JP2011222264A - Protection element, battery controller, and battery pack - Google Patents

Protection element, battery controller, and battery pack Download PDF

Info

Publication number
JP2011222264A
JP2011222264A JP2010089613A JP2010089613A JP2011222264A JP 2011222264 A JP2011222264 A JP 2011222264A JP 2010089613 A JP2010089613 A JP 2010089613A JP 2010089613 A JP2010089613 A JP 2010089613A JP 2011222264 A JP2011222264 A JP 2011222264A
Authority
JP
Japan
Prior art keywords
insulating layer
protection element
charge
point metal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089613A
Other languages
Japanese (ja)
Other versions
JP5260592B2 (en
Inventor
Koichi Mukai
幸市 向
Masahiko Ishimaru
誠彦 石丸
Takahiro Asada
隆広 浅田
Kazutomo Komori
千智 小森
Shoko Nagaki
翔子 長木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010089613A priority Critical patent/JP5260592B2/en
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to US13/639,966 priority patent/US9184609B2/en
Priority to PCT/JP2011/058845 priority patent/WO2011126091A1/en
Priority to KR1020127028095A priority patent/KR101382942B1/en
Priority to EP11765991A priority patent/EP2557581A1/en
Priority to CN201180017851.1A priority patent/CN102822929B/en
Priority to TW100112146A priority patent/TWI443701B/en
Publication of JP2011222264A publication Critical patent/JP2011222264A/en
Priority to HK13103153.2A priority patent/HK1176160A1/en
Application granted granted Critical
Publication of JP5260592B2 publication Critical patent/JP5260592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H85/463Circuit arrangements not adapted to a particular application of the protective device with printed circuit fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0275Structural association with a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/108Normal resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To transmit heat of a heating resistor efficiently to a low melting point metal via a heat transfer path.SOLUTION: A protection element to be connected onto the current path of an electric circuit has an insulating substrate 60, a heating resistor 64 formed on one surface of the insulating substrate 60 with a first insulation layer 62 interposed therebetween, a low melting point metal 67 arranged above the heating resistor 64 with a second insulation layer 65 interposed therebetween and constituting a part of the current path, and connections 611 and 612 which are connected to the opposite ends of the low melting point metal 67 and connect the current path electrically with the low melting point metal 67. The connections 611 and 612 are provided on one surface of the insulating substrate 60 with a first glass layer 70 interposed therebetween.

Description

本発明は、充放電可能なバッテリセルからなるバッテリと充放電制御回路とを保護する保護素子と、この保護素子が組み込まれたバッテリ制御装置及びバッテリパックに関する。   The present invention relates to a protection element that protects a battery composed of chargeable / dischargeable battery cells and a charge / discharge control circuit, and a battery control device and a battery pack incorporating the protection element.

過電流だけでなく過電圧も防止することができ、携帯型電子機器用のバッテリパックなどに有用な保護素子として、バッテリセルの充放電電流経路上に低融点金属体を介在させるとともに、この低融点金属体の近傍に発熱抵抗体を配置した保護素子が用いられている。図9に示すように、この種の保護素子100は、一般に、アルミナ等のセラミックスを用いた絶縁基板101上に発熱抵抗体102を設け、発熱抵抗体102上に低融点金属体104を配置している。   Not only overcurrent but also overvoltage can be prevented, and as a protective element useful for battery packs for portable electronic devices, a low melting point metal body is interposed on the charge / discharge current path of the battery cell, and this low melting point A protection element in which a heating resistor is disposed in the vicinity of a metal body is used. As shown in FIG. 9, this type of protection element 100 is generally provided with a heating resistor 102 on an insulating substrate 101 using ceramics such as alumina, and a low melting point metal body 104 is arranged on the heating resistor 102. ing.

低融点金属体104は、絶縁基板101に設けられ、バッテリセルとバッテリセルの充放電電流経路となる充放電回路との間に接続された導電層106に接続されている。導電層106は、絶縁基板101の表面に相対向して設けられた一対の表面電極106aと、絶縁基板101の裏面に相対向して設けられた一対の裏面電極106bと、各表面電極106a及び裏面電極106bをそれぞれ接続する端子電極106cとを備える。裏面電極106bは、一方がバッテリセルに接続され、他方が充放電回路に接続されている。   The low-melting-point metal body 104 is provided on the insulating substrate 101 and is connected to a conductive layer 106 connected between the battery cell and a charge / discharge circuit serving as a charge / discharge current path of the battery cell. The conductive layer 106 includes a pair of front surface electrodes 106a provided opposite to the surface of the insulating substrate 101, a pair of back surface electrodes 106b provided opposite to the back surface of the insulating substrate 101, the front surface electrodes 106a, A terminal electrode 106c for connecting the back electrode 106b. One of the back electrodes 106b is connected to the battery cell, and the other is connected to the charge / discharge circuit.

発熱抵抗体102は、絶縁基板101に設けられた図示しない導電パターンを介して電流制御素子と接続されるとともに、低融点金属体104を介して充放電電流経路と接続されている。また、発熱抵抗体102は、絶縁基板101の表面にガラス層からなる第1の絶縁層107を介して設けられるとともに、上方にガラス層からなる第2の絶縁層108が設けられている。また低融点金属体104は、導体109を介して第2の絶縁層108上に設けられるとともに、発熱抵抗体102とも接続されている。   The heating resistor 102 is connected to a current control element through a conductive pattern (not shown) provided on the insulating substrate 101 and is connected to a charge / discharge current path through a low melting point metal body 104. The heating resistor 102 is provided on the surface of the insulating substrate 101 via a first insulating layer 107 made of a glass layer, and a second insulating layer 108 made of a glass layer is provided on the upper side. The low melting point metal body 104 is provided on the second insulating layer 108 via the conductor 109 and is also connected to the heating resistor 102.

そして、保護素子100は、バッテリセルの過充電や過放電などの異常時に発熱抵抗体102へ過電流が流れると、電流制御素子によりバッテリセルから発熱抵抗体102に電流が流れるように制御され、発熱抵抗体102から発生した熱によって低融点金属体104を溶融させ、充放電電流経路を遮断する。   The protection element 100 is controlled such that when an overcurrent flows to the heating resistor 102 in the event of an abnormality such as overcharge or overdischarge of the battery cell, a current flows from the battery cell to the heating resistor 102 by the current control element. The low melting point metal body 104 is melted by the heat generated from the heating resistor 102 and the charge / discharge current path is interrupted.

特開2009−259724号公報JP 2009-259724 A

かかる保護素子100においては、発熱抵抗体102から発生した熱で低融点金属体104を溶融させることによりバッテリセルから流れる充放電電流経路を遮断することから、異常時において充放電電流経路を速やかに遮断するためには、発熱抵抗体102の熱を効率よく低融点金属体104に伝達させることが必要となる。   In such a protection element 100, the low-melting point metal body 104 is melted by the heat generated from the heating resistor 102 to cut off the charge / discharge current path flowing from the battery cell. In order to cut off, it is necessary to efficiently transfer the heat of the heating resistor 102 to the low melting point metal body 104.

しかし、従来の保護素子100では、低融点金属体104の周囲に設けられている第1、第2の絶縁層107,108がガラスによって形成されていることから、熱伝導率が低く、効率的に発熱抵抗体102の熱を低融点金属体104に伝達させることができなかった。   However, in the conventional protection element 100, since the first and second insulating layers 107 and 108 provided around the low melting point metal body 104 are formed of glass, the thermal conductivity is low and efficient. In addition, the heat of the heating resistor 102 could not be transferred to the low melting point metal body 104.

また、従来の保護素子100は、発熱抵抗体102から発生した熱が、低融点金属体104及び表面電極106aを介して絶縁基板101に伝達され、また、第1の絶縁層107を介しても絶縁基板101に伝達される。従来の保護素子100は、絶縁基板101がアルミナ等の熱伝導率の高い材料が用いられていることから、発熱抵抗体102から発生した熱が、第1の絶縁層107を介して絶縁基板101へ伝達される伝熱経路と、導電層106を介して絶縁基板101へ伝達する伝熱経路とができてしまい、効率的に低融点金属体104の温度を上昇させることができなかった。   In the conventional protection element 100, the heat generated from the heating resistor 102 is transmitted to the insulating substrate 101 via the low melting point metal body 104 and the surface electrode 106 a, and also via the first insulating layer 107. It is transmitted to the insulating substrate 101. In the conventional protection element 100, since the insulating substrate 101 is made of a material having high thermal conductivity such as alumina, the heat generated from the heating resistor 102 is passed through the first insulating layer 107 through the insulating substrate 101. As a result, a heat transfer path transmitted to the insulating substrate 101 via the conductive layer 106 and a heat transfer path transferred to the insulating substrate 101 could be formed, and the temperature of the low melting point metal body 104 could not be increased efficiently.

そこで、本発明は、発熱抵抗体から発生した熱が保護素子の伝熱経路を通じて逃げることなく効率的に低融点金属体へ伝達させ、バッテリセルの過充電や過放電などの異常時に速やかにバッテリセルの充放電電流経路を遮断することができる保護素子、バッテリ制御装置、及び、バッテリパックを提供することを目的とする。   Therefore, the present invention efficiently transfers heat generated from the heating resistor to the low-melting-point metal body without escaping through the heat transfer path of the protective element, so that the battery can be promptly used in the event of an abnormality such as overcharge or overdischarge of the battery cell. It is an object of the present invention to provide a protection element, a battery control device, and a battery pack that can interrupt a charge / discharge current path of a cell.

上述した課題を解決するために、本発明に係る保護素子は、電気回路の電流経路上に接続される保護素子において、絶縁基板と、上記絶縁基板の一面に、第1の絶縁層を介して形成された発熱抵抗体と、上記発熱抵抗体の上方に第2の絶縁層を介して配設され、電流経路の一部を構成する低融点金属体と、上記低融点金属体の両端と接続され、上記電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられているものである。   In order to solve the above-described problem, a protection element according to the present invention is a protection element connected to a current path of an electric circuit, and includes an insulating substrate and a first insulating layer on one surface of the insulating substrate. The formed heating resistor, the low melting point metal body that is disposed above the heating resistor via the second insulating layer and forms a part of the current path, and is connected to both ends of the low melting point metal body And a connecting portion for electrically connecting the current path and the low melting point metal body, and the connecting portion is provided on the one surface of the insulating substrate via a third insulating layer. Is.

