil that requires a high viscosity index and a low pour point is produced by catalytic dewaxing, it is very difficult to obtain the target fraction in a high yield.
  • a catalyst having both a cracking activity for hydrocarbons and a high isomerization reaction activity That is, a hydroisomerization catalyst having excellent isomerization selectivity is required.
  • the hydroisomerization catalyst contains an expensive noble metal such as platinum and / or palladium as an active component.
  • the metal that is the active point of the catalyst is poisoned by catalyst poisons such as sulfur, nitrogen, and aromatic hydrocarbons contained in petroleum-derived hydrocarbon oil. To do. Therefore, the catalytic activity is lost, and it becomes difficult to use the hydroisomerization catalyst for a long time. That is, in the dewaxing of petroleum hydrocarbon oil using a hydroisomerization catalyst, the life of the hydroisomerization catalyst tends to become extremely short. The short life of the catalyst is an economic problem because it increases the cost of the catalyst.
  • Examples of methods for removing catalyst poisons such as sulfur, nitrogen and aromatic hydrocarbons attached to noble metals contained in the hydroisomerization catalyst include the following.
  • hydrogen is introduced into the reactor and the catalyst poison and hydrogen adhering to the hydroisomerization catalyst in the reactor are introduced.
  • stopping the introduction of the feedstock into the industrial scale reactor directly leads to a decrease in the production amount of the lubricating base oil, which is a great opportunity loss.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for producing a base oil for lubricating oil that improves the life of a hydroisomerization catalyst.
  • One aspect of the method for producing a lubricating base oil according to the present invention includes a first hydroisomerization step in which a petroleum-derived hydrocarbon oil is brought into contact with a hydroisomerization catalyst, and a synthesis synthesized by a Fischer-Tropsch reaction.
  • a second hydroisomerization step in which the oil is brought into contact with the hydroisomerization catalyst used in the first hydroisomerization step, and a hydrogenation in which petroleum-derived hydrocarbon oil is used in the second hydroisomerization step.
  • a third hydroisomerization step for contacting with the isomerization catalyst.
  • the hydroisomerization catalyst contains zeolite, and the zeolite contains an organic template and has a one-dimensional pore structure including a 10-membered ring.
  • the zeolite is preferably at least one selected from the group consisting of ZSM-22 zeolite, ZSM-23 zeolite, SSZ-32 zeolite and ZSM-48 zeolite.
  • the second hydroisomerization step is preferably performed for 1 day or longer.
  • a method for producing a base oil for lubricating oil that improves the life of a hydroisomerization catalyst is provided.
  • FIG. 1a is a schematic diagram showing the reaction temperature of the hydroisomerization reaction at each point of the first step, the second step, and the third step in Example 1.
  • FIG. 1 b is a schematic diagram showing the reaction temperature of the hydroisomerization reaction at each point in the first step of Comparative Example 1.
  • a base oil for lubricating oil is produced by bringing each feedstock into contact with a hydroisomerization catalyst in the presence of hydrogen.
  • the manufacturing method of the base oil for lubricating oil according to the present embodiment includes a first hydroisomerization step, a second hydroisomerization step, and a third hydroisomerization step. In the first hydroisomerization step, petroleum-derived hydrocarbon oil is brought into contact with the hydroisomerization catalyst.
  • the synthetic oil synthesized by the Fischer-Tropsch reaction is brought into contact with the hydroisomerization catalyst used in the first hydroisomerization step.
  • petroleum-derived hydrocarbon oil is brought into contact with the hydroisomerization catalyst used in the second hydroisomerization step.
  • FT synthetic oil synthetic oil synthesized by the Fischer-Tropsch reaction
  • the wax component contained in the FT synthetic oil is referred to as “FT wax”.
  • the first hydroisomerization step, the second hydroisomerization step and the third hydroisomerization step are referred to as “first step”, “second step” and “third step”, respectively. Hydroisomerization is synonymous with isomerization dewaxing.
  • Petroleum-derived hydrocarbon oil contains a larger amount of sulfur (hydrogen sulfide, sulfur compounds, etc.), nitrogen (ammonia, nitrogen compounds, etc.), and aromatic hydrocarbons (coke, etc.) than FT synthetic oil. These components are the catalyst poisons of the hydroisomerization catalyst. Therefore, as hydroisomerization of petroleum-derived hydrocarbon oil proceeds in the first step, the hydroisomerization catalyst is poisoned, its activity is reduced, and the life of the hydroisomerization catalyst is shortened. Even if hydrorefining of petroleum-derived hydrocarbon oil is performed before the first step, it is difficult to sufficiently suppress the shortening of the life of such a hydroisomerization catalyst.
  • the second step is performed after the first step.
  • the hydroisomerization of the FT synthetic oil is performed by bringing the FT synthetic oil into contact with the hydroisomerization catalyst used in the first step.
  • the content of the catalyst poison in the FT synthetic oil is significantly lower than that of petroleum-derived hydrocarbon oil.
  • the hydroisomerization catalyst is placed in an FT synthetic oil that contains little catalyst poison.
  • the hydroreduction of the active point (noble metal etc.) of a hydroisomerization catalyst occurs, or the catalyst poison adhering to a hydroisomerization catalyst is washed away by FT synthetic oil. As a result, the activity of the hydroisomerization catalyst is restored.
  • a hydroisomerization catalyst whose activity has been recovered in the second step is used. Therefore, in the 3rd process, the life of the hydroisomerization catalyst in the 3rd process improves compared with the case where the 1st process and the 3rd process are carried out continuously without implementing the 2nd process. Therefore, in the 3rd process, compared with the case where the 1st process and the 3rd process are carried out continuously without carrying out the 2nd process, the yield of isoparaffin obtained by hydroisomerization of petroleum origin hydrocarbon oil (Conversion rate of normal paraffin) is improved.
  • hydrogen poisoned in the first step is performed by performing the second step between the first step and the third step of hydroisomerizing petroleum-derived hydrocarbon oil.
  • the activity of the hydroisomerization catalyst is restored. That is, in this embodiment, the hydroisomerization process of petroleum-derived hydrocarbon oil and the hydroisomerization process of FT synthetic oil are alternately performed in this order using the same hydroisomerization catalyst.
  • the hydroisomerization step of the FT synthetic oil is performed between the hydroisomerization step of the petroleum-derived hydrocarbon oil and the hydroisomerization step of the petroleum-derived hydrocarbon oil performed thereafter.
  • the lifetime of a hydroisomerization catalyst improves compared with the case where only the hydroisomerization process of petroleum origin hydrocarbon oil is implemented continuously. Further, in this embodiment, the activity of the hydroisomerization catalyst in the reactor is recovered while the reactor is continuously operated without stopping the introduction of the raw material oil to the reactor for hydroisomerization. It is possible to improve the life of the catalyst. That is, in this embodiment, the catalyst can be purified with On Stream. Therefore, in the present embodiment, it is less necessary to stop the operation of the reactor for purifying or replacing the catalyst, or to stop the introduction of the raw material oil and introduce only hydrogen into the reactor.
  • the hydroisomerization process in the present embodiment is not limited to the first process, the second process, and the third process.
  • the hydroisomerization process of petroleum-derived hydrocarbon oil may be performed a plurality of times (for example, three times or more). That is, you may implement the 4th hydroisomerization process which makes FT synthetic oil contact the hydroisomerization catalyst used at the 3rd process.
  • the hydroisomerization process of petroleum-derived hydrocarbon oil and the hydroisomerization process of FT synthetic oil may be alternately repeated for about one month.
  • the implementation time of the hydroisomerization step (first step and third step) of petroleum-derived hydrocarbon oil is not particularly limited.
  • the start time and the implementation time of the hydroisomerization step (second step) of the FT synthetic oil are not particularly limited.
  • the start time and execution time of the second step are the execution time of the first step performed before that, the degree of catalyst poisoning in the first step, and the catalyst poison (sulfur in the petroleum-derived hydrocarbon oil used in the first step). And the like, and the presence or absence of pretreatment (hydrotreating or hydrorefining) for petroleum-derived hydrocarbon oils.
  • the higher the catalyst poison content in the petroleum-derived hydrocarbon oil used in the first step the higher the poisoning rate of the catalyst in the first step (the increase rate of the reaction temperature).
  • the duration of the hydroisomerization process for petroleum-derived hydrocarbon oil is about 10 to 30 days.
  • the implementation time of the hydroisomerization step of the FT synthetic oil is about 1 to 10 days. The effect of this invention becomes remarkable by making implementation time of a 2nd process 1 day or more.
  • the petroleum-derived hydrocarbon oil preferably contains any one fraction of vacuum gas oil (VGO), vacuum residue solvent dewaxed oil, and vacuum gas oil hydrocracking bottom oil. These fractions may be reduced-pressure residual oil whose sulfur content and nitrogen content have been reduced by hydrorefining treatment, hydrorefined solvent degassed oil, hydrorefined reduced-pressure gas oil hydrocracking bottom oil.
  • the vacuum gas oil is a distillate obtained from a crude oil vacuum distillation apparatus, and is a hydrocarbon oil having a boiling point range of about 350 to 550 ° C.
  • the vacuum residue is a distillate obtained from a crude oil vacuum distillation apparatus, and is a hydrocarbon oil having a boiling point range of 550 ° C. or higher.
  • FT synthetic oil is a synthetic oil that does not contain sulfur and aromatic hydrocarbons in principle. Therefore, by using FT synthetic oil as a raw material, it is possible to produce a base oil for lubricating oil that has a low environmental impact.
  • sulfur content is a catalyst poison for hydrotreating catalysts and hydroisomerization catalysts
  • the use of FT synthetic oil that does not contain sulfur in principle prevents catalyst poisoning and improves catalyst life. It becomes easy to let.
  • FT synthetic oil contains oxygen-containing compounds such as olefin and alcohol, in this embodiment, it is preferable to use FT synthetic oil from which oxygen-containing compounds such as olefin and alcohol have been removed in advance by hydrorefining.
  • FT synthetic oil is produced, for example, by the following method.
  • the raw material natural gas is desulfurized. Specifically, sulfur compounds in natural gas are converted into hydrogen sulfide by a hydrodesulfurization catalyst or removed using an adsorbent of hydrogen sulfide.
  • the reforming reaction (reforming) of the desulfurized natural gas By the reforming reaction (reforming) of the desulfurized natural gas, high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas is generated.
  • the reforming reaction of natural gas is represented by the following chemical reaction formulas (1) and (2).
  • the reforming method is not limited to the steam / carbon dioxide reforming method using carbon dioxide and steam.
  • steam reforming method, partial oxidation reforming method using oxygen (POX), autothermal reforming method (ATR) which is a combination of partial oxidation reforming method and steam reforming method, carbon dioxide gas reforming method, etc. It can also be used.
  • the conversion rate of carbon monoxide is preferably 50% or more.
  • the reaction temperature of the FT reaction is preferably 150 to 300 ° C. from the viewpoint of increasing the conversion rate of carbon monoxide and the number of carbon atoms of the generated hydrocarbon.
  • the reaction pressure is preferably 0.5 to 5.0 MPa.
  • the hydrogen / carbon monoxide ratio (molar ratio) in the raw material gas is preferably 0.5 to 4.0.
  • the catalyst for FT reaction a catalyst in which an active metal is supported on an inorganic carrier is used.
  • the inorganic carrier include porous oxides such as silica, alumina, titania, magnesia, zirconia.
  • the active metal include cobalt, ruthenium, iron, nickel, platinum, and palladium.
  • the FT catalyst may carry a compound containing a metal element such as zirconium, titanium, hafnium, sodium, lithium, or magnesium. These components improve the catalyst activity and contribute to the control of the number of carbons and the distribution of the FT synthetic oil.
  • the average particle size of the FT catalyst is preferably 40 to 150 ⁇ m.
  • the FT catalyst is preferably spherical.
  • the FT catalyst may have a predetermined shape formed by extrusion molding.
  • the FT synthetic oil synthesized by the above method is a mixture of linear hydrocarbons (normal paraffins) having about 1 to 100 carbon atoms, and hardly contains aromatic hydrocarbons, naphthene hydrocarbons and isoparaffins.
  • the FT synthetic oil includes FT wax having a carbon number of about 21 or more and a boiling point exceeding about 360 ° C.
  • the content of FT wax in the FT synthetic oil is preferably 80% by mass or more. The content of FT wax can be easily controlled by appropriately adjusting the above reaction conditions.
  • hydrorefining treatment In the present embodiment, it is preferable to perform hydrorefining treatment on petroleum-derived hydrocarbon oil before performing the first step or the third step.
  • the petroleum-derived hydrocarbon oil may be brought into contact with the hydrorefining treatment catalyst in the presence of hydrogen.
  • reactions such as desulfurization and denitrogenation proceed, and the catalyst poison in the petroleum-derived hydrocarbon oil is removed. Therefore, it becomes easy to improve the life of the hydroisomerization catalyst by carrying out the hydrorefining treatment.
  • the lifetime of the hydroisomerization catalyst can be improved by performing the second step. Therefore, hydrorefining treatment is not essential in this embodiment.
  • hydrogenation of petroleum-derived hydrocarbon oils, hydrocracking and hydroisomerization of wax components in petroleum-derived hydrocarbon oils. May proceed.
  • the method for producing a hydrotreating catalyst comprises a supporting step and a firing step.
  • the supporting step an active metal component containing an active metal element is supported on a support to obtain a catalyst precursor.
  • the calcining step the precursor obtained in the supporting step is calcined to obtain a hydrogenation catalyst.
  • the carrier a carrier having a carbonaceous substance-containing carbon atom content of 0.5% by mass or less in terms of carbon atoms may be used.
  • the active metal element at least one selected from metals of Groups 6, 8, 9, and 10 of the periodic table may be used.
  • the periodic table means a periodic table of long-period elements defined by the International Pure Applied Science Association (IUPAC).
  • hydrotreating catalyst examples include a carrier made of a porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium.
  • a catalyst carrying a metal selected from the elements of Group III, Group 9 and Group 10 is preferably used.
  • a porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is preferably used.
  • it is a porous inorganic oxide containing alumina, and other carrier constituents include silica, zirconia, boria, titania, magnesia and the like.
  • it is a complex oxide containing at least one selected from alumina and other constituents, and examples thereof include silica-alumina.
  • phosphorus may be included as another component.
  • the total content of components other than alumina is preferably 1 to 20% by weight, more preferably 2 to 15% by weight.
  • the total content of components other than alumina is less than 1% by weight, a sufficient catalyst surface area cannot be obtained and the activity may be lowered.
  • the content exceeds 20% by weight the acid content of the carrier Properties may increase, leading to a decrease in activity due to coke formation.
  • phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.
  • the raw material to be a precursor of silica, zirconia, boria, titania, magnesia, which is a carrier constituent other than alumina, is not particularly limited, and a solution containing general silicon, zirconium, boron, titanium, or magnesium can be used.
  • a solution containing general silicon, zirconium, boron, titanium, or magnesium can be used.
  • magnesium magnesium nitrate or the like can be used.
  • phosphorus phosphoric acid or an alkali metal salt of phosphoric acid can be used.
  • the raw materials for the carrier constituents other than alumina be added in any step prior to the firing of the carrier.
  • it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing these components, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder.
  • a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable.
  • the active metal of the hydrotreating catalyst preferably contains at least one metal selected from Groups 6 and 8 to 10 of the periodic table, more preferably from Groups 6 and 8 to 10. Contains two or more selected metals.
  • a hydrotreating catalyst containing at least one type of metal selected from Group 6 and at least one type of metal selected from Groups 8 to 10 as active metals is also suitable. Examples of the combination of active metals include Co—Mo, Ni—Mo, Ni—Co—Mo, Ni—W, and the like. In hydrorefining treatment, these metals are converted into a sulfide state. use.
  • the content of the active metal is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide. If the total supported amount of W and Mo is less than 12% by weight, the activity may decrease due to a decrease in the number of active points. If it exceeds 35% by weight, the metal is not effectively dispersed and is similarly active. May lead to a decrease in The total supported amount of Co and Ni is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of Co and Ni is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced. If it is more than 10% by weight, the metal is effective. In the same manner, there is a possibility that the activity is reduced.
  • the method for supporting the active metal on the support is not particularly limited, and a known method applied when producing an ordinary hydrodesulfurization catalyst or the like can be used.
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the reaction temperature of the hydrorefining treatment is about 150 to 480 ° C., preferably 200 to 400 ° C., more preferably 260 to 380 ° C.
  • the reaction temperature exceeds 480 ° C.
  • the decomposition of the wax component into light components proceeds and not only the yield of middle distillate and heavy components decreases, but also the product is colored, Use tends to be limited.
  • the reaction temperature is lower than 150 ° C., the hydrorefining reaction does not proceed sufficiently and the hydrodesulfurization and hydrodenitrogenation activities tend to be remarkably lowered, which is not practical.
  • the hydrogen partial pressure in the hydrorefining treatment is about 1 to 20 MPa, preferably 3 to 15 MPa.
