WO2013146889A1 - Protection element - Google Patents

Protection element Download PDF

Info

Publication number
WO2013146889A1
WO2013146889A1 PCT/JP2013/059013 JP2013059013W WO2013146889A1 WO 2013146889 A1 WO2013146889 A1 WO 2013146889A1 JP 2013059013 W JP2013059013 W JP 2013059013W WO 2013146889 A1 WO2013146889 A1 WO 2013146889A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
point metal
metal layer
heating element
low melting
Prior art date
Application number
PCT/JP2013/059013
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012281452A external-priority patent/JP6249600B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201380017716.6A priority Critical patent/CN104185889B/en
Priority to KR1020147029957A priority patent/KR102019881B1/en
Priority to US14/387,797 priority patent/US10008356B2/en
Publication of WO2013146889A1 publication Critical patent/WO2013146889A1/en
Priority to HK15105013.5A priority patent/HK1204504A1/en
Priority to US15/989,571 priority patent/US10269523B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protection element that stops charging of a battery connected on a current path by fusing the current path and suppresses thermal runaway of the battery.
  • This application is Japanese Patent Application No. 2012-076928 filed on March 29, 2012, Japanese Patent Application No. 2012-281442, and 2013 filed on December 25, 2012 in Japan. The priority is claimed on the basis of Japanese Patent Application No. 2013-008302 filed on Jan. 21, 2011, which is incorporated herein by reference.
  • a battery pack In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. It has a function of shutting off the output of the battery pack in a predetermined case.
  • the battery pack is overcharge protected or overdischarge protected by turning the output on and off using the FET switch built in the battery pack.
  • the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage
  • a protection element made up of a fuse element having a function of cutting off the current path by an external signal is used.
  • the protection element As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, the protection element has a heating element, and the heating element causes a soluble conductor on the current path. In general, a structure for fusing is used.
  • a soluble conductor contains Pb having a melting point of 300 ° C. or higher so that it is not melted by the heat of reflow when reflow mounting is used.
  • High melting point solder is used.
  • Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
  • solder erosion and “corrosion phenomenon” are well known as phenomena in which Au plating and Ag plating of electronic parts, etc. start to melt in the molten solder.
  • a protective element corresponding to Pb-free solder material is described in Patent Document 2.
  • Patent Document 2 in the structure in which the refractory metal layer is closely attached to the insulating layer, the refractory metal layer only causes a erosion phenomenon due to melting of the low melting point metal layer. There is a problem that it may not be possible to completely block.
  • an object of the present invention is to realize a protective element that can be made Pb-free by using a laminate of a high melting point metal layer and a low melting point metal layer.
  • a protective element includes an insulating substrate, a heating element stacked on the insulating substrate, and a laminate on the insulating substrate so as to cover at least the heating element. Laminated on the insulating member so as to overlap the heating element, and the first and second electrodes laminated on the insulating substrate on which the insulating members are laminated.
  • a heating element extraction electrode electrically connected to the heating element on the current path between the heating element extraction electrode and the first and second electrodes stacked from the heating element extraction electrode; And a soluble conductor that melts the current path between the two.
  • the fusible conductor is composed of a laminate of a high melting point metal layer and a low melting point metal layer, and the low melting point metal layer is melted by the heat generated by the heating element, so that the high melting point metal layer is eroded and wetted.
  • the first and second electrodes having high properties and the heating element extraction electrode are attracted and melted.
  • the low melting point metal layer is preferably made of Pb-free solder, and the high melting point metal layer is preferably made of a metal mainly composed of Ag or Cu.
  • the volume of the low melting point metal layer is larger than the volume of the high melting point metal layer.
  • a protective element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member stacked A first and second electrodes stacked on the insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction electrode To the first and second electrodes, and a soluble conductor that melts the current path between the first electrode and the second electrode by heating.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member.
  • First and second electrodes stacked on a stacked insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction
  • a plurality of fusible conductors are stacked from the electrode to the first and second electrodes, and the current path between the first electrode and the second electrode is blown by heating.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
  • a protection element includes an insulating substrate, a heating element built in the insulating substrate, first and second electrodes stacked on the insulating substrate, and first and second electrodes.
  • a heating element extraction electrode electrically connected to the heating element on the current path between the electrodes, and the first and second electrodes are laminated from the heating element extraction electrode to the first electrode by heating the heating element.
  • a soluble conductor that melts the current path between the second electrode and the second electrode.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer.
  • the low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Is blown out.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, and first and second layers stacked on opposite surfaces of the insulating substrate on which the heating element is stacked. And a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a stack from the heating element extraction electrode to the first and second electrodes. And a soluble conductor that melts a current path between the first electrode and the second electrode by heating the body.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, and first and second electrodes stacked on the same surface where the heating elements of the insulating substrate are stacked. And a heating element extraction electrode electrically connected to the heating element on the current path between the first and second electrodes, and a stack of the heating element from the heating element extraction electrode to the first and second electrodes.
  • a soluble conductor that melts a current path between the first electrode and the second electrode by heating is provided.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
  • a protection element is stacked on an insulating substrate, first and second electrodes stacked on the insulating substrate, and a current path between the first and second electrodes.
  • a heating element extraction electrode, a heating element mounted so as to be electrically connected to the heating element extraction electrode, and a first electrode and a second electrode are stacked from the heating element extraction electrode.
  • the soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
  • a protective element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member stacked A first and second electrodes stacked on the insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction electrode To the first and second electrodes, and a soluble conductor that melts the current path between the first electrode and the second electrode by heating.
  • the fusible conductor is made of a high melting point metal, and is connected to each of the first electrode, the second electrode, and the heating element extraction electrode via the low melting point metal.
  • the low melting point metal layer is melted by the heat generated by the heating element, so that the first and second electrodes and the heating element lead electrode having high wettability of the low melting point metal while eroding the soluble conductor made of the high melting point metal. Pulled to the side and blown.
  • the low melting point metal layer is melted by the heat generated by the heating element by heating the soluble conductor composed of the laminate of the high melting point metal layer and the low melting point metal layer. Since the first and second electrodes having high wettability and the heating element lead-out electrode are melted and melted while being eroded, it can be surely melted. In addition, since the protection element of the present invention has a soluble conductor, it is clear that it functions as a normal current fuse, and it is possible to realize both current signal interruption and external signal and overcurrent interruption.
  • the low melting point metal layer is made of Pb-free solder
  • the high melting point metal layer is made of a metal containing Ag or Cu as a main component, so that it can correspond to Pb free.
  • the erosion action of the high melting point metal layer can be performed effectively.
  • FIG. 1A is a plan view of a protection element to which the present invention is applied.
  • 1B is a cross-sectional view taken along the line A-A ′ of FIG. 1A.
  • FIG. 2 is a block diagram showing an application example of a protection element to which the present invention is applied.
  • FIG. 3 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • FIG. 4 is a cross-sectional view of a protection element of a known example (Japanese Patent Laid-Open No. 2004-185960).
  • FIG. 5 is a conceptual plan view for explaining the operation of the protection element to which the present invention is applied.
  • FIG. 5A is a plan view showing the protection element before or just after the operation starts.
  • FIG. 5A is a plan view showing the protection element before or just after the operation starts.
  • FIG. 5B is a plan view showing a state in which the low melting point metal layer in the vicinity of the heat source is melted and eroded by the heating operation.
  • FIG. 5C is a plan view showing a situation where erosion of the refractory metal layer has progressed.
  • FIG. 5D is a plan view showing a state where the low melting point metal layer is drawn to the electrode and the heating element extraction electrode.
  • FIG. 6A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 6B is a cross-sectional view taken along the line A-A ′ of FIG. 6A.
  • FIG. 7A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. 7A.
  • FIG. 8A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • 8B is a cross-sectional view taken along the line A-A ′ of FIG. 8A.
  • FIG. 9 is a conceptual plan view for explaining the operation of the protection element according to the modification of FIG.
  • FIG. 9A is a plan view showing the protection element before or just after the operation starts.
  • FIG. 9B is a plan view showing a state in which the low melting point metal layer in the vicinity of the heat source is melted and eroded by the heating operation.
  • FIG. 9C is a plan view showing a situation where erosion of the refractory metal layer has progressed.
  • FIG. 9A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • 8B is a cross-sectional view taken along the line A-A ′ of FIG
  • FIG. 9D is a plan view showing a state where the low melting point metal layer is drawn to the electrode and the heating element extraction electrode.
  • FIG. 10 is a perspective view showing an example in which soluble conductors having different shapes are configured.
  • FIG. 10A shows an example in which a rectangular (square) shape is formed
  • FIG. 10B shows an example in which a round line is formed.
  • FIG. 11A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • FIG. 11B is a cross-sectional view taken along the line A-A ′ of FIG. 11A.
  • FIG. 12A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 12B is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 13A is a top view which shows one of the modifications of embodiment of the protection element of this invention.
  • 13B is a cross-sectional view taken along the line A-A ′ of FIG. 13A.
  • FIG. 14A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • 14B is a cross-sectional view taken along the line A-A ′ of FIG. 14A.
  • FIG. 15A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention.
  • FIG. 15B is a cross-sectional view taken along the line A-A ′ of FIG. 15A.
  • FIG. 16 is a cross-sectional view showing a modification of the protection element in which the heating element is built in the insulating substrate.
  • FIG. 17 is a cross-sectional view showing a modification of the protection element in which the heating element is formed on the back surface of the insulating substrate.
  • FIG. 18 is a cross-sectional view showing a modification of the protection element in which the heating element is formed on the surface of the insulating substrate.
  • FIG. 19 is a cross-sectional view showing a modified example of the protection element in which the heating element is mounted on the surface of the insulating substrate.
  • FIG. 20 is a diagram showing a modification of the protection element using the soluble conductor in which a linear opening is provided in the high melting point metal layer and the low melting point metal layer is exposed, FIG. 20A is a plan view, and FIG. It is sectional drawing.
  • FIG. 20 is a diagram showing a modification of the protection element using the soluble conductor in which a linear opening is provided in the high melting point metal layer and the low melting point metal layer is exposed
  • FIG. 20A is a plan view
  • FIG. It is sectional drawing.
  • FIG. 21 is a view showing a modification of the protective element using a soluble conductor in which a circular opening is provided in the high melting point metal layer and the low melting point metal layer is exposed
  • FIG. 21A is a plan view
  • FIG. FIG. FIG. 22 is a diagram showing a modification of the protection element using the soluble conductor in which a linear opening is provided in the high melting point metal layer and the low melting point metal layer is exposed
  • FIG. 22A is a plan view
  • FIG. 22B is a plan view. It is sectional drawing.
  • FIG. 23 is a view showing a modified example of a protective element in which a soluble conductor having a two-layer structure of a high melting point metal layer and a low melting point metal layer is connected by a low melting point metal
  • FIG. 23A is a plan view
  • FIG. It is sectional drawing.
  • FIG. 24 is a diagram showing a modified example of a protection element using a soluble conductor having a four-layer structure in which high-melting point metal layers and low-melting point metal layers are alternately stacked.
  • FIG. 24A is a plan view, and FIG. It is sectional drawing.
  • FIG. 24A is a plan view, and FIG. It is sectional drawing.
  • FIG. 25 is a view showing a modification of the protective element in which a soluble conductor composed of a single high melting point metal layer is connected by a low melting point metal
  • FIG. 25A is a plan view
  • FIG. 25B is a cross-sectional view
  • FIG. 26 is a plan view showing a protection element in which a plurality of soluble conductors are provided and an insulating layer is formed on the heating element extraction electrode.
  • FIG. 27 is a plan view showing a state in which a soluble conductor is blown in a protective element in which a plurality of soluble conductors are provided and an insulating layer is formed on a heating element extraction electrode.
  • FIG. 28 is a plan view showing a protection element in which a plurality of soluble conductors are provided and a narrow portion is formed on the heating element extraction electrode.
  • FIG. 29 is a plan view showing a state where a soluble conductor is blown in a protective element in which a plurality of soluble conductors are provided and a narrow portion is formed on a heating element extraction electrode.
  • a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11.
  • a soluble conductor 13 connected to the heating element extraction electrode 16 at the center.
  • external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
  • the rectangular insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15.
  • an insulating member 15 may be laminated between the heating element 14 and the insulating substrate 11.
  • One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1).
  • the other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
  • the soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer. As will be described later, the low melting point metal layer 13b may be provided as the inner layer, and the high melting point metal layer 13a may be provided as the outer layer.
  • the soluble conductor 13 may be a two-layer laminated structure of an upper layer and a lower layer, and may have a high melting point metal layer 13a as an upper layer and a low melting point metal layer 13b as a lower layer.
  • the refractory metal layer 13a is preferably made of Ag, Cu, or a metal containing either of them as a main component, and has a high melting point that does not melt even when board mounting is performed in a reflow furnace.
  • the low melting point metal layer 13b is preferably a metal containing Sn as a main component, and is a material generally called “Pb-free solder” (for example, M705 manufactured by Senju Metal Industry).
  • the melting point of the low melting point metal layer 13b is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
  • the fusible conductor 13 may be formed by forming the low melting point metal layer 13b on the high melting point metal layer 13a by using a plating technique, or by using another known lamination technique or film forming technique.
  • the soluble conductor 13 in which the low melting point metal layer 13b is laminated on the layer 13a can be formed. Further, when the reverse refractory metal layer 13a is used as the outer layer, it can be formed by the same film formation technique.
  • the fusible conductor 13 is connected to the heating element lead electrode 16 and the electrodes 12 (A1) and 12 (A2) by soldering using the low melting point metal layer 13b.
  • the flux 17 may be applied to almost the entire surface of the soluble conductor 13.
  • a cover member may be placed on the insulating substrate 11 in order to protect the inside of the protective element 10 thus configured.
  • the protection element 10 described above is used for a circuit in a battery pack of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell.
  • a detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to the battery cells 21 to 24, detects the voltage values of the battery cells 21 to 24, and supplies the voltage values to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. 3, for example. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • This is a circuit configuration comprising the body 14.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27.
  • One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2.
  • the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 having such a circuit configuration can surely blow the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing the Pb-free and the low profile.
  • the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
  • a glass layer 41a is formed as a base insulating layer on a rectangular substrate 41, and a heating element 44 is laminated on the glass layer 41a.
  • An insulating member 45 is formed so as to cover the heat generating member 44, a refractory metal layer 43a is stacked so as to face the heat generating member 44 via the insulating member 45, and a low melting point metal layer 43b is further stacked.
  • Electrodes 42 are stacked and connected to both ends of the high melting point metal layer 43a and the low melting point metal layer 43b so as to be sandwiched between the high melting point metal layer 43a and the low melting point metal layer 43b.
  • a flux 47 is applied on the low melting point metal layer 43b.
  • the entire refractory metal layer 43a is formed in direct contact with the insulating member 45.
  • the circuit is interrupted only by the action of the low melting point metal layer 43b being melted by the heat generation of the heating element 44 and eroding the high melting point metal layer 43a. Even if the cut-off state is not complete, the heat generation is stopped because the energization of the heating element 44 is suppressed when the soluble conductor becomes high resistance. That is, there may occur a case where the circuit cannot be completely shut off.
  • the high melting point metal layer 13 a and the low melting point metal layer 13 b are connected so as to straddle between the heating element extraction electrode 16 and the electrode 12. For this reason, in addition to the erosion action of the high melting point metal layer due to the melting of the low melting point metal layer 13b, it is surely soluble by the physical pull-in action due to the surface tension of the molten low melting point metal layer 13b on each connected electrode 12 The conductor 13 can be melted.
  • FIG. 5 schematically shows how the fusible conductor 13 behaves by energizing the heating element 14 of the protective element 10 as shown in FIG.
  • FIG. 5A shows a state in which a power source is connected so that a voltage is applied between the heating element electrode 18 (P2) and the electrodes 12 (A1) and (A2), before the heating element 14 is energized, and at the beginning of energization.
  • FIG. It is desirable to set the resistance value of the heating element 14 according to the applied voltage so that the temperature of the heat generated by the heating element 14 is higher (300 ° C. or higher) than the normal reflow temperature ( ⁇ 260 ° C.).
  • the low melting point metal layer 13b of the outer layer of the soluble conductor 13 directly above the heating element 14 starts melting, and the molten low melting point metal diffuses into the inner high melting point metal layer 13a, A erosion phenomenon occurs, and the refractory metal layer 13a is eroded and disappears.
  • the high melting point metal layer 13a disappears and is mixed with the molten low melting point metal layer 13b.
  • the temperature of the heating element 14 further rises, and the erosion region of the high melting point metal layer 13a due to melting of the low melting point metal layer 13b of the outer layer of the soluble conductor 13 is expanded.
  • the temperature including the electrode 12 becomes high, and the entire low melting point metal layer 13b is in a molten state.
  • the refractory metal layer 13a is completely eroded on the heating element extraction electrode 16, as shown in FIG. 5D, the low melting point metal layer 13b, that is, the solder, depends on its wettability (surface tension).
  • the heating element extraction electrode 16 and the two electrodes 12 (A1) and 12 (A2) are attracted to each other. As a result, the electrodes are cut off.
  • the protection element 50 includes an insulating substrate 11, a heating element 14 stacked on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11.
  • a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16.
  • external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
  • the soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer. Or you may make it have the low melting metal layer 13b as an inner layer, and the high melting metal layer 13a as an outer layer.
  • the refractory metal layer 13a is preferably made of Ag, Cu, or a metal containing either of them as a main component, and has a high melting point that does not melt even when board mounting is performed in a reflow furnace.
  • the low melting point metal layer 13b is preferably a metal containing Sn as a main component, and is a material generally called “Pb-free solder” (for example, M705 manufactured by Senju Metal Industry).
  • the melting point is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
  • the fusible conductor 13 may be formed by depositing the low melting point metal layer 13b on the high melting point metal layer 13a by using a plating technique, or by using another well-known lamination technique or film forming technique.
  • the low melting point metal layer 13b may be stacked on the metal layer 13a. Further, when the reverse refractory metal layer 13a is used as the outer layer, it can be formed by the same film formation technique.
  • solder reservoirs 51 made of the same material as that of the low melting point metal layer 13b are provided at portions connected to the electrodes 12 (A1) and 12 (A2).
  • the low melting point metal layer 13b including the pool portion 51 is in a molten state. Since the erosion of the refractory metal layer 13a occurs in the entire soluble conductor 13, the melted soluble conductor 13 is easily attracted to the respective reservoir portions 51 and 51 on the electrodes 12 (A1) and 12 (A2) side. Therefore, the soluble conductor can be blown out more reliably.
  • the protection element 60 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat.
  • a soluble conductor 13 connected to the body extraction electrode 16.
  • external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
  • the soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer.
  • the reservoir portions 51 and 51 may be provided at both ends of the soluble conductor 13.
  • a large number of openings 61 are provided in the refractory metal layer 13a, and the low melting point metal layer 13b is formed on the refractory metal layer 13a having a large number of openings using, for example, a plating technique.
  • the area of the refractory metal layer 13a in contact with the molten low melting point metal layer 13b increases, so that the low melting point metal layer 13b can erode the refractory metal layer 13a in a shorter time. Therefore, the soluble conductor can be blown out more quickly and reliably.
  • FIG. 8 shows a modification in the case where the above-described structure of the soluble conductor 13 is used.
  • the protection element 70 includes an insulating substrate 11, a heating element 14 stacked on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat.
  • a soluble conductor 13 connected to the body extraction electrode 16.
  • external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
  • the soluble conductor 13 has an inner layer that is a low melting point metal layer 13b and an outer layer that is a high melting point metal layer 13a.
  • Pb-free solder containing Sn as a main component can be used for the low melting point metal layer 13b.
  • the high melting point metal layer 13a contains Ag, Cu, or any one of them as a main component.
  • the metal to be used can be used.
  • the flux 17 is soluble to prevent the melting temperature from rising due to oxidation of the surface of the soluble conductor 13 and to maintain the surface tension of the solder during exothermic melting. It is applied on the conductor 13.
  • the inner high-melting point metal layer 13a can be formed by applying a plating technique or the like to the inner low-melting point metal layer 13b.
  • the molten conductor 13 can be formed.
  • FIG. 9 conceptually shows the operation of the configuration example shown in FIG.
  • a power source is connected so that a voltage is applied between the heating element electrode 18 (P2) and the electrodes 12 (A1) and (A2), and before the heating element 14 is energized and at the beginning of energization. Show the state.
  • the low melting point metal layer 13b of the inner layer of the soluble conductor 13 immediately above the heating element 14 starts melting, and the low melting point metal diffuses into the outer high melting point metal layer 13a due to the corrosion phenomenon. To do. Therefore, the outer high-melting point metal layer 13a is eroded and disappears, and the inner low-melting point metal layer 13b starts to be exposed.
  • the low melting point metal layer 13b is exposed in the solid circle in the figure, and the other part is the outer high melting point metal layer 13a.
  • the temperature of the heating element 14 further rises, the melting of the low melting point metal layer 13b of the soluble conductor 13 proceeds, and the erosion area of the high melting point metal layer 13a expands.
  • the entire low melting point metal layer 13b is in a molten state, when the high melting point metal layer 13a is completely eroded on the heating element extraction electrode 16, as shown in FIG. 13b, that is, the solder is attracted to the heating element extraction electrode 16 and each of the two electrodes 12 (A1) and 12 (A2) by the wettability (surface tension). As a result, the electrodes are interrupted.
  • the soluble conductor 13 may be a rectangular soluble conductor 13 as shown in FIG. 10A, or a round wire-like soluble conductor as shown in FIG. 10B.
  • the low melting point metal layer 13b is used as the inner layer and the high melting point metal layer 13a is used as the outer layer, but the inner layer and the outer layer may be reversed.
  • the electrodes 12 (A1) and 12 (A2) are maintained while maintaining the thickness of the soluble conductor 13. You may make it provide the pool part which consists of the low melting metal layer 13b thicker than the low melting metal layer 13b of the soluble conductor 13 on it.
  • FIG. 11 shows a modification in the case where the structure of the soluble conductor 13 is changed.
  • the protection element 80 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat.
  • a soluble conductor 13 connected to the body extraction electrode 16.
  • external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
  • the soluble conductor 13 has a two-layer structure in which the lower layer is a low melting point metal layer 13b and the upper layer is a high melting point metal layer 13a.
  • Pb-free solder containing Sn as a main component can be used for the low melting point metal layer 13b.
  • the high melting point metal layer 13a contains Ag, Cu, or any one of them as a main component. The metal to be used can be used.
  • the external terminal connected to the electrode 12 the heating element and the heating element
  • the surface of the extraction electrode 16 is plated to form a Ni / Au plating layer 52.
  • a known plating process such as Ni / Pd plating or Ni / Pd / Au plating can be used instead of Ni / Au plating.
  • FIG. 12A and FIG. 12B are modifications in the case where the configuration of the soluble conductor is further changed.
  • the soluble conductor 91 of the protective element 90 shown in FIG. 12 is a laminated structure composed of an inner layer and an outer layer, and has a low melting point metal layer 91b as an inner layer and a refractory metal layer 91a as an outer layer. And as for the soluble conductor 91 of the protection element 90, the whole surface of the low melting metal layer 91b is coat
  • Such a soluble conductor 91 is formed by, for example, laminating a sheet of Pb-free solder containing Sn as a main component on a sheet of a high melting point metal such as Ag, or applying a paste of Pb-free solder containing Sn as a main component, Furthermore, it can be formed by laminating refractory metal sheets and performing hot pressing.
  • the soluble conductor 91 can be formed by applying Ag plating to the entire surface of the sheet-like Pb-free solder.
  • the soluble conductor 91 is connected to the electrode 12 and the heating element extraction electrode 16 via a low melting point metal 92 such as Pb-free solder.
  • the flux 17 is applied to almost the entire upper surface of the soluble conductor 91.
  • the electrode 12 and the heating element extraction electrode 16 have a Ni / Pd / Au plating layer 93 formed on the surface in order to suppress the erosion of the electrode itself and improve the fusing characteristics.
  • the protective element 90 uses the low melting point metal layer 13b having a melting point lower than the reflow temperature. Even in this case, it is possible to suppress the outflow of the inner low-melting-point metal layer 91b to the outside during reflow mounting. Therefore, in the protection element 90, the low melting point metal layer 91b erodes the high melting point metal layer 91a in a shorter time by the heat of the heating element 14, and the soluble conductor 91 can be blown out quickly and reliably.
  • the protective element 90 can suppress deformation of the soluble conductor 91 by suppressing the outflow of the inner low melting point metal layer 91b during reflow mounting.
  • FIG. 13A and FIG. 13B are modified examples when the connection configuration of the fusible conductor 91 shown in FIG. 12 and the electrode 12 and the heating element extraction electrode 16 is changed.
  • the protective element 100 shown in FIG. 13 connects the soluble conductor 91, the electrode 12 and the heating element extraction electrode 16 with a conductive paste 95.
  • a metal nano paste such as a silver nano paste is preferably used.
  • Silver nanopaste forms a refractory metal film at a firing temperature of 200 ° C. or higher, that is, at a reflow temperature. Further, the fired film of silver nanopaste has conductivity and thermal conductivity that are inferior to bulk silver by about 50%.
  • the protective element 100 connects the soluble conductor 91 using the conductive paste 95 made of such a metal nanopaste, the conductive paste 95 is baked during reflow mounting to form a metal film.
  • the corrosion of the refractory metal layer 91a constituting the outer layer of the conductor 91 can be suppressed. That is, when the fusible conductor 91 is connected by a low melting point metal such as solder, the outer refractory metal layer 91a is melted during reflow mounting and the outer refractory metal layer 91a is eroded. There was a need to form. However, if the refractory metal layer 91a is formed thick, it takes a long time to melt the soluble conductor 91.
  • the soluble conductor 91 is connected using the conductive paste 95 made of metal nanopaste, so that the refractory metal layer 91a as an outer layer is not corroded, and the refractory metal layer 91a is formed. It can be formed thin. Therefore, the protection element 100 can surely melt the soluble conductor 91 in a short time by the corrosion caused by the low melting point metal layer 91b as the inner layer.
  • the protective element 100 is shown in FIG. It is also possible to use a soluble conductor 13 in which high-melting-point metal layers 13a are stacked above and below an inner-layer low-melting-point metal layer 13b, which is not completely covered.
  • FIG. 14A and FIG. 14B are modified examples when the connection configuration of the soluble conductor 13 shown in FIG. 8 and the electrode 12 and the heating element extraction electrode 16 is changed.
  • the protection element 110 shown in FIG. 14 connects the fusible conductor 13 to the electrode 12 and the heating element extraction electrode 16 by welding such as ultrasonic waves.
  • the fusible conductor 13 has a high melting point metal layer 13a laminated on and under an inner low melting point metal layer 13b and is not completely covered.
  • an Ag plating layer is formed as the refractory metal layer 13a of the soluble conductor 13, and a Ni / Pd / Au plating layer 93 is formed on the surface of the electrode 12 or the heating element extraction electrode 16. . Since Ag and Ag and Au are excellent in adhesion by welding, the protective element 110 can reliably connect the soluble conductor 13 to the electrode 12 and the heating element extraction electrode 16. Further, since the protective element 110 connects the soluble conductor 13 to the electrode 12 and the heating element extraction electrode 16 by welding, the refractory metal layer 13a of the soluble conductor 13 may be eroded even by reflow mounting.
  • the protection element 110 can surely melt the soluble conductor 13 in a short time by the corrosion by the inner low melting point metal layer 13b.