また、本発明に係るバッテリ制御装置は、充放電可能なバッテリセルからなるバッテリの充放電電流経路上に接続され、該バッテリの充放電を制御する充放電制御回路と、上記バッテリセルの電圧値を検出する検出回路と、上記検出回路により検出されるバッテリセルの電圧値が所定の範囲外となったときに上記充放電電流経路を遮断する保護素子と、上記保護素子を駆動する電流制御素子とを備え、上記保護素子は、絶縁基板と、上記絶縁基板の一面に第1の絶縁層を介して形成された発熱抵抗体と、上記発熱抵抗体の上方に第2の絶縁層を介して配設され、上記充放電電流経路の一部を構成する低融点金属体と、上記低融点金属体の両端と接続され、上記充放電電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられているものである。   The battery control device according to the present invention is connected to a charge / discharge current path of a battery composed of chargeable / dischargeable battery cells, and controls the charge / discharge of the battery, and the voltage value of the battery cell. , A protection element that cuts off the charge / discharge current path when the voltage value of the battery cell detected by the detection circuit falls outside a predetermined range, and a current control element that drives the protection element The protective element includes an insulating substrate, a heating resistor formed on one surface of the insulating substrate via a first insulating layer, and a second insulating layer above the heating resistor. The low melting point metal body that is disposed and constitutes a part of the charge / discharge current path is connected to both ends of the low melting point metal body, and electrically connects the charge / discharge current path to the low melting point metal body. Connecting portion, and Parts are in the one surface of the insulating substrate, in which are provided via a third insulating layer.

また、本発明に係るバッテリパックは、充放電可能なバッテリセルからなるバッテリと、上記バッテリの充放電電流経路上に接続され、該バッテリの充放電を制御する充放電制御回路と、上記バッテリセルの電圧値を検出する検出回路と、上記検出回路により検出されるバッテリセルの電圧値が所定の範囲外となったときに上記充放電電流経路を遮断する保護素子と、上記保護素子を駆動する電流制御素子とを備え、上記保護素子は、絶縁基板と、上記絶縁基板の一面に第1の絶縁層を介して形成された発熱抵抗体と、上記発熱抵抗体の上方に第2の絶縁層を介して配設され、上記充放電電流経路の一部を構成する低融点金属体と、上記低融点金属体の両端と接続され、上記充放電電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられているものである。   The battery pack according to the present invention includes a battery composed of chargeable / dischargeable battery cells, a charge / discharge control circuit that is connected to a charge / discharge current path of the battery and controls charge / discharge of the battery, and the battery cell. A detection circuit for detecting a voltage value of the battery, a protection element for cutting off the charge / discharge current path when the voltage value of the battery cell detected by the detection circuit is outside a predetermined range, and driving the protection element A current control element, and the protection element includes an insulating substrate, a heating resistor formed on one surface of the insulating substrate via a first insulating layer, and a second insulating layer above the heating resistor. A low-melting point metal body that is part of the charge / discharge current path and is connected to both ends of the low-melting point metal body, and electrically connects the charge / discharge current path and the low-melting point metal body. With a connection to connect to A, the connecting portion to the one surface of the insulating substrate, in which are provided via a third insulating layer.

本発明によれば、基板と接続部との間に第3の絶縁層を設けているため、発熱抵抗体の熱が低融点金属体を経て接続部より絶縁基板側へ放熱されることを抑制することができ、効率よく低融点金属体に蓄熱させ、素早く溶断できる。   According to the present invention, since the third insulating layer is provided between the substrate and the connection portion, the heat of the heating resistor is prevented from being radiated from the connection portion to the insulating substrate side through the low melting point metal body. The heat can be efficiently stored in the low melting point metal body and can be melted quickly.

本発明が適用されたバッテリパックの全体構成を示す図である。It is a figure which shows the whole structure of the battery pack to which this invention was applied. 本発明が適用されたバッテリパックの回路構成を示す図である。It is a figure which shows the circuit structure of the battery pack to which this invention was applied. 本発明が適用された保護素子の断面図である。It is sectional drawing of the protection element to which this invention was applied. 本発明が適用された保護素子の層構成を説明する平面図である。It is a top view explaining the layer structure of the protection element to which this invention was applied. 本発明が適用された保護素子の温度特性を説明するためのグラフである。It is a graph for demonstrating the temperature characteristic of the protection element to which this invention was applied. 本発明が適用された他の保護素子の断面図である。It is sectional drawing of the other protection element to which this invention was applied. 本発明が適用された他の保護素子の回路構成を示す図である。It is a figure which shows the circuit structure of the other protection element to which this invention was applied. 本発明が適用された他の保護素子の層構成を説明する平面図である。It is a top view explaining the layer structure of the other protection element to which this invention was applied. 従来の保護素子の断面図である。It is sectional drawing of the conventional protection element.

以下、本発明が適用された保護素子、バッテリ制御装置、及び、バッテリパックについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。   Hereinafter, a protection element, a battery control device, and a battery pack to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明が適用された保護素子は、例えば、充放電可能なバッテリセルからなるバッテリと充放電制御回路とを保護する素子であって、図1に示すように、複数の、ここでは合計4個の充放電可能なバッテリセル11〜14からなるバッテリ10を有するバッテリパック1に組み込まれて使用される。   The protection element to which the present invention is applied is, for example, an element that protects a battery composed of chargeable / dischargeable battery cells and a charge / discharge control circuit, and includes a plurality of, here, a total of four, as shown in FIG. The battery pack 1 having the battery 10 including the chargeable / dischargeable battery cells 11 to 14 is used.

バッテリパック1は、バッテリ10と、バッテリ10の充放電を制御する充放電制御回路20と、バッテリ10と充放電制御回路20とを保護する保護素子30と、各バッテリセル11〜14の電圧を検出する検出回路40と、検出回路40の検出結果に応じて保護素子30の動作を制御する電流制御素子50とを備える。   The battery pack 1 includes a battery 10, a charge / discharge control circuit 20 that controls charge / discharge of the battery 10, a protection element 30 that protects the battery 10 and the charge / discharge control circuit 20, and the voltages of the battery cells 11 to 14. The detection circuit 40 to detect and the current control element 50 which controls operation | movement of the protection element 30 according to the detection result of the detection circuit 40 are provided.

バッテリ10は、上述したように、例えばリチウムイオン二次電池のような過充電及び過放電状態とならないような制御を要するバッテリセル11〜14が直列接続されたものであって、バッテリパック1の正極端子1a、負極端子1bを介して、着脱可能に充電装置2に接続され、充電装置2からの充電電圧が印加される。   As described above, the battery 10 includes battery cells 11 to 14 that need to be controlled so as not to be overcharged and overdischarged, such as a lithium ion secondary battery. The charging device 2 is detachably connected to the charging device 2 through the positive electrode terminal 1a and the negative electrode terminal 1b, and a charging voltage from the charging device 2 is applied thereto.

充放電制御回路20は、バッテリ10から充電装置2に流れる充放電電流経路に直列接続された2つの電流制御素子21、22と、これらの電流制御素子21、22の動作を制御する制御部23とを備える。電流制御素子21、22は、例えば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部23により制御されるゲート電圧によって、バッテリ10の充放電電流経路の導通と遮断とを制御する。制御部23は、充電装置2から電力供給を受けて動作し、検出回路40による検出結果に応じて、バッテリ10が過放電又は過充電であるとき、充放電電流経路を遮断するように、電流制御素子21、22の動作を制御する。   The charge / discharge control circuit 20 includes two current control elements 21 and 22 connected in series to a charge / discharge current path that flows from the battery 10 to the charging device 2, and a control unit 23 that controls operations of these current control elements 21 and 22. With. The current control elements 21 and 22 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control conduction and interruption of the charge / discharge current path of the battery 10 by a gate voltage controlled by the control unit 23. . The control unit 23 operates by receiving power supply from the charging device 2, and according to the detection result by the detection circuit 40, when the battery 10 is overdischarged or overcharged, the current is so cut off as to charge / discharge current path. The operation of the control elements 21 and 22 is controlled.

保護素子30は、バッテリ10と充放電制御回路20との間の充放電電流経路上に接続され、その動作が電流制御素子50によって制御される。   The protection element 30 is connected on a charge / discharge current path between the battery 10 and the charge / discharge control circuit 20, and its operation is controlled by the current control element 50.

検出回路40は、各バッテリセル11〜14と接続され、各バッテリセル11〜14の電圧値を検出して、各電圧値を充放電制御回路20の制御部23に供給する。また、検出回路40は、いずれか1つのバッテリセル11〜14が過充電電圧又は過放電電圧になったときに電流制御素子50を制御する制御信号を出力する。   The detection circuit 40 is connected to each of the battery cells 11 to 14, detects the voltage value of each of the battery cells 11 to 14, and supplies each voltage value to the control unit 23 of the charge / discharge control circuit 20. The detection circuit 40 outputs a control signal for controlling the current control element 50 when any one of the battery cells 11 to 14 becomes an overcharge voltage or an overdischarge voltage.

電流制御素子50は、バッテリセル11〜14の電圧値が所定の範囲外となったとき、具体的には過放電又は過充電状態になったとき、検出回路40から出力される制御信号に応じて、保護素子30を動作させて、バッテリ10の充放電電流経路を遮断するように制御する。   The current control element 50 responds to a control signal output from the detection circuit 40 when the voltage values of the battery cells 11 to 14 are out of a predetermined range, specifically, when the battery cells 11 to 14 are overdischarged or overcharged. Then, the protection element 30 is operated to control the charge / discharge current path of the battery 10 to be cut off.

次いで、保護素子30の構成について具体的に説明する。本発明が適用された保護素子30は、幅広いバッテリ10の電圧変動に対応して、抵抗体の熱により確実にヒューズを溶融して、バッテリ10の充放電電流経路を遮断するものであり、図2に示すような回路構成を有する。   Next, the configuration of the protection element 30 will be specifically described. The protection element 30 to which the present invention is applied responds to a wide range of voltage fluctuations of the battery 10 and melts the fuse reliably by the heat of the resistor to interrupt the charging / discharging current path of the battery 10. 2 has a circuit configuration.

