WO2013146984A1 - 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム - Google Patents

積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム Download PDF

Info

Publication number
WO2013146984A1
WO2013146984A1 PCT/JP2013/059188 JP2013059188W WO2013146984A1 WO 2013146984 A1 WO2013146984 A1 WO 2013146984A1 JP 2013059188 W JP2013059188 W JP 2013059188W WO 2013146984 A1 WO2013146984 A1 WO 2013146984A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
conductive particles
scale
multilayer piezoelectric
layer
Prior art date
Application number
PCT/JP2013/059188
Other languages
English (en)
French (fr)
Inventor
加藤 剛
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2013146984A1 publication Critical patent/WO2013146984A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Definitions

  • the present invention relates to a laminated piezoelectric element used as, for example, a piezoelectric driving element (piezoelectric actuator), a pressure sensor element, a piezoelectric circuit element, and the like, an injection apparatus including the same, and a fuel injection system.
  • a piezoelectric driving element piezoelectric actuator
  • a pressure sensor element a piezoelectric sensor
  • a piezoelectric circuit element a piezoelectric circuit element
  • the conventional multilayer piezoelectric element has a conductor layer 84 formed by metallization on the side surface of a laminate 83 in which a piezoelectric layer 81 and an internal electrode layer 82 are laminated, and then external electrodes 85 (electrode plates). ) With a conductive adhesive 86 (Ag-containing conductive resin) (see Patent Document 1).
  • the bonding process of the external electrode is to apply and dry a conductive adhesive, and then heat-treat, but screen printing is used to improve the adhesive pattern, and the conductive adhesive 86 is applied to the conductive adhesive 86.
  • screen printing is used to improve the adhesive pattern, and the conductive adhesive 86 is applied to the conductive adhesive 86.
  • spherical particles are preferred as the conductive particles.
  • the present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a multilayer piezoelectric element that can be stably driven for a long period of time, in which the amount of displacement of the multilayer body does not fluctuate, and an injection including the multilayer piezoelectric element.
  • An apparatus and a fuel injection system are provided.
  • the present invention relates to a laminate in which a piezoelectric layer and an internal electrode layer are laminated, a conductor layer provided on a side surface of the laminate from which an end of the internal electrode layer is derived, and conductive adhesion to the conductor layer
  • the present invention includes a container having an injection hole and the multilayer piezoelectric element, and the fluid stored in the container is discharged from the injection hole by driving the multilayer piezoelectric element. It is an injection device.
  • the present invention also provides a common rail that stores high-pressure fuel, the above-described injection device that injects the high-pressure fuel stored in the common rail, a pressure pump that supplies the high-pressure fuel to the common rail, and a drive signal to the injection device.
  • a fuel injection system comprising: an injection control unit for supplying the fuel.
  • the conductive adhesive has scale-shaped conductive particles, and the scale-shaped conductive particles are arranged so as to overlap each other along the conductor layer. It is possible to obtain a multi-layer piezoelectric element that is less likely to vary in displacement and can be driven stably for a long period of time.
  • (A) is a schematic perspective view which shows an example of embodiment of the laminated piezoelectric element of this invention
  • (b) is a partially expanded longitudinal cross-sectional view of the laminated piezoelectric element shown to (a). It is a schematic enlarged view which shows the other example of the area
  • FIG. 1A is a schematic perspective view showing an example of an embodiment of a multilayer piezoelectric element of the present invention
  • FIG. 1B is a partially enlarged longitudinal section of the multilayer piezoelectric element shown in FIG. FIG.
  • a laminated piezoelectric element 1 according to this embodiment shown in FIG. 1 includes a laminated body 4 in which a piezoelectric layer 2 and an internal electrode layer 3 are laminated, and a side surface of the laminated body 4 in which an end portion of the internal electrode layer 3 is derived.
  • the conductive layer 5 includes the conductive layer 5 provided and the external electrode 7 attached to the conductive layer 5 via the conductive adhesive 6, and the conductive adhesive 6 has scale-shaped conductive particles 61, and the scale-shaped conductive The particles 61 are arranged so as to overlap each other along the conductor layer 5.
  • a laminated body 4 constituting the laminated piezoelectric element 1 is formed by laminating piezoelectric layers 2 and internal electrode layers 3.
  • an inactive portion formed by laminating piezoelectric layers 2 provided at both ends of the active portion in the stacking direction for example, a rectangular parallelepiped having a length of 0.5 to 10 mm, a width of 0.5 to 10 mm, and a height of 5 to 100 mm It is formed in a shape.
  • the piezoelectric layer 2 constituting the multilayer body 4 is formed of ceramics having piezoelectric characteristics.
  • ceramics for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used.
  • the thickness of the piezoelectric layer 2 is, for example, 3 to 250 ⁇ m.
  • the internal electrode layer 3 constituting the multilayer body 4 is formed by simultaneous firing with the ceramics forming the piezoelectric layer 2, and is alternately stacked with the piezoelectric layer 2 to sandwich the piezoelectric layer 2 from above and below.
  • a driving voltage is applied to the piezoelectric layer 2 sandwiched between them.
  • this forming material for example, a conductor mainly composed of a silver-palladium alloy having low reactivity with piezoelectric ceramics, or a conductor containing copper, platinum, or the like can be used. In the example shown in FIG.
  • the ends of the positive electrode and the negative electrode are alternately led out to a pair of opposing side surfaces of the stacked body 4, and provided on the pair of opposing side surfaces of the stacked body 4, respectively. It is electrically connected to a conductor layer 5 described later.
  • the internal electrode layer 3 has a thickness of 0.1 to 5 ⁇ m, for example.
  • Conductive layers 5 are respectively provided on the side surfaces of the multilayer body 4 from which the end portions of the internal electrode layers 3 are derived (the side surfaces of the multilayer body 4 from which the end portions of the internal electrode layers 3 are derived). .
  • the conductor layer 5 is formed, for example, by applying and baking a paste made of silver and glass.
  • the thickness of the conductor layer 5 is, for example, 5 to 500 ⁇ m.
  • An external electrode 7 is attached on the conductor layer 5 via a conductive adhesive 6.
  • the external electrode 7 is a plate-like body made of copper, iron, stainless steel, phosphor bronze or the like, and is formed to have a width of 0.5 to 10 mm and a thickness of 0.01 to 1.0 mm, for example.
  • a shape having a high effect of relieving stress caused by expansion and contraction of the laminate 4 for example, as shown in FIG. 1, a shape having slits in the width direction perpendicular to the longitudinal direction (lamination direction), a metal plate processed into a mesh shape It may be.
  • the structure provided with the hole extended especially in the width direction with the slit instead of the slit may be sufficient. It is preferable that a plurality of slits and holes are arranged in the stacking direction of the stacked body 4, and it is particularly preferable that a plurality of slits and holes are arranged at positions corresponding to the active portions.
  • the conductive adhesive 6 is preferably an epoxy resin or a polyimide resin containing conductive particles 61 with good conductivity such as Ag particles and Cu particles.
  • the conductive adhesive 6 is formed to a thickness of, for example, 5 to 500 ⁇ m.
  • the conductive adhesive 6 has scale-shaped conductive particles 61. That is, the conductive particles 61 include scale-shaped particles.
  • the scale shape refers to a size (width) having a cross section having a length of 2 to 20 times the thickness with respect to a thickness of 0.2 to 5 ⁇ m.
  • the scale-shaped conductive particles 61 are arranged along the conductor layer 5 so as to overlap each other.
  • the scale-shaped conductive particles 61 are arranged along the conductor layer 5 when viewed in a cross section cut along the stacking direction of the laminate 4 perpendicular to the main surface of the conductive adhesive 6.
  • Scale-shaped conductive particles 61 arranged such that an angle formed between the longest line segment crossing scale-shaped conductive particles 61 and the main surface of conductor layer 5 is within a range of plus or minus 15 degrees. Is 80% or more.
