WO2013147020A1 - ゴム組成物および燃料電池シール体 - Google Patents

ゴム組成物および燃料電池シール体 Download PDF

Info

Publication number
WO2013147020A1
WO2013147020A1 PCT/JP2013/059253 JP2013059253W WO2013147020A1 WO 2013147020 A1 WO2013147020 A1 WO 2013147020A1 JP 2013059253 W JP2013059253 W JP 2013059253W WO 2013147020 A1 WO2013147020 A1 WO 2013147020A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber composition
liquid
fuel cell
ethylene
Prior art date
Application number
PCT/JP2013/059253
Other languages
English (en)
French (fr)
Inventor
山本 健次
宏和 林
晋次 北
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to EP13769093.9A priority Critical patent/EP2833453A4/en
Priority claimed from JP2013068590A external-priority patent/JP6190607B2/ja
Priority claimed from JP2013068591A external-priority patent/JP6190608B2/ja
Publication of WO2013147020A1 publication Critical patent/WO2013147020A1/ja
Priority to US14/302,808 priority patent/US20140287340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a rubber composition used for an adhesive layer of a fuel cell sealing body in which a constituent member for a fuel cell such as a metal separator and a rubber member for sealing the same are bonded via an adhesive layer, and the same
  • the present invention relates to a fuel cell seal body.
  • Fuel cells that generate electricity by gas electrochemical reaction have high power generation efficiency, clean gas discharge, and extremely little impact on the environment.
  • the polymer electrolyte fuel cell can be operated at a relatively low temperature and has a large power density. For this reason, various uses, such as a power generation and an automotive power source, are expected.
  • a cell in which a membrane electrode assembly (MEA) or the like is sandwiched between metal separators is a power generation unit.
  • the MEA is composed of a polymer membrane (electrolyte membrane) serving as an electrolyte and a pair of electrode catalyst layers (a fuel electrode (anode) catalyst layer and an oxygen electrode (cathode) catalyst layer) disposed on both sides in the thickness direction of the electrolyte membrane. Become. On the surface of the pair of electrode catalyst layers, a porous layer (gas diffusion layer) for further diffusing gas is disposed.
  • a fuel gas such as hydrogen is supplied to the fuel electrode side, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode side.
  • the polymer electrolyte fuel cell is configured by fastening a cell laminate in which a large number of the cells are laminated with end plates or the like arranged at both ends in the cell lamination direction.
  • the metal separator there are formed a flow path of gas supplied to each electrode and a flow path of refrigerant for relaxing heat generation during power generation.
  • the electrolyte membrane has proton conductivity in a state containing water, it is necessary to keep the electrolyte membrane in a wet state during operation. Therefore, in order to prevent gas mixing, gas and refrigerant leakage, and to keep the inside of the cell in a wet state, it is necessary to ensure sealing performance around the MEA and the porous layer and between adjacent metal separators. It becomes important.
  • an adhesive component such as a resorcinol compound is kneaded into a rubber component such as ethylene-propylene-diene rubber (EPDM), and the sealing member itself has an adhesive property to be bonded.
  • EPDM ethylene-propylene-diene rubber
  • an adhesive seal member for a fuel cell that does not apply an adhesive (adhesive-less) and ensures a sealing property with a constituent member such as a metal separator (Patent Document 1).
  • the adhesive seal member for a fuel cell described in Patent Document 1 is very excellent in terms of sealability because an adhesive component kneaded in a rubber component and a metal separator are bonded by hydrogen bonding.
  • an adhesive component kneaded in a rubber component and a metal separator are bonded by hydrogen bonding.
  • the adhesive component kneaded in the rubber component adheres to a general-purpose mold and the mold is contaminated.
  • a mold with a Teflon (registered trademark) coating on the surface it is conceivable to use a mold with a Teflon (registered trademark) coating on the surface, but the durability is poor and the contamination of the adhesive component gradually progresses, so it is necessary to clean the mold, Automation is difficult, cost is high, and there is room for improvement in terms of mass productivity.
  • the present invention has been made in view of such circumstances, and provides a rubber composition free from mold contamination, low in cost, excellent in mass productivity, having high adhesion reliability, and a fuel cell seal body using the rubber composition. Is the purpose.
  • the inventors of the present invention have made extensive studies in order to obtain a rubber composition for an adhesive layer of a fuel cell seal body that is free from mold contamination, is low in cost, is excellent in mass productivity, and has high adhesion reliability.
  • a rubber member containing no adhesive component such as vulcanized rubber
  • a rubber component (A2) such as ethylene-propylene-diene rubber
  • a crosslinking agent (B) composed of an organic peroxide
  • an adhesive component (C) such as a resorcinol compound
  • the present invention is a rubber composition used for an adhesive layer of a fuel cell seal body, and is one of the following liquid rubber composition ( ⁇ ) and the following solvent-based rubber composition ( ⁇ ).
  • a certain rubber composition is a first gist.
  • ( ⁇ ) A liquid rubber composition containing the following (A1) to (C).
  • (A1) A rubber component containing at least a liquid rubber.
  • (B) A crosslinking agent comprising an organic peroxide.
  • C) At least one adhesive component selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent.
  • (A2) At least one rubber component selected from the group consisting of ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylonitrile-butadiene rubber and hydrogenated acrylonitrile-butadiene rubber.
  • (B) A crosslinking agent comprising an organic peroxide.
  • (C) At least one adhesive component selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent.
  • the present invention also provides a fuel cell seal body in which a constituent member for a fuel cell and a rubber member for sealing are bonded via an adhesive layer, or the rubber members are bonded to each other via an adhesive layer. Then, the fuel cell seal body in which the adhesive layer is made of the rubber composition of the first gist is a second gist.
  • the rubber composition of the present invention is a rubber composition used for an adhesive layer of a fuel cell seal body, and includes a rubber component (A1) containing at least a liquid rubber and a crosslinking agent comprising an organic peroxide. (B) and a liquid rubber composition ( ⁇ ) containing an adhesive component (C) such as a resorcinol compound (hereinafter sometimes referred to as “liquid rubber composition ( ⁇ )”).
  • A1 a rubber component containing at least a liquid rubber and a crosslinking agent comprising an organic peroxide.
  • B and a liquid rubber composition ( ⁇ ) containing an adhesive component (C) such as a resorcinol compound (hereinafter sometimes referred to as “liquid rubber composition ( ⁇ )”).
  • a solvent-based rubber composition containing a solvent together with a rubber component (A2) such as ethylene-propylene-diene rubber, a crosslinking agent (B) made of an organic peroxide, and an adhesive component (C) such as a resorcinol compound ( ⁇ (Hereinafter, sometimes referred to as “solvent rubber composition ( ⁇ )”).
  • a rubber component (A2) such as ethylene-propylene-diene rubber
  • B crosslinking agent
  • C an adhesive component
  • a resorcinol compound
  • the liquid rubber composition (liquid rubber composition) ( ⁇ ) means a rubber composition that is liquid at room temperature.
  • both the liquid rubber composition ( ⁇ ) and the solvent-based rubber composition ( ⁇ ) contain an adhesive component (C), the adhesion between the fuel cell component and the sealing rubber member, or the above Good adhesion between rubber members and high adhesion reliability.
  • the adhesive component (C) when a resorcinol compound and a melamine compound are included as the adhesive component (C), the melamine compound is a methylene donor and the resorcinol compound is a methylene donor.
  • the methylene group is donated, and the resorcinol compound and the double bond of the rubber member (vulcanized rubber, etc.) are cross-linked and chemically bonded, and the hydrogen bond with the hydroxyl group of the fuel cell component (metal separator, etc.) To do.
  • the rubber member (vulcanized rubber or the like) and the fuel cell constituent member (metal separator or the like) are bonded via the adhesive layer.
  • the aluminate coupling agent is included as the adhesive component (C)
  • the fuel cell constituent member and the sealing rubber member are bonded via the aluminate coupling agent in the adhesive layer.
  • the adhesive component (C) when included as the adhesive component (C), the fuel cell component and the sealing rubber member are bonded via the silane coupling agent in the adhesive layer.
  • the fuel cell component is a non-metallic material other than a metal separator, for example, a membrane electrode assembly (MEA) or a gas diffusion layer, the adhesive component (C) in the adhesive layer and the fuel cell It is considered that they are bonded to each other due to the compatibility with the structural member for use or the heat fusion force.
  • MEA membrane electrode assembly
  • the fuel cell seal body of the present invention has rubber elasticity in a wide temperature range from the operating temperature of the fuel cell to about ⁇ 30 ° C. For this reason, according to the fuel cell seal body of the present invention, not only sealing by adhesion but also sealing by stress is possible. When rubber elasticity is lost at a very low temperature, the sealing performance is more likely to deteriorate in the stress seal than in the adhesive seal. In this regard, according to the fuel cell seal body of the present invention, the rubber elasticity is maintained even at extremely low temperatures, and therefore the sealing performance is hardly lowered even with a stress seal.
  • the fuel cell seal body of the present invention includes a liquid rubber composition in which the constituent member for fuel cell and the rubber member for sealing, or the rubber members contain the above (A1) to (C). Adhesion reliability is high because it is adhered by an adhesive layer comprising one of the solvent-based rubber composition ( ⁇ ) containing ⁇ ) and the above (A2) to (C). Therefore, it is not necessary to knead the adhesive component into the rubber member for sealing, and there is no mold contamination. Therefore, since there is no need to clean the mold, automation is possible, and the mass production is excellent at low cost.
  • the viscosity of the rubber composition can be lowered by using liquid rubber or by using a solvent, so that an adhesive layer can be easily formed by applying a dispenser, etc. Excellent efficiency. Furthermore, since the liquid rubber composition ( ⁇ ) does not use an organic solvent such as toluene, emission of volatile organic compounds (VOC) can be reduced, and the problem of environmental pollution can be solved.
  • an organic solvent such as toluene
  • the ethylene-propylene rubber (EPM) and the ethylene-propylene-diene rubber (EPDM) in the specific rubber (A1) or (A2) have a temperature of about ⁇ 20 to ⁇ 30 ° C. as the ethylene content decreases. Difficult to crystallize at extremely low temperatures. In other words, EPM and EPDM with a low ethylene content are less likely to have rubber elasticity even at extremely low temperatures, and therefore can maintain rubber elasticity even at extremely low temperatures. Therefore, when an ethylene-propylene rubber or ethylene-propylene-diene rubber having an ethylene content of 60% by weight or less is used, the sealing performance at an extremely low temperature is further improved.
  • the rubber composition of the present invention is a rubber composition used for an adhesive layer of a fuel cell seal body, which is composed of the following liquid rubber composition ( ⁇ ) and the following solvent-based rubber composition ( ⁇ ).
  • A liquid rubber composition containing the following (A1) to (C).
  • A1) A rubber component containing at least a liquid rubber.
  • B) A crosslinking agent comprising an organic peroxide.
  • C) At least one adhesive component selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent.
  • A2) At least one rubber component selected from the group consisting of ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylonitrile-butadiene rubber and hydrogenated acrylonitrile-butadiene rubber.
  • B) A crosslinking agent comprising an organic peroxide.
  • C) At least one adhesive component selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent.
  • Specific rubber component (A1) is a main component of the liquid rubber composition ( ⁇ ), and usually occupies a majority of the entire liquid rubber composition ( ⁇ ). .
  • the specific rubber component (A1) needs to contain at least a liquid rubber.
  • the liquid rubber means a rubber that is liquid at room temperature and has a viscosity of 1000 Pa ⁇ s or less.
  • liquid rubber examples include liquid ethylene-propylene rubber (liquid EPM), liquid ethylene-propylene-diene rubber (liquid EPDM), liquid acrylonitrile-butadiene rubber (liquid NBR), and liquid hydrogenated acrylonitrile-butadiene rubber (liquid H- NBR) and the like. These may be used alone or in combination of two or more. Of these, liquid EPM and liquid EPDM are preferable in terms of sealing properties.
  • the ethylene content of the liquid EPM or liquid EPDM is preferably 60% by weight or less, particularly preferably 53% by weight or less, from the viewpoint of improving the sealing property at extremely low temperatures.
  • the specific rubber component (A1) may contain a rubber other than the liquid rubber (hereinafter sometimes referred to as “solid rubber”) together with the liquid rubber.
  • solid rubber means the above “liquid rubber”, and usually means a rubber that is solid at room temperature and can be kneaded.
  • solid rubber examples include ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (H-NBR), and the like.
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • NBR acrylonitrile-butadiene rubber
  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • the content of the liquid rubber is preferably 40% by weight or more of the entire specific rubber component (A1) (liquid rubber + solid rubber), particularly preferably 60% by weight or more, and most preferably 80% by weight or more. It is. When there is too little content of liquid rubber, the viscosity of a rubber composition will become high and the tendency for coating property to deteriorate will be seen.
  • A1 liquid rubber + solid rubber
  • the Mooney viscosity of the specific rubber component (A1) is preferably 100 [ML (1 + 4) 100 ° C.] or less, particularly preferably 60 [ML (1 + 4) 100 ° C.] or less.
  • Mooney viscosity means a value measured according to JIS K6300-1 (2001).
  • the specific rubber component (A1) preferably contains EPDM (liquid EPDM, or liquid EPDM and solid EPDM).
  • EPDM diene content mass ratio of diene component is preferably in the range of 4 to 15% by weight.
  • a diene monomer having 5 to 20 carbon atoms is preferable, and specifically, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 2,5-dimethyl. -1,5-hexadiene, 1,4-octadiene, 1,4-cyclohexadiene, cyclooctadiene, dicyclopentadiene (DCP), 5-ethylidene-2-norbornene (ENB), 5-butylidene-2-norbornene, Examples include 2-methallyl-5-norbornene and 2-isopropenyl-5-norbornene.
  • the specific cross-linking agent (B) is composed of an organic peroxide.
  • the organic peroxide include peroxyketals, peroxyesters, diacyl peroxides, peroxydicarbonates, dialkyl peroxides, hydroperoxides, and the like. These may be used alone or in combination of two or more.
  • these organic peroxides for example, those composed of organic peroxides having a one-hour half-life temperature of 160 ° C. or less are preferably used.
  • a peroxy having a one-hour half-life temperature of 100 ° C. or more is easy to crosslink at a temperature of about 130 ° C. and is excellent in the handleability of a rubber composition kneaded with a crosslinking agent.
  • At least one of a ketal and a peroxyester is preferable, and a one-hour half-life temperature of 110 ° C. or higher is particularly preferable.
  • crosslinking can be performed in a shorter time.
  • the “half-life” in an organic peroxide having a one-hour half-life temperature of 160 ° C. or less in the crosslinking agent (B) means that the concentration of organic peroxide (active oxygen amount) is an initial value. Time to halve. Therefore, the “half-life temperature” is an index indicating the decomposition temperature of the organic peroxide.