  • the protective element 110 uses, as a soluble conductor, a soluble conductor 13 in which a high melting point metal layer 13a is laminated above and below an inner low melting point metal layer 13b shown in FIG. 14 and is not completely covered.
  • a soluble conductor 13 in which a high melting point metal layer 13a is laminated above and below an inner low melting point metal layer 13b shown in FIG. 14 and is not completely covered.
  • the soluble conductor 91 in which the entire surface of the inner low melting point metal layer 91b shown in FIG. 12 is covered with the high melting point metal layer 91a may be used.
  • FIG. 15 shows a modification in which the configuration of the soluble conductor is further changed.
  • the soluble conductor 121 of the protection element 120 shown in FIG. 15 has the entire surface of the inner low-melting-point metal layer 121b covered with the high-melting-point metal layer 121a, and the entire surface of the high-melting-point metal layer 121a is covered with the second low-melting-point metal layer. 121c is covered.
  • the fusible conductor 121 is formed by coating the outer high-melting-point metal layer 121a with the second low-melting-point metal layer 121c, for example, even when a Cu plating layer is formed as the high-melting-point metal layer 121a. Can be prevented. Therefore, the soluble conductor 121 can prevent a situation where the fusing time is prolonged due to oxidation of Cu, and can be fused in a short time.
  • the soluble conductor 121 can be made of an inexpensive but easily oxidized metal such as Cu as the high melting point metal layer 121a, and can be formed without using an expensive material such as Ag.
  • the second low melting point metal layer 121c can be made of the same material as the inner low melting point metal layer 121b, for example, Pb-free solder containing Sn as a main component.
  • the second low melting point metal layer 121c can be formed by performing tin plating on the surface of the high melting point metal layer 121a.
  • the soluble conductor 121 may have the entire surface of the inner low-melting-point metal layer 121b covered with the high-melting-point metal layer 121a, or the high-melting-point metal layer 121a is laminated on the upper and lower sides of the inner-layer low-melting-point metal layer 121b. And may not be completely coated. Similarly, in the soluble conductor 121, the entire surface of the refractory metal layer 121a may be covered with the second low melting point metal layer 121c, or the second low melting point metal layer above and below the refractory metal layer 121a. 121c may be laminated and not completely covered.
  • the soluble conductor 13 of the protective element to which the present invention is applied has a covering structure in which the inner layer is a low melting point metal layer 13b and the outer layer is a high melting point metal layer 13a.
  • the volume of the low melting point metal layer 13b can be made larger than the volume of the high melting point metal layer 13a as the low melting point metal layer 13b becomes thicker than 1: 1.
  • the low melting point metal layer 13b melted by heat during reflow mounting may be eroded.
  • the layer thickness ratio between the same low-melting-point metal layer and the high-melting-point metal layer as in the soluble conductor 13 It is good.
  • the volume of the low melting point metal layer 13b can be made larger than the volume of the high melting point metal layer 13a. Fusing in a short time by the corrosion of 13a can be performed.
  • FIG. 16 shows a modification in the case where a heat generating element 14 with a different arrangement position is used.
  • the protection element 130 includes an insulating substrate 11, a heating element 14 built in the insulating substrate 11, electrodes 12 (A1) and 12 (A2) formed on both ends of the insulating substrate 11, A heating element extraction electrode 16 laminated on the insulating substrate 11 so as to overlap with the heating element 14, both ends are connected to the electrodes 12 (A 1) and 12 (A 2), and a central part is connected to the heating element extraction electrode 16.
  • the soluble conductor 13 is provided.
  • the protective element 130 has the same configuration as the protective element 80 described above except that the heating element 14 is built in the insulating substrate 11 and the insulating member 15 is not provided.
  • the insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b.
  • the protective element 130 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
  • the soluble conductor 13 has a two-layer structure in which a high melting point metal layer 13a is provided in the upper layer and a low melting point metal layer 13b is provided in the lower layer, and the electrode 12 (A1) provided with the Ni / Au plating layer 52, respectively. , 12 (A2) and the heating element extraction electrode 16 are connected via the low melting point metal layer 13b. Moreover, the flux 17 is apply
  • the heating element 14 is built in the insulating substrate 11, whereby the surface 11a of the insulating substrate 11 is flattened, whereby the heating element lead-out electrode 16 is connected to the electrodes 12 (A1) and 12 (A2). Can be formed on the same plane.
  • the protective element 130 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 130 can improve the fusing characteristics of the soluble conductor 13.
  • the protective element 130 uses a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the heat generating element 14 heats the soluble conductor 13 in the same manner as when the insulating member 15 such as a glass layer is interposed. can do.
  • the protective element 130 does not require the insulating member 15, and the conductive paste constituting the electrodes 12 (A 1), 12 (A 2) and the heating element extraction electrode 16 is applied to the surface 11 a of the flat insulating substrate 11.
  • the electrodes 12 (A1), 12 (A2) and the heating element extraction electrode 16 can be formed in a lump, so that labor saving in the manufacturing process can be achieved.
  • FIG. 17 shows a modification in the case where a heat generating element 14 with a different arrangement position is used.
  • the protection element 140 is laminated on the insulating substrate 11, the back surface 11 b of the insulating substrate 11 and covered with the insulating member 15, and the electrodes 12 formed at both ends of the insulating substrate 11. (A1), 12 (A2), the heating element extraction electrode 16 laminated on the insulating substrate 11 so as to overlap the heating element 14, and both ends are connected to the electrodes 12 (A1), 12 (A2), and the center And a soluble conductor 13 connected to the heating element extraction electrode 16.
  • the protective element 140 has the same configuration as the protective element 80 described above except that the heating element 14 is laminated on the back surface 11b of the insulating substrate 11.
  • the insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b.
  • the protective element 140 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
  • the heating element 14 is laminated on the back surface 11b of the insulating substrate 11, so that the surface 11a of the insulating substrate 11 is flattened, whereby the heating element extraction electrode 16 is connected to the electrodes 12 (A1), 12 It can be formed on the same plane as (A2).
  • the protection element 100 can connect the soluble conductor 13 planarized by making the heat generating body extraction electrode 16 the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 100 can improve the fusing characteristics of the soluble conductor 13.
  • the protective element 140 uses a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the heating element 14 heats the soluble conductor 13 by the heating element 14 in the same manner as when laminated on the surface 11 a of the insulating substrate 11. can do.
  • the protective element 140 is formed by applying the conductive paste constituting the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to the surface 11a of the flat insulating substrate 11 to thereby form the electrodes 12 (A1) and 12 Since (A2) and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved.
  • FIG. 18 shows a modification in the case where a heat generating element 14 with a different arrangement position is used.
  • the protection element 150 includes an insulating substrate 11, a heating element 14 laminated on the surface 11 a of the insulating substrate 11 and covered with the insulating member 15, and a heating element on the surface 11 a of the insulating substrate 11.
  • 14 is laminated between the electrodes 12 (A 1) and 12 (A 2) formed adjacent to the electrode 14 and the electrodes 12 (A 1) and 12 (A 2) on the surface 11 a of the insulating substrate 11.
  • a connected heating element extraction electrode 16 and a soluble conductor 13 whose both ends are connected to the electrodes 12 (A1) and 12 (A2) and whose central part is connected to the heating element extraction electrode 16 are provided.
  • the protection element 150 has the same configuration as the protection element 80 described above except that the heating element 14 is laminated on the surface 11a of the insulating substrate 11.
  • the insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b.
  • the protection element 150 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
  • the heating element 14 is laminated on the surface 11 a of the insulating substrate 11 adjacent to the electrode 12 (A 1), so that the surface 11 a of the insulating substrate 11 is flattened.
  • the electrode 16 can be formed on the same plane as the electrodes 12 (A1) and 12 (A2).
  • the protection element 150 can connect the soluble conductor 13 planarized by making the heat generating body extraction electrode 16 the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protective element 150 can improve the fusing characteristics of the soluble conductor 13.
  • the protection element 150 can efficiently transfer the heat generated to the soluble conductor 13 by laminating the heating element 14 adjacent to the electrode 12 (A1), and the heating element 14 can be transmitted via the insulating member 15.
  • the soluble conductor 13 can be heated in the same manner as when the heating element 14 and the heating element extraction electrode 16 are overlapped.
  • the protective element 150 applies the conductive paste constituting the electrodes 12 (A 1) and 12 (A 2), the heating element 14 and the heating element extraction electrode 16 to the surface 11 a of the flat insulating substrate 11, whereby the electrode 12 ( Since A1), 12 (A2), the heating element 14 and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved. Further, since the heating element 14 is formed on the surface 11a of the insulating substrate 11 and is not overlapped with the heating element extraction electrode 16, the protective element 110 is downsized by reducing the height of the insulating substrate 11 in the thickness direction. be able to.
  • FIG. 19 shows a case where a heating element is used instead of a configuration in which a heating paste 14 is formed by applying and baking a conductive paste, and this is adjacent to the vicinity of electrodes 12 (A1) and 12 (A2). It is a modified example of.
  • the protection element 160 is formed adjacent to the insulating substrate 11, the heating element 161 mounted on the surface 11 a of the insulating substrate 11, and the heating element 161 on the surface 11 a of the insulating substrate 11.
  • the heating element extraction electrode laminated between the electrodes 12 (A1) and 12 (A2) and the electrodes 12 (A1) and 12 (A2) on the surface 11a of the insulating substrate 11 and electrically connected to the heating element 161 16 and a soluble conductor 13 having both ends connected to the electrodes 12 (A 1) and 12 (A 2) and a central portion connected to the heating element extraction electrode 16.
  • the protection element 160 is connected to the heating element lead electrode 16 laminated on the surface 11 a of the insulating substrate 11 in place of the heating element 14, except that the protection element 160 is connected to the heating element electrode 162.
  • the configuration is the same as that of the protection element 80 described above.
  • the heat generating element 161 is mounted on a land portion 163 formed on the surface 11 a of the insulating substrate 11.
  • the protection element 160 is connected to the heating element electrode 162 and the current control element 27 described above, and when an abnormal voltage is detected in any of the battery cells 21 to 24, the heating element 161 is operated to charge / discharge the battery stack 25. Shut off.
  • the heating element 161 is laminated on the surface 11a of the insulating substrate 11 adjacent to the electrode 12 (A1), so that the surface 11a of the insulating substrate 11 is flattened.
  • the extraction electrode 16 can be formed on the same plane as the electrodes 12 (A1) and 12 (A2).
  • the protective element 160 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 160 can improve the fusing characteristics of the soluble conductor 13.
  • the protection element 160 can efficiently transmit the generated heat to the soluble conductor 13 by mounting the heating element 161 adjacent to the electrodes 12 (A1) and 12 (A2), and the insulating member 15 It is possible to heat the soluble conductor 13 in the same manner as when the heating element 14 and the heating element extraction electrode 16 are overlapped with each other.
  • the protective element 160 is formed by applying the conductive paste constituting the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to the surface 11a of the flat insulating substrate 11 to thereby form the electrodes 12 (A1) and 12 Since (A2) and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved. Further, since the protection element 160 is not formed by superimposing the heating element 14 on the surface 11a of the insulating substrate 11 with the heating element extraction electrode 16, the protection element 160 can be reduced in size by reducing the thickness of the insulating substrate 11 in the thickness direction. Can be planned.
  • protection element 160 various elements can be selected and mounted as the heating element 161, and an element that generates heat at a high temperature suitable for fusing the soluble conductor 13 can be used.
  • Modification 14] 20 to 22 are modified examples of the protection element in which the structure of the soluble conductor is changed.
  • a soluble conductor 173 having a three-layer structure in which a high melting point metal layer 172 is formed as an outer layer on both surfaces of a low melting point metal layer 171 as an inner layer.
  • a linear opening 172a is formed along the longitudinal direction in the high melting point metal layer 172 constituting the outer layer, and the low melting point metal layer 171 is exposed from the opening 172a.
  • the fusible conductor 173 exposes the low melting point metal layer 171 from the opening 172a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 172, and further promoting the erosion action of the high melting point metal layer 172.
  • the fusing property can be improved.
  • the opening 172a of the refractory metal layer 172 can be formed, for example, by subjecting the low melting point metal layer 171 to partial plating of the metal constituting the refractory metal layer 172.
  • the protective element 170 has the same configuration as the protective element 10 described above except that the soluble conductor 173 is used instead of the soluble conductor 13.
  • the fusible conductor 173 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 134 such as solder. .
  • the flux 17 is applied to the soluble conductor 173 on the surface of the refractory metal layer 172.
  • the refractory metal layer 172 can be formed using the same material as the refractory metal layer 13a described above, and the low melting metal layer 171 is formed using the same material as the refractory metal layer 13b described above. be able to.
  • the soluble conductor 173 may use solder as a metal constituting the low melting point metal layer 171 and may form a film containing Au or Au as a main component on the surface of the high melting point metal layer 172. Thereby, the soluble conductor 173 can further improve the wettability of the solder which comprises the low melting-point metal layer 171, and can promote an erosion effect
  • 21A and 21B uses a soluble conductor 183 having a three-layer structure in which a high melting point metal layer 182 is formed as an outer layer on both surfaces of a low melting point metal layer 181 as an inner layer.
  • a circular opening 182a is formed over the entire surface of the high melting point metal layer 182 constituting the outer layer, and the low melting point metal layer 181 is exposed from the opening 182a.
  • the opening 182a of the refractory metal layer 182 can be formed, for example, by subjecting the low melting point metal layer 181 to partial plating of a metal constituting the refractory metal layer 182.
  • the soluble conductor 183 exposes the low melting point metal layer 181 from the opening 182a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 182 and further promoting the erosion action of the high melting point metal layer 182.
  • the fusing property can be improved.
  • solder may be used as a metal constituting the low melting point metal layer 181, and a film containing Au or Au as a main component may be formed on the surface of the high melting point metal layer 182.
  • the soluble conductor 183 can further improve the wettability of the solder constituting the low melting point metal layer 181 and promote the erosion action.
  • a soluble conductor 193 having a three-layer structure in which a high melting point metal layer 192 is formed as an outer layer on both surfaces of a low melting point metal layer 191 serving as an inner layer.
  • a plurality of linear openings 192a extending in the width direction are formed in the refractory metal layer 192 constituting the outer layer in the longitudinal direction, and the low melting point metal layer 191 is exposed from the openings 192a.
  • the opening 192a of the refractory metal layer 192 can be formed, for example, by subjecting the low melting point metal layer 191 to partial plating of a metal constituting the refractory metal layer 192.
  • the fusible conductor 193 exposes the low melting point metal layer 191 from the opening 192a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 192 and further promoting the erosion action of the high melting point metal layer.
  • the fusing property can be improved.
  • solder may be used as the metal constituting the low melting point metal layer 191, and Au or a film containing Au as a main component may be formed on the surface of the high melting point metal layer 192.
  • the soluble conductor 193 can further improve the wettability of the solder constituting the low melting point metal layer 191, and promote the erosion action.
  • FIG. 23 is a modified example of the protection element in which the configuration of the soluble conductor is changed.
  • 23A and 23B uses a soluble conductor 203 in which a low-melting point metal layer 201 is disposed in an upper layer and a high-melting point metal layer 202 is formed in a lower layer.
  • the fusible conductor 203 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 204 such as solder.
  • the soluble conductor 203 has a three-layer structure of the low melting point metal 204, the high melting point metal layer 202, and the low melting point metal layer 201 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16. .
  • the protective element 200 has the same configuration as the protective element 10 described above except that the soluble conductor 203 is used instead of the soluble conductor 13.
  • the refractory metal layer 202 can be formed using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer 201 is formed using the same material as the above-described refractory metal layer 13b. Can be formed.
  • the protective element 200 has a three-layer structure in which a soluble conductor 203 is composed of a low melting point metal 204, a high melting point metal layer 202, and a low melting point metal layer 201 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16. Therefore, the molten conductor aggregates on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 by the erosion action of the high melting point metal layer 202 by the molten low melting point metal 204 and the low melting point metal layer 201. Can be further promoted, and the fusing property can be improved.
  • the protective element 200 can be formed by a simple process in which the fusible conductor 203 is laminated on the surface of the low melting point metal layer 201 with the high melting point metal layer 202.
  • solder may be used as the metal constituting the low melting point metal layer 201, and Au or a film mainly composed of Au may be formed on the surface of the high melting point metal layer 202.
  • the soluble conductor 203 can further improve the wettability of the solder which comprises the low melting-point metal layer 201, and can promote an erosion effect
  • FIG. 24 shows a modification of the protection element in which the configuration of the soluble conductor is changed.
  • 24A and 24B includes a first refractory metal layer 211, a first low melting point metal layer 212, a second refractory metal layer 213, and a second low melting point metal in order from the top layer.
  • a soluble conductor 215 having a four-layer structure in which the layer 214 is laminated is used.
  • the fusible conductor 215 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via the second low melting point metal layer 214, respectively. .
  • the protection element 210 has the same configuration as the protection element 10 described above except that the soluble conductor 215 is used instead of the soluble conductor 13.
  • the first and second refractory metal layers 211 and 213 can be formed using the same material as the refractory metal layer 13a described above, and the first and second refractory metal layers 212 and 214 are formed. Can be formed using the same material as the low melting point metal layer 13b described above.
  • the protective element 210 has the electrodes 12 (A1), 12 (A2), and the electrodes 12 (A1), 12 (A2), and erosion action of the first and second refractory metal layers 211, 213 by the melted first and second low melting point metal layers 212, 214 Aggregation of the molten conductor on the heating element extraction electrode 16 can be further promoted, and the fusing properties between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be improved.
  • the second low melting point metal layer 214 is connected to the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16.
  • An adhesive layer can also be used.
  • the protection element 210 may use four or more layers as the soluble conductor as long as the high melting point metal layer and the low melting point metal layer are alternately laminated.
  • FIG. 25 is a modified example of the protection element in which the configuration of the soluble conductor is changed.
  • the protective element 220 shown in FIGS. 25A and 25B uses a single-layer soluble conductor 222 made of only the refractory metal layer 221.
  • the fusible conductor 222 is connected to the electrodes 12 (A 1) and 12 (A 2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 223 such as solder.
  • the soluble conductor 222 has a two-layer structure of the low melting point metal 223 and the high melting point metal layer 221 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16.
  • the protective element 220 has the same configuration as the protective element 10 described above except that the soluble conductor 222 is used instead of the soluble conductor 13.
  • the refractory metal layer 221 can be formed using the same material as the above-described refractory metal layer 13a, and the low-melting metal 223 can be formed using the same material as the above-described low-melting metal layer 13b. can do.
  • the protective element 220 is melted because the fusible conductor 222 has a two-layer structure of a low melting point metal 223 and a high melting point metal layer 221 on the electrodes 12 (A1), 12 (A2) and the heating element extraction electrode 16.
  • the erosion action of the high melting point metal layer 221 by the low melting point metal 223 further promotes the aggregation of the molten conductor on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 and improves the fusing property. it can.
  • the low melting point metal 223 is preferably formed thicker than the high melting point metal layer 221 of the soluble conductor 222.
  • the protective element 220 can be formed by a simple process because the soluble conductor 222 has a single-layer structure of the refractory metal layer 221.
  • solder may be used as the metal constituting the low melting point metal 223, and a coating containing Au or Au as a main component may be formed on the surface of the high melting point metal layer 221.
  • the soluble conductor 222 can further improve the wettability of the solder which comprises the low melting-point metal 223, and can promote an erosion effect
  • FIG. 26 is a modification of the protection element using a plurality of soluble conductors.
  • the protection element 230 shown in FIG. 26 is obtained by increasing the size of the fusible conductor 231 in order to increase the rating of the protection element 230 in a large current application.
  • the size of the soluble conductor 231 is increased, the volume of the molten conductor at the time of melting increases, and the molten conductor aggregates between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to cause fusing. It may not be possible.
  • the protective element 230 is divided into a plurality of soluble conductors, and an insulating layer 232 is formed around the soluble conductor connecting portion 16a on the heating element extraction electrode 16.
  • the protective element 230 is provided with first and second soluble conductors 231a and 231b to improve the overall rating.
  • the first and second soluble conductors 231a and 231b are connected by a low melting point metal 233 such as solder from the electrode 12 (A1) to the electrode 12 (A2) through the heating element extraction electrode 16.
  • the first and second fusible conductors 231a and 231b are disposed at a predetermined distance apart.
  • the first and second fusible conductors 231a and 231b have a laminated structure in which the low melting point metal layer constituting the inner layer is covered with the high melting point metal layer constituting the outer layer, as shown in FIG.
  • the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16 are connected via the melting point metal 233.
  • the first and second fusible conductors 231a and 231b have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated, and the electrode 12 (A1) is interposed via the low melting point metal layer constituting the lower layer. , 12 (A2) and the heating element extraction electrode 16 may be connected.
  • the first and second fusible conductors 231a and 231b have a single-layer structure having only a high melting point metal layer, and the electrodes 12 (A1) and 12 (A2) and the heating element lead electrode 16 are interposed through the low melting point metal 233. You may connect to the top.
  • the first and second fusible conductors 231a and 231b may have a configuration in which an opening is provided in the high melting point metal layer constituting the outer layer and the low melting point metal layer constituting the inner layer is exposed to the outside.
  • an insulating layer 232 is formed in a region between the first and second soluble conductors 231a and 231b on the heating element extraction electrode 16.
  • the insulating layer 232 prevents the volume of the molten conductor from increasing due to the fusion between the melted first and second soluble conductors 231a and 231b, and is formed by a known method using a known insulating material. Is done.
  • the fusible conductor 231 is coated with a flux (not shown) on the surface.
  • the protective element 230 uses a plurality of fusible conductors 231 instead of the fusible conductor 13 and a point that an insulating layer 232 is formed around the fusible conductor connecting portion 16a of the heating element extraction electrode 16.
  • the soluble conductor 231 can be formed as the refractory metal layer using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer is the same as the refractory metal layer 13b described above. It can be formed using a material.
  • the protective element 230 allows the molten conductor to be coupled by the insulating layer 232 along the heating element extraction electrode 16 even when the first and second soluble conductors 231a and 231b are melted. Is prevented. Therefore, even when the protection element 230 increases the volume of the soluble conductor 231 to improve the rating, the molten conductor is drawn to one side along the heating element extraction electrode 16, and the electrodes 12 (A1), 12 (A2) and the heating element lead-out electrode 16 are aggregated between each other, so that a situation where the fusion cannot be performed can be prevented and the fusion can be surely performed.
  • the protective element 230 may provide the insulating layer 232 also around the soluble conductor connection part of the electrodes 12 (A1) and 12 (A2). As a result, the protection element 230 causes the molten conductor to be drawn to one side through the electrodes 12 (A1) and 12 (A2), and aggregates between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, it is possible to prevent a situation where fusing is not possible.
  • the fusible conductor 231 also has a structure in which a low melting point metal layer and a high melting point metal layer are laminated, solder is used as the metal constituting the low melting point metal, and Au or You may form the film
  • the soluble conductor 231 can further improve the wettability of the solder constituting the low melting point metal and promote the erosion action.
  • the protection element 230 may form an insulating layer 235 over the longitudinal direction of the electrodes 12 (A1) and 12 (A2).
  • the insulating layer 235 prevents the molten conductor from aggregating to the external electrode beyond the electrodes 12 (A1) and 12 (A2), and the insulating conductor 235 of the soluble conductor 231 of the electrodes 12 (A1) and 12 (A2). It is formed outside the connection area.
  • the insulating layer 235 as shown in FIG. 27, in the protection element 230, the molten conductor does not aggregate on the electrodes 12 (A1) and 12 (A2) and does not flow to the external electrodes.
  • FIG. 28 is a modification of the protection element using a plurality of soluble conductors.
  • the soluble conductor 241 is enlarged in order to increase the rating of the protection element 240 in a large current application.
  • the protective element 240 is divided into a plurality of fusible conductors, and the periphery of the fusible conductor connecting portion 16a on the heating element lead-out electrode 16 is narrower than the fusible conductor connecting portion 16a.
  • the protection element 240 is provided with first and second soluble conductors 241a and 241b to improve the overall rating.
  • the first and second soluble conductors 241a and 241b are connected by a low melting point metal 243 such as solder from the electrode 12 (A1) to the electrode 12 (A2) through the heating element extraction electrode 16.
  • the first and second fusible conductors 241a and 241b are disposed with a predetermined distance therebetween.
  • the first and second fusible conductors 241a and 241b have a laminated structure in which the low melting point metal layer constituting the inner layer is covered with the high melting point metal layer constituting the outer layer, as shown in FIG.
  • the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16 are connected via the melting point metal 243.
  • the first and second fusible conductors 241a and 241b have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated, and the electrode 12 (A1) is interposed via the low melting point metal layer constituting the lower layer. , 12 (A2) and the heating element extraction electrode 16 may be connected.
  • the first and second fusible conductors 241a and 241b have a single-layer structure having only a high melting point metal layer, and are formed on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 through the low melting point metal. You may connect to.
  • the first and second fusible conductors 241a and 241b may have a structure in which an opening is provided in the high melting point metal layer constituting the outer layer and the low melting point metal layer constituting the inner layer faces outward.
  • the protective element 240 has a narrow portion 242 narrower than the soluble conductor connecting portion 16a in the region between the first and second soluble conductors 241a and 241b on the heating element extraction electrode 16.
  • the narrow portion 242 prevents the volume of the molten conductor from increasing due to the fusion between the melted first and second soluble conductors 241a and 241b, and prints the heating element extraction electrode 16 in a predetermined pattern. It is formed by firing.
  • the narrow portion 242 may be formed by providing an insulating layer on the heating element extraction electrode 16.
  • the fusible conductor 241 is coated with a flux (not shown) on the surface.
  • the protection element 240 has a point that a plurality of soluble conductors 241 are used instead of the soluble conductor 13 and that a narrow portion 242 is formed around the soluble conductor connecting portion 16a of the heating element extraction electrode 16. Except for this, it has the same configuration as the protection element 10 described above.
  • the soluble conductor 241 can be formed as the refractory metal layer using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer is the same as the refractory metal layer 13b described above. It can be formed using a material.
  • the protective element 240 does not flow into the narrow portion 242 but aggregates into the wide soluble conductor connection portion 16a. As a result, the molten conductor is prevented from being bonded through the heating element extraction electrode 16. Therefore, even when the protective element 240 has its rating increased by increasing the volume of the soluble conductor 241, the molten conductor is drawn to one side through the heating element extraction electrode 16, and the electrodes 12 (A1), 12 (A2) and the heating element lead-out electrode 16 are aggregated between each other, so that a situation where the fusion cannot be performed can be prevented and the fusion can be surely performed.
  • the protective element 240 may be provided with a narrow portion 242 also around the soluble conductor connecting portion of the electrodes 12 (A1) and 12 (A2). Thereby, the protection element 240 is attracted to one side of the molten conductor along the electrodes 12 (A1) and 12 (A2), and is aggregated between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, it is possible to prevent a situation where fusing is not possible.
  • the fusible conductor 241 also has a structure in which a low melting point metal layer and a high melting point metal layer are laminated, solder is used as the metal constituting the low melting point metal and Au or You may form the film
  • the soluble conductor 203 can further improve the wettability of the solder which comprises a low melting-point metal, and can promote an erosion effect
  • an insulating layer 245 may be formed over the longitudinal direction of the electrodes 12 (A1) and 12 (A2).
  • the insulating layer 245 prevents the molten conductor from aggregating to the external electrode beyond the electrodes 12 (A1) and 12 (A2).
  • the insulating layer 245 includes the soluble conductor 241 of the electrodes 12 (A1) and 12 (A2). It is formed outside the connection area.