すなわち、保護素子30は、図2に示すように、加熱により溶断される低融点金属体からなるヒューズ31a,31bと、通電するとヒューズ31a,31bを溶融する熱を発する抵抗体32とを備える。   That is, as shown in FIG. 2, the protection element 30 includes fuses 31 a and 31 b made of a low melting point metal body that is melted by heating, and a resistor 32 that generates heat that melts the fuses 31 a and 31 b when energized.

ヒューズ31a,31bは、例えば、物理的に1つの低融点金属体を回路構成上で分離して、接続点P1を介して直列接続されるようにした素子であって、バッテリ10と充放電制御回路20との間の充放電電流経路上に直列接続される。例えば、ヒューズ31aは、ヒューズ31bと接続されていない接続点A3を介して充放電制御回路20と接続され、ヒューズ31bは、ヒューズ31aと接続されていない接続点A1を介してバッテリ10と接続される。   The fuses 31a and 31b are elements in which, for example, one low melting point metal body is physically separated on the circuit configuration and connected in series via the connection point P1, and charge / discharge control with the battery 10 is performed. They are connected in series on the charge / discharge current path between the circuit 20 and the circuit 20. For example, the fuse 31a is connected to the charge / discharge control circuit 20 via a connection point A3 that is not connected to the fuse 31b, and the fuse 31b is connected to the battery 10 via a connection point A1 that is not connected to the fuse 31a. The

抵抗体32は、一端にヒューズ31a,31bとの接続点P1が設けられ、他端が電流制御素子50と接続される端子部33と接続されている。そして、抵抗体32は、電流制御素子50によって通電されると、ヒューズ31a,31bを構成する低融点金属体を融解する熱を発する。   One end of the resistor 32 is provided with a connection point P1 with the fuses 31a and 31b, and the other end is connected to a terminal portion 33 connected to the current control element 50. When the resistor 32 is energized by the current control element 50, the resistor 32 generates heat that melts the low-melting-point metal bodies constituting the fuses 31a and 31b.

以上のような回路構成からなる保護素子30は、例えば図3及び図4に示すような構造体により実現される。図3は、三次元直交座標XYZ軸を基準として配置された保護素子30のXZ平面から見た断面図である。また、図4は、XY平面から見た保護素子30の積層構造について説明するための図である。   The protection element 30 having the circuit configuration as described above is realized by a structure as shown in FIGS. 3 and 4, for example. FIG. 3 is a cross-sectional view of the protection element 30 arranged on the basis of the three-dimensional orthogonal coordinate XYZ axis as seen from the XZ plane. FIG. 4 is a diagram for explaining a laminated structure of the protection element 30 as viewed from the XY plane.

保護素子30は、セラミックスなどの絶縁性の矩形形状の基板60の一面60a上に、絶縁層を介して形成された発熱抵抗体64と、発熱抵抗体64の上方に絶縁層を介して配設され、充放電電流経路の一部を構成する低融点金属体67と、低融点金属体67の両端と接続され、充放電電流経路と低融点金属体67とを接続する接続部611〜613とを有する。そして、保護素子30は、接続部611,612が、基板60に、低熱伝導性のガラス層70,71を介して設けられている。   The protective element 30 is disposed on one surface 60a of an insulating rectangular substrate 60 such as ceramics via an insulating layer, and disposed above the heating resistor 64 via an insulating layer. A low melting point metal body 67 constituting a part of the charge / discharge current path, and connecting portions 611 to 613 connected to both ends of the low melting point metal body 67 to connect the charge / discharge current path and the low melting point metal body 67; Have In the protection element 30, the connection portions 611 and 612 are provided on the substrate 60 via the low thermal conductivity glass layers 70 and 71.

絶縁基板60は、例えば機械的強度の高いアルミナ等のセラミックスが用いられる。アルミナは、基板60の機械的な強度が高く、加工や取り扱いの容易さに優れる反面、熱伝導率が約25W/m・Kと高い。また、基板60は、アルミナとガラス系材料を混合したガラスセラミックス等の熱伝導率が比較的低い材料を用いることもできるが、ガラス等を含有させた分だけ脆弱となるため、加工性や耐久性等を損なうほか、ガラス系材料が均一に混合されない場合には強度や熱伝導率にばらつきも生じ、また製造コストもあがる。保護素子30では、後述するように、基板60の両面にガラス層70,71を設けた積層構造により、効率的に発熱抵抗体64の熱を低融点金属体67へ伝達させているため、基板60にアルミナを用いることもできる。   The insulating substrate 60 is made of ceramics such as alumina having high mechanical strength, for example. Alumina is high in mechanical strength of the substrate 60 and excellent in processing and handling, but has a high thermal conductivity of about 25 W / m · K. In addition, the substrate 60 may be made of a material having a relatively low thermal conductivity such as glass ceramic mixed with alumina and a glass-based material. In addition to impairing the properties and the like, if the glass-based material is not uniformly mixed, variations in strength and thermal conductivity occur, and the manufacturing cost also increases. In the protective element 30, the heat of the heating resistor 64 is efficiently transmitted to the low melting point metal body 67 by the laminated structure in which the glass layers 70 and 71 are provided on both surfaces of the substrate 60, as will be described later. Alumina can also be used for 60.

このように、機械的強度、熱伝導率を考慮すると、基板60に用いることができる材料としては、例えば、アルミナ(Al、熱伝導率25W/m・K)、アルミナ70%にムライト(3Al・2SiO)30%を混合させたもの(熱伝導率7W/m・K)、アルミナ50%にムライト50%を混合させたもの(熱伝導率4W/m・K)、ジルコニア(ZrO、熱伝導率3W/m・K)等が上げられる。 Thus, considering the mechanical strength and thermal conductivity, examples of materials that can be used for the substrate 60 include alumina (Al 2 O 3 , thermal conductivity 25 W / m · K), 70% alumina, and mullite. (3Al 2 O 3 · 2SiO 2 ) those obtained by mixing 30% (thermal conductivity of 7W / m · K), which was mixed with 50% mullite to 50% alumina (thermal conductivity 4W / m · K), Zirconia (ZrO 2 , thermal conductivity 3 W / m · K) and the like can be raised.

このうち、熱伝導率が5W/m・K以下であるアルミナ50%にムライト50%を混合させたものや、ジルコニアを基板60の材料として用いた場合、ガラス層70,71による放熱の抑制に加え、基板60による放熱が抑制され、発熱抵抗体64の熱をさらに効率よく低融点金属体67へ伝達させることができる。   Of these, when mullite 50% is mixed with 50% alumina having a thermal conductivity of 5 W / m · K or less, or when zirconia is used as the material of the substrate 60, the heat dissipation by the glass layers 70 and 71 is suppressed. In addition, heat dissipation by the substrate 60 is suppressed, and the heat of the heating resistor 64 can be transmitted to the low melting point metal body 67 more efficiently.

また、図3において、XY平面上に位置する基板60には、側面部に、保護素子30と充電装置2、バッテリ10及び電流制御素子50とを接続する接続部611〜613が形成されている。接続部611〜613は、それぞれ、基板60の一面60aに形成された導体61bと、基板60の他面60bに形成された導体61cと、これら基板60内をZ方向に貫通するようにして形成され導体61b及び導体61cを接続するスルーホール61aを有する。   In FIG. 3, connection portions 611 to 613 that connect the protection element 30, the charging device 2, the battery 10, and the current control element 50 are formed on the side surface of the substrate 60 positioned on the XY plane. . The connecting portions 611 to 613 are formed so as to penetrate the Z-direction through the conductor 61b formed on the one surface 60a of the substrate 60, the conductor 61c formed on the other surface 60b of the substrate 60, respectively. And a through hole 61a for connecting the conductor 61b and the conductor 61c.

これらの3つの接続部611〜613のうち、対向する2つの接続部611、612は、各導体61cがバッテリ10と充放電制御回路20とそれぞれ接続される接点となる。また、他の接続部613は、導体61cが電流制御素子50と接続される端子部33として機能する。   Of these three connection portions 611 to 613, the two connection portions 611 and 612 facing each other serve as contact points where the conductors 61c are connected to the battery 10 and the charge / discharge control circuit 20, respectively. The other connection portion 613 functions as the terminal portion 33 where the conductor 61c is connected to the current control element 50.

接続部611〜613は、導体61b、導体61c及びスルーホール61aが基板60の所定箇所に導電ペーストを印刷することにより形成される。接続部611〜613を構成する導電材料としては、例えば銀、銅、タングステン(W)を用いることができる。   The connection portions 611 to 613 are formed by printing the conductive paste on the predetermined portions of the substrate 60 with the conductors 61b, the conductors 61c, and the through holes 61a. For example, silver, copper, or tungsten (W) can be used as the conductive material constituting the connection portions 611 to 613.

接続部611,612は、それぞれ導体61bが絶縁層となる第1のガラス層70を介して基板60の一面60a上に形成されている。また、接続部611,612は、それぞれ導体61cが絶縁層となる第2のガラス層71を介して基板60の他面60b上に形成されている。   The connecting portions 611 and 612 are formed on the one surface 60a of the substrate 60 via the first glass layer 70 in which the conductor 61b serves as an insulating layer. The connection portions 611 and 612 are formed on the other surface 60b of the substrate 60 via the second glass layer 71 in which the conductor 61c serves as an insulating layer.

また、基板60の一面60aの中央部には、板状の第1の絶縁層62が形成されている。この第1の絶縁層62の表面62aには、導体パターン63aと、導体パターン63aと接続された発熱抵抗体64と、発熱抵抗体64と接続された導体パターン63bとが実装されている。ここで、導体パターン63bは、端子部33として機能する接続部613の導体61bと接続され、導体パターン63aは、導体66を介して低融点金属体67と接続される。このような接続関係によって、保護素子30は、端子部33として機能する接続部613が、導体パターン63b、発熱抵抗体64、導体パターン63aを介して、導体66を経て、低融点金属体67と接続されている。   A plate-like first insulating layer 62 is formed at the center of the one surface 60 a of the substrate 60. A conductor pattern 63a, a heating resistor 64 connected to the conductor pattern 63a, and a conductor pattern 63b connected to the heating resistor 64 are mounted on the surface 62a of the first insulating layer 62. Here, the conductor pattern 63 b is connected to the conductor 61 b of the connection portion 613 that functions as the terminal portion 33, and the conductor pattern 63 a is connected to the low melting point metal body 67 through the conductor 66. With such a connection relationship, the protective element 30 has the connection portion 613 functioning as the terminal portion 33 via the conductor pattern 63b, the heating resistor 64, and the conductor pattern 63a, the conductor 66, and the low melting point metal body 67. It is connected.