  • the scale-shaped conductive particles 61 are arranged so as to overlap each other in any part where the conductive adhesive 6 is provided in the direction perpendicular to the main surface of the conductor layer 5. It means that there is an overlap between the particles 61 and the scale-shaped conductive particles 61.
  • a cross-section cut along the stacking direction of the laminate 4 perpendicular to the main surface of the conductive adhesive 6 is used, for example, by using an electron microscope such as a scanning electron microscope (SEM), 500 times to 1000 times. It can be measured by a photograph of a double reflected electron image.
  • SEM scanning electron microscope
  • the conductive particles 61 are spreadable, so that the contact between the scale-shaped conductor particles 61 can be maintained, and locally high resistance can be suppressed. Furthermore, by using the elongated scale-shaped conductive particles 61, the conductive particles 61 are entangled with each other to improve the strength.
  • the conductive adhesive 6 preferably also includes substantially spherical (particularly spherical) conductive particles 62.
  • substantially spherical (particularly spherical) conductive particles 62 For example, in an image taken by an electron microscope of a cross section cut perpendicularly to the main surface of the conductive adhesive 6 and along the stacking direction of the laminate 4, the scale-shaped conductive particles 61 out of the total area of the conductive particles are 50 to 90. It is preferable that the substantially spherical conductive particles 62 have an area of 10 to 50%.
  • the substantially spherical conductive particle 62 means that the ratio of the length of the short axis to the length of the long axis when the substantially spherical conductive particle 62 is viewed in an arbitrary cross section is 0.7 or more and 1.0 or less. Is a conductive particle.
  • the scale-shaped conductive particles 61 are electrically connected to each other via a substantially spherical conductive particle 62, in other words, a substantially spherical shape between the scale-shaped conductive particles 61 and the scale-shaped conductive particles 61. It is preferable that the conductive particles 62 are arranged, and the scale-shaped conductive particles 61 and the scale-shaped conductive particles 61 are connected via the substantially spherical conductive particles 62. Thereby, even when the laminated piezoelectric element 1 is stretched and the conductive particles 61 slip, the spherical conductive particles 62 play a role of connecting between the scale-shaped conductive particles 61, thereby further suppressing local high resistance. In addition, the filling rate of all conductive particles (conductive particles 61 and conductive particles 62) is increased.
  • the scaly conductive particles 61 are in contact with the conductor layer 5, thereby maintaining the contact between the conductor layer 5 and the conductive adhesive 6. It is further suppressed that the resistance is increased locally.
  • the scaly conductive particles 61 are mainly in contact with the conductor layer 5 that 55% or more of the area where the conductor layer 5 contacts the conductive particles (including the scaly shape and the spherical shape) is the scaly conductive particles 61. It means the state that is in contact with.
  • the scale-shaped conductive particles 61 have a long axis and a short axis, and the long axis is preferably directed in the stacking direction.
  • the shape having the major axis and the minor axis means that the shape of the main surface is a shape having the major axis and the minor axis, and for example, the aspect ratio is 2 to 20.
  • the external electrode 7 is a plate-like body having holes or slits (slit 71 in FIG. 3), and the conductive adhesive 6 has scale-shaped conductive particles 61 having holes or slits (FIG. 3). Then, it is preferable that it swells so that it may mutually overlap along the side wall of the slit 71).
  • the slit 71 is cut out from the width direction of the external electrode 7.
  • overlapping with each other along the side wall means the same as the description of overlapping with each other along the conductor layer 5, and means that the conductor layer 5 in the description is replaced with the side wall.
  • the external electrode 7 is a plate-like body having a hole or a slit, even if stress is applied between the external electrode 7 and the conductor layer 5 and the conductive adhesive 6 is pulled, the scaly conductive Since the contact between the particles 61 can be maintained, locally high resistance is suppressed.
  • the conductive adhesive 6 forms a meniscus inner wall inside the hole or slit (slit 71 in FIG. 4) in the external electrode 7, and the scaly conductive particles 61 are formed as meniscus. Preferably, they overlap each other along the inner wall. Thereby, when the multilayer piezoelectric element 1 is stretched, the stress concentration at the intersection between the bottom surface of the hole or the slit and the side wall and the possibility of cracking are more enhanced than the configuration in which the meniscus inner wall is not formed. Can be reduced.
  • a conductive film having the same composition as the scale-shaped conductive particles 61 is provided on the surface of the external electrode 7.
  • the surface of the external electrode 7 may be provided with a plating film made of silver.
  • a ceramic green sheet to be the piezoelectric layer 2 is produced. Specifically, a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method.
  • the piezoelectric ceramic any material having piezoelectric characteristics may be used.
  • a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) can be used.
  • the plasticizer dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
  • a conductive paste to be the internal electrode layer 3 is produced.
  • a conductive paste is prepared by adding and mixing a binder and a plasticizer to a silver-palladium alloy metal powder. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode layer 3 using a screen printing method. Further, a plurality of ceramic green sheets on which the conductive paste is printed are laminated, subjected to binder removal treatment at a predetermined temperature, fired at a temperature of 900 to 1200 ° C., and then subjected to a predetermined grinding using a surface grinder or the like.
  • a laminated body 4 including the piezoelectric layers 2 and the internal electrode layers 3 that are alternately laminated is manufactured by performing a grinding process so as to have a shape.
  • the laminate 4 is not limited to the one produced by the above manufacturing method, and any laminate 4 can be produced as long as the laminate 4 formed by laminating a plurality of piezoelectric layers 2 and internal electrode layers 3 can be produced. It may be produced by a manufacturing method.
  • a silver glass-containing conductive paste prepared by adding a binder, a plasticizer, and a solvent to a mixture of conductive particles mainly composed of silver and glass is used to form a side surface of the laminate 4 in the pattern of the conductor layer 5. Then, after printing by screen printing or the like and drying, baking is performed at a temperature of 650 to 750 ° C. to form the conductor layer 5.
  • the external electrode 7 is connected and fixed to the surface of the conductor layer 5 via the conductive adhesive 6.
  • the conductive adhesive 6 uses a paste made of an epoxy resin or a polyimide resin containing a metal powder (scale-shaped conductive particles 61) having good conductivity such as Ag powder or Cu powder, and has a predetermined thickness or The width can be controlled.
  • the scale-shaped conductive particles 61 may be arranged in the needle of the dispenser. Therefore, in the case where the needle inner diameter is constant, the needle-shaped conductive particles 61 are ejected at a speed higher than the flow speed at the time of paste printing of the conductive adhesive before printing, and along the side surface of the pipe in the needle. It is preferable to arrange them so that the major axis direction is aligned with the ejection direction.
  • the needle is bent to narrow a part of the inner diameter of the needle so that a region where the flow rate of the paste is faster than the needle entrance is provided, and the scale-shaped conductive particles 61 are arranged, and then along the laminate. It may be applied. At this time, by applying in a direction parallel to the driving direction of the multilayer piezoelectric element 1, the scale-shaped conductive particles 61 can be arranged in the driving direction, and the major axis direction can coincide with the driving direction.
  • the scale-shaped conductive particles 61 are settled by being left at room temperature after coating, and then heated and dried to remove the solvent. Since it can be volatilized, the scaly conductive particles 61 can be arranged so as to overlap each other along the conductor layer 5.
  • the external electrode 7 In order for the external electrode 7 to be a plate-like body having holes or slits, for example, a method of punching a conductor plate with a punching die can be used. Moreover, in order to form a conductor film on the surface of the external electrode 7, methods, such as electrolytic plating and electroless plating, are mentioned.