Abstract

The purpose of the present invention is to attain a protection element that can be made lead-free by using a multilayer body with a high melting-point metal layer and a low melting-point metal layer. A protection element (10) is provided with an insulation substrate (11), a heating element (14), an insulation member (15), two electrodes (12), a heating element draw-out electrode (16), and a fusible conductor (13). The fusible conductor (13) is composed of a multilayer body comprising at least a high melting-point metal layer (13a) and a low melting-point metal layer (13b). When being melted by the heat generated by the heating element (14), the low melting-point metal layer (13b) will erode the high melting-point metal layer (13a) while being pulled by surface tension towards the sides of the two electrodes (12) and the heating element draw-out electrode (16) to which the low melting-point metal layer (13b) has good wettability, causing the low melting-point metal layer (13b) to break.

Description

保護素子Protective element
 本発明は、電流経路を溶断することにより、電流経路上に接続されたバッテリへの充電を停止し、バッテリの熱暴走を抑制する保護素子に関する。
 本出願は、日本国において、2012年3月29日に出願された日本特許出願番号特願2012-076928、2012年12月25日に出願された日本特許出願番号特願2012-281452、及び2013年1月21日に出願された日本特許出願番号特願2013-008302を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
The present invention relates to a protection element that stops charging of a battery connected on a current path by fusing the current path and suppresses thermal runaway of the battery.
This application is Japanese Patent Application No. 2012-076928 filed on March 29, 2012, Japanese Patent Application No. 2012-281442, and 2013 filed on December 25, 2012 in Japan. The priority is claimed on the basis of Japanese Patent Application No. 2013-008302 filed on Jan. 21, 2011, which is incorporated herein by reference.
 充電して繰り返し利用することのできる2次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン2次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the secondary batteries that can be charged and used repeatedly are processed into battery packs and provided to users. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. It has a function of shutting off the output of the battery pack in a predetermined case.
 バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定しうるいかなる異常状態において、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。 ・ The battery pack is overcharge protected or overdischarge protected by turning the output on and off using the FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage Even when a battery pack is output, battery packs and electronic devices must be protected from accidents such as fire. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made up of a fuse element having a function of cutting off the current path by an external signal is used.
 このようなリチウムイオン2次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。 As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, the protection element has a heating element, and the heating element causes a soluble conductor on the current path. In general, a structure for fusing is used.
特開2010-003665号公報JP 2010-003665 A 特開2004-185960号公報JP 2004-185960 A 特開2012-003878号公報JP 2012-003878 A
 特許文献1に記載されているような保護素子においては、リフロー実装を用いた場合に、リフローの熱によって溶融しないように、一般的には、可溶導体には融点が300℃以上のPb入り高融点ハンダが用いられている。しかしながら、RoHS指令等においては、Pb含有ハンダの使用は、限定的に認められているに過ぎず、今後Pbフリー化の要求は、強まるものと考えられる。 In a protective element as described in Patent Document 1, in general, a soluble conductor contains Pb having a melting point of 300 ° C. or higher so that it is not melted by the heat of reflow when reflow mounting is used. High melting point solder is used. However, in the RoHS directive and the like, the use of Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
 ここで、「ハンダ喰われ」や「溶食現象」は、電子部品等のAuメッキ、Agメッキが、溶融したハンダ内に溶けだす現象として以前からよく知られており、この現象を利用してPbフリーハンダ材に対応した保護素子が、特許文献2に記載されている。しかしながら、特許文献2に記載されているように、絶縁層に高融点金属層が密着配置された構造では、高融点金属層が低融点金属層の溶融により溶食現象を生じるのみであり、回路の遮断を完全にできない場合があるとの問題がある。また、可溶導体を確実に溶断させるのには、高融点金属層等にスリット及び膜厚段差等を形成するのが好ましいが、スリット及び膜厚段差形成のための工程が増加するとの問題がある(たとえば、特許文献3を参照)。 Here, “solder erosion” and “corrosion phenomenon” are well known as phenomena in which Au plating and Ag plating of electronic parts, etc. start to melt in the molten solder. A protective element corresponding to Pb-free solder material is described in Patent Document 2. However, as described in Patent Document 2, in the structure in which the refractory metal layer is closely attached to the insulating layer, the refractory metal layer only causes a erosion phenomenon due to melting of the low melting point metal layer. There is a problem that it may not be possible to completely block. Further, in order to surely melt the fusible conductor, it is preferable to form slits and film thickness steps in the refractory metal layer or the like, but there is a problem that the process for forming slits and film thickness steps increases. Yes (see, for example, Patent Document 3).
 そこで、本発明は、高融点金属層と低融点金属層との積層体を用いて、Pbフリー化を可能にした保護素子を実現することを目的とする。 Therefore, an object of the present invention is to realize a protective element that can be made Pb-free by using a laminate of a high melting point metal layer and a low melting point metal layer.
 上述した課題を解決するための手段として、本発明の一実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、絶縁部材が積層された絶縁基板に積層された第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路上で発熱体とに電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、高融点金属層と低融点金属層との積層体からなり、低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 As a means for solving the above-described problems, a protective element according to an embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, and a laminate on the insulating substrate so as to cover at least the heating element. Laminated on the insulating member so as to overlap the heating element, and the first and second electrodes laminated on the insulating substrate on which the insulating members are laminated. A heating element extraction electrode electrically connected to the heating element on the current path between the heating element extraction electrode and the first and second electrodes stacked from the heating element extraction electrode; And a soluble conductor that melts the current path between the two. The fusible conductor is composed of a laminate of a high melting point metal layer and a low melting point metal layer, and the low melting point metal layer is melted by the heat generated by the heating element, so that the high melting point metal layer is eroded and wetted. The first and second electrodes having high properties and the heating element extraction electrode are attracted and melted.
 低融点金属層は、Pbフリーハンダからなり、高融点金属層は、Ag又はCuを主成分とする金属からなることが好ましい。 The low melting point metal layer is preferably made of Pb-free solder, and the high melting point metal layer is preferably made of a metal mainly composed of Ag or Cu.
 また、低融点金属層の体積を高融点金属層の体積よりも多くすることが好ましい。 Also, it is preferable that the volume of the low melting point metal layer is larger than the volume of the high melting point metal layer.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、絶縁部材が積層された絶縁基板に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protective element according to another embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member stacked A first and second electrodes stacked on the insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction electrode To the first and second electrodes, and a soluble conductor that melts the current path between the first electrode and the second electrode by heating. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも上記発熱体を覆うように、絶縁基板に積層された絶縁部材と、絶縁部材が積層された絶縁基板に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する複数の可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protection element according to another embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member. First and second electrodes stacked on a stacked insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction A plurality of fusible conductors are stacked from the electrode to the first and second electrodes, and the current path between the first electrode and the second electrode is blown by heating. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板の内部に内蔵された発熱体と、絶縁基板に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、発熱体の加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protection element according to another embodiment of the present invention includes an insulating substrate, a heating element built in the insulating substrate, first and second electrodes stacked on the insulating substrate, and first and second electrodes. A heating element extraction electrode electrically connected to the heating element on the current path between the electrodes, and the first and second electrodes are laminated from the heating element extraction electrode to the first electrode by heating the heating element. And a soluble conductor that melts the current path between the second electrode and the second electrode. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Is blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、絶縁基板の発熱体が積層された面の反対面に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、発熱体の加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protection element according to another embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, and first and second layers stacked on opposite surfaces of the insulating substrate on which the heating element is stacked. And a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a stack from the heating element extraction electrode to the first and second electrodes. And a soluble conductor that melts a current path between the first electrode and the second electrode by heating the body. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、絶縁基板の発熱体が積層された同一面に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、発熱体の加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protection element according to another embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, and first and second electrodes stacked on the same surface where the heating elements of the insulating substrate are stacked. And a heating element extraction electrode electrically connected to the heating element on the current path between the first and second electrodes, and a stack of the heating element from the heating element extraction electrode to the first and second electrodes. A soluble conductor that melts a current path between the first electrode and the second electrode by heating is provided. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上に積層された発熱体引出電極と、発熱体引出電極に電気的に接続する様に搭載された発熱素子と、発熱体引出電極から第1及び第2の電極にわたって積層され、発熱素子の加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなる。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protection element according to another embodiment of the present invention is stacked on an insulating substrate, first and second electrodes stacked on the insulating substrate, and a current path between the first and second electrodes. A heating element extraction electrode, a heating element mounted so as to be electrically connected to the heating element extraction electrode, and a first electrode and a second electrode are stacked from the heating element extraction electrode. A soluble conductor for fusing a current path between the electrode and the second electrode. The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer. The low melting point metal layer is attracted to the first and second electrodes and the heating element extraction electrode side where the low melting point metal has high wettability while being melted by the heat generated by the heating element while eroding the high melting point metal layer. Blown out.
 本発明の他の実施の形態に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、絶縁部材が積層された絶縁基板に積層された第1及び第2の電極と、第1及び第2の電極の間の電流経路上で発熱体に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、高融点金属からなり、第1の電極、第2の電極、及び発熱体引出電極の各々と低融点金属を介して接続される。低融点金属層は、発熱体が発する熱により溶融することで、高融点金属からなる可溶導体を浸食しながら、低融点金属の濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断される。 A protective element according to another embodiment of the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, and an insulating member stacked A first and second electrodes stacked on the insulating substrate, a heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes, and a heating element extraction electrode To the first and second electrodes, and a soluble conductor that melts the current path between the first electrode and the second electrode by heating. The fusible conductor is made of a high melting point metal, and is connected to each of the first electrode, the second electrode, and the heating element extraction electrode via the low melting point metal. The low melting point metal layer is melted by the heat generated by the heating element, so that the first and second electrodes and the heating element lead electrode having high wettability of the low melting point metal while eroding the soluble conductor made of the high melting point metal. Pulled to the side and blown.
 本発明の保護素子では、高融点金属層と低融点金属層との積層体からなる可溶導体を加熱することにより、発熱体が発する熱で低融点金属層が溶融して、高融点金属層を浸食しながら、濡れ性が高い第1及び第2の電極並びに発熱体引出電極側に引き寄せられて溶断されるので、確実に溶断させることができる。また、本発明の保護素子は、可溶導体を有することから通常の電流ヒューズとしても機能することは明白であり、外部信号及び過電流における電流経路遮断の両立を実現することができる。 In the protection element of the present invention, the low melting point metal layer is melted by the heat generated by the heating element by heating the soluble conductor composed of the laminate of the high melting point metal layer and the low melting point metal layer. Since the first and second electrodes having high wettability and the heating element lead-out electrode are melted and melted while being eroded, it can be surely melted. In addition, since the protection element of the present invention has a soluble conductor, it is clear that it functions as a normal current fuse, and it is possible to realize both current signal interruption and external signal and overcurrent interruption.
 また、低融点金属層は、Pbフリーハンダからなり、高融点金属層は、Ag又はCuを主成分とする金属からなるので、Pbフリーに対応できる。 Further, the low melting point metal layer is made of Pb-free solder, and the high melting point metal layer is made of a metal containing Ag or Cu as a main component, so that it can correspond to Pb free.
 低融点金属層の体積を高融点金属層の体積よりも多くしているので、効果的に高融点金属層の浸食作用を行うことができる。 Since the volume of the low melting point metal layer is larger than the volume of the high melting point metal layer, the erosion action of the high melting point metal layer can be performed effectively.
図1Aは、本発明が適用された保護素子の平面図である。図1Bは、図1AのA-A’部の断面図である。FIG. 1A is a plan view of a protection element to which the present invention is applied. 1B is a cross-sectional view taken along the line A-A ′ of FIG. 1A. 図2は、本発明が適用された保護素子の応用例を示すブロック図である。FIG. 2 is a block diagram showing an application example of a protection element to which the present invention is applied. 図3は、本発明が適用された保護素子の回路構成例を示す図である。FIG. 3 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied. 図4は、公知例(特開2004-185960号公報)の保護素子の断面図である。FIG. 4 is a cross-sectional view of a protection element of a known example (Japanese Patent Laid-Open No. 2004-185960). 図5は、本発明が適用された保護素子の動作を説明するための概念的な平面図である。図5Aは、保護素子の動作開始前又は動作開始直後を示す平面図である。図5Bは、加熱動作により、熱源近傍の低融点金属層が溶融して高融点金属層を浸食している様子を示す平面図である。図5Cは、高融点金属層の浸食が進んだ状況を示す平面図である。図5Dは、電極及び発熱体引出電極に低融点金属層が引き寄せられた状態を示す平面図である。FIG. 5 is a conceptual plan view for explaining the operation of the protection element to which the present invention is applied. FIG. 5A is a plan view showing the protection element before or just after the operation starts. FIG. 5B is a plan view showing a state in which the low melting point metal layer in the vicinity of the heat source is melted and eroded by the heating operation. FIG. 5C is a plan view showing a situation where erosion of the refractory metal layer has progressed. FIG. 5D is a plan view showing a state where the low melting point metal layer is drawn to the electrode and the heating element extraction electrode. 図6Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図6Bは、図6AのA-A’部の断面図である。FIG. 6A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 6B is a cross-sectional view taken along the line A-A ′ of FIG. 6A. 図7Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図7Bは、図7AのA-A’部の断面図である。FIG. 7A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. 7A. 図8Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図8Bは、図8AのA-A’部の断面図である。FIG. 8A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 8B is a cross-sectional view taken along the line A-A ′ of FIG. 8A. 図9は、図8の変形例に係る保護素子の動作を説明するための概念的な平面図である。図9Aは、保護素子の動作開始前又は動作開始直後を示す平面図である。図9Bは、加熱動作により、熱源近傍の低融点金属層が溶融して高融点金属層を浸食している様子を示す平面図である。図9Cは、高融点金属層の浸食が進んだ状況を示す平面図である。図9Dは、電極及び発熱体引出電極に低融点金属層が引き寄せられた状態を示す平面図である。FIG. 9 is a conceptual plan view for explaining the operation of the protection element according to the modification of FIG. FIG. 9A is a plan view showing the protection element before or just after the operation starts. FIG. 9B is a plan view showing a state in which the low melting point metal layer in the vicinity of the heat source is melted and eroded by the heating operation. FIG. 9C is a plan view showing a situation where erosion of the refractory metal layer has progressed. FIG. 9D is a plan view showing a state where the low melting point metal layer is drawn to the electrode and the heating element extraction electrode. 図10は、形状の異なる可溶導体を構成した例を示す斜視図である。図10Aは、角型(方形)状に形成した例であり、図10Bは、丸線状に形成した例を示す。FIG. 10 is a perspective view showing an example in which soluble conductors having different shapes are configured. FIG. 10A shows an example in which a rectangular (square) shape is formed, and FIG. 10B shows an example in which a round line is formed. 図11Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図11Bは、図11AのA-A’部の断面図である。FIG. 11A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. FIG. 11B is a cross-sectional view taken along the line A-A ′ of FIG. 11A. 図12Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図12Bは、図12AのA-A’部の断面図である。FIG. 12A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 12B is a cross-sectional view taken along the line A-A ′ of FIG. 12A. 図13Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図13Bは、図13AのA-A’部の断面図である。FIG. 13A is a top view which shows one of the modifications of embodiment of the protection element of this invention. 13B is a cross-sectional view taken along the line A-A ′ of FIG. 13A. 図14Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図14Bは、図14AのA-A’部の断面図である。FIG. 14A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. 14B is a cross-sectional view taken along the line A-A ′ of FIG. 14A. 図15Aは、本発明の保護素子の実施形態のうちの変形例の1つを示す平面図である。図15Bは、図15A図のA-A’部の断面図である。FIG. 15A is a plan view showing one of the modifications of the embodiment of the protection element of the present invention. FIG. 15B is a cross-sectional view taken along the line A-A ′ of FIG. 15A. 図16は、発熱体を絶縁基板に内蔵した保護素子の変形例を示す断面図である。FIG. 16 is a cross-sectional view showing a modification of the protection element in which the heating element is built in the insulating substrate. 図17は、発熱体を絶縁基板の裏面に形成した保護素子の変形例を示す断面図である。FIG. 17 is a cross-sectional view showing a modification of the protection element in which the heating element is formed on the back surface of the insulating substrate. 図18は、発熱体を絶縁基板の表面に形成した保護素子の変形例を示す断面図である。FIG. 18 is a cross-sectional view showing a modification of the protection element in which the heating element is formed on the surface of the insulating substrate. 図19は、発熱素子を絶縁基板の表面に実装した保護素子の変形例を示す断面図である。FIG. 19 is a cross-sectional view showing a modified example of the protection element in which the heating element is mounted on the surface of the insulating substrate. 図20は、高融点金属層に線状の開口部を設け低融点金属層を露出させた可溶導体を用いた保護素子の変形例を示す図であり、図20Aは平面図、図20Bは断面図である。FIG. 20 is a diagram showing a modification of the protection element using the soluble conductor in which a linear opening is provided in the high melting point metal layer and the low melting point metal layer is exposed, FIG. 20A is a plan view, and FIG. It is sectional drawing. 図21は、高融点金属層に円形の開口部を設け低融点金属層を露出させた可溶導体を用いた保護素子の変形例を示す図であり、図21Aは平面図、図21Bは断面図である。FIG. 21 is a view showing a modification of the protective element using a soluble conductor in which a circular opening is provided in the high melting point metal layer and the low melting point metal layer is exposed, FIG. 21A is a plan view, and FIG. FIG. 図22は、高融点金属層に線状の開口部を設け低融点金属層を露出させた可溶導体を用いた保護素子の変形例を示す図であり、図22Aは平面図、図22Bは断面図である。FIG. 22 is a diagram showing a modification of the protection element using the soluble conductor in which a linear opening is provided in the high melting point metal layer and the low melting point metal layer is exposed, FIG. 22A is a plan view, and FIG. 22B is a plan view. It is sectional drawing. 図23は、高融点金属層と低融点金属層との2層構造をなす可溶導体を低融点金属によって接続した保護素子の変形例を示す図であり、図23Aは平面図、図23Bは断面図である。FIG. 23 is a view showing a modified example of a protective element in which a soluble conductor having a two-layer structure of a high melting point metal layer and a low melting point metal layer is connected by a low melting point metal, FIG. 23A is a plan view, and FIG. It is sectional drawing. 図24は、高融点金属層と低融点金属層とが交互に積層された4層構造の可溶導体を用いた保護素子の変形例を示す図であり、図24Aは平面図、図24Bは断面図である。FIG. 24 is a diagram showing a modified example of a protection element using a soluble conductor having a four-layer structure in which high-melting point metal layers and low-melting point metal layers are alternately stacked. FIG. 24A is a plan view, and FIG. It is sectional drawing. 図25は、高融点金属層の単層からなる可溶導体を低融点金属によって接続した保護素子の変形例を示す図であり、図25Aは平面図、図25Bは断面図である。FIG. 25 is a view showing a modification of the protective element in which a soluble conductor composed of a single high melting point metal layer is connected by a low melting point metal, FIG. 25A is a plan view, and FIG. 25B is a cross-sectional view. 図26は、複数の可溶導体を設けると共に、発熱体引出電極上に絶縁層を形成した保護素子を示す平面図である。FIG. 26 is a plan view showing a protection element in which a plurality of soluble conductors are provided and an insulating layer is formed on the heating element extraction electrode. 図27は、複数の可溶導体を設けると共に、発熱体引出電極上に絶縁層を形成した保護素子において、可溶導体が溶断された状態を示す平面図である。FIG. 27 is a plan view showing a state in which a soluble conductor is blown in a protective element in which a plurality of soluble conductors are provided and an insulating layer is formed on a heating element extraction electrode. 図28は、複数の可溶導体を設けると共に、発熱体引出電極上に幅狭部を形成した保護素子を示す平面図である。FIG. 28 is a plan view showing a protection element in which a plurality of soluble conductors are provided and a narrow portion is formed on the heating element extraction electrode. 図29は、複数の可溶導体を設けると共に、発熱体引出電極上に幅狭部を形成した保護素子において、可溶導体が溶断された状態を示す平面図である。FIG. 29 is a plan view showing a state where a soluble conductor is blown in a protective element in which a plurality of soluble conductors are provided and a narrow portion is formed on a heating element extraction electrode.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited only to the following embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.
 [保護素子の構成]
 図1に示すように、本発明が適用された保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)にそれぞれ接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。また、絶縁基板11の裏面には、電極12(A1),12(A2)と接続された外部端子が形成されている。
[Configuration of protection element]
As shown in FIG. 1, a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A1) and 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends of the electrodes 12 (A1) and 12 (A2), respectively. And a soluble conductor 13 connected to the heating element extraction electrode 16 at the center. In addition, external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
 方形状の絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The rectangular insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.
 発熱体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
 発熱体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱体14に対向するように発熱体引出電極16が配置される。発熱体14の熱を効率よく可溶導体に伝えるために、発熱体14と絶縁基板11の間に絶縁部材15を積層してもよい。 An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15. In order to efficiently transfer the heat of the heating element 14 to the fusible conductor, an insulating member 15 may be laminated between the heating element 14 and the insulating substrate 11.
 発熱体引出電極16の一端は、発熱体電極18(P1)に接続される。また、発熱体14の他端は、他方の発熱体電極18(P2)に接続される。 One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1). The other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
 可溶導体13は、内層と外層とからなる積層構造体であり、好ましくは、内層として高融点金属層13a、外層として低融点金属層13bを有する。なお、後述するように、内層として低融点金属層13b、外層として高融点金属層13aを有するようにしてもよい。また、可溶導体13は、上層と下層の2層積層構造体としてもよく、上層として高融点金属層13a、下層として低融点金属層13bを有するようにしてもよい。高融点金属層13aは、好ましくは、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、リフロー炉によって基板実装を行う場合においても溶融しない高い融点を有する。低融点金属層13bは、好ましくは、Snを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である(たとえば千住金属工業製、M705等)。低融点金属層13bの融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。高融点金属層13aと低融点金属層13bとを積層することによって、リフロー温度が低融点金属層13bの溶融温度を超えて、低融点金属が溶融した場合であっても、可溶導体13として溶断するに至らない。高融点金属層13aに低融点金属層13bをメッキ技術を用いて成膜することによって可溶導体13を形成してもよく、他の周知の積層技術、膜形成技術を用いることによって高融点金属層13aに低融点金属層13bを積層した可溶導体13を形成することができる。また、逆の高融点金属層13aを外層とする場合も同様の成膜技術で形成することができる。なお、可溶導体13の発熱体引出電極16及び電極12(A1),12(A2)への接続は、低融点金属層13bを用いてハンダ接合することにより実現される。 The soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer. As will be described later, the low melting point metal layer 13b may be provided as the inner layer, and the high melting point metal layer 13a may be provided as the outer layer. The soluble conductor 13 may be a two-layer laminated structure of an upper layer and a lower layer, and may have a high melting point metal layer 13a as an upper layer and a low melting point metal layer 13b as a lower layer. The refractory metal layer 13a is preferably made of Ag, Cu, or a metal containing either of them as a main component, and has a high melting point that does not melt even when board mounting is performed in a reflow furnace. The low melting point metal layer 13b is preferably a metal containing Sn as a main component, and is a material generally called “Pb-free solder” (for example, M705 manufactured by Senju Metal Industry). The melting point of the low melting point metal layer 13b is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C. By laminating the high melting point metal layer 13a and the low melting point metal layer 13b, even if the reflow temperature exceeds the melting temperature of the low melting point metal layer 13b and the low melting point metal is melted, as the soluble conductor 13 It does not lead to fusing. The fusible conductor 13 may be formed by forming the low melting point metal layer 13b on the high melting point metal layer 13a by using a plating technique, or by using another known lamination technique or film forming technique. The soluble conductor 13 in which the low melting point metal layer 13b is laminated on the layer 13a can be formed. Further, when the reverse refractory metal layer 13a is used as the outer layer, it can be formed by the same film formation technique. The fusible conductor 13 is connected to the heating element lead electrode 16 and the electrodes 12 (A1) and 12 (A2) by soldering using the low melting point metal layer 13b.
 外層の低融点金属層13bの酸化防止のために、可溶導体13上のほぼ全面にフラックス17を塗布してもよい。 In order to prevent oxidation of the outer low-melting-point metal layer 13b, the flux 17 may be applied to almost the entire surface of the soluble conductor 13.
 このようにして構成された保護素子10の内部を保護するためにカバー部材を絶縁基板11上に載置してもよい。 A cover member may be placed on the insulating substrate 11 in order to protect the inside of the protective element 10 thus configured.
 [保護素子の使用方法]
 図2に示すように、上述した保護素子10は、リチウムイオン2次電池のバッテリパック内の回路に用いられる。
[How to use protection elements]
As shown in FIG. 2, the protection element 10 described above is used for a circuit in a battery pack of a lithium ion secondary battery.
 たとえば、保護素子10は、合計4個のリチウムイオン2次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。 For example, the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25の異常時に充電を遮断する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。 The battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell. A detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