発熱抵抗体64は、例えば、ルテニウム(Ru)、炭化珪素(SiC、比抵抗:10Ω・cm)、ケイ化モリブデン(MoSi、比抵抗:2.E+0.5Ω・cm)、ランタン・クロム酸化物(LaCro)、カーボン(C、比抵抗:1.00E−3Ω・cm)を用いることができる。 The heating resistor 64 is, for example, ruthenium (Ru), silicon carbide (SiC, specific resistance: 10 Ω · cm), molybdenum silicide (MoSi 2 , specific resistance: 2.E + 0.5 Ω · cm), lanthanum / chromium oxide (LaCro 3 ) and carbon (C, specific resistance: 1.00E-3 Ω · cm) can be used.

導体パターン63a、63b及び発熱抵抗体64は、第2の絶縁層65によって被覆されている。さらにこの第2の絶縁層65の被覆面には、導体66を介して、低融点金属体67が実装される。なお、導体66と低融点金属体67とは半田(図示せず)によって接続される。   The conductor patterns 63 a and 63 b and the heating resistor 64 are covered with the second insulating layer 65. Further, a low melting point metal body 67 is mounted on the covering surface of the second insulating layer 65 via a conductor 66. The conductor 66 and the low melting point metal body 67 are connected by solder (not shown).

また、導体パターン63aの一方の端部P11は、導体66のP12を介して低融点金属体67と接続される。具体的に、このような接続を行うには、保護素子30を−Z方向から見た図4(A)に示すように、第1の絶縁層62の上に、導体パターン63a、63bと、発熱抵抗体64が実装された実装面の、導体パターン63aの端部に接点P11を設ける。そして、図4(B)に示すように、この接点P11と、導体66の接点P12とが接続されるように、導体66を第2の絶縁層65を介して被覆し、さらに導体66の上に、低融点金属体67を実装する。すなわち、端部P11を発熱抵抗体64の外周部より外側に配置し、端部P12を第2の絶縁層65の外周部の外側に配置して、各部材を積層したときに端部P11、P12が一致するようにする。   Further, one end portion P11 of the conductor pattern 63a is connected to the low melting point metal body 67 through P12 of the conductor 66. Specifically, in order to make such a connection, as shown in FIG. 4A when the protection element 30 is viewed from the −Z direction, conductor patterns 63a and 63b are formed on the first insulating layer 62, and A contact P11 is provided at the end of the conductor pattern 63a on the mounting surface on which the heating resistor 64 is mounted. Then, as shown in FIG. 4B, the conductor 66 is covered with a second insulating layer 65 so that the contact P11 and the contact P12 of the conductor 66 are connected. Then, the low melting point metal body 67 is mounted. That is, the end portion P11 is disposed outside the outer peripheral portion of the heating resistor 64, the end portion P12 is disposed outside the outer peripheral portion of the second insulating layer 65, and the end portions P11, Let P12 match.

低融点金属体67は、半田を介して、バッテリ10及び充放電制御回路20と接続される接点として機能する接続部611、612の各導体61bと接続される。また、低融点金属体67の上面には、フラックス68が設けられる。また、低融点金属体67は、上部が、キャップ69により覆われる。   The low melting point metal body 67 is connected to the conductors 61b of the connection portions 611 and 612 functioning as contacts connected to the battery 10 and the charge / discharge control circuit 20 via solder. A flux 68 is provided on the upper surface of the low melting point metal body 67. Further, the upper portion of the low melting point metal body 67 is covered with a cap 69.

このような保護素子30は、検出回路40が電圧を検出することによりバッテリセル11〜14の過充電や過放電などの異常を検出すると、電流制御素子50に制御信号を出力する。電流制御素子50は、制御信号を受けると、発熱抵抗体64を通電、発熱させる。保護素子30は、発熱抵抗体64の熱が第2の絶縁層65、導体66を介して低融点金属体67へ伝達し、低融点金属体67が融解する。これにより、保護素子30は、接続部611,612の各導体61b間が切断され、バッテリ10の充放電電流経路を遮断する。   Such a protection element 30 outputs a control signal to the current control element 50 when the detection circuit 40 detects an abnormality such as overcharge or overdischarge of the battery cells 11 to 14 by detecting the voltage. When receiving the control signal, the current control element 50 energizes the heating resistor 64 to generate heat. In the protection element 30, the heat of the heating resistor 64 is transmitted to the low melting point metal body 67 through the second insulating layer 65 and the conductor 66, and the low melting point metal body 67 is melted. Thereby, the protection element 30 cuts between the conductors 61b of the connection portions 611 and 612, and interrupts the charge / discharge current path of the battery 10.

ここで、保護素子30は、発熱抵抗体64の熱が伝達される経路として、図3に示すように、第1の絶縁層62を介して基板60側へ放熱される第1の伝熱経路Aと、第2の絶縁層65、導体66、低融点金属体67及び導体61bを介して基板60側へ放熱される第2の伝熱経路Bとを有する。また、保護素子30は、電流制御素子50の動作に即応して充放電電流経路を遮断することが必要であることから、発熱抵抗体64の熱を効率よく低融点金属体67へ伝達させることが望ましい。   Here, as shown in FIG. 3, the protection element 30 radiates heat toward the substrate 60 through the first insulating layer 62 as a path through which the heat of the heating resistor 64 is transmitted. A, and a second heat transfer path B that radiates heat to the substrate 60 side via the second insulating layer 65, the conductor 66, the low melting point metal body 67, and the conductor 61b. Further, since the protection element 30 needs to cut off the charge / discharge current path in response to the operation of the current control element 50, the heat of the heating resistor 64 is efficiently transmitted to the low melting point metal body 67. Is desirable.

そして、保護素子30は、第2の伝熱経路B上に位置する導体61bと基板60の一面60aとの間に第3の絶縁層となる第1のガラス層70を介在させ、また、第2の伝熱経路B上に位置する導体61cと基板60の他面60bとの間に第4の絶縁層となる第2のガラス層71を介在させている。これにより、保護素子30は、発熱抵抗体64が発した熱が低融点金属体67及び導体61bを介して熱伝導率の高い基板60側へ放熱することを抑制し、また、熱伝導率の高い基板60より導体61c側へ放熱することを抑制している。なお、第3の絶縁層、第4の絶縁層となる第1,第2のガラス層70,71としては、種々のガラス類を好ましく用いることができる。   The protective element 30 has a first glass layer 70 as a third insulating layer interposed between the conductor 61b located on the second heat transfer path B and the one surface 60a of the substrate 60. A second glass layer 71 serving as a fourth insulating layer is interposed between the conductor 61 c located on the second heat transfer path B and the other surface 60 b of the substrate 60. Thereby, the protection element 30 suppresses that the heat generated by the heating resistor 64 is dissipated through the low melting point metal body 67 and the conductor 61b to the substrate 60 side having a high thermal conductivity, and the thermal conductivity is reduced. Heat dissipation from the high substrate 60 toward the conductor 61c is suppressed. Various glasses can be preferably used as the first and second glass layers 70 and 71 to be the third insulating layer and the fourth insulating layer.

したがって、保護素子30は、第2の伝熱経路Bにおける放熱を抑えることで発熱抵抗体64の温度を効率よく上昇させ、電流制御素子50により通電されると、直ちに低融点金属体67を融解させ、充放電電流経路を遮断することができる。また、保護素子30は、発熱抵抗体64の熱を効率よく低融点金属体67へ伝達できることから、発熱抵抗体64を小さくしても十分に低融点金属体67を融解させることができ、保護素子30全体の小型化を図ることができる。さらに、保護素子30は、発熱抵抗体64の熱を効率よく低融点金属体67へ伝達できることから、発熱抵抗体64へ通電させる電流量を抑え、省電力化を図ることもできる。   Therefore, the protection element 30 efficiently raises the temperature of the heating resistor 64 by suppressing heat dissipation in the second heat transfer path B, and immediately melts the low melting point metal body 67 when energized by the current control element 50. The charge / discharge current path can be interrupted. Further, since the protection element 30 can efficiently transfer the heat of the heating resistor 64 to the low melting point metal body 67, the low melting point metal body 67 can be sufficiently melted even if the heating resistor 64 is made small. The entire element 30 can be reduced in size. Furthermore, since the protection element 30 can efficiently transmit the heat of the heating resistor 64 to the low melting point metal body 67, the amount of current passed through the heating resistor 64 can be suppressed, and power saving can be achieved.

なお、保護素子30は、第1のガラス層70及び第2のガラス層71が導体61b及び導体61cと重畳する位置にのみ形成され、基板60の他面60bの第2のガラス層71に挟まれた第1の伝熱経路A上には空気層が設けられている。空気層は、非常に熱伝導率が低いため(0.0241W/m・K)、これにより、第2のガラス層71に挟まれた第1の伝熱経路Aによる放熱を抑制することができ、その分、第2の伝熱経路Bへ熱を伝達することができる。   The protective element 30 is formed only at a position where the first glass layer 70 and the second glass layer 71 overlap with the conductor 61b and the conductor 61c, and is sandwiched between the second glass layer 71 on the other surface 60b of the substrate 60. An air layer is provided on the first heat transfer path A. Since the air layer has a very low thermal conductivity (0.0241 W / m · K), it is possible to suppress heat dissipation by the first heat transfer path A sandwiched between the second glass layers 71. Therefore, heat can be transferred to the second heat transfer path B.

また、保護素子30は、第1、第2の絶縁層62,65としてガラスを用いると共に、第2の伝熱経路B上に位置する第2の絶縁層65の熱伝導率が、第1の伝熱経路A上に位置する第1の絶縁層62の熱伝導率以上であることが好ましい。かかる構成を備えることにより、保護素子30は、発熱抵抗体64で発生した熱が第1の伝熱経路A側に多く放熱されてしまうこと自体を防止できる。   The protective element 30 uses glass as the first and second insulating layers 62 and 65, and the thermal conductivity of the second insulating layer 65 located on the second heat transfer path B is the first It is preferable that the thermal conductivity of the first insulating layer 62 located on the heat transfer path A is equal to or higher than that. With this configuration, the protection element 30 can prevent the heat generated by the heating resistor 64 from being radiated to the first heat transfer path A side.

