WO2020209198A1 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
WO2020209198A1
WO2020209198A1 PCT/JP2020/015325 JP2020015325W WO2020209198A1 WO 2020209198 A1 WO2020209198 A1 WO 2020209198A1 JP 2020015325 W JP2020015325 W JP 2020015325W WO 2020209198 A1 WO2020209198 A1 WO 2020209198A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wire
heating element
melting point
point metal
Prior art date
Application number
PCT/JP2020/015325
Other languages
French (fr)
Japanese (ja)
Inventor
幸市 向
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2020209198A1 publication Critical patent/WO2020209198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • H01H85/0445General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified fast or slow type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/12Two or more separate fusible members in parallel

Definitions

  • the present invention relates to a protective element.
  • the present application claims priority based on Japanese Patent Application No. 2019-074011 filed in Japan on April 9, 2019, the contents of which are incorporated herein by reference.
  • a metal wire is used as the fuse element for cutting off the current (Patent Documents 1 to 3).
  • a protective element that cuts off the current path in the event of an abnormality other than the occurrence of overcurrent an element using a heating element (heater) is known.
  • This protective element is configured to blow a fuse element by using the heat generated by the heating element by passing a current through the heating element in the event of an abnormality other than the generation of an overcurrent.
  • a fuse element for blocking heat generation using this heating element a coated structure (soluble conductor) in which the inner layer is a low melting point metal layer and the outer layer is a high melting point metal layer is known (Patent Documents 4 and 5). ).
  • the low melting point metal layer of the inner layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded (eroded) by the generated melt of the low melting point metal and fused.
  • the coating structure also functions as a fuse element for interrupting current by generating heat and melting the low melting point metal layer itself when an overcurrent flows. From this, the protective element having this coating structure has an advantage that both current cutoff and heat generation cutoff can be achieved at the same time.
  • JP-A-2002-373565 Japanese Unexamined Patent Publication No. 63-254634 Japanese Unexamined Patent Publication No. 62-162347 Japanese Unexamined Patent Publication No. 2013-229293 Japanese Unexamined Patent Publication No. 2013-229295
  • the protective element is used, for example, as a protective element for a charge / discharge circuit of a battery pack using a lithium ion secondary battery.
  • Packed batteries using lithium-ion secondary batteries are used in mobile devices such as notebook computers, mobile phones, and smartphones.
  • it has also been used as a power source for driving motors of electric tools, electric bicycles, electric motorcycles and electric vehicles. It is desired that the charging time of mobile devices be shortened, and that the power supply for driving a motor is desired to have a short charging time and a high output. Therefore, the amount of current flowing through the charge / discharge circuit of the battery pack tends to increase.
  • a protective element that can quickly cut off the current path when an overcurrent occurs or other abnormality is desired.
  • an abnormality other than the occurrence of overcurrent occurs, such as a voltage fluctuation due to the battery life. Therefore, it is desirable that the protective element used in the charge / discharge circuit has a high interruption speed due to heat generation interruption.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a protective element having a high blocking speed by blocking heat generation.
  • the present invention provides the following means for solving the above problems.
  • the protective element according to the first aspect of the present invention includes an insulating substrate, a first electrode and a second electrode provided on at least one surface of the insulating substrate, and at least one of the insulating substrates.
  • One of the heating element provided on the surface of the above, the first heating element electrode and the second heating element electrode connected to the heating element, and the first heating element electrode and the second heating element electrode.
  • a third electrode connected to one side, a low melting point metal arranged on the surface of the third electrode, and at least one fuse element wire connecting the first electrode and the second electrode.
  • the low melting point metal is in contact with at least a part of the fuse element wire, and by melting the low melting point metal, at least a part of the fuse element wire in contact with the low melting point metal. Is configured to be eroded and lysed.
  • the low melting point metal may be configured to contain tin.
  • the fuse element wire may be configured to contain copper, silver or gold.
  • FIG. 3 is a sectional view taken along line III-III of FIG.
  • FIG. 5 is a sectional view taken along line VI-VI of FIG.
  • FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. It is a schematic plan view which shows the example of the protection element which concerns on 4th Embodiment of this invention.
  • 9 is a cross-sectional view taken along line XX of FIG. It is a schematic plan view which shows the example of the protection element which concerns on 5th Embodiment of this invention.
  • FIG. 11 is a sectional view taken along line XII-XII of FIG.
  • FIG. 1 is a schematic plan view showing a preferable example of the protective element according to the first embodiment of the present invention
  • FIG. 2 is an example of arrangement of electrodes and a heating element of the protective element according to the first embodiment of the present invention.
  • 3 is a schematic plan view showing the above, and FIG. 3 is a sectional view taken along line III-III of FIG. Note that the solders 41 and 42 are omitted in FIG.
  • the combination of the first short wire 31 and the second short wire 32 forms a fuse element wire connecting the first electrode 11 and the second electrode 12.
  • the fuse element wire may be considered as a wire that generates heat and blows when an overcurrent occurs to cut off the current.
  • the heating element 20 may be arranged directly on the insulating substrate 10, but is not limited to this example.
  • the insulating substrate 10 has a rectangular shape in a plan view, and a first electrode 11 and a second electrode 12 are formed on a pair of opposite end portions, and a first heat generation is generated on the other pair of opposite end portions.
  • a body electrode 13 and a second heating element electrode 14 are formed.
  • the insulating substrate 10, the first electrode 11, and the second electrode 12 are not in direct contact with each other.
  • the first heating element electrode 13 and the second heating element electrode 14 are directly contacted with each other at both ends of the heating element 20. However, these may be indirect connections as long as they are connected.
  • FIG. 2 may be considered as a configuration in the process of forming the protective element of FIG.
  • the insulating substrate 10 is not particularly limited as long as it is made of a material having insulating properties, and can be arbitrarily selected.
  • substrates used for printed wiring boards such as ceramic substrates and glass epoxy substrates, glass substrates, resin substrates, insulated metal substrates, and the like can be preferably used.
  • a ceramic substrate which is an insulating substrate having excellent heat resistance and good thermal conductivity, is particularly suitable.
  • the shape and size of the insulating substrate 10 may be selected in terms of thickness as needed, and may have one or more through holes as needed.
  • the thickness of the insulating substrate 10 is preferably constant, but is not limited to this example.
  • the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may be formed on two main surfaces of the insulating substrate 10, that is, the upper surface 10a and the lower surface 10b, respectively. it can.
  • the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may each be formed from a combination of two electrodes.
  • the combination of the two electrodes may have a conductive portion in between.
  • the first electrode 11a on the upper surface side and the first electrode 11b on the lower surface side may be connected via the first conductive portion 11s
  • the second electrode 12a on the upper surface side and the lower surface may be connected.
  • the second electrode 12b on the side may be connected via the second conductive portion 12s.
  • the heating element 20 (heater) is made of a high-resistance conductive material that has relatively high resistance and generates heat when energized.
  • the heating element 20 can be arbitrarily selected.
  • a resistance paste composed of a conductive material such as ruthenium oxide or carbon black and an inorganic binder such as water glass or an organic binder such as a thermosetting resin is prepared. May be formed by applying and, if necessary, firing.
  • a thin film such as ruthenium oxide or carbon black may be formed through the steps of printing, plating, vapor deposition, and sputtering, and further, the heating element 20 is formed by attaching or laminating these films. You may.
  • the heating element 20 is preferably covered with an insulating member 21.
  • the heating element 20 may cover the entire exposed surface of the insulating member 21.
  • a third electrode 16 is arranged on the upper surface of the insulating member 21. That is, the insulating member 21 is preferably arranged between the heating element 20 and the third electrode 16.
  • the third electrode 16 is connected to the second heating element electrode 14 via a leader wire 15. When the heating element 20 generates heat, the heat is transferred to the third electrode 16 via the second heating element electrode 14 and the leader wire 15.
  • the thickness of the first heating element electrode 13 and the second heating element electrode 14 can be arbitrarily selected, and may be the same as or larger than the thickness of the heating element 20.
  • At least a part of the first heating element electrode 13 and the second heating element electrode 14 may be covered with the insulating member 21, or may not be covered at all. In a plan view, it is preferable that the heating element, the insulating member, the low melting point metal, and the fuse element wire overlap each other.
  • the material of the insulating member 21 can be arbitrarily selected, and for example, an insulating material such as ceramics or glass can be used.
  • the insulating member 21 can be formed, for example, by forming a paste of an insulating material, applying the paste, and firing the paste.
  • the material of the leader wire 15 and the third electrode 16 can be arbitrarily selected, but the same materials as those of the first heating element electrode 13 and the second heating element electrode 14 can be used.
  • a method of preparing a metal or alloy paste, applying the same, and firing as necessary similarly to the first heating element electrode 13 and the second heating element electrode 14, a method of preparing a metal or alloy paste, applying the same, and firing as necessary. It can also be formed by a known method used as an electrode forming method such as vapor deposition or sputtering.
  • the low melting point metal 30 can be arbitrarily selected, but the melting point is within the range of the heating temperature (usually about 220 ° C.) or more at the time of reflow performed when mounting the protective element 1a and 280 ° C. or less. It is preferable to have.
  • the low melting point metal include Sn—Sb alloy, Bi—Sn—Pb alloy, Bi—Pb alloy, Bi—Sn alloy, Sn—Pb alloy, Sn—Ag alloy, Pb-In alloy, Zn—Al alloy, and the like.
  • the straight line connecting the first electrode and the second electrode and the fuse element wire intersect each other on the insulating substrate in a plan view, but they do not have to intersect.
  • the angle at which the straight line and the wire intersect can be arbitrarily selected, and may be, for example, 0 to 45 degrees, 0 to 10 degrees, or 10 to 45 degrees. It is desirable that the temperature is 0 to 10 degrees because the height can be reduced, that is, the element can be made thin, and the distance between the first electrode and the second electrode can be shortened. However, it is not limited to these examples.
  • FIG. 4 is a schematic circuit diagram showing a configuration of a protection circuit using the protection element 1a according to the first embodiment.
  • the first short wire 31 or the second short wire 32 When an overcurrent occurs in the protection circuit 2, the first short wire 31 or the second short wire 32 generates heat due to the overcurrent and blows, thereby interrupting the current path of the protection circuit 2 (current cutoff). ).
  • FIG. 7 is a schematic plan view showing an example of a protective element according to a third embodiment of the present invention
  • FIG. 8 is a sectional view taken along line VIII-VIII of FIG.
  • the fuse element wire is a long wire 33 that directly connects the first electrode 11 and the second electrode 12. Is different from the protective element 1a according to the first embodiment.
  • the parts common to the protective element 1c of the third embodiment and the protective element 1a of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heat generated by the heating element 20 is transferred in the same manner as in the case of the protective element 1b according to the second embodiment. Further, the material of the long wire 33, the method of connecting the long wire 33 to the first electrode 11 and / or the second electrode 12, and the method of contacting the long wire 33 with the low melting point metal 30 are described in the third method. This is the same as the case of the protective element 1c of the embodiment.
  • FIG. 11 is a schematic plan view showing an example of a protective element according to a fifth embodiment of the present invention
  • FIG. 12 is a sectional view taken along line XII-XII of FIG.
  • the protective element 1e according to the fifth embodiment shown in FIGS. 11 to 12 has a plurality of long wires 33 and the low melting point metal 30 is connected to the plurality of long wires 33.
  • the parts common to the protective element 1e of the fourth embodiment and the protective element 1c of the third embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the protective element 1e of the fifth embodiment has a plurality of long wires 33, even if the diameter of each long wire 33 is reduced, the first electrode 11 and the second electrode 12 are connected. The capacity of the current that can flow between them can be increased. Then, by reducing the diameter of each long wire 33, the time until the long wire 33 is eroded by the melt of the low melting point metal 30 and melted can be shortened.
  • the number of long wires 33 can be arbitrarily selected. The number may be 1 to 20, 1 to 10, 1 to 6, or 1 to 3, but the number is not limited to these examples.
  • the current path can be cut off by cutting off the current, and when an abnormality other than the occurrence of the overcurrent occurs, the current is cut off by heat generation.
  • the route can be blocked.
  • the cutoff time due to current cutoff and the cutoff time due to heat generation cutoff can be adjusted by adjusting the diameter and the number of parallel wires of the fuse element wires (first short wire 31, second short wire 32, and / or long wire 33). it can. Further, the cutoff time due to heat generation cutoff can be adjusted by the type of the fuse element wire and the low melting point metal 30.
  • the fuse element wire is only partially in contact with the low melting point metal 30 arranged on the third electrode 16. Therefore, for example, the fuse element wire is not easily deformed even when the low melting point metal 30 is partially melted by heating at the time of reflow performed when the protective element 1a is mounted.
  • the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 are formed on the upper surface 10a and the lower surface 10b of the insulating substrate 10, respectively. I explained it as if it were. However, the present invention is not limited to this.
  • the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may be formed on at least one of the upper surface 10a and the lower surface 10b of the insulating substrate 10. ..
  • the third electrode 16 has been described as being connected to the second heating element electrode 14 via the leader wire 15.
  • the third electrode 16 may be connected to the first heating element electrode 13.
  • Example 1 the protective element 1c according to the third embodiment shown in FIGS. 7 to 8 was produced.
  • a rectangular insulating substrate 10 (size: 3 ⁇ 4 mm) was prepared.
  • a first electrode 11 and a second electrode 12 are formed on a pair of facing ends of an insulating substrate, and a first heating element electrode is formed on the other pair of facing ends. 13 and a second heating element electrode 14 were formed.
  • the heating element 20 was arranged on the insulating substrate 10 so as to be in contact with the first heating element electrode 13 and the second heating element electrode 14.
  • the surface of the heating element was covered with an insulating member.
  • a third electrode 16 was formed on the surface of the insulating member.
  • a leader wire 15 connecting them was formed between the third electrode 16 and the second heating element electrode 14.
  • the first electrode 11 and the second electrode 12 are connected as a long wire 33 by using one silver wire (diameter D: 0.05 mm, length L: 0.5 mm). did.
  • the connection between the first electrode 11 and the second electrode 12 and the silver wire was performed by a ball bonding method.
  • a melt of the low melting point metal 30 (tin alloy) is applied onto the third electrode 16 and solidified to prepare a protective element. did.
  • Cross-sectional area S (diameter D / 2) x (diameter D / 2) x ⁇
  • Cut portion volume ratio is a relative value with the cut portion volume of Example 1 as 1.
  • the specific surface area ratio is a relative value with the surface area of Example 1 as 100%.
  • Protective element 2 Protective circuit 10 Insulated substrate 10a Upper surface 10b Lower surface 11 First electrode 11a Upper surface side first electrode 11b Lower surface side first electrode 11s First conductive part 12 Second Electrode 12a Second electrode on the upper surface side 12b Second electrode on the lower surface side 12s Second conductive part 13 First heating element electrode 14 Second heating element electrode 15 Leader wire 16 Third electrode 20 Heating element 21 Insulation Member 30 Low melting point metal 31 First short wire 32 Second short wire 33 Long wire 41, 42, 43, 44 Solder part 51 Lithium ion secondary battery 52 Switching element 53 Control element