  • the hydrogen partial pressure is less than 1 MPa, the hydrodesulfurization activity tends to decrease, which is not preferable.
  • the hydrogen partial pressure exceeds 20 MPa the equipment construction cost tends to increase.
  • the liquid space velocity (LHSV) of the petroleum-derived hydrocarbon oil in the hydrorefining treatment is about 0.1 to 4 h ⁇ 1 , preferably 0.25 to 1 h ⁇ 1 .
  • LHSV liquid space velocity
  • LHSV exceeds 4 h ⁇ 1 the reaction temperature is high and catalyst deterioration is accelerated. .
  • Hydrogen / oil ratio is about 100 ⁇ 2000Nm 3 / m 3, preferably 200 ⁇ 1000Nm 3 / m 3.
  • the hydrogen / oil ratio is less than 100 Nm 3 / m 3 , the hydrodesulfurization activity tends to be remarkably reduced, which is not preferable.
  • the hydrogen / oil ratio exceeds 2000 Nm 3 / m 3 , there is no significant change in hydrodesulfurization activity, and only the operating cost increases, which is not preferable.
  • the concentration of the sulfur compound in the petroleum-derived hydrocarbon oil after the hydrorefining treatment is preferably 100 ppm by mass or less. Moreover, it is preferable that the density
  • the concentration of the sulfur compound referred to here is a value measured based on JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
  • the concentration of the nitrogen compound is a value measured based on JIS K2609 “Crude oil and petroleum products—nitrogen content test method”.
  • the pressure in the reactor in which the hydrorefining treatment has been performed is adjusted to be equal to or lower than the pressure during the hydrorefining treatment, and more preferably than the pressure during the hydrorefining treatment It is preferable to remove gaseous substances (hydrogen sulfide, ammonia, steam, etc.) from petroleum-derived hydrocarbon oil in the reactor in a state where the pressure is reduced by 1 MPa or more. It is preferable to perform the first step, the second step, and the third step after removing the gaseous substance.
  • gaseous substances hydrogen sulfide, ammonia, steam, etc.
  • the hydroisomerization catalyst used in the first step, the second step, and the third step is given its characteristics by being manufactured by a specific method.
  • the hydroisomerization catalyst will be described in accordance with its preferred production mode. According to this embodiment, the lifetime of the hydroisomerization catalyst described below can be significantly improved.
  • an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional pore structure is ion-exchanged in a solution containing ammonium ions and / or protons.
  • a first step of obtaining a support precursor by heating a mixture containing an ion-exchanged zeolite and a binder obtained at a temperature of 250 to 350 ° C.
  • a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite by calcining a catalyst precursor containing a palladium salt at a temperature of 350 to 400 ° C. in an atmosphere containing molecular oxygen. And a second step.
  • the organic template-containing zeolite used in the present embodiment is a one-dimensional fine particle consisting of a 10-membered ring from the viewpoint of achieving both high isomerization activity and suppressed decomposition activity in normal paraffin hydroisomerization reaction at a high level.
  • Examples of such zeolite include AEL, EUO, FER, HEU, MEL, MFI, NES, TON, MTT, WEI, * MRE, and SSZ-32.
  • the above three letters of the alphabet mean the skeletal structure code given by the Structure Committee of The International Zeolite Association for each classified structure of molecular sieve type zeolite. To do.
  • zeolites having the same topology are collectively referred to by the same code.
  • organic template-containing zeolite among zeolites having a one-dimensional pore structure containing a 10-membered ring, zeolites having a TON or MTT structure in terms of high isomerization activity and low decomposition activity, * MRE structure ZSM-48 zeolite and SSZ-32 zeolite, which are zeolites having the following, are preferred.
  • ZSM-22 zeolite is more preferred as the zeolite having the TON structure
  • ZSM-23 zeolite is more preferred as the zeolite having the MTT structure.
  • the organic template-containing zeolite is hydrothermally synthesized by a known method from a silica source, an alumina source, and an organic template added to construct the predetermined pore structure.
  • the organic template is an organic compound having an amino group, an ammonium group or the like, and is selected according to the structure of the zeolite to be synthesized, but is preferably an amine derivative. Specifically, at least one selected from the group consisting of alkylamine, alkyldiamine, alkyltriamine, alkyltetramine, pyrrolidine, piperazine, aminopiperazine, alkylpentamine, alkylhexamine and derivatives thereof is more preferable.
  • the alkyl group may have 4 to 10 carbon atoms, and preferably 6 to 8 carbon atoms.
  • Representative alkyl diamines include 1,6-hexanediamine, 1,8-diaminooctane, and the like.
  • the molar ratio ([Si] / [Al]) between silicon and aluminum constituting the organic template-containing zeolite having a 10-membered ring one-dimensional pore structure (hereinafter referred to as “Si / Al ratio”) is 10. Is preferably from 400 to 400, more preferably from 20 to 350.
  • Si / Al ratio is less than 10
  • the activity for the conversion of normal paraffin increases, but the isomerization selectivity to isoparaffin tends to decrease, and the increase in decomposition reaction accompanying the increase in reaction temperature tends to become rapid. Therefore, it is not preferable.
  • the Si / Al ratio exceeds 400, it is difficult to obtain the catalyst activity necessary for the conversion of normal paraffin, which is not preferable.
  • the organic template-containing zeolite synthesized preferably washed and dried usually has an alkali metal cation as a counter cation, and the organic template is included in the pore structure.
  • the zeolite containing an organic template used in producing the hydroisomerization catalyst according to the present invention is in such a synthesized state, that is, calcination for removing the organic template included in the zeolite. It is preferable that the treatment is not performed.
  • the organic template-containing zeolite is then ion-exchanged in a solution containing ammonium ions and / or protons.
  • the counter cation contained in the organic template-containing zeolite is exchanged with ammonium ions and / or protons.
  • a part of the organic template included in the organic template-containing zeolite is removed.
  • the solution used for the ion exchange treatment is preferably a solution using a solvent containing at least 50% by volume of water, and more preferably an aqueous solution.
  • the compound that supplies ammonium ions into the solution include various inorganic and organic ammonium salts such as ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium phosphate, and ammonium acetate.
  • mineral acids such as hydrochloric acid, sulfuric acid and nitric acid are usually used as the compound for supplying protons into the solution.
  • An ion-exchanged zeolite obtained by ion-exchange of an organic template-containing zeolite in the presence of ammonium ions releases ammonia during subsequent calcination, and the counter cation serves as a proton as a brane. Stead acid point.
  • ammonium ions are preferred.
  • the content of ammonium ions and / or protons contained in the solution is preferably set to be 10 to 1000 equivalents with respect to the total amount of counter cations and organic templates contained in the organic template-containing zeolite used. .
  • the ion exchange treatment may be performed on a powdery organic template-containing zeolite carrier.
  • the organic template-containing zeolite Prior to the ion exchange treatment, the organic template-containing zeolite is blended with an inorganic oxide as a binder, molded, and obtained. You may perform with respect to the molded object obtained. However, if the molded body is subjected to an ion exchange treatment without firing, the molded body is likely to collapse and pulverize, so the powdered organic template-containing zeolite can be subjected to an ion exchange treatment. preferable.
  • the ion exchange treatment is preferably performed by an ordinary method, that is, a method of immersing zeolite containing an organic template in a solution containing ammonium ions and / or protons, preferably an aqueous solution, and stirring or flowing the zeolite. Moreover, it is preferable to perform said stirring or a flow under a heating in order to improve the efficiency of ion exchange.
  • a method of heating the aqueous solution and performing ion exchange under boiling and reflux is particularly preferable.
  • the solution it is preferable to exchange the solution once or twice or more during the ion exchange of the zeolite with the solution, and exchange the solution once or twice. It is more preferable.
  • the organic template-containing zeolite is immersed in a solution containing ammonium ions and / or protons and heated to reflux for 1 to 6 hours. By heating and refluxing for ⁇ 12 hours, the ion exchange efficiency can be increased.
  • a support precursor is obtained by heating a mixture containing ion-exchanged zeolite and a binder at a temperature of 250 to 350 ° C. in a nitrogen atmosphere.
  • the mixture containing the ion exchange zeolite and the binder is preferably a mixture of the ion exchange zeolite obtained by the above method and an inorganic oxide as a binder and molding the resulting composition.
  • the purpose of blending the inorganic oxide with the ion-exchanged zeolite is to improve the mechanical strength of the carrier (particularly, the particulate carrier) obtained by firing the molded body to such an extent that it can be practically used.
  • the inventor has found that the choice of the inorganic oxide species affects the isomerization selectivity of the hydroisomerization catalyst.
  • the inorganic oxide is at least one selected from a composite oxide composed of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and combinations of two or more thereof.
  • Inorganic oxides are used.
  • silica and alumina are preferable and alumina is more preferable from the viewpoint of further improving the isomerization selectivity of the hydroisomerization catalyst.
  • the “composite oxide composed of a combination of two or more of these” is composed of at least two components of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, and phosphorus oxide.
  • the composite oxide is preferably a composite oxide mainly composed of alumina containing 50% by mass or more of an alumina component based on the composite oxide, and more preferably alumina-silica.
  • the mixing ratio of the ion exchange zeolite and the inorganic oxide in the above composition is preferably 10:90 to 90:10, more preferably 30:70 to 85 as a ratio of the mass of the ion exchange zeolite to the mass of the inorganic oxide. : 15.
  • this ratio is smaller than 10:90, it is not preferable because the activity of the hydroisomerization catalyst tends to be insufficient.
  • the ratio exceeds 90:10, the mechanical strength of the carrier obtained by molding and baking the composition tends to be insufficient, which is not preferable.
  • the method of blending the above-mentioned inorganic oxide with the ion-exchanged zeolite is not particularly limited. The method performed can be adopted.
  • the composition containing the ion-exchanged zeolite and the inorganic oxide or the viscous fluid containing the composition is molded by a method such as extrusion molding, and preferably dried to form a particulate molded body.
  • the shape of the molded body is not particularly limited, and examples thereof include a cylindrical shape, a pellet shape, a spherical shape, and a modified cylindrical shape having a trefoil / four-leaf cross section.
  • the size of the molded body is not particularly limited, but from the viewpoint of ease of handling, packing density in the reactor, etc., for example, the major axis is preferably about 1 to 30 mm and the minor axis is about 1 to 20 mm.
  • the molded body obtained as described above is preferably heated to a temperature of 250 to 350 ° C. in a N 2 atmosphere to form a carrier precursor.
  • the heating time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • the heating temperature when the heating temperature is lower than 250 ° C., a large amount of the organic template remains, and the zeolite pores are blocked by the remaining template. It is considered that the isomerization active site is present near the pore pore mouse. In the above case, the reaction substrate cannot diffuse into the pore due to the clogging of the pore, and the active site is covered and the isomerization reaction does not proceed easily. The conversion rate of normal paraffin tends to be insufficient. On the other hand, when the heating temperature exceeds 350 ° C., the isomerization selectivity of the resulting hydroisomerization catalyst is not sufficiently improved.
  • the lower limit temperature when the molded body is heated to form a carrier precursor is preferably 280 ° C or higher.
  • the upper limit temperature is preferably 330 ° C. or lower.
  • the amount of carbon in the hydroisomerization catalyst obtained through calcination after metal loading described later is 0.4 to 3.5% by mass, preferably 0.4 to 3.0% by mass, more preferably Is 0.4 to 2.5% by mass
  • the micropore volume per unit mass of the catalyst is 0.02 to 0.12 cc / g
  • the micropore per unit mass of zeolite contained in the catalyst is It is preferable to set the heating conditions so that the pore volume is 0.01 to 0.12 cc / g.
  • a catalyst precursor in which a platinum salt and / or palladium salt is contained in the carrier precursor is heated to 350 to 400 ° C., preferably 380 to 400 ° C., more preferably 400 ° C. in an atmosphere containing molecular oxygen.
  • a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite is obtained.
  • under an atmosphere containing molecular oxygen means that the gas is in contact with a gas containing oxygen gas, preferably air.
  • the firing time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • platinum salts include chloroplatinic acid, tetraamminedinitroplatinum, dinitroaminoplatinum, and tetraamminedichloroplatinum. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminedinitroplatinum, which is a platinum salt in which platinum is highly dispersed other than the chloride salt, is preferable.
  • the palladium salt examples include palladium chloride, tetraamminepalladium nitrate, and diaminopalladium nitrate. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminepalladium nitrate, which is a palladium salt in which palladium is highly dispersed other than the chloride salt, is preferable.
  • the amount of active metal supported on the support containing zeolite according to the present embodiment is preferably 0.001 to 20% by mass, and more preferably 0.01 to 5% by mass based on the mass of the support.
  • the supported amount is less than 0.001% by mass, it is difficult to provide a predetermined hydrogenation / dehydrogenation function.
  • the supported amount exceeds 20% by mass, lightening by decomposition of hydrocarbons on the active metal tends to proceed, and the yield of the target fraction tends to decrease, This is not preferable because the catalyst cost tends to increase.
  • the hydroisomerization catalyst according to the present embodiment is used for hydroisomerization of a hydrocarbon oil containing a large amount of sulfur-containing compounds and / or nitrogen-containing compounds, from the viewpoint of sustainability of the catalyst activity, as an active metal It is preferable to include a combination of nickel-cobalt, nickel-molybdenum, cobalt-molybdenum, nickel-molybdenum-cobalt, nickel-tungsten-cobalt, and the like.
  • the amount of these metals supported is preferably 0.001 to 50 mass%, more preferably 0.01 to 30 mass%, based on the mass of the carrier.
  • the catalyst precursor is preferably calcined so that the organic template left on the carrier precursor remains.
  • the amount of carbon in the resulting hydroisomerization catalyst is 0.4 to 3.5% by mass, preferably 0.4 to 3.0% by mass, more preferably 0.4 to 2.5% by mass. %
  • the micropore volume per unit mass of the catalyst is 0.02 to 0.12 cc / g
  • the micropore volume per unit mass of zeolite contained in the catalyst is 0.01 to 0 It is preferable to set the heating conditions to be .12 cc / g.
  • the amount of carbon in the hydroisomerization catalyst is measured by combustion in an oxygen stream-infrared absorption method.
  • carbon dioxide gas is generated by combustion of the catalyst in an oxygen stream, and the amount of carbon is quantified based on the amount of infrared absorption of the carbon dioxide gas.
  • a carbon / sulfur analyzer for example, EMIA-920V manufactured by Horiba, Ltd.
  • EMIA-920V manufactured by Horiba, Ltd.
  • the micropore volume per unit mass of the hydroisomerization catalyst is calculated by a method called nitrogen adsorption measurement. That is, for the catalyst, the physical adsorption / desorption isotherm of nitrogen measured at the liquid nitrogen temperature ( ⁇ 196 ° C.) is analyzed. Specifically, the adsorption isotherm of nitrogen measured at the liquid nitrogen temperature ( ⁇ 196 ° C.) The micropore volume per unit mass of the catalyst is calculated by analyzing by the ⁇ plot method. The micropore volume per unit mass of zeolite contained in the catalyst is also calculated by the above nitrogen adsorption measurement.
  • Micropore volume V Z per unit mass of zeolite contained in the catalyst for example, if the binder does not have a micropore volume, the value of the micropore volume per unit mass of the hydroisomerization catalyst It can be calculated according to the following formula from V c and the content ratio M z (mass%) of the zeolite in the catalyst.
  • V Z V c / M z ⁇ 100
  • the hydroisomerization catalyst according to the present invention is preferably a catalyst that has been subjected to a reduction treatment after being charged in a reactor that preferably performs a hydroisomerization reaction following the above-described calcination treatment.
  • reduction treatment is performed for about 0.5 to 5 hours in an atmosphere containing molecular hydrogen, preferably in a hydrogen gas flow, preferably at 250 to 500 ° C., more preferably at 300 to 400 ° C. It is preferable that By such a process, the high activity with respect to dewaxing of hydrocarbon oil can be more reliably imparted to the catalyst.
  • hydroisomerization catalyst comprises: a support having a zeolite having a 10-membered ring one-dimensional pore structure and a binder; and platinum and / or palladium supported on the support. And a hydroisomerization catalyst having a micropore volume per unit mass of the catalyst of 0.02 to 0.12 cc / g, wherein the zeolite contains an organic template and contains a 10-membered ring one-dimensional fine particle.
  • the organic template-containing zeolite having a pore structure is derived from an ion-exchanged zeolite obtained by ion exchange in a solution containing ammonium ions and / or protons.
  • the pore volume is 0.01 to 0.12 cc / g.
  • Said hydroisomerization catalyst can be manufactured by the method mentioned above.
  • the micropore volume per unit mass of the catalyst and the micropore volume per unit mass of the zeolite contained in the catalyst are the blending amount of the ion exchange zeolite in the mixture containing the ion exchange zeolite and the binder, and the N of the mixture.
  • the heating conditions under the two atmospheres and the heating conditions under the atmosphere containing the molecular oxygen of the catalyst precursor can be appropriately adjusted to be within the above range.
  • Raw material oil (petroleum-derived hydrocarbon oil and FT synthetic oil) contains normal paraffin having 10 or more carbon atoms.
  • a part or all of petroleum origin hydrocarbon oil containing normal paraffin is converted into isoparaffin by contact with petroleum origin hydrocarbon oil and a hydroisomerization catalyst.