また、保護素子30は、第2の伝熱経路B上に位置する第2の絶縁層65として、第1の伝熱経路A上に位置する第1の絶縁層62よりも相対的に熱伝導率が高いガラスを用いることがより好ましい。かかる構成を備えることにより、保護素子30は、発熱抵抗体64で発生した熱が低融点金属体67と反対側の基板60側へ放熱することを抑制することができる。したがって、保護素子30は、その分、発熱抵抗体64で発生した熱を第2の伝熱経路B側へ伝達させ、効率よく低融点金属体67の温度を上昇させることができる。   In addition, the protective element 30 is more thermally conductive as the second insulating layer 65 positioned on the second heat transfer path B than the first insulating layer 62 positioned on the first heat transfer path A. It is more preferable to use a glass having a high rate. By providing such a configuration, the protection element 30 can suppress the heat generated by the heating resistor 64 from radiating to the substrate 60 side opposite to the low melting point metal body 67. Therefore, the protection element 30 can transmit the heat generated by the heat generating resistor 64 to the second heat transfer path B and increase the temperature of the low melting point metal body 67 efficiently.

このように、第1の絶縁層62を構成する熱伝導率が相対的に低いガラスとしては、例えばSiO・B・RO(熱伝導率0.83W/m・K)や、SiO・B・PbO(熱伝導率1.42W/m・K)を用いることができる。また、第2の絶縁層65を構成する熱伝導率が相対的に高いガラスとしては、例えばSiO・B・RO(熱伝導率2.1W/m・K)を用いることができる。 As described above, examples of the glass having a relatively low thermal conductivity constituting the first insulating layer 62 include SiO 2 .B 2 O 3 .RO (thermal conductivity 0.83 W / m · K), SiO 2 2 · B 2 O 3 · PbO (thermal conductivity 1.42 W / m · K) can be used. As the glass having relatively high thermal conductivity constituting the second insulating layer 65, for example, SiO 2 · B 2 O 3 · RO (thermal conductivity 2.1 W / m · K) can be used. .

なお、第1の絶縁層62を構成するガラスは、第2の絶縁層65を構成するガラスに対して、相対的に熱伝導率が低ければよいため、例えば第1の絶縁層62を構成するガラスとしてSiO・B・RO(熱伝導率0.83W/m・K)を用いた場合には、第2の絶縁層65を構成するガラスとしてSiO・B・PbO(熱伝導率1.42W/m・K)を用いてもよい。 In addition, since the glass which comprises the 1st insulating layer 62 should just have relatively low heat conductivity with respect to the glass which comprises the 2nd insulating layer 65, it comprises the 1st insulating layer 62, for example. When SiO 2 · B 2 O 3 · RO (thermal conductivity 0.83 W / m · K) is used as the glass, the glass constituting the second insulating layer 65 is SiO 2 · B 2 O 3 · PbO. (Thermal conductivity 1.42 W / m · K) may be used.

このような保護素子30は、以下のように製造される。先ず、アルミナや、アルミナ50%にムライト50%を混合させたもの、あるいはジルコニア等のセラミックス材料によって基板60を形成する。次いで、導体61b及び導体61cを接続するスルーホール61aを構成する貫通孔を形成し、第3の絶縁層となる第1のガラス層70及び第1の絶縁層62を構成するガラスペーストをスクリーン印刷等により印刷し、焼成することにより第1の絶縁層62及び第1のガラス層70を同一平面に形成する。すなわち、保護素子30は、第1の絶縁層62を構成するガラスと、第1のガラス層70を構成するガラスは同じ材料となる。   Such a protection element 30 is manufactured as follows. First, the substrate 60 is formed of alumina, a mixture of 50% alumina and 50% mullite, or a ceramic material such as zirconia. Next, through-holes constituting the through holes 61a connecting the conductors 61b and 61c are formed, and the glass paste constituting the first glass layer 70 and the first insulating layer 62 serving as the third insulating layer is screen-printed. The first insulating layer 62 and the first glass layer 70 are formed on the same plane by printing and baking with the like. That is, in the protective element 30, the glass constituting the first insulating layer 62 and the glass constituting the first glass layer 70 are made of the same material.

同様にして、第4の絶縁層となる第2のガラス層71を形成する。次いで、導電ペーストを印刷、焼成することにより第1のガラス層70上に導体61bを形成すると共に、スルーホール61aを形成し、また、発熱抵抗体64、導体パターン63a及び導体パターン63bを形成する。また、導電ペーストを印刷、焼成することにより、第2のガラス層71上に導体61cを形成する。   Similarly, a second glass layer 71 to be a fourth insulating layer is formed. Next, the conductor 61b is formed on the first glass layer 70 by printing and baking the conductive paste, and the through hole 61a is formed, and the heating resistor 64, the conductor pattern 63a, and the conductor pattern 63b are formed. . Moreover, the conductor 61c is formed on the 2nd glass layer 71 by printing and baking an electrically conductive paste.

次いで、ガラスペーストを印刷、焼成することにより第2の絶縁層65を形成し、導体66、低融点金属体67、フラックス68を実装した後、キャップ69で覆う。以上により、保護素子30が製造される。   Next, a second insulating layer 65 is formed by printing and baking a glass paste, and after mounting the conductor 66, the low melting point metal body 67, and the flux 68, it is covered with a cap 69. Thus, the protection element 30 is manufactured.

次いで、保護素子30の実施例について説明する。この実施例では、保護素子30において、第1のガラス層70及び第2のガラス層71を備え、各ガラス層70,71の厚みが10μmであるもの(実施例1)と、各ガラス層70,71の厚みが20μmであるもの(実施例2)と、各ガラス層70,71の厚みが40μmであるもの(実施例3)を用意した。また、保護素子30において、第1のガラス層70のみを備え、ガラス層70の厚みが10μmであるもの(実施例4)と、ガラス層70の厚みが20μmであるもの(実施例5)と、ガラス層70の厚みが40μmであるもの(実施例6)を用意した。そして、比較例として、図9に示す、絶縁基板101上にガラス層を設けることなく導電層106を形成した保護素子100を用意した。   Next, an example of the protection element 30 will be described. In this embodiment, the protective element 30 includes a first glass layer 70 and a second glass layer 71, each of which has a thickness of 10 μm (Example 1), and each glass layer 70. , 71 has a thickness of 20 μm (Example 2) and each glass layer 70, 71 has a thickness of 40 μm (Example 3). Moreover, in the protective element 30, only the 1st glass layer 70 is provided, the thickness of the glass layer 70 is 10 micrometers (Example 4), and the thickness of the glass layer 70 is 20 micrometers (Example 5). A glass layer 70 having a thickness of 40 μm (Example 6) was prepared. As a comparative example, a protective element 100 in which the conductive layer 106 was formed without providing a glass layer on the insulating substrate 101 shown in FIG. 9 was prepared.

これら実施例1〜6及び比較例1について、所定の温度に到達するまでの時間を計測した。温度の計測点は、発熱抵抗体64の下部で、低融点金属体67の略中央部分とした。   About these Examples 1-6 and the comparative example 1, the time until it reached | attained predetermined temperature was measured. The temperature was measured at the lower portion of the heating resistor 64 and at the substantially central portion of the low melting point metal body 67.

図5に示すように、計測点が例えば800℃まで上昇する時間を計測すると、実施例1〜6では約20秒以内であったのに対して、比較例では約30秒かかった。   As shown in FIG. 5, when the time for the measurement point to rise to, for example, 800 ° C. was measured, it took less than 20 seconds in Examples 1 to 6, while it took about 30 seconds in the comparative example.

また、実施例の中では、実施例3が最も早く温度が上昇し、次いで実施例6、実施例2、実施例5、実施例1、実施例4の順に温度が上昇した。これより、基板60の一面60aのみにガラス層を設けた場合でも、その厚さを厚くすることで、発熱抵抗体64による熱が基板60側へ放熱されることを抑制し、効果的に低融点金属体67へ熱を伝えることができることがわかる。   Among the examples, the temperature rose rapidly in Example 3, and then the temperature rose in the order of Example 6, Example 2, Example 5, Example 1, and Example 4. As a result, even when a glass layer is provided only on one surface 60a of the substrate 60, by increasing the thickness, heat from the heating resistor 64 can be prevented from being radiated to the substrate 60 side, and effectively reduced. It can be seen that heat can be transferred to the melting point metal body 67.

なお、保護素子30は、発熱抵抗体64と電流制御素子50とを接続する接続部613の導体61bと、基板60の一面60aとの間にも第1のガラス層70を設けてもよい。この場合、第1のガラス層70は、発熱抵抗体64の熱が導体パターン63bを介して接続部613の導体61b及び基板60へ放熱されることを抑制することができる。   In the protection element 30, the first glass layer 70 may also be provided between the conductor 61 b of the connection portion 613 that connects the heating resistor 64 and the current control element 50 and the one surface 60 a of the substrate 60. In this case, the first glass layer 70 can suppress the heat of the heating resistor 64 from being radiated to the conductor 61b and the substrate 60 of the connection portion 613 through the conductor pattern 63b.

また、保護素子30は、図6に示すように、第2のガラス層71を形成せず、基板60の他面60bに接続部611,612の導体61cを形成してもよい。この場合も、保護素子30は、第2の伝熱経路B上に位置する導体61bと基板60の一面60aとの間に第1のガラス層70を介在させることにより、発熱抵抗体64が発した熱が低融点金属体67及び導体61bを介して熱伝導率の高い基板60側へ放熱することを抑制できる。   Further, as shown in FIG. 6, the protection element 30 may form the conductors 61 c of the connection portions 611 and 612 on the other surface 60 b of the substrate 60 without forming the second glass layer 71. In this case as well, the protective element 30 causes the heating resistor 64 to be generated by interposing the first glass layer 70 between the conductor 61b located on the second heat transfer path B and the one surface 60a of the substrate 60. It is possible to suppress the heat dissipated to the substrate 60 side having high thermal conductivity through the low melting point metal body 67 and the conductor 61b.