  • the “1 hour half-life temperature” is a temperature at which the half-life is 1 hour. In other words, the lower the one-hour half-life temperature, the easier it is to decompose at low temperatures.
  • crosslinking can be performed at a lower temperature (specifically, 150 ° C. or less) and in a short time. Therefore, for example, the fuel cell seal body of the present invention can be used also in the vicinity of the electrolyte membrane of a solid polymer fuel cell.
  • peroxyketal examples include n-butyl-4,4-di (t-butylperoxy) valerate, 2,2-di (t-butylperoxy) butane, 2,2-di (4,4 -Di (t-butylperoxy) cyclohexyl) propane, 1,1-di (t-butylperoxy) cyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-hexyl) Peroxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) -2-methylcyclohexane and the like.
  • peroxyester examples include t-butyl peroxybenzoate, t-butyl peroxyacetate, t-hexyl peroxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t- Butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxymalein Examples thereof include acid and t-hexylperoxyisopropyl monocarbonate.
  • 1,1-di (t-butylperoxy) cyclohexane, t-butylperoxyacetate, t-butylperoxyisopropyl are used because the reaction with the specific rubber component (A1) is relatively fast.
  • Monocarbonate is preferred.
  • crosslinking can be performed in a shorter time.
  • the blending amount of the specific cross-linking agent (B) (in the case of a raw material having a purity of 100%) is preferably in the range of 0.4 to 12 parts by weight with respect to 100 parts by weight of the specific rubber component (A1).
  • the blending amount of the specific crosslinking agent (B) is too small, it tends to be difficult to sufficiently advance the crosslinking reaction.
  • the blending amount of the specific crosslinking agent (B) is too large, crosslinking is performed. There is a tendency that the crosslinking density rapidly rises during the reaction, leading to a decrease in adhesive strength.
  • Specific adhesive component (C) At least one selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent is used.
  • resorcinol compound examples include resorcin, modified resorcin / formaldehyde resin, resorcin / formaldehyde (RF) resin, and the like. These may be used alone or in combination of two or more. Of these, a modified resorcin / formaldehyde resin is preferred in that it has low volatility, low hygroscopicity, and excellent compatibility with rubber.
  • the modified resorcin / formaldehyde resin include those represented by the following general formulas (1) to (3), particularly preferably those represented by the general formula (1).
  • the compounding amount of the resorcinol compound is preferably in the range of 0.1 to 30 parts by weight, particularly preferably in the range of 1 to 15 parts by weight with respect to 100 parts by weight of the specific rubber component (A1). If the compounding amount of the resorcinol compound is too small, it tends to be difficult to obtain a desired adhesive force. If the compounding amount of the resorcinol compound is too large, the physical properties of the rubber tend to decrease. .
  • melamine compound examples include methylated formaldehyde / melamine polymer, hexamethylenetetramine, and the like. These may be used alone or in combination of two or more. These decompose under heating during crosslinking and supply formaldehyde to the system. Among these, a methylated product of formaldehyde / melamine polymer is preferable in terms of low volatility, low hygroscopicity, and excellent compatibility with rubber.
  • the blending ratio of the resorcinol compound to the melamine compound is preferably in the range of 1: 0.5 to 1: 2, more preferably 1: 0.77 to 1: 1.5, by weight. It is a range. If the blending ratio of the melamine compound is too small, the tensile strength and elongation of the rubber tend to be slightly reduced. If the blending ratio of the melamine compound is too high, the adhesive strength is saturated, so that more blending is required. Leads to cost increase.
  • the aluminate coupling agent may be appropriately selected from an aluminum organic compound having a hydrolyzable alkoxy group and a portion having an affinity for the rubber component in consideration of adhesiveness and the like.
  • Examples thereof include ethyl acetoacetate monoacetylacetonate, aluminum trisacetylacetonate, aluminum monoisopropoxymonooroxyethyl acetoacetate and the like.
  • aluminum alkyl acetoacetate / diisopropylate, aluminum ethylacetoacetate / diisopropylate, and aluminum trisethylacetoacetate are preferable.
  • the amount of the aluminate coupling agent is preferably in the range of 0.5 to 20 parts by weight, particularly preferably in the range of 3 to 15 parts by weight with respect to 100 parts by weight of the specific rubber component (A1). . If the blending amount of the aluminate coupling agent is too small, it tends to be difficult to obtain the desired adhesive strength. If the blending amount of the aluminate coupling agent is too large, the physical properties of the rubber deteriorate. Tend to decrease, and the workability tends to decrease.
  • the silane coupling agent may be appropriately selected from a group of compounds having an epoxy group, amino group, vinyl group or the like as a functional group in consideration of adhesiveness and the like.
  • bonded is also used. These may be used alone or in combination of two or more.
  • the adhesive force is improved and the adhesive force is not easily lowered even in the operating environment of the fuel cell.
  • Vinyltrimethoxysilane, vinyltriethoxysilane, vinyl-tris (2-methoxyethoxy) silane and the like are preferable.
  • the compounding amount of the silane coupling agent is preferably in the range of 0.5 to 20 parts by weight, particularly preferably in the range of 5 to 10 parts by weight with respect to 100 parts by weight of the specific rubber component (A1). If the compounding amount of the silane coupling agent is too small, it tends to be difficult to obtain a desired adhesive force. If the compounding amount of the silane coupling agent is too large, the physical properties of the rubber are deteriorated and processed. There is a tendency for the sex to decline.
  • the liquid rubber composition ( ⁇ ) used in the present invention includes a crosslinking aid (D), a softening agent, a reinforcing agent, a plasticizer, an antiaging agent, and tackifying.
  • a crosslinking aid (D) a softening agent, a reinforcing agent, a plasticizer, an antiaging agent, and tackifying.
  • additives used in ordinary rubber compositions such as additives and processing aids may be blended.
  • Crosslinking aid (D) examples include maleimide compounds, triallyl cyanurate (TAC), triallyl isocyanurate (TAIC), and trimethylolpropane trimethacrylate (TMPT). These may be used alone or in combination of two or more. Among these, it is preferable to use a maleimide compound because the effect of improving the crosslinking density and strength is great.
  • TAC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • TMPT trimethylolpropane trimethacrylate
  • the blending amount of the crosslinking aid (D) is preferably in the range of 0.1 to 3 parts by weight with respect to 100 parts by weight of the specific rubber component (A1). If the blending amount of the crosslinking aid is too small, there is a tendency that it is difficult to sufficiently advance the crosslinking reaction. If the blending amount of the crosslinking aid is too large, the crosslinking density becomes too large and adhesion is caused. There is a tendency for power to decline.
  • Softener examples include petroleum oil softeners such as process oil, lubricating oil, paraffin, liquid paraffin, and petroleum jelly, fatty oil softeners such as castor oil, linseed oil, rapeseed oil, and coconut oil, tall oil, And waxes such as beeswax, carnauba wax and lanolin, linoleic acid, palmitic acid, stearic acid, lauric acid and the like.
  • petroleum oil softeners such as process oil, lubricating oil, paraffin, liquid paraffin, and petroleum jelly
  • fatty oil softeners such as castor oil, linseed oil, rapeseed oil, and coconut oil, tall oil
  • And waxes such as beeswax, carnauba wax and lanolin, linoleic acid, palmitic acid, stearic acid, lauric acid and the like.
  • the blending amount of the softening agent is usually 40 parts by weight or less with respect to 100 parts by weight of the specific rubber component (A1).
  • softeners having a pour point of ⁇ 40 ° C. or lower are preferable.
  • Etc may be used alone or in combination of two or more.
  • poly- ⁇ -olefins are preferred from the viewpoint of good compatibility with the specific rubber component (A) and difficulty in bleeding.
  • the poly ⁇ olefin is obtained by polymerizing an ⁇ olefin having 6 to 16 carbon atoms. In the polyalphaolefin, the smaller the molecular weight, the lower the viscosity and the lower the pour point.
  • the pour point of the softener is desirably -80 ° C or higher.
  • the pour point may be measured according to JIS K2269 (1987).
  • the reinforcing agent examples include carbon black and silica.
  • the grade of the carbon black is not particularly limited, and may be appropriately selected from SAF class, ISAF class, HAF class, MAF class, FEF class, GPF class, SRF class, FT class, MT class, and the like.
  • the compounding amount of the reinforcing agent is usually in the range of 10 to 150 parts by weight with respect to 100 parts by weight of the specific rubber component (A1).
  • plasticizer examples include organic acid derivatives such as dioctyl phthalate (DOP) and phosphoric acid derivatives such as tricresyl phosphate.
  • DOP dioctyl phthalate
  • phosphoric acid derivatives such as tricresyl phosphate.
  • the compounding amount of the plasticizer is usually 40 parts by weight or less with respect to 100 parts by weight of the specific rubber component (A1).
  • the anti-aging agent examples include phenols, imidazoles, and waxes.
  • the amount of the anti-aging agent is usually in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of the specific rubber component (A1).
  • the specific rubber (A2) in the solvent-based rubber composition ( ⁇ ) in the present invention is a main component of the solvent-based rubber composition ( ⁇ ), and is generally the entire solvent-based rubber composition ( ⁇ ) ( However, it accounts for the majority of the solid content weight excluding the solvent.
  • the specific rubber component (A2) includes ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), acrylonitrile-butadiene rubber (NBR), and hydrogenated acrylonitrile-butadiene rubber (H-NBR). At least one selected from is used. One of these may be used alone, or two or more thereof may be mixed and used. Further, two or more kinds of rubbers having different Mooney viscosities described later may be mixed and used.
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene-diene rubber
  • NBR acrylonitrile-butadiene rubber
  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • the ethylene content of the ethylene-propylene rubber (EPM) or ethylene-propylene-diene rubber (EPDM) is preferably 60% by weight or less, particularly preferably 53% by weight or less, from the viewpoint of improving the sealing property at an extremely low temperature. is there.
  • the Mooney viscosity of the specific rubber component (A2) is preferably 100 [ML (1 + 4) 100 ° C.] or less, particularly preferably 60 [ML (1 + 4) 100 ° C.] or less.
  • Mooney viscosity means a value measured according to JIS K6300-1 (2001).
  • the specific rubber component (A2) preferably contains EPDM.
  • the EPDM diene content is preferably in the range of 4 to 15% by weight.
  • a diene monomer having 5 to 20 carbon atoms is preferable, and specifically, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 2,5-dimethyl. -1,5-hexadiene, 1,4-octadiene, 1,4-cyclohexadiene, cyclooctadiene, dicyclopentadiene (DCP), 5-ethylidene-2-norbornene (ENB), 5-butylidene-2-norbornene, Examples include 2-methallyl-5-norbornene and 2-isopropenyl-5-norbornene.
  • Specific cross-linking agent (B) Examples of the organic peroxide that is the specific cross-linking agent (B) include those similar to the specific cross-linking agent (B) used in the liquid rubber composition ( ⁇ ) described above, and the blending amount thereof is also as follows. This is the same as the above setting.
  • Specific adhesive component (C) At least one selected from the group consisting of a resorcinol compound, a melamine compound, an aluminate coupling agent, and a silane coupling agent is used. Examples of the specific adhesive component (C) used in the liquid rubber composition ( ⁇ ) are the same as those described above.
  • solvent In the solvent-based rubber composition ( ⁇ ), a solvent is used together with the above (A2) to (C).
  • the solvent include tetrahydrofuran (THF), toluene, methylcyclohexane, n-heptane, m-cresol, methanol, methyl ethyl ketone (MEK), acetone, ethyl acetate, dimethylformamide (DMF), N-methyl-2- Examples thereof include organic solvents such as pyrrolidone (NMP). These may be used alone or in combination of two or more. Of these, THF, toluene, methylcyclohexane, and n-heptane are preferable from the viewpoint of rubber solubility.
  • the compounding amount of the solvent is such that the solid content concentration of the rubber composition is preferably 5 to 40% by weight, particularly preferably 10 to 30% by weight.
  • the amount of the solvent is too small, the coating property tends to be lowered, and when the amount of the solvent is too large, it tends to be difficult to obtain a desired adhesive force.
  • the solvent-based rubber composition ( ⁇ ) used in the present invention includes the crosslinking aid (D), as in the case of the liquid rubber composition ( ⁇ ) described above.
  • Various additives used in ordinary rubber compositions such as a softening agent, a reinforcing agent, a plasticizer, an anti-aging agent, a tackifier, and a processing aid may be blended.
  • the same ones as the above-mentioned liquid rubber composition ( ⁇ ) can be used.
  • the compounding amount used is the same as that of the liquid rubber composition ( ⁇ ).
  • the rubber member for sealing (hereinafter sometimes referred to as “seal rubber member”) is preferably a rubber that is crosslinked with an organic peroxide (crosslinking agent), and specifically, the solid exemplified above.
  • examples thereof include rubber (EPM, EPDM, NBR, H-NBR).
  • EPM or EPDM having an ethylene content of 60% by weight or less, particularly preferably 53% by weight or less is preferred from the viewpoint of improving the sealing performance at extremely low temperatures.
  • a specific crosslinking agent (B) can be used together with the solid rubber.
  • the rubber composition forming the sealing rubber member includes additives other than the adhesive component (C), for example, a crosslinking aid, a softening agent, a reinforcing agent, a plasticizer, an anti-aging agent, a tackifier, and a processing.
  • additives used in ordinary rubber compositions such as auxiliaries may be blended.
  • a fuel cell component and a rubber member that seals the fuel cell are bonded via an adhesive layer, or rubber members that seal the fuel cell component. However, there may be mentioned those bonded through an adhesive layer.
  • the fuel cell components sealed by the rubber member vary depending on the type and structure of the fuel cell. For example, separators (metal separators, etc.), gas diffusion layers (GDL), MEAs (electrolyte membranes, electrodes) Etc.
  • separators metal separators, etc.
  • gas diffusion layers GDL
  • MEAs electrophilyte membranes, electrodes
  • FIG. 1 mainly shows a single cell 1 in a fuel cell in which a plurality of cells are stacked.
  • the cell 1 includes an MEA 2, a gas diffusion layer (GDL) 3, a rubber member 4a, A separator 5 and an adhesive layer 6 are provided.
  • separators 5 facing each other in cells (not shown) adjacent to each other in the stacking direction are bonded to the rubber member 4b through an adhesive layer 6.
  • a separator 5 and rubber members 4a and 4b are bonded through an adhesive layer 6, and MAE 2 and rubber member 4a are bonded to each other. 6, the gas diffusion layer 3 and the rubber member 4a are bonded via the adhesive layer 6, and the adjacent rubber members 4a are bonded via the adhesive layer 6 Etc.
  • the MEA 2 is composed of a pair of electrodes arranged on both sides in the stacking direction with the electrolyte membrane interposed therebetween, although not shown.
  • the electrolyte membrane and the pair of electrodes have a rectangular thin plate shape.
  • Gas diffusion layers 3 are disposed on both sides in the stacking direction with the MEA 2 interposed therebetween.
  • the gas diffusion layer 3 is a porous layer and has a rectangular thin plate shape.
  • the separator 5 is preferably made of a metal such as titanium, and a metal separator having a carbon thin film such as a DLC film (diamond-like carbon film) or a graphite film is particularly preferable from the viewpoint of conduction reliability.