  • a part or all of the FT synthetic oil containing normal paraffin is converted into isoparaffin by contacting the FT synthetic oil with the hydroisomerization catalyst.
  • the isomerization of hydrocarbon oil refers to a reaction in which only the molecular structure of the hydrocarbon oil is changed without changing the carbon number (molecular weight).
  • Decomposition of hydrocarbon oil refers to a reaction accompanied by a decrease in the carbon number (molecular weight) of hydrocarbon oil.
  • the carbon number (molecular weight) of the product of the decomposition reaction falls within a predetermined range that allows the target base oil to be constituted. That is, the decomposition product may be a constituent component of the base oil.
  • reaction conditions for each hydroisomerization step are as follows.
  • each hydroisomerization step it is preferable to perform hydroisomerization of the fraction of the raw material oil whose boiling point at atmospheric pressure exceeds 360 ° C.
  • the temperature of the hydroisomerization reaction is preferably 200 to 450 ° C., more preferably 220 to 400 ° C.
  • the reaction temperature is lower than 200 ° C.
  • the isomerization of normal paraffin contained in the raw material oil is difficult to proceed, and the wax component tends to be insufficiently reduced and removed.
  • the reaction temperature exceeds 450 ° C., the decomposition of the raw material oil becomes remarkable, and the yield of the target hydrocarbon tends to decrease.
  • the pressure in the reaction field (inside the reaction apparatus) of the hydroisomerization reaction is preferably 0.1 to 20 MPa, and more preferably 0.5 to 15 MPa.
  • the reaction pressure is less than 0.1 MPa, the deterioration of the catalyst due to coke generation tends to be accelerated.
  • the reaction pressure exceeds 20 MPa, pressure resistance is required for the reaction apparatus, so that the cost for constructing the apparatus becomes high and it is difficult to realize an economical process.
  • Liquid hourly space velocity of the feedstock in the hydroisomerization reaction is preferably 0.1 ⁇ 10h -1, more preferably 0.5 ⁇ 5h -1.
  • the liquid hourly space velocity is less than 0.1 h ⁇ 1 , the decomposition of the raw material oil tends to proceed excessively, and the production efficiency (yield) of the target base oil for lubricating oil tends to decrease.
  • the liquid space velocity exceeds 10 h ⁇ 1 , the isomerization of normal paraffin contained in the raw material oil becomes difficult to proceed, and the wax component tends to be insufficiently reduced and removed.
  • the supply ratio of hydrogen to the feedstock (hydrogen / feedstock ratio) in the hydroisomerization reaction is preferably 50 to 2000 Nm 3 / m 3 , and more preferably 100 to 1500 Nm 3 / m 3 . It is particularly preferably 200 to 800 Nm 3 / m 3 .
  • hydrogen sulfide, ammonia gas, and water generated by hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation, which are combined with the isomerization reaction are active metals on the catalyst. Adsorb to and poison.
  • the conversion rate of normal paraffin by hydroisomerization reaction is freely controlled by adjusting reaction conditions such as reaction temperature according to the use of the obtained hydrocarbon.
  • normal paraffin isomerization that is, dewaxing
  • the base oil for lubricating oil whose fraction whose boiling point of atmospheric pressure conversion exceeds 360 degreeC is 90 volume% or more can be obtained with a high yield.
  • feedstock containing normal paraffin having 10 or more carbon atoms is hydroisomerized in the presence of hydrogen under conditions where the conversion of normal paraffin is substantially 100% by mass. It is preferable to contact the catalyst.
  • “the conversion is substantially 100% by mass” means that the content of normal paraffin contained in the raw material oil (product oil) after contacting the catalyst is 0.1% by mass or less. Means.
  • R is the conversion rate of normal paraffin (unit: mass%).
  • M1 is the total mass of normal paraffin having a carbon number of Cn or more, which is contained in the raw material oil (product oil) after coming into contact with the hydroisomerization catalyst.
  • M2 is the total mass of normal paraffin having a carbon number of Cn or more, which is contained in the raw oil before contacting the hydroisomerization catalyst.
  • Cn is the minimum number of carbon atoms in the normal paraffin having 10 or more carbon atoms contained in the raw material oil before contact with the hydroisomerization catalyst.
  • Group III viscosity index of 120 or more, saturated content of 90% by mass or more, and sulfur content of 0.03% by mass or less according to classification of lubricating oil grades of the American Petroleum Institute (API).
  • Group III + viscosity index of 140 or more, saturated content of 90% by mass or more, and sulfur content of 0.03% by mass or less
  • the conversion rate of normal paraffin needs to be substantially 100%.
  • a base oil having a high content of isomers having a branched chain structure can be obtained.
  • a high-quality base oil for lubricating oil is required to have a normal paraffin content of 0.1% by mass or less.
  • the base oil for lubricating oil satisfying this required level is required. Oil can be obtained in high yield.
  • the reaction equipment for carrying out the hydrorefining treatment and the reaction equipment for carrying out the first step, the second step and the third step are not particularly limited.
  • a well-known thing can be used as each equipment.
  • Each facility may be a continuous flow type, a batch type, or a semi-batch type, but is preferably a continuous flow type from the viewpoint of productivity and efficiency.
  • the catalyst layer of each facility may be any of a fixed bed, a fluidized bed, and a stirring bed, but is preferably a fixed bed from the viewpoint of facility costs.
  • the reaction phase is preferably a gas-liquid mixed phase.
  • This embodiment may include a step of performing hydrofinishing on the product oil obtained by each hydroisomerization step.
  • hydrofinishing the product oil is contacted with a metal-supported hydrogenation catalyst in the presence of hydrogen.
  • the hydrogenation catalyst include alumina on which platinum and / or palladium is supported.
  • Hydrofinishing may be performed in a reaction facility separate from the dewaxing step.
  • the base oil may be purified by performing vacuum distillation on the product oil obtained by the hydrofinishing.
  • the product oil obtained by hydrofinishing may be separated into a fraction having a boiling point of 360 ° C. or lower under atmospheric pressure and a fraction having a boiling point of higher than 360 ° C. under atmospheric pressure.
  • you may distill under reduced pressure with respect to the fraction whose boiling point under atmospheric pressure exceeds 360 degreeC.
  • the viscosity index exceeds 100
  • the saturated hydrocarbon content is 90% by mass or more
  • the sulfur compound content is 10 mass ppm or less
  • the nitrogen compound content is It is possible to produce a base oil for lubricating oil that is 5 ppm by mass or less in a high yield.
  • ZSM-22 zeolite containing organic template A ZSM-22 zeolite containing an organic template and having a Si / Al molar ratio of 45 and consisting of crystalline aluminosilicate was synthesized by the following procedure.
  • ZSM-22 zeolite is referred to as “ZSM-22”.
  • Solution A 1.94 g of potassium hydroxide dissolved in 6.75 mL of ion exchange water.
  • Solution B 1.33 g of aluminum sulfate 18 hydrate dissolved in 5 mL of ion exchange water.
  • Solution C 4.18 g of 1,6-hexanediamine (organic template) diluted with 32.5 mL of ion exchange water.
  • Solution D A solution obtained by diluting 18 g of colloidal silica with 31 mL of ion-exchanged water. As colloidal silica, Ludox AS-40 manufactured by Grace Davison was used.
  • solution A was added to solution B and stirred until the aluminum component was completely dissolved.
  • solution C was added to this mixed solution.
  • the mixture of the solutions A, B and C was poured into the solution D with vigorous stirring at room temperature.
  • 0.25 g of ZSM-22 powder synthesized separately and not subjected to any special treatment after the synthesis was added as a “seed crystal” to promote crystallization, thereby obtaining a gel-like product.
  • the gel-like substance obtained by the above operation was transferred to a stainless steel autoclave reactor having an internal volume of 120 mL, and the autoclave reactor was rotated on a tumbling device in a heated oven to perform a hydrothermal synthesis reaction.
  • the temperature in the oven was 150 ° C.
  • the hydrothermal synthesis reaction was performed for 60 hours.
  • the rotation speed of the autoclave reactor was about 60 rpm.
  • the reactor was cooled and opened, and dried overnight in a dryer at 60 ° C. to obtain ZSM-22 having a Si / Al ratio of 45.
  • ZSM-22 was placed in a flask, 100 mL of 0.5N ammonium chloride aqueous solution per 1 g of ZSM-22 zeolite was added, and the mixture was heated to reflux for 6 hours. After cooling this to room temperature, the supernatant was removed and the crystalline aluminosilicate was washed with ion-exchanged water. To this, the same amount of 0.5N ammonium chloride aqueous solution as above was added again and refluxed with heating for 12 hours.
  • the obtained viscous fluid was filled into an extrusion molding machine and molded to obtain a cylindrical molded body having a diameter of about 1.6 mm and a length of about 10 mm. This molded body was heated at 300 ° C. for 3 hours under an N 2 atmosphere to obtain a carrier precursor.
  • Hydroisomerization catalyst E-1 was obtained.
  • the amount of carbon was measured by combustion in an oxygen stream-infrared absorption method.
  • EMIA-920V manufactured by Horiba Seisakusho was used.
  • the micropore volume per unit mass of the resulting hydroisomerization catalyst E-1 was calculated by the following method. First, in order to remove water adsorbed on the hydroisomerization catalyst, pretreatment was performed to evacuate at 150 ° C. for 5 hours. The pretreatment hydroisomerization catalyst was subjected to nitrogen adsorption measurement at a liquid nitrogen temperature ( ⁇ 196 ° C.) using BELSORP-max manufactured by Nippon Bell Co., Ltd. The measured nitrogen adsorption isotherm was analyzed by the t-plot method, and the micropore volume (cc / g) per unit mass of the hydroisomerization catalyst was calculated. The micropore volume per unit mass of the hydroisomerization catalyst was 0.055 (cc / g).
  • micropore volume V Z V c / M z ⁇ 100.
  • V c represents the micropore volume per unit mass of the hydroisomerization catalyst
  • M z represents the content (mass%) of zeolite in the catalyst.
  • Micropore volume V Z was 0.079 (cc / g).
  • Example 1 First hydroisomerization step> As a petroleum-derived hydrocarbon oil, a Middle Eastern crude oil vacuum gas oil that has been hydrorefined at a reaction temperature of 350 ° C., a hydrogen partial pressure of 15 MPa, a hydrogen / oil ratio of 500 Nm 3 / m 3 , and a liquid space velocity of 1.0 h ⁇ 1 Got ready.
  • the boiling point range of the vacuum gas oil was 380 to 440 ° C.
  • the sulfur content in the vacuum gas oil was 10 mass ppm.
  • the vacuum gas oil was introduced into the reactor for the hydroisomerization step, and the vacuum gas oil was brought into contact with the catalyst E-1 in the reactor.
  • the hydrogen pressure in the reactor was adjusted to 15 MPa.
  • the hydrogen / oil ratio which is the ratio between the hydrogen gas introduced into the reactor and the raw material oil (vacuum gas oil), was adjusted to 500 Nm 3 / m 3 .
  • the liquid space velocity of the vacuum gas oil introduced into the reactor was adjusted to 1.5 h ⁇ 1 .
  • hydroisomerization reaction (isomerization dewaxing) of vacuum gas oil was continued for 30 days.
  • the initial reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the first step was 325 ° C.
  • the reaction temperature is a temperature at which the decomposition rate represented by the following formula (II) is maintained at 30% and the pour point of the product oil is maintained at ⁇ 15 ° C.
  • the initial reaction temperature is the reaction temperature at time T 1 when the hydroisomerization reaction of vacuum gas oil is started, the decomposition rate reaches 30%, and the pour point of the product oil reaches ⁇ 15 ° C.
  • the decomposition rate was calculated from the result of gas chromatographic analysis of the product oil obtained by hydroisomerization.
  • Decomposition rate (mass%) Ma / Mb ⁇ 100 (II)
  • Ma Ratio of fraction (mass%) having a boiling point of less than 360 ° C. contained in the product oil obtained by hydroisomerization
  • Mb Ratio (mass%) of a fraction having a boiling point of 360 ° C. or higher contained in the raw material oil (petroleum-derived hydrocarbon oil) before hydroisomerization
  • the reaction temperature is set to the initial reaction temperature so that the decomposition rate represented by the formula (II) is maintained at 30% and the pour point of the product oil is maintained at ⁇ 15 ° C. From then on, it was increased step by step to compensate for the decreasing catalytic activity. Therefore, a low reaction temperature represents a low degree of poisoning of the hydroisomerization catalyst. A high reaction temperature indicates that the degree of poisoning of the hydroisomerization catalyst is high. The upper limit of the reaction temperature was 360 ° C. 360 ° C.
  • the time TL required to raise the reaction temperature of the hydroisomerization reaction from the initial reaction temperature to 360 ° C. means the life of the hydroisomerization catalyst.
  • a short time TL means that the catalyst deteriorates in a short time.
  • a long time TL means that the hydroisomerization catalyst can be used for a long time.
  • reaction temperature of the hydroisomerization reaction of vacuum gas oil on the 30th day (time point T 2 ) counted from the start date (time point T 1 ) of the hydroisomerization reaction was 335 ° C.
  • ⁇ Second hydroisomerization step> After the first step, the feedstock oil was switched from the vacuum gas oil to the FT synthetic oil, and the second hydroisomerization step (second step) was started.
  • the boiling range of the FT synthetic oil used in the second step was 410 to 540 ° C.
  • FT synthetic oil was introduced into the reactor used in the first step. Then, FT synthetic oil was brought into contact with the catalyst E-1 used in the first step.
  • the content rate of the sulfur content in FT synthetic oil was 1 mass ppm or less.
  • the initial reaction temperature of the hydroisomerization reaction of FT synthetic oil in the second step (reaction temperature at time T 2) was 335 ° C..
  • the hydroisomerization reaction (isomerization dewaxing) of the FT synthetic oil in the second step was continued for 10 days in the same manner as in the first step.
  • the reaction temperature of the hydroisomerization reaction of the FT synthetic oil on the 10th day (time T 3 ) counted from the start date (time T 2 ) of the hydroisomerization reaction of the FT synthetic oil was 327 ° C.
  • the third hydroisomerization step (third step) was started by switching the feedstock oil from FT synthetic oil to vacuum gas oil.
  • the vacuum gas oil which is the raw material oil in the third step, the same one as in the first step was used.
  • vacuum gas oil was introduced into the reactor used in the second step. Then, the vacuum gas oil was brought into contact with the catalyst E-1 used in the second step.
  • the initial reaction temperature of the hydroisomerization reaction of vacuum gas oil in the third step (the reaction temperature at time T 3) was 327 ° C..
  • the time T L required for the reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the third step to reach 360 ° C. from the start date (time T 1 ) of the hydroisomerization reaction of the vacuum gas oil in the first step was 650 days.
  • Example 2 In the first step of Example 2, hydroisomerization reaction (isomerization dewaxing) of vacuum gas oil was continued for 10 days. Except for this, the first step, the second step, and the third step of Example 2 were performed in the same manner as in Example 1.
  • the initial reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the first step of Example 2 was 325 ° C.
  • the reaction temperature of the hydroisomerization reaction of vacuum gas oil on the 10th day (time point T 2 ) counted from time point T 1 in Example 2 was 330 ° C. That is, Example 2 of the second hydroisomerisation reaction of FT synthetic oil in step initial reaction temperature (reaction temperature at time T 2) was 330 ° C..
  • Reaction temperature of hydroisomerization reaction of FT synthetic oil on the 10th day (time point T 3 ) counted from the start date (time point T 2 ) of the hydroisomerization reaction (second step) of the FT synthetic oil of Example 2 was 326 ° C. That is, the third vacuum gas oil in step initial reaction temperature of the hydroisomerization reaction of Example 2 (reaction temperature at time T 3) was 326 ° C..
  • the time TL of Example 2 was 742 days.
  • Example 3 In the first step of Example 3, hydroisomerization reaction (isomerization dewaxing) of vacuum gas oil was continued for 10 days. In the second step of Example 3, the hydroisomerization reaction (isomerization dewaxing) of the FT synthetic oil was continued for 3 days. Except for these, the first step, the second step, and the third step of Example 3 were performed in the same manner as in Example 1.
  • the initial reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the first step of Example 3 was 325 ° C.
  • the reaction temperature of the hydroisomerization reaction of vacuum gas oil on the 10th day (time point T 2 ) counted from time point T 1 in Example 3 was 330 ° C. That is, the second FT synthetic oil in the step hydroisomerization reaction initial reaction temperature of Example 3 (reaction temperature at time T 2) was 330 ° C..
  • the reaction temperature on the third day (time point T 3 ) counted from the start date (time point T 2 ) of the hydroisomerization reaction (second step) of the FT synthetic oil of Example 3 was 327 ° C. That is, the third vacuum gas oil in step initial reaction temperature of the hydroisomerization reaction of Example 3 (reaction temperature at time T 3) was 327 ° C..
  • the time TL of Example 3 was 681 days.
  • Comparative Example 1 In Comparative Example 1, the second step and the third step were not performed.
  • the first step of Comparative Example 1 was carried out in the same manner as in Example 1 using the same vacuum gas oil as in the Example.
  • the first step of Comparative Example 1 was continued until the reaction temperature reached 360 ° C.
  • the initial reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the first step of Comparative Example 1 was 325 ° C.
  • the time TL of Comparative Example 1 was 411 days.
  • the raw material oil of Comparative Example 2 was prepared by mixing the vacuum gas oil and the FT synthetic oil used in Example 1 at a volume ratio of 1: 1.
  • the content rate of the sulfur content in the raw material oil of the comparative example 2 was 5 mass ppm.
  • the first step of Comparative Example 2 was performed in the same manner as in Example 1 except that the composition of the raw material oil was different.
  • the first step of Comparative Example 2 was continued until the reaction temperature reached 360 ° C.
  • the initial reaction temperature of the hydroisomerization reaction of the vacuum gas oil in the first step of Comparative Example 2 was 325 ° C.
  • the time TL of Comparative Example 2 was 487 days.
  • FIG. 1a shows the reaction temperature at each point of the first step, the second step, and the third step in Example 1.
  • the reaction temperature at each point in the first step of Comparative Example 1 is shown in FIG.
  • FIG. 1 a and FIG. 1 b are schematic diagrams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Abstract