したがって、保護素子30は、第2の伝熱経路Bにおける放熱を抑えることで発熱抵抗体64の温度を効率よく上昇させ、電流制御素子50により通電されると、直ちに低融点金属体67を融解させ、充放電電流経路を遮断することができる。   Therefore, the protection element 30 efficiently raises the temperature of the heating resistor 64 by suppressing heat dissipation in the second heat transfer path B, and immediately melts the low melting point metal body 67 when energized by the current control element 50. The charge / discharge current path can be interrupted.

また、保護素子30は、第1の絶縁層62のガラス材料と、第1のガラス層70のガラス材料を変えて、第1のガラス層70の熱伝導率が、第1の絶縁層62の熱伝導率よりも小さくなるようにしてもよい。かかる構成を備えることにより、第1の伝熱経路A上の第1の絶縁層62から第2の伝熱経路B上の第1のガラス層70側への放熱を抑制することができる。この場合、第1の絶縁層62と第1のガラス層70とは、別工程で材質の異なるガラスが印刷、焼成されることにより形成される。   In addition, the protection element 30 changes the glass material of the first insulating layer 62 and the glass material of the first glass layer 70 so that the thermal conductivity of the first glass layer 70 is the same as that of the first insulating layer 62. You may make it become smaller than heat conductivity. By providing such a configuration, heat radiation from the first insulating layer 62 on the first heat transfer path A to the first glass layer 70 side on the second heat transfer path B can be suppressed. In this case, the first insulating layer 62 and the first glass layer 70 are formed by printing and baking different glass materials in different steps.

また、保護素子30は、図7に示すように、抵抗体32を回路構成上、複数備え(例えば図7では2つ)、各抵抗体32a,32bの接点P2より端子部33aを延設するとともに、抵抗体32bの端部より端子部33bを延設し、バッテリセルの数に応じて電流制御素子50と接続する端子部を選択することにより、抵抗体32の発熱量を切り換えてもよい。この場合、保護素子30は、例えば図8に示すように、第1の絶縁層62上に導体パターンを複数形成し発熱抵抗体64を複数に分割し(図8では64aと64bの2つ)、導体66と接続されていない残りの導体パターン63b、63cの端部を基板60の側面に形成した接続部613,614と接続する。そして、バッテリセルの数に応じて電流制御素子50と接続される接続部を選択することにより、保護素子30の通電時に導通する発熱抵抗体の抵抗値を増減させ、発熱量を調整することができる。   Further, as shown in FIG. 7, the protection element 30 includes a plurality of resistors 32 (for example, two in FIG. 7) in the circuit configuration, and the terminal portion 33a extends from the contact point P2 of each resistor 32a, 32b. In addition, the amount of heat generated by the resistor 32 may be switched by extending the terminal portion 33b from the end of the resistor 32b and selecting a terminal portion connected to the current control element 50 according to the number of battery cells. . In this case, for example, as shown in FIG. 8, the protection element 30 forms a plurality of conductor patterns on the first insulating layer 62 and divides the heating resistor 64 into a plurality of pieces (in FIG. 8, two of 64a and 64b). The end portions of the remaining conductor patterns 63 b and 63 c that are not connected to the conductor 66 are connected to connection portions 613 and 614 formed on the side surface of the substrate 60. Then, by selecting a connection portion connected to the current control element 50 according to the number of battery cells, the resistance value of the heating resistor that is conductive when the protective element 30 is energized can be increased or decreased, and the amount of generated heat can be adjusted. it can.

すなわち、保護素子30は、バッテリ10の電圧値の変動帯域に応じて、発熱させる抵抗体の数を調整することで多段階に発熱抵抗体全体の抵抗値を調整することができ、発熱抵抗体64に対してバッテリの数に応じて変動する電圧値が過大となり発熱抵抗体64が損傷する事態を防止することができる。これにより、保護素子30は、例えば2セルのバッテリパックに用いる場合には、1つの発熱抵抗体64に通電し、4セルのバッテリパックに用いる場合には2つの発熱抵抗体64に通電することができるなど、一つの素子で複数のバッテリパックに対応することができる。   That is, the protection element 30 can adjust the resistance value of the entire heating resistor in multiple stages by adjusting the number of resistors that generate heat according to the fluctuation range of the voltage value of the battery 10, and the heating resistor As a result, it is possible to prevent the heating resistor 64 from being damaged due to an excessive voltage value that varies depending on the number of batteries. Thus, the protection element 30 energizes one heating resistor 64 when used in, for example, a 2-cell battery pack, and energizes two heating resistors 64 when used in a 4-cell battery pack. It is possible to handle a plurality of battery packs with a single element.

そして、保護素子30は、図8に示す構成においても、各接続部611,612の他、接続部613,614の導体61bと基板60の一面60aとの間にも第1のガラス層70を設け、また、接続部613,614の導体61cと基板60の他面60bとの間にも第2のガラス層71を設けることで、導体パターン63b、63cを介した放熱をも抑制し、発熱抵抗体64の熱を効率よく低融点金属体に蓄熱させることができる。また、保護素子30は、少ない発熱量でも低融点金属体67を溶断でき、発熱抵抗体64の小型化、省電力化を図ることができる。   In the configuration shown in FIG. 8, the protective element 30 also includes the first glass layer 70 between the conductors 61 b of the connection portions 613 and 614 and the one surface 60 a of the substrate 60 in addition to the connection portions 611 and 612. In addition, by providing the second glass layer 71 between the conductor 61c of the connecting portions 613 and 614 and the other surface 60b of the substrate 60, heat dissipation through the conductor patterns 63b and 63c is also suppressed, and heat is generated. The heat of the resistor 64 can be efficiently stored in the low melting point metal body. Further, the protective element 30 can melt the low melting point metal body 67 even with a small amount of heat generation, and the heat generating resistor 64 can be reduced in size and power can be saved.

以上、バッテリパック内に配設されたバッテリセルの充放電電流経路上に設けられた保護素子30について説明したが、保護素子30は、バッテリの充放電回路以外にも、過電流や、過電圧から保護すべきあらゆる電気回路に適用することができる。   As described above, the protection element 30 provided on the charge / discharge current path of the battery cell disposed in the battery pack has been described. However, the protection element 30 is not limited to the battery charge / discharge circuit, but from an overcurrent or an overvoltage. It can be applied to any electrical circuit to be protected.

1 バッテリパック、2 充電装置、10 バッテリ、11〜14 バッテリセル、20 充放電制御回路、21,22 電流制御素子、23 制御部、30 保護素子、31 ヒューズ、32 抵抗体、33 端子部、40 検出回路、50 電流制御素子、60 基板、61a スルーホール、61b,61c 導体、62 第1の絶縁層、63 導体パターン、64 発熱抵抗体、65 第2の絶縁層、66 導体、67 低融点金属体、68 フラックス、69 キャップ、70 第1のガラス層、71 第2のガラス層 DESCRIPTION OF SYMBOLS 1 Battery pack, 2 Charging apparatus, 10 Battery, 11-14 Battery cell, 20 Charge / discharge control circuit, 21, 22 Current control element, 23 Control part, 30 Protection element, 31 Fuse, 32 Resistor, 33 Terminal part, 40 Detection circuit, 50 current control element, 60 substrate, 61a through hole, 61b, 61c conductor, 62 first insulating layer, 63 conductor pattern, 64 heating resistor, 65 second insulating layer, 66 conductor, 67 low melting point metal Body, 68 flux, 69 cap, 70 first glass layer, 71 second glass layer

Claims (10)