  • a direct current electric field of 0.1 to 3 kV / mm is applied to the external electrodes 7 respectively connected to the pair of conductor layers 5 to polarize the piezoelectric layer 2 constituting the multilayer body 4, whereby the multilayer piezoelectric element 1.
  • the conductor layer 5 is connected to an external power source via the external electrode 7 and a voltage is applied to the piezoelectric layer 2, thereby making each piezoelectric layer 2 large by the inverse piezoelectric effect. Can be displaced.
  • FIG. 5 is a schematic sectional view showing an example of the embodiment of the injection device of the present invention.
  • the multilayer piezoelectric element 1 of the present embodiment is stored in a storage container (container) 23 having an injection hole 21 at one end. .
  • a needle valve 25 capable of opening and closing the injection hole 21 is disposed.
  • a fluid passage 27 is disposed in the injection hole 21 so as to be able to communicate with the movement of the needle valve 25.
  • the fluid passage 27 is connected to an external fluid supply source, and fluid is constantly supplied to the fluid passage 27 at a high pressure. Accordingly, when the needle valve 25 opens the injection hole 21, the fluid supplied to the fluid passage 27 is discharged from the injection hole 21 to an external or adjacent container, for example, a fuel chamber (not shown) of the internal combustion engine. It is configured.
  • the upper end portion of the needle valve 25 has a large diameter, and is a piston 31 slidable with a cylinder 29 formed in the storage container 23.
  • the multilayer piezoelectric element 1 of the above-described example is stored in contact with the piston 31.
  • the fluid passage 27 may be opened by applying a voltage to the multilayer piezoelectric element 1 and the fluid passage 27 may be closed by stopping the application of the voltage.
  • the ejection device 19 includes a container 23 having ejection holes and the multilayer piezoelectric element 1 according to the present embodiment, and the fluid filled in the container 23 is driven to drive the multilayer piezoelectric element 1. May be configured to discharge from the injection hole 21. That is, the multilayer piezoelectric element 1 does not necessarily have to be inside the container 23, as long as the multilayer piezoelectric element 1 is configured to apply pressure for controlling the ejection of fluid to the inside of the container 23 by driving the multilayer piezoelectric element 1. Good.
  • the fluid includes various liquids and gases such as a conductive paste in addition to fuel and ink.
  • the injection device 19 of the present embodiment that employs the multilayer piezoelectric element 1 of the present embodiment is used for an internal combustion engine, the fuel is supplied to the combustion chamber of the internal combustion engine such as an engine over a longer period than the conventional injection device. It is possible to inject with high accuracy.
  • FIG. 6 is a schematic view showing an example of an embodiment of the fuel injection system of the present invention.
  • the fuel injection system 35 of the present embodiment includes a common rail 37 that stores high-pressure fuel as a high-pressure fluid, and a plurality of injections of the present embodiment that inject high-pressure fluid stored in the common rail 37.
  • a device 19 a pressure pump 39 that supplies a high-pressure fluid to the common rail 37, and an injection control unit 41 that supplies a drive signal to the injection device 19 are provided.
  • the injection control unit 41 controls the amount and timing of high-pressure fluid injection based on external information or an external signal. For example, if the injection control unit 41 is used for fuel injection of the engine, the amount and timing of fuel injection can be controlled while sensing the condition in the combustion chamber of the engine with a sensor or the like.
  • the pressure pump 39 serves to supply fluid fuel from the fuel tank 43 to the common rail 37 at a high pressure.
  • the fluid fuel is fed into the common rail 37 at a high pressure of, for example, 1000 to 2000 atmospheres (about 101 MPa to about 203 MPa), preferably 1500 to 1700 atmospheres (about 152 MPa to about 172 MPa).
  • the high-pressure fuel sent from the pressure pump 39 is stored and sent to the injection device 19 as appropriate.
  • the ejection device 19 ejects a certain fluid from the ejection holes 21 to the outside or an adjacent container.
  • the target for injecting and supplying fuel is an engine
  • high-pressure fuel is injected from the injection hole 21 into the combustion chamber of the engine in the form of a mist.
  • the cross-sectional shape in the direction orthogonal to the stacking direction of the stacked body 4 is not limited to the quadrangle shape as an example of the above embodiment, but a polygonal shape such as a hexagonal shape or an octagonal shape, a circular shape, or a straight line and an arc. You may be the shape which combined.
  • the multilayer piezoelectric element 1 is used for, for example, a piezoelectric drive element (piezoelectric actuator), a pressure sensor element, a piezoelectric circuit element, and the like.
  • the driving element include a fuel injection device for an automobile engine, a liquid injection device such as an inkjet, a precision positioning device such as an optical device, and a vibration prevention device.
  • the sensor element include a combustion pressure sensor, a knock sensor, an acceleration sensor, a load sensor, an ultrasonic sensor, a pressure sensor, and a yaw rate sensor.
  • Examples of the circuit element include a piezoelectric gyro, a piezoelectric switch, a piezoelectric transformer, and a piezoelectric breaker.
  • the multilayer piezoelectric element of the present invention was produced as follows.
  • a ceramic slurry was prepared by mixing calcined powder of a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle diameter of 0.4 ⁇ m, a binder, and a plasticizer. Using this ceramic slurry, a ceramic green sheet serving as a piezoelectric layer having a thickness of 50 ⁇ m was prepared by a doctor blade method.
  • a piezoelectric ceramic mainly composed of lead zirconate titanate (PbZrO 3 -PbTiO 3 ) having an average particle diameter of 0.4 ⁇ m, a binder, and a plasticizer.
  • a binder was added to the silver-palladium alloy to produce a conductive paste to be an internal electrode layer.
  • a conductive paste serving as an internal electrode layer was printed on one side of the ceramic green sheet by a screen printing method, and 200 ceramic green sheets printed with the conductive paste were laminated. Further, a total of 15 ceramic green sheets not printed with the conductive paste serving as the internal electrode layer were laminated on the top and bottom of the 200 ceramic green sheets printed with the conductive paste serving as the internal electrode layer. . Then, it was fired at 980 to 1100 ° C. and ground to a predetermined shape using a surface grinder to obtain a laminate having an end face of 5 mm square.
  • a conductive paste in which a binder was mixed with silver and glass was printed by a screen printing method on the conductive layer forming portion on the side surface of the laminate, and a baking process was performed at 700 ° C. to form a conductive layer.
  • a conductive adhesive made of a mixed paste of Ag powder and polyimide resin was applied to the surface of the conductor layer with a dispenser, and external electrodes were connected and fixed parallel to the surface of the laminate.
  • Sample 1 a conductive adhesive in which a scale-shaped Ag powder and a polyimide resin were mixed into a paste was applied as shown in FIG. 1B.
  • the scale-shaped Ag powder one having a size having a cross section 2 to 10 times as long as the thickness of 0.5 to 3 ⁇ m was used.
  • the sample 2 (Example of the present invention) was coated with a conductive adhesive made of a mixture paste of 70 vol% of scale-shaped and 30 vol% of spherical Ag powder and polyimide resin. A thing was used.
  • the scale-shaped Ag powder was the same as that of sample 1, and the spherical Ag powder was 0.2 to 5 ⁇ m in diameter and mixed so as to be uniform.
  • Sample 3 (Comparative Example) was coated with a conductive adhesive having only spherical conductive particles.
  • These laminated piezoelectric elements were subjected to polarization treatment by applying a DC electric field of 3 kV / mm for 15 minutes via a lead member welded to an external electrode.
  • the laminated piezoelectric element of Sample 3 stopped driving due to the occurrence of cracks in the laminated body after continuous driving of 1 ⁇ 10 4 times.
  • the laminated piezoelectric element of Sample 1 was driven without cracking even after continuous driving 1 ⁇ 10 7 times, but the displacement of the laminated body was small. Further, the multilayer piezoelectric element of Sample 2 was driven without cracking even after continuous driving 1 ⁇ 10 7 times, and no change in the displacement of the multilayer body was confirmed.