  • the separator 5 has a rectangular thin plate shape and is provided with a total of six grooves extending in the longitudinal direction.
  • the cross section of the separator 5 has an uneven shape due to the grooves.
  • the separators 5 are opposed to each other on both sides of the gas diffusion layer 3 in the stacking direction.
  • a gas flow path 7 for supplying gas to the electrode is defined between the gas diffusion layer 3 and the separator 5 by using an uneven shape.
  • a refrigerant flow path 8 for flowing a refrigerant is defined using an uneven shape.
  • the rubber member 4a for sealing has a rectangular frame shape and is thicker in the stacking direction than the rubber member 4b for sealing.
  • the rubber member 4 a is bonded to the peripheral portion of the MEA 2 and the gas diffusion layer 3 and the separator 5 via the adhesive layer 6, and seals the peripheral portion of the MEA 2 and the gas diffusion layer 3.
  • the rubber member 4 a uses two members that are divided into upper and lower parts, but may be a single rubber member in which both are combined.
  • the rubber member 4b for sealing has a rectangular frame shape and is thinner in the stacking direction than the rubber member 4a for sealing.
  • the rubber member 4b is bonded to a separator 5 facing a cell (not shown) adjacent in the stacking direction via an adhesive layer 6.
  • the refrigerant flow path 8 is sealed between the separators 5 facing away by the rubber member 4b.
  • a fuel cell such as a polymer electrolyte fuel cell
  • fuel gas and oxidant gas are supplied through the gas flow path 7 respectively.
  • the refrigerant flows through the refrigerant flow path 8 in order to relieve the heat generated during power generation.
  • the peripheral edge of the MEA 2 is sealed by a sealing rubber member 4 a via the adhesive layer 6. For this reason, gas mixing and leakage do not occur.
  • the separators 5 facing each other in cells (not shown) adjacent to each other in the stacking direction are also sealed with a rubber member 4 b for sealing via an adhesive layer 6. For this reason, it is difficult for the refrigerant to leak from the refrigerant flow path 8 to the outside.
  • the fuel cell seal body of the present invention can be produced, for example, as follows. That is, as the rubber member for sealing, for example, a rubber composition containing the above EPDM, organic peroxide (crosslinking agent) and various additives as necessary is prepared, and this is subjected to predetermined conditions (130 to 170 ° C.). X3 to 30 minutes).
  • the rubber member is preferably molded into a predetermined shape according to the shape of the seal portion. In this case, since complicated alignment with the constituent members for the fuel cell is not required, continuous processing is facilitated, and the productivity of the fuel cell can be further improved.
  • the sealing member it is also possible to use unvulcanized rubber.
  • the liquid rubber composition ( ⁇ ) for the adhesive layer can be prepared, for example, as follows. That is, first, materials other than the crosslinking agent (B), the adhesive component (C), and the crosslinking assistant (D) are premixed and kneaded at 80 to 140 ° C. for several minutes. Next, the obtained kneaded product is cooled, and a crosslinking agent (B), an adhesive component (C) and, if necessary, a crosslinking aid (D) are added. Then, kneading is performed at a roll temperature of 40 to 70 ° C. for 5 to 30 minutes using rolls such as an open roll. The adhesive component (C) may be blended in the preliminary mixing stage.
  • the viscosity (normal temperature) of the liquid rubber composition ( ⁇ ) by a B-type viscometer is usually 10000 Pa ⁇ s or less, preferably 500 to 5000 Pa ⁇ s.
  • the solvent-based rubber composition ( ⁇ ) for the adhesive layer can be prepared, for example, as follows. That is, first, materials other than the crosslinking agent (B), the adhesive component (C), and the crosslinking assistant (D) are premixed and kneaded at 80 to 140 ° C. for several minutes. Next, the obtained kneaded product is cooled, and a crosslinking agent (B), an adhesive component (C) and, if necessary, a crosslinking aid (D) are added. Then, kneading is performed at a roll temperature of 40 to 70 ° C. for 5 to 30 minutes using rolls such as an open roll. The adhesive component (C) may be blended in the preliminary mixing stage. Next, a solvent-based rubber composition ( ⁇ ) can be prepared by diluting the kneaded product to a predetermined concentration using a solvent.
  • the viscosity (normal temperature) of the solvent-based rubber composition ( ⁇ ) by a B-type viscometer is usually 4000 Pa ⁇ s or less, preferably 2500 to 3000 Pa ⁇ s.
  • the liquid rubber composition ( ⁇ ) or the solvent-based rubber composition ( ⁇ ) is applied to one or both of a fuel cell component member such as a metal separator and a rubber member that seals it.
  • a fuel cell component member such as a metal separator and a rubber member that seals it.
  • the fuel cell sealing body according to the present invention can be obtained in which a constituent member for a fuel cell such as a metal separator and a rubber member are bonded via an adhesive layer.
  • liquid rubber composition ( ⁇ ) for example, a dispenser application or the like can be mentioned, and it is usually sufficient to apply under normal temperature conditions.
  • examples of the coating method in the case of using the solvent-based rubber composition ( ⁇ ) include spray coating and dispenser coating. Usually, coating may be performed under normal temperature conditions.
  • the thickness of the adhesive layer in the fuel cell seal body of the present invention is usually 0.01 to 0.5 mm, preferably 0.05 to 0.3 mm.
  • Adhesive component (C) [Resorcinol compound (C1)] Tachiroll 620, manufactured by Taoka Chemical Industries [Melamine compound (C2)] SUMIKANOL 507AP, manufactured by Sumitomo Chemical [Silane coupling agent (C3)] 3-Glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM403)
  • Example 1a (Preparation of liquid rubber composition for adhesive layer) The components shown in Table 1 below were blended in the proportions shown in the same table to prepare a liquid rubber composition. That is, first, in Table 1, the rubber component (A1), the softener (E) and the reinforcing agent (F) were kneaded at 120 ° C. for 5 minutes using a Banbury mixer. After cooling the kneaded product, a cross-linking agent (B), an adhesive component (C) and a cross-linking auxiliary agent (D) are added and kneaded at 50 ° C. for 10 minutes using an open roll to obtain a liquid rubber composition (Type B Viscosity with a viscometer: 3000 Pa ⁇ s / normal temperature) was prepared.
  • Table 1 the rubber component (A1), the softener (E) and the reinforcing agent (F) were kneaded at 120 ° C. for 5 minutes using a Banbury mixer. After cooling the kneaded product, a cross
  • EPDM Suditomo Chemical Co., Esprene 505
  • paraffinic process oil Idemitsu Kosan Co., Diana Process Oil PW380
  • GPF grade carbon black Cabot Japan Co., Show Black IP200
  • silica 10 parts of Carplex 1120 manufactured by Degussa Co. were kneaded at 120 ° C. for 5 minutes using a Banbury mixer.
  • test piece (0.1 mm of thickness of an adhesive layer) was produced by making it bridge
  • test piece was attached to a predetermined test jig, a 90 ° peel test was performed, and the adhesion was evaluated.
  • the evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Electrolytic membrane adhesion (vulcanized rubber / adhesive layer / electrolyte membrane)
  • an electrolyte membrane (thickness 0.001 mm, size 10 mm ⁇ 50 mm) made of a fluororesin (manufactured by DuPont, Nafion) was used instead of the titanium plate.
  • the adhesiveness was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Examples 2a to 5a, 7a Except for using each rubber composition shown in Table 1 above as the liquid rubber composition for the adhesive layer, vulcanized rubber adhesion, metal adhesion and electrolyte membrane adhesion were evaluated according to Example 1a. It was. The results are also shown in Table 1 above. In addition, the preparation conditions (vulcanization conditions) of the test piece using the solvent-based rubber composition of Example 7a were 190 ° C. ⁇ 30 minutes.
  • Example 1a Example 1a except that instead of the liquid rubber composition, the solvent-based rubber composition shown in Table 1 above (viscosity by B-type viscometer: 2800 Pa ⁇ s / room temperature) was used as the rubber composition for the adhesive layer.
  • the vulcanized rubber adhesion, metal adhesion, and electrolyte membrane adhesion were evaluated according to the above. The results are also shown in Table 1 above.
  • Example 6a and 8a Metal adhesion and electrolyte membrane adhesion were evaluated according to Example 1a except that unvulcanized rubber was used instead of vulcanized rubber for sealing.
  • preparation conditions (vulcanization conditions) of the test piece using the solvent-based rubber composition of Example 8a were 190 ° C. ⁇ 30 minutes.
  • a test piece (adhesive layer thickness 0.1 mm) was prepared by holding and crosslinking and bonding at 150 ° C. for 30 minutes while pressing from the unvulcanized rubber side. Next, the test piece was attached to a predetermined test jig, a 90 ° peel test was performed, and the adhesion was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Electrolytic membrane adhesion (unvulcanized rubber / adhesive layer / electrolyte membrane)
  • an electrolyte membrane (thickness 0.001 mm, size 10 mm ⁇ 50 mm) made of a fluororesin (manufactured by DuPont, Nafion) was used instead of the titanium plate.
  • the adhesiveness was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • the products of Examples 1a to 8a have the rubber component (vulcanized rubber, unvulcanized rubber) because the adhesive component (C) is blended in the liquid rubber composition for the adhesive layer. Excellent adhesion to metal or electrolyte membrane.
  • the products of Examples 1a to 8a do not contain the adhesive component (C) in the rubber member for sealing (vulcanized rubber, unvulcanized rubber), so there is no mold contamination, and low cost and high productivity. Are better.
  • the products of Examples 1a to 6a [Use of peroxyketal (B1) as a cross-linking agent] are compared with the products of Examples 7a and 8a [Use of dialkyl peroxide (B2) as a cross-linking agent]. It is preferable to vulcanize at a lower temperature.
  • liquid EPM liquid EPM, liquid NBR, or liquid H-NBR instead of liquid EPDM (A1) in the liquid rubber composition for the adhesive layer
  • liquid EPDM liquid EPDM
  • Adhesive component (C) [Resorcinol compound (C1)] Tachiroll 620, manufactured by Taoka Chemical Industries [Melamine compound (C2)] SUMIKANOL 507AP, manufactured by Sumitomo Chemical [Silane coupling agent (C3)] 3-Glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM403)
  • Example 1b (Preparation of solvent-based rubber composition for adhesive layer)
  • the components shown in Table 2 below were blended in the proportions shown in the same table to prepare a solvent-based rubber composition. That is, first, in Table 2, the rubber component (A2), the softener (E) and the reinforcing agent (F) were kneaded at 120 ° C. for 5 minutes using a Banbury mixer. After the kneaded product was cooled, a crosslinking agent (B), an adhesive component (C) and a crosslinking aid (D) were added, and kneaded at 50 ° C. for 10 minutes using an open roll to obtain a rubber composition.
  • Table 2 the rubber component (A2), the softener (E) and the reinforcing agent (F) were kneaded at 120 ° C. for 5 minutes using a Banbury mixer. After the kneaded product was cooled, a crosslinking agent (B), an adhesive component (C) and a crosslinking aid (D)
  • the kneaded product was diluted to a predetermined concentration (solid content concentration: 20% by weight) using a solvent to prepare a solvent-based rubber composition (viscosity by B-type viscometer: 2800 Pa ⁇ s / normal temperature).
  • a rubber composition was prepared in the same manner as the solvent-based rubber composition using components other than the adhesive component (C), the crosslinking aid (D) and the solvent.
  • EPDM manufactured by JSR, JSR EP27
  • paraffinic process oil manufactured by Idemitsu Kosan Co., Ltd., Diana Process Oil PW380
  • GPF grade carbon black manufactured by Cabot Japan, Show Black IP200
  • test piece (0.1 mm of thickness of an adhesive layer) was produced by making it bridge
  • test piece was attached to a predetermined test jig, a 90 ° peel test was performed, and the adhesion was evaluated.
  • the evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Electrolytic membrane adhesion (vulcanized rubber / adhesive layer / electrolyte membrane)
  • an electrolyte membrane (thickness 0.001 mm, size 10 mm ⁇ 50 mm) made of a fluororesin (manufactured by DuPont, Nafion) was used instead of the titanium plate.
  • the adhesiveness was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Examples 2b to 5b, 7b, Comparative Example 1b Except for using each rubber composition shown in Table 2 above as the solvent-based rubber composition for the adhesive layer, evaluation of vulcanized rubber adhesion, metal adhesion, and electrolyte membrane adhesion was performed in accordance with Example 1b. went. The results are also shown in Table 2 above. In addition, the preparation conditions (vulcanization conditions) of the test piece using the solvent-based rubber composition of Example 7b were 190 ° C. ⁇ 30 minutes.
  • Example 6b and 8b Metal adhesion and electrolyte membrane adhesion were evaluated according to Example 1b except that unvulcanized rubber was used instead of vulcanized rubber for sealing.
  • preparation conditions vulcanization conditions
  • the preparation conditions for the test pieces using the solvent-based rubber composition of Example 8b were 190 ° C. ⁇ 30 minutes.
  • a test piece (adhesive layer thickness 0.1 mm) was prepared by holding and crosslinking and bonding at 150 ° C. for 30 minutes while pressing from the unvulcanized rubber side. Next, the test piece was attached to a predetermined test jig, a 90 ° peel test was performed, and the adhesion was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • Electrolytic membrane adhesion (unvulcanized rubber / adhesive layer / electrolyte membrane)
  • an electrolyte membrane (thickness 0.001 mm, size 10 mm ⁇ 50 mm) made of a fluororesin (manufactured by DuPont, Nafion) was used instead of the titanium plate.
  • the adhesiveness was evaluated. The evaluation criteria were “ ⁇ ” when the rubber was broken, and “X” when the interface was peeled off.
  • the products of Examples 1b to 8b had the rubber component (vulcanized rubber, unvulcanized rubber) because the adhesive component (C) was blended in the solvent-based rubber composition for the adhesive layer. ), Excellent adhesion to metal or electrolyte membrane.
  • the products of Examples 1b to 8b do not contain the adhesive component (C) in the rubber member for sealing (vulcanized rubber, unvulcanized rubber), there is no mold contamination, and low cost and high productivity. Are better.
  • dispenser application (conditions: injection speed 60 mm / sec, injection pressure 0.05 to 0.06 MPa) using JETMERTER 2 manufactured by Musashi Engineering Co., Ltd. is the same as spray application. Evaluation results were obtained. In addition, when EPM, NBR, and H-NBR were used instead of EPDM in the solvent-based rubber composition, the same evaluation results as those obtained when EPDM was used were obtained. Incidentally, among the examples, the products of Examples 1b to 6b [Use of peroxyketal (B1) as a cross-linking agent] are compared with the products of Examples 7b and 8b [Use of dialkyl peroxide (B2) as a cross-linking agent]. This is preferable because vulcanization at a lower temperature is possible.
  • the liquid rubber composition of the present invention is a fuel cell sealing body in which a constituent member for a fuel cell such as a metal separator and a rubber member for sealing it are bonded via an adhesive layer, or the rubber members are bonded to each other. It is used for the adhesive layer of the fuel cell seal body that is bonded via The adhesive layer is made of one of the liquid rubber composition ( ⁇ ) containing (A1) to (C) and the solvent-based rubber composition ( ⁇ ) containing a solvent together with (A2) to (C). Since it is formed, the adhesion reliability is high. Therefore, it is not necessary to knead the adhesive component (C) into the rubber member. Therefore, there is no problem of mold contamination, and it is excellent in mass productivity at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 金型汚染がなく、低コストで量産性に優れ、接着信頼性の高いゴム組成物を提供する。本発明は、燃料電池用構成部材2,3,5とシール用のゴム部材4a,4bとが接着層6を介して、または上記ゴム部材4a同士が接着層6を介して接着された燃料電池シール体の接着層6に使用され、下記液状のゴム組成物(α)、および、下記溶剤系のゴム組成物(β)の一方である。 (α)下記(A1)とともに、(B)および(C)を含有する液状のゴム組成物。 (β)下記(A2)、(B)、(C)とともに溶剤を含有する溶剤系のゴム組成物。 (A1)少なくとも液状ゴムを含有するゴム成分。 (A2)EPM、EPDM、NBRおよびH-NBRからなる群から選ばれた少なくとも一つ。 (B)有機過酸化物からなる架橋剤。 (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つ。