電気回路の電流経路上に接続される保護素子において、
絶縁基板と、
上記絶縁基板の一面に、第1の絶縁層を介して形成された発熱抵抗体と、
上記発熱抵抗体の上方に第2の絶縁層を介して配設され、電流経路の一部を構成する低融点金属体と、
上記低融点金属体の両端と接続され、上記電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、
上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられている保護素子。
In the protective element connected on the current path of the electric circuit,
An insulating substrate;
A heating resistor formed on one surface of the insulating substrate via a first insulating layer;
A low-melting-point metal body that is disposed above the heating resistor via a second insulating layer and forms a part of a current path;
Connected to both ends of the low-melting-point metal body, and having a connection part for electrically connecting the current path and the low-melting-point metal body,
The connecting portion is a protective element provided on the one surface of the insulating substrate via a third insulating layer.
上記接続部の下部のみに上記第3の絶縁層が形成されている請求項1記載の保護素子。   The protection element according to claim 1, wherein the third insulating layer is formed only at a lower portion of the connection portion. 上記接続部は、上記絶縁基板の上記一面と対向する他面に第4の絶縁層を介して設けられている請求項1又は請求項2記載の保護素子。   The protection element according to claim 1, wherein the connection portion is provided on the other surface of the insulating substrate facing the one surface via a fourth insulating layer. 上記接続部と重畳する位置のみに上記第3,第4の絶縁層が形成されている請求項3記載の保護素子。   The protection element according to claim 3, wherein the third and fourth insulating layers are formed only at positions overlapping with the connection portion. 上記第2の絶縁層の熱伝導率が、上記第1の絶縁層の熱伝導率以上である請求項1〜請求項4の何れか1項に記載の保護素子。   The protective element according to any one of claims 1 to 4, wherein the thermal conductivity of the second insulating layer is equal to or higher than the thermal conductivity of the first insulating layer. 上記第1、第2の絶縁層は、ガラス層である請求項5記載の保護素子。   The protection element according to claim 5, wherein the first and second insulating layers are glass layers. 上記第3、第4の絶縁層は、ガラス層である請求項1〜請求項6の何れか1項に記載の保護素子。   The protective element according to any one of claims 1 to 6, wherein the third and fourth insulating layers are glass layers. 上記第3の絶縁層の熱伝導率は、上記第1の絶縁層の熱伝導率よりも小さい請求項1〜請求項7の何れか1項に記載の保護素子。   The protection element according to any one of claims 1 to 7, wherein the thermal conductivity of the third insulating layer is smaller than the thermal conductivity of the first insulating layer. 充放電可能なバッテリセルからなるバッテリの充放電電流経路上に接続され、該バッテリの充放電を制御する充放電制御回路と、
上記バッテリセルの電圧値を検出する検出回路と、
上記検出回路により検出されるバッテリセルの電圧値が所定の範囲外となったときに上記充放電電流経路を遮断する保護素子と、
上記保護素子を駆動する電流制御素子とを備え、
上記保護素子は、絶縁基板と、上記絶縁基板の一面に第1の絶縁層を介して形成された発熱抵抗体と、上記発熱抵抗体の上方に第2の絶縁層を介して配設され、上記充放電電流経路の一部を構成する低融点金属体と、上記低融点金属体の両端と接続され、上記充放電電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられているバッテリ制御装置。
A charge / discharge control circuit connected to a charge / discharge current path of a battery composed of chargeable / dischargeable battery cells to control charge / discharge of the battery;
A detection circuit for detecting a voltage value of the battery cell;
A protection element that cuts off the charge / discharge current path when the voltage value of the battery cell detected by the detection circuit is out of a predetermined range;
A current control element for driving the protection element,
The protection element is disposed via an insulating substrate, a heating resistor formed on one surface of the insulating substrate via a first insulating layer, and a second insulating layer above the heating resistor, A low melting point metal body constituting a part of the charge / discharge current path; and a connecting portion connected to both ends of the low melting point metal body and electrically connecting the charge / discharge current path and the low melting point metal body. And a battery control device, wherein the connecting portion is provided on the one surface of the insulating substrate via a third insulating layer.
充放電可能なバッテリセルからなるバッテリと、
上記バッテリの充放電電流経路上に接続され、該バッテリの充放電を制御する充放電制御回路と、
上記バッテリセルの電圧値を検出する検出回路と、
上記検出回路により検出されるバッテリセルの電圧値が所定の範囲外となったときに上記充放電電流経路を遮断する保護素子と、
上記保護素子を駆動する電流制御素子とを備え、
上記保護素子は、絶縁基板と、上記絶縁基板の一面に第1の絶縁層を介して形成された発熱抵抗体と、上記発熱抵抗体の上方に第2の絶縁層を介して配設され、上記充放電電流経路の一部を構成する低融点金属体と、上記低融点金属体の両端と接続され、上記充放電電流経路と上記低融点金属体とを電気的に接続する接続部とを有し、上記接続部は、上記絶縁基板の上記一面に、第3の絶縁層を介して設けられているバッテリパック。
A battery comprising chargeable / dischargeable battery cells;
A charge / discharge control circuit that is connected to the charge / discharge current path of the battery and controls charge / discharge of the battery;
A detection circuit for detecting a voltage value of the battery cell;
A protection element that cuts off the charge / discharge current path when the voltage value of the battery cell detected by the detection circuit is outside a predetermined range;
A current control element for driving the protection element,
The protection element is disposed via an insulating substrate, a heating resistor formed on one surface of the insulating substrate via a first insulating layer, and a second insulating layer above the heating resistor, A low melting point metal body constituting a part of the charge / discharge current path; and a connecting portion connected to both ends of the low melting point metal body and electrically connecting the charge / discharge current path and the low melting point metal body. And a battery pack provided on the one surface of the insulating substrate via a third insulating layer.
JP2010089613A 2010-04-08 2010-04-08 Protective element, battery control device, and battery pack Active JP5260592B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010089613A JP5260592B2 (en) 2010-04-08 2010-04-08 Protective element, battery control device, and battery pack
PCT/JP2011/058845 WO2011126091A1 (en) 2010-04-08 2011-04-07 Protection element, battery control device, and battery pack
KR1020127028095A KR101382942B1 (en) 2010-04-08 2011-04-07 Protection element, battery control device, and battery pack
EP11765991A EP2557581A1 (en) 2010-04-08 2011-04-07 Protection element, battery control device, and battery pack
US13/639,966 US9184609B2 (en) 2010-04-08 2011-04-07 Overcurrent and overvoltage protecting fuse for battery pack with electrodes on either side of an insulated substrate connected by through-holes
CN201180017851.1A CN102822929B (en) 2010-04-08 2011-04-07 Protection component, battery control device and battery pack
TW100112146A TWI443701B (en) 2010-04-08 2011-04-08 Protection elements, battery control devices, and battery packs
HK13103153.2A HK1176160A1 (en) 2010-04-08 2013-03-13 Protection element, battery control device, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089613A JP5260592B2 (en) 2010-04-08 2010-04-08 Protective element, battery control device, and battery pack

Publications (2)

Publication Number Publication Date
JP2011222264A true JP2011222264A (en) 2011-11-04
JP5260592B2 JP5260592B2 (en) 2013-08-14

Family

ID=44763026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089613A Active JP5260592B2 (en) 2010-04-08 2010-04-08 Protective element, battery control device, and battery pack

Country Status (8)

Country Link
US (1) US9184609B2 (en)
EP (1) EP2557581A1 (en)
JP (1) JP5260592B2 (en)
KR (1) KR101382942B1 (en)
CN (1) CN102822929B (en)
HK (1) HK1176160A1 (en)
TW (1) TWI443701B (en)
WO (1) WO2011126091A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094565A1 (en) * 2011-12-19 2013-06-27 デクセリアルズ株式会社 Protective element, protective element fabrication method, and battery module in which protective element is embedded
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element
JP2013229293A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element
JP2013258017A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Fuse
JP2014127270A (en) * 2012-12-25 2014-07-07 Dexerials Corp Protection element
JP2014127269A (en) * 2012-12-25 2014-07-07 Dexerials Corp Protection element and battery module
KR101426913B1 (en) 2012-11-27 2014-08-07 아이쓰리시스템 주식회사 cell-voltage sensor of battery.
CN104508784A (en) * 2012-08-01 2015-04-08 迪睿合电子材料有限公司 Protective element and battery pack
CN104835702A (en) * 2014-02-10 2015-08-12 陈莎莉 Composite protection element
WO2015182354A1 (en) * 2014-05-28 2015-12-03 デクセリアルズ株式会社 Protective element and battery pack
EP2797098A4 (en) * 2011-12-19 2015-12-09 Dexerials Corp Protective element, protective element fabrication method, and battery module in which protective element is embedded
WO2015186739A1 (en) * 2014-06-04 2015-12-10 デクセリアルズ株式会社 Short-circuit element
KR101946106B1 (en) * 2012-08-01 2019-02-08 데쿠세리아루즈 가부시키가이샤 Protective element and battery pack

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9129769B2 (en) 2009-09-04 2015-09-08 Cyntec Co., Ltd. Protective device
CN203326671U (en) * 2013-07-10 2013-12-04 向智勇 Control circuit for electronic cigarette case
JP6364243B2 (en) * 2013-08-07 2018-07-25 デクセリアルズ株式会社 Protective element and battery pack
DE102013219950B4 (en) 2013-10-01 2018-12-13 Ecom Instruments Gmbh Electronic circuitry
JP6102714B2 (en) * 2013-12-11 2017-03-29 トヨタ自動車株式会社 Power storage system
JP6371118B2 (en) * 2014-05-30 2018-08-08 デクセリアルズ株式会社 Protective element and battery pack
TWI657472B (en) * 2015-02-16 2019-04-21 陳莎莉 Composite protection component, protection circuit, rechargeable battery pack
KR102072613B1 (en) * 2015-03-24 2020-02-03 이승규 Melt switch, battery controller and control method comprising the same
CN109727833B (en) * 2017-10-30 2021-07-30 聚鼎科技股份有限公司 Protection element and circuit protection device thereof
US11227737B2 (en) 2019-12-26 2022-01-18 Saft America Thermal fuse sleeving
CN113394518A (en) * 2021-05-07 2021-09-14 恒大新能源技术(深圳)有限公司 Battery module
KR20230065884A (en) 2021-11-04 2023-05-12 경북대학교 산학협력단 Infectious clone of tomato yellow leaf curl Thailand virus and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050184A (en) * 1996-07-30 1998-02-20 Kyocera Corp Chip fuse element
JPH10162714A (en) * 1996-11-28 1998-06-19 Kyocera Corp Chip fuse element
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element
JP2009259724A (en) * 2008-04-21 2009-11-05 Sony Chemical & Information Device Corp Protecting element and its manufacturing method