Abstract

 【課題】 積層体の変位量が変動しにくく、長期間安定して駆動する積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システムを提供する。 【解決手段】 本発明の積層型圧電素子1は、圧電体層2および内部電極層3が積層された積層体4と、内部電極層3の端部が導出された積層体4の側面に設けられた導体層5と、導体層5に導電性接着剤6を介して取り付けられた外部電極7とを含み、導電性接着剤6は鱗片形状の導電粒子61を有し、鱗片形状の導電粒子61が導体層5に沿って互いに重なり合うように配置されていることを特徴とする。

Description

積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
 本発明は、例えば圧電駆動素子(圧電アクチュエータ),圧力センサ素子および圧電回路素子等として用いられる積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システムに関する。
 従来の積層型圧電素子は、図7に示すように、圧電体層81および内部電極層82が積層された積層体83の側面にメタライズで導体層84を形成したあと、外部電極85(電極板)を導電性接着剤86(Ag含有導電性樹脂)で接合した構成となっている(特許文献1を参照)。
 ここで、外部電極の接合工程は、導電性接着剤を塗って乾かした後、熱処理するというものであるが、接着パターンを精度良くするためにスクリーン印刷が用いられ、導電性接着剤86への導電粒子の充填率を向上させることから、導電粒子としては球形の粒子が好まれていた。
特開2002-261339号公報
 ここで、特許文献1に記載された積層型圧電素子では、積層体83が伸びたとき、導電性粒子の間に局所的に隙間ができるので、部分的に高抵抗な部分ができ、積層体83の変位量が小さくなるという問題があった。また、高抵抗の箇所が局所発熱してマイクロクラックが生じ、外部電極とメタライズ層の間で次第に亀裂がつながってスパークし、積層型圧電素子の駆動が停止するおそれがあるという問題があった。
 本発明は、上記の問題点に鑑みて案出されたものであり、その目的は、積層体の変位量が変動しにくく、長期間安定して駆動する積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システムを提供することである。
 本発明は、圧電体層および内部電極層が積層された積層体と、前記内部電極層の端部が導出された前記積層体の側面に設けられた導体層と、該導体層に導電性接着剤を介して取り付けられた外部電極とを含む積層型圧電素子であって、前記導電性接着剤は鱗片形状の導電粒子を有し、該鱗片形状の導電粒子が前記導体層に沿って互いに重なり合うように配置されていることを特徴とする。
 また、本発明は、噴射孔を有する容器と、上記の積層型圧電素子とを備え、前記容器内に蓄えられた流体が前記積層型圧電素子の駆動により前記噴射孔から吐出されることを特徴とする噴射装置である。
 また本発明は、高圧燃料を蓄えるコモンレールと、該コモンレールに蓄えられた前記高圧燃料を噴射する上記の噴射装置と、前記コモンレールに前記高圧燃料を供給する圧力ポンプと、前記噴射装置に駆動信号を与える噴射制御ユニットとを備えたことを特徴とする燃料噴射システムである。
 本発明によれば、導電性接着剤は鱗片形状の導電粒子を有し、鱗片形状の導電粒子が導体層に沿って互いに重なり合うように配置されていることにより、長期間に渡り、積層体の変位量が変動しにくく、長期間安定して駆動する積層型圧電素子が得られる。
(a)は本発明の積層型圧電素子の実施の形態の一例を示す概略斜視図であり、(b)は(a)に示す積層型圧電素子の一部拡大縦断面図である。 図1(b)に示す領域Aの他の例を示す概略拡大図である。 本発明の積層型圧電素子の実施の形態の他の例を示す要部拡大断面図である。 本発明の積層型圧電素子の実施の形態の他の例を示す要部拡大断面図である。 本発明の噴射装置の実施の形態の一例を示す概略的な断面図である。 本発明の燃料噴射システムの実施の形態の一例を示す概略的なブロック図である。 従来の積層型圧電素子の実施の形態の一例を示す概略縦断面図である。
 以下、本発明の積層型圧電素子の実施の形態の一例について、図面を参照して詳細に説明する。
 図1(a)は本発明の積層型圧電素子の実施の形態の一例を示す概略斜視図であり、図1(b)は図1(a)に示す積層型圧電素子の一部拡大縦断面図である。図1に示す本実施形態の積層型圧電素子1は、圧電体層2および内部電極層3が積層された積層体4と、内部電極層3の端部が導出された積層体4の側面に設けられた導体層5と、導体層5に導電性接着剤6を介して取り付けられた外部電極7とを含み、導電性接着剤6は鱗片形状の導電粒子61を有し、鱗片形状の導電粒子61が導体層5に沿って互いに重なり合うように配置されていることを特徴とする。
 積層型圧電素子1を構成する積層体4は、圧電体層2および内部電極層3が積層されてなるもので、例えば圧電体層2および内部電極層3が交互に積層されてなる活性部と、活性部の積層方向両端に設けられた圧電体層2が積層されてなる不活性部とを有し、例えば縦0.5~10mm、横0.5~10mm、高さ5~100mmの直方体状に形成されている。
 積層体4を構成する圧電体層2は、圧電特性を有するセラミックスで形成されたもので、このようなセラミックスとして、例えばチタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)などを用いることができる。この圧電体層2の厚みは、例えば3~250μmとされる。
 積層体4を構成する内部電極層3は、圧電体層2を形成するセラミックスと同時焼成により形成されたもので、圧電体層2と交互に積層されて圧電体層2を上下から挟んでおり、積層順に正極および負極が配置されることにより、それらの間に挟まれた圧電体層2に駆動電圧を印加するものである。この形成材料として、例えば圧電セラミックスとの反応性が低い銀-パラジウム合金を主成分とする導体、あるいは銅、白金などを含む導体を用いることができる。図1に示す例では、正極および負極(もしくはグランド極)の端部がそれぞれ積層体4の対向する一対の側面に互い違いに導出されて、積層体4の対向する一対の側面にそれぞれ設けられた後述する導体層5と電気的に接続されている。この内部電極層3の厚みは、例えば0.1~5μmとされる。
 内部電極層3の端部が導出された積層体4の側面(積層体4の側面のうち、内部電極層3の端部が導出された面)には、それぞれ導体層5が設けられている。この導体層5は、例えば銀とガラスからなるペーストを塗布して焼き付けて形成されたものである。導体層5の厚みは、例えば5~500μmとされる。
