JP2015225786A - Protection element - Google Patents

Protection element Download PDF

Info

Publication number
JP2015225786A
JP2015225786A JP2014110513A JP2014110513A JP2015225786A JP 2015225786 A JP2015225786 A JP 2015225786A JP 2014110513 A JP2014110513 A JP 2014110513A JP 2014110513 A JP2014110513 A JP 2014110513A JP 2015225786 A JP2015225786 A JP 2015225786A
Authority
JP
Japan
Prior art keywords
heating element
insulating substrate
heating
extraction electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014110513A
Other languages
Japanese (ja)
Other versions
JP6576618B2 (en
Inventor
武雄 木村
Takeo Kimura
武雄 木村
後藤 一夫
Kazuo Goto
一夫 後藤
佐藤 浩二
Koji Sato
浩二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2014110513A priority Critical patent/JP6576618B2/en
Priority to KR1020167030565A priority patent/KR102391560B1/en
Priority to CN201580026267.0A priority patent/CN106463312B/en
Priority to PCT/JP2015/063428 priority patent/WO2015182354A1/en
Priority to TW104116785A priority patent/TWI681433B/en
Publication of JP2015225786A publication Critical patent/JP2015225786A/en
Application granted granted Critical
Publication of JP6576618B2 publication Critical patent/JP6576618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • H01H85/175Casings characterised by the casing shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protection element which eases thermal shock to an insulating substrate and prevents cracks when a large fusible conductor is used to handle large current.SOLUTION: A protection element includes: an insulating substrate 2; multiple heating elements 3 formed on the insulating substrate 2; a heating element extraction electrode 4 electrically connected with the multiple heating elements 3; and a fusible conductor 5 supported by the heating element extraction electrode 4.

Description

本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子に関する。   The present invention relates to a protection element that protects a circuit connected on a current path by fusing the current path.

充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。   Many secondary batteries that can be charged and used repeatedly are processed into battery packs and provided to users. Particularly in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.

多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、或いはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。   In many electronic devices using lithium ion secondary batteries, an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge, etc. is applied, an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell. The battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Therefore, a protective element made of a fuse element having a function of cutting off a current path by a signal from the outside is used in order to safely cut off the output of the battery cell in any possible abnormal state.

このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が用いられている。   As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, a heating element is provided inside the protection element. A structure in which a molten conductor is blown is used.

具体的に、この種の保護素子100は、図14、図15に示すように、絶縁基板103と、外部回路に接続される第1、第2の電極101,102と、WやMo、Ru等の高融点金属によって絶縁基板103に設けられた発熱体104と、発熱体104を絶縁被覆するガラス層105と、ガラス層105上に積層されるとともに発熱体104と重畳され、発熱体104と電気的に接続された発熱体引出電極106と、絶縁基板103に設けられ、発熱体104の幅方向の両側縁と接続された一対の発熱体接続電極107a,107bと、発熱体接続電極107aを介して発熱体104と接続されるとともに発熱体引出電極106と接続された第1の発熱体電極108と、発熱体接続電極107aと接続されるとともに発熱体104を外部の給電回路に接続する第2の発熱体電極109と、発熱体引出電極106を介して第1、第2の電極101,102間にわたって接続された可溶導体110とを有する。可溶導体110は、半田等の接続材料111によって、第1、第2の電極101,102及び発熱体引出電極106と接続されている。なお、図15では、ガラス層105を省略している。   Specifically, as shown in FIGS. 14 and 15, this type of protective element 100 includes an insulating substrate 103, first and second electrodes 101 and 102 connected to an external circuit, W, Mo, Ru. A heating element 104 provided on the insulating substrate 103 with a high melting point metal such as, a glass layer 105 for insulatingly covering the heating element 104, and laminated on the glass layer 105 and superimposed on the heating element 104, An electrically connected heating element lead electrode 106, a pair of heating element connection electrodes 107a and 107b provided on the insulating substrate 103 and connected to both side edges in the width direction of the heating element 104, and a heating element connection electrode 107a The first heating element electrode 108 connected to the heating element 104 and the heating element extraction electrode 106, and the heating element connection electrode 107a and the heating element 104 to the outside. Having a second heating element electrodes 109 to be connected to the circuit, the first through the heating element lead electrode 106, and a fusible conductor 110 connected across between the second electrode 101. The fusible conductor 110 is connected to the first and second electrodes 101 and 102 and the heating element extraction electrode 106 by a connection material 111 such as solder. In FIG. 15, the glass layer 105 is omitted.

保護素子100は、第1、第2の電極101,102が外部回路に接続されることにより、可溶導体110が当該外部回路の電流経路の一部に組み込まれる。また、保護素子100は、第2の発熱体電極109が外部回路に接続されることにより、第1の電極101から可溶導体110、発熱体引出電極106、発熱体104、第2の発熱体電極109を経て外部回路に至る発熱体104への給電経路が形成される。   In the protection element 100, the fusible conductor 110 is incorporated in a part of the current path of the external circuit by connecting the first and second electrodes 101 and 102 to the external circuit. In addition, the protective element 100 includes the fusible conductor 110, the heating element extraction electrode 106, the heating element 104, and the second heating element from the first electrode 101 by connecting the second heating element electrode 109 to an external circuit. A power supply path to the heating element 104 that reaches the external circuit through the electrode 109 is formed.

通常、保護素子100は、外部回路に設けられたスイッチ素子によって当該給電経路への通電が規制されている。そして、外部回路の電流経路を遮断する場合、保護素子100は、スイッチ素子によって発熱体104への給電が解除され、発熱体104が通電、発熱することにより可溶導体110を溶断させる。これにより、外部回路の電流経路が遮断されるとともに、発熱体104への給電も停止される。   Normally, the energization of the protection element 100 to the power supply path is regulated by a switch element provided in an external circuit. When the current path of the external circuit is interrupted, the protection element 100 releases the power supply to the heating element 104 by the switch element, and the heating element 104 is energized and generates heat to blow the fusible conductor 110. As a result, the current path of the external circuit is interrupted, and power supply to the heating element 104 is also stopped.

特開2010−3665号公報JP 2010-3665 A 特開2014−32769号公報JP 2014-32769 A

ところで、この種の保護素子においては、携帯電話やノートパソコンのような電流容量が比較的低い用途に用いるために、可溶導体(ヒューズ)は、最大でも15A程度の電流容量を有している。リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、例えば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途において、特に起動時等には、数10A〜100Aを超えるような大電流が流れる場合がある。このような大電流容量に対応した保護素子の実現が望まれている。   By the way, in this kind of protective element, the fusible conductor (fuse) has a current capacity of about 15 A at the maximum in order to be used for an application having a relatively low current capacity such as a mobile phone or a notebook computer. . Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, particularly when starting up, a large current exceeding several tens of A to 100 A may flow. The realization of a protective element corresponding to such a large current capacity is desired.

大電流容量に対応するために、保護素子100は、可溶導体110の断面積が増大され低抵抗化が図られる。ここで、大電流に対応するために可溶導体110の断面積を増大させると、発熱体104による加熱溶断に要する電力も増大させる必要がある。   In order to cope with a large current capacity, the protective element 100 has a reduced cross-sectional area of the fusible conductor 110 and a low resistance. Here, if the cross-sectional area of the fusible conductor 110 is increased in order to cope with a large current, it is also necessary to increase the power required for heating and fusing by the heating element 104.

しかし、電流容量が比較的低い用途に用いる保護素子に対して可溶導体110を大型のものに置き換え、大電流を通電させると、絶縁基板103に対する熱衝撃が過大となり、絶縁基板103の発熱体104が形成された箇所に割れが生じてしまう。これは、絶縁基板103は外縁部に行くほど放熱による冷却効果が高く、基板中央が最も高温となり、この基板中央部に発熱体104を形成することにより、熱膨張による応力も大きくなる。また、保護素子100は、ガラス層105を介して発熱体104に重畳させている発熱体引出電極106に可溶導体110を固定していることから、絶縁基板103の中央部に生じた応力が歪みとなって現れる。このため、絶縁基板103の中央部や、この中央部に形成された発熱体104に割れが生じ、給電経路が遮断されて発熱が停止する等、動作が不安定となる恐れがある。   However, if the fusible conductor 110 is replaced with a large one for a protective element used for a relatively low current capacity and a large current is applied, the thermal shock to the insulating substrate 103 becomes excessive, and the heating element of the insulating substrate 103 Cracks will occur at the locations where 104 is formed. This is because the insulating substrate 103 has a higher cooling effect due to heat dissipation toward the outer edge portion, and the center of the substrate has the highest temperature. By forming the heating element 104 at the center portion of the substrate, the stress due to thermal expansion also increases. Further, since the protective element 100 fixes the fusible conductor 110 to the heating element extraction electrode 106 superimposed on the heating element 104 via the glass layer 105, the stress generated in the central portion of the insulating substrate 103 is reduced. Appears as distortion. For this reason, the central portion of the insulating substrate 103 and the heating element 104 formed in the central portion may be cracked, and the operation may become unstable, for example, the power supply path is interrupted to stop the heat generation.

このような傾向は、保護素子100の定格を向上させるために可溶導体110を大型化するほど、また、保護素子の小型化を図るために絶縁基板を薄型化するほど、顕著に現れる。   Such a tendency becomes more prominent as the size of the soluble conductor 110 is increased in order to improve the rating of the protective element 100, and as the insulating substrate is reduced in thickness in order to reduce the size of the protective element.

このような絶縁基板103に対する熱衝撃を緩和させるために、例えば発熱体104の面積を広げ、電力密度を下げる方法もある。しかし、電力密度下げることで絶縁基板103や発熱体104の割れを防止できる反面、可溶導体110への伝熱効率が下がり、速溶断性を損なってしまう。   In order to alleviate such a thermal shock to the insulating substrate 103, for example, there is a method of expanding the area of the heating element 104 and reducing the power density. However, lowering the power density can prevent the insulating substrate 103 and the heating element 104 from cracking, but the heat transfer efficiency to the fusible conductor 110 is lowered and the fast fusing property is impaired.

そこで、本発明は、大電流に対応するために大型の可溶導体を用いた場合にも、電力密度を下げずに速溶断性を維持するとともに、絶縁基板に対する熱衝撃を緩和し、安定した発熱動作を有する保護素子を提供することを目的とする。   Therefore, the present invention maintains a fast fusing property without lowering the power density even when a large fusible conductor is used in order to cope with a large current, and reduces the thermal shock to the insulating substrate and stabilizes it. It is an object of the present invention to provide a protective element having a heat generating operation.

上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、上記絶縁基板に形成された複数の発熱体と、複数の上記発熱体と電気的に接続された発熱体引出電極と、上記発熱体引出電極に支持された可溶導体とを備えるものである。   In order to solve the above-described problems, a protection element according to the present invention includes an insulating substrate, a plurality of heating elements formed on the insulating substrate, and a heating element extraction electrode electrically connected to the plurality of heating elements. And a soluble conductor supported by the heating element extraction electrode.