 バッテリスタック25は、過充電及び過放電状態から保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20の正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto. The electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。 The charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided. The current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. . The control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。 Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。 The detection circuit 26 is connected to the battery cells 21 to 24, detects the voltage values of the battery cells 21 to 24, and supplies the voltage values to the control unit 33 of the charge / discharge control circuit 30. The detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子27は、たとえばFETにより構成され、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。 The current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
 以上のような構成からなるバッテリパック20において、保護素子10の構成について具体的に説明する。 In the battery pack 20 having the above configuration, the configuration of the protection element 10 will be specifically described.
 まず、本発明が適用された保護素子10は、たとえば図3に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱体14が電流制御素子27と接続される。保護素子10の2個の電極12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。 First, the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. 3, for example. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat. This is a circuit configuration comprising the body 14. In the protection element 10, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27. One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
 このような回路構成からなる保護素子10は、低背化とともにPbフリー化を実現しつつ、発熱体14の発熱により、電流経路上の可溶導体13を確実に溶断することができる。 The protective element 10 having such a circuit configuration can surely blow the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing the Pb-free and the low profile.
 なお、本発明の保護素子は、リチウムイオン2次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。 The protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
 [保護素子の動作]
 まず、比較のために、公知例(特開2004-185960号公報)を従来の保護素子とし、その構成について説明する。
[Operation of protection element]
First, for comparison, a known example (Japanese Patent Laid-Open No. 2004-185960) is used as a conventional protection element, and the configuration thereof will be described.
 図4に示すように、従来の保護素子40は、方形状の基板41上に下地の絶縁層としてガラス層41aが形成され、ガラス層41a上に、発熱体44が積層されている。発熱体44を覆うように絶縁部材45が形成され、絶縁部材45を介して発熱体44に対向するように高融点金属層43aが積層され、さらに低融点金属層43bが積層されている。高融点金属層43a及び低融点金属層43bの両端に電極42が、高融点金属層43aと低融点金属層43bとによってはさまれるようにして積層され接続されている。低融点金属層43b上には、フラックス47が塗布されている。 As shown in FIG. 4, in the conventional protection element 40, a glass layer 41a is formed as a base insulating layer on a rectangular substrate 41, and a heating element 44 is laminated on the glass layer 41a. An insulating member 45 is formed so as to cover the heat generating member 44, a refractory metal layer 43a is stacked so as to face the heat generating member 44 via the insulating member 45, and a low melting point metal layer 43b is further stacked. Electrodes 42 are stacked and connected to both ends of the high melting point metal layer 43a and the low melting point metal layer 43b so as to be sandwiched between the high melting point metal layer 43a and the low melting point metal layer 43b. A flux 47 is applied on the low melting point metal layer 43b.
 このように、従来の保護素子40においては、高融点金属層43aの全体が絶縁部材45と直接密着して形成されている。この構造においては、発熱体44の発熱により低融点金属層43bが溶融して高融点金属層43aを浸食する作用のみによって回路遮断を行う。遮断状態が完全でなくても、可溶導体が高抵抗となった時点で発熱体44への通電が抑制されるために発熱が停止する。すなわち、完全に回路を遮断できないケースが起こりうる。 Thus, in the conventional protection element 40, the entire refractory metal layer 43a is formed in direct contact with the insulating member 45. In this structure, the circuit is interrupted only by the action of the low melting point metal layer 43b being melted by the heat generation of the heating element 44 and eroding the high melting point metal layer 43a. Even if the cut-off state is not complete, the heat generation is stopped because the energization of the heating element 44 is suppressed when the soluble conductor becomes high resistance. That is, there may occur a case where the circuit cannot be completely shut off.
 図1に示すような本発明に係る保護素子10では、高融点金属層13a及び低融点金属層13bは、発熱体引出電極16と電極12との間でまたぐように接続される。このため、低融点金属層13bの溶融による高融点金属層の浸食作用に加え、接続された各電極12上での溶融した低融点金属層13bの表面張力による物理的引き込み作用により確実に可溶導体13を溶断させることが可能である。 In the protection element 10 according to the present invention as shown in FIG. 1, the high melting point metal layer 13 a and the low melting point metal layer 13 b are connected so as to straddle between the heating element extraction electrode 16 and the electrode 12. For this reason, in addition to the erosion action of the high melting point metal layer due to the melting of the low melting point metal layer 13b, it is surely soluble by the physical pull-in action due to the surface tension of the molten low melting point metal layer 13b on each connected electrode 12 The conductor 13 can be melted.
 以下、本発明に係る保護素子10の動作について説明する。 Hereinafter, the operation of the protection element 10 according to the present invention will be described.
 図5には、図1に示したような保護素子10の発熱体14に通電し、可溶導体13がどのようにふるまうのかを模式的に示す。 FIG. 5 schematically shows how the fusible conductor 13 behaves by energizing the heating element 14 of the protective element 10 as shown in FIG.
 図5Aは、発熱体電極18(P2)と電極12(A1),(A2)の間に電圧が印加されるように電源をつないで、発熱体14に通電する前、及び通電を開始した当初の様子を示す図である。発熱体14の発する熱の温度が通常のリフロー温度(~260℃)よりも高い温度(300℃以上)となるように、印加電圧にしたがい発熱体14の抵抗値を設定することが望ましい。 FIG. 5A shows a state in which a power source is connected so that a voltage is applied between the heating element electrode 18 (P2) and the electrodes 12 (A1) and (A2), before the heating element 14 is energized, and at the beginning of energization. FIG. It is desirable to set the resistance value of the heating element 14 according to the applied voltage so that the temperature of the heat generated by the heating element 14 is higher (300 ° C. or higher) than the normal reflow temperature (˜260 ° C.).
 図5Bに示すように、発熱体14の直上にある可溶導体13の外層の低融点金属層13bが溶融を開始して、溶融した低融点金属が内層の高融点金属層13aに拡散し、溶食現象を生じて、高融点金属層13aが浸食され、消失する。破線の円内では、高融点金属層13aが消失して、溶融した低融点金属層13bと混じり合った状態となっている。 As shown in FIG. 5B, the low melting point metal layer 13b of the outer layer of the soluble conductor 13 directly above the heating element 14 starts melting, and the molten low melting point metal diffuses into the inner high melting point metal layer 13a, A erosion phenomenon occurs, and the refractory metal layer 13a is eroded and disappears. In the circle of the broken line, the high melting point metal layer 13a disappears and is mixed with the molten low melting point metal layer 13b.
 図5Cに示すように、発熱体14の温度がさらに上昇し、可溶導体13の外層の低融点金属層13bの溶融による高融点金属層13aの浸食領域が拡大する。この状態においては、高融点金属層13aの材料として高い熱伝導度の金属を採用することにより、電極12部を含めて高温となり、低融点金属層13b全体が溶融状態となる。その際、発熱体引出電極16上で高融点金属層13aが完全に浸食された状態になると、図5Dに示すように、低融点金属層13b、すなわちハンダは、その濡れ性(表面張力)によって、発熱体引出電極16と、2つの電極12(A1),12(A2)のそれぞれに引き寄せられる。その結果、各電極間が遮断状態となる。 As shown in FIG. 5C, the temperature of the heating element 14 further rises, and the erosion region of the high melting point metal layer 13a due to melting of the low melting point metal layer 13b of the outer layer of the soluble conductor 13 is expanded. In this state, by adopting a metal having a high thermal conductivity as the material of the refractory metal layer 13a, the temperature including the electrode 12 becomes high, and the entire low melting point metal layer 13b is in a molten state. At this time, when the refractory metal layer 13a is completely eroded on the heating element extraction electrode 16, as shown in FIG. 5D, the low melting point metal layer 13b, that is, the solder, depends on its wettability (surface tension). The heating element extraction electrode 16 and the two electrodes 12 (A1) and 12 (A2) are attracted to each other. As a result, the electrodes are cut off.
 [変形例1]
 図6に示すように、本発明の1つの変形例の保護素子50は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。また、絶縁基板11の裏面には、電極12(A1),12(A2)と接続された外部端子が形成されている。
[Modification 1]
As shown in FIG. 6, the protection element 50 according to one modification of the present invention includes an insulating substrate 11, a heating element 14 stacked on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. The formed electrodes 12 (A1) and 12 (A2), the heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends of the electrodes 12 (A1) and 12 (A2) And a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16. In addition, external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
 一般的な高融点ハンダ(Pb含有ハンダ)を用いた可溶導体の場合には、熱伝導度が低いので、保護素子の両端の電極部までは短時間で溶融温度に達しない。これに対して、本発明に係る保護素子のように、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属からなる高融点金属層を有する可溶導体の場合には熱伝導度が高いので、保護素子の両端の電極部においても、十分低融点金属層の溶融温度に到達するために、以下に述べるハンダ溜まり部を設けることによって、より安定した溶断特性を得ることが可能になる。 In the case of a soluble conductor using a general high melting point solder (Pb-containing solder), since the thermal conductivity is low, the electrodes at both ends of the protective element do not reach the melting temperature in a short time. On the other hand, in the case of a soluble conductor having a refractory metal layer made of a metal mainly composed of Ag or Cu or one of them, like the protective element according to the present invention, the thermal conductivity is low. Since it is high, in order to reach the melting temperature of the sufficiently low melting point metal layer also at the electrode portions at both ends of the protective element, it becomes possible to obtain more stable fusing characteristics by providing the solder pool portion described below. .
 可溶導体13は、内層と外層とからなる積層構造体であり、好ましくは、内層として高融点金属層13a、外層として低融点金属層13bを有する。あるいは、内層として低融点金属層13b、外層として高融点金属層13aを有するようにしてもよい。高融点金属層13aは、好ましくは、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、リフロー炉によって基板実装を行う場合においても溶融しない高い融点を有する。低融点金属層13bは、好ましくは、Snを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である(たとえば千住金属工業製、M705等)。融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。可溶導体13は、高融点金属層13aに低融点金属層13bをメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって高融点金属層13aに低融点金属層13bを積層することによって形成してもよい。また、逆の高融点金属層13aを外層とする場合も同様の成膜技術で形成することができる。 The soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer. Or you may make it have the low melting metal layer 13b as an inner layer, and the high melting metal layer 13a as an outer layer. The refractory metal layer 13a is preferably made of Ag, Cu, or a metal containing either of them as a main component, and has a high melting point that does not melt even when board mounting is performed in a reflow furnace. The low melting point metal layer 13b is preferably a metal containing Sn as a main component, and is a material generally called “Pb-free solder” (for example, M705 manufactured by Senju Metal Industry). The melting point is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C. The fusible conductor 13 may be formed by depositing the low melting point metal layer 13b on the high melting point metal layer 13a by using a plating technique, or by using another well-known lamination technique or film forming technique. The low melting point metal layer 13b may be stacked on the metal layer 13a. Further, when the reverse refractory metal layer 13a is used as the outer layer, it can be formed by the same film formation technique.
 ここで、可溶導体13の両端において、電極12(A1),12(A2)に接続される部分に低融点金属層13bと同一の材料からなるハンダの溜まり部51を設ける。保護素子の動作時においては、低融点金属層13bは、溜まり部51も含めてすべて溶融状態となる。高融点金属層13aの浸食が可溶導体13全体で起こることによって、電極12(A1),12(A2)側にあるそれぞれの溜まり部51,51に溶融した可溶導体13が引き寄せられやすくなるので、より確実に可溶導体を溶断させることができる。 Here, at both ends of the fusible conductor 13, solder reservoirs 51 made of the same material as that of the low melting point metal layer 13b are provided at portions connected to the electrodes 12 (A1) and 12 (A2). During the operation of the protective element, the low melting point metal layer 13b including the pool portion 51 is in a molten state. Since the erosion of the refractory metal layer 13a occurs in the entire soluble conductor 13, the melted soluble conductor 13 is easily attracted to the respective reservoir portions 51 and 51 on the electrodes 12 (A1) and 12 (A2) side. Therefore, the soluble conductor can be blown out more reliably.
 [変形例2]
 図7に示すように、保護素子60は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。また、絶縁基板11の裏面には、電極12(A1),12(A2)と接続された外部端子が形成されている。
[Modification 2]
As shown in FIG. 7, the protection element 60 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat. A soluble conductor 13 connected to the body extraction electrode 16. In addition, external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
 可溶導体13は、内層と外層とからなる積層構造体であり、好ましくは、内層として高融点金属層13a、外層として低融点金属層13bを有する。上述の変形例のように可溶導体13の両端に溜まり部51,51を設けてもよい。 The soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and preferably has a high melting point metal layer 13a as an inner layer and a low melting point metal layer 13b as an outer layer. As in the above-described modification, the reservoir portions 51 and 51 may be provided at both ends of the soluble conductor 13.
 この変形例では、高融点金属層13aに多数の開口61を施し、多数の開口がある高融点金属層13aに、たとえばメッキ技術等を用いて低融点金属層13bを成膜する。これにより、溶融する低融点金属層13bに接する高融点金属層13aの面積が増大するので、より短時間で低融点金属層13bが高融点金属層13aを浸食することができるようになる。したがって、より速やか、かつ確実に可溶導体を溶断させることが可能となる。 In this modification, a large number of openings 61 are provided in the refractory metal layer 13a, and the low melting point metal layer 13b is formed on the refractory metal layer 13a having a large number of openings using, for example, a plating technique. As a result, the area of the refractory metal layer 13a in contact with the molten low melting point metal layer 13b increases, so that the low melting point metal layer 13b can erode the refractory metal layer 13a in a shorter time. Therefore, the soluble conductor can be blown out more quickly and reliably.
 [変形例3]
 図8は、上述した可溶導体13の構成をかえたものを用いた場合の変形例である。
[Modification 3]
FIG. 8 shows a modification in the case where the above-described structure of the soluble conductor 13 is used.
 図8に示すように、保護素子70は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。また、絶縁基板11の裏面には、電極12(A1),12(A2)と接続された外部端子が形成されている。 As shown in FIG. 8, the protection element 70 includes an insulating substrate 11, a heating element 14 stacked on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat. A soluble conductor 13 connected to the body extraction electrode 16. In addition, external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
 可溶導体13は、内層が低融点金属層13bであり、外層が高融点金属層13aである。低融点金属層13bには、上述と同様に、Snを主成分とするPbフリーハンダを用いることができ、高融点金属層13aには、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属を用いることができる。図8の変形例の場合では、可溶導体13の表面が酸化するために溶融温度が上昇してしまうのを防止するとともに発熱溶融中のハンダの表面張力維持のために、フラックス17が可溶導体13上に塗布されている。 The soluble conductor 13 has an inner layer that is a low melting point metal layer 13b and an outer layer that is a high melting point metal layer 13a. Similarly to the above, Pb-free solder containing Sn as a main component can be used for the low melting point metal layer 13b. The high melting point metal layer 13a contains Ag, Cu, or any one of them as a main component. The metal to be used can be used. In the case of the modified example of FIG. 8, the flux 17 is soluble to prevent the melting temperature from rising due to oxidation of the surface of the soluble conductor 13 and to maintain the surface tension of the solder during exothermic melting. It is applied on the conductor 13.
 図1に示したような構成例の場合と同様に、内層の低融点金属層13bにメッキ技術等を施すことによって、外層の高融点金属層13aを形成することができ、この変形例における可溶導体13を形成することができる。 As in the case of the configuration example shown in FIG. 1, the inner high-melting point metal layer 13a can be formed by applying a plating technique or the like to the inner low-melting point metal layer 13b. The molten conductor 13 can be formed.
 図9に、図8に示した構成例の動作の様子を概念的に示す。 FIG. 9 conceptually shows the operation of the configuration example shown in FIG.
 図9Aには、発熱体電極18(P2)と電極12(A1),(A2)の間に電圧が印加されるように電源をつないで、発熱体14に通電する前、及び通電した当初の様子を示す。 In FIG. 9A, a power source is connected so that a voltage is applied between the heating element electrode 18 (P2) and the electrodes 12 (A1) and (A2), and before the heating element 14 is energized and at the beginning of energization. Show the state.
 図9Bに示すように、発熱体14の直上にある可溶導体13の内層の低融点金属層13bが溶融を開始して、外層の高融点金属層13aに低融点金属が溶食現象により拡散する。このため、外層の高融点金属層13aが浸食されて消失し、内層の低融点金属層13bが露出し始めた様子を示す。図中の実線の円内が露出した低融点金属層13bであり、他の部分は、外層の高融点金属層13aである。 As shown in FIG. 9B, the low melting point metal layer 13b of the inner layer of the soluble conductor 13 immediately above the heating element 14 starts melting, and the low melting point metal diffuses into the outer high melting point metal layer 13a due to the corrosion phenomenon. To do. Therefore, the outer high-melting point metal layer 13a is eroded and disappears, and the inner low-melting point metal layer 13b starts to be exposed. The low melting point metal layer 13b is exposed in the solid circle in the figure, and the other part is the outer high melting point metal layer 13a.
 図9Cに示すように、発熱体14の温度がさらに上昇し、可溶導体13の内層の低融点金属層13bの溶融が進み、高融点金属層13aの浸食領域が拡大する。この状態では、低融点金属層13b全体が溶融状態にあるので、発熱体引出電極16上で高融点金属層13aが完全に浸食された状態になると、図9Dに示すように、低融点金属層13b、すなわちハンダは、その濡れ性(表面張力)によって、発熱体引出電極16と、2つの電極12(A1),12(A2)のそれぞれに引き寄せられる。結果として、各電極間が遮断される。 As shown in FIG. 9C, the temperature of the heating element 14 further rises, the melting of the low melting point metal layer 13b of the soluble conductor 13 proceeds, and the erosion area of the high melting point metal layer 13a expands. In this state, since the entire low melting point metal layer 13b is in a molten state, when the high melting point metal layer 13a is completely eroded on the heating element extraction electrode 16, as shown in FIG. 13b, that is, the solder is attracted to the heating element extraction electrode 16 and each of the two electrodes 12 (A1) and 12 (A2) by the wettability (surface tension). As a result, the electrodes are interrupted.
 可溶導体13は、図10Aに示すように、方形の可溶導体13としてもよく、図10Bに示すように、丸線状の可溶導体としてもよい。図10では、内層として低融点金属層13bとし、外層として高融点金属層13aとしているが、内層と外層とを逆転してももちろんよい。 The soluble conductor 13 may be a rectangular soluble conductor 13 as shown in FIG. 10A, or a round wire-like soluble conductor as shown in FIG. 10B. In FIG. 10, the low melting point metal layer 13b is used as the inner layer and the high melting point metal layer 13a is used as the outer layer, but the inner layer and the outer layer may be reversed.
 また、内層として低融点金属層13bとし、外層として高融点金属層13aとした場合においても、可溶導体13の厚さを維持することに留意しつつ、電極12(A1),12(A2)上に可溶導体13の低融点金属層13bよりも厚さの厚い低融点金属層13bからなる溜まり部を設けるようにしてもよい。 Further, even when the low melting point metal layer 13b is used as the inner layer and the high melting point metal layer 13a is used as the outer layer, the electrodes 12 (A1) and 12 (A2) are maintained while maintaining the thickness of the soluble conductor 13. You may make it provide the pool part which consists of the low melting metal layer 13b thicker than the low melting metal layer 13b of the soluble conductor 13 on it.
 [変形例4]
 図11は、可溶導体13の構成をかえたものを用いた場合の変形例である。
[Modification 4]
FIG. 11 shows a modification in the case where the structure of the soluble conductor 13 is changed.
 図11に示すように、保護素子80は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。また、絶縁基板11の裏面には、電極12(A1),12(A2)と接続された外部端子が形成されている。 As shown in FIG. 11, the protection element 80 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and electrodes 12 (A1) formed on both ends of the insulating substrate 11. , 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends thereof are connected to the electrodes 12 (A1) and 12 (A2), and the central portion generates heat. A soluble conductor 13 connected to the body extraction electrode 16. In addition, external terminals connected to the electrodes 12 (A1) and 12 (A2) are formed on the back surface of the insulating substrate 11.
 可溶導体13は、下層が低融点金属層13b、上層が高融点金属層13aの2層積層構造である。低融点金属層13bには、上述と同様に、Snを主成分とするPbフリーハンダを用いることができ、高融点金属層13aには、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属を用いることができる。 The soluble conductor 13 has a two-layer structure in which the lower layer is a low melting point metal layer 13b and the upper layer is a high melting point metal layer 13a. Similarly to the above, Pb-free solder containing Sn as a main component can be used for the low melting point metal layer 13b. The high melting point metal layer 13a contains Ag, Cu, or any one of them as a main component. The metal to be used can be used.
 図11の変形例の場合では、低融点金属層13bによる電極自体の浸食を抑制して溶断特性の向上を図るために、2か所の電極12、電極12と接続された外部端子及び発熱体引出電極16表面にメッキ処理を施し、Ni/Auメッキ層52が形成されている。なお、Ni/AuメッキにかえてNi/Pdメッキ、Ni/Pd/Auメッキ等公知のメッキ処理を用いることができる。 In the case of the modification of FIG. 11, in order to improve the fusing characteristics by suppressing the erosion of the electrode itself by the low melting point metal layer 13b, the external terminal connected to the electrode 12, the heating element and the heating element The surface of the extraction electrode 16 is plated to form a Ni / Au plating layer 52. A known plating process such as Ni / Pd plating or Ni / Pd / Au plating can be used instead of Ni / Au plating.
 [変形例5]
 図12A及び図12Bは、可溶導体の構成をさらに変更した場合の変形例である。
[Modification 5]
FIG. 12A and FIG. 12B are modifications in the case where the configuration of the soluble conductor is further changed.
 図12に示す保護素子90の可溶導体91は、内層と外層とからなる積層構造体からなり、内層として低融点金属層91bを、外層として高融点金属層91aを有する。そして、保護素子90の可溶導体91は、低融点金属層91bの全表面が高融点金属層91aによって被覆されている。 The soluble conductor 91 of the protective element 90 shown in FIG. 12 is a laminated structure composed of an inner layer and an outer layer, and has a low melting point metal layer 91b as an inner layer and a refractory metal layer 91a as an outer layer. And as for the soluble conductor 91 of the protection element 90, the whole surface of the low melting metal layer 91b is coat | covered with the high melting metal layer 91a.
 かかる可溶導体91は、たとえば、Ag等の高融点金属のシート上に、Snを主成分とするPbフリーハンダのシートを積層、あるいはSnを主成分とするPbフリーハンダのペーストを塗布し、さらに高融点金属シートを積層し、熱プレスを行うことにより形成することができる。また、可溶導体91は、シート状のPbフリーハンダの全表面にAgメッキを施すことにより形成することができる。 Such a soluble conductor 91 is formed by, for example, laminating a sheet of Pb-free solder containing Sn as a main component on a sheet of a high melting point metal such as Ag, or applying a paste of Pb-free solder containing Sn as a main component, Furthermore, it can be formed by laminating refractory metal sheets and performing hot pressing. The soluble conductor 91 can be formed by applying Ag plating to the entire surface of the sheet-like Pb-free solder.
 この可溶導体91は、Pbフリーハンダ等の低融点金属92を介して、電極12及び発熱体引出電極16上に接続される。また、可溶導体91は、上面のほぼ全面にフラックス17が塗布されている。なお、電極12及び発熱体引出電極16は、電極自体の浸食を抑制して溶断特性の向上を図るために、表面に、Ni/Pd/Auメッキ層93が形成されている。 The soluble conductor 91 is connected to the electrode 12 and the heating element extraction electrode 16 via a low melting point metal 92 such as Pb-free solder. In addition, the flux 17 is applied to almost the entire upper surface of the soluble conductor 91. The electrode 12 and the heating element extraction electrode 16 have a Ni / Pd / Au plating layer 93 formed on the surface in order to suppress the erosion of the electrode itself and improve the fusing characteristics.
 内層の低融点金属層91bの全表面を外層の高融点金属層91aで被覆した可溶導体91を用いることにより、保護素子90は、リフロー温度よりも融点の低い低融点金属層13bを用いた場合にも、リフロー実装時に、内層の低融点金属層91bの外部への流出を抑制することができる。したがって、保護素子90は、発熱体14の熱によって、より短時間で低融点金属層91bが高融点金属層91aを浸食させ、速やか、かつ確実に可溶導体91を溶断することができる。 By using the soluble conductor 91 in which the entire surface of the inner low melting point metal layer 91b is covered with the outer high melting point metal layer 91a, the protective element 90 uses the low melting point metal layer 13b having a melting point lower than the reflow temperature. Even in this case, it is possible to suppress the outflow of the inner low-melting-point metal layer 91b to the outside during reflow mounting. Therefore, in the protection element 90, the low melting point metal layer 91b erodes the high melting point metal layer 91a in a shorter time by the heat of the heating element 14, and the soluble conductor 91 can be blown out quickly and reliably.
 また、保護素子90は、リフロー実装時に、内層の低融点金属層91bの流出を抑制することにより、可溶導体91の変形を抑制することができる。 Also, the protective element 90 can suppress deformation of the soluble conductor 91 by suppressing the outflow of the inner low melting point metal layer 91b during reflow mounting.
 [変形例6]
 図13A及び図13Bは、図12に示す可溶導体91と、電極12及び発熱体引出電極16との接続構成を変更した場合の変形例である。
[Modification 6]
FIG. 13A and FIG. 13B are modified examples when the connection configuration of the fusible conductor 91 shown in FIG. 12 and the electrode 12 and the heating element extraction electrode 16 is changed.
 図13に示す保護素子100は、可溶導体91と電極12及び発熱体引出電極16とを導電性ペースト95によって接続する。導電性ペースト95は、銀ナノペースト等の金属ナノペーストが好適に用いられる。銀ナノペーストは、200℃以上の焼成温度、すなわちリフロー温度程度で高融点金属膜を形成する。また、銀ナノペーストの焼成膜は、バルク銀より50%程度劣る導電性、熱伝導性を有する。 The protective element 100 shown in FIG. 13 connects the soluble conductor 91, the electrode 12 and the heating element extraction electrode 16 with a conductive paste 95. As the conductive paste 95, a metal nano paste such as a silver nano paste is preferably used. Silver nanopaste forms a refractory metal film at a firing temperature of 200 ° C. or higher, that is, at a reflow temperature. Further, the fired film of silver nanopaste has conductivity and thermal conductivity that are inferior to bulk silver by about 50%.
 保護素子100は、このような金属ナノペーストからなる導電性ペースト95を用いて可溶導体91を接続することにより、リフロー実装時に導電性ペースト95が焼成されて金属膜を形成するため、可溶導体91の外層を構成する高融点金属層91aの溶食を抑えることができる。すなわち、ハンダ等の低融点金属によって可溶導体91を接続する場合、リフロー実装時にハンダが溶融して外層の高融点金属層91aが溶食されてしまうため、外層の高融点金属層91aを厚く形成する必要があった。しかし、高融点金属層91aを厚く形成すると、可溶導体91を溶断するのに多くの時間を要する。 Since the protective element 100 connects the soluble conductor 91 using the conductive paste 95 made of such a metal nanopaste, the conductive paste 95 is baked during reflow mounting to form a metal film. The corrosion of the refractory metal layer 91a constituting the outer layer of the conductor 91 can be suppressed. That is, when the fusible conductor 91 is connected by a low melting point metal such as solder, the outer refractory metal layer 91a is melted during reflow mounting and the outer refractory metal layer 91a is eroded. There was a need to form. However, if the refractory metal layer 91a is formed thick, it takes a long time to melt the soluble conductor 91.
 一方、保護素子100では、金属ナノペーストからなる導電性ペースト95を用いて可溶導体91を接続するため、外層の高融点金属層91aが溶食されることがなく、高融点金属層91aを薄く形成することができる。したがって、保護素子100は、内層の低融点金属層91bによる溶食によって可溶導体91を短時間で確実に溶断することができる。 On the other hand, in the protective element 100, the soluble conductor 91 is connected using the conductive paste 95 made of metal nanopaste, so that the refractory metal layer 91a as an outer layer is not corroded, and the refractory metal layer 91a is formed. It can be formed thin. Therefore, the protection element 100 can surely melt the soluble conductor 91 in a short time by the corrosion caused by the low melting point metal layer 91b as the inner layer.
 なお、保護素子100は、可溶導体として、図12に示す内層の低融点金属層91bの全表面が高融点金属層91aによって被覆されている可溶導体91を用いる他にも、図8に示す、内層の低融点金属層13bの上下に高融点金属層13aが積層され、完全には被覆されていない可溶導体13を用いてもよい。 In addition to using the soluble conductor 91 in which the entire surface of the inner low-melting-point metal layer 91b shown in FIG. 12 is covered with the high-melting-point metal layer 91a as the soluble conductor, the protective element 100 is shown in FIG. It is also possible to use a soluble conductor 13 in which high-melting-point metal layers 13a are stacked above and below an inner-layer low-melting-point metal layer 13b, which is not completely covered.
 [変形例7]
 図14A及び図14Bは、図8に示す可溶導体13と、電極12及び発熱体引出電極16との接続構成を変更した場合の変形例である。
[Modification 7]
FIG. 14A and FIG. 14B are modified examples when the connection configuration of the soluble conductor 13 shown in FIG. 8 and the electrode 12 and the heating element extraction electrode 16 is changed.
 図14に示す保護素子110は、可溶導体13と電極12及び発熱体引出電極16とを超音波等の溶接によって接続する。可溶導体13は、図8に示すように、内層の低融点金属層13bの上下に高融点金属層13aが積層され、完全には被覆されていないものである。 The protection element 110 shown in FIG. 14 connects the fusible conductor 13 to the electrode 12 and the heating element extraction electrode 16 by welding such as ultrasonic waves. As shown in FIG. 8, the fusible conductor 13 has a high melting point metal layer 13a laminated on and under an inner low melting point metal layer 13b and is not completely covered.
 保護素子110は、可溶導体13の高融点金属層13aとしてAgメッキ層が形成され、電極12や発熱体引出電極16の表面にNi/Pd/Auメッキ層93が形成されていることが好ましい。Ag同士や、AgとAuとは溶接による接着性に優れるため、保護素子110は、可溶導体13と電極12及び発熱体引出電極16とを、確実に接続することができる。また、保護素子110は、溶接によって可溶導体13と電極12及び発熱体引出電極16とを接続するため、リフロー実装によっても、可溶導体13の高融点金属層13aが溶食されることがなく、ハンダ等の低融点金属によって可溶導体13を接続する場合に比して、高融点金属層13aを薄く形成することができる。したがって、保護素子110は、内層の低融点金属層13bによる溶食によって可溶導体13を短時間で確実に溶断することができる。 In the protective element 110, it is preferable that an Ag plating layer is formed as the refractory metal layer 13a of the soluble conductor 13, and a Ni / Pd / Au plating layer 93 is formed on the surface of the electrode 12 or the heating element extraction electrode 16. . Since Ag and Ag and Au are excellent in adhesion by welding, the protective element 110 can reliably connect the soluble conductor 13 to the electrode 12 and the heating element extraction electrode 16. Further, since the protective element 110 connects the soluble conductor 13 to the electrode 12 and the heating element extraction electrode 16 by welding, the refractory metal layer 13a of the soluble conductor 13 may be eroded even by reflow mounting. As compared with the case where the soluble conductor 13 is connected by a low melting point metal such as solder, the high melting point metal layer 13a can be formed thinner. Therefore, the protection element 110 can surely melt the soluble conductor 13 in a short time by the corrosion by the inner low melting point metal layer 13b.