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH642772A5 (en) * 1977-05-28 1984-04-30 Knudsen Ak L ELECTRICAL MELTFUSE AND THEIR PRODUCTION METHOD.
US4259564A (en) * 1977-05-31 1981-03-31 Nippon Electric Co., Ltd. Integrated thermal printing head and method of manufacturing the same
JPS5976466A (en) * 1982-10-25 1984-05-01 Mitsubishi Electric Corp Planar type semiconductor device
CA1216330A (en) * 1983-02-07 1987-01-06 Junji Manaka Low power gas detector
JPH0618805Y2 (en) 1987-05-18 1994-05-18 カルソニック株式会社 Blower control device for automobile air conditioner
JPH02105490A (en) 1988-10-14 1990-04-18 Fujikura Ltd Temperature fuse circuit substrate
JPH0728005Y2 (en) 1989-05-16 1995-06-28 カルソニック株式会社 Blower control device for automobile air conditioner
US5376820A (en) * 1992-02-05 1994-12-27 Ncr Corporation Semiconductor fuse structure
US5166656A (en) * 1992-02-28 1992-11-24 Avx Corporation Thin film surface mount fuses
US5267138A (en) * 1992-03-23 1993-11-30 Creos International Ltd. Driving and clamping power regulation technique for continuous, in-phase, full-duration, switch-mode resonant converter power supply
US5345210A (en) * 1993-07-19 1994-09-06 Littelfuse, Inc. Time delay fuse
US5712610C1 (en) * 1994-08-19 2002-06-25 Sony Chemicals Corp Protective device
US5597183A (en) * 1994-12-06 1997-01-28 Junkyard Dogs, Ltd. Interactive book having electroluminescent display pages and animation effects
JPH08242046A (en) * 1995-03-03 1996-09-17 Rohm Co Ltd Structure of semiconductor device fitted with temperature fuse
US5907272A (en) * 1996-01-22 1999-05-25 Littelfuse, Inc. Surface mountable electrical device comprising a PTC element and a fusible link
KR100193736B1 (en) * 1996-09-17 1999-06-15 윤종용 Battery pack with battery protection
JP3248851B2 (en) 1996-10-29 2002-01-21 エヌイーシーモバイルエナジー株式会社 Battery protection device
DE19704097A1 (en) * 1997-02-04 1998-08-06 Wickmann Werke Gmbh Electrical fuse element
US6331763B1 (en) * 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
US6034589A (en) * 1998-12-17 2000-03-07 Aem, Inc. Multi-layer and multi-element monolithic surface mount fuse and method of making the same
JP2000306477A (en) * 1999-04-16 2000-11-02 Sony Chem Corp Protective element
JP2001006518A (en) * 1999-04-23 2001-01-12 Sony Chem Corp Overcurrent protective device
US6219215B1 (en) * 1999-04-30 2001-04-17 International Business Machines Corporation Chip thermal protection device
DE69937739T2 (en) * 1999-05-11 2008-11-27 Mitsubishi Denki K.K. SEMICONDUCTOR DEVICE
US6489879B1 (en) * 1999-12-10 2002-12-03 National Semiconductor Corporation PTC fuse including external heat source
JP4234998B2 (en) * 2001-03-29 2009-03-04 富士フイルム株式会社 Electroluminescence element
JP4103594B2 (en) * 2001-05-21 2008-06-18 松下電器産業株式会社 Thermal fuse inspection method
US7570148B2 (en) * 2002-01-10 2009-08-04 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
US7385475B2 (en) * 2002-01-10 2008-06-10 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
US7436284B2 (en) * 2002-01-10 2008-10-14 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
JP4110967B2 (en) * 2002-12-27 2008-07-02 ソニーケミカル&インフォメーションデバイス株式会社 Protective element
TWI278048B (en) * 2003-11-10 2007-04-01 Casio Computer Co Ltd Semiconductor device and its manufacturing method
KR100571231B1 (en) * 2004-05-31 2006-04-13 삼성에스디아이 주식회사 Fuse for lithium-ion cell
JP2006066313A (en) * 2004-08-30 2006-03-09 Alps Electric Co Ltd Protecting apparatus and battery using it
WO2006032060A2 (en) * 2004-09-15 2006-03-23 Littelfuse, Inc. High voltage/high current fuse
JP3985812B2 (en) * 2004-09-17 2007-10-03 松下電工株式会社 Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
JP3985820B2 (en) * 2004-11-25 2007-10-03 松下電工株式会社 Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
US7477130B2 (en) * 2005-01-28 2009-01-13 Littelfuse, Inc. Dual fuse link thin film fuse
KR100607202B1 (en) * 2005-01-28 2006-08-01 삼성전자주식회사 Fuse region of semiconductor devices and methods of fabricating the same
KR100601577B1 (en) * 2005-03-24 2006-07-19 삼성에스디아이 주식회사 Rechargeable battery
JP2006286224A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Chip-type fuse
JP4632358B2 (en) * 2005-06-08 2011-02-16 三菱マテリアル株式会社 Chip type fuse
JP4738953B2 (en) * 2005-09-22 2011-08-03 内橋エステック株式会社 Resistive fuse
JP4716099B2 (en) * 2005-09-30 2011-07-06 三菱マテリアル株式会社 Manufacturing method of chip-type fuse
JP4693001B2 (en) * 2006-08-23 2011-06-01 コーア株式会社 Chip-type circuit protection element
US20090009281A1 (en) * 2007-07-06 2009-01-08 Cyntec Company Fuse element and manufacturing method thereof
DE112008002387B4 (en) * 2007-09-07 2022-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. Structure of a multijunction solar cell, method of forming a photonic device, photovoltaic multijunction cell and photovoltaic multijunction cell device,
KR100928119B1 (en) * 2007-10-30 2009-11-24 삼성에스디아이 주식회사 Printed Circuit Board and Secondary Battery Using the Same
US7759787B2 (en) * 2007-11-06 2010-07-20 International Business Machines Corporation Packaging substrate having pattern-matched metal layers
JP5287154B2 (en) * 2007-11-08 2013-09-11 パナソニック株式会社 Circuit protection element and manufacturing method thereof
JP4612066B2 (en) * 2008-02-18 2011-01-12 釜屋電機株式会社 Chip fuse and manufacturing method thereof
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP5038279B2 (en) 2008-10-07 2012-10-03 本田技研工業株式会社 Electric power steering device
CN101465251A (en) * 2008-12-31 2009-06-24 上海长园维安电子线路保护股份有限公司 Minitype paster fuse and method of manufacturing the same
JP5130232B2 (en) * 2009-01-21 2013-01-30 デクセリアルズ株式会社 Protective element
JP5301298B2 (en) * 2009-01-21 2013-09-25 デクセリアルズ株式会社 Protective element
US9129769B2 (en) * 2009-09-04 2015-09-08 Cyntec Co., Ltd. Protective device
JP5351860B2 (en) * 2009-09-04 2013-11-27 乾坤科技股▲ふん▼有限公司 Protective device
US8210716B2 (en) * 2010-08-27 2012-07-03 Quarkstar Llc Solid state bidirectional light sheet for general illumination
KR101263917B1 (en) * 2011-01-24 2013-05-13 주식회사 삼홍사 A gas cylinder
TWI575832B (en) * 2011-12-19 2017-03-21 Dexerials Corp A protective element, a manufacturing method of a protective element, and a battery module in which a protective element is incorporated

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050184A (en) * 1996-07-30 1998-02-20 Kyocera Corp Chip fuse element
JPH10162714A (en) * 1996-11-28 1998-06-19 Kyocera Corp Chip fuse element
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element
JP2009259724A (en) * 2008-04-21 2009-11-05 Sony Chemical & Information Device Corp Protecting element and its manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988277A (en) * 2011-12-19 2014-08-13 迪睿合电子材料有限公司 Protective element, protective element fabrication method, and battery module equipped with the protective element
JP2013149606A (en) * 2011-12-19 2013-08-01 Dexerials Corp Protective element, protective element fabrication method, and battery module equipped with protective element
WO2013094565A1 (en) * 2011-12-19 2013-06-27 デクセリアルズ株式会社 Protective element, protective element fabrication method, and battery module in which protective element is embedded
US9337671B2 (en) 2011-12-19 2016-05-10 Dexerials Corporation Protective element, protective element fabrication method, and battery module in which protective element is embedded
EP2797098A4 (en) * 2011-12-19 2015-12-09 Dexerials Corp Protective element, protective element fabrication method, and battery module in which protective element is embedded
CN107104021A (en) * 2012-03-29 2017-08-29 迪睿合电子材料有限公司 Protection element
JP2013229295A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element
US10269523B2 (en) 2012-03-29 2019-04-23 Dexerials Corporation Protection element
US10008356B2 (en) 2012-03-29 2018-06-26 Dexerials Corporation Protection element
CN104185889A (en) * 2012-03-29 2014-12-03 迪睿合电子材料有限公司 Protection element
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element
CN104185889B (en) * 2012-03-29 2016-12-14 迪睿合电子材料有限公司 Protection element
JP2013229293A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element
JP2013258017A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Fuse
KR101946105B1 (en) * 2012-08-01 2019-02-08 데쿠세리아루즈 가부시키가이샤 Protective element and battery pack
TWI585800B (en) * 2012-08-01 2017-06-01 Dexerials Corp Protective components and battery pack
KR101946106B1 (en) * 2012-08-01 2019-02-08 데쿠세리아루즈 가부시키가이샤 Protective element and battery pack
CN104508784A (en) * 2012-08-01 2015-04-08 迪睿合电子材料有限公司 Protective element and battery pack
KR101426913B1 (en) 2012-11-27 2014-08-07 아이쓰리시스템 주식회사 cell-voltage sensor of battery.
JP2014127270A (en) * 2012-12-25 2014-07-07 Dexerials Corp Protection element
JP2014127269A (en) * 2012-12-25 2014-07-07 Dexerials Corp Protection element and battery module
CN104835702A (en) * 2014-02-10 2015-08-12 陈莎莉 Composite protection element
WO2015182354A1 (en) * 2014-05-28 2015-12-03 デクセリアルズ株式会社 Protective element and battery pack
JP2015225786A (en) * 2014-05-28 2015-12-14 デクセリアルズ株式会社 Protection element
JP2015230804A (en) * 2014-06-04 2015-12-21 デクセリアルズ株式会社 Short circuit element
WO2015186739A1 (en) * 2014-06-04 2015-12-10 デクセリアルズ株式会社 Short-circuit element
CN109585218A (en) * 2014-06-04 2019-04-05 迪睿合株式会社 Short-circuit component
CN110429006A (en) * 2014-06-04 2019-11-08 迪睿合株式会社 Short-circuit component
CN109585218B (en) * 2014-06-04 2020-09-01 迪睿合株式会社 Short-circuit element
CN110429006B (en) * 2014-06-04 2022-04-29 迪睿合株式会社 Short-circuit element

Also Published As

Publication number Publication date
TWI443701B (en) 2014-07-01
TW201205632A (en) 2012-02-01
US20130049679A1 (en) 2013-02-28
JP5260592B2 (en) 2013-08-14
KR101382942B1 (en) 2014-04-08
US9184609B2 (en) 2015-11-10
KR20130023217A (en) 2013-03-07
EP2557581A1 (en) 2013-02-13
WO2011126091A1 (en) 2011-10-13
CN102822929B (en) 2015-09-23
HK1176160A1 (en) 2013-07-19
CN102822929A (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5260592B2 (en) Protective element, battery control device, and battery pack
JP6099383B2 (en) Protection element, method for manufacturing protection element, and battery module incorporating protection element
JP5415318B2 (en) Protection circuit, battery control device, and battery pack
TWI653653B (en) Protective component
WO2014109364A1 (en) Protection element
WO2015182354A1 (en) Protective element and battery pack
WO2015182355A1 (en) Protective element and battery pack
JP2016018683A (en) Protection element
WO2015025885A1 (en) Protection element
JP2008112735A (en) Protection device using temperature fuse
JP2014127269A (en) Protection element and battery module
JP6231323B2 (en) Protective element and protective circuit board using the same
TW202042426A (en) Battery pack and protective circuit
TW201505064A (en) Protection element and electronic apparatus
US9870886B2 (en) Protective element and protective circuit substrate using the same
EP2797098A1 (en) Protective element, protective element fabrication method, and battery module in which protective element is embedded
WO2015107633A1 (en) Protective element and battery module
JP2016213132A (en) Protective element, protective circuit of secondary battery, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250