Description

ゴム組成物および燃料電池シール体
 本発明は、金属セパレータ等の燃料電池用構成部材と、それをシールするゴム部材とが、接着層を介して接着されてなる燃料電池シール体の接着層に用いるゴム組成物、およびそれを用いてなる燃料電池シール体に関するものである。
 ガスの電気化学反応により電気を発生させる燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。なかでも固体高分子型燃料電池は、比較的低温で作動させることができ、大きな出力密度を有する。このため、発電用、自動車用電源等、種々の用途が期待される。
 固体高分子型燃料電池においては、膜電極接合体(MEA)等を金属セパレータで挟持したセルが発電単位となる。MEAは、電解質となる高分子膜(電解質膜)と、電解質膜の厚さ方向両面に配置された一対の電極触媒層〔燃料極(アノード)触媒層、酸素極(カソード)触媒層〕とからなる。一対の電極触媒層の表面には、さらにガスを拡散させるための多孔質層(ガス拡散層)が配置される。燃料極側には水素等の燃料ガスが、酸素極側には酸素や空気等の酸化剤ガスがそれぞれ供給される。供給されたガスと電解質と電極触媒層との三相界面における電気化学反応により、発電が行われる。固体高分子型燃料電池は、上記セルを多数積層したセル積層体を、セル積層方向の両端に配置したエンドプレート等により締め付けて構成される。
 金属セパレータには、各々の電極に供給されるガスの流路や、発電の際の発熱を緩和するための冷媒の流路が形成される。また、電解質膜は、水を含んだ状態でプロトン導電性を有するため、作動時には、電解質膜を湿潤状態に保つ必要がある。したがって、ガスの混合、ガスおよび冷媒の漏れを防止するとともに、セル内を湿潤状態に保持するためには、MEAおよび多孔質層の周囲や、隣り合う金属セパレータ間のシール性を確保することが重要となる。これらの構成部材をシールするシール部材としては、例えば、エチレン-プロピレン-ジエンゴム(EPDM)等のゴム成分に、レゾルシノール系化合物等の接着成分を練り込み、シール部材自体に接着性を持たせ、接着剤を塗布することなしに(接着剤レス)、金属セパレータ等の構成部材とのシール性を確保した燃料電池用接着性シール部材が提案されている(特許文献1)。
特開2011-249283号公報
 上記特許文献1に記載の燃料電池用接着性シール部材は、ゴム成分中に練り込んだ接着剤成分と、金属セパレータとが水素結合により接着するため、シール性の点では非常に優れている。しかしながら、上記ゴム成分中に練り込んだ接着成分が、汎用の金型に対しても接着し、金型が汚染するという問題がある。この対策として、表面をテフロン(登録商標)コーティング処理した金型を使用することも考えられるが、耐久性が悪く、また接着成分の汚染が徐々に進むため、金型を清掃する必要があり、自動化が困難で、コストが高く、量産性の点で改良の余地がある。
 本発明は、このような事情に鑑みなされたもので、金型汚染がなく、低コストで量産性に優れ、接着信頼性の高いゴム組成物、およびそれを用いてなる燃料電池シール体の提供をその目的とする。
 本発明者らは、金型汚染がなく、低コストで量産性に優れ、接着信頼性の高い燃料電池シール体の接着層用のゴム組成物を得るため、鋭意研究を重ねた。その研究の過程で、シール用のゴム部材中に接着成分を練り込むのではなく、接着成分を含有しないゴム部材(加硫ゴム等)を予め作製し、このゴム部材および燃料電池用構成部材(金属セパレータ等)の少なくとも一方に、液状ゴム組成物、もしくは溶剤系のゴム組成物を塗布して後接着することに着目した。その結果、少なくとも液状ゴムを含有するゴム成分(A1)、有機過酸化物からなる架橋剤(B)およびレゾルシノール系化合物等の接着成分(C)を含有する液状のゴム組成物(α)、もしくはエチレン-プロピレン-ジエンゴム等のゴム成分(A2)、有機過酸化物からなる架橋剤(B)、レゾルシノール系化合物等の接着成分(C)とともに溶剤を含有する溶剤系のゴム組成物(β)を突き止め、これを用いて燃料電池シール体の接着層を形成すると、燃料電池用構成部材と、シール用のゴム部材等の接着信頼性が高くなり、所期の目的を達成できることを見いだし、本発明に到達した。
 すなわち、本発明は、燃料電池シール体の接着層に使用するゴム組成物であって、下記の液状のゴム組成物(α)、および、下記の溶剤系のゴム組成物(β)の一方であるゴム組成物を第1の要旨とする。
(α)下記の(A1)~(C)を含有する液状のゴム組成物。
 (A1)少なくとも液状ゴムを含有するゴム成分。
 (B)有機過酸化物からなる架橋剤。
 (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
(β)下記の(A2)~(C)とともに溶剤を含有する溶剤系のゴム組成物。
 (A2)エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエンゴムおよび水素添加アクリロニトリル-ブタジエンゴムからなる群から選ばれた少なくとも一つのゴム成分。
 (B)有機過酸化物からなる架橋剤。
 (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
 また、本発明は、燃料電池用構成部材とシール用のゴム部材とが接着層を介して接着されてなるか、もしくは上記ゴム部材同士が接着層を介して接着されてなる燃料電池シール体であって、上記接着層が、上記第1の要旨のゴム組成物からなる燃料電池シール体を第2の要旨とする。
 以上のように、本発明のゴム組成物は、燃料電池シール体の接着層に使用するゴム組成物であって、少なくとも液状ゴムを含有するゴム成分(A1)、有機過酸化物からなる架橋剤(B)およびレゾルシノール系化合物等の接着成分(C)を含有する液状のゴム組成物(α)(以下、「液状ゴム組成物(α)」と記載する場合もある。)である。または、エチレン-プロピレン-ジエンゴム等のゴム成分(A2)、有機過酸化物からなる架橋剤(B)、レゾルシノール系化合物等の接着成分(C)とともに溶剤を含有する溶剤系のゴム組成物(β)(以下、「溶剤系ゴム組成物(β)」と記載する場合もある。)である。
 なお、本発明において、上記液状のゴム組成物(液状ゴム組成物)(α)とは、常温で液状のゴム組成物を意味する。
 上記液状ゴム組成物(α)および上記溶剤系ゴム組成物(β)は、いずれも接着成分(C)を含有するため、燃料電池用構成部材とシール用のゴム部材との接着性、もしくは上記ゴム部材同士の接着性が良好で、接着信頼性が高い。例えば、接着成分(C)としてレゾルシノール系化合物およびメラミン系化合物を含む場合には、メラミン系化合物がメチレン供与体となり、レゾルシノール系化合物がメチレン授与体となる。架橋時に、メチレン基の供与により、レゾルシノール系化合物とゴム部材(加硫ゴム等)の2重結合とが架橋して化学結合するとともに、燃料電池用構成部材(金属セパレータ等)の水酸基とも水素結合する。これにより接着層を介してゴム部材(加硫ゴム等)と燃料電池用構成部材(金属セパレータ等)とが接着するようになる。また、接着成分(C)としてアルミネート系カップリング剤を含む場合には、接着剤層中のアルミネート系カップリング剤を介して、燃料電池用構成部材とシール用ゴム部材とが接着する。同様に、接着成分(C)としてシランカップリング剤を含む場合には、接着剤層中のシランカップリング剤を介して、燃料電池用構成部材とシール用ゴム部材とが接着する。さらに、燃料電池用構成部材が金属セパレータ等以外の非金属材料の場合、例えば、膜電極接合体(MEA)やガス拡散層等の場合は、接着層中の接着成分(C)と、燃料電池用構成部材との相溶性もしくは熱融着力により、両者が接着するものと考えられる。
 これらの接着成分(C)の接着力は大きい。加えて、燃料電池の作動環境においても、接着力は低下しにくい。したがって、本発明の燃料電池シール体によると、燃料電池を長期間作動させた場合でも、良好なシール性が確保される。すなわち、燃料電池の作動信頼性を向上させることができる。
 本発明の燃料電池シール体は、燃料電池の作動温度から-30℃程度までの広い温度範囲で、ゴム弾性を有する。このため、本発明の燃料電池シール体によると、接着によるシールだけでなく、応力によるシールが可能となる。極低温下でゴム弾性が失われると、接着シールよりも、応力シールにおいてシール性が低下しやすい。この点、本発明の燃料電池シール体によると、極低温下においてもゴム弾性が維持されるため、応力シールであってもシール性が低下しにくい。
 このように、本発明の燃料電池シール体は、燃料電池用構成部材とシール用のゴム部材とが、もしくは上記ゴム部材同士が、上記(A1)~(C)を含有する液状ゴム組成物(α)、および、上記(A2)~(C)を含有する溶剤系ゴム組成物(β)の一方からなる接着層により接着されているため、接着信頼性が高い。したがって、上記シール用のゴム部材中に接着成分を練り込む必要がないため、金型汚染がない。よって、金型を清掃する必要がないため、自動化が可能で、低コストで量産性に優れている。また、本発明では、液状ゴムを使用することにより、あるいは溶剤を使用することにより、ゴム組成物の粘度を下げることができるため、ディスペンサー塗布等により接着層を容易に形成することができ、作業効率に優れている。さらに、上記液状ゴム組成物(α)においてはトルエン等の有機溶剤を使用しないため、揮発性有機化合物(VOC)の排出を低減することができ、環境汚染の問題も解消することができる。
 上記特定のゴムである(A1)あるいは(A2)中の、エチレン-プロピレンゴム(EPM)やエチレン-プロピレン-ジエンゴム(EPDM)は、そのエチレン含有量が少ないほど、-20~-30℃程度の極低温下で結晶化しにくい。つまり、エチレン含有量が少ないEPM、EPDMは、極低温下においてもゴム弾性が低下しにくいため、極低温下においてもゴム弾性を維持することができる。よって、エチレン含有量が60重量%以下のエチレン-プロピレンゴムやエチレン-プロピレン-ジエンゴムを使用すると、極低温下におけるシール性がさらに向上する。
本発明の燃料電池シール体の一例を示す断面図である。
 つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限られるものではない。
 本発明のゴム組成物は、燃料電池シール体の接着層に使用するゴム組成物であって、下記の液状のゴム組成物(α)、および、下記の溶剤系のゴム組成物(β)の一方である。
(α)下記の(A1)~(C)を含有する液状のゴム組成物。
 (A1)少なくとも液状ゴムを含有するゴム成分。
 (B)有機過酸化物からなる架橋剤。
 (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
(β)下記の(A2)~(C)とともに溶剤を含有する溶剤系のゴム組成物。
 (A2)エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエンゴムおよび水素添加アクリロニトリル-ブタジエンゴムからなる群から選ばれた少なくとも一つのゴム成分。
 (B)有機過酸化物からなる架橋剤。
 (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
<液状ゴム組成物(α)>
 まずは、上記(A1)~(C)を含有する液状ゴム組成物(α)について説明する。
《特定のゴム成分(A1)》
 本発明での液状ゴム組成物(α)における上記特定のゴム(A1)は、上記液状ゴム組成物(α)の主成分であって、通常、液状ゴム組成物(α)全体の過半を占める。
 上記特定のゴム成分(A1)は、少なくとも液状ゴムを含有する必要がある。
 本発明において、液状ゴムとは、常温で液状であって、粘度が1000Pa・s以下のゴムをいう。
 上記液状ゴムとしては、例えば、液状エチレン-プロピレンゴム(液状EPM)、液状エチレン-プロピレン-ジエンゴム(液状EPDM)、液状アクリロニトリル-ブタジエンゴム(液状NBR)、液状水素添加アクリロニトリル-ブタジエンゴム(液状H-NBR)等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、シール性の点で、液状EPM、液状EPDMが好ましい。
 上記液状EPMまたは液状EPDMのエチレン含有量は、極低温下におけるシール性の向上の観点から、60重量%以下が好ましく、特に好ましくは53重量%以下である。
 上記特定のゴム成分(A1)は、液状ゴムとともに、液状ゴム以外のゴム(以下、「ソリッドゴム」と記載する場合もある。)を含有しても差し支えない。
 なお、本明細書において「ソリッドゴム」とは、上記「液状ゴム」に対する意味であり、通常、常温で固体であって、混練可能なゴムを意味する。
 上記ソリッドゴムとしては、例えば、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、アクリロニトリル-ブタジエンゴム(NBR)、水素添加アクリロニトリル-ブタジエンゴム(H-NBR)等があげられる。これらの1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、ムーニー粘度が異なる二つ以上の同種のゴムを、混合して用いてもよい。
 上記液状ゴムの含有量は、上記特定のゴム成分(A1)全体(液状ゴム+ソリッドゴム)の40重量%以上であることが好ましく、特に好ましくは60重量%以上、最も好ましくは80重量%以上である。液状ゴムの含有量が少なすぎると、ゴム組成物の粘度が高くなり、塗工性が悪化する傾向がみられる。
 上記特定のゴム成分(A1)のムーニー粘度は、100[ML(1+4)100℃]以下が好ましく、特に好ましくは60[ML(1+4)100℃]以下である。ムーニー粘度が上記範囲内であると、液状ゴム組成物の流動性が高くなり、塗工性が向上する。
 なお、本明細書において、ムーニー粘度は、JIS K6300-1(2001)に準じて測定された値を意味する。
 燃料電池の作動環境における耐酸性および耐水性の観点から、上記特定のゴム成分(A1)は、EPDM(液状EPDM、もしくは液状EPDMとソリッドEPDM)を含むことが好ましい。上記EPDMのジエン量(ジエン成分の質量割合)は、4~15重量%の範囲が好ましい。