 なお、保護素子110は、可溶導体として、図14に示す内層の低融点金属層13bの上下に高融点金属層13aが積層され、完全には被覆されていない可溶導体13を用いる他にも、図12に示す内層の低融点金属層91bの全表面が高融点金属層91aによって被覆されている可溶導体91を用いてもよい。 The protective element 110 uses, as a soluble conductor, a soluble conductor 13 in which a high melting point metal layer 13a is laminated above and below an inner low melting point metal layer 13b shown in FIG. 14 and is not completely covered. Alternatively, the soluble conductor 91 in which the entire surface of the inner low melting point metal layer 91b shown in FIG. 12 is covered with the high melting point metal layer 91a may be used.
 [変形例8]
 図15は、可溶導体の構成をさらに変更した場合の変形例である。
[Modification 8]
FIG. 15 shows a modification in which the configuration of the soluble conductor is further changed.
 図15に示す保護素子120の可溶導体121は、内層の低融点金属層121bの全表面に高融点金属層121aが被覆され、高融点金属層121aの全表面に第2の低融点金属層121cが被覆されている。可溶導体121は、外層の高融点金属層121aがさらに第2の低融点金属層121cによって被覆されることにより、たとえば高融点金属層121aとしてCuメッキ層を形成した場合にも、Cuの酸化を防止することができる。したがって、可溶導体121は、Cuの酸化によって溶断時間が長くなる事態を防止することができ、短時間で溶断することができる。 The soluble conductor 121 of the protection element 120 shown in FIG. 15 has the entire surface of the inner low-melting-point metal layer 121b covered with the high-melting-point metal layer 121a, and the entire surface of the high-melting-point metal layer 121a is covered with the second low-melting-point metal layer. 121c is covered. The fusible conductor 121 is formed by coating the outer high-melting-point metal layer 121a with the second low-melting-point metal layer 121c, for example, even when a Cu plating layer is formed as the high-melting-point metal layer 121a. Can be prevented. Therefore, the soluble conductor 121 can prevent a situation where the fusing time is prolonged due to oxidation of Cu, and can be fused in a short time.
 また、可溶導体121は、高融点金属層121aとしてCu等の安価だが酸化しやすい金属を用いることができ、Ag等の高価な材料を用いることなく形成することができる。 Further, the soluble conductor 121 can be made of an inexpensive but easily oxidized metal such as Cu as the high melting point metal layer 121a, and can be formed without using an expensive material such as Ag.
 第2の低融点金属層121cは、内層の低融点金属層121bと同じ材料を用いることができ、たとえばSnを主成分とするPbフリーハンダを用いることができる。また、第2の低融点金属層121cは、高融点金属層121aの表面に錫メッキを施すことにより形成することができる。 The second low melting point metal layer 121c can be made of the same material as the inner low melting point metal layer 121b, for example, Pb-free solder containing Sn as a main component. The second low melting point metal layer 121c can be formed by performing tin plating on the surface of the high melting point metal layer 121a.
 なお、可溶導体121は、内層の低融点金属層121bの全表面が高融点金属層121aによって被覆されていてもよく、あるいは内層の低融点金属層121bの上下に高融点金属層121aが積層され、完全には被覆されていないものでもよい。同様に、可溶導体121は、高融点金属層121aの全表面が第2の低融点金属層121cによって被覆されていてもよく、あるいは高融点金属層121aの上下に第2の低融点金属層121cが積層され、完全には被覆されていないものであってもよい。 The soluble conductor 121 may have the entire surface of the inner low-melting-point metal layer 121b covered with the high-melting-point metal layer 121a, or the high-melting-point metal layer 121a is laminated on the upper and lower sides of the inner-layer low-melting-point metal layer 121b. And may not be completely coated. Similarly, in the soluble conductor 121, the entire surface of the refractory metal layer 121a may be covered with the second low melting point metal layer 121c, or the second low melting point metal layer above and below the refractory metal layer 121a. 121c may be laminated and not completely covered.
 [変形例9]
 また、本発明が適用された保護素子の可溶導体13は、内層が低融点金属層13b、外層が高融点金属層13aの被覆構造であり、低融点金属層13bと高融点金属層13aとの層厚比が、低融点金属層:高融点金属層=2.1:1~100:1としてもよい。これにより、確実に低融点金属層13bの体積を、高融点金属層13aの体積よりも多くすることができ、効果的に高融点金属層13aの溶食による短時間での溶断を行うことができる。
[Modification 9]
Further, the soluble conductor 13 of the protective element to which the present invention is applied has a covering structure in which the inner layer is a low melting point metal layer 13b and the outer layer is a high melting point metal layer 13a. The layer thickness ratio may be low melting point metal layer: high melting point metal layer = 2.1: 1 to 100: 1. Thereby, the volume of the low melting point metal layer 13b can be surely made larger than the volume of the high melting point metal layer 13a, and the fusing of the high melting point metal layer 13a can be effectively performed in a short time. it can.
 すなわち、可溶導体は、内層を構成する低融点金属層13bの上下面に高融点金属層13aが積層されることから、層厚比が、低融点金属層:高融点金属層=2.1:1以上に低融点金属層13bが厚くなるほど低融点金属層13bの体積が高融点金属層13aの体積よりも多くすることができる。また、可溶導体は、層厚比が、低融点金属層:高融点金属層=100:1を超えて低融点金属層13bが厚く、高融点金属層13aが薄くなると、高融点金属層13aが、リフロー実装時の熱で溶融した低融点金属層13bによって溶食されてしまうおそれがある。 That is, since the high melting point metal layer 13a is laminated on the upper and lower surfaces of the low melting point metal layer 13b constituting the inner layer, the soluble conductor has a layer thickness ratio of low melting point metal layer: high melting point metal layer = 2.1. The volume of the low melting point metal layer 13b can be made larger than the volume of the high melting point metal layer 13a as the low melting point metal layer 13b becomes thicker than 1: 1. Further, the soluble conductor has a layer thickness ratio exceeding the low melting point metal layer: high melting point metal layer = 100: 1, the low melting point metal layer 13b is thick, and the high melting point metal layer 13a is thin, the high melting point metal layer 13a. However, there is a possibility that the low melting point metal layer 13b melted by heat during reflow mounting may be eroded.
 かかる層厚比の範囲は、層厚比を変えた複数の可溶導体のサンプルを用意し、ハンダペーストを介して電極12、発熱体引出電極16上に搭載した後、リフロー炉に投入し、可溶導体が溶断しないかを観察した。その結果、層厚比が、低融点金属層:高融点金属層=2.1:1~100:1の範囲内であれば、リフロー実装時にも溶断せず、なおかつ発熱体14による加熱が行われると、低融点金属層13bによる高融点金属層13aへの溶食を伴い、速やかに溶断することができることを確認した。 The range of the layer thickness ratio is prepared by preparing samples of a plurality of soluble conductors having different layer thickness ratios, mounting them on the electrode 12 and the heating element extraction electrode 16 via solder paste, and then putting them in a reflow furnace. It was observed whether the soluble conductor was blown. As a result, if the layer thickness ratio is in the range of low melting point metal layer: high melting point metal layer = 2.1: 1 to 100: 1, it does not melt during reflow mounting, and heating by the heating element 14 is performed. As a result, it was confirmed that the low melting point metal layer 13b can be melted quickly with the corrosion of the high melting point metal layer 13a.
 なお、内層の低融点金属層91bの全表面が高融点金属層91aに被覆された可溶導体91においても、上記可溶導体13と同じ低融点金属層と高融点金属層との層厚比としてもよい。当該層厚比とすることで、可溶導体91を用いた場合でも、低融点金属層13bの体積を、高融点金属層13aの体積よりも多くすることができ、効果的に高融点金属層13aの溶食による短時間での溶断を行うことができる。 In the soluble conductor 91 in which the entire surface of the inner low-melting-point metal layer 91b is covered with the high-melting-point metal layer 91a, the layer thickness ratio between the same low-melting-point metal layer and the high-melting-point metal layer as in the soluble conductor 13 It is good. By setting the layer thickness ratio, even when the fusible conductor 91 is used, the volume of the low melting point metal layer 13b can be made larger than the volume of the high melting point metal layer 13a. Fusing in a short time by the corrosion of 13a can be performed.
 [変形例10]
 図16は、発熱体14の配置位置を変えたものを用いた場合の変形例である。図16に示すように、保護素子130は、絶縁基板11と、絶縁基板11に内蔵された発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁基板11上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。保護素子130は、発熱体14が絶縁基板11に内蔵された点、及び絶縁部材15が設けられていない点を除いて、上述した保護素子80と同様の構成を有する。
[Modification 10]
FIG. 16 shows a modification in the case where a heat generating element 14 with a different arrangement position is used. As shown in FIG. 16, the protection element 130 includes an insulating substrate 11, a heating element 14 built in the insulating substrate 11, electrodes 12 (A1) and 12 (A2) formed on both ends of the insulating substrate 11, A heating element extraction electrode 16 laminated on the insulating substrate 11 so as to overlap with the heating element 14, both ends are connected to the electrodes 12 (A 1) and 12 (A 2), and a central part is connected to the heating element extraction electrode 16. The soluble conductor 13 is provided. The protective element 130 has the same configuration as the protective element 80 described above except that the heating element 14 is built in the insulating substrate 11 and the insulating member 15 is not provided.
 なお、絶縁基板11は、裏面11bに電極12(A1),12(A2)と接続された外部端子131が形成されている。また、保護素子130は、絶縁基板11の表面上を保護するカバー部材132が設けられている。 The insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b. The protective element 130 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
 可溶導体13は、上層に高融点金属層13aが、下層に低融点金属層13bが設けられた2層の積層構造をなし、それぞれNi/Auメッキ層52が設けられた電極12(A1),12(A2)及び発熱体引出電極16に当該低融点金属層13bを介して接続されている。また、可溶導体13は、高融点金属層13aの表面上に、フラックス17が塗布されている。 The soluble conductor 13 has a two-layer structure in which a high melting point metal layer 13a is provided in the upper layer and a low melting point metal layer 13b is provided in the lower layer, and the electrode 12 (A1) provided with the Ni / Au plating layer 52, respectively. , 12 (A2) and the heating element extraction electrode 16 are connected via the low melting point metal layer 13b. Moreover, the flux 17 is apply | coated to the soluble conductor 13 on the surface of the high melting-point metal layer 13a.
 この保護素子130は、発熱体14が絶縁基板11に内蔵されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子130は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子130は、可溶導体13の溶断特性を向上させることができる。 In the protection element 130, the heating element 14 is built in the insulating substrate 11, whereby the surface 11a of the insulating substrate 11 is flattened, whereby the heating element lead-out electrode 16 is connected to the electrodes 12 (A1) and 12 (A2). Can be formed on the same plane. The protective element 130 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 130 can improve the fusing characteristics of the soluble conductor 13.
 また、保護素子130は、絶縁基板11の材料として熱伝導性に優れたものを用いることにより、発熱体14によって、ガラス層等の絶縁部材15を介した場合と同等に可溶導体13を加熱することができる。 In addition, the protective element 130 uses a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the heat generating element 14 heats the soluble conductor 13 in the same manner as when the insulating member 15 such as a glass layer is interposed. can do.
 さらに、保護素子130は、絶縁部材15が不要となり、また、電極12(A1),12(A2)及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。 Further, the protective element 130 does not require the insulating member 15, and the conductive paste constituting the electrodes 12 (A 1), 12 (A 2) and the heating element extraction electrode 16 is applied to the surface 11 a of the flat insulating substrate 11. Thus, the electrodes 12 (A1), 12 (A2) and the heating element extraction electrode 16 can be formed in a lump, so that labor saving in the manufacturing process can be achieved.
 [変形例11]
 図17は、発熱体14の配置位置を変えたものを用いた場合の変形例である。
[Modification 11]
FIG. 17 shows a modification in the case where a heat generating element 14 with a different arrangement position is used.
 図17に示すように、保護素子140は、絶縁基板11と、絶縁基板11の裏面11bに積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁基板11上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。保護素子140は、発熱体14が絶縁基板11の裏面11bに積層された点を除いて、上述した保護素子80と同様の構成を有する。 As shown in FIG. 17, the protection element 140 is laminated on the insulating substrate 11, the back surface 11 b of the insulating substrate 11 and covered with the insulating member 15, and the electrodes 12 formed at both ends of the insulating substrate 11. (A1), 12 (A2), the heating element extraction electrode 16 laminated on the insulating substrate 11 so as to overlap the heating element 14, and both ends are connected to the electrodes 12 (A1), 12 (A2), and the center And a soluble conductor 13 connected to the heating element extraction electrode 16. The protective element 140 has the same configuration as the protective element 80 described above except that the heating element 14 is laminated on the back surface 11b of the insulating substrate 11.
 なお、絶縁基板11は、裏面11bに電極12(A1),12(A2)と接続された外部端子131が形成されている。また、保護素子140は、絶縁基板11の表面上を保護するカバー部材132が設けられている。 The insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b. The protective element 140 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
 この保護素子140は、発熱体14が絶縁基板11の裏面11bに積層されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子100は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子100は、可溶導体13の溶断特性を向上させることができる。 In the protection element 140, the heating element 14 is laminated on the back surface 11b of the insulating substrate 11, so that the surface 11a of the insulating substrate 11 is flattened, whereby the heating element extraction electrode 16 is connected to the electrodes 12 (A1), 12 It can be formed on the same plane as (A2). And the protection element 100 can connect the soluble conductor 13 planarized by making the heat generating body extraction electrode 16 the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 100 can improve the fusing characteristics of the soluble conductor 13.
 また、保護素子140は、絶縁基板11の材料として熱伝導性に優れたものを用いることにより、発熱体14によって、絶縁基板11の表面11a上に積層した場合と同等に可溶導体13を加熱することができる。 In addition, the protective element 140 uses a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the heating element 14 heats the soluble conductor 13 by the heating element 14 in the same manner as when laminated on the surface 11 a of the insulating substrate 11. can do.
 さらに、保護素子140は、電極12(A1),12(A2)及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。 Further, the protective element 140 is formed by applying the conductive paste constituting the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to the surface 11a of the flat insulating substrate 11 to thereby form the electrodes 12 (A1) and 12 Since (A2) and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved.
 [変形例12]
 図18は、発熱体14の配置位置を変えたものを用いた場合の変形例である。
[Modification 12]
FIG. 18 shows a modification in the case where a heat generating element 14 with a different arrangement position is used.
 図18に示すように、保護素子150は、絶縁基板11と、絶縁基板11の表面11a上に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の表面11a上に発熱体14と隣接して形成された電極12(A1),12(A2)と、絶縁基板11の表面11a上の電極12(A1),12(A2)間に積層され、発熱体14と電気的に接続された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。保護素子150は、発熱体14が絶縁基板11の表面11aに積層された点を除いて、上述した保護素子80と同様の構成を有する。 As shown in FIG. 18, the protection element 150 includes an insulating substrate 11, a heating element 14 laminated on the surface 11 a of the insulating substrate 11 and covered with the insulating member 15, and a heating element on the surface 11 a of the insulating substrate 11. 14 is laminated between the electrodes 12 (A 1) and 12 (A 2) formed adjacent to the electrode 14 and the electrodes 12 (A 1) and 12 (A 2) on the surface 11 a of the insulating substrate 11. A connected heating element extraction electrode 16 and a soluble conductor 13 whose both ends are connected to the electrodes 12 (A1) and 12 (A2) and whose central part is connected to the heating element extraction electrode 16 are provided. The protection element 150 has the same configuration as the protection element 80 described above except that the heating element 14 is laminated on the surface 11a of the insulating substrate 11.
 なお、絶縁基板11は、裏面11bに電極12(A1),12(A2)と接続された外部端子131が形成されている。また、保護素子150は、絶縁基板11の表面上を保護するカバー部材132が設けられている。 The insulating substrate 11 has an external terminal 131 connected to the electrodes 12 (A1) and 12 (A2) on the back surface 11b. The protection element 150 is provided with a cover member 132 that protects the surface of the insulating substrate 11.
 この保護素子150は、発熱体14が絶縁基板11の表面11aに、電極12(A1)に隣接して積層されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子150は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子150は、可溶導体13の溶断特性を向上させることができる。 In the protection element 150, the heating element 14 is laminated on the surface 11 a of the insulating substrate 11 adjacent to the electrode 12 (A 1), so that the surface 11 a of the insulating substrate 11 is flattened. The electrode 16 can be formed on the same plane as the electrodes 12 (A1) and 12 (A2). And the protection element 150 can connect the soluble conductor 13 planarized by making the heat generating body extraction electrode 16 the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protective element 150 can improve the fusing characteristics of the soluble conductor 13.
 また、保護素子150は、発熱体14を電極12(A1)に隣接して積層することにより、発熱した熱を効率よく可溶導体13に伝達することができ、絶縁部材15を介して発熱体14と発熱体引出電極16とを重畳させた場合と同等に可溶導体13を加熱することができる。 In addition, the protection element 150 can efficiently transfer the heat generated to the soluble conductor 13 by laminating the heating element 14 adjacent to the electrode 12 (A1), and the heating element 14 can be transmitted via the insulating member 15. The soluble conductor 13 can be heated in the same manner as when the heating element 14 and the heating element extraction electrode 16 are overlapped.
 さらに、保護素子150は、電極12(A1),12(A2)、発熱体14及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)、発熱体14及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。また、保護素子110は、発熱体14を絶縁基板11の表面11aに形成し、かつ発熱体引出電極16と重畳させていないため、絶縁基板11の厚さ方向の低背化による小型化を図ることができる。 Furthermore, the protective element 150 applies the conductive paste constituting the electrodes 12 (A 1) and 12 (A 2), the heating element 14 and the heating element extraction electrode 16 to the surface 11 a of the flat insulating substrate 11, whereby the electrode 12 ( Since A1), 12 (A2), the heating element 14 and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved. Further, since the heating element 14 is formed on the surface 11a of the insulating substrate 11 and is not overlapped with the heating element extraction electrode 16, the protective element 110 is downsized by reducing the height of the insulating substrate 11 in the thickness direction. be able to.
 [変形例13]
 図19は、導電性ペーストを塗布、焼成することにより発熱体14を形成する構成にかえて、発熱素子を用いて、これを電極12(A1),12(A2)の近傍に隣接させた場合の変形例である。
[Modification 13]
FIG. 19 shows a case where a heating element is used instead of a configuration in which a heating paste 14 is formed by applying and baking a conductive paste, and this is adjacent to the vicinity of electrodes 12 (A1) and 12 (A2). It is a modified example of.
 図19に示すように、保護素子160は、絶縁基板11と、絶縁基板11の表面11a上に実装された発熱素子161と、絶縁基板11の表面11a上に発熱素子161と隣接して形成された電極12(A1),12(A2)と、絶縁基板11の表面11a上の電極12(A1),12(A2)間に積層され、発熱素子161と電気的に接続された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。保護素子160は、発熱体14にかえて、発熱素子161が絶縁基板11の表面11aに積層された発熱体引出電極16と接続されるとともに、発熱素子電極162と接続されている点を除いて、上述した保護素子80と同様の構成を有する。発熱素子161は、絶縁基板11の表面11aに形成されたランド部163上に実装されている。 As shown in FIG. 19, the protection element 160 is formed adjacent to the insulating substrate 11, the heating element 161 mounted on the surface 11 a of the insulating substrate 11, and the heating element 161 on the surface 11 a of the insulating substrate 11. The heating element extraction electrode laminated between the electrodes 12 (A1) and 12 (A2) and the electrodes 12 (A1) and 12 (A2) on the surface 11a of the insulating substrate 11 and electrically connected to the heating element 161 16 and a soluble conductor 13 having both ends connected to the electrodes 12 (A 1) and 12 (A 2) and a central portion connected to the heating element extraction electrode 16. The protection element 160 is connected to the heating element lead electrode 16 laminated on the surface 11 a of the insulating substrate 11 in place of the heating element 14, except that the protection element 160 is connected to the heating element electrode 162. The configuration is the same as that of the protection element 80 described above. The heat generating element 161 is mounted on a land portion 163 formed on the surface 11 a of the insulating substrate 11.
 保護素子160は、発熱素子電極162と上述した電流制御素子27とが接続され、バッテリセル21~24のいずれかについて異常電圧を検出すると、発熱素子161が動作され、バッテリスタック25の充放電経路を遮断する。 The protection element 160 is connected to the heating element electrode 162 and the current control element 27 described above, and when an abnormal voltage is detected in any of the battery cells 21 to 24, the heating element 161 is operated to charge / discharge the battery stack 25. Shut off.
 この保護素子160においても、発熱素子161が絶縁基板11の表面11aに、電極12(A1)に隣接して積層されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子160は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子160は、可溶導体13の溶断特性を向上させることができる。 Also in this protective element 160, the heating element 161 is laminated on the surface 11a of the insulating substrate 11 adjacent to the electrode 12 (A1), so that the surface 11a of the insulating substrate 11 is flattened. The extraction electrode 16 can be formed on the same plane as the electrodes 12 (A1) and 12 (A2). The protective element 160 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 160 can improve the fusing characteristics of the soluble conductor 13.
 また、保護素子160は、発熱素子161を電極12(A1),12(A2)に隣接して実装することにより、発熱した熱を効率よく可溶導体13に伝達することができ、絶縁部材15を介して発熱体14と発熱体引出電極16とを重畳させた場合と同等に可溶導体13を加熱することができる。 In addition, the protection element 160 can efficiently transmit the generated heat to the soluble conductor 13 by mounting the heating element 161 adjacent to the electrodes 12 (A1) and 12 (A2), and the insulating member 15 It is possible to heat the soluble conductor 13 in the same manner as when the heating element 14 and the heating element extraction electrode 16 are overlapped with each other.
 さらに、保護素子160は、電極12(A1),12(A2)及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。また、保護素子160は、絶縁基板11の表面11a上に発熱体14を発熱体引出電極16と重畳させて形成するものではないため、絶縁基板11の厚さ方向の低背化による小型化を図ることができる。 Further, the protective element 160 is formed by applying the conductive paste constituting the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to the surface 11a of the flat insulating substrate 11 to thereby form the electrodes 12 (A1) and 12 Since (A2) and the heating element extraction electrode 16 can be formed in a lump, labor saving in the manufacturing process can be achieved. Further, since the protection element 160 is not formed by superimposing the heating element 14 on the surface 11a of the insulating substrate 11 with the heating element extraction electrode 16, the protection element 160 can be reduced in size by reducing the thickness of the insulating substrate 11 in the thickness direction. Can be planned.
 また、保護素子160は、発熱素子161として、種々のものを選択、実装することができ、可溶導体13の溶断に適した高温を発熱する素子を用いることができる。 Further, as the protection element 160, various elements can be selected and mounted as the heating element 161, and an element that generates heat at a high temperature suitable for fusing the soluble conductor 13 can be used.
 [変形例14]
 図20~図22は、可溶導体の構成をかえた保護素子の変形例である。
[Modification 14]
20 to 22 are modified examples of the protection element in which the structure of the soluble conductor is changed.
 図20A及び図20Bに示す保護素子170は、内層となる低融点金属層171の両面に外層として高融点金属層172が形成された3層構造の可溶導体173を用いる。可溶導体173は、外層を構成する高融点金属層172に、長手方向に沿って線状の開口部172aが形成され、この開口部172aから低融点金属層171が露出されている。可溶導体173は、低融点金属層171が開口部172aより露出することにより、溶融した低融点金属と高融点金属層172との接触面積が増え、高融点金属層172の浸食作用をより促進させて溶断性を向上させることができる。高融点金属層172の開口部172aは、たとえば、低融点金属層171に高融点金属層172を構成する金属の部分メッキを施すことにより形成することができる。 20A and 20B uses a soluble conductor 173 having a three-layer structure in which a high melting point metal layer 172 is formed as an outer layer on both surfaces of a low melting point metal layer 171 as an inner layer. In the fusible conductor 173, a linear opening 172a is formed along the longitudinal direction in the high melting point metal layer 172 constituting the outer layer, and the low melting point metal layer 171 is exposed from the opening 172a. The fusible conductor 173 exposes the low melting point metal layer 171 from the opening 172a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 172, and further promoting the erosion action of the high melting point metal layer 172. The fusing property can be improved. The opening 172a of the refractory metal layer 172 can be formed, for example, by subjecting the low melting point metal layer 171 to partial plating of the metal constituting the refractory metal layer 172.
 保護素子170は、可溶導体13にかえて可溶導体173を用いた点を除いて、上述した保護素子10と同じ構成を有する。なお、可溶導体173は、それぞれNi/Auメッキ層52が設けられた電極12(A1),12(A2)及び発熱体引出電極16にハンダ等の低融点金属134を介して接続されている。また、可溶導体173は、高融点金属層172の表面上に、フラックス17が塗布されている。高融点金属層172は、上述した高融点金属層13aと同様の材料を用いて形成することができ、低融点金属層171は、上述した低融点金属層13bと同様の材料を用いて形成することができる。 The protective element 170 has the same configuration as the protective element 10 described above except that the soluble conductor 173 is used instead of the soluble conductor 13. The fusible conductor 173 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 134 such as solder. . Further, the flux 17 is applied to the soluble conductor 173 on the surface of the refractory metal layer 172. The refractory metal layer 172 can be formed using the same material as the refractory metal layer 13a described above, and the low melting metal layer 171 is formed using the same material as the refractory metal layer 13b described above. be able to.
 また、可溶導体173は、低融点金属層171を構成する金属としてハンダを用いるとともに、高融点金属層172の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体173は、低融点金属層171を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Further, the soluble conductor 173 may use solder as a metal constituting the low melting point metal layer 171 and may form a film containing Au or Au as a main component on the surface of the high melting point metal layer 172. Thereby, the soluble conductor 173 can further improve the wettability of the solder which comprises the low melting-point metal layer 171, and can promote an erosion effect | action.
 図21A及び図21Bに示す保護素子180は、内層となる低融点金属層181の両面に外層として高融点金属層182が形成された3層構造の可溶導体183を用いる。可溶導体183は、外層を構成する高融点金属層182に、全面にわたって円形の開口部182aが形成され、この開口部182aから低融点金属層181が露出されている。 21A and 21B uses a soluble conductor 183 having a three-layer structure in which a high melting point metal layer 182 is formed as an outer layer on both surfaces of a low melting point metal layer 181 as an inner layer. In the soluble conductor 183, a circular opening 182a is formed over the entire surface of the high melting point metal layer 182 constituting the outer layer, and the low melting point metal layer 181 is exposed from the opening 182a.
 保護素子180のその他の構成は、上述した保護素子170と同じである。また、高融点金属層182の開口部182aは、たとえば、低融点金属層181に高融点金属層182を構成する金属の部分メッキを施すことにより形成することができる。 Other configurations of the protective element 180 are the same as those of the protective element 170 described above. The opening 182a of the refractory metal layer 182 can be formed, for example, by subjecting the low melting point metal layer 181 to partial plating of a metal constituting the refractory metal layer 182.
 可溶導体183は、低融点金属層181が開口部182aより露出することにより、溶融した低融点金属と高融点金属層182との接触面積が増え、高融点金属層182の浸食作用をより促進させて溶断性を向上させることができる。 The soluble conductor 183 exposes the low melting point metal layer 181 from the opening 182a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 182 and further promoting the erosion action of the high melting point metal layer 182. The fusing property can be improved.
 また、可溶導体183においても、低融点金属層181を構成する金属としてハンダを用いるとともに、高融点金属層182の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体183は、低融点金属層181を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Also in the soluble conductor 183, solder may be used as a metal constituting the low melting point metal layer 181, and a film containing Au or Au as a main component may be formed on the surface of the high melting point metal layer 182. Thereby, the soluble conductor 183 can further improve the wettability of the solder constituting the low melting point metal layer 181 and promote the erosion action.
 図22A及び図22Bに示す保護素子190は、内層となる低融点金属層191の両面に外層として高融点金属層192が形成された3層構造の可溶導体193を用いる。可溶導体193は、外層を構成する高融点金属層192に、幅方向にわたる線状の開口部192aが、長手方向にわたって複数形成され、この開口部192aから低融点金属層191が露出されている。 22A and 22B uses a soluble conductor 193 having a three-layer structure in which a high melting point metal layer 192 is formed as an outer layer on both surfaces of a low melting point metal layer 191 serving as an inner layer. In the fusible conductor 193, a plurality of linear openings 192a extending in the width direction are formed in the refractory metal layer 192 constituting the outer layer in the longitudinal direction, and the low melting point metal layer 191 is exposed from the openings 192a. .