Abstract

A protective element (1a), having: an insulated substrate (10); a first electrode (11) and a second electrode (12) provided on the upper surface (10a) of the insulated substrate (10); a heating element provided on the upper surface (10a) of the insulated substrate (10); a first heating element electrode (13) and a second heating element electrode (14) connected to the heating element; a third electrode (16) connected to the second heating element electrode (14) through a draw-out line (15); a low-melting-point metal (30) disposed on the third electrode (16); a first short wire (31) connecting between the first electrode (11) and the low-melting-point metal (30); and a second short wire (32) connecting between the second electrode (12) and the low-melting-point metal (30). The protective element is configured so that the low-melting-point metal (30) melts, thereby corroding and melting a part of the first short wire (31) and the second short wire (32) in contact with the low-melting-point metal (30).

Description

保護素子Protective element
 本発明は、保護素子に関する。
 本願は、2019年4月9日に、日本に出願された特願2019-074011号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a protective element.
The present application claims priority based on Japanese Patent Application No. 2019-074011 filed in Japan on April 9, 2019, the contents of which are incorporated herein by reference.
 定格電流を超える過電流が発生したときに電流経路を遮断する保護素子として、ヒューズエレメント自体が発熱して溶断することによって電流経路を遮断する素子が知られている。この電流遮断用のヒューズエレメントとしては、金属ワイヤー(金属細線)が用いられている(特許文献1~3)。 As a protective element that cuts off the current path when an overcurrent exceeding the rated current occurs, an element that cuts off the current path by generating heat and blowing the fuse element itself is known. A metal wire (thin metal wire) is used as the fuse element for cutting off the current (Patent Documents 1 to 3).
 また、過電流の発生以外の異常時に電流経路を遮断する保護素子として、発熱体(ヒーター)を用いた素子が知られている。この保護素子は、過電流の発生以外の異常時に、発熱体に電流を流すことによって、発熱体が発熱した熱を利用してヒューズエレメントを破断するように構成されている。この発熱体を用いた発熱遮断用のヒューズエレメントとして、内層が低融点金属層で、外層が高融点金属層とされた被覆構造体(可溶導体)が知られている(特許文献4、5)。この被覆構造体は、発熱体が発熱した熱によって内層の低融点金属層が溶融し、生成した低融点金属の溶融物に高融点金属層が浸食(溶食)されて、溶断される。なお、被覆構造体は、過電流が流れたときは低融点金属層自体が発熱して溶融することによって、電流遮断用のヒューズエレメントとしても機能する。このことから、この被覆構造体を有する保護素子は、電流遮断と発熱遮断を両立できるという利点がある。 Further, as a protective element that cuts off the current path in the event of an abnormality other than the occurrence of overcurrent, an element using a heating element (heater) is known. This protective element is configured to blow a fuse element by using the heat generated by the heating element by passing a current through the heating element in the event of an abnormality other than the generation of an overcurrent. As a fuse element for blocking heat generation using this heating element, a coated structure (soluble conductor) in which the inner layer is a low melting point metal layer and the outer layer is a high melting point metal layer is known (Patent Documents 4 and 5). ). In this coating structure, the low melting point metal layer of the inner layer is melted by the heat generated by the heating element, and the high melting point metal layer is eroded (eroded) by the generated melt of the low melting point metal and fused. The coating structure also functions as a fuse element for interrupting current by generating heat and melting the low melting point metal layer itself when an overcurrent flows. From this, the protective element having this coating structure has an advantage that both current cutoff and heat generation cutoff can be achieved at the same time.
特開2002-373565号公報JP-A-2002-373565 特開昭63-254634号公報Japanese Unexamined Patent Publication No. 63-254634 特開昭62-162347号公報Japanese Unexamined Patent Publication No. 62-162347 特開2013-229293号公報Japanese Unexamined Patent Publication No. 2013-229293 特開2013-229295号公報Japanese Unexamined Patent Publication No. 2013-229295
 保護素子は例えば、リチウムイオン二次電池を使用した電池パックの充放電回路の保護素子として採用されている。リチウムイオン二次電池を使用したパック電池は、ノートパソコン、携帯電話、スマートフォンなどのモバイル機器において利用されている。また、近年では電動工具、電動自転車、電動バイク及び電気自動車などのモータ駆動用電源としても利用されている。モバイル機器では充電時間の短縮化が望まれており、また、モータ駆動用電源では充電時間の短縮化と共に高出力が望まれている。従って、電池パックの充放電回路を流れる電流量は大きくなる傾向にある。このため、電池パックの充放電回路においては過電流の発生やその他の異常時に、速やかに電流経路を遮断できる保護素子が望まれている。特に、電池パックの充放電回路では、電池の寿命による電圧の変動など、過電流の発生以外の異常が発生するケースが想定される。このため、充放電回路に用いる保護素子は、発熱遮断による遮断速度が速いことが望ましい。 The protective element is used, for example, as a protective element for a charge / discharge circuit of a battery pack using a lithium ion secondary battery. Packed batteries using lithium-ion secondary batteries are used in mobile devices such as notebook computers, mobile phones, and smartphones. In recent years, it has also been used as a power source for driving motors of electric tools, electric bicycles, electric motorcycles and electric vehicles. It is desired that the charging time of mobile devices be shortened, and that the power supply for driving a motor is desired to have a short charging time and a high output. Therefore, the amount of current flowing through the charge / discharge circuit of the battery pack tends to increase. Therefore, in the charge / discharge circuit of the battery pack, a protective element that can quickly cut off the current path when an overcurrent occurs or other abnormality is desired. In particular, in the charge / discharge circuit of the battery pack, it is assumed that an abnormality other than the occurrence of overcurrent occurs, such as a voltage fluctuation due to the battery life. Therefore, it is desirable that the protective element used in the charge / discharge circuit has a high interruption speed due to heat generation interruption.
 本発明は、上記の事情に鑑みてなされたものであり、発熱遮断による遮断速度が速い保護素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a protective element having a high blocking speed by blocking heat generation.
 本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means for solving the above problems.
(1)本発明の第一の態様に係る保護素子は、絶縁基板と、前記絶縁基板の少なくとも一方の表面上に設けられた第1の電極及び第2の電極と、前記絶縁基板の少なくとも一方の表面上に設けられた発熱体と、前記発熱体に接続する第1の発熱体電極及び第2の発熱体電極と、前記第1の発熱体電極及び前記第2の発熱体電極のいずれか一方に接続する第3の電極と、前記第3の電極の表面上に配置された低融点金属と、前記第1の電極と前記第2の電極とを接続する少なくとも1本のヒューズエレメントワイヤーと、を有し、前記低融点金属は、前記ヒューズエレメントワイヤーの少なくとも一部と接触し、前記低融点金属が溶融することによって、前記低融点金属と接触している前記ヒューズエレメントワイヤーの少なくとも一部が溶食されて、溶断されるように構成されている。 (1) The protective element according to the first aspect of the present invention includes an insulating substrate, a first electrode and a second electrode provided on at least one surface of the insulating substrate, and at least one of the insulating substrates. One of the heating element provided on the surface of the above, the first heating element electrode and the second heating element electrode connected to the heating element, and the first heating element electrode and the second heating element electrode. A third electrode connected to one side, a low melting point metal arranged on the surface of the third electrode, and at least one fuse element wire connecting the first electrode and the second electrode. , And the low melting point metal is in contact with at least a part of the fuse element wire, and by melting the low melting point metal, at least a part of the fuse element wire in contact with the low melting point metal. Is configured to be eroded and lysed.
(2)上記(1)に記載の態様において、前記ヒューズエレメントワイヤーの直径が、0.01mm以上0.20mm以下の範囲内にある構成としてもよい。
(3)上記(1)又は(2)に記載の態様において、前記ヒューズエレメントワイヤーは、前記第1の電極と前記低融点金属との間を接続する第1短尺ワイヤーと、前記第2の電極と前記低融点金属との間を接続する第2短尺ワイヤーとを含む構成としてもよい。
(4)上記(1)又は(2)に記載の態様において、前記ヒューズエレメントワイヤーは、前記第1の電極と前記第2の電極との間を接続する長尺ワイヤーを含む構成としてもよい。
(2) In the embodiment described in (1) above, the fuse element wire may have a diameter in the range of 0.01 mm or more and 0.20 mm or less.
(3) In the embodiment described in (1) or (2) above, the fuse element wire includes a first short wire connecting between the first electrode and the low melting point metal, and the second electrode. The configuration may include a second short wire connecting the low melting point metal and the low melting point metal.
(4) In the embodiment described in (1) or (2) above, the fuse element wire may include a long wire connecting between the first electrode and the second electrode.
(5)上記(1)~(4)のいずれか一つに記載の態様において、前記低融点金属は、錫を含む構成としてもよい。
(6)上記(1)~(5)のいずれか一つに記載の態様において、前記ヒューズエレメントワイヤーは、銅、銀または金を含む構成としてもよい。
(5) In the embodiment according to any one of (1) to (4) above, the low melting point metal may be configured to contain tin.
(6) In the embodiment described in any one of (1) to (5) above, the fuse element wire may be configured to contain copper, silver or gold.
 本発明によれば、発熱遮断による遮断速度が速い保護素子を提供することができる。 According to the present invention, it is possible to provide a protective element having a high blocking speed by blocking heat generation.
本発明の第1実施形態に係る保護素子の例を示す概略平面図である。It is a schematic plan view which shows the example of the protection element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る保護素子の電極および発熱体の配置の例を示す概略平面図である。It is a schematic plan view which shows the example of the arrangement of the electrode of the protection element and the heating element which concerns on 1st Embodiment of this invention. 図1のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 本発明の第1実施形態に係る保護素子を用いた保護回路の構成の例を示す概略回路図である。It is a schematic circuit diagram which shows the example of the structure of the protection circuit using the protection element which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る保護素子の例を示す概略平面図である。It is a schematic plan view which shows the example of the protection element which concerns on 2nd Embodiment of this invention. 図5のVI-VI線断面図である。FIG. 5 is a sectional view taken along line VI-VI of FIG. 本発明の第3実施形態に係る保護素子の例を示す概略平面図である。It is a schematic plan view which shows the example of the protection element which concerns on 3rd Embodiment of this invention. 図7のVIII-VIII線断面図である。FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 本発明の第4実施形態に係る保護素子の例を示す概略平面図である。It is a schematic plan view which shows the example of the protection element which concerns on 4th Embodiment of this invention. 図9のX-X線断面図である。9 is a cross-sectional view taken along line XX of FIG. 本発明の第5実施形態に係る保護素子の例を示す概略平面図である。It is a schematic plan view which shows the example of the protection element which concerns on 5th Embodiment of this invention. 図11のXII-XII線断面図である。FIG. 11 is a sectional view taken along line XII-XII of FIG.
 以下、本発明に係る保護素子の本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。本発明の趣旨を逸脱しない範囲で、位置、数、比率、種類、大きさ、形状等について、変更、省略、追加、置換、その他の変更が可能である。各実施形態において、互いに好ましい例を共有しても良い。 Hereinafter, the present embodiment of the protective element according to the present invention will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, the featured portion may be enlarged for convenience in order to make the feature easy to understand, and the dimensional ratio of each component may be different from the actual one. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the present invention are exhibited. The position, number, ratio, type, size, shape, etc. can be changed, omitted, added, replaced, or otherwise changed without departing from the spirit of the present invention. In each embodiment, preferred examples may be shared with each other.
[第1実施形態]
 図1は、本発明の第1実施形態に係る保護素子の好ましい例を示す概略平面図であり、図2は、本発明の第1実施形態に係る保護素子の電極および発熱体の配置の例を示す概略平面図であり、図3は、図1のIII-III線断面図である。なお図3において半田41及び42は記載を省略されている。