 上記EPDMのジエン成分としては、例えば、炭素数5~20のジエン系モノマーが好ましく、具体的には、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,5-ジメチル-1,5-ヘキサジエン、1,4-オクタジエン、1,4-シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン(DCP)、5-エチリデン-2-ノルボルネン(ENB)、5-ブチリデン-2-ノルボルネン、2-メタリル-5-ノルボルネン、2-イソプロペニル-5-ノルボルネン等があげられる。
《特定の架橋剤(B)》
 上記特定の架橋剤(B)は、有機過酸化物からなるものである。上記有機過酸化物としては、例えば、パーオキシケタール、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート、ジアルキルパーオキサイド、ハイドロパーオキサイド等があげられる。これらは単独でもしくは2種以上併せて用いられる。このような有機過酸化物のなかでも、例えば、1時間半減期温度が160℃以下の有機過酸化物からなるものが好ましく用いられる。そして、電解質膜と接着させるためには、1時間半減期温度が130℃以下の有機過酸化物を用いることがより好ましい。さらには、これらのなかでも、130℃程度の温度で架橋しやすく、架橋剤を加えて混練したゴム組成物の取扱性にも優れるという理由から、1時間半減期温度が100℃以上のパーオキシケタールおよびパーオキシエステルの少なくとも一方が好ましく、特に好ましくは、1時間半減期温度が110℃以上のものが好適である。また、パーオキシエステルを用いると、より短時間で架橋を行うことができる。
 本発明において、上記架橋剤(B)での、1時間半減期温度が160℃以下の有機過酸化物における「半減期」とは、有機過酸化物の濃度(活性酸素量)が初期値の半分になるまでの時間である。よって、「半減期温度」は、有機過酸化物の分解温度を示す指標となる。上記「1時間半減期温度」は、半減期が1時間となる温度である。つまり、1時間半減期温度が低いほど、低温で分解しやすい。1時間半減期温度が160℃以下の有機過酸化物を用いることにより、架橋をより低温(具体的には150℃以下)で、かつ短時間で行うことができる。したがって、例えば、固体高分子型燃料電池の電解質膜の近傍においても、本発明の燃料電池シール体を使用することができる。
 上記パーオキシケタールとしては、例えば、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン等があげられる。
 上記パーオキシエステルとしては、例えば、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネートがあげられる。
 これらのうち、上記特定のゴム成分(A1)との反応が比較的速いという理由から、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソプロピルモノカーボネートが好適である。なかでも、t-ブチルパーオキシイソプロピルモノカーボネートを用いると、より短時間で架橋を行うことができる。
 上記特定の架橋剤(B)(純度100%の原体の場合)の配合量は、上記特定のゴム成分(A1)100重量部に対して0.4~12重量部の範囲が好ましい。上記特定の架橋剤(B)の配合量が少なすぎると、架橋反応を充分に進行させることが困難となる傾向がみられ、上記特定の架橋剤(B)の配合量が多すぎると、架橋反応時に架橋密度が急激に上昇して、接着力の低下を招く傾向がみられる。
《特定の接着成分(C)》
 上記特定の接着成分(C)としては、レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つが用いられる。
 上記レゾルシノール系化合物としては、例えば、レゾルシン、変性レゾルシン・ホルムアルデヒド樹脂、レゾルシン・ホルムアルデヒド(RF)樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、低揮発性、低吸湿性、ゴムとの相溶性が優れるという点で、変性レゾルシン・ホルムアルデヒド樹脂が好ましい。上記変性レゾルシン・ホルムアルデヒド樹脂としては、例えば、下記の一般式(1)~(3)で表されるものがあげられる、特に好ましくは、一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記レゾルシノール系化合物の配合量は、上記特定のゴム成分(A1)100重量部に対して0.1~30重量部の範囲が好ましく、特に好ましくは1~15重量部の範囲である。上記レゾルシノール系化合物の配合量が少なすぎると、所望の接着力を得ることが困難となる傾向がみられ、上記レゾルシノール系化合物の配合量が多すぎると、ゴムの物性が低下する傾向がみられる。
 上記メラミン系化合物としては、例えば、ホルムアルデヒド・メラミン重合物のメチル化物、ヘキサメチレンテトラミン等があげられる。これらは単独でもしくは2種以上併せて用いられる。これらは、架橋の際の加熱下で分解し、ホルムアルデヒドを系に供給する。なかでも、低揮発性、低吸湿性、ゴムとの相溶性が優れるという点で、ホルムアルデヒド・メラミン重合物のメチル化物が好ましい。上記ホルムアルデヒド・メラミン重合物のメチル化物としては、例えば、下記の一般式(4)で表されるものが好ましく、特に、一般式(4)中、n=1の化合物が43~44重量%、n=2の化合物が27~30重量%、n=3の化合物が26~30重量%の混合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 ここで、上記レゾルシノール系化合物とメラミン系化合物との配合比は、重量比で、1:0.5~1:2の範囲が好ましく、特に好ましくは1:0.77~1:1.5の範囲である。メラミン系化合物の配合比が小さすぎると、ゴムの引張り強さ、伸び等が若干低下する傾向がみられ、メラミン系化合物の配合比が高すぎると、接着力が飽和するため、それ以上の配合はコストアップにつながる。
 上記アルミネート系カップリング剤としては、加水分解可能なアルコキシ基と、ゴム成分と親和性がある部分とを有するアルミニウム有機化合物の中から、接着性等を考慮して適宜選択すればよい。例えば、アルミニウムアルキルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムイソプロピレート、アルミニウムジイソプロピレートモノセカンダリーブチレート、アルミニウムセカンダリーブチレート、アルミニウムエチレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート、アルミニウムトリスアセチルアセトネート、アルミニウムモノイソプロポキシモノオレキシエチルアセトアセテート等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、アルミニウムアルキルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムトリスエチルアセトアセテートが好ましい。
 上記アルミネート系カップリング剤の配合量は、上記特定のゴム成分(A1)100重量部に対して0.5~20重量部の範囲が好ましく、特に好ましくは3~15重量部の範囲である。上記アルミネート系カップリング剤の配合量が少なすぎると、所望の接着力を得ることが困難となる傾向がみられ、上記アルミネート系カップリング剤の配合量が多すぎると、ゴムの物性低下を招き、加工性も低下する傾向がみられる。
 上記シランカップリング剤は、官能基としてエポキシ基、アミノ基、ビニル基等を有する化合物群の中から、接着性等を考慮して適宜選択すればよい。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシランおよびN-フェニル-3-アミノプロピルトリメトキシシラン等があげられる。また、揮発を防ぐために、これら化合物が結合したオリゴマーも用いられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、エポキシ基またはビニル基を有する化合物群から選ばれる一種以上を用いると、接着力が向上すると共に、燃料電池の作動環境においても、接着力が低下しにくい。具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン等が好ましい。
 上記シランカップリング剤の配合量は、上記特定のゴム成分(A1)100重量部に対して0.5~20重量部の範囲が好ましく、特に好ましくは5~10重量部の範囲である。上記シランカップリング剤の配合量が少なすぎると、所望の接着力を得ることが困難となる傾向がみられ、上記シランカップリング剤の配合量が多すぎると、ゴムの物性低下を招き、加工性も低下する傾向がみられる。
 なお、本発明に使用する液状ゴム組成物(α)には、上記(A1)~(C)以外に、架橋助剤(D)、軟化剤、補強剤、可塑剤、老化防止剤、粘着付与剤、加工助剤等の、通常のゴム組成物に用いられる各種添加剤を配合しても差し支えない。
《架橋助剤(D)》
 上記架橋助剤としては、例えば、マレイミド化合物、トリアリルシアヌレート(TAC)、トリアリルイソシアヌレート(TAIC)、トリメチロールプロパントリメタクリレート(TMPT)等があげられる。これらは単独でもしくは2種以上併せて用いられる。これらのなかでも、架橋密度や強度の向上効果が大きいという理由から、マレイミド化合物を用いることが好ましい。
 上記架橋助剤(D)の配合量は、上記特定のゴム成分(A1)100重量部に対して0.1~3重量部の範囲が好ましい。上記架橋助剤の配合量が少なすぎると、架橋反応を充分に進行させることが困難となる傾向がみられ、上記架橋助剤の配合量が多すぎると、架橋密度が大きくなり過ぎて、接着力が低下する傾向がみられる。
《軟化剤》
 上記軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン、流動パラフィン、ワセリン等の石油系軟化剤、ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤、トール油、サブ、蜜ロウ、カルナバロウ、ラノリン等のワックス類、リノール酸、パルミチン酸、ステアリン酸、ラウリン酸等があげられる。
 上記軟化剤の配合量は、上記特定のゴム成分(A1)100重量部に対して通常40重量部以下である。
 上記軟化剤のなかでも、流動点が-40℃以下の軟化剤が好ましく、例えば、ポリαオレフィン、ジオクチルフタレート(DOP)、ジオクチルアジペート(DOA)、ジオクチルセバケート(DOS)、ジブチルセバケート(DBS)等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、特定のゴム成分(A)との相溶性が良好で、ブリードしにくいという観点から、ポリαオレフィンが好ましい。ポリαオレフィンは、炭素数6~16のαオレフィンを重合させたものである。ポリαオレフィンにおいては、分子量が小さいほど、粘度が小さく流動点も低い。
 軟化剤は、流動点が低いほど、極低温下において硬化しにくい。したがって、流動点が低いものほど、極低温下におけるゴム成分の結晶化抑制効果が大きい。より好適な軟化剤の流動点は、-40℃以下である。一方、流動点が低すぎると、燃料電池の作動時等において揮発しやすくなる。よって、軟化剤の流動点は、-80℃以上であることが望ましい。
 なお、流動点の測定は、JIS K2269(1987)に準じて行えばよい。
《補強剤》
 上記補強剤としては、例えば、カーボンブラック、シリカ等があげられる。上記カーボンブラックのグレードは、特に限定されるものではなく、SAF級、ISAF級、HAF級、MAF級、FEF級、GPF級、SRF級、FT級、MT級等から適宜選択すればよい。
 上記補強剤の配合量は、上記特定のゴム成分(A1)100重量部に対して、通常10~150重量部の範囲である。
 上記可塑剤としては、ジオクチルフタレート(DOP)等の有機酸誘導体、リン酸トリクレジル等のリン酸誘導体があげられる。
 上記可塑剤の配合量は、上記特定のゴム成分(A1)100重量部に対して、通常40重量部以下である。
 上記老化防止剤としては、フェノール系、イミダゾール系、ワックス等があげられる。上記老化防止剤の配合量は、上記特定のゴム成分(A1)100重量部に対して、通常0.5~10重量部の範囲である。
<溶剤系ゴム組成物(β)>
 つぎに、上記(A2)~(C)を含有する溶剤系ゴム組成物(β)について説明する。
《特定のゴム成分(A2)》
 本発明での溶剤系ゴム組成物(β)における上記特定のゴム(A2)は、上記溶剤系ゴム組成物(β)の主成分であって、通常、溶剤系ゴム組成物(β)全体(但し、溶剤を除いた固形分重量)の過半を占める。
 上記特定のゴム成分(A2)としては、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエンゴム(EPDM)、アクリロニトリル-ブタジエンゴム(NBR)および水素添加アクリロニトリル-ブタジエンゴム(H-NBR)からなる群から選ばれた少なくとも一つが用いられる。これらの1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、後述するムーニー粘度が異なる二つ以上の同種のゴムを、混合して用いてもよい。
 上記エチレン-プロピレンゴム(EPM)またはエチレン-プロピレン-ジエンゴム(EPDM)のエチレン含有量は、極低温下におけるシール性の向上の観点から、60重量%以下が好ましく、特に好ましくは53重量%以下である。
 上記特定のゴム成分(A2)のムーニー粘度は、100[ML(1+4)100℃]以下が好ましく、特に好ましくは60[ML(1+4)100℃]以下である。ムーニー粘度が上記範囲内であると、溶剤系ゴム組成物(β)の流動性が高くなり、塗工性が向上する。
 なお、本明細書において、ムーニー粘度は、JIS K6300-1(2001)に準じて測定された値を意味する。
 燃料電池の作動環境における耐酸性および耐水性の観点から、上記特定のゴム成分(A2)は、EPDMを含むことが好ましい。上記EPDMのジエン量(ジエン成分の質量割合)は、4~15重量%の範囲が好ましい。
 上記EPDMのジエン成分としては、例えば、炭素数5~20のジエン系モノマーが好ましく、具体的には、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,5-ジメチル-1,5-ヘキサジエン、1,4-オクタジエン、1,4-シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン(DCP)、5-エチリデン-2-ノルボルネン(ENB)、5-ブチリデン-2-ノルボルネン、2-メタリル-5-ノルボルネン、2-イソプロペニル-5-ノルボルネン等があげられる。