また、本発明に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルに流れる電流を遮断するように接続された保護素子と、上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、上記保護素子は、絶縁基板と、上記絶縁基板に形成された複数の発熱体と、複数の上記発熱体と電気的に接続された発熱体引出電極と、上記発熱体引出電極に支持された可溶導体とを備えるものである。   The battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a voltage value of each of the battery cells to detect the protection element. A current control element for controlling a current for heating the protective element, wherein the protection element includes an insulating substrate, a plurality of heating elements formed on the insulating substrate, and a heating element electrically connected to the plurality of heating elements. It has an extraction electrode and a soluble conductor supported by the heating element extraction electrode.

本発明によれば、従来一つであった発熱体を複数に分割して形成することにより、同等の発熱量を維持しつつ発熱による絶縁基板に対する熱衝撃を緩和することができる。すなわち、本発明によれば、発熱体が複数に分割して配置されることにより、絶縁基板の熱分布が広がりピークも下がることから、絶縁基板に対する熱衝撃も緩和される。一方で、分割された発熱体の全発熱量は従来と同等であり、可溶導体の溶断に要する時間が延びることもない。したがって、本発明によれば、大電流容量に対応するために可溶導体を大型化するとともに、発熱体の電力を増大させた場合にも、絶縁基板に割れが生じることかなく、安定した発熱動作を奏する。   According to the present invention, by forming the heating element that has been one in the past by dividing it into a plurality of parts, it is possible to mitigate the thermal shock to the insulating substrate due to the heat generation while maintaining the same amount of heat generation. That is, according to the present invention, since the heating element is divided and arranged, the heat distribution of the insulating substrate spreads and the peak decreases, so that the thermal shock to the insulating substrate is also alleviated. On the other hand, the total calorific value of the divided heating elements is the same as that of the prior art, and the time required for fusing the soluble conductor does not increase. Therefore, according to the present invention, even when the size of the fusible conductor is increased in order to cope with a large current capacity and the power of the heating element is increased, the insulating substrate is not cracked and stable heat generation is achieved. Play an action.

図1は、本発明が適用された保護素子を示す断面図である。FIG. 1 is a cross-sectional view showing a protection element to which the present invention is applied. 図2は、本発明が適用された保護素子を示す平面図である。FIG. 2 is a plan view showing a protection element to which the present invention is applied. 図3は、可溶導体が過電流による自己発熱で溶断された保護素子を示す断面図である。FIG. 3 is a cross-sectional view showing a protection element in which a fusible conductor is melted by self-heating due to overcurrent. 図4は、可溶導体が発熱体の発熱により溶断された保護素子を示す断面図である。FIG. 4 is a cross-sectional view showing a protection element in which a fusible conductor is melted by heat generated by a heating element. 図5は、本発明が適用された他の保護素子を示す断面図である。FIG. 5 is a cross-sectional view showing another protective element to which the present invention is applied. 図6は、本発明が適用された他の保護素子を示す断面図である。FIG. 6 is a cross-sectional view showing another protective element to which the present invention is applied. 図7は、本発明が適用された他の保護素子を示す断面図である。FIG. 7 is a cross-sectional view showing another protective element to which the present invention is applied. 図8は、保護素子が適用されたバッテリパックの回路構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a circuit configuration of a battery pack to which the protection element is applied. 図9は、保護素子の回路図である。FIG. 9 is a circuit diagram of the protection element. 図10は、絶縁基板に吸引孔を設けた保護素子を示す断面図である。FIG. 10 is a cross-sectional view showing a protective element having a suction hole in an insulating substrate. 図11は、絶縁基板に吸引孔を設けた保護素子を示す平面図である。FIG. 11 is a plan view showing a protection element in which a suction hole is provided in an insulating substrate. 図12は、可溶導体の溶断後における絶縁基板に吸引孔を設けた保護素子を示す断面図である。FIG. 12 is a cross-sectional view showing a protection element in which a suction hole is provided in an insulating substrate after fusing a soluble conductor. 図13は、比較例に係る保護素子を示す平面図である。FIG. 13 is a plan view showing a protection element according to a comparative example. 図14は、従来例に係る保護素子を示す断面図である。FIG. 14 is a cross-sectional view showing a protection element according to a conventional example. 図15は、従来例に係る保護素子を示す平面図である。FIG. 15 is a plan view showing a protection element according to a conventional example.

以下、本発明が適用された保護素子について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a protection element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[第1の実施例]
本発明が適用された保護素子1は、図1、図2に示すように、絶縁基板2と、絶縁基板2に形成された複数の発熱体3と、複数の発熱体3と電気的に接続された発熱体引出電極4と、発熱体引出電極4に支持された可溶導体5とを備える。また、保護素子1は、第1、第2の電極11,12を有し、絶縁基板2が第1、第2の電極11,12間に配設されている。そして、保護素子1は、可溶導体5が第1、第2の電極11,12間に跨って接続されている。
[First embodiment]
As shown in FIGS. 1 and 2, the protection element 1 to which the present invention is applied is electrically connected to the insulating substrate 2, the plurality of heating elements 3 formed on the insulating substrate 2, and the plurality of heating elements 3. The heating element extraction electrode 4 and the soluble conductor 5 supported by the heating element extraction electrode 4 are provided. The protection element 1 includes first and second electrodes 11 and 12, and the insulating substrate 2 is disposed between the first and second electrodes 11 and 12. In the protection element 1, the fusible conductor 5 is connected across the first and second electrodes 11 and 12.

[第1及び第2の電極]
第1及び第2の電極11,12は、保護素子1を外部回路に接続する金属等の接続端子であり、それぞれ保護素子1の内部でハンダ等の接続材料7を介して可溶導体5と接続され、可溶導体5を介して接続されている。これにより、保護素子1は、第1の電極11〜可溶導体5〜第2の電極12に至る電流経路を構成し、この電流経路は、第1、第2の電極11,12が外部回路の接続端子と接続されることにより、当該外部回路の一部に組み込まれる。そして、保護素子1は、可溶導体5に定格を超える過電流が通電することによる可溶導体5の自己発熱によって溶融し、図3に示すように、可溶導体5と第1、第2の電極11,12の一方との間で溶断することにより、外部回路の充放電経路を遮断する。あるいは、保護素子1は、発熱体3が通電、発熱されることにより、図4に示すように、可溶導体5を溶融させ、第1、第2の電極11,12と発熱体引出電極4との間で溶断するとともに、溶融導体5aが発熱体引出電極4上に凝集することにより、当該外部回路の電流経路を遮断する。
[First and second electrodes]
The first and second electrodes 11 and 12 are connection terminals made of metal or the like for connecting the protection element 1 to an external circuit, and the fusible conductor 5 is connected to the inside of the protection element 1 via a connection material 7 such as solder. Connected via a soluble conductor 5. Thereby, the protection element 1 constitutes a current path from the first electrode 11 to the fusible conductor 5 to the second electrode 12, and the first and second electrodes 11 and 12 are connected to the external circuit. By being connected to this connection terminal, it is incorporated into a part of the external circuit. Then, the protection element 1 is melted by self-heating of the soluble conductor 5 when an overcurrent exceeding the rating is applied to the soluble conductor 5, and as shown in FIG. By fusing between one of the electrodes 11 and 12, the charge / discharge path of the external circuit is blocked. Alternatively, as shown in FIG. 4, the protection element 1 melts the soluble conductor 5 when the heating element 3 is energized and generates heat, so that the first and second electrodes 11 and 12 and the heating element extraction electrode 4 are melted. As the molten conductor 5a aggregates on the heating element extraction electrode 4, the current path of the external circuit is interrupted.

保護素子1は、第1及び第2の電極11,12が、保護素子1の外筐体10に支持されることにより内外にわたって配設されている。また、保護素子1は、外筐体10の中央のスペースに絶縁基板2が配設され、これにより第1、第2の電極11,12と絶縁基板2とが隣接されている。   The protective element 1 is arranged over the inside and outside by the first and second electrodes 11 and 12 being supported by the outer casing 10 of the protective element 1. Further, the protective element 1 is provided with an insulating substrate 2 in the central space of the outer casing 10, whereby the first and second electrodes 11 and 12 and the insulating substrate 2 are adjacent to each other.

外筐体10は、例えば、PPS(ポリフェニレンサルファイド:Polyphenylenesulfide)等の耐熱性に優れるエンジニアリングプラスチックを用いて形成することができる。また、外筐体10は、所定の形状に成形する際に、インサート成型等により第1、第2の電極11,12を一体成型してもよい。   The outer casing 10 can be formed using an engineering plastic having excellent heat resistance such as PPS (Polyphenylenesulfide). Further, when the outer casing 10 is molded into a predetermined shape, the first and second electrodes 11 and 12 may be integrally molded by insert molding or the like.

なお、第1及び第2の電極11,12は、絶縁基板2と隣接するエポキシ樹脂等からなる絶縁素材に形成するようにしてもよい。また、第1及び第2の電極11,12は、図5に示すように、高融点金属ペーストの印刷等により絶縁基板2の表面2aの対向する一対の側縁部に形成してもよい。   The first and second electrodes 11 and 12 may be formed of an insulating material made of an epoxy resin or the like adjacent to the insulating substrate 2. Further, as shown in FIG. 5, the first and second electrodes 11 and 12 may be formed on a pair of opposite side edges of the surface 2a of the insulating substrate 2 by printing of a refractory metal paste or the like.

[絶縁基板]
絶縁基板2は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。
[Insulated substrate]
The insulating substrate 2 is formed by an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.

[発熱体]
発熱体3は、絶縁基板2の表面2aに積層され、絶縁部材13に覆われている。発熱体3は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、例えばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成される。
[Heating element]
The heating element 3 is laminated on the surface 2 a of the insulating substrate 2 and covered with the insulating member 13. The heating element 3 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. It is formed by mixing powders of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 2 using a screen printing technique, and firing the pattern. .