[First Embodiment]
FIG. 1 is a schematic plan view showing a preferable example of the protective element according to the first embodiment of the present invention, and FIG. 2 is an example of arrangement of electrodes and a heating element of the protective element according to the first embodiment of the present invention. 3 is a schematic plan view showing the above, and FIG. 3 is a sectional view taken along line III-III of FIG. Note that the solders 41 and 42 are omitted in FIG.
 図1~3に示す第1実施形態の保護素子1aは、絶縁基板10と、絶縁基板10の上面10a上に設けられた第1の電極11及び第2の電極12と、絶縁基板10の上面10a上に設けられた発熱体20と、発熱体20に接続する第1の発熱体電極13及び第2の発熱体電極14と、第2の発熱体電極14に引出線15を介して接続する第3の電極16と、第3の電極16上に配置された低融点金属30と、第1の電極11と低融点金属30との間を接続する第1短尺ワイヤー31と、第2の電極12と低融点金属30との間を接続する第2短尺ワイヤー32とを有する。第1短尺ワイヤー31と第2短尺ワイヤー32との組み合わせが、第1の電極11と第2の電極12とを接続するヒューズエレメントワイヤーを形成する。前記ヒューズエレメントワイヤーは、過電流が発生したときに発熱し溶断して、電流遮断を行うワイヤーとして考えてよい。発熱体20は、絶縁基板10上に直接配置されてよいが、この例のみに限定されない。 The protective element 1a of the first embodiment shown in FIGS. 1 to 3 includes an insulating substrate 10, a first electrode 11 and a second electrode 12 provided on the upper surface 10a of the insulating substrate 10, and an upper surface of the insulating substrate 10. The heating element 20 provided on the 10a, the first heating element electrode 13 and the second heating element electrode 14 connected to the heating element 20, and the second heating element electrode 14 are connected via a leader wire 15. The third electrode 16, the low melting point metal 30 arranged on the third electrode 16, the first short wire 31 connecting between the first electrode 11 and the low melting point metal 30, and the second electrode. It has a second short wire 32 that connects between the 12 and the low melting point metal 30. The combination of the first short wire 31 and the second short wire 32 forms a fuse element wire connecting the first electrode 11 and the second electrode 12. The fuse element wire may be considered as a wire that generates heat and blows when an overcurrent occurs to cut off the current. The heating element 20 may be arranged directly on the insulating substrate 10, but is not limited to this example.
 絶縁基板10は平面視で矩形状であり、一組の対向する両端部に第1の電極11及び第2の電極12が形成され、他方の一組の対向する両端部には第1の発熱体電極13及び第2の発熱体電極14が形成されている。絶縁基板10と第1の電極11及び第2の電極12は互いに直接は接触していない。図2に示すように、発熱体20の対向する両端部に、第1の発熱体電極13と第2の発熱体電極14が、直接接触することで接続されている。ただし接続さえしていれば、これらは間接的な接続でもよい。図2は、図1の保護素子を形成する途中の構成と考えても良い。 The insulating substrate 10 has a rectangular shape in a plan view, and a first electrode 11 and a second electrode 12 are formed on a pair of opposite end portions, and a first heat generation is generated on the other pair of opposite end portions. A body electrode 13 and a second heating element electrode 14 are formed. The insulating substrate 10, the first electrode 11, and the second electrode 12 are not in direct contact with each other. As shown in FIG. 2, the first heating element electrode 13 and the second heating element electrode 14 are directly contacted with each other at both ends of the heating element 20. However, these may be indirect connections as long as they are connected. FIG. 2 may be considered as a configuration in the process of forming the protective element of FIG.
 絶縁基板10としては、絶縁性を有する材質のものであれば特に制限されず、任意に選択できる。例えば、セラミックス基板やガラスエポキシ基板のようなプリント配線基板に用いられる基板の他、ガラス基板、樹脂基板、絶縁処理金属基板等を好ましく用いることができる。なお、これらの中で、耐熱性に優れ、熱良伝導性の絶縁基板であるセラミックス基板が特に好適である。絶縁基板10の形状やサイズは厚さも必要に応じて選択してよく、必要に応じて1つ以上の貫通孔を有してよい。絶縁基板10の厚さは一定であることが好ましいが、この例のみに限定されない。 The insulating substrate 10 is not particularly limited as long as it is made of a material having insulating properties, and can be arbitrarily selected. For example, in addition to substrates used for printed wiring boards such as ceramic substrates and glass epoxy substrates, glass substrates, resin substrates, insulated metal substrates, and the like can be preferably used. Of these, a ceramic substrate, which is an insulating substrate having excellent heat resistance and good thermal conductivity, is particularly suitable. The shape and size of the insulating substrate 10 may be selected in terms of thickness as needed, and may have one or more through holes as needed. The thickness of the insulating substrate 10 is preferably constant, but is not limited to this example.
 第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14は、比較的抵抗が低い低抵抗導電性材料から好ましく形成されている。低抵抗導電性材料としては、Cuなどの金属単体や、少なくとも表面がAg、Ag-Pt、Ag-Pd、Au等から形成されているものを好ましく用いることができる。第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14は、任意に選択される方法で形成できる。例えば、これら金属あるいは合金のペーストを塗布し、必要に応じて焼成する方法や、蒸着、スパッタなどの電極の形成方法として利用されている公知の方法によって、前記電極を形成することができる。 The first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 are preferably formed from a low resistance conductive material having a relatively low resistance. As the low resistance conductive material, a simple substance such as Cu or a material whose surface is at least formed of Ag, Ag-Pt, Ag-Pd, Au or the like can be preferably used. The first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 can be formed by an arbitrarily selected method. For example, the electrode can be formed by a method of applying a paste of these metals or alloys and firing as necessary, or a known method used as an electrode forming method such as thin film deposition or sputtering.
 第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14はそれぞれ、絶縁基板10の2つの主面、すなわち上面10aと下面10bに形成することができる。言い換えると、第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14は、それぞれ2つの電極の組み合わせから、形成されてもよい。2つの電極の組み合わせはその間に導通部を有してよい。例えば、図3に示すように、上面側の第1の電極11aと下面側の第1の電極11bは第1導通部11sを介して接続されてよく、上面側の第2の電極12aと下面側の第2の電極12bは第2導通部12sを介して接続されてよい。なお、第1の発熱体電極13及び第2の発熱体電極14も同様に、上面側の電極と下面側の電極が導通部を介して接続してよい。第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14はそれぞれ、はんだ部41~44が設けられていてよく、はんだ部41~44を介して、前記電極が保護回路に接続及び/又は固定されてよい。 The first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may be formed on two main surfaces of the insulating substrate 10, that is, the upper surface 10a and the lower surface 10b, respectively. it can. In other words, the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may each be formed from a combination of two electrodes. The combination of the two electrodes may have a conductive portion in between. For example, as shown in FIG. 3, the first electrode 11a on the upper surface side and the first electrode 11b on the lower surface side may be connected via the first conductive portion 11s, and the second electrode 12a on the upper surface side and the lower surface may be connected. The second electrode 12b on the side may be connected via the second conductive portion 12s. Similarly, in the first heating element electrode 13 and the second heating element electrode 14, the upper surface side electrode and the lower surface side electrode may be connected via a conductive portion. The first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may be provided with solder portions 41 to 44, respectively, via the solder portions 41 to 44. , The electrodes may be connected and / or fixed to the protection circuit.
 発熱体20(ヒーター)は、比較的抵抗が高く、通電すると発熱する高抵抗導電性材料から形成されている。発熱体20は任意に選択できるが、例えば、酸化ルテニウムやカーボンブラック等の導電性材料と、水ガラス等の無機系バインダや熱硬化性樹脂等の有機系バインダとからなる抵抗ペーストを用意しこれを塗布し、必要に応じて焼成することによって形成されてよい。また、発熱体20としては、酸化ルテニウムやカーボンブラック等の薄膜を、印刷、メッキ、蒸着、スパッタの工程を経て形成してもよく、さらに、これらフィルムの貼付や積層等によって発熱体20を形成してもよい。 The heating element 20 (heater) is made of a high-resistance conductive material that has relatively high resistance and generates heat when energized. The heating element 20 can be arbitrarily selected. For example, a resistance paste composed of a conductive material such as ruthenium oxide or carbon black and an inorganic binder such as water glass or an organic binder such as a thermosetting resin is prepared. May be formed by applying and, if necessary, firing. Further, as the heating element 20, a thin film such as ruthenium oxide or carbon black may be formed through the steps of printing, plating, vapor deposition, and sputtering, and further, the heating element 20 is formed by attaching or laminating these films. You may.
 発熱体20は、絶縁部材21で好ましく覆われている。発熱体20は絶縁部材21の露出する表面を全て覆ってもよい。絶縁部材21の上面には第3の電極16が配置されている。すなわち、前記発熱体20と、前記第3の電極16の間に、絶縁部材21が好ましく配置される。第3の電極16は、引出線15を介して第2の発熱体電極14と接続している。発熱体20が発熱したときは、その熱が第2の発熱体電極14と引出線15を介して、第3の電極16に伝わるように構成されている。第1の発熱体電極13や第2の発熱体電極14の厚さは任意に選択でき、発熱体20の厚さと比較して、同じであってもよく、または大きくても良い。第1の発熱体電極13や第2の発熱体電極14は、少なくともその一部が絶縁部材21で覆われてもよいし、又は全く覆われなくても良い。
 平面視で、前記発熱体と、前記絶縁部材と、前記低融点金属と、前記ヒューズエレメントワイヤーとが、互いに重なる位置があることが好ましい。
The heating element 20 is preferably covered with an insulating member 21. The heating element 20 may cover the entire exposed surface of the insulating member 21. A third electrode 16 is arranged on the upper surface of the insulating member 21. That is, the insulating member 21 is preferably arranged between the heating element 20 and the third electrode 16. The third electrode 16 is connected to the second heating element electrode 14 via a leader wire 15. When the heating element 20 generates heat, the heat is transferred to the third electrode 16 via the second heating element electrode 14 and the leader wire 15. The thickness of the first heating element electrode 13 and the second heating element electrode 14 can be arbitrarily selected, and may be the same as or larger than the thickness of the heating element 20. At least a part of the first heating element electrode 13 and the second heating element electrode 14 may be covered with the insulating member 21, or may not be covered at all.
In a plan view, it is preferable that the heating element, the insulating member, the low melting point metal, and the fuse element wire overlap each other.
 絶縁部材21の材料としては任意に選択でき、例えば、セラミックス、ガラスなどの絶縁材料を用いることができる。絶縁部材21は、例えば、絶縁材料のペーストを形成しこれを塗布し、焼成する方法によって形成することができる。 The material of the insulating member 21 can be arbitrarily selected, and for example, an insulating material such as ceramics or glass can be used. The insulating member 21 can be formed, for example, by forming a paste of an insulating material, applying the paste, and firing the paste.
 引出線15及び第3の電極16の材料としては任意に選択できるが、第1の発熱体電極13及び第2の発熱体電極14と同じものを用いることができる。引出線15及び第3の電極16は、第1の発熱体電極13及び第2の発熱体電極14と同様に、金属あるいは合金のペーストを用意しこれを塗布し、必要に応じて焼成する方法や、蒸着、スパッタなどの電極の形成方法として利用されている公知の方法によって、形成することができる。 The material of the leader wire 15 and the third electrode 16 can be arbitrarily selected, but the same materials as those of the first heating element electrode 13 and the second heating element electrode 14 can be used. As for the leader wire 15 and the third electrode 16, similarly to the first heating element electrode 13 and the second heating element electrode 14, a method of preparing a metal or alloy paste, applying the same, and firing as necessary. It can also be formed by a known method used as an electrode forming method such as vapor deposition or sputtering.