 保護素子190のその他の構成は、上述した保護素子170と同じである。また、高融点金属層192の開口部192aは、たとえば、低融点金属層191に高融点金属層192を構成する金属の部分メッキを施すことにより形成することができる。 Other configurations of the protection element 190 are the same as those of the protection element 170 described above. The opening 192a of the refractory metal layer 192 can be formed, for example, by subjecting the low melting point metal layer 191 to partial plating of a metal constituting the refractory metal layer 192.
 可溶導体193は、低融点金属層191が開口部192aより露出することにより、溶融した低融点金属と高融点金属層192との接触面積が増え、高融点金属層の浸食作用をより促進させて溶断性を向上させることができる。 The fusible conductor 193 exposes the low melting point metal layer 191 from the opening 192a, thereby increasing the contact area between the molten low melting point metal and the high melting point metal layer 192 and further promoting the erosion action of the high melting point metal layer. The fusing property can be improved.
 また、可溶導体193においても、低融点金属層191を構成する金属としてハンダを用いるとともに、高融点金属層192の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体193は、低融点金属層191を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Also in the soluble conductor 193, solder may be used as the metal constituting the low melting point metal layer 191, and Au or a film containing Au as a main component may be formed on the surface of the high melting point metal layer 192. Thereby, the soluble conductor 193 can further improve the wettability of the solder constituting the low melting point metal layer 191, and promote the erosion action.
 [変形例15]
 図23は、可溶導体の構成をかえた保護素子の変形例である。
[Modification 15]
FIG. 23 is a modified example of the protection element in which the configuration of the soluble conductor is changed.
 図23A及び図23Bに示す保護素子200は、上層に低融点金属層201を配し、下層に高融点金属層202が形成された可溶導体203を用いる。可溶導体203は、それぞれNi/Auメッキ層52が設けられた電極12(A1),12(A2)及び発熱体引出電極16にハンダ等の低融点金属204を介して接続されている。これにより、可溶導体203は、電極12(A1),12(A2)及び発熱体引出電極16上において、低融点金属204、高融点金属層202、低融点金属層201の3層構造をなす。 23A and 23B uses a soluble conductor 203 in which a low-melting point metal layer 201 is disposed in an upper layer and a high-melting point metal layer 202 is formed in a lower layer. The fusible conductor 203 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 204 such as solder. Thereby, the soluble conductor 203 has a three-layer structure of the low melting point metal 204, the high melting point metal layer 202, and the low melting point metal layer 201 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16. .
 なお、可溶導体203は、低融点金属層201の表面上に、フラックス17が塗布されている。また、保護素子200は、可溶導体13にかえて可溶導体203を用いた点を除いて、上述した保護素子10と同じ構成を有する。また、高融点金属層202は、上述した高融点金属層13aと同様の材料を用いて形成することができ、低融点金属層201は、上述した低融点金属層13bと同様の材料を用いて形成することができる。 In addition, the flux 17 is applied to the soluble conductor 203 on the surface of the low melting point metal layer 201. The protective element 200 has the same configuration as the protective element 10 described above except that the soluble conductor 203 is used instead of the soluble conductor 13. The refractory metal layer 202 can be formed using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer 201 is formed using the same material as the above-described refractory metal layer 13b. Can be formed.
 保護素子200は、可溶導体203が、電極12(A1),12(A2)及び発熱体引出電極16上において、低融点金属204、高融点金属層202、低融点金属層201の3層構造をなすことから、溶融した低融点金属204及び低融点金属層201による高融点金属層202の浸食作用により、電極12(A1),12(A2)及び発熱体引出電極16上における溶融導体の凝集をより促進させ、溶断性を向上させることができる。 The protective element 200 has a three-layer structure in which a soluble conductor 203 is composed of a low melting point metal 204, a high melting point metal layer 202, and a low melting point metal layer 201 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16. Therefore, the molten conductor aggregates on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 by the erosion action of the high melting point metal layer 202 by the molten low melting point metal 204 and the low melting point metal layer 201. Can be further promoted, and the fusing property can be improved.
 また、保護素子200は、可溶導体203を低融点金属層201の表面に高融点金属層202を積層する簡易な工程で形成することができる。 Further, the protective element 200 can be formed by a simple process in which the fusible conductor 203 is laminated on the surface of the low melting point metal layer 201 with the high melting point metal layer 202.
 また、可溶導体203においても、低融点金属層201を構成する金属としてハンダを用いるとともに、高融点金属層202の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体203は、低融点金属層201を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Also in the soluble conductor 203, solder may be used as the metal constituting the low melting point metal layer 201, and Au or a film mainly composed of Au may be formed on the surface of the high melting point metal layer 202. Thereby, the soluble conductor 203 can further improve the wettability of the solder which comprises the low melting-point metal layer 201, and can promote an erosion effect | action.
 [変形例16]
 図24は、可溶導体の構成をかえた保護素子の変形例である。
[Modification 16]
FIG. 24 shows a modification of the protection element in which the configuration of the soluble conductor is changed.
 図24A及び図24Bに示す保護素子210は、最上層から順に、第1の高融点金属層211、第1の低融点金属層212、第2の高融点金属層213、第2の低融点金属層214が積層された4層構造をなす可溶導体215を用いる。可溶導体215は、第2の低融点金属層214を介して、それぞれNi/Auメッキ層52が設けられた電極12(A1),12(A2)及び発熱体引出電極16に接続されている。 24A and 24B includes a first refractory metal layer 211, a first low melting point metal layer 212, a second refractory metal layer 213, and a second low melting point metal in order from the top layer. A soluble conductor 215 having a four-layer structure in which the layer 214 is laminated is used. The fusible conductor 215 is connected to the electrodes 12 (A1) and 12 (A2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via the second low melting point metal layer 214, respectively. .
 なお、可溶導体215は、第1の高融点金属層211の表面上に、フラックス17が塗布されている。また、保護素子210は、可溶導体13にかえて可溶導体215を用いた点を除いて、上述した保護素子10と同じ構成を有する。また、第1、第2の高融点金属層211,213は、上述した高融点金属層13aと同様の材料を用いて形成することができ、第1、第2の低融点金属層212,214は、上述した低融点金属層13bと同様の材料を用いて形成することができる。 Note that the flux 17 is applied to the soluble conductor 215 on the surface of the first refractory metal layer 211. The protection element 210 has the same configuration as the protection element 10 described above except that the soluble conductor 215 is used instead of the soluble conductor 13. The first and second refractory metal layers 211 and 213 can be formed using the same material as the refractory metal layer 13a described above, and the first and second refractory metal layers 212 and 214 are formed. Can be formed using the same material as the low melting point metal layer 13b described above.
 保護素子210は、溶融した第1、第2の低融点金属層212,214による第1、第2の高融点金属層211,213の浸食作用により、電極12(A1),12(A2)及び発熱体引出電極16上における溶融導体の凝集をより促進させるとともに、発熱体引出電極16と電極12(A1),12(A2)との各間の溶断性を向上させることができる。 The protective element 210 has the electrodes 12 (A1), 12 (A2), and the electrodes 12 (A1), 12 (A2), and erosion action of the first and second refractory metal layers 211, 213 by the melted first and second low melting point metal layers 212, 214 Aggregation of the molten conductor on the heating element extraction electrode 16 can be further promoted, and the fusing properties between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be improved.
 また、最下層を第2の低融点金属層214とすることにより、当該第2の低融点金属層214に、電極12(A1),12(A2)及び発熱体引出電極16への接続を図る接着剤層を兼用させることができる。なお、保護素子210は、可溶導体として、高融点金属層と低融点金属層とが交互に積層されていれば、4層以上のものを用いてもよい。 In addition, by forming the second low melting point metal layer 214 as the lowermost layer, the second low melting point metal layer 214 is connected to the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. An adhesive layer can also be used. In addition, the protection element 210 may use four or more layers as the soluble conductor as long as the high melting point metal layer and the low melting point metal layer are alternately laminated.
 [変形例17]
 図25は、可溶導体の構成をかえた保護素子の変形例である。
[Modification 17]
FIG. 25 is a modified example of the protection element in which the configuration of the soluble conductor is changed.
 図25A及び図25Bに示す保護素子220は、高融点金属層221のみからなる単層の可溶導体222を用いる。可溶導体222は、それぞれNi/Auメッキ層52が設けられた電極12(A1),12(A2)及び発熱体引出電極16にハンダ等の低融点金属223を介して接続されている。これにより、可溶導体222は、電極12(A1),12(A2)及び発熱体引出電極16上において、低融点金属223、高融点金属層221の2層構造をなす。 The protective element 220 shown in FIGS. 25A and 25B uses a single-layer soluble conductor 222 made of only the refractory metal layer 221. The fusible conductor 222 is connected to the electrodes 12 (A 1) and 12 (A 2) provided with the Ni / Au plating layer 52 and the heating element extraction electrode 16 via a low melting point metal 223 such as solder. Thereby, the soluble conductor 222 has a two-layer structure of the low melting point metal 223 and the high melting point metal layer 221 on the electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16.
 なお、可溶導体222は、高融点金属層221表面上に、フラックス17が塗布されている。また、保護素子220は、可溶導体13にかえて可溶導体222を用いた点を除いて、上述した保護素子10と同じ構成を有する。また、高融点金属層221は、上述した高融点金属層13aと同様の材料を用いて形成することができ、低融点金属223は、上述した低融点金属層13bと同様の材料を用いて形成することができる。 In addition, the flux 17 is applied to the soluble conductor 222 on the surface of the refractory metal layer 221. The protective element 220 has the same configuration as the protective element 10 described above except that the soluble conductor 222 is used instead of the soluble conductor 13. The refractory metal layer 221 can be formed using the same material as the above-described refractory metal layer 13a, and the low-melting metal 223 can be formed using the same material as the above-described low-melting metal layer 13b. can do.
 保護素子220は、可溶導体222が、電極12(A1),12(A2)及び発熱体引出電極16上において、低融点金属223、高融点金属層221の2層構造をなすことから、溶融した低融点金属223による高融点金属層221の浸食作用により、電極12(A1),12(A2)及び発熱体引出電極16上における溶融導体の凝集をより促進させ、溶断性を向上させることができる。このため、低融点金属223は、可溶導体222の高融点金属層221よりも厚く形成することが好ましい。 The protective element 220 is melted because the fusible conductor 222 has a two-layer structure of a low melting point metal 223 and a high melting point metal layer 221 on the electrodes 12 (A1), 12 (A2) and the heating element extraction electrode 16. The erosion action of the high melting point metal layer 221 by the low melting point metal 223 further promotes the aggregation of the molten conductor on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 and improves the fusing property. it can. For this reason, the low melting point metal 223 is preferably formed thicker than the high melting point metal layer 221 of the soluble conductor 222.
 また、保護素子220は、可溶導体222を高融点金属層221の単層構造であるため、簡易な工程で形成することができる。 In addition, the protective element 220 can be formed by a simple process because the soluble conductor 222 has a single-layer structure of the refractory metal layer 221.
 なお、可溶導体222においても、低融点金属223を構成する金属としてハンダを用いるとともに、高融点金属層221の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体222は、低融点金属223を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 In the soluble conductor 222, solder may be used as the metal constituting the low melting point metal 223, and a coating containing Au or Au as a main component may be formed on the surface of the high melting point metal layer 221. Thereby, the soluble conductor 222 can further improve the wettability of the solder which comprises the low melting-point metal 223, and can promote an erosion effect | action.
 [変形例18]
 図26は、複数の可溶導体を用いた保護素子の変形例である。
[Modification 18]
FIG. 26 is a modification of the protection element using a plurality of soluble conductors.
 図26に示す保護素子230は、大電流用途において、保護素子230の定格を上げるために、可溶導体231を大型化したものである。ここで、可溶導体231を大型化すると、溶融時における溶融導体の体積が多くなり、溶融導体が電極12(A1),12(A2)及び発熱体引出電極16の各間にわたって凝集し、溶断できないおそれがある。 The protection element 230 shown in FIG. 26 is obtained by increasing the size of the fusible conductor 231 in order to increase the rating of the protection element 230 in a large current application. Here, when the size of the soluble conductor 231 is increased, the volume of the molten conductor at the time of melting increases, and the molten conductor aggregates between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 to cause fusing. It may not be possible.
 そこで、保護素子230では、複数の可溶導体に分割すると共に、発熱体引出電極16上の可溶導体接続部16aの周辺に絶縁層232を形成する。たとえば、保護素子230は、図26に示すように、第1、第2の可溶導体231a,231bを設け、全体としての定格を向上させている。第1、第2の可溶導体231a,231bは、電極12(A1)から発熱体引出電極16を経て電極12(A2)にわたって、ハンダ等の低融点金属233によって接続されている。また、第1、第2の可溶導体231a,231bは、所定の距離離間して配設されている。 Therefore, the protective element 230 is divided into a plurality of soluble conductors, and an insulating layer 232 is formed around the soluble conductor connecting portion 16a on the heating element extraction electrode 16. For example, as shown in FIG. 26, the protective element 230 is provided with first and second soluble conductors 231a and 231b to improve the overall rating. The first and second soluble conductors 231a and 231b are connected by a low melting point metal 233 such as solder from the electrode 12 (A1) to the electrode 12 (A2) through the heating element extraction electrode 16. The first and second fusible conductors 231a and 231b are disposed at a predetermined distance apart.
 なお、第1、第2の可溶導体231a,231bは、内層を構成する低融点金属層が外層を構成する高融点金属層によって被覆された積層構造をなし、図22に示すように、低融点金属233を介して、電極12(A1),12(A2)及び発熱体引出電極16上に接続されている。また、第1、第2の可溶導体231a,231bは、低融点金属層と高融点金属層とが積層された積層構造とし、下層を構成する低融点金属層を介して電極12(A1),12(A2)及び発熱体引出電極16上に接続してもよい。また、第1、第2の可溶導体231a,231bは、高融点金属層のみの単層構造とし、低融点金属233を介して電極12(A1),12(A2)及び発熱体引出電極16上に接続してもよい。また、第1、第2の可溶導体231a,231bは、外層を構成する高融点金属層に開口部を設け、内層を構成する低融点金属層を外方に露出させる構成としてもよい。 The first and second fusible conductors 231a and 231b have a laminated structure in which the low melting point metal layer constituting the inner layer is covered with the high melting point metal layer constituting the outer layer, as shown in FIG. The electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16 are connected via the melting point metal 233. The first and second fusible conductors 231a and 231b have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated, and the electrode 12 (A1) is interposed via the low melting point metal layer constituting the lower layer. , 12 (A2) and the heating element extraction electrode 16 may be connected. The first and second fusible conductors 231a and 231b have a single-layer structure having only a high melting point metal layer, and the electrodes 12 (A1) and 12 (A2) and the heating element lead electrode 16 are interposed through the low melting point metal 233. You may connect to the top. The first and second fusible conductors 231a and 231b may have a configuration in which an opening is provided in the high melting point metal layer constituting the outer layer and the low melting point metal layer constituting the inner layer is exposed to the outside.
 また、保護素子230は、発熱体引出電極16上の第1、第2の可溶導体231a,231b間の領域に絶縁層232が形成されている。絶縁層232は、溶融した第1、第2の可溶導体231a,231b同士が結合することによる溶融導体の体積の増大を防止するものであり、公知の絶縁材料を用いて公知の方法で形成される。 Further, in the protective element 230, an insulating layer 232 is formed in a region between the first and second soluble conductors 231a and 231b on the heating element extraction electrode 16. The insulating layer 232 prevents the volume of the molten conductor from increasing due to the fusion between the melted first and second soluble conductors 231a and 231b, and is formed by a known method using a known insulating material. Is done.
 なお、可溶導体231は、表面上に、フラックス(図示せず)が塗布されている。また、保護素子230は、可溶導体13にかえて複数の可溶導体231を用いた点、及び発熱体引出電極16の可溶導体接続部16aの周辺に絶縁層232を形成した点を除いて、上述した保護素子10と同じ構成を有する。また、可溶導体231は、高融点金属層として、上述した高融点金属層13aと同様の材料を用いて形成することができ、低融点金属層として、上述した低融点金属層13bと同様の材料を用いて形成することができる。 The fusible conductor 231 is coated with a flux (not shown) on the surface. Further, the protective element 230 uses a plurality of fusible conductors 231 instead of the fusible conductor 13 and a point that an insulating layer 232 is formed around the fusible conductor connecting portion 16a of the heating element extraction electrode 16. Thus, it has the same configuration as the protection element 10 described above. Further, the soluble conductor 231 can be formed as the refractory metal layer using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer is the same as the refractory metal layer 13b described above. It can be formed using a material.
 図27に示すように、保護素子230は、第1、第2の可溶導体231a,231bが溶融した場合にも、絶縁層232によって発熱体引出電極16を伝って溶融導体が結合することが防止される。したがって、保護素子230は、可溶導体231全体の体積を増加させて定格を向上させた場合にも、溶融導体が発熱体引出電極16を伝って一方に引き寄せられ、電極12(A1),12(A2)及び発熱体引出電極16の各間にわたって凝集し、溶断できない事態を防止でき、確実に溶断することができる。 As shown in FIG. 27, the protective element 230 allows the molten conductor to be coupled by the insulating layer 232 along the heating element extraction electrode 16 even when the first and second soluble conductors 231a and 231b are melted. Is prevented. Therefore, even when the protection element 230 increases the volume of the soluble conductor 231 to improve the rating, the molten conductor is drawn to one side along the heating element extraction electrode 16, and the electrodes 12 (A1), 12 (A2) and the heating element lead-out electrode 16 are aggregated between each other, so that a situation where the fusion cannot be performed can be prevented and the fusion can be surely performed.
 なお、保護素子230は、電極12(A1),12(A2)の可溶導体接続部周辺にも絶縁層232を設けてもよい。これにより、保護素子230は、溶融導体が電極12(A1),12(A2)を伝って一方に引き寄せられ、電極12(A1),12(A2)及び発熱体引出電極16の各間にわたって凝集し、溶断できない事態を防止できる。 In addition, the protective element 230 may provide the insulating layer 232 also around the soluble conductor connection part of the electrodes 12 (A1) and 12 (A2). As a result, the protection element 230 causes the molten conductor to be drawn to one side through the electrodes 12 (A1) and 12 (A2), and aggregates between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, it is possible to prevent a situation where fusing is not possible.
 なお、可溶導体231においても、低融点金属層と高融点金属層とが積層された構造を有する場合、低融点金属を構成する金属としてハンダを用いるとともに、高融点金属層の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体231は、低融点金属を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Note that when the fusible conductor 231 also has a structure in which a low melting point metal layer and a high melting point metal layer are laminated, solder is used as the metal constituting the low melting point metal, and Au or You may form the film | membrane which has Au as a main component. Thereby, the soluble conductor 231 can further improve the wettability of the solder constituting the low melting point metal and promote the erosion action.
 さらに、保護素子230は、図26に示すように、電極12(A1),12(A2)の長手方向にわたって、絶縁層235を形成してもよい。絶縁層235は、溶融導体が電極12(A1),12(A2)を超えて外部電極に凝集することを防止するものであり、電極12(A1),12(A2)の可溶導体231の接続領域の外側に形成されている。絶縁層235を設けることにより、図27に示すように、保護素子230は、溶融導体が電極12(A1),12(A2)上に凝集し、外部電極まで流れることがない。 Furthermore, as shown in FIG. 26, the protection element 230 may form an insulating layer 235 over the longitudinal direction of the electrodes 12 (A1) and 12 (A2). The insulating layer 235 prevents the molten conductor from aggregating to the external electrode beyond the electrodes 12 (A1) and 12 (A2), and the insulating conductor 235 of the soluble conductor 231 of the electrodes 12 (A1) and 12 (A2). It is formed outside the connection area. By providing the insulating layer 235, as shown in FIG. 27, in the protection element 230, the molten conductor does not aggregate on the electrodes 12 (A1) and 12 (A2) and does not flow to the external electrodes.
 [変形例19]
 図28は、複数の可溶導体を用いた保護素子の変形例である。
[Modification 19]
FIG. 28 is a modification of the protection element using a plurality of soluble conductors.
 図28に示す保護素子240は、上記保護素子230と同様に、大電流用途において、保護素子240の定格を上げるために、可溶導体241を大型化したものである。 28, like the protection element 230 described above, the soluble conductor 241 is enlarged in order to increase the rating of the protection element 240 in a large current application.
 保護素子240においては、複数の可溶導体に分割すると共に、発熱体引出電極16上の可溶導体接続部16aの周辺を、該可溶導体接続部16aよりも細く形成された幅狭部242を有する。たとえば、保護素子240は、図28に示すように、第1、第2の可溶導体241a,241bを設け、全体としての定格を向上させている。第1、第2の可溶導体241a,241bは、電極12(A1)から発熱体引出電極16を経て電極12(A2)にわたって、ハンダ等の低融点金属243によって接続されている。また、第1、第2の可溶導体241a,241bは、所定の距離離間して配設されている。 The protective element 240 is divided into a plurality of fusible conductors, and the periphery of the fusible conductor connecting portion 16a on the heating element lead-out electrode 16 is narrower than the fusible conductor connecting portion 16a. Have For example, as shown in FIG. 28, the protection element 240 is provided with first and second soluble conductors 241a and 241b to improve the overall rating. The first and second soluble conductors 241a and 241b are connected by a low melting point metal 243 such as solder from the electrode 12 (A1) to the electrode 12 (A2) through the heating element extraction electrode 16. The first and second fusible conductors 241a and 241b are disposed with a predetermined distance therebetween.
 なお、第1、第2の可溶導体241a,241bは、内層を構成する低融点金属層が外層を構成する高融点金属層によって被覆された積層構造をなし、図28に示すように、低融点金属243を介して、電極12(A1),12(A2)及び発熱体引出電極16上に接続されている。また、第1、第2の可溶導体241a,241bは、低融点金属層と高融点金属層とが積層された積層構造とし、下層を構成する低融点金属層を介して電極12(A1),12(A2)及び発熱体引出電極16上に接続してもよい。また、第1、第2の可溶導体241a,241bは、高融点金属層のみの単層構造とし、低融点金属を介して電極12(A1),12(A2)及び発熱体引出電極16上に接続してもよい。また、第1、第2の可溶導体241a,241bは、外層を構成する高融点金属層に開口部を設け、内層を構成する低融点金属層を外方に臨ませる構成としてもよい。 The first and second fusible conductors 241a and 241b have a laminated structure in which the low melting point metal layer constituting the inner layer is covered with the high melting point metal layer constituting the outer layer, as shown in FIG. The electrodes 12 (A 1) and 12 (A 2) and the heating element extraction electrode 16 are connected via the melting point metal 243. The first and second fusible conductors 241a and 241b have a laminated structure in which a low melting point metal layer and a high melting point metal layer are laminated, and the electrode 12 (A1) is interposed via the low melting point metal layer constituting the lower layer. , 12 (A2) and the heating element extraction electrode 16 may be connected. The first and second fusible conductors 241a and 241b have a single-layer structure having only a high melting point metal layer, and are formed on the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16 through the low melting point metal. You may connect to. The first and second fusible conductors 241a and 241b may have a structure in which an opening is provided in the high melting point metal layer constituting the outer layer and the low melting point metal layer constituting the inner layer faces outward.
 また、保護素子240は、発熱体引出電極16上の第1、第2の可溶導体241a,241b間の領域に、可溶導体接続部16aよりも細い幅狭部242が形成されている。幅狭部242は、溶融した第1、第2の可溶導体241a,241b同士が結合することによる溶融導体の体積の増大を防止するものであり、発熱体引出電極16を所定パターンに印刷、焼成することにより形成される。また、幅狭部242は、発熱体引出電極16上に絶縁層を設けることにより形成してもよい。 The protective element 240 has a narrow portion 242 narrower than the soluble conductor connecting portion 16a in the region between the first and second soluble conductors 241a and 241b on the heating element extraction electrode 16. The narrow portion 242 prevents the volume of the molten conductor from increasing due to the fusion between the melted first and second soluble conductors 241a and 241b, and prints the heating element extraction electrode 16 in a predetermined pattern. It is formed by firing. The narrow portion 242 may be formed by providing an insulating layer on the heating element extraction electrode 16.
 なお、可溶導体241は、表面上に、フラックス(図示せず)が塗布されている。また、保護素子240は、可溶導体13にかえて複数の可溶導体241を用いた点、及び発熱体引出電極16の可溶導体接続部16aの周辺に幅狭部242を形成した点を除いて、上述した保護素子10と同じ構成を有する。また、可溶導体241は、高融点金属層として、上述した高融点金属層13aと同様の材料を用いて形成することができ、低融点金属層として、上述した低融点金属層13bと同様の材料を用いて形成することができる。 The fusible conductor 241 is coated with a flux (not shown) on the surface. Further, the protection element 240 has a point that a plurality of soluble conductors 241 are used instead of the soluble conductor 13 and that a narrow portion 242 is formed around the soluble conductor connecting portion 16a of the heating element extraction electrode 16. Except for this, it has the same configuration as the protection element 10 described above. In addition, the soluble conductor 241 can be formed as the refractory metal layer using the same material as the above-described refractory metal layer 13a, and the low-melting metal layer is the same as the refractory metal layer 13b described above. It can be formed using a material.
 図29に示すように、保護素子240は、第1、第2の可溶導体241a,241bが溶融した場合にも、幅狭部242へは流入せず幅広の可溶導体接続部16aへ凝集し、発熱体引出電極16を伝って溶融導体が結合することが防止される。したがって、保護素子240は、可溶導体241全体の体積を増加させて定格を向上させた場合にも、溶融導体が発熱体引出電極16を伝って一方に引き寄せられ、電極12(A1),12(A2)及び発熱体引出電極16の各間にわたって凝集し、溶断できない事態を防止でき、確実に溶断することができる。 As shown in FIG. 29, when the first and second soluble conductors 241a and 241b are melted, the protective element 240 does not flow into the narrow portion 242 but aggregates into the wide soluble conductor connection portion 16a. As a result, the molten conductor is prevented from being bonded through the heating element extraction electrode 16. Therefore, even when the protective element 240 has its rating increased by increasing the volume of the soluble conductor 241, the molten conductor is drawn to one side through the heating element extraction electrode 16, and the electrodes 12 (A1), 12 (A2) and the heating element lead-out electrode 16 are aggregated between each other, so that a situation where the fusion cannot be performed can be prevented and the fusion can be surely performed.
 なお、保護素子240は、電極12(A1),12(A2)の可溶導体接続部周辺にも幅狭部242を設けてもよい。これにより、保護素子240は、溶融導体が電極12(A1),12(A2)を伝って一方に引き寄せられ、電極12(A1),12(A2)及び発熱体引出電極16の各間にわたって凝集し、溶断できない事態を防止できる。 Note that the protective element 240 may be provided with a narrow portion 242 also around the soluble conductor connecting portion of the electrodes 12 (A1) and 12 (A2). Thereby, the protection element 240 is attracted to one side of the molten conductor along the electrodes 12 (A1) and 12 (A2), and is aggregated between the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, it is possible to prevent a situation where fusing is not possible.
 なお、可溶導体241においても、低融点金属層と高融点金属層とが積層された構造を有する場合、低融点金属を構成する金属としてハンダを用いるとともに、高融点金属層の表面にAu又はAuを主成分とする皮膜を形成してもよい。これにより、可溶導体203は、低融点金属を構成するハンダの濡れ性をさらに向上させ、浸食作用を促進させることができる。 Note that when the fusible conductor 241 also has a structure in which a low melting point metal layer and a high melting point metal layer are laminated, solder is used as the metal constituting the low melting point metal and Au or You may form the film | membrane which has Au as a main component. Thereby, the soluble conductor 203 can further improve the wettability of the solder which comprises a low melting-point metal, and can promote an erosion effect | action.
 さらに、保護素子240においても、図28に示すように、電極12(A1),12(A2)の長手方向にわたって、絶縁層245を形成してもよい。絶縁層245は、溶融導体が電極12(A1),12(A2)を超えて外部電極に凝集することを防止するものであり、電極12(A1),12(A2)の可溶導体241の接続領域の外側に形成されている。絶縁層245を設けることにより、図29に示すように、保護素子240は、溶融導体が電極12(A1),12(A2)上に凝集し、外部電極まで流れることがない。 Further, also in the protective element 240, as shown in FIG. 28, an insulating layer 245 may be formed over the longitudinal direction of the electrodes 12 (A1) and 12 (A2). The insulating layer 245 prevents the molten conductor from aggregating to the external electrode beyond the electrodes 12 (A1) and 12 (A2). The insulating layer 245 includes the soluble conductor 241 of the electrodes 12 (A1) and 12 (A2). It is formed outside the connection area. By providing the insulating layer 245, as shown in FIG. 29, in the protection element 240, the molten conductor does not aggregate on the electrodes 12 (A1) and 12 (A2) and does not flow to the external electrodes.
 10,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240 保護素子、11,41 絶縁基板、12(A1),12(A2),42 電極、13,91,121 可溶導体、13a,43a,91a,121a 高融点金属層、13b,43b,91b,121b,121c 低融点金属層、14,44 発熱体、15,45 絶縁部材、16 発熱体引出電極、17,47 フラックス、18(P1),18(P2),48 発熱体電極、20 バッテリパック、20a 正極端子、20b 負極端子、21~24 バッテリセル、25 バッテリスタック、26 検出回路、27,31,32 電流制御素子、30 充放電制御回路、33 制御部、35 充電装置、41a ガラス層、51 溜まり部、52 Ni/Auメッキ層、61 開口、92 低融点金属層、93 メッキ層、95 導電性ペースト、132 カバー部材 10, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240 Protection element, 11, 41 insulation Substrate, 12 (A1), 12 (A2), 42 electrodes, 13, 91, 121 soluble conductor, 13a, 43a, 91a, 121a high melting point metal layer, 13b, 43b, 91b, 121b, 121c low melting point metal layer, 14, 44 heating element, 15, 45 insulating member, 16 heating element extraction electrode, 17, 47 flux, 18 (P1), 18 (P2), 48 heating element electrode, 20 battery pack, 20a positive terminal, 20b negative terminal, 21 to 24 battery cells, 25 battery stacks, 26 detection circuits, 27, 31, 32 current control elements, 30 Charge and discharge control circuit, 33 control unit, 35 charging device, 41a glass layer, 51 reservoir, 52 Ni / Au-plated layer, 61 opening, 92 low-melting-point metal layer, 93 plating layer, 95 conductive paste, 132 cover member