保護素子1は、所定の間隔を隔てて複数の発熱体3が並列され、例えば図1に示すように、2つの発熱体3A,3Bが設けられている。このように、保護素子1は、従来一つであった発熱体を複数に分割して形成することにより、同等の発熱量を維持しつつ発熱による絶縁基板2に対する熱衝撃を緩和することができる。すなわち、保護素子1は、発熱体3が複数に分割して配置されることにより、絶縁基板2の熱分布が広がりピークも下がることから、絶縁基板2に対する熱衝撃も緩和される。一方で、保護素子1は、分割された発熱体3の全発熱量は従来と同等であり、可溶導体5の溶断に要する時間が延びることもない。したがって、保護素子1は、大電流容量に対応するために可溶導体5を大型化するとともに、発熱体3の電力を増大させた場合にも、絶縁基板2に割れが生じることかなく、安定した発熱動作を奏する。   In the protection element 1, a plurality of heating elements 3 are arranged in parallel at a predetermined interval. For example, as shown in FIG. 1, two heating elements 3A and 3B are provided. As described above, the protective element 1 can reduce the thermal shock to the insulating substrate 2 due to heat generation while maintaining the same heat generation amount by forming the heat generating element, which has been conventionally one, into a plurality of parts. . That is, in the protection element 1, since the heat generating body 3 is divided into a plurality of parts, the heat distribution of the insulating substrate 2 spreads and the peak decreases, so that the thermal shock to the insulating substrate 2 is also alleviated. On the other hand, in the protection element 1, the total heat generation amount of the divided heating element 3 is equivalent to that of the conventional one, and the time required for fusing the soluble conductor 5 does not increase. Therefore, the protective element 1 is stable without causing the insulating substrate 2 to crack even when the size of the soluble conductor 5 is increased in order to cope with a large current capacity and the power of the heating element 3 is increased. It produces the exothermic action.

図2に示すように、各発熱体3A,3Bは、可溶導体5が配設される方向と直交する方向を長手方向とする矩形状に形成され、長手方向の一端が発熱体接続電極17aを介して絶縁基板2の表面2aに形成された第1の発熱体電極15と接続され、長手方向の他端が発熱体接続電極17bを介して絶縁基板2の表面2aに形成された第2の発熱体電極16と接続されている。   As shown in FIG. 2, each of the heating elements 3A and 3B is formed in a rectangular shape whose longitudinal direction is a direction orthogonal to the direction in which the soluble conductor 5 is disposed, and one end in the longitudinal direction is the heating element connection electrode 17a. Is connected to the first heating element electrode 15 formed on the surface 2a of the insulating substrate 2 via the second electrode, and the other end in the longitudinal direction is formed on the surface 2a of the insulating substrate 2 via the heating element connection electrode 17b. The heating element electrode 16 is connected.

第1の発熱体電極15は、複数の発熱体3の各一端と接続されるとともに、発熱体引出電極4と接続されている。第2の発熱体電極16は、複数の発熱体3の各他端と接続されるとともに、保護素子1が外部回路に接続される際の外部接続電極となる。保護素子1は、第2の発熱体電極16を介して外部回路と接続されることにより、発熱体3が外部回路に形成された発熱体3への給電経路に組み込まれる。   The first heating element electrode 15 is connected to each end of the plurality of heating elements 3 and to the heating element extraction electrode 4. The second heating element electrode 16 is connected to each other end of the plurality of heating elements 3 and serves as an external connection electrode when the protection element 1 is connected to an external circuit. The protection element 1 is connected to an external circuit through the second heating element electrode 16 so that the heating element 3 is incorporated in a power feeding path to the heating element 3 formed in the external circuit.

第1、第2の発熱体電極15,16は、例えばAgやCu、あるいはこれらを主成分とした合金等の高融点金属を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板2上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。   The first and second heating element electrodes 15 and 16 are made of, for example, a paste formed by mixing a high melting point metal such as Ag, Cu, or an alloy containing these as a main component with a resin binder or the like. It can be formed by forming a pattern on the top using a screen printing technique and baking.

発熱体3は、第1、第2の発熱体電極15,16間にわたって通電されることにより発熱する。すなわち、発熱体3は、長手方向に通電されることにより、長手方向に沿って割れが発生した場合にも、第1、第2の発熱体電極15,16間にわたる通電経路が遮断されることがなく通電、発熱が停止されることが無い。一方、図15に示すように、発熱体3が長手方向と直交する幅方向の両側に発熱体接続電極を設け、幅方向に通電されることにより発熱する構成では、長手方向に沿って割れが発生した場合、第1、第2の発熱体電極15,16間にわたる通電経路が遮断され、可溶導体5の溶断前に発熱が停止する恐れがある。   The heating element 3 generates heat when energized between the first and second heating element electrodes 15 and 16. That is, when the heating element 3 is energized in the longitudinal direction, the energization path between the first and second heating element electrodes 15 and 16 is interrupted even when a crack occurs along the longitudinal direction. There is no power and heat generation is not stopped. On the other hand, as shown in FIG. 15, in the configuration in which the heating element 3 is provided with heating element connection electrodes on both sides in the width direction orthogonal to the longitudinal direction and heat is generated when energized in the width direction, cracks occur along the longitudinal direction. If it occurs, the energization path between the first and second heating element electrodes 15 and 16 is blocked, and there is a possibility that the heat generation stops before the fusible conductor 5 is melted.

絶縁部材13としては、例えばガラスを用いることができる。なお、保護素子1は、発熱体3の熱を効率良く可溶導体5に伝えるために、複数の発熱体3と絶縁基板2との間にも絶縁部材を積層し、発熱体3を絶縁基板2の表面2aに形成された絶縁部材13の内部に設けるようにしても良い。   As the insulating member 13, for example, glass can be used. In order to efficiently transfer the heat of the heating element 3 to the fusible conductor 5, the protection element 1 also laminates an insulating member between the plurality of heating elements 3 and the insulating substrate 2, and the heating element 3 is attached to the insulating substrate. 2 may be provided inside the insulating member 13 formed on the surface 2a.

[発熱体引出電極]
発熱体引出電極4は、第1、第2の電極11,12間にわたって接続された可溶導体5を支持するとともに発熱体3への給電経路を構成するものであり、第1の発熱体電極15と接する引出部4aと、絶縁部材13上に積層されるとともに可溶導体5が接続される接続部4bとを有する。発熱体引出電極4は、接続部4bが第1、第2の電極11,12の間に形成され、可溶導体5を介して第1、第2の電極11,12と接続される。また、発熱体引出電極4は、発熱体3によって加熱されるとともに、発熱体3の熱を可溶導体5に伝えて溶断させる。さらに、発熱体引出電極4は、可溶導体5が溶融すると、可溶導体5の溶融導体5aが凝集され、第1、第2の電極11,12と分断することにより、第1、第2の電極11,12間にわたる電流経路を遮断する。このとき、発熱体引出電極4は、発熱体3によって加熱されることにより、可溶導体5の溶融導体5aを凝集しやすくする。
[Heating element extraction electrode]
The heating element extraction electrode 4 supports the soluble conductor 5 connected between the first and second electrodes 11 and 12 and constitutes a power supply path to the heating element 3. The first heating element electrode 15 and a connecting portion 4b which is laminated on the insulating member 13 and to which the soluble conductor 5 is connected. The heating element extraction electrode 4 has a connecting portion 4 b formed between the first and second electrodes 11 and 12, and is connected to the first and second electrodes 11 and 12 via the soluble conductor 5. Further, the heating element extraction electrode 4 is heated by the heating element 3, and transmits heat of the heating element 3 to the soluble conductor 5 so as to be melted. Further, when the soluble conductor 5 is melted, the heating element extraction electrode 4 aggregates the molten conductor 5a of the soluble conductor 5 and divides it from the first and second electrodes 11 and 12, whereby the first and second electrodes are separated. The current path extending between the electrodes 11 and 12 is interrupted. At this time, the heating element extraction electrode 4 is heated by the heating element 3 so that the molten conductor 5a of the soluble conductor 5 is easily aggregated.

発熱体引出電極4は、接続部4bが絶縁部材13を介して複数の発熱体3間に跨って一部重畳する位置に形成されている。したがって、発熱体引出電極4は、絶縁部材13を介して各発熱体3の熱が効率よく伝わり、速やかに可溶導体5を加熱、溶融させることができる。すなわち、保護素子1は、複数の発熱体3がそれぞれ発熱されると、熱は絶縁部材13及び絶縁部材13上に積層された発熱体引出電極4を介して可溶導体5に伝わり加熱する。このとき、保護素子1は、発熱体引出電極4が分割配置された発熱体3間に跨って一部重畳するように配置されることで発熱体3の熱が効率よく伝わり、可溶導体5を速やかに溶断させることができる。また、保護素子1は、発熱体3の熱がより発熱体引出電極4及び可溶導体5へ伝わりやすくなることから、絶縁基板2に対する熱衝撃も緩和され、絶縁基板2や発熱体3の割れの発生を防止することができる。   The heating element extraction electrode 4 is formed at a position where the connecting portion 4 b partially overlaps between the plurality of heating elements 3 via the insulating member 13. Accordingly, the heating element extraction electrode 4 can efficiently transfer the heat of each heating element 3 through the insulating member 13, and can quickly heat and melt the soluble conductor 5. That is, when the plurality of heating elements 3 generate heat, the protection element 1 is heated by being transmitted to the soluble conductor 5 through the insulating member 13 and the heating element extraction electrode 4 laminated on the insulating member 13. At this time, the protection element 1 is arranged so as to partially overlap between the heating elements 3 in which the heating element extraction electrodes 4 are divided and arranged, whereby the heat of the heating element 3 is efficiently transmitted, and the soluble conductor 5 Can be quickly melted. Further, since the heat of the heating element 3 is more easily transmitted to the heating element extraction electrode 4 and the soluble conductor 5, the protective element 1 also reduces the thermal shock to the insulating substrate 2 and cracks of the insulating substrate 2 and the heating element 3. Can be prevented.

なお、発熱体引出電極4は、図1に示すように、2つの発熱体3A,3Bの両方に跨って重畳させてもよく、一方の発熱体3のみに重畳させてもよいが、可溶導体5への熱伝導や絶縁基板2に対する熱衝撃の緩和効果の面で両方に跨って重畳させることが好ましい。   As shown in FIG. 1, the heating element extraction electrode 4 may be overlapped over both of the two heating elements 3A and 3B, or may be superimposed only on one heating element 3, but is soluble. It is preferable to superimpose them over both in terms of thermal conduction to the conductor 5 and thermal shock mitigation effect on the insulating substrate 2.

発熱体引出電極4は、例えばAgやCu、あるいはこれらを主成分とした合金等の高融点金属を樹脂バインダ等と混合して、ペースト状にしたものを絶縁部材13上及び第1の発熱体電極15上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。   The heating element extraction electrode 4 is formed by mixing a high-melting point metal such as Ag, Cu, or an alloy containing these as a main component with a resin binder or the like to form a paste on the insulating member 13 and the first heating element. It can be formed by forming a pattern on the electrode 15 using a screen printing technique and baking it.

そして、発熱体引出電極4は、ハンダ等の接続材料7を介して、第1、第2の電極11,12間を接続する可溶導体5と接続される。また、発熱体引出電極4は、可溶導体5が溶融すると、溶融導体5aを凝集し、第1、第2の電極11,12間の電流経路を遮断する。   The heating element extraction electrode 4 is connected to a soluble conductor 5 that connects the first and second electrodes 11 and 12 through a connection material 7 such as solder. In addition, when the soluble conductor 5 is melted, the heating element extraction electrode 4 aggregates the molten conductor 5a and interrupts the current path between the first and second electrodes 11 and 12.