 粘度指数の高い潤滑油用基油を高い収率で製造することが可能な潤滑油用基油の製造方法を提供する。本発明に係る潤滑油用基油の製造方法の一態様は、石油由来炭化水素油を水素化異性化触媒に接触させる第1の水素化異性化工程と、フィッシャー・トロプシュ反応によって合成される合成油を第1の水素化異性化工程で用いた水素化異性化触媒に接触させる第2の水素化異性化工程と、石油由来炭化水素油を第2の水素化異性化工程で用いた水素化異性化触媒に接触させる第3の水素化異性化工程と、を備える。

Description

潤滑油用基油の製造方法
 本発明は、潤滑油用基油の製造方法に関する。
 石油製品のなかで、例えば潤滑油、軽油、ジェット燃料等は低温における流動性が重要視される製品である。これらの製品に用いられる基油に、ノルマルパラフィンやわずかに分岐を有するイソパラフィン等のワックス成分が含まれると、基油の低温流動性が低下する。したがって、基油の製造では、ワックス成分を完全に又は部分的に除去することが望ましい。または、ワックス成分を完全に又は部分的にワックス成分以外のものに転換することが望ましい。
 石油由来炭化水素油から潤滑油用基油を製造する際に炭化水素油からワックス成分を除去する脱蝋技術としては、例えば、MEK(Methyl Ethyl Ketone)や液化プロパン等の溶媒によりワックス成分を抽出・除去する方法(溶剤脱蝋)が知られている(下記特許文献1参照。)。また、溶媒抽出による脱蝋の前後に、フルフラール、N-メチル-2-ピロリジノン、テトラヒドロフラン等の溶媒により石油由来炭化水素油に多量に含まれる芳香族炭化水素を抽出・除去することで、最終的に得られる潤滑油用基油の酸化安定性を向上させる技術が知られている(下記特許文献1参照。)。
特開平05-186781号公報
 しかし、上記のいわゆる溶剤脱蝋法では、原料油から含有成分の一部が除去されるため、潤滑油用基油の収率が低下してしまう。例えば、ワックス成分の抽出によって潤滑油基油収率は10~40%程度低下し、芳香族炭化水素の抽出によって収率は20~40%程度低下してしまう。また、溶剤脱蝋法では、抽出装置の運転コストが大きく、製品収率が原料油種に依存する。
 上記の溶剤脱蝋に代わる方法としては、接触脱蝋が有用である。接触脱蝋では、水素の存在下で、水素化-脱水素化能及び異性化能を有する所謂二元機能触媒に炭化水素油を接触させて、炭化水素油中のワックス成分(ノルマルパラフィン)をイソパラフィンに異性化する。また、接触脱蝋は、潤滑油用基油の低温流動性を改善する方法としても有用である。接触脱蝋によって潤滑油用基油に適した留分を得るためには、炭化水素油中のノルマルパラフィンの転化率を十分高くする必要がある。しかし、接触脱蝋で使用される上記触媒は異性化能とともに炭化水素の分解能も有している。そのため、炭化水素油の接触脱蝋では、ノルマルパラフィンの転化率の上昇に伴って炭化水素油の軽質化も進行してしまい、所望の粘度指数を有する留分を高い収率で得ることが困難である。特に、高粘度指数及び低流動点が要求される高品質の潤滑油用基油を接触脱蝋により製造する場合、目的留分を高収率で得ることは非常に困難である。このような事情のもと、ワックス成分を含む炭化水素油から所望のイソパラフィン留分を収率よく得ることを目的として、炭化水素に対する抑制された分解活性と高い異性化反応活性とを兼ね備える触媒、すなわち優れた異性化選択性を有する水素化異性化触媒が求められる。
 水素化異性化触媒は、白金及び/又はパラジウム等の高価な貴金属を活性成分として含有する。そして、水素化異性化触媒が石油炭化水素油に接触すると、触媒の活性点である金属が、石油由来炭化水素油に含まれる硫黄分、窒素分、芳香族炭化水素等の触媒毒によって被毒する。そのため、触媒活性が失われ、水素化異性化触媒を長時間使用することが困難になる。つまり、水素化異性化触媒を用いた石油炭化水素油の脱蝋では、水素化異性化触媒の寿命が極端に短くなり易い。触媒の寿命が短いことは、触媒のコストを上昇させるため、経済的な問題となる。
 したがって、被毒の抑制及び寿命の長期化のために、水素化異性化触媒自体の改良、及び工程上の工夫が切望されている。
 水素化異性化触媒の被毒を抑制する方法としては、水素化異性化工程前に石油由来炭化水素油中の芳香族炭化水素を溶媒で抽出する方法がある。また、水素化異性化工程前の水素化精製により石油由来炭化水素油中の硫黄分及び窒素分を取り除く方法もある。しかし、これらの方法を工業規模の装置で実施して、触媒毒を石油由来炭化水素油から完全に取り除くことは不可能である。また、これらの方法の実施によって潤滑油基油の製造コストが増加してしまう。
 水素化異性化触媒に含まれる貴金属に付着した硫黄分、窒素分及び芳香族炭化水素等の触媒毒を除去する方法として、以下のものが例示される。例えば、水素化異性化用の反応器への石油由来炭化水素油の導入を一旦止めた後、反応器へ水素を導入して、反応器内の水素化異性化触媒に付着した触媒毒と水素を反応させる方法がある。この方法によれば、水素化異性化触媒の活性を幾分回復することは可能である。しかし、この方法を用いたとしても、触媒の被毒が進行し過ぎると、触媒活性を回復することは困難である。また、工業規模の反応器への原料油の導入を停止することは、潤滑油基油の製造量の減少に直結し、大きな機会損失である。よって、触媒の還元のために反応器への原料油の導入を停止することは、必ずしも経済的に優れた方法とはいえない。停止された反応器から取り出した水素化異性化触媒を一旦焼くことによって酸化物へ転換し、これを再度還元する方法もある。しかし、この方法も、上記の同様の理由から、経済的に優れた方法ではない。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、水素化異性化触媒の寿命を向上させる潤滑油用基油の製造方法を提供することを目的とする。
 本発明に係る潤滑油用基油の製造方法の一態様は、石油由来炭化水素油を水素化異性化触媒に接触させる第1の水素化異性化工程と、フィッシャー・トロプシュ反応によって合成される合成油を第1の水素化異性化工程で用いた水素化異性化触媒に接触させる第2の水素化異性化工程と、石油由来炭化水素油を第2の水素化異性化工程で用いた水素化異性化触媒に接触させる第3の水素化異性化工程と、を備える。
 本発明の一態様では、水素化異性化触媒はゼオライトを含有し、ゼオライトは、有機テンプレートを含有し、10員環を含む一次元状細孔構造を有することが好ましい。
 本発明の一態様では、ゼオライトが、ZSM-22ゼオライト、ZSM-23ゼオライト、SSZ-32ゼオライト及びZSM-48ゼオライトからなる群より選択される少なくとも一種であることが好ましい
 本発明の一態様では、第2の水素化異性化工程の実施時間が1日以上であることが好ましい。
 本発明によれば、水素化異性化触媒の寿命を向上させる潤滑油用基油の製造方法が提供される。
図1aは、実施例1の第1工程、第2工程及び第3工程の各時点における水素化異性化反応の反応温度を示す模式図であり。図1bは、比較例1の第1工程の各時点における水素化異性化反応の反応温度を示す模式図である。
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
 (潤滑油用基油の製造方法の概要)
 本実施形態では、石油由来炭化水素油及びフィッシャー・トロプシュ反応によって合成される合成油を原料油として用いる。各原料油を水素の存在下で水素化異性化触媒に接触させることにより、潤滑油用基油を製造する。本実施形態に係る潤滑油用基油の製造方法は、第1の水素化異性化工程、第2の水素化異性化工程及び第3の水素化異性化工程を備える。第1の水素化異性化工程では、石油由来炭化水素油を水素化異性化触媒に接触させる。第2の水素化異性化工程では、フィッシャー・トロプシュ反応によって合成される合成油を第1の水素化異性化工程で用いた水素化異性化触媒に接触させる。第3の水素化異性化工程では、石油由来炭化水素油を第2の水素化異性化工程で用いた水素化異性化触媒に接触させる。
 以下、フィッシャー・トロプシュ反応によって合成される合成油を「FT合成油」と記す。FT合成油が含むワックス成分を、「FTワックス」と記す。第1の水素化異性化工程、第2の水素化異性化工程及び第3の水素化異性化工程をそれぞれ「第1工程」、「第2工程」及び「第3工程」と記す。水素化異性化とは、異性化脱蝋と同義である。
 石油由来炭化水素油は、FT合成油に比べて多量の硫黄分(硫化水素及び硫黄化合物等)、窒素分(アンモニア及び窒素化合物等)及び芳香族炭化水素(コーク等)を含有する。これらの成分は、水素化異性化触媒の触媒毒である。したがって、第1工程において石油由来炭化水素油の水素化異性化が進行するほど、水素化異性化触媒が被毒して、その活性が低下し、水素化異性化触媒の寿命が短くなる。仮に第1工程前に石油由来炭化水素油の水素化精製を行ったとしても、このような水素化異性化触媒の寿命の短縮を十分に抑制することは困難である。例えば、石油由来炭化水素油の脱硫によって、石油由来炭化水素油中の硫黄化合物の含有率を5質量ppm以下、又は1質量ppm以下に低減したとしても、水素化異性化触媒の活性点である金属に硫黄分が付着することを充分に抑制することは困難である。
 本実施形態では、水素化異性化触媒の活性を回復するために、第1工程後に第2工程を実施する。第2工程では、第1工程で用いた水素化異性化触媒にFT合成油を接触させて、FT合成油の水素化異性化を行う。FT合成油中の触媒毒の含有率は、石油由来炭化水素油に比べて著しく低い。したがって、第2工程において、水素化異性化触媒は、触媒毒を殆ど含まないFT合成油中に置かれる。そして、第2工程では、水素化異性化触媒の活性点(貴金属等)の水素化還元が起こったり、水素化異性化触媒に付着した触媒毒がFT合成油によって洗い流されたりする。その結果、水素化異性化触媒の活性が回復する。
 第2工程後に実施する第3工程では、第2工程において活性が回復した水素化異性化触媒を用いる。そのため、第3工程では、第2工程を実施せずに第1工程及び第3工程を連続して実施する場合に比べて、第3工程における水素化異性化触媒の寿命が向上する。したがって、第3工程では、第2工程を実施せずに第1工程及び第3工程を連続して実施する場合に比べて、石油由来炭化水素油の水素化異性化によって得られるイソパラフィンの収率(ノルマルパラフィンの転化率)が向上する。
 以上のように、本実施形態では、石油由来炭化水素油の水素化異性化を行う第1工程と第3工程との間に第2工程を実施することで、第1工程で被毒した水素化異性化触媒の活性を回復する。つまり、本実施形態では、同一の水素化異性化触媒を用いて、石油由来炭化水素油の水素化異性化工程と、FT合成油の水素化異性化工程とを、この順序で交互に実施し、石油由来炭化水素油の水素化異性化工程と、その後に行う石油由来炭化水素油の水素化異性化工程との間に、FT合成油の水素化異性化工程を実施する。したがって、本実施形態では、石油由来炭化水素油の水素化異性化工程のみを連続して実施する場合に比べて、水素化異性化触媒の寿命が向上する。また本実施形態では、水素化異性化を行う反応器への原料油の導入を止めることなく、反応器を連続的に稼働させたまま、反応器内の水素化異性化触媒の活性を回復し、触媒の寿命を向上させることが可能である。つまり本実施形態では、On Streamでの触媒の浄化が可能である。したがって本実施形態では、触媒の浄化又は取り換えのために反応器の稼働を停止したり、原料油の導入を止めて水素のみを反応器へ導入したりすることの必要性が低くなる。
 本実施形態における水素化異性化工程は、上記の第1工程、第2工程及び第3工程の三つに限られるものではない。FT合成油の水素化異性化工程を間に挟んで実施する限り、石油由来炭化水素油の水素化異性化工程を複数回(例えば3回以上)実施してもよい。つまり、第3工程で用いた水素化異性化触媒にFT合成油を接触させる第4の水素化異性化工程を実施してよい。さらに、第4工程で用いた水素化異性化触媒に石油由来炭化水素油を接触させる第5の水素化異性化工程を実施してよい。例えば、石油由来炭化水素油の水素化異性化工程とFT合成油の水素化異性化工程とを約1カ月間交互に繰り返してもよい。
 石油由来炭化水素油の水素化異性化工程(第1工程及び第3工程)の実施時間は特に限定されない。FT合成油の水素化異性化工程(第2工程)の開始時期及び実施時間も特に限定されない。第2工程の開始時期及び実施時間は、その前に行う第1工程の実施時間、第1工程による触媒の被毒の程度、第1工程で用いた石油由来炭化水素油中の触媒毒(硫黄分等)の含有率、石油由来炭化水素油に対する前処理(水素化処理又は水素化精製)の有無に応じて、適宜調整すればよい。第1工程で用いる石油由来炭化水素油中の触媒毒の含有率が高いほど、第1工程における触媒の被毒の速度(反応温度の上昇速度)が高い傾向がある。よって、第1工程における触媒の被毒の速度(反応温度の上昇速度)が高いほど、第2工程の開始時期を早め、第2工程の実施時間を長くすればよい。例えば、石油由来炭化水素油の水素化異性化工程の実施時間は10~30日程度である。この場合、FT合成油の水素化異性化工程の実施時間は1~10日程度である。第2工程の実施時間を1日以上とすることにより、本発明の効果が顕著になる。
 (原料油)
 <石油由来炭化水素油>
 石油由来炭化水素油は、減圧軽油(VGO:Vacuum Gas Oil)、減圧残油溶剤脱瀝油、減圧軽油水素化分解塔底油のいずれか1つの留分を含むことが好ましい。これらの留分は、水素化精製処理により硫黄分、窒素分を低減した減圧残油、水素化精製した溶剤脱瀝油、水素化精製した減圧軽油水素化分解塔底油であってもよい。なお、減圧軽油とは、原油の減圧蒸留装置から得られる留出油であり、沸点範囲が350~550℃程度である炭化水素油である。減圧残油とは、原油の減圧蒸留装置から得られる留出油であり、沸点範囲が550℃以上である炭化水素油である。
 <FT合成油>
 FT合成油は、硫黄分及び芳香族炭化水素を原則含まない合成油である。よって、FT合成油を原料として用いることにより、環境への負荷の小さい潤滑油用基油を製造することができる。また、硫黄分は水素化処理用触媒や水素化異性化触媒の触媒毒であるので、硫黄分を原則含まないFT合成油を用いることにより、触媒の被毒を抑制して触媒の寿命を向上させ易くなる。しかし、FT合成油にはオレフィン及びアルコール等の含酸素化合物が含まれるため、本実施形態では、水素化精製により予めオレフィン及びアルコール等の含酸素化合物を除去したFT合成油を用いることが好ましい。
 FT合成油は、例えば以下の方法によって製造される。まず、原料の天然ガスの脱硫を行う。具体的には、天然ガス中の硫黄化合物を、水素化脱硫触媒によって硫化水素に転化したり、硫化水素の吸着材を用いて除去したりする。
 脱硫された天然ガスの改質反応(リフォーミング)によって、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスが生成する。天然ガスの改質反応は、下記の化学反応式(1)及び(2)で表される。なお、改質法は、二酸化炭素及び水蒸気を用いる水蒸気・炭酸ガス改質法に限定されない。例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
CH+HO→CO+3H   (1)
CH+CO→2CO+2H   (2)
 合成ガス中の水素ガスと一酸化炭素ガスとを反応させる。つまり、下記化学反応式(3)で例示されるようなFT反応を進行させることにより、FT合成油が生成する。
(2n+1)H+nCO→C2n+2+nHO   (3)
 FT合成油の生産効率の観点から、一酸化炭素の転化率は50%以上であることが好ましい。FT反応の反応温度は、一酸化炭素の転化率及び生成する炭化水素の炭素数を高めるとの観点から、150~300℃であることが好ましい。反応圧力は0.5~5.0MPaであることが好ましい。原料ガス中の水素/一酸化炭素比率(モル比)は0.5~4.0であることが好ましい。
 FT反応用の触媒(FT触媒)としては、活性金属が無機担体に担持された触媒が用いられる。無機担体としては、シリカ、アルミナ、チタニア、マグネシア、ジルコニア等の多孔性酸化物が例示される。活性金属としては、コバルト、ルテニウム、鉄、ニッケル、白金、パラジウム等が例示される。また、FT触媒には、上記活性金属以外に、ジルコニウム、チタニウム、ハフニウム、ナトリウム、リチウム、マグネシウム等の金属元素を含む化合物が担持されていてもよい。これらの成分は、触媒活性を向上させたり、FT合成油の炭素数及びその分布の制御に寄与したりする。FT触媒の平均粒径は、40~150μmであることが好ましい。これにより、該触媒粒子がスラリー床反応器内において液体炭化水素中に懸濁したスラリーとして流動し易くなる。スラリーの流動性を向上させるために、FT触媒は球状であることが好ましい。FT触媒は、押し出し成型によって形成した所定の形状であってもよい。