Claims (37)

  1.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode laminated on the insulating member so as to overlap the heating element and electrically connected to the heating element on a current path between the first and second electrodes;
    A laminate that extends from the heating element extraction electrode to the first and second electrodes, and includes a soluble conductor that melts a current path between the first electrode and the second electrode by heating;
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  2.  上記低融点金属層は、Pbフリーハンダからなり、上記高融点金属層は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなることを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein the low melting point metal layer is made of Pb-free solder, and the high melting point metal layer is made of Ag or Cu or a metal mainly composed of Ag or Cu.
  3.  上記第1及び第2の電極並びに上記発熱体引出電極に接続される位置において、上記可溶導体は、低融点金属にて接続されることを特徴とする請求項1~2いずれか1項記載の保護素子。 3. The soluble conductor is connected with a low melting point metal at a position connected to the first and second electrodes and the heating element extraction electrode. Protection element.
  4.  上記可溶導体は、内層が高融点金属層であり、外層が低融点金属層の被覆構造であることを特徴とする請求項1~3いずれか1項記載の保護素子。 4. The protective element according to claim 1, wherein the soluble conductor has a covering structure in which an inner layer is a high melting point metal layer and an outer layer is a low melting point metal layer.
  5.  上記低融点金属層は、少なくとも一部の上記高融点金属層を貫通するように形成されていることを特徴とする請求項4記載の保護素子。 The protective element according to claim 4, wherein the low melting point metal layer is formed so as to penetrate at least a part of the high melting point metal layer.
  6.  上記可溶導体は、内層が低融点金属層であり、外層が高融点金属層の被覆構造であることを特徴とする請求項1~3いずれか1項記載の保護素子。 The protective element according to any one of claims 1 to 3, wherein the soluble conductor has a covering structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer.
  7.  上記可溶導体は、上層を高融点金属層、下層を低融点金属層の2層構造とすることを特徴とする請求項1~3いずれか1項記載の保護素子。 The protective element according to any one of claims 1 to 3, wherein the soluble conductor has a two-layer structure in which an upper layer is a high melting point metal layer and a lower layer is a low melting point metal layer.
  8.  上記第1及び第2の電極並びに上記発熱体引出電極の表面に、Ni/Auメッキ、Ni/Pdメッキ又はNi/Pd/Auメッキのいずれか1つのメッキ処理が施されていることを特徴とする請求項1~7いずれか1項記載の保護素子。 The surface of the first and second electrodes and the heating element extraction electrode is subjected to any one of Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating. The protective element according to any one of claims 1 to 7.
  9.  上記発熱体と上記絶縁基板の間に絶縁部材層を設けることを特徴とする請求項1~8いずれか1項記載の保護素子。 The protective element according to any one of claims 1 to 8, wherein an insulating member layer is provided between the heating element and the insulating substrate.
  10.  上記高融点金属層の体積よりも上記低融点金属層の体積の方が多いことを特徴とする請求項1~9いずれか1項記載の保護素子。 10. The protective element according to claim 1, wherein the volume of the low melting point metal layer is larger than the volume of the high melting point metal layer.
  11.  上記可溶導体は、内層が低融点金属層、外層が高融点金属層の被覆構造であり、内層となる上記低融点金属層の全面が上記高融点金属層によって被覆されている請求項1記載の保護素子。 2. The soluble conductor has a coating structure in which an inner layer is a low-melting point metal layer and an outer layer is a high-melting point metal layer, and the entire surface of the low-melting point metal layer serving as an inner layer is covered with the high-melting point metal layer. Protection element.
  12.  上記可溶導体は、内層が低融点金属層、外層が高融点金属層の被覆構造であり、上記第1及び第2の電極上に、導電性ペーストを介して接続されている請求項1又は請求項11記載の保護素子。 The soluble conductor has a coating structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer, and is connected to the first and second electrodes via a conductive paste. The protective element according to claim 11.
  13.  上記可溶導体は、内層が低融点金属層、外層が高融点金属層の被覆構造であり、上記第1及び第2の電極上に、溶接されることにより接続されている請求項1又は請求項11記載の保護素子。 The soluble conductor has a coating structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer, and is connected to the first and second electrodes by welding. Item 12. The protective element according to Item 11.
  14.  上記可溶導体は、内層が低融点金属層、外層が高融点金属層の被覆構造であり、内層となる低融点金属層の表面に上記高融点金属層が被覆され、該高融点金属層の表面に第2の低融点金属層が被覆されている請求項1又は請求項11記載の保護素子。 The soluble conductor has a coating structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer, and the surface of the low melting point metal layer serving as an inner layer is coated with the high melting point metal layer. The protective element according to claim 1, wherein the surface is coated with a second low melting point metal layer.
  15.  上記可溶導体は、内層が低融点金属層、外層が高融点金属層の被覆構造であり、上記低融点金属層と上記高融点金属層との層厚比が2.1:1~100:1である請求項1又は請求項11記載の保護素子。 The soluble conductor has a coating structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer, and the layer thickness ratio of the low melting point metal layer to the high melting point metal layer is 2.1: 1 to 100: The protective element according to claim 1, wherein the protective element is 1.
  16.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A laminate that extends from the heating element extraction electrode to the first and second electrodes, and includes a soluble conductor that melts a current path between the first electrode and the second electrode by heating;
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  17.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する複数の可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A plurality of fusible conductors laminated from the heating element extraction electrode to the first and second electrodes and fusing a current path between the first electrode and the second electrode by heating;
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  18.  上記複数の可溶導体が積層された上記発熱体引出電極は、上記複数の可溶導体の可溶導体間に絶縁層が形成されている請求項17記載の保護素子。 The protective element according to claim 17, wherein the heating element extraction electrode in which the plurality of soluble conductors are laminated has an insulating layer formed between the soluble conductors of the plurality of soluble conductors.
  19.  上記発熱体引出電極は、上記複数の可溶導体が積層されている部分の幅よりも上記複数の可溶導体の間の部分の幅が狭く形成されている請求項17記載の保護素子。 The protection element according to claim 17, wherein the heating element extraction electrode is formed so that a width of a portion between the plurality of soluble conductors is narrower than a width of a portion where the plurality of soluble conductors are laminated.
  20.  絶縁基板と、
     上記絶縁基板の内部に内蔵された発熱体と、
     上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、発熱体の加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element built in the insulating substrate;
    First and second electrodes stacked on the insulating substrate;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A soluble conductor that is laminated from the heating element extraction electrode to the first and second electrodes, and that melts the current path between the first electrode and the second electrode by heating the heating element; ,
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  21.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     上記絶縁基板の上記発熱体が積層された面の反対面に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、発熱体の加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    A first electrode and a second electrode laminated on a surface opposite to a surface on which the heating element of the insulating substrate is laminated;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A soluble conductor that is laminated from the heating element extraction electrode to the first and second electrodes, and that melts the current path between the first electrode and the second electrode by heating the heating element; ,
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  22.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     上記絶縁基板の上記発熱体が積層された同一面に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、発熱体の加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    First and second electrodes stacked on the same surface on which the heating elements of the insulating substrate are stacked;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A soluble conductor that is laminated from the heating element extraction electrode to the first and second electrodes, and that melts the current path between the first electrode and the second electrode by heating the heating element; ,
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  23.  絶縁基板と、
     上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上に積層された発熱体引出電極と、
     上記発熱体引出電極に電気的に接続する様に搭載された発熱素子と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、発熱素子の加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、少なくとも高融点金属層と低融点金属層とを含む積層体からなり、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属層を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    First and second electrodes stacked on the insulating substrate;
    A heating element extraction electrode stacked on a current path between the first and second electrodes;
    A heating element mounted to be electrically connected to the heating element extraction electrode;
    A soluble conductor that is laminated from the heating element extraction electrode to the first and second electrodes, and that melts a current path between the first electrode and the second electrode by heating the heating element; ,
    The soluble conductor is composed of a laminate including at least a high melting point metal layer and a low melting point metal layer,
    The low melting point metal layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded while the low melting point metal has high wettability, and the heating element extraction is performed. A protective element which is attracted to the electrode side and melted.
  24.  上記低融点金属層は、Pbフリーハンダからなり、上記高融点金属層は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなることを特徴とする請求項16~23いずれか1項記載の保護素子。 The low-melting-point metal layer is made of Pb-free solder, and the high-melting-point metal layer is made of Ag or Cu or a metal containing Ag or Cu as a main component. Protection element.
  25.  上記高融点金属層の表面には、Au又はAuを主成分とする皮膜が形成されている請求項16~24いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 24, wherein a coating containing Au or Au as a main component is formed on a surface of the refractory metal layer.
  26.  上記第1及び第2の電極並びに上記発熱体引出電極に接続される位置において、上記可溶導体は、低融点金属にて接続されることを特徴とする請求項16~25いずれか1項記載の保護素子。 26. The soluble conductor is connected with a low melting point metal at a position connected to the first and second electrodes and the heating element extraction electrode. Protection element.
  27.  上記可溶導体は、内層が高融点金属層であり、外層が低融点金属層の被覆構造であることを特徴とする請求項16~26いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 26, wherein the soluble conductor has a covering structure in which an inner layer is a high melting point metal layer and an outer layer is a low melting point metal layer.
  28.  上記低融点金属層は、少なくとも一部の上記高融点金属層を貫通するように形成されていることを特徴とする請求項27記載の保護素子。 28. The protective element according to claim 27, wherein the low melting point metal layer is formed so as to penetrate at least a part of the high melting point metal layer.
  29.  上記可溶導体は、内層が低融点金属層であり、外層が高融点金属層の被覆構造であることを特徴とする請求項16~26いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 26, wherein the soluble conductor has a coating structure in which an inner layer is a low melting point metal layer and an outer layer is a high melting point metal layer.
  30.  上記高融点金属層は、表面に開口を有し、上記低融点金属層が露出していることを特徴とする請求項16~26いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 26, wherein the refractory metal layer has an opening on a surface thereof, and the low melting point metal layer is exposed.
  31.  上記可溶導体は、上層を高融点金属層、下層を低融点金属層の2層構造とすることを特徴とする請求項16~26いずれか1項記載の保護素子。 27. The protection element according to claim 16, wherein the soluble conductor has a two-layer structure in which an upper layer is a high melting point metal layer and a lower layer is a low melting point metal layer.
  32.  上記可溶導体は、上層を低融点金属層、下層を高融点金属層とする2層積層体であることを特徴とする請求項16~26いずれか1項記載の保護素子。 27. The protection element according to claim 16, wherein the soluble conductor is a two-layer laminate in which an upper layer is a low melting point metal layer and a lower layer is a high melting point metal layer.
  33.  上記可溶導体は、上記高融点金属層、上記低融点金属層を、交互に4層以上積層して形成されていることを特徴とする請求項16~26いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 26, wherein the soluble conductor is formed by alternately laminating four or more layers of the high melting point metal layer and the low melting point metal layer.
  34.  上記第1及び第2の電極並びに上記発熱体引出電極の表面に、Ni/Auメッキ、Ni/Pdメッキ又はNi/Pd/Auメッキのいずれか1つのメッキ処理が施されていることを特徴とする請求項16~33いずれか1項記載の保護素子。 The surface of the first and second electrodes and the heating element extraction electrode is subjected to any one of Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating. The protective element according to any one of claims 16 to 33.
  35.  上記発熱体と上記絶縁基板の間に絶縁部材層を設けることを特徴とする請求項16~34いずれか1項記載の保護素子。 The protective element according to any one of claims 16 to 34, wherein an insulating member layer is provided between the heating element and the insulating substrate.
  36.  上記高融点金属層の体積よりも上記低融点金属層の体積の方が多いことを特徴とする請求項16~35いずれか1項記載の保護素子。 36. The protection element according to claim 16, wherein the volume of the low melting point metal layer is larger than the volume of the high melting point metal layer.
  37.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、高融点金属からなり、上記第1の電極、上記第2の電極、及び上記発熱体引出電極の各々と低融点金属を介して接続され、
     上記低融点金属層は、上記発熱体が発する熱により溶融することで、高融点金属からなる上記可溶導体を浸食しながら、上記低融点金属の濡れ性が高い上記第1及び第2の電極並びに上記発熱体引出電極側に引き寄せられて溶断されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode electrically connected to the heating element on a current path between the first and second electrodes;
    A laminate that extends from the heating element extraction electrode to the first and second electrodes, and includes a soluble conductor that melts a current path between the first electrode and the second electrode by heating;
    The soluble conductor is made of a high melting point metal, and is connected to each of the first electrode, the second electrode, and the heating element extraction electrode via a low melting point metal,
    The first and second electrodes having high wettability of the low melting point metal while the low melting point metal layer is eroded by the soluble conductor made of the high melting point metal by being melted by heat generated by the heating element. In addition, the protective element is attracted to the heating element extraction electrode side and melted.
PCT/JP2013/059013 2012-03-29 2013-03-27 Protection element WO2013146889A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380017716.6A CN104185889B (en) 2012-03-29 2013-03-27 Protection element
KR1020147029957A KR102019881B1 (en) 2012-03-29 2013-03-27 Protection element
US14/387,797 US10008356B2 (en) 2012-03-29 2013-03-27 Protection element
HK15105013.5A HK1204504A1 (en) 2012-03-29 2015-05-27 Protection element
US15/989,571 US10269523B2 (en) 2012-03-29 2018-05-25 Protection element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-076928 2012-03-29
JP2012076928 2012-03-29
JP2012281452A JP6249600B2 (en) 2012-03-29 2012-12-25 Protective element
JP2012-281452 2012-12-25
JP2013008302A JP6249602B2 (en) 2012-03-29 2013-01-21 Protective element
JP2013-008302 2013-01-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/387,797 A-371-Of-International US10008356B2 (en) 2012-03-29 2013-03-27 Protection element
US15/989,571 Continuation US10269523B2 (en) 2012-03-29 2018-05-25 Protection element