 導体層5の上には、導電性接着剤6を介して外部電極7が取り付けられている。
 外部電極7としては、銅、鉄、ステンレス、リン青銅等からなる板状体であり、例えば幅0.5~10mm、厚み0.01~1.0mmに形成されたものである。積層体4の伸縮により生じる応力を緩和する効果の高い形状として、例えば図1に示すように長手方向(積層方向)に垂直な幅方向にスリットの入った形状、網目状に加工された金属板などであってもよい。また、スリットにかえてまたはスリットとともに孔、特に幅方向に延びる孔が設けられた構成であってもよい。このスリットおよび孔が積層体4の積層方向に複数配置されているのが好ましく、特に活性部に対応する位置に複数配置されているのが好ましい。
 導電性接着剤6としては、例えばAg粒子やCu粒子など導電性の良好な導電粒子61を含んだエポキシ樹脂やポリイミド樹脂であるのが好ましい。導電性接着剤6は、例えば5~500μmの厚さに形成される。
 ここで、導電性接着剤6は鱗片形状の導電粒子61を有している。すなわち、上記の導電粒子61として、鱗片形状のものを含んでいる。ここで、鱗片形状とは、0.2~5μmの厚みに対してこの厚みの2~20倍の長さの断面を有する大きさ(幅)になっていることをいう。
 また、鱗片形状の導電粒子61が導体層5に沿って互いに重なり合うように配置されている。ここで、鱗片形状の導電粒子61が導体層5に沿って配置されているとは、導電性接着剤6の主面に垂直かつ積層体4の積層方向に沿って切断した断面で見て、鱗片形状の導電粒子61を横切る線分のうち最も長い線分と、導体層5の主面とのなす角度が、プラスマイナス15度の範囲内となるように配置された鱗片形状の導電粒子61の数が80%以上であることをいう。また、鱗片形状の導電粒子61が互いに重なり合うように配置されているとは、導電性接着剤6が設けられたどの部位においても、導体層5の主面に垂直な方向において、鱗片形状の導電粒子61と鱗片形状の導電粒子61との重なりがあることをいう。
 このような状態は、導電性接着剤6の主面に垂直かつ積層体4の積層方向に沿って切断した断面を、例えば走査型電子顕微鏡(SEM)などの電子顕微鏡を用い、500倍~1000倍の反射電子像の写真にて測定することができる。
 積層型圧電素子1が伸びた場合でも、導電粒子61に展延性があることで、鱗片形状の導体粒子61同士の接触が保たれて、局所的に高抵抗になることを抑制できる。さらに、細長い鱗片形状の導電粒子61を使うことにより、導電粒子61同士が絡まって強度が向上する。
 また、図2に示すように、導電性接着剤6は、略球形(特には球形)の導電粒子62も含んでいるのが好ましい。例えば、導電性接着剤6の主面に垂直かつ積層体4の積層方向に沿って切断した断面の電子顕微鏡による画像中、導電粒子の全面積のうち、鱗片形状の導電粒子61が50~90%の面積となり、略球形の導電粒子62が10~50%の面積となっているのがよい。ここで、略球形の導電粒子62とは、当該略球形の導電粒子62を任意の断面で見たときの長軸の長さに対する短軸の長さの比が0.7以上1.0以下である導電粒子を意味する。
 そして、鱗片形状の導電粒子61同士が略球形の導電粒子62を介して電気的に接続されている、言い換えると、鱗片形状の導電粒子61と鱗片形状の導電粒子61との間に略球形の導電粒子62が配置され、鱗片形状の導電粒子61と鱗片形状の導電粒子61とが略球形の導電粒子62を介して接続されているのが好ましい。これにより、積層型圧電素子1が伸びて導電粒子61がすべる場合でも、球形の導電粒子62が鱗片形状の導電粒子61間をつなぐ役目を担うので、局所的に高抵抗になることがより抑制され、また、全導電粒子(導電粒子61と導電粒子62)の充填率が高くなる。
 ここで、図2に示すように、主として鱗片形状の導電粒子61が導体層5と接触していることが好ましく、これにより、導体層5と導電性接着剤6との間での接触が保たれて、局所的に高抵抗になることがさらに抑制される。なお、主として鱗片形状の導電粒子61が導体層5と接触しているとは、導体層5が導電粒子(鱗片形状および球形を含む)と接触する面積の55%以上が鱗片形状の導電粒子61と接触している状態のことを意味する。
 また、鱗片形状の導電粒子61は長軸および短軸を有する形状であり、長軸が積層方向に向いているのが好ましい。ここで、長軸および短軸を有する形状とは、主面の形状が長軸および短軸を有する形状であることを意味し、例えばアスペクト比が2~20であることを意味する。これにより、鱗片形状の導電粒子61が伸びやすい方向と積層型圧電素子1の伸縮方向とが一致し、積層型圧電素子1が伸びたときに鱗片形状の導電粒子61が滑っても必ず隣同士の導電粒子が絡まって接触するので、局所的に高抵抗になることがさらに抑制される。
 また、図3に示すように、外部電極7は孔またはスリット(図3ではスリット71)を有する板状体であり、導電性接着剤6は鱗片形状の導電粒子61が孔またはスリット(図3ではスリット71)の側壁に沿って互いに重なり合うようにして盛り上がっているのが好ましい。なお、スリット71は外部電極7の幅方向から切り欠かれたものである。また、側壁に沿って互いに重なり合うとは、導体層5に沿って互いに重なり合うことの説明と同様で、当該説明の導体層5を側壁に置き換えた内容のことを意味するものである。これにより、外部電極7が孔またはスリットを有する板状体である場合において、外部電極7と導体層5との間に応力が加わって導電性接着剤6が引っ張られても、鱗片形状の導電粒子61同士の接触が保てるので、局所的に高抵抗になることが抑制される。
 また、図4に示すように、導電性接着剤6は外部電極7における孔またはスリット(図4ではスリット71)の内側でメニスカス状の内壁を形成しており、鱗片形状の導電粒子61がメニスカス状の内壁に沿って互いに重なり合っているのが好ましい。これにより、積層型圧電素子1が伸びた場合において、メニスカス状の内壁が形成されていない構成よりも、孔またはスリットの底面と側壁との交点への応力集中およびそれによる亀裂の可能性をより低減できる。
 また、外部電極7の表面に、鱗片形状の導電粒子61と同じ組成の導体膜が設けられているのが好ましい。例えば、鱗片形状の導電粒子61が銀からなる場合に、外部電極7の表面には、銀からなるめっき膜が施されている場合が挙げられる。これにより、外部電極7の表面と鱗片形状の導電粒子61の熱膨張係数が同じで、伝導度も同じなので、外部電極7の表面から鱗片形状の導電粒子61がはがれにくくなる。
 次に、本実施の形態の積層型圧電素子1の製造方法について説明する。