 以上の方法により合成されたFT合成油は、炭素数が1~100程度である直鎖炭化水素(ノルマルパラフィン)の混合物であり、芳香族炭化水素、ナフテン炭化水素及びイソパラフィンをほとんど含まない。FT合成油には、炭素数が約21以上であり、沸点が約360℃を超えるFTワックスが含まれる。FT合成油中のFTワックスの含有率は80質量%以上であることが好ましい。FTワックスの含有率は上記の反応条件を適宜調整することにより、容易に制御することができる。
 (水素化精製処理の具体的態様)
 本実施形態では、第1工程又は第3工程を実施する前に、石油由来炭化水素油に対して水素化精製処理を行うことが好ましい。水素化精製処理では、水素の存在下で石油由来炭化水素油を水素化精製処理用触媒に接触させればよい。その結果、脱硫及び脱窒素等の反応が進行して、石油由来炭化水素油中の触媒毒が除去される。したがって、水素化精製処理の実施によって、水素化異性化触媒の寿命を向上させ易くなる。ただし、本実施形態では、上記第2工程の実施により、水素化異性化触媒の寿命を向上させることが可能である。したがって、本実施形態において水素化精製処理は必須ではない。なお、水素化精製処理では、水素化脱硫及び水素化脱窒等の反応に加えて、石油由来炭化水素油の水素化、石油由来炭化水素油中のワックス成分の水素化分解及び水素化異性化が進行してもよい。
 水素化精製処理用触媒の製造方法は、担持工程と焼成工程とを備える。担持工程では、活性金属元素を含む活性金属成分を担体に担持させて、触媒前駆体を得る。焼成工程では、担持工程で得られた前駆体を焼成して、水素化処理用触媒を得る。担体としては、炭素原子を含む炭素質物質の含有量が炭素原子換算で0.5質量%以下であるものを用いればよい。活性金属元素としては、周期表第6族、第8族、第9族及び第10族の金属から選択される少なくとも一種を用いればよい。なお、周期表とは国際純正応用科学連合(IUPAC)の規定する長周期型の元素の周期表を意味する。
 水素化精製処理用触媒としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含んで構成される多孔性無機酸化物からなる担体に周期表第6族、第8族、第9族及び第10族の元素から選ばれる金属を担持した触媒が好適に用いられる。
 水素化精製処理用触媒の担体としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含んで構成される多孔性の無機酸化物が好適に用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、ジルコニア、ボリア、チタニア、マグネシアなどが挙げられる。望ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物であり、一例としてシリカ-アルミナ等を例示できる。また、このほかの成分として、リンを含んでいてもよい。アルミナ以外の成分の合計含有量は1~20重量%であることが好ましく、2~15重量%がより望ましい。アルミナ以外の成分の合計含有量が1重量%に満たない場合、十分な触媒表面積を得ることが出来ず、活性が低くなる恐れがあり、一方含有量が20重量%を超える場合、担体の酸性質が上昇し、コーク生成による活性低下を招く恐れがある。リンを担体構成成分として含む場合には、その含有量は、酸化物換算で1~5重量%であることが望ましく、2~3.5重量%がさらに望ましい。
 アルミナ以外の担体構成成分である、シリカ、ジルコニア、ボリア、チタニア、マグネシアの前駆体となる原料は特に限定されず、一般的なケイ素、ジルコニウム、ボロン、チタン又はマグネシウムを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。マグネシウムについては、硝酸マグネシウムなどを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。
 これらのアルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体表面積の増加や、活性金属となんらかの相互作用を生じることにより、活性に影響を及ぼしていることが考えられる。
 水素化精製処理用触媒の活性金属としては、好ましくは周期表第6族および第8~10族から選ばれる少なくとも一種類の金属を含有し、より好ましくは第6族および第8~10族から選択される二種類以上の金属を含有している。また、第6族から選択される少なくとも一種類の金属と、第8~10族から選択される少なくとも一種類の金属と、を活性金属として含有する水素化処理触媒も好適である。活性金属の組み合わせとしては、例えば、Co-Mo、Ni-Mo、Ni-Co-Mo、Ni-Wなどが挙げられ、水素化精製処理に際しては、これらの金属を硫化物の状態に転換して使用する。
 活性金属の含有量は、例えば、WとMoの合計担持量は、望ましくは酸化物換算で触媒重量に対して12~35重量%、より望ましくは15~30重量%である。WとMoの合計担持量が12重量%未満の場合、活性点数の減少により活性が低下する可能性があり、35重量%を超える場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。また、CoとNiの合計担持量は、望ましくは酸化物換算で触媒重量に対して1.5~10重量%、より望ましくは2~8重量%である。CoとNiの合計担持量が1.5重量%未満の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、10重量%より多い場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。
 上記のいずれの触媒においても、活性金属を担体に担持させる方法は特に限定されず、通常の水素化脱硫触媒等を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
 水素化精製処理の反応温度は、150~480℃程度であり、好ましくは200~400℃であり、より好ましくは260~380℃である。反応温度が480℃を越えると、ワックス成分の軽質分への分解が進行して中間留分および重質分の収率が減少するだけでなく、生成物が着色し、潤滑油基材としての使用が制限される傾向にある。一方、反応温度が150℃を下回ると、水素化精製反応が十分に進行せず、水素化脱硫および水素化脱窒素活性が著しく低下する傾向にあり実用的でない。
 水素化精製処理における水素分圧は、1~20MPa程度であり、好ましくは3~15MPaである。水素分圧が1MPa未満の場合には、水素化脱硫活性が低下する傾向にあるので好ましくない。一方、水素分圧が20MPaを超える場合、装置建設コストが増大する傾向にあるので、プロセスの経済性上好ましくない。
 水素化精製処理における石油由来炭化水素油の液空間速度(LHSV)は0.1~4h-1程度であり、好ましくは0.25~1h-1である。LHSVが0.1h-1未満の場合、処理量が低いので生産性が悪く、実用的でなく、一方、LHSVが4h-1を超える場合、反応温度が高くなり触媒劣化が速くなるので好ましくない。
 水素/油比は、100~2000Nm/m程度であり、好ましくは200~1000Nm/mである。水素/油比が100Nm/m未満の場合には水素化脱硫活性が著しく減少する傾向にあるので好ましくない。一方、水素/油比が2000Nm/mを超える場合には、水素化脱硫活性に大きな変化が無く、運転コストが増加するだけなので好ましくない。
 本実施形態では、上記の水素化精製処理後の石油由来炭化水素油における硫黄化合物の濃度が100質量ppm以下であることが好ましい。また、水素化精製処理後の石油由来炭化水素油における窒素化合物の濃度が10質量ppm以下であることが好ましい。なお、ここでいう硫黄化合物の濃度とは、JIS K2541「原油及び石油製品‐硫黄分試験方法」に基づき測定された値である。窒素化合物の濃度とは、JIS K2609「原油及び石油製品‐窒素分試験方法」に基づき測定される値である。
 本実施形態では、水素化精製処理後、水素化精製処理を行った反応器内の圧力を水素化精製処理時の圧力以下に調整した状態で、より好ましくは水素化精製処理時の圧力よりも1MPa以上低下させた状態で、反応器内の石油由来炭化水素油からガス状物質(硫化水素、アンモニア、スチーム等)を除去することが好ましい。ガス状物質の除去後、第1工程、第2工程及び第3工程を実施することが好ましい。
 (第1工程、第2工程及び第3工程の具体的態様)
 第1工程、第2工程及び第3工程に用いる水素化異性化触媒は、特定の方法によって製造されることでその特徴が付与される。以下、水素化異性化触媒について、その好ましい製造の態様に沿って説明する。本実施形態によれば、特に下記の水素化異性化触媒の寿命を顕著に向上させることが可能となる。
 本実施形態の水素化異性化触媒の製造方法は、有機テンプレートを含有し10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換して得られるイオン交換ゼオライトと、バインダーと、が含まれる混合物を、N雰囲気下、250~350℃の温度で加熱して担体前駆体を得る第1工程と、担体前駆体に白金塩及び/又はパラジウム塩を含ませた触媒前駆体を、分子状酸素を含む雰囲気下、350~400℃の温度で焼成して、ゼオライトを含む担体に白金及び/又はパラジウムが担持された水素化異性化触媒を得る第2工程と、を備える。
 本実施形態で用いられる有機テンプレート含有ゼオライトは、ノルマルパラフィンの水素化異性化反応における高い異性化活性と抑制された分解活性とを高水準で両立する観点から、10員環からなる一次元状細孔構造を有する。このようなゼオライトとしては、AEL、EUO、FER、HEU、MEL、MFI、NES、TON、MTT、WEI、MRE及びSSZ-32などが挙げられる。なお、上記の各アルファベット三文字は、分類分けされたモレキュラーシーブ型ゼオライトの各構造に対して、国際ゼオライト協会構造委員会(The Structure Commission of The International Zeolite Association)が与えている骨格構造コードを意味する。また、同一のトポロジーを有するゼオライトは包括的に同一のコードで呼称される。
 上記有機テンプレート含有ゼオライトとしては、上記の10員環を含む一次元状細孔構造を有するゼオライトの中でも、高異性化活性及び低分解活性の点で、TON、MTT構造を有するゼオライト、MRE構造を有するゼオライトであるZSM-48ゼオライト、及びSSZ-32ゼオライトが好ましい。TON構造を有するゼオライトとしては、ZSM-22ゼオライトがより好ましく、また、MTT構造を有するゼオライトとしては、ZSM-23ゼオライトがより好ましい。
 有機テンプレート含有ゼオライトは、シリカ源、アルミナ源及び上記所定の細孔構造を構築するために添加する有機テンプレートから、公知の方法によって水熱合成される。
 有機テンプレートは、アミノ基、アンモニウム基等を有する有機化合物であり、合成するゼオライトの構造に応じて選択されるものであるが、アミン誘導体であることが好ましい。具体的には、アルキルアミン、アルキルジアミン、アルキルトリアミン、アルキルテトラミン、ピロリジン、ピペラジン、アミノピペラジン、アルキルペンタミン、アルキルヘキサミン及びそれらの誘導体からなる群より選択される少なくとも一種であることがより好ましい。上記アルキル基の炭素数は、4~10であればよく、好ましくは6~8である。なお、代表的なアルキルジアミンとしては、1,6-ヘキサンジアミン、1,8-ジアミノオクタン等が挙げられる。
 10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを構成する珪素とアルミニウム元素とのモル比([Si]/[Al])(以下、「Si/Al比」という。)は、10~400であることが好ましく、20~350であることがより好ましい。Si/Al比が10未満の場合には、ノルマルパラフィンの転換に対する活性は高くなるが、イソパラフィンへの異性化選択性が低下し、また反応温度の上昇に伴う分解反応の増加が急激となる傾向にあることから好ましくない。一方、Si/Al比が400を超える場合には、ノルマルパラフィンの転換に必要な触媒活性が得られにくくなり好ましくない。
 合成され、好ましくは洗浄、乾燥された上記有機テンプレート含有ゼオライトは、対カチオンとして通常アルカリ金属カチオンを有し、また有機テンプレートが細孔構造内に包含される。本発明に係る水素化異性化触媒を製造する際に用いる有機テンプレートを含むゼオライトとは、このような、合成された状態のもの、すなわち、ゼオライト内に包含される有機テンプレートを除去するための焼成処理がなされていないものであることが好ましい。
 上記有機テンプレート含有ゼオライトは、次に、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換される。イオン交換処理により、有機テンプレート含有ゼオライト中に含まれる対カチオンは、アンモニウムイオン及び/又はプロトンに交換される。またそれと同時に、有機テンプレート含有ゼオライト中に包含される有機テンプレートの一部が除去される。
 上記イオン交換処理に使用する溶液は、水を少なくとも50容量%含有する溶媒を用いた溶液であることが好ましく、水溶液であることがより好ましい。また、アンモニウムイオンを溶液中に供給する化合物としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム等の無機及び有機の各種のアンモニウム塩が挙げられる。一方、プロトンを溶液中に供給する化合物としては、通常、塩酸、硫酸、硝酸等の鉱酸が利用される。有機テンプレート含有ゼオライトをアンモニウムイオンの存在下でイオン交換することにより得られるイオン交換ゼオライト(ここでは、アンモニウム型ゼオライト)は、後の焼成の際にアンモニアを放出し、対カチオンがプロトンとなってブレンステッド酸点となる。イオン交換に用いるカチオン種としてはアンモニウムイオンが好ましい。溶液中に含まれるアンモニウムイオン及び/又はプロトンの含有量は、使用する有機テンプレート含有ゼオライトに含まれる対カチオン及び有機テンプレートの合計量に対して10~1000当量となるように設定されることが好ましい。
 上記イオン交換処理は、粉末状の有機テンプレート含有ゼオライト担体に対して行ってもよく、またイオン交換処理に先立って、有機テンプレート含有ゼオライトにバインダーである無機酸化物を配合し、成型を行い、得られる成型体に対して行ってもよい。但し、上記の成型体を焼成することなくイオン交換処理に供すると、当該成型体が崩壊、粉化する問題が生じやすくなることから、粉末状の有機テンプレート含有ゼオライトをイオン交換処理に供することが好ましい。
 イオン交換処理は、定法、すなわち、アンモニウムイオン及び/又はプロトンを含む溶液、好ましくは水溶液に有機テンプレートを含むゼオライトを浸漬し、これを攪拌又は流動する方法によって行うことが好ましい。また、上記の撹拌又は流動は、イオン交換の効率を高めるために加熱下に行うことが好ましい。本発明においては、上記水溶液を加熱し、沸騰、還流下でイオン交換する方法が特に好ましい。
 更に、イオン交換の効率を高める点から、溶液によってゼオライトをイオン交換する間に、溶液を一回又は二回以上新しいものに交換することが好ましく、溶液を一回又は二回新しいものに交換することがより好ましい。溶液を一回交換する場合、例えば、有機テンプレート含有ゼオライトをアンモニウムイオン及び/又はプロトンを含む溶液に浸漬し、これを1~6時間加熱還流し、次いで、溶液を新しいもの交換した後、更に6~12時間加熱還流することにより、イオン交換効率を高めることが可能となる。
 イオン交換処理により、ゼオライト中のアルカリ金属等の対カチオンのほぼ全てをアンモニウムイオン及び/又はプロトンに交換することが可能である。一方、ゼオライト内に包含される有機テンプレートについては、上記のイオン交換処理によりその一部が除去されるが、同処理を繰り返し行っても、その全てを除去することは一般に困難であり、その一部がゼオライト内部に残留する。
 本実施形態では、イオン交換ゼオライトとバインダーとが含まれる混合物を窒素雰囲気下、250~350℃の温度で加熱して担体前駆体を得る。
 イオン交換ゼオライトとバインダーとが含まれる混合物は、上記の方法にて得られたイオン交換ゼオライトに、バインダーである無機酸化物を配合し、得られる組成物を成型したものが好ましい。無機酸化物をイオン交換ゼオライトに配合する目的は、成型体の焼成によって得られる担体(特には、粒子状の担体)の機械的強度を、実用に耐えられる程度に向上することにあるが、本発明者は、無機酸化物種の選択が水素化異性化触媒の異性化選択性に影響を与えることを見出している。このような観点から、上記無機酸化物として、アルミナ、シリカ、チタニア、ボリア、ジルコニア、マグネシア、セリア、酸化亜鉛及び酸化リン並びにこれらの2種以上の組み合わせからなる複合酸化物から選択される少なくとも一種の無機酸化物が用いられる。中でも、水素化異性化触媒の異性化選択性が更に向上するとの観点から、シリカ、アルミナが好ましく、アルミナがより好ましい。また、上記「これらの2種以上の組み合わせからなる複合酸化物」とは、アルミナ、シリカ、チタニア、ボリア、ジルコニア、マグネシア、セリア、酸化亜鉛、及び酸化リンのうちの少なくとも2種の成分からなる複合酸化物であるが、複合酸化物を基準として50質量%以上のアルミナ成分を含有するアルミナを主成分とする複合酸化物が好ましく、中でもアルミナ-シリカがより好ましい。
 上記組成物におけるイオン交換ゼオライトと無機酸化物との配合比率は、イオン交換ゼオライトの質量:無機酸化物の質量の比として、好ましくは10:90~90:10、より好ましくは30:70~85:15である。この比が10:90よりも小さい場合には、水素化異性化触媒の活性が充分ではなくなる傾向にあるため好ましくない。一方、上記比が90:10を超える場合には、組成物を成型及び焼成して得られる担体の機械的強度が充分ではなくなる傾向にあるため好ましくない。
 イオン交換ゼオライトに上記の無機酸化物を配合する方法は特に限定されないが、例えば両者の粉末に適量の水等の液体を添加して粘ちょうな流体とし、これをニーダー等により混練する等の通常行われる方法を採用することができる。
 上記イオン交換ゼオライトと上記無機酸化物とを含む組成物或いはそれを含む粘ちょうな流体は、押出成型等の方法により成型され、好ましくは乾燥されて粒子状の成型体となる。成型体の形状としては特に限定されないが、例えば、円筒状、ペレット状、球状、三つ葉・四つ葉形の断面を有する異形筒状等が挙げられる。成型体の大きさは特に限定されないが、取り扱いの容易さ、反応器への充填密度等の観点から、例えば長軸が1~30mm、短軸が1~20mm程度であることが好ましい。
 本実施形態においては、上記のようにして得られた成型体を、N雰囲気下、250~350℃の温度で加熱して担体前駆体とすることが好ましい。加熱時間については、0.5~10時間が好ましく、1~5時間がより好ましい。
 本実施形態において、上記加熱温度が250℃より低い場合は、有機テンプレートが多量に残留し、残留したテンプレートによってゼオライト細孔が閉塞する。異性化活性点は細孔ポアマウス付近に存在すると考えられており、上記の場合、細孔閉塞によって反応基質が細孔内へ拡散できなくなり、活性点が被覆されて異性化反応が進行しにくくなり、ノルマルパラフィンの転化率が充分に得られにくくなる傾向にある。一方、加熱温度が350℃を超える場合には、得られる水素化異性化触媒の異性化選択性が充分に向上しない。
 成型体を加熱して担体前駆体とするときの下限温度は280℃以上が好ましい。また、上限温度は330℃以下が好ましい。
 本実施形態では、上記成型体に含まれる有機テンプレートの一部が残留するように上記混合物を加熱することが好ましい。具体的には、後述の金属担持後の焼成を経て得られる水素化異性化触媒中のカーボン量が0.4~3.5質量%、好ましくは0.4~3.0質量%、より好ましくは0.4~2.5質量%であり、当該触媒の単位質量当りのミクロ細孔容積が0.02~0.12cc/gであり、当該触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.01~0.12cc/gとなるように加熱条件を設定することが好ましい。
 次に、上記担体前駆体に白金塩及び/又はパラジウム塩を含ませた触媒前駆体を、分子状酸素を含む雰囲気下、350~400℃、好ましくは380~400℃、より好ましくは400℃の温度で焼成して、ゼオライトを含む担体に白金及び/又はパラジウムが担持された水素化異性化触媒を得る。なお、「分子状酸素を含む雰囲気下」とは、酸素ガスを含む気体、中でも好ましくは空気と接触することを意味する。焼成の時間は、0.5~10時間であることが好ましく、1~5時間であることがより好ましい。
 白金塩としては、例えば、塩化白金酸、テトラアンミンジニトロ白金、ジニトロアミノ白金、テトラアンミンジクロロ白金などが挙げられる。塩化物塩は反応時に塩酸が発生して装置腐食の恐れがあるため、塩化物塩以外で白金が高分散する白金塩であるテトラアンミンジニトロ白金が好ましい。
 パラジウム塩としては、例えば、塩化パラジウム、テトラアンミンパラジウム硝酸塩、ジアミノパラジウム硝酸塩などが挙げられる。塩化物塩は反応時に塩酸が発生して装置腐食の恐れがあるため、塩化物塩以外でパラジウムが高分散するパラジウム塩であるテトラアンミンパラジウム硝酸塩が好ましい。
 本実施形態に係るゼオライトを含む担体における活性金属の担持量は、担体の質量を基準として、0.001~20質量%が好ましく、0.01~5質量%がより好ましい。担持量が0.001質量%未満の場合には、所定の水素化/脱水素機能を付与することが困難となる。一方、担持量が20質量%を超える場合には、当該活性金属上での炭化水素の分解による軽質化が進行しやすくなり、目的とする留分の収率が低下する傾向にあり、さらには触媒コストの上昇を招く傾向にあるため好ましくない。
 また、本実施形態に係る水素化異性化触媒が含イオウ化合物及び/又は含窒素化合物を多く含む炭化水素油の水素化異性化に用いられる場合、触媒活性の持続性の観点から、活性金属として、ニッケル-コバルト、ニッケル-モリブデン、コバルト-モリブデン、ニッケル-モリブデン-コバルト、ニッケル-タングステン-コバルト等の組み合わせを含むことが好ましい。これらの金属の担持量は、担体の質量を基準として、0.001~50質量%が好ましく、0.01~30質量%がより好ましい。
 本実施形態では、上記担体前駆体に残留させた有機テンプレートが残留するように上記触媒前駆体を焼成することが好ましい。具体的には、得られる水素化異性化触媒中のカーボン量が0.4~3.5質量%、好ましくは0.4~3.0質量%、より好ましくは0.4~2.5質量%であり、当該触媒の単位質量当りのミクロ細孔容積が0.02~0.12cc/gであり、当該触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.01~0.12cc/gとなるように加熱条件を設定することが好ましい。水素化異性化触媒中のカーボン量は、酸素気流中燃焼-赤外線吸収法により測定される。具体的には、酸素気流中での当該触媒の燃焼により二酸化炭素ガスを発生させ、この二酸化炭素ガスの赤外線吸収量に基づき、炭素量が定量される。この測定には、炭素・硫黄分析装置(例えば、株式会社堀場製作所製 EMIA-920V)を用いればよい。
 水素化異性化触媒の単位質量当りのミクロ細孔容積は、窒素吸着測定と呼ばれる方法にて算出される。すなわち、触媒について、液体窒素温度(-196℃)で測定した窒素の物理吸着脱離等温線を解析、具体的には、液体窒素温度(-196℃)で測定した窒素の吸着等温線をt-plot法により解析することにより、触媒の単位質量当りのミクロ細孔容積が算出される。また、触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積についても、上記の窒素吸着測定により算出される。
 触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積Vは、例えば、バインダーがミクロ細孔容積を有していない場合、水素化異性化触媒の単位質量当りのミクロ細孔容積の値Vと、触媒におけるゼオライトの含有割合M(質量%)から下記式に従って算出することができる。
=V/M×100
 本発明に係る水素化異性化触媒は、上記の焼成処理に続いて、好ましくは水素化異性化の反応を行う反応器に充填後に還元処理されたものであることが好ましい。具体的には、分子状水素を含む雰囲気下、好ましくは水素ガス流通下、好ましくは250~500℃、より好ましくは300~400℃にて、0.5~5時間程度の還元処理が施されたものであることが好ましい。このような工程により、炭化水素油の脱蝋に対する高い活性をより確実に触媒に付与することができる。
 本発明に係る水素化異性化触媒の他の実施形態は、10員環一次元状細孔構造を有するゼオライト、及びバインダーを含む担体と、該担体に担持された白金及び/又はパラジウムと、を含有し、触媒の単位質量当りのミクロ細孔容積が0.02~0.12cc/gである水素化異性化触媒であって、上記ゼオライトは、有機テンプレートを含有し10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換して得られるイオン交換ゼオライトに由来するものであり、触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.01~0.12cc/gである。
 上記の水素化異性化触媒は、上述した方法により製造することができる。触媒の単位質量当りのミクロ細孔容積及び触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積は、イオン交換ゼオライトとバインダーとが含まれる混合物におけるイオン交換ゼオライトの配合量、当該混合物のN雰囲気下での加熱条件、触媒前駆体の分子状酸素を含む雰囲気下での加熱条件を適宜調整することより上記範囲内にすることができる。
 原料油(石油由来炭化水素油及びFT合成油)は、炭素数が10以上であるノルマルパラフィンを含有する。第1工程及び第3工程では、石油由来炭化水素油と水素化異性化触媒との接触により、ノルマルパラフィンを含む石油由来炭化水素油の一部又は全部が、イソパラフィンに転化する。第2工程では、FT合成油と水素化異性化触媒との接触により、ノルマルパラフィンを含むFT合成油の一部又は全部が、イソパラフィンに転化する。
 なお、炭化水素油の異性化とは、炭素数(分子量)が変化することなく、炭化水素油の分子構造のみが変化する反応をいう。炭化水素油の分解とは、炭化水素油の炭素数(分子量)の低下を伴う反応をいう。水素化異性化触媒を利用した接触脱蝋反応において、異性化だけではなく、炭化水素油及び異性化生成物の分解反応がある程度起きることがある。分解反応の生成物の炭素数(分子量)が、目的とする基油を構成することが許容される所定の範囲内に収まれば問題ない。つまり、分解生成物が基油の構成成分となっていてもよい。
 各水素化異性化工程の反応条件は以下の通りである。
 各水素化異性化工程では、原料油のうち大気圧下での沸点が360℃を超える留分の水素化異性化を行うことが好ましい。
 水素化異性化反応の温度は、200~450℃であることが好ましく、220~400℃であることがより好ましい。反応温度が200℃を下回る場合、原料油中に含まれるノルマルパラフィンの異性化が進行しにくくなり、ワックス成分の低減、除去が不十分になる傾向にある。一方、反応温度が450℃を超える場合、原料油の分解が顕著となり、目的とする炭化水素の収率が低下する傾向にある。
 水素化異性化反応の反応場(反応装置内)の圧力は、0.1~20MPaであることが好ましく、0.5~15MPaであることがより好ましい。反応圧力が0.1MPaを下回る場合、コーク生成による触媒の劣化が早まる傾向にある。一方、反応圧力が20MPaを超える場合、反応装置に耐圧性が要求されるため、装置建設のコストが高くなり、経済的なプロセスが実現し難くい傾向にある。
 水素化異性化反応における原料油の液空間速度は、0.1~10h-1であることが好ましく、0.5~5h-1であることがより好ましい。液空間速度が0.1h-1未満の場合、原料油の分解が過度に進行しやすくなり、目的とする潤滑油用基油の生産効率(収率)が低下する傾向にある。一方、液空間速度が10h-1を超える場合、原料油中に含まれるノルマルパラフィンの異性化が進行しにくくなり、ワックス成分の低減、除去が不十分になる傾向にある。
 水素化異性化反応における原料油に対する水素の供給比率(水素/原料油比)は、50~2000Nm/mであることが好ましく、100~1500Nm/mであることがより好ましい。200~800Nm/mであることが特に好ましい。供給比率が50Nm/m未満である場合、異性化反応と併発する水素化脱硫、水素化脱窒素、水素化脱酸素反応により発生した硫化水素、アンモニアガス、水が、触媒上の活性金属に吸着して被毒する。また副反応で生成する微量のオレフィン等不純物の水素化が不十分となり、コーキングによる触媒失活を招く恐れがある。そのため、所定の触媒性能が得られ難くなる傾向がある。一方、供給比率が2000Nm/mを超える場合、能力の高い水素供給設備を必要とするため、経済的なプロセスが実現し難い傾向にある。
 水素化異性化反応によるノルマルパラフィンの転化率は、得られる炭化水素の用途に応じて反応温度等の反応条件を調整することにより、自在に制御される。
 以上の水素化異性化工程によれば、原料油に含まれるノルマルパラフィンの軽質化を十分抑制しつつ、ノルマルパラフィンの異性化(すなわち脱蝋)を進行させることができる。これにより、常圧換算の沸点が360℃を超える留分の割合が90容量%以上である潤滑油用基油を高い収率で得ることができる。
 各水素化異性化工程では、ノルマルパラフィンの転化率が実質的に100質量%となる条件下で、炭素数が10以上であるノルマルパラフィンを含有する原料油を水素の存在下で水素化異性化触媒に接触させることが好ましい。ここで、「転化率が実質的に100質量%となる」とは、触媒に接触した後の原料油(生成油)中に含まれるノルマルパラフィンの含有量が0.1質量%以下であることを意味する。ノルマルパラフィンの転化率は下記数式(I)で定義される。
R=(1-M1/M2)×100   (I)
 数式(I)中、Rとは、ノルマルパラフィンの転化率(単位:質量%)である。M1とは、水素化異性化触媒に接触した後の原料油(生成油)に含まれる、炭素数がCn以上であるノルマルパラフィンの総質量である。M2とは、水素化異性化触媒に接触する前の原料油に含まれる、炭素数がCn以上であるノルマルパラフィンの総質量である。Cnとは、水素化異性化触媒に接触する前の原料油中に含まれる、炭素数が10以上であるノルマルパラフィンの炭素数うち、最小の炭素数である。
 上記のノルマルパラフィンの転化率を高める方法としては、例えば、水素化異性化の反応温度を高めることが挙げられる。転化率が高い場合、反応生成物(潤滑油用基油)中のノルマルパラフィンの含有率が低いので、潤滑油用基油の低温流動性を向上させることができる。しかし、反応温度を高めると、原料油及び異性化の生成物の分解反応が促進されるので、ノルマルパラフィンの転化率の上昇とともに軽質留分が増加する。この軽質留分の増加は、炭化水素油の粘度指数を低下させる。したがって、潤滑油用基油としての性能を所定の範囲に収めるためには、蒸留等によりこの軽質留分を分離、除去する必要がある。特に、米国石油協会(API: American Petroleum Institute)の潤滑油グレードの分類によるグループIII(粘度指数120以上、かつ、飽和分含有量90質量%以上、かつ、硫黄分含有量0.03質量%以下)およびグループIII+(粘度指数140以上、かつ、飽和分含有量90質量%以上、かつ、硫黄分含有量0.03質量%以下)等の高性能の潤滑油用基油を水素化異性化(接触脱蝋)によって製造する場合、ノルマルパラフィンの転化率を実質的に100%とする必要がある。しかし、従来の接触脱蝋用触媒を用いた潤滑油用基油の製造方法では、転化率を実質的に100%とする条件下で脱蝋を行うと、上記高性能の潤滑油用基油の収率が極端に低くなる。一方、本実施形態に係る潤滑油用基油の製造方法によれば、ノルマルパラフィン転化率を実質的に100%となる条件で各水素化異性化工程を行った場合であっても、上記高性能の潤滑油用基油の収率を高めることができる。
 以上の水素化異性化工程によれば、分岐鎖構造を有する異性体の含有率が高い基油を得ることができる。特に、高品質の潤滑油用基油に対しては、ノルマルパラフィン含有量が0.1質量%以下であること要求されるが、本実施形態によれば、この要求レベルを満たす潤滑油用基油を高収率で得ることができる。
 水素化精製処理を実施するための反応設備、及び第1工程、第2工程及び第3工程(水素化異性化工程)を実施する反応設備は、特に限定されない。各設備として、公知のものを使用することができる。各設備は、連続流通式、回分式、半回分式のいずれであってもよいが、生産性、効率の観点から、連続流通式であることが好ましい。各設備の触媒層は、固定床、流動床、攪拌床のいずれであってもよいが、設備費用等の面から固定床であることが好ましい。反応相は気液混相であることが好ましい。
 本実施形態は、各水素化異性化工程によって得た生成油に対して水素化仕上げ(hydrofinishing)を行う工程を備えてもよい。水素化仕上げでは、生成油を、金属が担持された水素化触媒に水素の存在下で接触させる。水素化触媒としては、例えば、白金および/またはパラジウムが担持されたアルミナが挙げられる。水素化仕上げにより、各水素化異性化工程(脱蝋工程)で得られた反応生成物(生成油)の色相、酸化安定性等が改良され、製品の品質を向上させることができる。各水素化異性化工程を行う反応器内に設けられた水素化異性化触媒の触媒層の下流側に水素化仕上げ用の触媒層を設けて、脱蝋工程に続けて水素化仕上げを行ってもよい。水素化仕上げは、脱蝋工程とは別の反応設備において実施してもよい。また、本実施形態では、水素化仕上げによって得た生成油に対して減圧蒸留を行って、基油の精製を行ってもよい。例えば、水素化仕上げによって得た生成油を、大気圧下での沸点が360℃以下である留分と、大気圧下での沸点が360℃を超える留分と、に分離してもよい。さらに大気圧下での沸点が360℃を超える留分に対して減圧蒸留を行ってもよい。
 以上の本実施形態によれば、粘度指数が100を超え、飽和炭化水素の含有量が90質量%以上であり、硫黄化合物の含有率が10質量ppm以下であり、かつ窒素化合物の含有率が5質量ppm以下である潤滑油用基油を高収率で製造することが可能である。
 以下に、実施例により本発明をさらに詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明は以下の実施例に限定されるものではない。
 [水素化異性化触媒E-1の製造]
 <有機テンプレートを含有するZSM-22ゼオライトの合成>
 有機テンプレートを含有し、Si/Alのモル比が45であり、結晶性アルミノシリケートからなるZSM-22ゼオライトを、以下の手順で合成した。以下では、ZSM-22ゼオライトを「ZSM-22」と記す。
 まず、下記の4種類の水溶液を調製した。
溶液A: 1.94gの水酸化カリウムを6.75mLのイオン交換水に溶解したもの。
溶液B: 1.33gの硫酸アルミニウム18水塩を5mLのイオン交換水に溶解したもの。
溶液C: 4.18gの1,6-ヘキサンジアミン(有機テンプレート)を32.5mLのイオン交換水にて希釈したもの。
溶液D: 18gのコロイダルシリカを31mLのイオン交換水にて希釈したもの。コロイダルシリカとしては、Grace Davison社製Ludox AS-40を用いた。
 次に、溶液Aを溶液Bに加え、アルミニウム成分が完全に溶解するまで攪拌を行った。
この混合溶液に溶液Cを加えた後、室温にて激しく攪拌しながら、溶液A、B、Cの混合物を溶液Dに注入した。更に、ここへ結晶化を促進する「種結晶」として、別途合成され、合成後に何ら特別な処理が行われていないZSM-22の粉末を0.25g添加し、ゲル状物を得た。
 上記の操作にて得たゲル状物を、内容積120mLのステンレス鋼製オートクレーブ反応器に移し、オートクレーブ反応器を加熱したオーブン内のタンブリング装置上で回転させ、水熱合成反応を行った。オーブン内の温度は150℃であった。水熱合成反応の実施時間は60時間であった。オートクレーブ反応器の回転速度は約60rpmであった。反応終了後、反応器を冷却後開放し、60℃の乾燥器中で一夜乾燥して、Si/Al比が45であるZSM-22を得た。
 <有機テンプレートを含有するZSM-22のイオン交換>
 以下の操作により、アンモニウムイオンを含む水溶液で上記ZSM-22のイオン交換処理を行った。
 ZSM-22をフラスコ中に取り、ZSM-22ゼオライト1g当り100mLの0.5N-塩化アンモニウム水溶液を加え、6時間加熱環流した。これを室温まで冷却した後、上澄み液を除去し、結晶性アルミノシリケートをイオン交換水で洗浄した。ここに、上記と同量の0.5N-塩化アンモニウム水溶液を再び加え、12時間加熱環流した。
 その後、固形分をろ過により採取し、イオン交換水で洗浄し、60℃の乾燥器中で一晩乾燥して、イオン交換されたNH型ZSM-22を得た。このZSM-22は、有機テンプレートを含んだ状態でイオン交換されたものである。
 <バインダー配合、成型、焼成>
 上記で得たNH型ZSM-22と、バインダーであるアルミナとを質量比7:3にて混合し、ここに少量のイオン交換水を添加して混錬した。得られた粘ちょうな流体を押出成型機に充填、成型し、直径約1.6mm、長さ約10mmの円筒状の成型体を得た。この成型体を、N雰囲気下、300℃にて3時間加熱して、担体前駆体を得た。
 <白金担持、焼成>
 テトラアンミンジニトロ白金[Pt(NH](NO、およびテトラアンミンジニトロパラジウム[Pd(NH](NOを、あらかじめ測定した担体前駆体の吸水量に相当するイオン交換水に溶解して含浸溶液を得た。この溶液を、上記の担体前駆体に初期湿潤法により含浸し、ZSM-22ゼオライトの質量に対して、0.3質量部の白金を担体前駆体に担持した。次に、得られた含浸物(触媒前駆体)を60℃の乾燥中で一晩乾燥した後、空気流通下、400℃で3時間焼成して、カーボン量が0.56質量%である水素化異性化触媒E-1を得た。なお、カーボン量は酸素気流中燃焼―赤外線吸収法で測定した。測定には、堀場製作所製 EMIA-920Vを使用した。
 更に、得られた水素化異性化触媒E-1の単位質量当りのミクロ細孔容積を以下の方法で算出した。まず、水素化異性化触媒に吸着した水分を除去するため、150℃、5時間の真空排気する前処理を行った。この前処理後の水素化異性化触媒について、日本ベル(株)社製 BELSORP-maxを使用して液体窒素温度(-196℃)で窒素吸着測定を行った。そして、測定された窒素の吸着等温線をt-plot法にて解析し、水素化異性化触媒の単位質量当りのミクロ細孔容積(cc/g)を算出した。水素化異性化触媒の単位質量当りのミクロ細孔容積は0.055(cc/g)であった。
 更に、水素化異性化触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積Vを、式V=V/M×100に従って算出した。式中、Vは水素化異性化触媒の単位質量当りのミクロ細孔容積を示し、Mは触媒におけるゼオライトの含有割合(質量%)を示す。なお、バインダーとして用いたアルミナについて上記と同様に窒素吸着測定を行ったところ、アルミナがミクロ細孔を有さないことが確認された。ミクロ細孔容積Vは0.079(cc/g)であった。
 (実施例1)
 <第1の水素化異性化工程>
 石油由来炭化水素油として、反応温度350℃、水素分圧15MPa、水素/油比500Nm/m、液空間速度1.0h-1で水素化精製処理を行った中東産原油の減圧軽油を準備した。減圧軽油の沸点の範囲は380~440℃であった。減圧軽油中の硫黄分の含有率は、10質量ppmであった。第1の水素化異性化工程(第1工程)では、減圧軽油を水素化異性化工程用の反応器内に導入し、反応器内で減圧軽油を上記触媒E-1に接触させた。反応器内の水素圧は、15MPaに調整した。反応器に導入する水素ガスと原料油(減圧軽油)との比率である水素/油比は、500Nm/mに調整した。反応器に導入する減圧軽油の液空間速度は、1.5h-1に調整した。第1工程では、減圧軽油の水素化異性化反応(異性化脱蝋)を30日間継続した。
 第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。なお、反応温度とは、下記数式(II)で表される分解率が30%に維持され、且つ生成油の流動点が-15℃に維持される温度である。初期反応温度とは、減圧軽油の水素化異性化反応を開始して、分解率が30%に達し、且つ生成油の流動点が-15℃に達した時点Tにおける反応温度である。分解率は、水素化異性化によって得られた生成油のガスクロマトグラフィー法による分析結果から算出した。
分解率(質量%)=Ma/Mb×100   (II)
Ma:水素化異性化によって得られた生成油が含有する沸点360℃未満の留分の割合(質量%)
Mb:水素化異性化する前の原料油(石油由来炭化水素油)に含まれる沸点360℃以上の留分の割合(質量%)
 一般的に、水素化異性化工程では、時間の経過に伴い水素化異性化触媒が劣化して分解率が低下する。そのため、上記水素化異性化工程では、上記数式(II)で表される分解率が30%に維持され、生成油の流動点が-15℃に維持されるように、反応温度を初期反応温度から段階的に上昇させ続けて、低下する触媒活性を補った。したがって、反応温度が低いことは、水素化異性化触媒の被毒の程度が低いことを表す。反応温度が高いことは、水素化異性化触媒の被毒の程度が高いことを表す。反応温度の上限値は360℃とした。360℃とは、水素化異性化反応によって得られる生成油中に多環式芳香族炭化水素類が生成して、生成油の色相の悪化が起こり始める温度である。仮に、触媒活性を補うために反応温度を360℃よりも高い温度まで上げると、生成油の色相の悪化し、これから得られる基油製品の品質が劣化する。つまり、360℃を超える反応温度では、触媒活性の補償と、色相の悪化の防止とを両立させることが困難になる。したがって、水素化異性化反応の反応温度を初期反応温度から360℃まで上昇させるために要する時間Tは、水素化異性化触媒の寿命を意味する。時間Tが短いことは、触媒が短時間で劣化することを意味する。時間Tが長いことは、水素化異性化触媒を長時間使用することができることを意味する。
 水素化異性化反応の開始日(時点T)から数えて30日目(時点T)における減圧軽油の水素化異性化反応の反応温度は335℃であった。
 <第2の水素化異性化工程>
 第1工程後、原料油を減圧軽油からFT合成油に切り替えて、第2の水素化異性化工程(第2工程)を開始した。第2工程で用いたFT合成油の沸点の範囲は410~540℃であった。第2工程では、FT合成油を第1工程で用いた反応器内に導入した。そして、FT合成油を第1工程で用いた上記触媒E-1に接触させた。FT合成油中の硫黄分の含有率は、1質量ppm以下であった。第2工程におけるFT合成油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、335℃であった。これらの事項以外は、第1工程と同様の方法で、第2工程におけるFT合成油の水素化異性化反応(異性化脱蝋)を10日間継続した。FT合成油の水素化異性化反応の開始日(時点T)から数えて10日目(時点T)におけるFT合成油の水素化異性化反応の反応温度は327℃であった。
 <第3の水素化異性化工程>
 第2工程後、原料油をFT合成油から減圧軽油に切り替えて、第3の水素化異性化工程(第3工程)を開始した。第3工程の原料油である減圧軽油としては、第1工程と同じものを用いた。第3工程では、減圧軽油を第2工程で用いた反応器内に導入した。そして、減圧軽油を第2工程で用いた上記触媒E-1に接触させた。第3工程における減圧軽油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、327℃であった。
 第1工程における減圧軽油の水素化異性化反応の開始日(時点T)から、第3工程における減圧軽油の水素化異性化反応の反応温度が360℃に到達するまでに要した時間Tは、650日であった。
 (実施例2)
 実施例2の第1工程では、減圧軽油の水素化異性化反応(異性化脱蝋)を10日間継続した。このこと以外は、実施例1と同様の方法で、実施例2の第1工程、第2工程及び第3工程を実施した。
 実施例2の第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。実施例2の時点Tから数えて10日目(時点T)における減圧軽油の水素化異性化反応の反応温度は、330℃であった。つまり、実施例2の第2工程におけるFT合成油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、330℃であった。実施例2のFT合成油の水素化異性化反応(第2工程)の開始日(時点T)から数えて10日目(時点T)におけるFT合成油の水素化異性化反応の反応温度は326℃であった。つまり、実施例2の第3工程における減圧軽油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、326℃であった。実施例2の時間Tは、742日であった。
 (実施例3)
 実施例3の第1工程では、減圧軽油の水素化異性化反応(異性化脱蝋)を10日間継続した。実施例3の第2工程では、FT合成油の水素化異性化反応(異性化脱蝋)を3日間継続した。これらのこと以外は、実施例1と同様の方法で、実施例3の第1工程、第2工程及び第3工程を実施した。
 実施例3の第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。実施例3の時点Tから数えて10日目(時点T)における減圧軽油の水素化異性化反応の反応温度は、330℃であった。つまり、実施例3の第2工程におけるFT合成油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、330℃であった。実施例3のFT合成油の水素化異性化反応(第2工程)の開始日(時点T)から数えて3日目(時点T)における反応温度は327℃であった。つまり、実施例3の第3工程における減圧軽油の水素化異性化反応の初期反応温度(時点Tにおける反応温度)は、327℃であった。実施例3の時間Tは、681日であった。
 (比較例1)
 比較例1では、第2工程及び第3工程を実施しなかった。
 実施例と同様の減圧軽油を用いて、実施例1と同様の方法で、比較例1の第1工程を実施した。比較例1の第1工程を、反応温度が360℃に到達するまで継続した。比較例1の第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。比較例1の時間Tは、411日であった。
 (比較例2)
 比較例2では、第2工程及び第3工程を実施しなかった。
 実施例1で用いた減圧軽油及びFT合成油を1:1の体積比で混合することにより、比較例2の原料油を調製した。比較例2の原料油中の硫黄分の含有率は、5質量ppmであった。原料油の組成が異なること以外は、実施例1と同様の方法で、比較例2の第1工程を実施した。比較例2の第1工程を、反応温度が360℃に到達するまで継続した。比較例2の第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。比較例2の時間Tは、487日であった。
 (比較例3)
 比較例3では、第2工程及び第3工程を実施しなかった。
 比較例3の石油由来炭化水素油として、反応温度386℃、水素分圧15MPa、水素/油比500Nm/m、液空間速度1.0h-1で水素化精製処理を行った中東産原油の減圧軽油を準備した。比較例3の減圧軽油の沸点の範囲は380~440℃であった。比較例3の減圧軽油中の硫黄分の含有率は、1質量ppm以下であった。このこと以外は実施例1と同様の方法で、比較例3の第1工程を実施した。比較例3の第1工程を、反応温度が360℃に到達するまで継続した。比較例3の第1工程における減圧軽油の水素化異性化反応の初期反応温度は、325℃であった。比較例3の時間Tは、606日であった。
Figure JPOXMLDOC01-appb-T000001
 実施例1の第1工程、第2工程及び第3工程の各時点における反応温度を図1aに示す。比較例1の第1工程の各時点における反応温度を図1bに示す。ただし、図1a及び図1bは模式図である。
 実施例1~3における水素化異性化触媒の寿命(時間T)は、第2工程及び第3工程を実施しない比較例1~3に比べて長いことが確認された。
 比較例2の第1工程では、減圧軽油とFT合成油との混合油であり、実施例1~3の減圧軽油よりも硫黄分の含有率が低い原料油を用いた。しかし、比較例2における水素化異性化触媒の寿命は、実施例1~3に比べて短いことが確認された。
 比較例3の第1工程では、実施例1~3の減圧軽油よりも硫黄分の含有率が低い減圧軽油を用いた。しかし、比較例3における水素化異性化触媒の寿命は、実施例1~3に比べて短いことが確認された。
 本発明によれば、潤滑油用基油の製造に用いる水素化異性化触媒の寿命を向上させることが可能となる。
 

Claims (4)

  1.  石油由来炭化水素油を水素化異性化触媒に接触させる第1の水素化異性化工程と、
     フィッシャー・トロプシュ反応によって合成される合成油を前記第1の水素化異性化工程で用いた前記水素化異性化触媒に接触させる第2の水素化異性化工程と、
     石油由来炭化水素油を前記第2の水素化異性化工程で用いた前記水素化異性化触媒に接触させる第3の水素化異性化工程と、
     を備える、
     潤滑油用基油の製造方法。
  2.  前記水素化異性化触媒はゼオライトを含有し、
     前記ゼオライトは、有機テンプレートを含有し、10員環を含む一次元状細孔構造を有する、
     請求項1に記載の潤滑油用基油の製造方法。
  3.  前記ゼオライトが、ZSM-22ゼオライト、ZSM-23ゼオライト、SSZ-32ゼオライト及びZSM-48ゼオライトからなる群より選択される少なくとも一種である、
     請求項2に記載の潤滑油用基油の製造方法。
  4.  前記第2の水素化異性化工程の実施時間が1日以上である、
     請求項1~3のいずれか一項に記載の潤滑油用基油の製造方法。
PCT/JP2013/059626 2012-03-30 2013-03-29 潤滑油用基油の製造方法 WO2013147201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380017198.8A CN104245895B (zh) 2012-03-30 2013-03-29 润滑油用基础油的制造方法
KR1020147027702A KR101577617B1 (ko) 2012-03-30 2013-03-29 윤활유용 기유의 제조 방법
JP2013514888A JP5998127B2 (ja) 2012-03-30 2013-03-29 潤滑油用基油の製造方法
ZA2014/06922A ZA201406922B (en) 2012-03-30 2014-09-22 Method for producing lubricant base oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082346 2012-03-30
JP2012-082346 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147201A1 true WO2013147201A1 (ja) 2013-10-03

Family

ID=49260442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059626 WO2013147201A1 (ja) 2012-03-30 2013-03-29 潤滑油用基油の製造方法

Country Status (6)

Country Link
JP (1) JP5998127B2 (ja)
KR (1) KR101577617B1 (ja)
CN (1) CN104245895B (ja)
MY (1) MY167590A (ja)
WO (1) WO2013147201A1 (ja)
ZA (1) ZA201406922B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211057A (ja) * 2006-02-07 2007-08-23 Nippon Oil Corp ワックスの水素化処理方法
JP2007270060A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp ワックスの水素化処理方法
JP2010155187A (ja) * 2008-12-26 2010-07-15 Nippon Oil Corp 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
WO2012005976A2 (en) * 2010-06-29 2012-01-12 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from light feedstock
WO2012105559A1 (ja) * 2011-02-04 2012-08-09 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素油の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978946B2 (ja) 2006-02-08 2012-07-18 株式会社 資生堂 Gpcスタンダード用イオン性ポリマー
MY157681A (en) * 2007-06-13 2016-07-15 Exxonmobil Res & Eng Co Integrated hydroprocessing with high productivity catalysts
KR101810827B1 (ko) 2009-07-03 2017-12-20 제이엑스티지 에네루기 가부시키가이샤 윤활유 기유의 제조 방법 및 윤활유 기유
US8906224B2 (en) * 2009-12-23 2014-12-09 Exxonmobil Research And Engineering Company Sweet or sour service catalytic dewaxing in block mode configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211057A (ja) * 2006-02-07 2007-08-23 Nippon Oil Corp ワックスの水素化処理方法
JP2007270060A (ja) * 2006-03-31 2007-10-18 Nippon Oil Corp ワックスの水素化処理方法
JP2010155187A (ja) * 2008-12-26 2010-07-15 Nippon Oil Corp 水素化異性化触媒、その製造方法、炭化水素油の脱蝋方法及び潤滑油基油の製造方法
WO2012005976A2 (en) * 2010-06-29 2012-01-12 Chevron U.S.A. Inc. Catalytic processes and systems for base oil production from light feedstock
WO2012105559A1 (ja) * 2011-02-04 2012-08-09 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素油の製造方法

Also Published As

Publication number Publication date
CN104245895A (zh) 2014-12-24
CN104245895B (zh) 2017-05-03
MY167590A (en) 2018-09-20
JP5998127B2 (ja) 2016-09-28
KR101577617B1 (ko) 2015-12-15
KR20140138251A (ko) 2014-12-03
JPWO2013147201A1 (ja) 2015-12-14
ZA201406922B (en) 2015-12-23

Similar Documents

Publication Publication Date Title
TWI454313B (zh) Hydrogenated isomerization catalyst and its manufacturing method, dewaxing method of hydrocarbon oil and manufacturing method of lubricating oil base oil
US9637692B2 (en) Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, process for producing hydrocarbon, and process for producing lube base oil
TWI473652B (zh) Hydrogenated isomerization catalyst, method for producing the same, dewaxing method for hydrocarbon oil and method for producing lubricating base oil
JP6001531B2 (ja) 炭化水素油の脱蝋方法及び潤滑油用基油の製造方法
JP6038779B2 (ja) Zsm−22ゼオライト、水素化異性化触媒及びその製造方法、並びに炭化水素の製造方法
JP6240501B2 (ja) 潤滑油基油の製造方法
JP5221999B2 (ja) 潤滑油基油の製造方法
JP6009196B2 (ja) 潤滑油用基油の製造方法
JP5757907B2 (ja) 潤滑油基油の製造方法
JP5759409B2 (ja) 潤滑油基油の製造方法
JP5998127B2 (ja) 潤滑油用基油の製造方法
JP6204827B2 (ja) 潤滑油基油の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514888

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027702

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201406599

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13768523

Country of ref document: EP

Kind code of ref document: A1