 低融点金属30は任意に選択できるが、融点が、保護素子1aを実装する際に行なわれるリフロー時の加熱温度(通常は、約220℃)以上であって、かつ280℃以下の範囲内にあることが好ましい。低融点金属としては、例えば、Sn-Sb合金、Bi-Sn-Pb合金、Bi-Pb合金、Bi-Sn合金、Sn-Pb合金、Sn-Ag合金、Pb-In合金、Zn-Al合金、In-Sn合金、Pb-Ag-Sn合金、Sn-Ag-Cu合金、SN-Ag-Ni合金、SN-Ag-Cu-Ni合金、Sn-Ag-Cu-Bi-Ni合金、Sn-Cu合金、Sn-Bi-Cu合金、Sn-Pb-Sb合金等を用いることができる。これらの合金の中では、錫(Sn)を含む錫合金が好ましい。前記低融点金属30は、前記発熱体20が発熱した熱によって溶融し、前記ヒューズエレメントワイヤーを溶断して発熱遮断を行う、金属部として考えてもよい。 The low melting point metal 30 can be arbitrarily selected, but the melting point is within the range of the heating temperature (usually about 220 ° C.) or more at the time of reflow performed when mounting the protective element 1a and 280 ° C. or less. It is preferable to have. Examples of the low melting point metal include Sn—Sb alloy, Bi—Sn—Pb alloy, Bi—Pb alloy, Bi—Sn alloy, Sn—Pb alloy, Sn—Ag alloy, Pb-In alloy, Zn—Al alloy, and the like. In-Sn alloy, Pb-Ag-Sn alloy, Sn-Ag-Cu alloy, SN-Ag-Ni alloy, SN-Ag-Cu-Ni alloy, Sn-Ag-Cu-Bi-Ni alloy, Sn-Cu alloy , Sn—Bi—Cu alloy, Sn—Pb—Sb alloy and the like can be used. Among these alloys, a tin alloy containing tin (Sn) is preferable. The low melting point metal 30 may be considered as a metal portion that melts due to the heat generated by the heating element 20 and blows the fuse element wire to block heat generation.
 第1短尺ワイヤー31及び第2短尺ワイヤー32は任意に選択できるが、融点が低融点金属30の融点よりも高く、かつ、低融点金属30が溶融した溶融物に溶食され得るものであることが好ましい。例えば、低融点金属30が錫を含む場合は、前記ワイヤーとして、銅ワイヤーあるいは銀ワイヤーまたは金ワイヤーを用いることが好ましい。 The first short wire 31 and the second short wire 32 can be arbitrarily selected, but the melting point is higher than the melting point of the low melting point metal 30, and the low melting point metal 30 can be eroded by the molten melt. Is preferable. For example, when the low melting point metal 30 contains tin, it is preferable to use a copper wire, a silver wire, or a gold wire as the wire.
 第1短尺ワイヤー31及び第2短尺ワイヤー32は、ワイヤーの直径によって、ワイヤーを流れる電流の容量を変えることができる。このため、直径により電流遮断時の特性を調整することができる。また、ワイヤーの直径によって、ワイヤーが低融点金属30の溶融物に溶食されて溶断されるまでの時間を変えることができる。このため、直径により発熱遮断時の特性を調整することができる。第1短尺ワイヤー31及び第2短尺ワイヤー32は直径を任意に選択できるが、ワイヤー直径が0.01mm以上0.20mm以下の範囲内にあることが好ましく、0.01mm以上0.10mm以下の範囲内にあることがより好ましく、0.02mm以上0.05mm以下の範囲内にあることが特に好ましい。ワイヤー直径が大きくなりすぎると、ワイヤーが低融点金属30の溶融物に溶食されて溶断されるまでの時間が長くなりすぎるおそれがある。一方、ワイヤー直径が小さくなりすぎると、ワイヤーに流せる電流容量が少なくなりすぎる。また、ワイヤーを並列して、電極間を接続するワイヤーの本数を増やすことによって、電極間に流せる電流容量を確保できる。ただし、低融点金属30の溶融物によって低融点(リフロー時の加熱温度)でワイヤーの一部が溶食されて溶断されると、電極間に流せる電流量が少なるおそれがある。第1短尺ワイヤー31及び第2短尺ワイヤー32の長さは任意に選択できる。例えば、0.1~5.0mmや、0.2~3.0mmや、0.2~1.0mmや、1.0~3.0mmなどであってもよい。ただしこれらの例のみに限定されない。短尺とは長さが短いことを意味する。前記ワイヤーは、例えば、その全長さが、絶縁基板の最も長い辺又は最も短い辺よりも短くてもよい。第1短尺ワイヤー31及び第2短尺ワイヤー32の長さは互いに同じであっても又は異なっていても良い。直線であってもよく、直線部分及び/又は曲線部分を有してよく、必要に応じて1以上の曲げられた箇所を有してもよい。曲線部分を有してもよく又は有さなくてもよい。 The first short wire 31 and the second short wire 32 can change the capacity of the current flowing through the wire depending on the diameter of the wire. Therefore, the characteristics at the time of current interruption can be adjusted by the diameter. Further, depending on the diameter of the wire, the time until the wire is eroded by the melt of the low melting point metal 30 and melted can be changed. Therefore, the characteristics at the time of heat generation cutoff can be adjusted by the diameter. The diameter of the first short wire 31 and the second short wire 32 can be arbitrarily selected, but the wire diameter is preferably in the range of 0.01 mm or more and 0.20 mm or less, and preferably in the range of 0.01 mm or more and 0.10 mm or less. It is more preferable that it is inside, and it is particularly preferable that it is within the range of 0.02 mm or more and 0.05 mm or less. If the wire diameter becomes too large, the time required for the wire to be eroded by the melt of the low melting point metal 30 and to be melted may become too long. On the other hand, if the wire diameter becomes too small, the current capacity that can flow through the wire becomes too small. Further, by arranging the wires in parallel and increasing the number of wires connecting the electrodes, it is possible to secure the current capacity that can flow between the electrodes. However, if a part of the wire is eroded and fractured at a low melting point (heating temperature at the time of reflow) by the melt of the low melting point metal 30, the amount of current that can flow between the electrodes may be reduced. The lengths of the first short wire 31 and the second short wire 32 can be arbitrarily selected. For example, it may be 0.1 to 5.0 mm, 0.2 to 3.0 mm, 0.2 to 1.0 mm, 1.0 to 3.0 mm, or the like. However, it is not limited to these examples. Short means that the length is short. The wire may, for example, have a total length shorter than the longest or shortest side of the insulating substrate. The lengths of the first short wire 31 and the second short wire 32 may be the same as or different from each other. It may be a straight line, may have a straight line portion and / or a curved line portion, and may have one or more bent portions as required. It may or may not have a curved portion.
 第1短尺ワイヤー31と第1の電極11及び/又は第3の電極16を接続する方法、及び、第2短尺ワイヤー32と第2の電極12及び/又は第3の電極16を接続する方法としては任意に選択でき、ボールボンディング法、ウェッジボンディング法、はんだ付け法などの、金属板とワイヤーとを接続する方法として利用されている公知の方法を用いることができる。第1短尺ワイヤー31と第3の電極16及び第2短尺ワイヤー32と第3の電極16を、はんだ付け法により接続する場合は、はんだ材として低融点金属30を好ましく用いることができる。
 前記第1の電極と前記第2の電極を結ぶ直線と、前記ヒューズエレメントワイヤーとが、平面視で、前記絶縁基板上で、互いに交わることが好ましいが、交わらなくても良い。前記直線と前記ワイヤーが交わる角度は任意に選択できるが、例えば、0~45度であってもよく、0~10度や、10~45度であってもよい。0~10度であることが、低背化でき、すなわち素子を薄くすることができ、また前記第1の電極と前記第2の電極の距離が短縮できるため望ましい。ただしこれらの例のみに限定されない。
As a method of connecting the first short wire 31 to the first electrode 11 and / or the third electrode 16, and a method of connecting the second short wire 32 to the second electrode 12 and / or the third electrode 16. Can be arbitrarily selected, and known methods such as a ball bonding method, a wedge bonding method, and a soldering method, which are used as a method for connecting a metal plate and a wire, can be used. When the first short wire 31 and the third electrode 16 and the second short wire 32 and the third electrode 16 are connected by a soldering method, a low melting point metal 30 can be preferably used as the solder material.
It is preferable that the straight line connecting the first electrode and the second electrode and the fuse element wire intersect each other on the insulating substrate in a plan view, but they do not have to intersect. The angle at which the straight line and the wire intersect can be arbitrarily selected, and may be, for example, 0 to 45 degrees, 0 to 10 degrees, or 10 to 45 degrees. It is desirable that the temperature is 0 to 10 degrees because the height can be reduced, that is, the element can be made thin, and the distance between the first electrode and the second electrode can be shortened. However, it is not limited to these examples.
 次に、第1実施形態に係る保護素子1aを用いた保護回路の構成と電流遮断動作について説明する。図4は、第1実施形態に係る保護素子1aを用いた保護回路の構成を示す概略回路図である。 Next, the configuration of the protection circuit using the protection element 1a and the current cutoff operation according to the first embodiment will be described. FIG. 4 is a schematic circuit diagram showing a configuration of a protection circuit using the protection element 1a according to the first embodiment.
 図4に示す保護回路2は、リチウムイオン二次電池51の電池パックに組み込まれている。保護素子1aの第1の電極11と第2の電極12は、正極側電源ラインに接続されている。保護素子1aの第1の発熱体電極13は、スイッチング素子52を介して、負極側電源ラインに接続されている。スイッチング素子52は、電界効果トランジスタ(FET)により構成され、制御素子53に接続されている。制御素子53は、過電流の発生以外の異常を検出し、異常が検出された場合には、スイッチング素子52を作動させる。例えば、制御素子53は、リチウムイオン二次電池51の電圧を計測し、リチウムイオン二次電池51の電圧が異常値になった場合には、スイッチング素子52を作動させる。 The protection circuit 2 shown in FIG. 4 is incorporated in the battery pack of the lithium ion secondary battery 51. The first electrode 11 and the second electrode 12 of the protective element 1a are connected to the positive electrode side power supply line. The first heating element electrode 13 of the protection element 1a is connected to the negative electrode side power supply line via the switching element 52. The switching element 52 is composed of a field effect transistor (FET) and is connected to the control element 53. The control element 53 detects an abnormality other than the occurrence of an overcurrent, and when the abnormality is detected, operates the switching element 52. For example, the control element 53 measures the voltage of the lithium ion secondary battery 51, and when the voltage of the lithium ion secondary battery 51 becomes an abnormal value, the switching element 52 is operated.
 保護回路2において、過電流が発生した場合は、第1短尺ワイヤー31あるいは第2短尺ワイヤー32が、その過電流によって発熱して溶断することによって、保護回路2の電流経路を遮断する(電流遮断)。 When an overcurrent occurs in the protection circuit 2, the first short wire 31 or the second short wire 32 generates heat due to the overcurrent and blows, thereby interrupting the current path of the protection circuit 2 (current cutoff). ).
 一方、保護回路2において、過電流の発生以外の異常が発生した場合は、制御素子53がスイッチング素子52を作動させて、発熱体20に電流を流す。電流が流れることによって、発熱体20は発熱し、その熱は、第2の発熱体電極14と引出線15とを介して、第3の電極16に伝わっていく。そして、第3の電極16に伝わった熱によって、第3の電極16上に配置された低融点金属30が加熱されて溶融する。そして生成した低融点金属30の溶融物により、第1短尺ワイヤー31及び第2短尺ワイヤー32が溶食されて、溶断されることによって、保護回路2の電流経路を遮断する(発熱遮断)。すなわち発熱体は、過電流の発生以外の異常が検出されたときに電流が流され、発熱することができる。 On the other hand, when an abnormality other than the occurrence of an overcurrent occurs in the protection circuit 2, the control element 53 operates the switching element 52 to pass a current through the heating element 20. When a current flows, the heating element 20 generates heat, and the heat is transferred to the third electrode 16 via the second heating element electrode 14 and the leader wire 15. Then, the heat transferred to the third electrode 16 heats and melts the low melting point metal 30 arranged on the third electrode 16. Then, the melt of the low melting point metal 30 generated erodes the first short wire 31 and the second short wire 32 and cuts the current path of the protection circuit 2 (heat generation cutoff). That is, the heating element can generate heat by passing a current when an abnormality other than the occurrence of an overcurrent is detected.
 以上のような構成された本実施形態の保護素子1aは、ヒューズエレメントワイヤーとして、直径の小さい第1短尺ワイヤー31及び第2短尺ワイヤー32を使用することができる。よって、電流遮断と発熱遮断の両者に対して遮断速度を速くすることができる。特に、第1短尺ワイヤー31及び第2短尺ワイヤー32の端部は、第3の電極16上に配置された低融点金属30に直接接続しており、熱が伝わりやすい。このため、発熱遮断時の溶食が進みやすく、遮断速度が速くなる。また、短尺のワイヤーは、電極に固定しやすい。さらに、本実施形態の保護素子1aでは、ヒューズエレメントワイヤーが第3の電極16の上に配置された低融点金属30に部分的に接触しているだけである。よって、例えば、保護素子1aを実装する際に行なわれるリフロー時の加熱によって、低融点金属30が部分的に溶融した場合でも、ヒューズエレメントワイヤーが変形しにくい。 As the protective element 1a of the present embodiment configured as described above, the first short wire 31 and the second short wire 32 having a small diameter can be used as the fuse element wire. Therefore, the breaking speed can be increased for both the current cutoff and the heat generation cutoff. In particular, the ends of the first short wire 31 and the second short wire 32 are directly connected to the low melting point metal 30 arranged on the third electrode 16, and heat is easily transferred. Therefore, erosion is likely to proceed when heat is cut off, and the cutoff speed becomes high. Further, the short wire is easy to be fixed to the electrode. Further, in the protective element 1a of the present embodiment, the fuse element wire is only partially in contact with the low melting point metal 30 arranged on the third electrode 16. Therefore, for example, the fuse element wire is not easily deformed even when the low melting point metal 30 is partially melted by heating at the time of reflow performed when the protective element 1a is mounted.
[第2実施形態]
 図5は、本発明の第2実施形態に係る保護素子の例を示す概略平面図であり、図6は、図5のVI-VI線断面図である。
 図5~6に示す第2実施形態に係る保護素子1bは、発熱体20と、発熱体20を被覆する絶縁部材21が絶縁基板10の下面10bに配置されている点において、第1実施形態に係る保護素子1aと相違する。第1の発熱体電極13及び第2の発熱体電極14の厚さは、前記配置に応じて、第1実施形態の厚さと異なってよい。なお、第2実施形態の保護素子1bと第1実施形態の保護素子1aとで共通する部分は、同一の符号を付して説明を省略する。