 まず、圧電体層2となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系,ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してセラミックスラリーを作製する。そして、ドクターブレード法、カレンダーロール法等のテープ成型法を用いることにより、このセラミックスラリーを用いてセラミックグリーンシートを作製する。圧電セラミックスとしては圧電特性を有するものであればよく、例えば、チタン酸ジルコン酸鉛(PbZrO-PbTiO)からなるペロブスカイト型酸化物等を用いることができる。また、可塑剤としては、フタル酸ジブチル(DBP),フタル酸ジオクチル(DOP)等を用いることができる。
 次に、内部電極層3となる導電性ペーストを作製する。具体的には、銀-パラジウム合金の金属粉末にバインダーおよび可塑剤を添加混合することによって導電性ペーストを作製する。この導電性ペーストを上記のセラミックグリーンシート上に、スクリーン印刷法を用いて内部電極層3のパターンで塗布する。さらに、この導電性ペーストが印刷されたセラミックグリーンシートを複数枚積層し、所定の温度で脱バインダー処理を行なった後、900~1200℃の温度で焼成し、平面研削盤等を用いて所定の形状になるよう研削処理を施すことによって、交互に積層された圧電体層2および内部電極層3を備えた積層体4を作製する。
 なお、積層体4は、上記の製造方法によって作製されるものに限定されるものではなく、圧電体層2と内部電極層3とを複数積層してなる積層体4を作製できれば、どのような製造方法によって作製されてもよい。
 その後、銀を主成分とする導電性粒子とガラスとを混合したものに、バインダー,可塑剤および溶剤を加えて作製した銀ガラス含有導電性ペーストを、導体層5のパターンで積層体4の側面にスクリーン印刷法等によって印刷後、乾燥させた後、650~750℃の温度で焼き付け処理を行ない、導体層5を形成する。
 次に、導電性接着剤6を介して外部電極7を導体層5の表面に接続し固定する。
 導電性接着剤6は、Ag粉末やCu粉末などの導電性の良好な金属粉末(鱗片形状の導電粒子61)を含んだエポキシ樹脂やポリイミド樹脂からなるペーストを用い、ディスペンス方式により所定の厚みや幅に制御して形成することができる。
 ここで、鱗片形状の導電粒子61の長軸が積層方向に向くように配置するためには、鱗片形状の導電粒子61をディスペンサーのニードル内で配列させればよい。そこで、ニードル内径が一定の口径の場合は、印刷前に導電性接着剤のペースト印刷時の流速よりも速い速度で噴出させておいて、ニードル内の配管側面に沿って鱗片形状の導電粒子61を配列させたり、長軸方向が噴出方向とそろうようにして配列させたりするのがよい。また、ニードルを折り曲げて、ニードル内径の一部を狭くして、ペーストの流速がニードル入り口よりも速くなる領域を設けて、鱗片形状の導電粒子61を配列させ、その上で積層体に沿って塗布してもよい。このとき、積層型圧電素子1の駆動方向と平行となる方向に塗布することで、鱗片形状の導電粒子61を駆動方向に配列させ、長軸方向を駆動方向と一致させることができる。
 さらに、導電性接着剤のペースト中にジブチルフタレートやテルピネオール等の有機溶剤を加えておくと、塗布後室温で放置することで鱗片形状の導電粒子61が沈降し、その後加熱乾燥させることで溶剤を揮発させることができるので、鱗片形状の導電粒子61が導体層5に沿って互いに重なり合うように配置することができる。
 外部電極7が孔またはスリットを有する板状体であるようにするためには、例えば導体板を打ち抜き金型によって打ち抜くなどの方法が挙げられる。また、外部電極7の表面に導体膜を形成するには、電解めっき、無電解めっきなどの方法が挙げられる。
 その後、一対の導体層5にそれぞれ接続した外部電極7に0.1~3kV/mmの直流電界を印加し、積層体4を構成する圧電体層2を分極することによって、積層型圧電素子1が完成する。この積層型圧電素子1は、外部電極7を介して導体層5と外部の電源とを接続して、圧電体層2に電圧を印加することにより、各圧電体層2を逆圧電効果によって大きく変位させることができる。これにより、例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能させることが可能となる。
 次に、本発明の噴射装置の実施の形態の例について説明する。図5は、本発明の噴射装置の実施の形態の一例を示す概略断面図である。
 図5に示すように、本実施の形態の噴射装置19は、一端に噴射孔21を有する収納容器(容器)23の内部に上記の本実施の形態の積層型圧電素子1が収納されている。
 収納容器23内には、噴射孔21を開閉することができるニードルバルブ25が配設されている。噴射孔21には流体通路27がニードルバルブ25の動きに応じて連通可能になるように配設されている。この流体通路27は外部の流体供給源に連結され、流体通路27に常時高圧で流体が供給されている。従って、ニードルバルブ25が噴射孔21を開放すると、流体通路27に供給されていた流体が外部または隣接する容器、例えば内燃機関の燃料室(不図示)に、噴射孔21から吐出されるように構成されている。
 また、ニードルバルブ25の上端部は径が大きくなっており、収納容器23に形成されたシリンダ29と摺動可能なピストン31になっている。そして、収納容器23内には、上述した例の積層型圧電素子1がピストン31に接して収納されている。
 このような噴射装置19では、積層型圧電素子1が電圧を印加されて伸長すると、ピストン31が押圧され、ニードルバルブ25が噴射孔21に通じる流体通路27を閉塞し、流体の供給が停止される。また、電圧の印加が停止されると積層型圧電素子1が収縮し、皿バネ33がピストン31を押し返し、流体通路27が開放され噴射孔21が流体通路27と連通して、噴射孔21から流体の噴射が行なわれるようになっている。
 なお、積層型圧電素子1に電圧を印加することによって流体通路27を開放し、電圧の印加を停止することによって流体通路27を閉鎖するように構成してもよい。
 また、本実施の形態の噴射装置19は、噴射孔を有する容器23と、本実施の形態の積層型圧電素子1とを備え、容器23内に充填された流体を積層型圧電素子1の駆動により噴射孔21から吐出させるように構成されていてもよい。すなわち、積層型圧電素子1が必ずしも容器23の内部にある必要はなく、積層型圧電素子1の駆動によって容器23の内部に流体の噴射を制御するための圧力が加わるように構成されていればよい。なお、本実施の形態の噴射装置19において、流体とは、燃料,インク等の他、導電性ペースト等の種々の液体および気体が含まれる。本実施の形態の噴射装置19を用いることによって、流体の流量および噴出タイミングを長期にわたって安定して制御することができる。