Publications (1)

Publication Number Publication Date
WO2013146889A1 true WO2013146889A1 (en) 2013-10-03

Family

ID=49260138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059013 WO2013146889A1 (en) 2012-03-29 2013-03-27 Protection element

Country Status (1)

Country Link
WO (1) WO2013146889A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020111A1 (en) * 2013-08-07 2015-02-12 デクセリアルズ株式会社 Protective element and battery pack
JP2015079608A (en) * 2013-10-16 2015-04-23 エヌイーシー ショット コンポーネンツ株式会社 Fuse element material for protection element and circuit protection element using the same
JP2015106542A (en) * 2013-12-02 2015-06-08 デクセリアルズ株式会社 Switching element, switching circuit, and alarm circuit
WO2015190543A1 (en) * 2014-06-11 2015-12-17 デクセリアルズ株式会社 Switching element and switching circuit
WO2015199170A1 (en) * 2014-06-27 2015-12-30 デクセリアルズ株式会社 Switching element, switching circuit, and alarm circuit
WO2016076173A1 (en) * 2014-11-11 2016-05-19 デクセリアルズ株式会社 Fuse element, fuse device, protective element, short-circuit element, and switching element
WO2016190078A1 (en) * 2015-05-28 2016-12-01 デクセリアルズ株式会社 Protection element and fuse element
KR20170055543A (en) * 2014-09-26 2017-05-19 데쿠세리아루즈 가부시키가이샤 Fuse element, fuse component, and fuse component with built-in heating element
CN107004538A (en) * 2014-09-26 2017-08-01 迪睿合株式会社 Manufacture method, the installation method of temperature fuse device and the temperature fuse device of fixing body
TWI676199B (en) * 2014-09-12 2019-11-01 日商迪睿合股份有限公司 Protective element and structure
US11201026B2 (en) 2019-12-13 2021-12-14 Polytronics Technology Corp. Protection device and circuit protection apparatus containing the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (en) * 1982-02-15 1983-08-20 株式会社フジクラ fusible link
JPS62107341U (en) * 1985-12-25 1987-07-09
JPH04365304A (en) * 1991-06-12 1992-12-17 Tama Electric Co Ltd Chip resistor fitted with fuse
JPH09161635A (en) * 1995-12-14 1997-06-20 S M C:Kk Temperature fuse and manufacture thereof
JPH09219138A (en) * 1996-02-13 1997-08-19 Yazaki Corp Fuse
JP2001057139A (en) * 1999-08-18 2001-02-27 Uchihashi Estec Co Ltd Protector for electronic/electrical apparatus and manufacture thereof
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
JP2006221919A (en) * 2005-02-09 2006-08-24 Uchihashi Estec Co Ltd Fuse with substrate type resistor and battery pack
JP2007109566A (en) * 2005-10-14 2007-04-26 Tdk Corp Chip type fuse element and its manufacturing method
JP2008112735A (en) * 2007-12-11 2008-05-15 Nec Schott Components Corp Protection device using temperature fuse
JP2009301964A (en) * 2008-06-17 2009-12-24 Sony Chemical & Information Device Corp Method for manufacturing of protection element, and method for manufacturing of electronic equipment
JP2010170801A (en) * 2009-01-21 2010-08-05 Sony Chemical & Information Device Corp Protection element
JP2011175958A (en) * 2010-01-28 2011-09-08 Kyocera Corp Fuse device, component for fuse device, and electronic device
JP2011222264A (en) * 2010-04-08 2011-11-04 Sony Chemical & Information Device Corp Protection element, battery controller, and battery pack
JP2012003878A (en) * 2010-06-15 2012-01-05 Sony Chemical & Information Device Corp Protection device and method of manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (en) * 1982-02-15 1983-08-20 株式会社フジクラ fusible link
JPS62107341U (en) * 1985-12-25 1987-07-09
JPH04365304A (en) * 1991-06-12 1992-12-17 Tama Electric Co Ltd Chip resistor fitted with fuse
JPH09161635A (en) * 1995-12-14 1997-06-20 S M C:Kk Temperature fuse and manufacture thereof
JPH09219138A (en) * 1996-02-13 1997-08-19 Yazaki Corp Fuse
JP2001057139A (en) * 1999-08-18 2001-02-27 Uchihashi Estec Co Ltd Protector for electronic/electrical apparatus and manufacture thereof
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
JP2006221919A (en) * 2005-02-09 2006-08-24 Uchihashi Estec Co Ltd Fuse with substrate type resistor and battery pack
JP2007109566A (en) * 2005-10-14 2007-04-26 Tdk Corp Chip type fuse element and its manufacturing method
JP2008112735A (en) * 2007-12-11 2008-05-15 Nec Schott Components Corp Protection device using temperature fuse
JP2009301964A (en) * 2008-06-17 2009-12-24 Sony Chemical & Information Device Corp Method for manufacturing of protection element, and method for manufacturing of electronic equipment
JP2010170801A (en) * 2009-01-21 2010-08-05 Sony Chemical & Information Device Corp Protection element
JP2011175958A (en) * 2010-01-28 2011-09-08 Kyocera Corp Fuse device, component for fuse device, and electronic device
JP2011222264A (en) * 2010-04-08 2011-11-04 Sony Chemical & Information Device Corp Protection element, battery controller, and battery pack
JP2012003878A (en) * 2010-06-15 2012-01-05 Sony Chemical & Information Device Corp Protection device and method of manufacturing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020111A1 (en) * 2013-08-07 2015-02-12 デクセリアルズ株式会社 Protective element and battery pack
JP2015053260A (en) * 2013-08-07 2015-03-19 デクセリアルズ株式会社 Protective element, and battery pack
JP2015079608A (en) * 2013-10-16 2015-04-23 エヌイーシー ショット コンポーネンツ株式会社 Fuse element material for protection element and circuit protection element using the same
JP2015106542A (en) * 2013-12-02 2015-06-08 デクセリアルズ株式会社 Switching element, switching circuit, and alarm circuit
WO2015083341A1 (en) * 2013-12-02 2015-06-11 デクセリアルズ株式会社 Switch element, switch circuit, and warning circuit
TWI670739B (en) * 2014-06-11 2019-09-01 日商迪睿合股份有限公司 Switching element and switching circuit
JP2016001549A (en) * 2014-06-11 2016-01-07 デクセリアルズ株式会社 Switch element and switch circuit
KR102378639B1 (en) 2014-06-11 2022-03-24 데쿠세리아루즈 가부시키가이샤 Switching element and switching circuit
KR20170016358A (en) * 2014-06-11 2017-02-13 데쿠세리아루즈 가부시키가이샤 Switching element and switching circuit
CN106663568A (en) * 2014-06-11 2017-05-10 迪睿合株式会社 Switching element and switching circuit
WO2015190543A1 (en) * 2014-06-11 2015-12-17 デクセリアルズ株式会社 Switching element and switching circuit
WO2015199170A1 (en) * 2014-06-27 2015-12-30 デクセリアルズ株式会社 Switching element, switching circuit, and alarm circuit
JP2016012445A (en) * 2014-06-27 2016-01-21 デクセリアルズ株式会社 Switch element, switch circuit and alarm circuit
TWI670740B (en) * 2014-06-27 2019-09-01 日商迪睿合股份有限公司 Switching element, switching circuit, alarm circuit, redundant circuit and switching method
TWI676199B (en) * 2014-09-12 2019-11-01 日商迪睿合股份有限公司 Protective element and structure
KR20180130597A (en) * 2014-09-26 2018-12-07 데쿠세리아루즈 가부시키가이샤 Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
CN107004538A (en) * 2014-09-26 2017-08-01 迪睿合株式会社 Manufacture method, the installation method of temperature fuse device and the temperature fuse device of fixing body
KR20170055543A (en) * 2014-09-26 2017-05-19 데쿠세리아루즈 가부시키가이샤 Fuse element, fuse component, and fuse component with built-in heating element
KR102049712B1 (en) * 2014-09-26 2019-11-28 데쿠세리아루즈 가부시키가이샤 Fuse element, fuse component, and fuse component with built-in heating element
US10707043B2 (en) 2014-09-26 2020-07-07 Dexerials Corporation Fuse element, fuse device, and heat-generator-integrated fuse device
KR102232981B1 (en) * 2014-09-26 2021-03-26 데쿠세리아루즈 가부시키가이샤 Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
CN107735849A (en) * 2014-11-11 2018-02-23 迪睿合株式会社 Fuse cell, fuse element, protection element, short-circuit component, switching device
TWI697022B (en) * 2014-11-11 2020-06-21 日商迪睿合股份有限公司 Fuse unit, fuse element, protection element, short circuit element, switching element
WO2016076173A1 (en) * 2014-11-11 2016-05-19 デクセリアルズ株式会社 Fuse element, fuse device, protective element, short-circuit element, and switching element
WO2016190078A1 (en) * 2015-05-28 2016-12-01 デクセリアルズ株式会社 Protection element and fuse element
US11201026B2 (en) 2019-12-13 2021-12-14 Polytronics Technology Corp. Protection device and circuit protection apparatus containing the same

Similar Documents

Publication Publication Date Title
JP6249602B2 (en) Protective element
WO2013146889A1 (en) Protection element
KR102523229B1 (en) Protection element and mounted body
WO2020129406A1 (en) Protection element and battery pack
JP6161967B2 (en) Short circuit element and circuit using the same
WO2015045278A1 (en) Short-circuiting element
JP6538936B2 (en) Protective element and battery pack
KR102263795B1 (en) Interrupting element and interrupting-element circuit
JP6381975B2 (en) Short circuit element
JP6246503B2 (en) Short circuit element and circuit using the same
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
JP2015035286A (en) Short-circuit element and short-circuit circuit
JP6381980B2 (en) Switch element and switch circuit
JP6078332B2 (en) Protection element, battery module
JP7443144B2 (en) Protection elements and battery packs
JP6202992B2 (en) Protective circuit, battery circuit, protective element, and driving method of protective element
JP6223142B2 (en) Short circuit element
WO2023248787A1 (en) Protective element, and protective element manufacturing method
WO2015107633A1 (en) Protective element and battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147029957

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13770327

Country of ref document: EP

Kind code of ref document: A1