なお、保護素子1は、図1に示すように、発熱体3A,3Bを絶縁基板2の中央を境に両側に形成するとともに、発熱体引出電極4を絶縁基板2の中央を跨って配設することが好ましい。これは、絶縁基板2は外縁部に行くほど放熱による冷却効果が高く、外縁部から最も遠い基板中央は熱が逃げにくいことから、熱膨張による応力も大きくなり、割れが発生しやすい。したがって、この基板中央部を避けて両側に発熱体3A,3Bを形成することにより、発熱体3A,3Bの熱が基板中央部に蓄積し、熱膨張による応力で割れが発生した場合にも、割れによる影響が発熱体3A,3Bに及ぶことを防止することができる。   As shown in FIG. 1, the protection element 1 has the heating elements 3 </ b> A and 3 </ b> B formed on both sides with the center of the insulating substrate 2 as a boundary, and the heating element extraction electrode 4 is disposed across the center of the insulating substrate 2. It is preferable to do. This is because the insulating substrate 2 has a higher cooling effect due to heat radiation as it goes to the outer edge portion, and heat hardly escapes from the center of the substrate farthest from the outer edge portion, so that stress due to thermal expansion also increases and cracks tend to occur. Therefore, by forming the heating elements 3A and 3B on both sides avoiding the central portion of the substrate, the heat of the heating elements 3A and 3B accumulates in the central portion of the substrate, and even when cracking occurs due to stress due to thermal expansion, It is possible to prevent the influence of the cracks from reaching the heating elements 3A and 3B.

また、発熱体引出電極4を絶縁基板2の中央を跨って配設することにより、保護素子1は、発熱体3A,3Bの熱を放熱しにくい基板中央部に集中させ、絶縁基板2に分散させることなく効率的に可溶導体5を加熱することができる。同時に、保護素子1は、発熱体3A,3Bから基板中央部にわたる熱を発熱体引出電極4を介して可溶導体5に伝えていくことにより、発熱体3A,3Bの熱を放熱しにくく熱膨張による応力も大きくなる基板中央部に蓄積させることなく、絶縁基板2の割れを防止することができる。   In addition, by disposing the heating element extraction electrode 4 across the center of the insulating substrate 2, the protection element 1 concentrates the heat of the heating elements 3 </ b> A and 3 </ b> B in the central portion of the substrate where it is difficult to dissipate and distributes it to the insulating substrate 2. The soluble conductor 5 can be efficiently heated without causing it to occur. At the same time, the protection element 1 transmits heat from the heating elements 3A and 3B to the center of the substrate to the soluble conductor 5 through the heating element extraction electrode 4, thereby making it difficult to dissipate the heat of the heating elements 3A and 3B. It is possible to prevent the insulating substrate 2 from cracking without accumulating in the central portion of the substrate where stress due to expansion also increases.

また、絶縁基板2は、第2の発熱体電極16が、複数の発熱体3の各他端側において、各発熱体3間にわたって設けられ、各発熱体3間の領域において第2の発熱体電極16を介して外部回路の端子部にハンダ等の接合材料によって接続されている。これにより、保護素子1は、発熱体3間の領域で絶縁基板2が固定され、発熱体3が発熱することにより絶縁基板2に生じる応力が発熱体3の間に現れ、割れが発生した場合にも発生位置を発熱体3が設けられていない領域に制御することができる。特に、2つの発熱体3A,3Bを絶縁基板2の中央を境に両側配置することで、発熱体3A,3Bの熱を放熱しにくい基板中央部に集中させ、熱膨張による応力が蓄積した場合には、第2の発熱体電極16が固定点となって、割れの発生位置を確実に発熱体3A,3Bの間の領域に制御でき、絶縁基板2に割れが発生した場合にも、発熱体3A,3Bに割れが生じ、発熱が停止する事態を防止することができる。   In addition, the insulating substrate 2 is provided with the second heating element electrode 16 provided between the heating elements 3 on each other end side of the plurality of heating elements 3, and in the region between the heating elements 3. The electrode 16 is connected to a terminal portion of the external circuit by a bonding material such as solder. As a result, when the insulating substrate 2 is fixed in the region between the heating elements 3 and the stress generated in the insulating substrate 2 appears between the heating elements 3 when the heating element 3 generates heat, the protection element 1 is cracked. In addition, the generation position can be controlled to an area where the heating element 3 is not provided. In particular, when the two heating elements 3A and 3B are arranged on both sides with the center of the insulating substrate 2 as the boundary, the heat of the heating elements 3A and 3B is concentrated in the central portion of the substrate where heat is difficult to dissipate, and stress due to thermal expansion accumulates The second heating element electrode 16 serves as a fixed point, and the position where the crack is generated can be reliably controlled to the region between the heating elements 3A and 3B. It is possible to prevent a situation in which the bodies 3A and 3B are cracked and heat generation is stopped.

ここで、第2の発熱体電極16は、絶縁基板2に導電層を有するスルーホール20を形成するとともに、絶縁基板2の裏面2bにスルーホール20を介して電気的に接続された接続端子部を設け、当該接続端子部を介して外部回路の端子部と接続、固定するようにしてもよい。保護素子1は、絶縁基板2の固定点にスルーホール20を形成することにより、絶縁基板2の割れの発生位置がスルーホール20を起点とすることができ、発熱体3A,3Bに割れが生じ、発熱が停止する事態を確実に防止することができる。   Here, the second heating element electrode 16 forms a through hole 20 having a conductive layer in the insulating substrate 2 and is connected to the back surface 2 b of the insulating substrate 2 through the through hole 20. And may be connected and fixed to a terminal portion of an external circuit via the connection terminal portion. In the protective element 1, by forming the through hole 20 at a fixed point of the insulating substrate 2, the crack generation position of the insulating substrate 2 can start from the through hole 20, and the heating elements 3 </ b> A and 3 </ b> B are cracked. The situation where heat generation stops can be surely prevented.

なお、第2の発熱体電極16は、ハンダブリッジによって外部回路の端子部と接続、固定してもよい。この場合も、保護素子1は、発熱体3間の領域で絶縁基板2が固定されることから、割れの発生位置を発熱体3が設けられていない発熱体3間の領域に制御することができる。   Note that the second heating element electrode 16 may be connected and fixed to a terminal portion of an external circuit by a solder bridge. Also in this case, since the insulating substrate 2 is fixed in the region between the heating elements 3, the protection element 1 can control the generation position of the crack to the region between the heating elements 3 where the heating element 3 is not provided. it can.

[可溶導体]
可溶導体5は、過電流状態によって溶融するものであり、したがって、溶断する導電性の材料であればよく、例えば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。なお、可溶導体5は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなる高融点金属と、ハンダ又はSnを主成分とするPbフリーハンダ等の低融点金属との積層体であってもよい。
[Soluble conductor]
The fusible conductor 5 is melted by an overcurrent state. Therefore, the fusible conductor 5 only needs to be an electrically conductive material that melts. An alloy, a PbIn alloy, a ZnAl alloy, an InSn alloy, a PbAgSn alloy, or the like can be used. The fusible conductor 5 is a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as solder or Pb free solder mainly composed of Sn. May be.

このような可溶導体5は、低融点金属箔に、高融点金属層をメッキ技術を用いて成膜することによって形成することができ、あるいは、他の周知の積層技術、膜形成技術を用いて形成することもできる。なお、可溶導体5は、高融点金属層を内層とし、低融点金属層を外層として構成してもよく、また低融点金属層と高融点金属層とが交互に積層された4層以上の多層構造とするなど、様々な構成によって形成することができる。   Such a soluble conductor 5 can be formed by depositing a high melting point metal layer on a low melting point metal foil using a plating technique, or using other well-known lamination techniques and film forming techniques. It can also be formed. The fusible conductor 5 may be composed of a high melting point metal layer as an inner layer and a low melting point metal layer as an outer layer, or four or more layers in which low melting point metal layers and high melting point metal layers are alternately laminated. It can be formed by various structures such as a multilayer structure.

また、可溶導体5は、所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、定格よりも高い値の電流が流れると、自己発熱によって溶融し、第1、第2の電極11,12間の電流経路を遮断する。また、可溶導体5は、発熱体3が通電、発熱されることにより加熱され、溶断することにより、第1、第2の電極11,12間の電流経路を遮断する。このとき、可溶導体5は、溶融した低融点金属が高融点金属を浸食することにより、高融点金属が溶融温度よりも低い温度で溶融する。したがって、可溶導体5は、低融点金属による高融点金属の浸食作用を利用して短時間で溶断することができる。   Further, the fusible conductor 5 is not melted by self-heating while a predetermined rated current flows. When a current having a value higher than the rating flows, the current is melted by self-heating, and the current path between the first and second electrodes 11 and 12 is interrupted. The fusible conductor 5 is heated when the heating element 3 is energized and heated, and cuts off the current path between the first and second electrodes 11 and 12 by fusing. At this time, the fusible conductor 5 is melted at a temperature lower than the melting temperature because the melted low melting point metal erodes the high melting point metal. Therefore, the soluble conductor 5 can be blown out in a short time using the erosion action of the high melting point metal by the low melting point metal.

また、可溶導体5は、内層となる低融点金属に高融点金属が積層されて構成することにより、溶断温度を従来の高融点金属からなるチップヒューズ等よりも大幅に低減することができる。したがって、可溶導体5は、同一サイズのチップヒューズ等に比して、断面積を大きくでき電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも小型化、薄型化を図ることができ、速溶断性に優れる。   Further, the fusible conductor 5 can be formed by laminating a high melting point metal on a low melting point metal as an inner layer, so that the fusing temperature can be significantly reduced compared to a conventional chip fuse made of a high melting point metal. Therefore, the fusible conductor 5 can have a larger cross-sectional area and can greatly improve the current rating as compared to a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.

また、可溶導体5は、保護素子1が組み込まれた電気系統に異常に高い電圧が瞬間的に印加されるサージへの耐性(耐パルス性)を向上することができる。すなわち、可溶導体5は、例えば100Aの電流が数msec流れたような場合にまで溶断してはならない。この点、極短時間に流れる大電流は導体の表層を流れることから(表皮効果)、可溶導体5は、外層として抵抗値の低いAgメッキ等の高融点金属を設けることにより、サージによって印加された電流を流しやすく、自己発熱による溶断を防止することができる。したがって、可溶導体5は、高融点金属で被覆することにより、ハンダ合金からなるヒューズに比して、大幅にサージに対する耐性を向上させることができる。   Further, the fusible conductor 5 can improve the resistance (pulse resistance) to a surge in which an abnormally high voltage is instantaneously applied to the electrical system in which the protection element 1 is incorporated. That is, the fusible conductor 5 must not be blown until, for example, a current of 100 A flows for several milliseconds. In this respect, since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fusible conductor 5 is applied by a surge by providing a high melting point metal such as Ag plating having a low resistance value as the outer layer. It is easy to flow the generated current and it is possible to prevent fusing due to self-heating. Therefore, by covering the fusible conductor 5 with a refractory metal, it is possible to significantly improve the resistance to surge as compared with a fuse made of a solder alloy.