 本実施の形態の積層型圧電素子1を採用した本実施の形態の噴射装置19を内燃機関に用いれば、従来の噴射装置に比べてエンジン等の内燃機関の燃焼室に燃料をより長い期間にわたって精度よく噴射させることができる。
 次に、本発明の燃料噴射システムの実施の形態の例について説明する。図6は、本発明の燃料噴射システムの実施の形態の一例を示す概略図である。
 図6に示すように、本実施の形態の燃料噴射システム35は、高圧流体としての高圧燃料を蓄えるコモンレール37と、このコモンレール37に蓄えられた高圧流体を噴射する複数の本実施の形態の噴射装置19と、コモンレール37に高圧流体を供給する圧力ポンプ39と、噴射装置19に駆動信号を与える噴射制御ユニット41とを備えている。
 噴射制御ユニット41は、外部情報または外部からの信号に基づいて高圧流体の噴射の量およびタイミングを制御する。例えば、エンジンの燃料噴射に噴射制御ユニット41を用いた場合であれば、エンジンの燃焼室内の状況をセンサ等で感知しながら燃料噴射の量およびタイミングを制御することができる。圧力ポンプ39は、燃料タンク43から流体燃料を高圧でコモンレール37に供給する役割を果たす。例えばエンジンの燃料噴射システム35の場合には例えば1000~2000気圧(約101MPa~約203MPa)、好ましくは例えば1500~1700気圧(約152MPa~約172MPa)の高圧にしてコモンレール37に流体燃料を送り込む。コモンレール37では、圧力ポンプ39から送られてきた高圧燃料を蓄え、噴射装置19に適宜送り込む。噴射装置19は、前述したように噴射孔21から一定の流体を外部または隣接する容器に噴射する。例えば、燃料を噴射供給する対象がエンジンの場合には、高圧燃料を噴射孔21からエンジンの燃焼室内に霧状に噴射する。
 なお、本発明は、上記の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行なうことは何ら差し支えない。例えば、積層体4の積層方向に直交する方向における断面の形状は、上記の実施の形態の例である四角形状以外に、六角形状や八角形状等の多角形状、円形状、あるいは直線と円弧とを組み合わせた形状であっても構わない。
 本実施の形態の積層型圧電素子1は、例えば、圧電駆動素子(圧電アクチュエータ),圧力センサ素子および圧電回路素子等に用いられる。駆動素子としては、例えば、自動車エンジンの燃料噴射装置,インクジェットのような液体噴射装置,光学装置のような精密位置決め装置,振動防止装置が挙げられる。センサ素子としては、例えば、燃焼圧センサ,ノックセンサ,加速度センサ,荷重センサ,超音波センサ,感圧センサおよびヨーレートセンサが挙げられる。また、回路素子としては、例えば、圧電ジャイロ,圧電スイッチ,圧電トランスおよび圧電ブレーカーが挙げられる。
 本発明の積層型圧電素子を以下のようにして作製した。
 まず、平均粒径が0.4μmのチタン酸ジルコン酸鉛(PbZrO-PbTiO)を主成分とする圧電セラミックスの仮焼粉末、バインダーおよび可塑剤を混合したセラミックスラリーを作製した。このセラミックスラリーを用いてドクターブレード法により厚み50μmの圧電体層となるセラミックグリーンシートを作製した。
 次に、銀-パラジウム合金にバインダーを加えて、内部電極層となる導電性ペーストを作製した。
 次に、セラミックグリーンシートの片面に、内部電極層となる導電性ペーストをスクリーン印刷法により印刷し、導電性ペーストが印刷されたセラミックグリーンシートを200枚積層した。また、内部電極層となる導電性ペーストが印刷されたセラミックグリーンシート200枚を中心にして、その上下に、内部電極層となる導電性ペーストが印刷されていないセラミックグリーンシート合計15枚を積層した。そして、980~1100℃で焼成し、平面研削盤を用いて所定の形状に研削して端面が5mm角の積層体を得た。
 次に、積層体の側面の導体層の形成部に、銀とガラスにバインダーを混合した導電性ペーストをスクリーン印刷法により印刷し、700℃で焼き付け処理を行なって、導体層を形成した。
 次に、導体層の表面に、Ag粉末とポリイミド樹脂を混合ペースト状にした導電性接着剤をディスペンサーにて塗布し、外部電極を積層体の表面と平行に接続し固定した。
 ここで、試料1(本発明の実施例)には、鱗片形状のAg粉末とポリイミド樹脂を混合ペースト状にした導電性接着剤を図1(b)に示すように塗布したものを用いた。また、鱗片形状のAg粉末としては、0.5~3μmの厚みに対して2~10倍の長さの断面を有する大きさのものを用いた。
 また、試料2(本発明の実施例)には、鱗片形状の70vol%と球形形状の30vol%のAg粉末とポリイミド樹脂を混合ペースト状にした導電性接着剤を図2に示すように塗布したものを用いた。また、鱗片形状のAg粉末としては試料1と同じものを用い、球形形状のAg粉末としては直径が0.2~5μmのものを用いて、均一になるように混ぜたものを用いた。
 また、試料3(比較例)には、導電粒子が球形形状のものだけの導電性接着剤を塗布したものを用いた。
 これらの積層型圧電素子について、外部電極に溶接で接合されたリード部材を介して3kV/mmの直流電界を15分間印加して、分極処理を行なった。
 これらの積層型圧電素子に160Vの直流電圧を印加したところ、積層体の積層方向に30μmの変位量が得られた。
 さらに、30℃、90%の湿度内で0V~+160Vの交流電圧を150Hzの周波数で印加して、連続駆動した耐久性試験を行なった。
 その結果、試料3(比較例)の積層型圧電素子は、1×10回の連続駆動で、積層体にクラックが発生して駆動が停止した。
 これに対し、試料1の積層型圧電素子は、連続駆動1×10回でもクラックが発生することなく駆動したが、積層体の変位量は小さくなっていた。また、試料2の積層型圧電素子は、連続駆動1×10回でもクラックが発生することなく駆動し、また、積層体の変位量の変化も確認されなかった。
 1・・・積層型圧電素子
 2・・・圧電体層
 3・・・内部電極層
 4・・・積層体
 5・・・導体層
 6・・・導電性接着剤
 61・・・鱗片形状の導電粒子
 62・・・球形の導電粒子
 7・・・外部電極
 19・・・噴射装置
 21・・・噴射孔
 23・・・収納容器(容器)
 25・・・ニードルバルブ
 27・・・流体通路
 29・・・シリンダ
 31・・・ピストン
 33・・・皿バネ
 35・・・燃料噴射システム
 37・・・コモンレール
 39・・・圧力ポンプ
 41・・・噴射制御ユニット
 43・・・燃料タンク