《特定の架橋剤(B)》
 上記特定の架橋剤(B)である、有機過酸化物としては、前述の液状ゴム組成物(α)にて用いられる特定の架橋剤(B)と同様のものがあげられ、その配合量も前述の設定と同様である。
《特定の接着成分(C)》
 上記特定の接着成分(C)としては、レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つが用いられるものであり、その例示としては、前述の液状ゴム組成物(α)にて用いられる特定の接着成分(C)と同様のものがあげられ、その配合量も前述の設定と同様である。
《溶剤》
 溶剤系ゴム組成物(β)においては、上記(A2)~(C)とともに溶剤が用いられる。上記溶剤としては、例えば、テトラヒドロフラン(THF)、トルエン、メチルシクロヘキサン、n-へプタン、m-クレゾール、メタノール、メチルエチルケトン(MEK)、アセトン、酢酸エチル、ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等の有機溶剤等があげられる。これらは単独でもしくは2種以上併せて用いられる。これらのなかでも、ゴムの溶解性の点で、THF、トルエン、メチルシクロヘキサン、n-へプタンが好ましい。
 上記溶剤の配合量は、ゴム組成物の固形分濃度が好ましくは5~40重量%、特に好ましくは10~30重量%となるように配合される。上記溶剤の配合量が少なすぎると、塗工性が落ちる傾向がみられ、上記溶剤の配合量が多すぎると、所望の接着力を得ることが困難になる傾向がみられる。
 なお、本発明に使用する溶剤系ゴム組成物(β)には、上記(A2)~(C)以外に、前述の液状ゴム組成物(α)の場合と同様、架橋助剤(D)、軟化剤、補強剤、可塑剤、老化防止剤、粘着付与剤、加工助剤等の、通常のゴム組成物に用いられる各種添加剤を配合しても差し支えない。
 上記架橋助剤(D)、軟化剤、補強剤、可塑剤、老化防止剤、粘着付与剤、加工助剤等の各種添加剤に関しても、前述の液状ゴム組成物(α)と同様のものが用いられ、またその配合量も前述の液状ゴム組成物(α)と同様である。
〈シール用のゴム部材〉
 上記シール用のゴム部材(以下、「シール用ゴム部材」と記載する場合もある。)は、有機過酸化物(架橋剤)により架橋するゴムが好ましく、具体的には、上記で例示したソリッドゴム(EPM、EPDM、NBR、H-NBR)等があげられる。なかでも、極低温下におけるシール性の向上の観点から、エチレン含有量が60重量%以下、特に好ましくは53重量%以下のEPMもしくはEPDMが好ましい。
 上記シール用ゴム部材を形成するゴム組成物としては、上記ソリッドゴムとともに、特定の架橋剤(B)を使用することもできる。また、上記シール用ゴム部材を形成するゴム組成物には、接着成分(C)以外の添加剤、例えば、架橋助剤、軟化剤、補強剤、可塑剤、老化防止剤、粘着付与剤、加工助剤等の、通常のゴム組成物に用いられる各種添加剤を配合しても差し支えない。
〈燃料電池シール体〉
 本発明の燃料電池シール体としては、燃料電池用構成部材と、それをシールするゴム部材とが、接着層を介して接着されてなるもの、もしくは上記燃料電池用構成部材をシールするゴム部材同士が、接着層を介して接着されてなるもの等があげられる。
 上記ゴム部材によりシールされる燃料電池用構成部材は、燃料電池の種類、構造等により様々であるが、例えば、セパレータ(金属セパレータ等)、ガス拡散層(GDL)、MEA(電解質膜、電極)等があげられる。
 図1は、複数枚のセルが積層されてなる燃料電池における単一のセル1を主として示したものであり、セル1は、MEA2と、ガス拡散層(GDL)3と、ゴム部材4aと、セパレータ5と、接着層6を備えている。また、積層方向に隣接するセル(図示せず)の背向するセパレータ5同士は、接着層6を介して、ゴム部材4bと接着されている。
 本発明の燃料電池シール体としては、例えば、図1に示すように、セパレータ5とゴム部材4a,4bとが接着層6を介して接着されてなるもの、MAE2とゴム部材4aとが接着層6を介して接着されてなるもの、ガス拡散層3とゴム部材4aとが接着層6を介して接着されてなるもの、隣接するゴム部材4a同士が接着層6を介して接着されてなるもの等があげられる。
 MEA2は、図示しないが、電解質膜を挟んで積層方向両側に配置されている一対の電極からなる。電解質膜および一対の電極は、矩形薄板状を呈している。上記MEA2を挟んで積層方向両側には、ガス拡散層3が配置されている。上記ガス拡散層3は、多孔質層で、矩形薄板状を呈している。
 上記セパレータ5は、チタン等の金属製のものが好ましく、導通信頼性の観点から、DLC膜(ダイヤモンドライクカーボン膜)やグラファイト膜等の炭素薄膜を有する金属セパレータが特に好ましい。上記セパレータ5は、矩形薄板状を呈しており、長手方向に延在する溝が合計六つ凹設されており、この溝により、セパレータ5の断面は、凹凸形状を呈している。セパレータ5は、ガス拡散層3の積層方向両側に、対向して配置されている。ガス拡散層3とセパレータ5との間には、凹凸形状を利用して、電極にガスを供給するためのガス流路7が区画されている。また、積層方向に隣接するセル(図示せず)の背向するセパレータ5同士の間には、凹凸形状を利用して、冷媒を流すための冷媒流路8が区画されている。
 上記シール用のゴム部材4aは、矩形枠状を呈しており、シール用のゴム部材4bよりも積層方向肉厚が厚い。ゴム部材4aは、接着層6を介して、MEA2やガス拡散層3の周縁部、およびセパレータ5に接着され、MEA2やガス拡散層3の周縁部を封止している。なお、図1において、ゴム部材4aは、上下に分かれた2個の部材を使用しているが、両者を合わせた単一のゴム部材であっても差し支えない。
 上記シール用のゴム部材4bは、矩形枠状を呈しており、シール用のゴム部材4aよりも積層方向肉厚が薄い。ゴム部材4bは、接着層6を介して、積層方向に隣接するセル(図示せず)背向するセパレータ5に接着されている。ゴム部材4bにより、背向するセパレータ5間に、冷媒流路8が封止されている。
 固体高分子型燃料電池等の燃料電池の作動時には、燃料ガスおよび酸化剤ガスが、各々ガス流路7を通じて供給される。また、発電の際の発熱を緩和するために、冷媒が冷媒流路8を流れる。ここで、MEA2の周縁部は、接着層6を介して、シール用のゴム部材4aによりシールされている。このため、ガスの混合や漏れは生じない。また、積層方向に隣接するセル(図示せず)の背向するセパレータ5同士の間も、接着層6を介して、シール用のゴム部材4bによりシールされている。このため、冷媒流路8から外部に冷媒が漏出しにくい。
 本発明の燃料電池シール体は、例えば、つぎのようにして作製することができる。すなわち、上記シール用のゴム部材は、例えば、上記EPDM、有機過酸化物(架橋剤)および必要に応じて各種添加剤を含有するゴム組成物を調製し、これを所定条件(130~170℃×3~30分)で架橋することにより得ることができる。上記ゴム部材は、シール部の形状に応じて、所定形状に成形しておくことが好ましい。この場合、燃料電池用構成部材との煩雑な位置合わせが不要になるため、連続加工がしやすくなり、燃料電池の生産性をより向上させることができる。なお、上記シール部材としては、未加硫ゴムを使用することも可能である。
 一方、上記接着層用の液状ゴム組成物(α)は、例えば、つぎのようにして調製することができる。すなわち、まず、架橋剤(B)、接着成分(C)、架橋助剤(D)以外の材料を予備混合して、80~140℃で数分間混練する。つぎに、得られた混練物を冷却して、架橋剤(B)、接着成分(C)および必要に応じて架橋助剤(D)を加える。そして、オープンロール等のロール類を用い、ロール温度40~70℃で5~30分間混練する。なお、接着成分(C)は、予備混合の段階で配合しても差し支えない。
 上記液状ゴム組成物(α)のB型粘度計による粘度(常温)は、通常10000Pa・s以下であり、好ましくは500~5000Pa・sである。
 また、上記接着層用の溶剤系ゴム組成物(β)は、例えば、つぎのようにして調製することができる。すなわち、まず、架橋剤(B)、接着成分(C)、架橋助剤(D)以外の材料を予備混合して、80~140℃で数分間混練する。つぎに、得られた混練物を冷却して、架橋剤(B)、接着成分(C)および必要に応じて架橋助剤(D)を加える。そして、オープンロール等のロール類を用い、ロール温度40~70℃で5~30分間混練する。なお、接着成分(C)は、予備混合の段階で配合しても差し支えない。つぎに、この混練物を溶剤を用いて所定濃度に希釈することにより、溶剤系ゴム組成物(β)を調製することができる。
 上記溶剤系ゴム組成物(β)のB型粘度計による粘度(常温)は、通常4000Pa・s以下であり、好ましくは2500~3000Pa・sである。
 つぎに、金属セパレータ等の燃料電池用構成部材、およびこれをシールするゴム部材の何れか一方もしくは双方に、上記液状ゴム組成物(α)または溶剤系ゴム組成物(β)を塗布することにより、金属セパレータ等の燃料電池用構成部材と、ゴム部材とが、接着層を介して接着されてなる、本発明の燃料電池シール体を得ることができる。
 そして、上記液状ゴム組成物(α)を用いた場合における塗布方法としては、例えば、ディスペンサー塗布等があげられ、通常は常温の条件下で塗布すればよい。また、上記溶剤系ゴム組成物(β)を用いた場合における塗布方法としては、例えば、スプレー塗布、ディスペンサー塗布等があげられ、通常は常温の条件下で塗布すればよい。
 本発明の燃料電池シール体における接着層の厚みは、通常0.01~0.5mmであり、好ましくは0.05~0.3mmである。
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、例中、「部」、「%」は重量基準を意味する。
<液状ゴム組成物(α)>
 まず、実施例および比較例に先立ち、下記に示すゴム組成物の材料を準備した。
《特定のゴム成分(A1)》
〔液状EPDM(Aa1)〕
 三井化学社製、三井PX 068(ブルックフィールド回転粘度=10Pa・s/常温、エチレン量=50%、ジエン量=11%)
〔EPDM(Aa2)〕
 住友化学社製、エスプレン505(ムーニー粘度=75[ML(1+4)100℃]、エチレン量=50%、ジエン量=10%)
〔EPDM(Aa3)〕
 JSR社製、JSR EP27(ムーニー粘度=105[ML(1+4)100℃]、エチレン量=54%、ジエン量=4.5%)
《特定の架橋剤(B)》
〔パーオキシケタール(B1)〕
 1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油社製、パーヘキサC-40、純度40%、1時間半減期温度=111.1℃)
[ジアルキルパーオキサイド(B2)]
 日油社製、パーヘキシン25B-40、純度40%、1時間半減期温度=149.9℃)
《接着成分(C)》
〔レゾルシノール系化合物(C1)〕
 田岡化学工業社製、タッキロール620
〔メラミン系化合物(C2)〕
 住友化学社製、スミカノール507AP
〔シランカップリング剤(C3)〕
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM403)
《架橋助剤(D)》
〔マレイミド化合物(D1)〕
 大内新興化学工業社製、バルノックPM
《軟化剤(E)》
〔パラフィン系プロセスオイル(E1)〕
 出光興産社製、ダイアナプロセスオイルPW380(流動点=-15℃)
《補強剤(F)》
〔カーボンブラック(GPF級)(F1)〕
 キャボットジャパン社製、ショウブラックIP200
〔シリカ(F2)〕
 デグサ社製、カープレックス1120
《溶剤》
 テトラヒドロフラン(THF)
〔実施例1a〕
(接着層用の液状ゴム組成物の調製)
 下記の表1に示す各成分を同表に示す割合で配合し、液状ゴム組成物を調製した。すなわち、まず、表1中、ゴム成分(A1)、軟化剤(E)および補強剤(F)を、バンバリーミキサーを用いて120℃で5分間混練した。混練物を冷却した後、架橋剤(B)、接着成分(C)および架橋助剤(D)を追加して、オープンロールを用いて50℃で10分間混練し、液状ゴム組成物(B型粘度計による粘度:3000Pa・s/常温)を調製した。
(シール用の加硫ゴムの作製)
 EPDM(住友化学社製、エスプレン505)100部、パラフィン系プロセスオイル(出光興産社製、ダイアナプロセスオイルPW380)10部、GPF級カーボンブラック(キャボットジャパン社製、ショウブラックIP200)35部、シリカ(デグサ社製、カープレックス1120)10部を、バンバリーミキサーを用いて120℃で5分間混練した。混練物を冷却した後、パーオキシケタール〔1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油社製、パーヘキサC-40)5部を追加して、オープンロールを用いて50℃で10分間混練し、ゴム組成物を調製した。そして、このゴム組成物を150℃で10分間架橋した後、ゴム片を切り出し、シール用の加硫ゴム(厚み5mm、大きさ25mm×60mm)を作製した。
Figure JPOXMLDOC01-appb-T000005
 上記のようにして得られた液状ゴム組成物および加硫ゴムを用い、下記の基準に従って、各特性の評価を行った。その結果を、上記表1に併せて示した。
〔加硫ゴム接着性(加硫ゴム/接着層)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い接着性を評価した。すなわち、上記で作製した加硫ゴム(厚み5mm、大きさ25mm×60mm)の片面に、上記で調製した液状ゴム組成物を、武蔵エンジニアリング社製のJETMERTER2を用いて、ディスペンサー塗布(条件:射出速度60mm/sec、射出圧力0.05~0.06MPa)し、これを150℃×30分保持して架橋、接着させることにより試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔金属接着性(加硫ゴム/接着層/金属)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い、接着性を評価した。すなわち、チタン板(厚み5mm、大きさ25mm×60mm)の表面に、上記で調製した液状ゴム組成物を、武蔵エンジニアリング社製のJETMERTER2を用いて、ディスペンサー塗布(条件:射出速度60mm/sec、射出圧力0.05~0.06MPa)した。つぎに、その表面に、上記で作製した加硫ゴム(厚み5mm、大きさ25mm×60mm)を配置した。そして、加硫ゴム側から押圧しながら150℃で30分間保持して架橋、接着させることにより試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔電解質膜接着性(加硫ゴム/接着層/電解質膜)〕