なお、可溶導体5は、酸化防止、及び溶断時の濡れ性の向上等のため、フラックス(図示せず)が塗布されている。   The fusible conductor 5 is coated with a flux (not shown) in order to prevent oxidation and improve wettability at the time of fusing.

[発熱体]
また、図6に示すように、保護素子1は、発熱体3を絶縁基板2の裏面2bに形成してもよい。発熱体3は、絶縁基板2の裏面2bに形成されるとともに、裏面2b上において絶縁層13に被覆される
[Heating element]
Further, as shown in FIG. 6, the protection element 1 may form the heating element 3 on the back surface 2 b of the insulating substrate 2. The heating element 3 is formed on the back surface 2b of the insulating substrate 2 and is covered with the insulating layer 13 on the back surface 2b.

発熱体3は、一端が図示しない発熱体電極を介して発熱体引出電極4及び発熱体引出電極4上に搭載された可溶導体5と電気的に接続される。また、発熱体3は、他端が第2の発熱体電極16と接続される。   One end of the heating element 3 is electrically connected to the heating element extraction electrode 4 and the soluble conductor 5 mounted on the heating element extraction electrode 4 via a heating element electrode (not shown). The other end of the heating element 3 is connected to the second heating element electrode 16.

また、図7に示すように、保護素子1は、発熱体3を絶縁基板2の内部に形成してもよい。この場合、発熱体3は、ガラス等の絶縁層によって被覆する必要はない。また、発熱体3は、一端が図示しない発熱体電極を介して発熱体引出電極4及び発熱体引出電極4上に搭載された可溶導体5と電気的に接続される。また、発熱体3は、他端が第2の発熱体電極16と接続される。   Further, as shown in FIG. 7, the protection element 1 may have the heating element 3 formed inside the insulating substrate 2. In this case, the heating element 3 does not need to be covered with an insulating layer such as glass. The heating element 3 is electrically connected at one end to a heating element extraction electrode 4 and a soluble conductor 5 mounted on the heating element extraction electrode 4 via a heating element electrode (not shown). The other end of the heating element 3 is connected to the second heating element electrode 16.

[回路構成]
保護素子1は、例えばバッテリパックに組み込まれると、過電流時における可溶導体5の自己溶断に加え、バッテリセルの過電圧を検知して発熱体3を通電、発熱させ、可溶導体5を溶断させることにより、バッテリパックの充放電経路を遮断することができる。
[Circuit configuration]
For example, when the protection element 1 is incorporated in a battery pack, in addition to the self-cutting of the soluble conductor 5 at the time of overcurrent, the overvoltage of the battery cell is detected and the heating element 3 is energized and heated to melt the soluble conductor 5. By doing so, the charging / discharging path | route of a battery pack can be interrupted | blocked.

バッテリパック30は、図8に示すように、例えば、合計4個のリチウムイオン二次電池のバッテリセル31〜34からなるバッテリスタック35を有する。   As illustrated in FIG. 8, the battery pack 30 includes a battery stack 35 including, for example, a total of four lithium ion secondary battery battery cells 31 to 34.

バッテリパック30は、バッテリスタック35と、バッテリスタック35の充放電を制御する充放電制御回路40と、バッテリスタック35の異常時に充電を遮断する本発明が適用された保護素子1と、各バッテリセル31〜34の電圧を検出する検出回路36と、検出回路36の検出結果に応じて保護素子1の動作を制御するスイッチ素子となる電流制御素子37とを備える。   The battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 1 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell A detection circuit 36 for detecting voltages 31 to 34 and a current control element 37 serving as a switch element for controlling the operation of the protection element 1 according to the detection result of the detection circuit 36 are provided.

バッテリスタック35は、過充電及び過放電状態から保護するための制御を要するバッテリセル31〜34が直列接続されたものであり、バッテリパック30の正極端子30a、負極端子30bを介して、着脱可能に充電装置45に接続され、充電装置45からの充電電圧が印加される。充電装置45により充電されたバッテリパック30は、正極端子30a、負極端子30bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。   The battery stack 35 is formed by connecting battery cells 31 to 34 that need to be controlled for protection from overcharge and overdischarge states, and is detachable via the positive electrode terminal 30a and the negative electrode terminal 30b of the battery pack 30. Are connected to the charging device 45, and a charging voltage from the charging device 45 is applied thereto. The battery pack 30 charged by the charging device 45 can operate the electronic device by connecting the positive terminal 30a and the negative terminal 30b to the electronic device operated by the battery.

充放電制御回路40は、バッテリスタック35から充電装置45に流れる電流経路に直列接続された2つの電流制御素子41、42と、これらの電流制御素子41、42の動作を制御する制御部43とを備える。電流制御素子41、42は、たとえば電界効果トランジスタ(以下、FETという。)により構成され、制御部43によりゲート電圧を制御することによって、バッテリスタック35の電流経路の導通と遮断とを制御する。制御部43は、充電装置45から電力供給を受けて動作し、検出回路36による検出結果に応じて、バッテリスタック35が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子41、42の動作を制御する。   The charge / discharge control circuit 40 includes two current control elements 41 and 42 connected in series to a current path flowing from the battery stack 35 to the charging device 45, and a control unit 43 that controls the operation of these current control elements 41 and 42. Is provided. The current control elements 41 and 42 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 43 to control conduction and interruption of the current path of the battery stack 35. The control unit 43 operates by receiving power supply from the charging device 45, and controls the current so as to cut off the current path when the battery stack 35 is overdischarged or overcharged according to the detection result by the detection circuit 36. The operation of the elements 41 and 42 is controlled.

保護素子1は、例えば、バッテリスタック35と充放電制御回路40との間の充放電電流経路上に接続され、その動作が電流制御素子37によって制御される。   The protection element 1 is connected to, for example, a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, and its operation is controlled by the current control element 37.

検出回路36は、各バッテリセル31〜34と接続され、各バッテリセル31〜34の電圧値を検出して、各電圧値を充放電制御回路40の制御部43に供給する。また、検出回路36は、いずれか1つのバッテリセル31〜34が過充電電圧又は過放電電圧になったときに電流制御素子37を制御する制御信号を出力する。   The detection circuit 36 is connected to each of the battery cells 31 to 34, detects the voltage value of each of the battery cells 31 to 34, and supplies each voltage value to the control unit 43 of the charge / discharge control circuit 40. The detection circuit 36 outputs a control signal for controlling the current control element 37 when any one of the battery cells 31 to 34 becomes an overcharge voltage or an overdischarge voltage.

電流制御素子37は、たとえばFETにより構成され、検出回路36から出力される検出信号によって、バッテリセル31〜34の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子1を動作させて、バッテリスタック35の充放電電流経路を電流制御素子41、42のスイッチ動作によらず遮断するように制御する。   The current control element 37 is configured by, for example, an FET, and when the voltage value of the battery cells 31 to 34 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 36, the protection element 1 is operated to control the charge / discharge current path of the battery stack 35 to be cut off regardless of the switching operation of the current control elements 41 and 42.

以上のような構成からなるバッテリパック30に用いられる、本発明が適用された保護素子1は、図9に示すような回路構成を有する。すなわち、保護素子1は、第1の電極11がバッテリスタック35側と接続され、第2の電極12が正極端子30a側と接続され、これにより可溶導体5がバッテリスタック35の充放電経路上に直列に接続される。また、保護素子1は、発熱体3が第2の発熱体電極16を介して電流制御素子37と接続されるとともに、発熱体3がバッテリスタック35の開放端と接続される。これにより、発熱体3は、一端を発熱体引出電極4、可溶導体5及び第1の電極11を介してバッテリスタック35の一方の開放端と接続され、他端を第2の発熱体電極16を介して電流制御素子37及びバッテリスタック35の他方の開放端と接続され、電流制御素子37によって通電が制御される発熱体3への給電経路が形成される。   The protection element 1 to which the present invention is applied, which is used for the battery pack 30 having the above-described configuration, has a circuit configuration as shown in FIG. That is, in the protection element 1, the first electrode 11 is connected to the battery stack 35 side, and the second electrode 12 is connected to the positive electrode terminal 30a side, so that the soluble conductor 5 is on the charge / discharge path of the battery stack 35. Connected in series. In the protection element 1, the heating element 3 is connected to the current control element 37 via the second heating element electrode 16, and the heating element 3 is connected to the open end of the battery stack 35. As a result, the heating element 3 has one end connected to one open end of the battery stack 35 via the heating element extraction electrode 4, the soluble conductor 5 and the first electrode 11, and the other end connected to the second heating element electrode. 16 is connected to the current control element 37 and the other open end of the battery stack 35, and a power supply path to the heating element 3 whose energization is controlled by the current control element 37 is formed.

[保護素子の動作]
バッテリパック30に定格を超える過電流が通電されると、保護素子1は、可溶導体5が自己発熱により溶融し、バッテリパック30の充放電経路を遮断する。
[Operation of protection element]
When an overcurrent exceeding the rating is applied to the battery pack 30, the protection element 1 melts the fusible conductor 5 due to self-heating and blocks the charge / discharge path of the battery pack 30.

また、検出回路36がバッテリセル31〜34のいずれかの異常電圧を検出すると、電流制御素子37へ遮断信号を出力する。すると、電流制御素子37は、発熱体3に通電するよう電流を制御する。保護素子1は、バッテリスタック35から、第1の電極11、可溶導体5及び発熱体引出電極4を介して発熱体3に電流が流れ、これにより発熱体3が発熱を開始する。保護素子1は、発熱体3の発熱により可溶導体5が溶断し、バッテリスタック35の充放電経路を遮断する(図3)。   Further, when the detection circuit 36 detects any abnormal voltage in the battery cells 31 to 34, it outputs a cutoff signal to the current control element 37. Then, the current control element 37 controls the current so that the heating element 3 is energized. In the protection element 1, a current flows from the battery stack 35 to the heating element 3 through the first electrode 11, the soluble conductor 5, and the heating element extraction electrode 4, whereby the heating element 3 starts to generate heat. In the protection element 1, the fusible conductor 5 is melted by heat generated by the heating element 3, and the charge / discharge path of the battery stack 35 is blocked (FIG. 3).

このとき、過電圧時における発熱体3による溶断時において、保護素子1は、従来一つであった発熱体を複数に分割して形成することにより、同等の発熱量を維持しつつ発熱による絶縁基板2に対する熱衝撃を緩和することができる。したがって、保護素子1は、大電流容量に対応するために可溶導体5を大型化するとともに、発熱体3の電力を増大させた場合にも、可溶導体5の溶断に要する時間が延びることもなく、また、絶縁基板2に割れが生じ難くなり、安定した発熱動作を奏する。   At this time, at the time of fusing by the heat generating element 3 at the time of overvoltage, the protective element 1 is formed by dividing the heat generating element, which has been conventionally one, into a plurality of parts, thereby maintaining an equivalent amount of heat generation while maintaining an equivalent heat generation amount. 2 can be alleviated. Therefore, the protective element 1 increases the size of the soluble conductor 5 in order to cope with a large current capacity, and also increases the time required for fusing the soluble conductor 5 even when the power of the heating element 3 is increased. In addition, cracks are less likely to occur in the insulating substrate 2 and a stable heat generation operation is achieved.

また、保護素子1は、発熱体引出電極4が、絶縁部材13を介して複数の発熱体3間に跨って一部重畳する位置に形成されることにより、絶縁部材13を介して各発熱体3の熱が効率よく伝わり、速やかに可溶導体5を加熱、溶融させることができる。また、保護素子1は、発熱体3の熱がより発熱体引出電極4及び可溶導体5へ伝わりやすくなることから、絶縁基板2に対する熱衝撃も緩和され、絶縁基板2や発熱体3の割れの発生を防止することができる。   Further, the protection element 1 is formed at a position where the heating element extraction electrode 4 partially overlaps between the plurality of heating elements 3 via the insulating member 13, so that each heating element via the insulating member 13. The heat of No. 3 is transmitted efficiently and the soluble conductor 5 can be heated and melted quickly. Further, since the heat of the heating element 3 is more easily transmitted to the heating element extraction electrode 4 and the soluble conductor 5, the protective element 1 also reduces the thermal shock to the insulating substrate 2 and cracks of the insulating substrate 2 and the heating element 3. Can be prevented.

また、保護素子1は、可溶導体5を高融点金属と低融点金属とを含有させて形成することにより、溶融した低融点金属による高融点金属の溶食作用を利用して短時間で溶断することができる。   Further, the protective element 1 is formed by forming the fusible conductor 5 containing a high melting point metal and a low melting point metal, so that the melting of the high melting point metal by the molten low melting point metal can be used for fusing in a short time. can do.

なお、保護素子1は、可溶導体5が溶断することにより、発熱体3への給電経路も遮断されるため、発熱体3の発熱が停止される。   In addition, since the power supply path | route to the heat generating body 3 is also interrupted | blocked, the heat generation of the heat generating body 3 is stopped by the protection element 1 by melt | dissolving the soluble conductor 5. FIG.

本発明に係る保護素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。   The protection element according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.

[第2の実施例]
また、本発明が適用された保護素子は、図10に示すように、発熱体引出電極4、絶縁層13、及び絶縁基板2を貫き、可溶導体5の溶融導体5aを吸引する吸引孔51を設けてもよい。なお、以下の説明において上述した保護素子1と同じ部材については同じ符号を付して、その詳細を省略する。
[Second Embodiment]
Further, as shown in FIG. 10, the protective element to which the present invention is applied penetrates the heating element extraction electrode 4, the insulating layer 13, and the insulating substrate 2 and sucks the molten conductor 5 a of the soluble conductor 5. May be provided. In addition, in the following description, the same code | symbol is attached | subjected about the same member as the protection element 1 mentioned above, and the detail is abbreviate | omitted.

吸引孔51が設けられた保護素子50は、可溶導体5が過電流による自己発熱、あるいは過電圧に伴う発熱体3の発熱により溶融すると、毛管現象によってこの溶融導体5aを吸引孔51内に吸引し、溶融導体5aの体積を減少させる。保護素子50は、大電流用途に対応するために可溶導体5の断面積を増大させることにより、溶融量が増大した場合にも、吸引孔51に吸引させることで、溶融導体5aの体積を減少させることができる。   The protection element 50 provided with the suction hole 51 sucks the molten conductor 5a into the suction hole 51 by capillary action when the fusible conductor 5 is melted by self-heating due to overcurrent or heat generation of the heating element 3 due to overvoltage. Then, the volume of the molten conductor 5a is reduced. The protective element 50 increases the cross-sectional area of the soluble conductor 5 in order to cope with a large current application, so that the volume of the molten conductor 5a is reduced by sucking the suction hole 51 even when the melting amount increases. Can be reduced.

これにより、保護素子50は、可溶導体5を速やかに、かつ確実に溶断することができる。また、保護素子50は、過電流に伴う自己発熱遮断時に生じるアーク放電による溶融導体5aの飛散を軽減し、絶縁抵抗の低下を防止するとともに、可溶導体5の搭載位置の周辺回路への付着による短絡故障を防止することができる。   Thereby, the protection element 50 can melt | dissolve the soluble conductor 5 rapidly and reliably. Further, the protective element 50 reduces scattering of the molten conductor 5a due to arc discharge generated when self-heating is interrupted due to overcurrent, prevents a decrease in insulation resistance, and adheres to the peripheral circuit at the position where the soluble conductor 5 is mounted. Can prevent a short circuit failure.

吸引孔51は、内面に導電層52が形成されている。導電層52が形成されることにより、吸引孔51は、溶融導体5aを吸引しやすくすることができる。導電層52は、例えば銅、銀、金、鉄、ニッケル、パラジウム、鉛、錫のいずれか、又はいずれかを主成分とする合金によって形成され、吸引孔51の内面を電解メッキや導電ペーストの印刷等の公知の方法により形成することができる。   The suction hole 51 has a conductive layer 52 formed on the inner surface. By forming the conductive layer 52, the suction hole 51 can easily suck the molten conductor 5a. The conductive layer 52 is formed of, for example, copper, silver, gold, iron, nickel, palladium, lead, tin, or an alloy containing either of them as a main component, and the inner surface of the suction hole 51 is made of electrolytic plating or conductive paste. It can be formed by a known method such as printing.

また、吸引孔51は、絶縁基板2の厚さ方向に貫通する貫通孔として形成されることが好ましい。これにより、吸引孔51は、溶融導体5aを絶縁基板2の裏面2b側まで吸引することができ、より多くの溶融導体5aを吸引し、溶断部位における溶融導体5aの体積を減少させることができる。なお、吸引孔51は、非貫通孔として形成してもよい。   Further, the suction hole 51 is preferably formed as a through-hole penetrating in the thickness direction of the insulating substrate 2. As a result, the suction hole 51 can suck the molten conductor 5a to the back surface 2b side of the insulating substrate 2, suck more molten conductor 5a, and reduce the volume of the molten conductor 5a at the fusing site. . The suction hole 51 may be formed as a non-through hole.

また、図11に示すように、吸引孔51は、絶縁基板2の表面2aに絶縁層13を介して積層された発熱体引出電極4の幅方向の中央に設けられる。なお、吸引孔51は、複数設けることで、可溶導体5の溶融導体5aを吸引する経路を増やし、より多くの溶融導体5aを吸引することで、溶断部位における溶融導体5aの体積を減少させるようにしてもよい。ここでは、複数の吸引孔51が直線状に一列に並んで設けられている。   As shown in FIG. 11, the suction hole 51 is provided at the center in the width direction of the heating element extraction electrode 4 laminated on the surface 2 a of the insulating substrate 2 via the insulating layer 13. By providing a plurality of suction holes 51, the number of paths for sucking the molten conductor 5a of the soluble conductor 5 is increased, and by sucking more molten conductor 5a, the volume of the molten conductor 5a at the fusing site is reduced. You may do it. Here, a plurality of suction holes 51 are provided in a line in a straight line.

また、吸引孔51の内面に設けられた導電層52は、発熱体引出電極4と連続されている。したがって、保護素子50は、発熱体引出電極4に凝集した溶融導体5aを、導電層52を介して吸引孔51内に導きやすくすることができる。   The conductive layer 52 provided on the inner surface of the suction hole 51 is continuous with the heating element extraction electrode 4. Therefore, the protection element 50 can easily guide the molten conductor 5 a aggregated on the heating element extraction electrode 4 into the suction hole 51 through the conductive layer 52.

また、絶縁基板2の裏面2bには、吸引孔51の導電層52と接続された裏面電極53が形成されている。図12に示すように、裏面電極53は、導電層52と連続することにより、可溶導体5が溶融すると、吸引孔51を介して移動した溶融導体5aが凝集する。これにより、保護素子1は、より多くの溶融導体5aを吸引し、溶断部位における溶融導体5aの体積を減少させることができる。   A back electrode 53 connected to the conductive layer 52 of the suction hole 51 is formed on the back surface 2 b of the insulating substrate 2. As shown in FIG. 12, the back electrode 53 is continuous with the conductive layer 52, so that when the soluble conductor 5 is melted, the molten conductor 5 a moved through the suction hole 51 is aggregated. Thereby, the protection element 1 can attract more molten conductor 5a, and can reduce the volume of the molten conductor 5a in a fusing part.

なお、保護素子50は、発熱体3を、絶縁基板2の表面2a、裏面2b又は絶縁基板2の内部に設けてもよい。   In the protection element 50, the heating element 3 may be provided on the front surface 2 a, the back surface 2 b of the insulating substrate 2, or inside the insulating substrate 2.

発熱体3は、絶縁基板2の裏面2bに設ける場合、一端が裏面電極53と連続するとともに、導電層52及び発熱体引出電極4を介して可溶導体5と電気的に接続され、他端が裏面2bに設けられた第2の発熱体電極16と接続される。同様に、発熱体3は、絶縁基板2の内部に設ける場合、一端が第1の発熱体電極15及び発熱体引出電極4を介して可溶導体5と電気的に接続され、他端が第2の発熱体電極16と接続される。   When the heating element 3 is provided on the back surface 2 b of the insulating substrate 2, one end is continuous with the back electrode 53 and is electrically connected to the soluble conductor 5 through the conductive layer 52 and the heating element lead electrode 4, and the other end. Is connected to the second heating element electrode 16 provided on the back surface 2b. Similarly, when the heating element 3 is provided inside the insulating substrate 2, one end is electrically connected to the soluble conductor 5 via the first heating element electrode 15 and the heating element extraction electrode 4, and the other end is the first. 2 heating element electrodes 16 are connected.

発熱体3を絶縁基板2の裏面2bに形成することにより、保護素子50は、裏面電極53が発熱体3によって加熱されることにより、より多くの溶融導体5aを凝集しやすくなる。したがって、保護素子50は、発熱体引出電極4から導電層52を介して裏面電極53へ溶融導体5aを吸引する作用を促進させ、確実に可溶導体5を溶断することができる。   By forming the heating element 3 on the back surface 2 b of the insulating substrate 2, the protection element 50 is likely to aggregate more molten conductors 5 a when the back electrode 53 is heated by the heating element 3. Therefore, the protective element 50 can promote the action of attracting the molten conductor 5a from the heating element extraction electrode 4 to the back electrode 53 via the conductive layer 52, and can reliably melt the soluble conductor 5.

また、発熱体3を絶縁基板2の内部に形成することにより、保護素子50は、導電層52を介して発熱体引出電極4及び裏面電極53が発熱体3によって加熱されることにより、より多くの溶融導体5aを凝集しやすくなる。したがって、保護素子50は、発熱体引出電極4から導電層52を介して裏面電極53へ溶融導体5aを吸引する作用を促進させ、確実に可溶導体5を溶断することができる。   In addition, by forming the heating element 3 inside the insulating substrate 2, the protection element 50 is more protected when the heating element extraction electrode 4 and the back electrode 53 are heated by the heating element 3 through the conductive layer 52. The molten conductor 5a is easily aggregated. Therefore, the protective element 50 can promote the action of attracting the molten conductor 5a from the heating element extraction electrode 4 to the back electrode 53 via the conductive layer 52, and can reliably melt the soluble conductor 5.

また、保護素子50は、吸引孔51内に可溶導体5と同一若しくは類似の材料又は可溶導体5より融点の低い予備ハンダ55、あるいはフラックスを充填してもよい。保護素子50は、発熱体3が発熱したとき、熱伝導に優れる導電層52や発熱体引出電極4や裏面電極53が絶縁基板2より先に温度が高くなることによって、予備ハンダ55等が可溶導体5より先に溶融し、溶融導体5aを吸引孔51に呼び込むことができる。これにより、溶融導体5aは、絶縁基板2の表面2aから裏面2bに移動し、姿勢に拘わらず、第1の電極11と第2の電極12との間の電流経路を確実に遮断することができる。   Further, the protection element 50 may be filled in the suction hole 51 with the same or similar material as the fusible conductor 5, or preliminary solder 55 having a melting point lower than that of the fusible conductor 5, or a flux. When the heating element 3 generates heat, the protective element 50 can be used as a spare solder 55 or the like because the conductive layer 52, the heating element lead-out electrode 4, and the back electrode 53, which are excellent in heat conduction, are heated before the insulating substrate 2. The molten conductor 5a is melted before the molten conductor 5 and the molten conductor 5a can be drawn into the suction hole 51. Thereby, the molten conductor 5a moves from the front surface 2a of the insulating substrate 2 to the back surface 2b, and can reliably block the current path between the first electrode 11 and the second electrode 12 regardless of the posture. it can.

次いで、本発明の実施例について説明する。本実施例では、絶縁基板上に2つの発熱体が分割配置されるとともに、発熱体引出電極が2つの発熱体間に跨って重畳配置された保護素子(実施例:図1参照)と、絶縁基板上に2つの発熱体が分割配置されるとともに、発熱体引出電極が2つの発熱体間に発熱体と重畳せずに配置された保護素子(比較例:図13参照)を用意し、発熱体の発熱による溶断時間を測定した。   Next, examples of the present invention will be described. In this embodiment, two heating elements are divided and arranged on an insulating substrate, and a heating element lead-out electrode is insulated from a protection element (see Example: FIG. 1) that is arranged so as to overlap between the two heating elements. Two heating elements are separately arranged on the substrate, and a protective element (comparative example: see FIG. 13) is prepared in which the heating element extraction electrode is arranged so as not to overlap the heating element between the two heating elements. The fusing time due to heat generation of the body was measured.

実施例及び比較例に係る保護素子は、いずれも絶縁基板として表面に2つの発熱体が設けられたセラミック基板を用いた。また、第1、第2の電極間にわたって支持される可溶導体として、厚さ0.35mm、幅5.4mmのSn‐Ag‐Cu系金属箔に厚さ6μmのAgメッキ処理を施したものを用いた。可溶導体と各電極とはハンダによって接続した。また、第1、第2の電極は、PPS製の外筐体によって支持した。   In each of the protection elements according to the example and the comparative example, a ceramic substrate having two heating elements on the surface was used as an insulating substrate. Also, as a soluble conductor supported between the first and second electrodes, a Sn-Ag-Cu-based metal foil having a thickness of 0.35 mm and a width of 5.4 mm is subjected to an Ag plating treatment having a thickness of 6 μm. Was used. The soluble conductor and each electrode were connected by solder. The first and second electrodes were supported by an outer casing made of PPS.

これら実施例及び比較例に係る保護素子に対して、32W、100Wの電力を印加し、発熱体の発熱によって可溶導体を溶断させた。測定結果を表1に示す。   Electric power of 32 W and 100 W was applied to the protection elements according to these examples and comparative examples, and the soluble conductor was blown by the heat generated by the heating element. The measurement results are shown in Table 1.

Figure 2015225786
Figure 2015225786

表1に示すように、実施例に係る保護素子では、印加した電力が32W、100Wのいずれの場合も比較例に比して溶断時間が短くなった。一方、比較例に係る保護素子では、100Wの電力を印加した場合に、半数のサンプルで絶縁基板に割れが発生し、可溶導体を溶断することが出来なかった(NG)。   As shown in Table 1, in the protection element according to the example, the fusing time was shortened compared to the comparative example in both cases where the applied power was 32 W and 100 W. On the other hand, in the protective element according to the comparative example, when 100 W of electric power was applied, the insulating substrate was cracked in half of the samples, and the soluble conductor could not be blown (NG).

これは、実施例においては、発熱体引出電極を発熱体に重畳して配置したことから、発熱体引出電極に、絶縁部材を介して各発熱体の熱が効率よく伝わり、速やかに可溶導体を加熱、溶融させることができたことによる。また、実施例では、発熱体の熱がより発熱体引出電極及び可溶導体へ伝わりやすくなることから、100Wの電力を印加した場合にも、絶縁基板に対する熱衝撃も緩和され、絶縁基板や発熱体の割れの発生を防止することができた。   This is because, in the embodiment, the heating element extraction electrode is disposed so as to overlap the heating element, so that heat of each heating element is efficiently transmitted to the heating element extraction electrode via the insulating member, so that the soluble conductor can be promptly used. This is because the material could be heated and melted. Further, in the embodiment, since the heat of the heating element is more easily transmitted to the heating element extraction electrode and the soluble conductor, even when a power of 100 W is applied, the thermal shock to the insulating substrate is reduced, and the insulating substrate and the heat generation are reduced. It was possible to prevent the body from cracking.

一方、比較例においては、発熱体引出電極が2つの発熱体間に発熱体と重畳せずに配置されているため、発熱体引出電極への発熱体からの熱の伝導効率が下がり、実施例に比して溶断時間が延びた。加えて、比較例では、発熱体の熱が絶縁基板に蓄積されやすく、100Wの電力を印加した場合に、絶縁基板に対する熱衝撃が過大となり、半数のサンプルにおいて絶縁基板に割れが発生し可溶導体を溶断することが出来なかった。   On the other hand, in the comparative example, since the heating element extraction electrode is disposed between the two heating elements without overlapping the heating element, the efficiency of heat conduction from the heating element to the heating element extraction electrode is reduced. The fusing time was extended compared to. In addition, in the comparative example, the heat of the heating element is likely to be accumulated on the insulating substrate, and when 100 W of power is applied, the thermal shock to the insulating substrate becomes excessive, and cracking occurs in the insulating substrate in half of the samples and is soluble. The conductor could not be blown.

これより、絶縁基板上に複数の発熱体が分割配置されるとともに、発熱体引出電極を各発熱体間に跨って重畳配置させる構成が、速溶断性、及び絶縁基板に対する熱衝撃を緩和し安定した発熱動作を確保するうえで有効であることが分かる。   As a result, a plurality of heating elements are divided and arranged on the insulating substrate, and the structure in which the heating element extraction electrodes are arranged so as to straddle the heating elements alleviates the fast fusing property and the thermal shock to the insulating substrate and is stable. It can be seen that this is effective in ensuring the heat generation operation.

1 保護素子、2 絶縁基板、3 発熱体、4 発熱体引出電極、5 可溶導体、7 接続材料、10 外筐体、11 第1の電極、12 第2の電極、13 絶縁部材、15 第1の発熱体電極、16 第2の発熱体電極、17 発熱体接続電極、20 スルーホール、30 バッテリパック、31〜34 バッテリセル、35 バッテリスタック、36 検出回路、37 電流制御素子、40 充放電制御回路、41,42 電流制御素子、43 制御部、45 充電装置、50 保護素子、51 吸引孔、52 導電層、53 裏面電極、55 予備ハンダ DESCRIPTION OF SYMBOLS 1 Protection element, 2 Insulating board, 3 Heat generating body, 4 Heat generating body extraction electrode, 5 Soluble conductor, 7 Connection material, 10 Outer housing, 11 1st electrode, 12 2nd electrode, 13 Insulating member, 15 1st 1 heating element electrode, 16 second heating element electrode, 17 heating element connection electrode, 20 through hole, 30 battery pack, 31-34 battery cell, 35 battery stack, 36 detection circuit, 37 current control element, 40 charge / discharge Control circuit 41, 42 Current control element 43 Control unit 45 Charging device 50 Protection element 51 Suction hole 52 Conductive layer 53 Back electrode 55 Preliminary solder

Claims (9)

絶縁基板と、
上記絶縁基板に形成された複数の発熱体と、
複数の上記発熱体と電気的に接続された発熱体引出電極と、
上記発熱体引出電極に支持された可溶導体とを備える保護素子。
An insulating substrate;
A plurality of heating elements formed on the insulating substrate;
A heating element extraction electrode electrically connected to the plurality of heating elements;
A protective element comprising a soluble conductor supported by the heating element extraction electrode.
上記発熱体引出電極は、複数の上記発熱体間に跨って、上記発熱体に重畳して配設されている請求項1記載の保護素子。   The protection element according to claim 1, wherein the heating element extraction electrode is disposed so as to overlap the heating elements across the plurality of heating elements. 上記複数の発熱体は、上記絶縁基板の中央を境に両側に形成され、
上記発熱体引出電極は、上記絶縁基板の中央を跨って配設されている請求項2記載の保護素子。
The plurality of heating elements are formed on both sides with the center of the insulating substrate as a boundary,
The protection element according to claim 2, wherein the heating element extraction electrode is disposed across the center of the insulating substrate.
上記複数の発熱体は、上記可溶導体の配設方向と直交する方向を長手方向とする矩形状をなし、長手方向の一端が上記発熱体引出電極と接続され、長手方向の他端が外部接続電極と接続されている請求項1〜3のいずれか1項に記載の保護素子。   The plurality of heating elements have a rectangular shape whose longitudinal direction is a direction orthogonal to the disposing direction of the soluble conductor, one end in the longitudinal direction is connected to the heating element extraction electrode, and the other end in the longitudinal direction is external The protection element of any one of Claims 1-3 connected with the connection electrode. 上記複数の発熱体の一方側において、上記複数の発熱体間にわたって外部接続電極が設けられ、
上記絶縁基板は、上記複数の発熱体間の領域において、上記外部接続電極を介して外部回路に固定される請求項1〜4のいずれか1項に記載の保護素子。
On one side of the plurality of heating elements, an external connection electrode is provided across the plurality of heating elements,
The protection element according to claim 1, wherein the insulating substrate is fixed to an external circuit via the external connection electrode in a region between the plurality of heating elements.
上記外部接続電極は、上記絶縁基板に形成された導電スルーホールを介して上記発熱体が形成された表面と反対側の裏面に形成された端子部と接続され、上記端子部が上記外部回路に接続される請求項5に記載の保護素子。   The external connection electrode is connected to a terminal portion formed on the back surface opposite to the surface on which the heating element is formed through a conductive through hole formed in the insulating substrate, and the terminal portion is connected to the external circuit. The protection element according to claim 5 to be connected. 上記外部接続電極は、上記発熱体が形成された上記絶縁基板の表面から反対側の裏面に至るハンダブリッジを介して上記外部回路に接続される請求項5に記載の保護素子。   The protection element according to claim 5, wherein the external connection electrode is connected to the external circuit via a solder bridge extending from the surface of the insulating substrate on which the heating element is formed to the back surface on the opposite side. 上記絶縁基板の厚さ方向に設けられ、上記発熱体引出電極と連続し、上記可溶導体が溶融した溶融導体を吸引する吸引孔を備える請求項1〜7のいずれか1項に記載の保護素子。   The protection according to any one of claims 1 to 7, further comprising a suction hole that is provided in a thickness direction of the insulating substrate, is continuous with the heating element extraction electrode, and sucks a molten conductor in which the soluble conductor is melted. element. 1つ以上のバッテリセルと、
上記バッテリセルに流れる電流を遮断するように接続された保護素子と、
上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、
上記保護素子は、
絶縁基板と、
上記絶縁基板に形成された複数の発熱体と、
複数の上記発熱体と電気的に接続された発熱体引出電極と、
上記発熱体引出電極に支持された可溶導体とを備えるバッテリパック。
One or more battery cells;
A protective element connected to cut off the current flowing through the battery cell;
A current control element that detects a voltage value of each of the battery cells and controls a current for heating the protection element;
The protective element is
An insulating substrate;
A plurality of heating elements formed on the insulating substrate;
A heating element extraction electrode electrically connected to the plurality of heating elements;
A battery pack comprising a soluble conductor supported by the heating element extraction electrode.
JP2014110513A 2014-05-28 2014-05-28 Protective element Active JP6576618B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014110513A JP6576618B2 (en) 2014-05-28 2014-05-28 Protective element
KR1020167030565A KR102391560B1 (en) 2014-05-28 2015-05-11 Protective element and battery pack
CN201580026267.0A CN106463312B (en) 2014-05-28 2015-05-11 Protection element and battery component
PCT/JP2015/063428 WO2015182354A1 (en) 2014-05-28 2015-05-11 Protective element and battery pack
TW104116785A TWI681433B (en) 2014-05-28 2015-05-26 Protection device and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110513A JP6576618B2 (en) 2014-05-28 2014-05-28 Protective element

Publications (2)

Publication Number Publication Date
JP2015225786A true JP2015225786A (en) 2015-12-14
JP6576618B2 JP6576618B2 (en) 2019-09-18

Family

ID=54698694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110513A Active JP6576618B2 (en) 2014-05-28 2014-05-28 Protective element

Country Status (5)

Country Link
JP (1) JP6576618B2 (en)
KR (1) KR102391560B1 (en)
CN (1) CN106463312B (en)
TW (1) TWI681433B (en)
WO (1) WO2015182354A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209198A1 (en) * 2019-04-09 2020-10-15 デクセリアルズ株式会社 Protective element
WO2020209071A1 (en) * 2019-04-10 2020-10-15 デクセリアルズ株式会社 Protection element and battery pack
JP2021034362A (en) * 2019-08-29 2021-03-01 デクセリアルズ株式会社 Protection element and battery pack
WO2021210634A1 (en) * 2020-04-17 2021-10-21 デクセリアルズ株式会社 Protective element, and battery pack
CN114270468B (en) * 2019-08-29 2024-06-28 迪睿合株式会社 Protection element and battery pack

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201740605A (en) * 2017-01-23 2017-11-16 Pao-Hsuan Chen Protection element and secondary cell pack comprising plural input-output ends, plural overcurrent protection elements, and a heat-generating component for mobile electronic products with high charging/discharging current
CN109727832A (en) * 2017-10-30 2019-05-07 聚鼎科技股份有限公司 Protection element and its circuit protection device
KR102280596B1 (en) * 2019-11-28 2021-07-22 주식회사 인세코 High current protection element for secondary battery and battery pack including that
TWI700719B (en) * 2019-12-13 2020-08-01 聚鼎科技股份有限公司 Protection device and circuit protection apparatus containing the same
CN114420518B (en) * 2022-03-30 2022-07-19 嘉兴模度新能源有限公司 Vacuum temperature fuse, series battery row, parallel battery row and battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135114A (en) * 2009-03-16 2009-06-18 Sony Chemical & Information Device Corp Protection element
JP2010003665A (en) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp Protection element and secondary battery device
JP2011175893A (en) * 2010-02-25 2011-09-08 Kyocera Corp Resistance temperature fuse package and resistance temperature fuse
JP2011222264A (en) * 2010-04-08 2011-11-04 Sony Chemical & Information Device Corp Protection element, battery controller, and battery pack
JP2011243472A (en) * 2010-05-20 2011-12-01 Kyocera Corp Resistor thermal fuse, and resistor thermal fuse package
JP2014032768A (en) * 2012-08-01 2014-02-20 Dexerials Corp Protective element and battery pack

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704097A1 (en) * 1997-02-04 1998-08-06 Wickmann Werke Gmbh Electrical fuse element
JP2001325869A (en) * 2000-05-17 2001-11-22 Sony Chem Corp Protective element
US7385475B2 (en) * 2002-01-10 2008-06-10 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
JP4663760B2 (en) * 2007-08-20 2011-04-06 内橋エステック株式会社 Secondary battery protection circuit
US8531263B2 (en) * 2009-11-24 2013-09-10 Littelfuse, Inc. Circuit protection device
JP5415318B2 (en) * 2010-02-19 2014-02-12 デクセリアルズ株式会社 Protection circuit, battery control device, and battery pack
JP5656466B2 (en) * 2010-06-15 2015-01-21 デクセリアルズ株式会社 Protective element and method of manufacturing protective element
JP5952674B2 (en) * 2012-08-01 2016-07-13 デクセリアルズ株式会社 Protective element and battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003665A (en) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp Protection element and secondary battery device
JP2009135114A (en) * 2009-03-16 2009-06-18 Sony Chemical & Information Device Corp Protection element
JP2011175893A (en) * 2010-02-25 2011-09-08 Kyocera Corp Resistance temperature fuse package and resistance temperature fuse
JP2011222264A (en) * 2010-04-08 2011-11-04 Sony Chemical & Information Device Corp Protection element, battery controller, and battery pack
JP2011243472A (en) * 2010-05-20 2011-12-01 Kyocera Corp Resistor thermal fuse, and resistor thermal fuse package
JP2014032768A (en) * 2012-08-01 2014-02-20 Dexerials Corp Protective element and battery pack

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173920A (en) * 2019-04-09 2020-10-22 デクセリアルズ株式会社 Protection element
WO2020209198A1 (en) * 2019-04-09 2020-10-15 デクセリアルズ株式会社 Protective element
KR20210134775A (en) * 2019-04-10 2021-11-10 데쿠세리아루즈 가부시키가이샤 Protection element and battery pack
WO2020209071A1 (en) * 2019-04-10 2020-10-15 デクセリアルズ株式会社 Protection element and battery pack
JP2020173965A (en) * 2019-04-10 2020-10-22 デクセリアルズ株式会社 Protection element and battery pack
KR102644822B1 (en) * 2019-04-10 2024-03-08 데쿠세리아루즈 가부시키가이샤 Protection elements and battery packs
CN114270468A (en) * 2019-08-29 2022-04-01 迪睿合株式会社 Protection element and battery pack
WO2021039508A1 (en) * 2019-08-29 2021-03-04 デクセリアルズ株式会社 Protection element, battery pack
US11791116B2 (en) 2019-08-29 2023-10-17 Dexerials Corporation Protecting device and battery pack
JP7390825B2 (en) 2019-08-29 2023-12-04 デクセリアルズ株式会社 Protection element, battery pack
JP2021034362A (en) * 2019-08-29 2021-03-01 デクセリアルズ株式会社 Protection element and battery pack
CN114270468B (en) * 2019-08-29 2024-06-28 迪睿合株式会社 Protection element and battery pack
JP2021174575A (en) * 2020-04-17 2021-11-01 デクセリアルズ株式会社 Protective element and battery pack
WO2021210634A1 (en) * 2020-04-17 2021-10-21 デクセリアルズ株式会社 Protective element, and battery pack
JP7443144B2 (en) 2020-04-17 2024-03-05 デクセリアルズ株式会社 Protection elements and battery packs

Also Published As

Publication number Publication date
JP6576618B2 (en) 2019-09-18
KR20170009840A (en) 2017-01-25
TW201545194A (en) 2015-12-01
KR102391560B1 (en) 2022-04-27
CN106463312B (en) 2019-03-15
CN106463312A (en) 2017-02-22
TWI681433B (en) 2020-01-01
WO2015182354A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6576618B2 (en) Protective element
KR102523229B1 (en) Protection element and mounted body
JP6364243B2 (en) Protective element and battery pack
JP6371118B2 (en) Protective element and battery pack
JP6336725B2 (en) Protective element and protective circuit board using the same
JP6621255B2 (en) Protection element, fuse element
JP2024009983A (en) Protection element and battery pack
JP2016035816A (en) Protective element and protective circuit
JP2015097183A (en) Method of manufacturing soluble conductor
JP6231324B2 (en) Protection circuit board
JP6538936B2 (en) Protective element and battery pack
TWI656554B (en) Blocking element and blocking element circuit
KR102218124B1 (en) Protection element
JP2016018683A (en) Protection element
JP6078332B2 (en) Protection element, battery module
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
JP6231323B2 (en) Protective element and protective circuit board using the same
JP2021174575A (en) Protective element and battery pack
JP2018018835A (en) Protection element and fuse element
JP6223142B2 (en) Short circuit element
WO2015107632A1 (en) Protective element
JP2014127270A (en) Protection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190821

R150 Certificate of patent or registration of utility model

Ref document number: 6576618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250