Claims (10)

  1. 圧電体層および内部電極層が積層された積層体と、前記内部電極層の端部が導出された前記積層体の側面に設けられた導体層と、該導体層に導電性接着剤を介して取り付けられた外部電極とを含む積層型圧電素子であって、前記導電性接着剤は鱗片形状の導電粒子を有し、該鱗片形状の導電粒子が前記導体層に沿って互いに重なり合うように配置されていることを特徴とする積層型圧電素子。
  2. 前記導電性接着剤は略球形の導電粒子も含んでいることを特徴とする請求項1に記載の積層型圧電素子。
  3. 前記鱗片形状の導電粒子同士が前記略球形の導電粒子を介して電気的に接続されていることを特徴とする請求項2に記載の積層型圧電素子。
  4. 主として前記鱗片形状の導電粒子が前記導体層と接触していることを特徴とする請求項2または請求項3に記載の積層型圧電素子。
  5. 前記鱗片形状の導電粒子は長軸および短軸を有する形状であり、前記長軸が積層方向に向いていることを特徴とする請求項2乃至請求項4のうちのいずれかに記載の積層型圧電素子。
  6. 前記外部電極は孔またはスリットを有する板状体であり、前記導電性接着剤は前記鱗片形状の導電粒子が前記孔またはスリットの側壁に沿って互いに重なり合うようにして盛り上がっていることを特徴とする請求項1に記載の積層型圧電素子。
  7. 前記導電性接着剤は前記外部電極における孔またはスリットの内側でメニスカス状の内壁を形成しており、前記鱗片形状の導電粒子が前記メニスカス状の内壁に沿って互いに重なり合っていることを特徴とする請求項6に記載の積層型圧電素子。
  8. 前記外部電極の表面に前記鱗片形状の導電粒子と同じ組成の導体膜が設けられていることを特徴とする請求項1に記載の積層型圧電素子。
  9. 噴射孔を有する容器と、請求項1に記載の積層型圧電素子とを備え、前記容器内に蓄えられた流体が前記積層型圧電素子の駆動により前記噴射孔から吐出されることを特徴とする噴射装置。
  10. 高圧燃料を蓄えるコモンレールと、該コモンレールに蓄えられた前記高圧燃料を噴射する請求項9に記載の噴射装置と、前記コモンレールに前記高圧燃料を供給する圧力ポンプと、前記噴射装置に駆動信号を与える噴射制御ユニットとを備えたことを特徴とする燃料噴射システム。
PCT/JP2013/059188 2012-03-30 2013-03-28 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム WO2013146984A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-080739 2012-03-30
JP2012080739 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146984A1 true WO2013146984A1 (ja) 2013-10-03

Family

ID=49260232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059188 WO2013146984A1 (ja) 2012-03-30 2013-03-28 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム

Country Status (2)

Country Link
JP (1) JPWO2013146984A1 (ja)
WO (1) WO2013146984A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098486A (ja) * 2015-11-27 2017-06-01 株式会社ノリタケカンパニーリミテド 圧電素子用導電性接着剤および圧電素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193250A (ja) * 2002-12-10 2004-07-08 Hitachi Chem Co Ltd 導電性ペースト及びそれを用いた半導体装置
WO2010101056A1 (ja) * 2009-03-04 2010-09-10 京セラ株式会社 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140215A (ja) * 2004-11-10 2006-06-01 Denso Corp 積層型圧電体素子の製造方法及び外部電極材料の塗布装置
JP2009123750A (ja) * 2007-11-12 2009-06-04 Denso Corp 積層型圧電素子
JP5486268B2 (ja) * 2008-11-18 2014-05-07 東海ゴム工業株式会社 導電膜、およびそれを備えたトランスデューサ、フレキシブル配線板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193250A (ja) * 2002-12-10 2004-07-08 Hitachi Chem Co Ltd 導電性ペースト及びそれを用いた半導体装置
WO2010101056A1 (ja) * 2009-03-04 2010-09-10 京セラ株式会社 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098486A (ja) * 2015-11-27 2017-06-01 株式会社ノリタケカンパニーリミテド 圧電素子用導電性接着剤および圧電素子

Also Published As

Publication number Publication date
JPWO2013146984A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP5586777B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5787547B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5856312B2 (ja) 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置ならびに燃料噴射システム
JP6196134B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5697381B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5744242B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
WO2014025050A1 (ja) 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置ならびに燃料噴射システム
JP6185608B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
WO2013146984A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5743608B2 (ja) 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置、燃料噴射システム
WO2012011302A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5701397B2 (ja) 積層型圧電素子およびこれを備えた圧電アクチュエータ、噴射装置、燃料噴射システム
JP6259092B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2012134377A (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5797339B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5133399B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP6062728B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP6185609B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
WO2017204015A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2018206800A (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2018206801A (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2017011125A (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2014107438A (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767430

Country of ref document: EP

Kind code of ref document: A1