 上記金属接着性の評価において、チタン板に代えて、フッ素系樹脂(デュポン社製、ナフィオン)からなる電解質膜(厚み0.001mm、大きさ10mm×50mm)を使用する以外は、上記と同様にして、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔実施例2a~5a,7a〕
 接着層用の液状ゴム組成物として、上記表1に示す各ゴム組成物を使用する以外は、実施例1aに準じて、加硫ゴム接着性、金属接着性および電解質膜接着性の評価を行った。その結果を、上記表1に併せて示した。なお、実施例7aの溶剤系ゴム組成物を用いた試験片の作製条件(加硫条件)は、190℃×30分間とした。
〔比較例1a〕
 接着層用のゴム組成物として、液状ゴム組成物に代えて、上記表1に示す溶剤系ゴム組成物(B型粘度計による粘度:2800Pa・s/常温)を使用する以外は、実施例1aに準じて、加硫ゴム接着性、金属接着性および電解質膜接着性の評価を行った。その結果を、上記表1に併せて示した。
〔実施例6a,8a〕
 シール用の加硫ゴムに代えて未加硫ゴムを使用する以外は、実施例1aに準じて、金属接着性および電解質膜接着性の評価を行った。なお、実施例8aの溶剤系ゴム組成物を用いた試験片の作製条件(加硫条件)は、190℃×30分間とした。
(未加硫ゴムの作製)
 シール用の実施例1aの加硫ゴムの作製に用いたものと同様のゴム組成物を調製した。そして、このゴム組成物から、未加硫ゴム片を切り出し、シール用の未加硫ゴム(厚み5mm、大きさ25mm×60mm)を作製した。
〔金属接着性(未加硫ゴム/接着層/金属)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い、接着性を評価した。すなわち、チタン板(厚み5mm、大きさ25mm×60mm)の表面に、上記で調製した液状ゴム組成物を、武蔵エンジニアリング社製のJETMERTER2を用いて、ディスペンサー塗布(条件:射出速度60mm/sec、射出圧力0.05~0.06MPa)した。つぎに、その表面に、上記で作製した未加硫ゴム(厚み5mm、大きさ25mm×60mm)を配置した。続いて、未加硫ゴム側から押圧しながら150℃で30分間保持して架橋、接着させることより、試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔電解質膜接着性(未加硫ゴム/接着層/電解質膜)〕
 上記金属接着性の評価において、チタン板に代えて、フッ素系樹脂(デュポン社製、ナフィオン)からなる電解質膜(厚み0.001mm、大きさ10mm×50mm)を使用する以外は、上記と同様にして、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
 上記表1の結果から、実施例1a~8a品は、接着層用の液状ゴム組成物中に、接着成分(C)を配合しているため、ゴム部材(加硫ゴム、未加硫ゴム)、金属もしくは電解質膜との接着性に優れていた。しかも、実施例1a~8a品は、シール用ゴム部材(加硫ゴム、未加硫ゴム)中に接着成分(C)を配合していないため、金型汚染がなく、低コストで量産性に優れている。ちなみに、実施例品のなかでも、実施例7a,8a品[架橋剤としてジアルキルパーオキサイド(B2)使用]と比較して実施例1a~6a品[架橋剤としてパーオキシケタール(B1)使用]の方が、より低温での加硫が可能となり好ましいと言える。
 なお、接着層用の液状ゴム組成物中の液状EPDM(A1)に代えて、液状EPM、液状NBR、液状H-NBRを使用した場合も、上記液状EPDMを使用した場合と同様の評価結果が得られた。
 これに対して、比較例1a品は、接着層用の溶剤系ゴム組成物中に接着成分(C)を配合していないため、ゴム部材(加硫ゴム、未加硫ゴム)、金属もしくは電解質膜との接着性が劣っていた。
<溶剤系ゴム組成物(β)>
 まず、実施例および比較例に先立ち、下記に示すゴム組成物の材料を準備した。
《特定のゴム成分(A2)》
〔EPDM(Ab1)〕
 JSR社製、JSR EP27(ムーニー粘度=105[ML(1+4)100℃]、エチレン量=54%、ジエン量=4.5%)
〔EPDM(Ab2)〕
 住友化学社製、エスプレン505(ムーニー粘度=75[ML(1+4)100℃]、エチレン量=50%、ジエン量=10%)
〔EPDM(Ab3)〕
 三井化学社製、三井EPT 4045M(ムーニー粘度=45[ML(1+4)100℃]、エチレン量=45%、ジエン量=8%)
〔EPDM(Ab4)〕
 三井化学社製、三井EPTX 4010M(ムーニー粘度=8[ML(1+4)100℃]、エチレン量=54%、ジエン量=7.6%)
《特定の架橋剤(B)》
〔パーオキシケタール(B1)〕
 1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油社製、パーヘキサC-40、純度40%、1時間半減期温度=111.1℃)
[ジアルキルパーオキサイド(B2)]
 日油社製、パーヘキシン25B-40、純度40%、1時間半減期温度=149.9℃)
《接着成分(C)》
〔レゾルシノール系化合物(C1)〕
 田岡化学工業社製、タッキロール620
〔メラミン系化合物(C2)〕
 住友化学社製、スミカノール507AP
〔シランカップリング剤(C3)〕
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM403)
《架橋助剤(D)》
〔マレイミド化合物(D1)〕
 大内新興化学工業社製、バルノックPM
《軟化剤(E)》
〔パラフィン系プロセスオイル(E1)〕
 出光興産社製、ダイアナプロセスオイルPW380(流動点=-15℃)
〔ポリαオレフィン化合物(E2)〕
 エクソンモービル社製、SpectraSyn4(流動点=-60℃)
《補強剤(F)》
〔カーボンブラック(GPF級)(F1)〕
 キャボットジャパン社製、ショウブラックIP200
〔シリカ(F2)〕
 デグサ社製、カープレックス1120
《溶剤》
〔テトラヒドロフラン〕
〔トルエン〕
〔実施例1b〕
(接着層用の溶剤系ゴム組成物の調製)
 下記の表2に示す各成分を同表に示す割合で配合し、溶剤系ゴム組成物を調製した。すなわち、まず、表2中、ゴム成分(A2)、軟化剤(E)および補強剤(F)を、バンバリーミキサーを用いて120℃で5分間混練した。混練物を冷却した後、架橋剤(B)、接着成分(C)および架橋助剤(D)を追加して、オープンロールを用いて50℃で10分間混練し、ゴム組成物を得た。つぎに、この混練物を溶剤を用いて所定濃度(固形分濃度:20重量%)に希釈して、溶剤系ゴム組成物(B型粘度計による粘度:2800Pa・s/常温)を調製した。
(シール用の加硫ゴムの作製)
 上記接着層用の溶剤系ゴム組成物から、接着成分(C)、架橋助剤(D)および溶剤以外の成分を用いて、上記溶剤系ゴム組成物と同様にして、ゴム組成物を調製した。すなわち、EPDM(JSR社製、JSR EP27)100部、パラフィン系プロセスオイル(出光興産社製、ダイアナプロセスオイルPW380)10部およびGPF級カーボンブラック(キャボットジャパン社製、ショウブラックIP200)45部を、バンバリーミキサーを用いて120℃で5分間混練した。混練物を冷却した後、パーオキシケタール〔1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油社製、パーヘキサC-40)5部を追加して、オープンロールを用いて50℃で10分間混練し、ゴム組成物を調製した。そして、このゴム組成物を150℃で10分間架橋した後、ゴム片を切り出し、シール用の加硫ゴム(厚み5mm、大きさ25mm×60mm)を作製した。
Figure JPOXMLDOC01-appb-T000006
 上記のようにして得られた溶剤系ゴム組成物および加硫ゴムを用い、下記の基準に従って、各特性の評価を行った。その結果を、上記表2に併せて示した。
〔加硫ゴム接着性(加硫ゴム/接着層)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い接着性を評価した。すなわち、上記で作製した加硫ゴム(厚み5mm、大きさ25mm×60mm)の片面に、上記で調製した溶剤系ゴム組成物を、アネスト岩田社製のW-101-131G型スプレーガンを用いて、スプレー塗布(条件:射出速度100mm/sec、3~6回塗布)し、これを150℃×30分保持して架橋、接着させることにより試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔金属接着性(加硫ゴム/接着層/金属)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い、接着性を評価した。すなわち、チタン板(厚み5mm、大きさ25mm×60mm)の表面に、上記で調製した溶剤系ゴム組成物を、アネスト岩田社製のW-101-131G型スプレーガンを用いて、スプレー塗布(条件:射出速度100mm/sec、3~6回塗布)した。つぎに、その表面に、上記で作製した加硫ゴム(厚み5mm、大きさ25mm×60mm)を配置した。そして、加硫ゴム側から押圧しながら150℃で30分間保持して架橋、接着させることにより試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔電解質膜接着性(加硫ゴム/接着層/電解質膜)〕
 上記金属接着性の評価において、チタン板に代えて、フッ素系樹脂(デュポン社製、ナフィオン)からなる電解質膜(厚み0.001mm、大きさ10mm×50mm)を使用する以外は、上記と同様にして、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔実施例2b~5b,7b、比較例1b〕
 接着層用の溶剤系ゴム組成物として、上記表2に示す各ゴム組成物を使用する以外は、実施例1bに準じて、加硫ゴム接着性、金属接着性および電解質膜接着性の評価を行った。その結果を、上記表2に併せて示した。なお、実施例7bの溶剤系ゴム組成物を用いた試験片の作製条件(加硫条件)は、190℃×30分間とした。
〔実施例6b,8b〕
 シール用の加硫ゴムに代えて未加硫ゴムを使用する以外は、実施例1bに準じて、金属接着性および電解質膜接着性の評価を行った。なお、実施例8bの溶剤系ゴム組成物を用いた試験片の作製条件(加硫条件)は、190℃×30分間とした。
(未加硫ゴムの作製)
 シール用の実施例1bの加硫ゴムの作製に用いたものと同様のゴム組成物を調製した。そして、このゴム組成物から、未加硫ゴム片を切り出し、シール用の未加硫ゴム(厚み5mm、大きさ25mm×60mm)を作製した。
〔金属接着性(未加硫ゴム/接着層/金属)〕
 JIS K6256-2(2006)に準拠した90°剥離試験を行い、接着性を評価した。すなわち、チタン板(厚み5mm、大きさ25mm×60mm)の表面に、上記で調製した溶剤系ゴム組成物を、アネスト岩田社製のW-101-131G型スプレーガンを用いて、スプレー塗布(条件:射出速度100mm/sec、3~6回塗布)した。つぎに、その表面に、上記で作製した未加硫ゴム(厚み5mm、大きさ25mm×60mm)を配置した。続いて、未加硫ゴム側から押圧しながら150℃で30分間保持して架橋、接着させることより、試験片(接着層の厚み0.1mm)を作製した。つぎに、上記試験片を所定の試験ジグに取り付けて、90°剥離試験を行い、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
〔電解質膜接着性(未加硫ゴム/接着層/電解質膜)〕
 上記金属接着性の評価において、チタン板に代えて、フッ素系樹脂(デュポン社製、ナフィオン)からなる電解質膜(厚み0.001mm、大きさ10mm×50mm)を使用する以外は、上記と同様にして、接着性の評価を行った。評価基準は、ゴム破壊したものを○、界面剥離したものを×とした。
 上記表2の結果から、実施例1b~8b品は、接着層用の溶剤系ゴム組成物中に、接着成分(C)を配合しているため、ゴム部材(加硫ゴム、未加硫ゴム)、金属もしくは電解質膜との接着性に優れていた。しかも、実施例1b~8b品は、シール用ゴム部材(加硫ゴム、未加硫ゴム)中に接着成分(C)を配合していないため、金型汚染がなく、低コストで量産性に優れている。
 なお、スプレー塗布に代えて、武蔵エンジニアリング社製のJETMERTER2を用いて、ディスペンサー塗布(条件:射出速度60mm/sec、射出圧力0.05~0.06MPa)を行った場合も、スプレー塗布と同様の評価結果が得られた。また、溶剤系ゴム組成物中のEPDMに代えて、EPM、NBR、H-NBRを使用した場合も、上記EPDMを使用した場合と同様の評価結果が得られた。ちなみに、実施例品のなかでも、実施例7b,8b品[架橋剤としてジアルキルパーオキサイド(B2)使用]と比較して実施例1b~6b品[架橋剤としてパーオキシケタール(B1)使用]の方が、より低温での加硫が可能となり好ましいと言える。
 これに対して、比較例1b品は、接着層用の溶剤系ゴム組成物中に接着成分(C)を配合していないため、ゴム部材(加硫ゴム、未加硫ゴム)、金属もしくは電解質膜との接着性が劣っていた。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の液状ゴム組成物は、金属セパレータ等の燃料電池用構成部材と、それをシールするゴム部材とが接着層を介して接着されてなる燃料電池シール体、もしくは上記ゴム部材同士が接着層を介して接着されてなる燃料電池シール体の接着層に用いられる。上記接着層は、前記(A1)~(C)を含有する液状ゴム組成物(α)、および、前記(A2)~(C)とともに溶剤を含有する溶剤系ゴム組成物(β)の一方により形成されているため、接着信頼性が高い。そのため、上記ゴム部材には、接着成分(C)を練り込む必要がない。したがって、金型汚染の問題がなく、低コストで量産性に優れている。
 1 セル
 2 MEA
 3 ガス拡散層
 4a,4b ゴム部材
 5 セパレータ
 6 接着層