[Second Embodiment]
FIG. 5 is a schematic plan view showing an example of a protective element according to a second embodiment of the present invention, and FIG. 6 is a sectional view taken along line VI-VI of FIG.
The protective element 1b according to the second embodiment shown in FIGS. 5 to 6 has the first embodiment in that the heating element 20 and the insulating member 21 covering the heating element 20 are arranged on the lower surface 10b of the insulating substrate 10. It is different from the protection element 1a according to the above. The thickness of the first heating element electrode 13 and the second heating element electrode 14 may be different from the thickness of the first embodiment depending on the arrangement. The parts common to the protective element 1b of the second embodiment and the protective element 1a of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 発熱体20は、絶縁基板10の下面10bに形成されている。発熱体20は、絶縁基板10の下面10bに形成されている一方の第1の発熱体電極13及び一方の第2の発熱体電極14(不図示)と接続している。第3の電極16は、絶縁基板10の上面10aに形成されている他方の第2の発熱体電極14と引出線15を介して接続している。第2実施形態の保護素子1bでは、発熱体20が発熱したときは、その熱が絶縁基板10の下面10bに形成されている第2の発熱体電極14から、導通部(不図示)を介して、絶縁基板10の上面10aに形成されている第2の発熱体電極14に伝わる。そして、その熱が、引出線15を介して、第3の電極16に伝わるように構成されている。 The heating element 20 is formed on the lower surface 10b of the insulating substrate 10. The heating element 20 is connected to one first heating element electrode 13 and one second heating element electrode 14 (not shown) formed on the lower surface 10b of the insulating substrate 10. The third electrode 16 is connected to the other second heating element electrode 14 formed on the upper surface 10a of the insulating substrate 10 via a leader wire 15. In the protection element 1b of the second embodiment, when the heating element 20 generates heat, the heat is transferred from the second heating element electrode 14 formed on the lower surface 10b of the insulating substrate 10 via a conductive portion (not shown). The heat is transmitted to the second heating element electrode 14 formed on the upper surface 10a of the insulating substrate 10. Then, the heat is configured to be transferred to the third electrode 16 via the leader wire 15.
[第3実施形態]
 図7は、本発明の第3実施形態に係る保護素子の例を示す概略平面図であり、図8は、図7のVIII-VIII線断面図である。
 図7~8に示す第3実施形態に係る保護素子1cは、ヒューズエレメントワイヤーが、第1の電極11と第2の電極12とを直接接続する1本の長尺ワイヤー33とされている点において、第1実施形態に係る保護素子1aと相違する。なお、第3実施形態の保護素子1cと第1実施形態の保護素子1aとで共通する部分は、同一の符号を付して説明を省略する。
[Third Embodiment]
FIG. 7 is a schematic plan view showing an example of a protective element according to a third embodiment of the present invention, and FIG. 8 is a sectional view taken along line VIII-VIII of FIG.
In the protective element 1c according to the third embodiment shown in FIGS. 7 to 8, the fuse element wire is a long wire 33 that directly connects the first electrode 11 and the second electrode 12. Is different from the protective element 1a according to the first embodiment. The parts common to the protective element 1c of the third embodiment and the protective element 1a of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 長尺ワイヤー33は、第1実施形態の保護素子1aの第1短尺ワイヤー31及び第2短尺ワイヤー32と同様に、融点が低融点金属30の融点よりも高く、かつ、低融点金属30が溶融した溶融物に溶食され得るワイヤーであることが好ましい。長尺ワイヤー33のワイヤー直径は任意に選択できるが、0.01mm以上0.20mm以下の範囲内にあることが好ましく、ワイヤー直径が0.01mm以上0.10mm以下の範囲内にあることがより好ましく、0.02mm以上0.05mm以下の範囲内にあることが特に好ましい。長尺ワイヤー33としては、例えば、低融点金属30が錫を含む場合は、前記ワイヤーとして、銅ワイヤーあるいは銀ワイヤーまたは金ワイヤーを用いることが好ましい。また、長尺ワイヤー33と第1の電極11及び/又は第2の電極12を接続する方法としては任意に選択でき、ボールボンディング法、ウェッジボンディング法、はんだ付け法などの、金属板とワイヤーとを接続する方法として利用されている公知の方法を用いることができる。長尺ワイヤー33の長さは任意に選択できる。例えば、0.1~5.0mmや、0.2~3.0mmであってもよく、0.2mm~1.0mmや、1.0~3.0mmなどであってもよい。ただしこれらの例のみに限定されない。長尺とは長さが長いことを意味する。前記ワイヤーは、例えば、その全長さが、絶縁基板の最も長い辺、又は最も短い辺よりも短くてもよい。ワイヤーは直線であってもよく、又は必要に応じて1以上の曲げられた箇所を有してもよい。曲線部分を有してもよく又は有さなくてもよい。 Like the first short wire 31 and the second short wire 32 of the protective element 1a of the first embodiment, the long wire 33 has a melting point higher than the melting point of the low melting point metal 30, and the low melting point metal 30 is melted. It is preferable that the wire can be eroded by the melt. The wire diameter of the long wire 33 can be arbitrarily selected, but it is preferably in the range of 0.01 mm or more and 0.20 mm or less, and the wire diameter is preferably in the range of 0.01 mm or more and 0.10 mm or less. It is preferable that it is in the range of 0.02 mm or more and 0.05 mm or less. As the long wire 33, for example, when the low melting point metal 30 contains tin, it is preferable to use a copper wire, a silver wire, or a gold wire as the wire. Further, the method of connecting the long wire 33 to the first electrode 11 and / or the second electrode 12 can be arbitrarily selected, and a metal plate and a wire such as a ball bonding method, a wedge bonding method, and a soldering method can be used. A known method used as a method for connecting the solder can be used. The length of the long wire 33 can be arbitrarily selected. For example, it may be 0.1 to 5.0 mm, 0.2 to 3.0 mm, 0.2 mm to 1.0 mm, 1.0 to 3.0 mm, or the like. However, it is not limited to these examples. Long means long. For example, the total length of the wire may be shorter than the longest side or the shortest side of the insulating substrate. The wire may be straight or may have one or more bent points as required. It may or may not have a curved portion.
 長尺ワイヤー33は、第3の電極16上に配置された低融点金属30と接触している。長尺ワイヤー33と低融点金属30とを接触及び/又は固定させる方法としては任意に選択できるが、例えば、最初に、長尺ワイヤー33と第1の電極11又は第2の電極12を接続し、長尺ワイヤー33の一部を、第3の電極16に押し当てた状態で、低融点金属30の溶融物を第3の電極16上に塗布して、固化させる方法を用いることができる。 The long wire 33 is in contact with the low melting point metal 30 arranged on the third electrode 16. The method of contacting and / or fixing the long wire 33 and the low melting point metal 30 can be arbitrarily selected. For example, first, the long wire 33 is connected to the first electrode 11 or the second electrode 12. A method can be used in which a part of the long wire 33 is pressed against the third electrode 16 and a melt of the low melting point metal 30 is applied onto the third electrode 16 to solidify it.
 以上のような構成された本実施形態の保護素子1cは、ヒューズエレメントワイヤーとして、直径の小さい長尺ワイヤー33を使用する。よって、電流遮断と発熱遮断の両者に対して遮断速度を速くすることができる。また、第1の電極11と第2の電極12とを一つの長尺ワイヤー33で接続することによって、第1短尺ワイヤー31及び第2短尺ワイヤー32を用いた場合と比較して、接続箇所が少なくなる。このため、導電抵抗値のばらつきが低減できると共に、加工時間を短くできる。さらに、本実施形態の保護素子1cは、長尺ワイヤー33が第3の電極16の上に配置された低融点金属30に部分的に接触しているだけである。よって、例えば、保護素子1c実装する際に行なわれるリフロー時の加熱によって、低融点金属30が部分的に溶融した場合でも、長尺ワイヤー33が変形しにくい。 The protective element 1c of the present embodiment configured as described above uses a long wire 33 having a small diameter as the fuse element wire. Therefore, the breaking speed can be increased for both the current cutoff and the heat generation cutoff. Further, by connecting the first electrode 11 and the second electrode 12 with one long wire 33, the connection location can be changed as compared with the case where the first short wire 31 and the second short wire 32 are used. Less. Therefore, the variation in the conductive resistance value can be reduced and the processing time can be shortened. Further, in the protective element 1c of the present embodiment, the long wire 33 is only partially in contact with the low melting point metal 30 arranged on the third electrode 16. Therefore, for example, even if the low melting point metal 30 is partially melted by heating at the time of reflow performed when the protective element 1c is mounted, the long wire 33 is not easily deformed.
[第4実施形態]
 図9は、本発明の第4実施形態に係る保護素子の例を示す概略平面図であり、図10は、図9のX-X線断面図である。
 図9~10に示す第4実施形態に係る保護素子1dは、短尺ワイヤーを用いた第2実施形態に係る保護素子1bと比較すると、ヒューズエレメントワイヤーが、第1の電極11と第2の電極12とを直接接続する1本の長尺ワイヤー33とされている点において相違する。また、第3実施形態に係る保護素子1cと比較すると、発熱体20と、発熱体20を被覆する絶縁部材21が、絶縁基板10の下面10bに配置されている点において相違する。なお、第4実施形態の保護素子1dと第2実施形態に係る保護素子1b及び第3実施形態の保護素子1cとで共通する部分は、同一の符号を付して説明を省略する。
[Fourth Embodiment]
9 is a schematic plan view showing an example of a protective element according to a fourth embodiment of the present invention, and FIG. 10 is a sectional view taken along line XX of FIG.
In the protective element 1d according to the fourth embodiment shown in FIGS. 9 to 10, the fuse element wire has the first electrode 11 and the second electrode as compared with the protective element 1b according to the second embodiment using the short wire. It differs in that it is a single long wire 33 that directly connects to 12. Further, as compared with the protective element 1c according to the third embodiment, the heating element 20 and the insulating member 21 covering the heating element 20 are different in that they are arranged on the lower surface 10b of the insulating substrate 10. The parts common to the protection element 1d of the fourth embodiment, the protection element 1b according to the second embodiment, and the protection element 1c of the third embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 第4実施形態に係る保護素子1dにおいて、発熱体20で発熱した熱の伝わり方は、第2実施形態に係る保護素子1bの場合と同じである。また、長尺ワイヤー33の材料、長尺ワイヤー33と第1の電極11及び/又は第2の電極12の接続方法、長尺ワイヤー33と低融点金属30とを接触される方法は、第3実施形態の保護素子1cの場合と同じである。 In the protective element 1d according to the fourth embodiment, the heat generated by the heating element 20 is transferred in the same manner as in the case of the protective element 1b according to the second embodiment. Further, the material of the long wire 33, the method of connecting the long wire 33 to the first electrode 11 and / or the second electrode 12, and the method of contacting the long wire 33 with the low melting point metal 30 are described in the third method. This is the same as the case of the protective element 1c of the embodiment.
[第5実施形態]
 図11は、本発明の第5実施形態に係る保護素子の例を示す概略平面図であり、図12は、図11のXII-XII線断面図である。
 図11~12に示す第5実施形態に係る保護素子1eは、長尺ワイヤー33が複数本とされている点において、また低融点金属30が複数の長尺ワイヤー33と接続している点において、第3実施形態に係る保護素子1cと相違する。なお、第4実施形態の保護素子1eと第3実施形態の保護素子1cとで共通する部分は、同一の符号を付して説明を省略する。
[Fifth Embodiment]
FIG. 11 is a schematic plan view showing an example of a protective element according to a fifth embodiment of the present invention, and FIG. 12 is a sectional view taken along line XII-XII of FIG.
The protective element 1e according to the fifth embodiment shown in FIGS. 11 to 12 has a plurality of long wires 33 and the low melting point metal 30 is connected to the plurality of long wires 33. , Different from the protective element 1c according to the third embodiment. The parts common to the protective element 1e of the fourth embodiment and the protective element 1c of the third embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 第5実施形態の保護素子1eでは、長尺ワイヤー33が複数本とされているので、個々の長尺ワイヤー33の直径を小さくしても、第1の電極11と第2の電極12との間に流せる電流の容量を多くすることができる。そして、個々の長尺ワイヤー33の直径を細くすることによって、長尺ワイヤー33が低融点金属30の溶融物によって浸食されて、溶断されるまでの時間を短くすることができる。長尺ワイヤー33の数は任意に選択できる。1~20本であってもよく、1~10本であってもよく、1~6本や、1~3本であってもよいが、これらの例のみに限定されない。 Since the protective element 1e of the fifth embodiment has a plurality of long wires 33, even if the diameter of each long wire 33 is reduced, the first electrode 11 and the second electrode 12 are connected. The capacity of the current that can flow between them can be increased. Then, by reducing the diameter of each long wire 33, the time until the long wire 33 is eroded by the melt of the low melting point metal 30 and melted can be shortened. The number of long wires 33 can be arbitrarily selected. The number may be 1 to 20, 1 to 10, 1 to 6, or 1 to 3, but the number is not limited to these examples.
 以上に述べたように本実施形態の保護素子1a~1eによれば、過電流が発生したときは電流遮断によって電流経路を遮断することができ、過電流の発生以外の異常時には発熱遮断により電流経路を遮断することができる。また、電流遮断による遮断時間や発熱遮断による遮断時間を、ヒューズエレメントワイヤー(第1短尺ワイヤー31、第2短尺ワイヤー32、及び/又は、長尺ワイヤー33)の直径や並列本数によって調整することができる。さらに、発熱遮断による遮断時間は、ヒューズエレメントワイヤーと低融点金属30の種類によって調整することができる。 As described above, according to the protection elements 1a to 1e of the present embodiment, when an overcurrent occurs, the current path can be cut off by cutting off the current, and when an abnormality other than the occurrence of the overcurrent occurs, the current is cut off by heat generation. The route can be blocked. Further, the cutoff time due to current cutoff and the cutoff time due to heat generation cutoff can be adjusted by adjusting the diameter and the number of parallel wires of the fuse element wires (first short wire 31, second short wire 32, and / or long wire 33). it can. Further, the cutoff time due to heat generation cutoff can be adjusted by the type of the fuse element wire and the low melting point metal 30.
 また、本実施形態の保護素子1a~1eでは、ヒューズエレメントワイヤーが第3の電極16の上に配置された低融点金属30に部分的に接触しているだけである。よって、例えば、保護素子1aを実装する際に行なわれるリフロー時の加熱によって、低融点金属30が部分的に溶融した場合でも、ヒューズエレメントワイヤーが変形しにくい。 Further, in the protective elements 1a to 1e of the present embodiment, the fuse element wire is only partially in contact with the low melting point metal 30 arranged on the third electrode 16. Therefore, for example, the fuse element wire is not easily deformed even when the low melting point metal 30 is partially melted by heating at the time of reflow performed when the protective element 1a is mounted.
 なお、本実施形態では、第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14はそれぞれ、絶縁基板10の上面10aと下面10bに形成されているものとして説明した。しかしながら、本発明はこれに限定されるものではない。第1の電極11、第2の電極12、第1の発熱体電極13及び第2の発熱体電極14は、絶縁基板10の上面10aと下面10bのいずれか少なくとも一方に形成されていればよい。 In the present embodiment, the first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 are formed on the upper surface 10a and the lower surface 10b of the insulating substrate 10, respectively. I explained it as if it were. However, the present invention is not limited to this. The first electrode 11, the second electrode 12, the first heating element electrode 13 and the second heating element electrode 14 may be formed on at least one of the upper surface 10a and the lower surface 10b of the insulating substrate 10. ..
 また、本実施形態では、第3の電極16は、引出線15を介して第2の発熱体電極14に接続しているものとして説明した。しかしながら、本発明はこれに限定されるものではない。第3の電極16は、第1の発熱体電極13に接続していてもよい。 Further, in the present embodiment, the third electrode 16 has been described as being connected to the second heating element electrode 14 via the leader wire 15. However, the present invention is not limited to this. The third electrode 16 may be connected to the first heating element electrode 13.
 次に、本発明を実施例により説明する。 Next, the present invention will be described by way of examples.
[実施例1]
 実施例1では、図7~8に示す第3実施形態に係る保護素子1cを作製した。
 まず、矩形の絶縁基板10(サイズ:3×4mm)を用意した。図に示すように、絶縁基板の一組の対向する両端部に、第1の電極11及び第2の電極12を形成し、他方の一組の対向する両端部に、第1の発熱体電極13及び第2の発熱体電極14を形成した。第1の発熱体電極13及び第2の発熱体電極14に接するように、絶縁基板10上に発熱体20を配置した。
[Example 1]
In Example 1, the protective element 1c according to the third embodiment shown in FIGS. 7 to 8 was produced.
First, a rectangular insulating substrate 10 (size: 3 × 4 mm) was prepared. As shown in the figure, a first electrode 11 and a second electrode 12 are formed on a pair of facing ends of an insulating substrate, and a first heating element electrode is formed on the other pair of facing ends. 13 and a second heating element electrode 14 were formed. The heating element 20 was arranged on the insulating substrate 10 so as to be in contact with the first heating element electrode 13 and the second heating element electrode 14.
 次に、発熱体の表面を絶縁部材で被覆した。絶縁部材の表面に第3の電極16を形成した。第3の電極16と第2の発熱体電極14との間に、これらを接続する引出線15を形成した。 Next, the surface of the heating element was covered with an insulating member. A third electrode 16 was formed on the surface of the insulating member. A leader wire 15 connecting them was formed between the third electrode 16 and the second heating element electrode 14.
 次に、第1の電極11と第2の電極12との間を、長尺ワイヤー33として、1本の銀ワイヤー(直径D:0.05mm、長さL:0.5mm)を用いて接続した。第1の電極11及び第2の電極12と銀ワイヤーとの接続は、ボールボンディング法により行なった。そして、最後に銀ワイヤーの第3の電極16に押し当てた状態で、低融点金属30(錫合金)の溶融物を第3の電極16上に塗布して、固化させて、保護素子を作製した。 Next, the first electrode 11 and the second electrode 12 are connected as a long wire 33 by using one silver wire (diameter D: 0.05 mm, length L: 0.5 mm). did. The connection between the first electrode 11 and the second electrode 12 and the silver wire was performed by a ball bonding method. Finally, in a state of being pressed against the third electrode 16 of the silver wire, a melt of the low melting point metal 30 (tin alloy) is applied onto the third electrode 16 and solidified to prepare a protective element. did.
[実施例2]
 第1の電極11と第2の電極12とを接続する長尺ワイヤー33としての銀ワイヤーの本数を2本とし、銀ワイヤーとして、直径D:0.035mm、長さL:0.5mmのものを用いたこと以外は、実施例1と同様にして保護素子を作製した。
[Example 2]
The number of silver wires as the long wire 33 connecting the first electrode 11 and the second electrode 12 is two, and the silver wires have a diameter of D: 0.035 mm and a length of L: 0.5 mm. A protective element was produced in the same manner as in Example 1 except that the above was used.
[実施例3]
  第1の電極11と第2の電極12とを接続する長尺ワイヤー33としての銀ワイヤーの本数を4本とし、銀ワイヤーとして、直径D:0.025mm、長さL:0.5mmのものを用いたこと以外は、実施例1と同様にして保護素子を作製した。
[Example 3]
The number of silver wires as the long wire 33 connecting the first electrode 11 and the second electrode 12 is 4, and the silver wires have a diameter of D: 0.025 mm and a length of L: 0.5 mm. A protective element was produced in the same manner as in Example 1 except that the above was used.
[評価]
(1)作製した保護素子の銀ワイヤーについて、下記の物性を算出した。その結果を表1に示す。
[Evaluation]
(1) The following physical properties were calculated for the produced silver wire of the protective element. The results are shown in Table 1.
 断面積S:下記の式より算出した。
 断面積S=(直径D/2)×(直径D/2)×π
Cross-sectional area S: Calculated from the following formula.
Cross-sectional area S = (diameter D / 2) x (diameter D / 2) x π
 切断部長さ:銀ワイヤーが電流もしくは発熱体加熱によって切断したときの、切断部位の長さである。切断部長さは0.1mmとした。 Cut part length: The length of the cut part when the silver wire is cut by electric current or heating element heating. The length of the cut portion was 0.1 mm.
 切断部体積:切断部体積は、電流もしくは発熱体加熱によって切断したときの切断部位の体積である。切断部体積は下記の式より算出した。
 切断部体積=断面積S×切断部長さ×銀ワイヤー本数
Cut part volume: The cut part volume is the volume of the cut part when cut by an electric current or heating element. The volume of the cut portion was calculated from the following formula.
Cut volume = cross-sectional area S x cut length x number of silver wires
 切断部体積比:切断部体積比は、実施例1の切断部体積を1とした相対値である。 Cut portion volume ratio: The cut portion volume ratio is a relative value with the cut portion volume of Example 1 as 1.
 導体抵抗:導体抵抗は、銀ワイヤーの長さ方向の抵抗値である。導体抵抗は下記の式より算出した。
 導体抵抗=銀の比抵抗(1.62×10-5Ω・mm)×長さL/断面積S
Conductor resistance: Conductor resistance is the resistance value in the length direction of the silver wire. The conductor resistance was calculated from the following formula.
Conductor resistance = Silver specific resistance (1.62 x 10-5 Ω · mm) x length L / cross-sectional area S
 表面積:表面積は、銀ワイヤー全体の表面積である。表面積は下記の式より算出した。 表面積=直径R×π×長さL×銀ワイヤー本数 Surface area: The surface area is the surface area of the entire silver wire. The surface area was calculated from the following formula. Surface area = diameter R x π x length L x number of silver wires
 表面積比:比表面積比は、実施例1の表面積を100%とした相対値である。 Surface area ratio: The specific surface area ratio is a relative value with the surface area of Example 1 as 100%.
(2)電流遮断による遮断時間
 第1の電極11及び第2の電極12との間に6mAの電流を流してから、銀ワイヤーが発熱して溶断することによって電流経路が遮断されるまでの時間を計測した。その結果を、表1に示す。
(2) Cutoff time due to current cutoff The time from when a current of 6 mA is passed between the first electrode 11 and the second electrode 12 until the current path is cut off due to heat generation and fusing of the silver wire. Was measured. The results are shown in Table 1.
(3)発熱遮断による遮断時間
 第1の発熱体電極13及び第2の発熱体電極14との間に1mAの電流を流して、発熱体20を発熱させた。電流をながしてから、発熱体20が発熱して第3の電極16に熱が伝わり、第3の電極16上の錫合金が溶融し、そして生成した錫合金の溶融物に、銀ワイヤーが溶食されて溶断されることによって、電流経路が遮断するまでの時間を計測した。その結果を、表1に示す。
(3) Breaking time due to heat generation interruption A current of 1 mA was passed between the first heating element electrode 13 and the second heating element electrode 14, to heat the heating element 20. After passing an electric current, the heating element 20 generates heat and heat is transferred to the third electrode 16, the tin alloy on the third electrode 16 melts, and the silver wire melts in the resulting melt of the tin alloy. The time until the current path was cut off by being eaten and blown was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3で作製した保護素子において、電流遮断による遮断時間は、いずれも10秒で同じであった。これは、実施例1~3の銀ワイヤーの導体抵抗が同じ値であるためであると考えられる。 In the protective elements produced in Examples 1 to 3, the interruption time due to current interruption was the same at 10 seconds. It is considered that this is because the conductor resistances of the silver wires of Examples 1 to 3 have the same value.
 実施例1~3で作製した保護素子において、発熱遮断による遮断時間は、実施例3が最も短く、実施例2が次に短く、実施例1が最も長くなった。これは、銀ワイヤーは表面積比が大きい方が、錫合金との接触面積が広くなり、錫合金の溶融物によって浸食されやすくなるためであると考えられる。 Among the protective elements produced in Examples 1 to 3, the interruption time due to heat generation interruption was the shortest in Example 3, the next shortest in Example 2, and the longest in Example 1. It is considered that this is because the larger the surface area ratio of the silver wire, the wider the contact area with the tin alloy, and the more easily it is eroded by the melt of the tin alloy.
 以上の結果から、本実施例の保護素子においては、銀ワイヤーの本数や直径を変えることによって、電流遮断による遮断時間を変えずに、発熱遮断による遮断時間を調整できることが確認された。 From the above results, it was confirmed that in the protective element of this embodiment, the cutoff time due to heat generation cutoff can be adjusted by changing the number and diameter of the silver wires without changing the cutoff time due to current cutoff.
 本発明は、発熱遮断による遮断速度が速い保護素子を提供することができる。 The present invention can provide a protective element having a high blocking speed by blocking heat generation.
 1a、1b、1c、1d、1e 保護素子
 2 保護回路
 10 絶縁基板
 10a 上面
 10b 下面
 11 第1の電極
 11a 上面側の第1の電極
 11b 下面側の第1の電極
 11s 第1導通部
 12 第2の電極
 12a 上面側の第2の電極
 12b 下面側の第2の電極
 12s 第2導通部
 13 第1の発熱体電極
 14 第2の発熱体電極
 15 引出線
 16 第3の電極
 20 発熱体
 21 絶縁部材
 30 低融点金属
 31 第1短尺ワイヤー
 32 第2短尺ワイヤー
 33 長尺ワイヤー
 41、42、43、44 はんだ部
 51 リチウムイオン二次電池
 52 スイッチング素子
 53 制御素子
1a, 1b, 1c, 1d, 1e Protective element 2 Protective circuit 10 Insulated substrate 10a Upper surface 10b Lower surface 11 First electrode 11a Upper surface side first electrode 11b Lower surface side first electrode 11s First conductive part 12 Second Electrode 12a Second electrode on the upper surface side 12b Second electrode on the lower surface side 12s Second conductive part 13 First heating element electrode 14 Second heating element electrode 15 Leader wire 16 Third electrode 20 Heating element 21 Insulation Member 30 Low melting point metal 31 First short wire 32 Second short wire 33 Long wire 41, 42, 43, 44 Solder part 51 Lithium ion secondary battery 52 Switching element 53 Control element

Claims (10)

  1.  絶縁基板と、
     前記絶縁基板の少なくとも一方の表面上に設けられた第1の電極及び第2の電極と、
     前記絶縁基板の少なくとも一方の表面上に設けられた発熱体と、
     前記発熱体に接続する第1の発熱体電極及び第2の発熱体電極と、
     前記第1の発熱体電極及び前記第2の発熱体電極のいずれか一方に接続する第3の電極と、
     前記第3の電極の表面上に配置された低融点金属と、
     前記第1の電極と前記第2の電極とを接続する少なくとも1本のヒューズエレメントワイヤーと、を有し、
     前記低融点金属は、前記ヒューズエレメントワイヤーの少なくとも一部と接触し、前記低融点金属が溶融することによって、前記低融点金属と接触している前記ヒューズエレメントワイヤーの少なくとも一部が溶食されて、溶断されるように構成されている、保護素子。
    Insulated substrate and
    A first electrode and a second electrode provided on at least one surface of the insulating substrate,
    A heating element provided on at least one surface of the insulating substrate and
    A first heating element electrode and a second heating element electrode connected to the heating element,
    A third electrode connected to either the first heating element electrode or the second heating element electrode, and
    A low melting point metal disposed on the surface of the third electrode,
    It has at least one fuse element wire connecting the first electrode and the second electrode.
    The low melting point metal comes into contact with at least a part of the fuse element wire, and by melting the low melting point metal, at least a part of the fuse element wire in contact with the low melting point metal is eroded. A protective element that is configured to be blown.
  2.  前記ヒューズエレメントワイヤーの直径が、0.01mm以上0.20mm以下の範囲内にある、請求項1に記載の保護素子。 The protective element according to claim 1, wherein the diameter of the fuse element wire is within the range of 0.01 mm or more and 0.20 mm or less.
  3.  前記ヒューズエレメントワイヤーは、前記第1の電極と前記低融点金属との間を接続する第1短尺ワイヤーと、前記第2の電極と前記低融点金属との間を接続する第2短尺ワイヤーとを含む、請求項1又は2に記載の保護素子。 The fuse element wire includes a first short wire that connects between the first electrode and the low melting point metal, and a second short wire that connects between the second electrode and the low melting point metal. The protective element according to claim 1 or 2, which includes.
  4.  前記ヒューズエレメントワイヤーは、前記第1の電極と前記第2の電極との間を接続する長尺ワイヤーを含む、請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the fuse element wire includes a long wire connecting between the first electrode and the second electrode.
  5.  前記低融点金属は、錫を含む、請求項1~4のいずれか一項に記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein the low melting point metal contains tin.
  6.  前記ヒューズエレメントワイヤーは、銅、銀または金を含む、請求項1~5のいずれか一項に記載の保護素子。 The protective element according to any one of claims 1 to 5, wherein the fuse element wire contains copper, silver or gold.
  7.  前記発熱体が、前記絶縁基板の上に直接配置され、
     前記発熱体と、前記第3の電極の間に、絶縁部材が配置され、
     平面視で、前記発熱体と、前記絶縁部材と、前記低融点金属と、前記ヒューズエレメントワイヤーとが、互いに重なる位置がある、
    請求項1又は2に記載の保護素子。
    The heating element is placed directly on the insulating substrate and
    An insulating member is arranged between the heating element and the third electrode.
    In a plan view, there is a position where the heating element, the insulating member, the low melting point metal, and the fuse element wire overlap each other.
    The protective element according to claim 1 or 2.
  8.  平面視で、前記第1の電極と前記第2の電極を結ぶ直線と、前記ヒューズエレメントワイヤーとが互いに交わる、請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the straight line connecting the first electrode and the second electrode and the fuse element wire intersect each other in a plan view.
  9.  前記ヒューズエレメントワイヤーが、過電流が発生したときに発熱して溶断して電流遮断を行う、ワイヤーであり、
     前記低融点金属が、前記発熱体が発熱した熱によって溶融し、前記ヒューズエレメントワイヤーを溶断して発熱遮断を行う、金属部である、
    請求項1又は2に記載の保護素子。
    The fuse element wire is a wire that generates heat when an overcurrent occurs and blows to cut off the current.
    The low melting point metal is a metal portion that melts due to the heat generated by the heating element and blows the fuse element wire to block heat generation.
    The protective element according to claim 1 or 2.
  10.  前記発熱体が、過電流の発生以外の異常が検出されたときに電流が流され発熱する、請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein when an abnormality other than the occurrence of an overcurrent is detected in the heating element, a current is passed to generate heat.
PCT/JP2020/015325 2019-04-09 2020-04-03 Protective element WO2020209198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074011A JP2020173920A (en) 2019-04-09 2019-04-09 Protection element
JP2019-074011 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020209198A1 true WO2020209198A1 (en) 2020-10-15

Family

ID=72751534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015325 WO2020209198A1 (en) 2019-04-09 2020-04-03 Protective element

Country Status (3)

Country Link
JP (1) JP2020173920A (en)
TW (1) TW202109585A (en)
WO (1) WO2020209198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018863A1 (en) * 2022-07-20 2024-01-25 デクセリアルズ株式会社 Protective element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325868A (en) * 2000-05-17 2001-11-22 Sony Chem Corp Protective element
JP2015225786A (en) * 2014-05-28 2015-12-14 デクセリアルズ株式会社 Protection element
JP2016071973A (en) * 2014-09-26 2016-05-09 デクセリアルズ株式会社 Method of manufacturing mounting body, method of mounting temperature fuse element, and temperature fuse element
US20170229272A1 (en) * 2014-10-23 2017-08-10 Sm Hi-Tech Co.,Ltd. Smd micro mixed fuse having thermal fuse function and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325868A (en) * 2000-05-17 2001-11-22 Sony Chem Corp Protective element
JP2015225786A (en) * 2014-05-28 2015-12-14 デクセリアルズ株式会社 Protection element
JP2016071973A (en) * 2014-09-26 2016-05-09 デクセリアルズ株式会社 Method of manufacturing mounting body, method of mounting temperature fuse element, and temperature fuse element
US20170229272A1 (en) * 2014-10-23 2017-08-10 Sm Hi-Tech Co.,Ltd. Smd micro mixed fuse having thermal fuse function and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018863A1 (en) * 2022-07-20 2024-01-25 デクセリアルズ株式会社 Protective element

Also Published As

Publication number Publication date
TW202109585A (en) 2021-03-01
JP2020173920A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
KR101167543B1 (en) Protective element
JP6249600B2 (en) Protective element
TWI671777B (en) Protective components and battery pack
JP6324684B2 (en) Protective element
KR102391555B1 (en) Protective element and battery pack
JP2015111526A (en) Protection element and fuse element
JP2010165685A (en) Protection element, and battery pack
JP6621255B2 (en) Protection element, fuse element
WO2020209198A1 (en) Protective element
TWI824067B (en) Protection element and protection circuit
JP6801974B2 (en) Protective element
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
WO2021039508A1 (en) Protection element, battery pack
JP2014044955A (en) Protection element, and battery pack
JP2012059719A (en) Protection element, and battery pack
JP2018018835A (en) Protection element and fuse element
WO2021015154A1 (en) Protective element and protective circuit
WO2022196594A1 (en) Protective element and battery pack
WO2023167069A1 (en) Protective element
JP7433783B2 (en) Fuse elements, fuse elements and protection elements
WO2020166445A1 (en) Circuit module
TW202234446A (en) Protection element and electronic equipment
JP2024001714A (en) Protection element and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786840

Country of ref document: EP

Kind code of ref document: A1