Claims (13)

  1.  燃料電池シール体の接着層に使用するゴム組成物であって、上記ゴム組成物が、下記の液状のゴム組成物(α)、および、下記の溶剤系のゴム組成物(β)の一方であることを特徴とするゴム組成物。
    (α)下記の(A1)~(C)を含有する液状のゴム組成物。
     (A1)少なくとも液状ゴムを含有するゴム成分。
     (B)有機過酸化物からなる架橋剤。
     (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
    (β)下記の(A2)~(C)とともに溶剤を含有する溶剤系のゴム組成物。
     (A2)エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエンゴムおよび水素添加アクリロニトリル-ブタジエンゴムからなる群から選ばれた少なくとも一つのゴム成分。
     (B)有機過酸化物からなる架橋剤。
     (C)レゾルシノール系化合物、メラミン系化合物、アルミネート系カップリング剤およびシランカップリング剤からなる群から選ばれた少なくとも一つの接着成分。
  2.  (A1)が、液状ゴムとともに、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエンゴムおよび水素添加アクリロニトリル-ブタジエンゴムからなる群から選ばれた少なくとも一つを含有する請求項1記載のゴム組成物。
  3.  液状ゴムの含有量が、(A1)全体の40重量%以上である請求項1または2記載のゴム組成物。
  4.  液状ゴムが、液状エチレン-プロピレンゴム、液状エチレン-プロピレン-ジエンゴム、液状アクリロニトリル-ブタジエンゴムおよび液状水素添加アクリロニトリル-ブタジエンゴムからなる群から選ばれた少なくとも一つである請求項1~3のいずれか一項に記載のゴム組成物。
  5.  液状ゴムが、エチレン含有量が60重量%以下の液状エチレン-プロピレンゴムおよび液状エチレン-プロピレン-ジエンゴムの少なくとも一方である請求項1~3のいずれか一項に記載のゴム組成物。
  6.  (A2)のエチレン-プロピレンゴムまたはエチレン-プロピレン-ジエンゴムのエチレン含有量が60重量%以下である請求項1記載のゴム組成物。
  7.  溶剤が、テトラヒドロフラン、トルエン、メチルシクロヘキサンおよびn-へプタンからなる群から選ばれた少なくとも一つである請求項1または6記載のゴム組成物。
  8.  上記有機過酸化物が、1時間半減期温度が160℃以下の有機過酸化物である請求項1~7のいずれか一項に記載のゴム組成物。
  9.  さらに下記の(D)を含有する請求項1~8のいずれか一項に記載のゴム組成物。
    (D)架橋助剤。
  10.  燃料電池用構成部材とシール用のゴム部材とが接着層を介して接着されてなるか、もしくは上記ゴム部材同士が接着層を介して接着されてなる燃料電池シール体であって、上記接着層が、請求項1~9のいずれか一項に記載のゴム組成物からなることを特徴とする燃料電池シール体。
  11.  燃料電池用構成部材が、金属セパレータ、膜電極接合体およびガス拡散層からなる群から選ばれた少なくとも一つである請求項10記載の燃料電池シール体。
  12.  シール用のゴム部材が、加硫ゴムである請求項10または11記載の燃料電池シール体。
  13.  シール用のゴム部材が、エチレン含有量が60重量%以下のエチレン-プロピレンゴムおよびエチレン-プロピレン-ジエンゴムの少なくとも一方を含有する請求項10~12のいずれか一項に記載の燃料電池シール体。
PCT/JP2013/059253 2012-03-30 2013-03-28 ゴム組成物および燃料電池シール体 WO2013147020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13769093.9A EP2833453A4 (en) 2012-03-30 2013-03-28 RUBBER COMPOSITION AND SEALED FUEL CELL
US14/302,808 US20140287340A1 (en) 2012-03-30 2014-06-12 Rubber composition and fuel cell sealed body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012078689 2012-03-30
JP2012-078688 2012-03-30
JP2012078688 2012-03-30
JP2012-078689 2012-03-30
JP2013068590A JP6190607B2 (ja) 2012-03-30 2013-03-28 燃料電池シール体
JP2013068591A JP6190608B2 (ja) 2012-03-30 2013-03-28 燃料電池シール体
JP2013-068590 2013-03-28
JP2013-068591 2013-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/302,808 Continuation US20140287340A1 (en) 2012-03-30 2014-06-12 Rubber composition and fuel cell sealed body

Publications (1)

Publication Number Publication Date
WO2013147020A1 true WO2013147020A1 (ja) 2013-10-03

Family

ID=51569370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059253 WO2013147020A1 (ja) 2012-03-30 2013-03-28 ゴム組成物および燃料電池シール体

Country Status (3)

Country Link
US (1) US20140287340A1 (ja)
EP (1) EP2833453A4 (ja)
WO (1) WO2013147020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827870A (zh) * 2021-01-29 2022-07-29 歌尔股份有限公司 振膜及发声装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681246B2 (ja) * 2016-03-31 2020-04-15 住友理工株式会社 燃料電池用シール部材の製造方法
WO2019003885A1 (ja) * 2017-06-28 2019-01-03 Nok株式会社 ゴム組成物および燃料電池セパレータ用シール材
US20200112036A1 (en) * 2017-06-28 2020-04-09 Nok Corporation Rubber composition and a sealing material for fuel cell separators
US11787931B2 (en) 2018-11-21 2023-10-17 Threebond Co., Ltd. Photocurable resin composition, sealing material for fuel cell, cured product thereof, fuel cell, and sealing method
CN113611888B (zh) * 2018-12-29 2022-11-25 戈瑞屋(上海)科技发展有限公司 一种燃料电池
JP7306844B2 (ja) * 2019-03-26 2023-07-11 株式会社バルカー シール材用ゴム組成物およびこれを用いたシール材
WO2023090088A1 (ja) 2021-11-18 2023-05-25 株式会社スリーボンド 光硬化性樹脂組成物、燃料電池およびシール方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146384A (ja) * 1999-07-26 2004-05-20 Tigers Polymer Corp 燃料電池のシール構造
JP2005011662A (ja) * 2003-06-19 2005-01-13 Tigers Polymer Corp 燃料電池用シール材の形成方法
JP2008177001A (ja) * 2007-01-18 2008-07-31 Nok Corp 燃料電池用ガスケット一体部品及びその製造方法
JP2009117313A (ja) * 2007-11-09 2009-05-28 Tigers Polymer Corp 燃料電池パッキン及びシール構造
JP2009199867A (ja) * 2008-02-21 2009-09-03 Tokai Rubber Ind Ltd 燃料電池用セルおよび燃料電池および燃料電池用セルの製造方法
JP2009252479A (ja) * 2008-04-04 2009-10-29 Tokai Rubber Ind Ltd 燃料電池モジュールおよびその製造方法
JP2010146781A (ja) * 2008-12-17 2010-07-01 Tokai Rubber Ind Ltd 燃料電池用接着性シール部材
JP2011249283A (ja) 2010-05-31 2011-12-08 Tokai Rubber Ind Ltd 燃料電池用接着性シール部材
WO2012144484A1 (ja) * 2011-04-18 2012-10-26 東海ゴム工業株式会社 燃料電池用接着性シール部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884537B2 (en) * 2001-12-20 2005-04-26 Freudenberg-Nok General Partnership Structural seal for a fuel cell
JP5222490B2 (ja) * 2007-04-25 2013-06-26 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
WO2009122487A1 (ja) * 2008-03-31 2009-10-08 Nok株式会社 ゴム組成物およびその用途
JP4877380B2 (ja) * 2009-11-09 2012-02-15 Nok株式会社 ゴム金属積層体
JP5719669B2 (ja) * 2011-04-18 2015-05-20 住友理工株式会社 燃料電池用接着性シール部材
US8962722B2 (en) * 2011-06-15 2015-02-24 Lion Copolymer Geismar, Llc Solvent-less liquid ethylene propylene diene monomer rubber compound and method of making

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146384A (ja) * 1999-07-26 2004-05-20 Tigers Polymer Corp 燃料電池のシール構造
JP2005011662A (ja) * 2003-06-19 2005-01-13 Tigers Polymer Corp 燃料電池用シール材の形成方法
JP2008177001A (ja) * 2007-01-18 2008-07-31 Nok Corp 燃料電池用ガスケット一体部品及びその製造方法
JP2009117313A (ja) * 2007-11-09 2009-05-28 Tigers Polymer Corp 燃料電池パッキン及びシール構造
JP2009199867A (ja) * 2008-02-21 2009-09-03 Tokai Rubber Ind Ltd 燃料電池用セルおよび燃料電池および燃料電池用セルの製造方法
JP2009252479A (ja) * 2008-04-04 2009-10-29 Tokai Rubber Ind Ltd 燃料電池モジュールおよびその製造方法
JP2010146781A (ja) * 2008-12-17 2010-07-01 Tokai Rubber Ind Ltd 燃料電池用接着性シール部材
JP2011249283A (ja) 2010-05-31 2011-12-08 Tokai Rubber Ind Ltd 燃料電池用接着性シール部材
WO2012144484A1 (ja) * 2011-04-18 2012-10-26 東海ゴム工業株式会社 燃料電池用接着性シール部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833453A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827870A (zh) * 2021-01-29 2022-07-29 歌尔股份有限公司 振膜及发声装置

Also Published As

Publication number Publication date
US20140287340A1 (en) 2014-09-25
EP2833453A1 (en) 2015-02-04
EP2833453A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2013147020A1 (ja) ゴム組成物および燃料電池シール体
JP6190607B2 (ja) 燃料電池シール体
JP5186317B2 (ja) 燃料電池用接着性シール部材
JP5396337B2 (ja) 燃料電池用接着性シール部材
JP4526093B2 (ja) 燃料電池モジュール
US9178242B2 (en) Manufacturing method of fuel cell module and manufacturing method of fuel cell
JP5219774B2 (ja) 燃料電池用接着性シール部材
JP6681247B2 (ja) 燃料電池用シール部材
US9543596B2 (en) Seal member for fuel cell and fuel cell seal body using same
JP6688718B2 (ja) 燃料電池用シール部材
JP5719669B2 (ja) 燃料電池用接着性シール部材
WO2012144484A1 (ja) 燃料電池用接着性シール部材
JP6190608B2 (ja) 燃料電池シール体
JP5719668B2 (ja) 燃料電池用接着性シール部材
JP5268313B2 (ja) 燃料電池用接着性シール部材
JP6067417B2 (ja) 積層体の製法
JP5941804B2 (ja) 積層体およびその製法
JP6681246B2 (ja) 燃料電池用シール部材の製造方法
JP7319899B2 (ja) 燃料電池用シール部材
WO2022208926A1 (ja) 積層体
JP5097243B2 (ja) 燃料電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013769093

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE