WO2015107632A1 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
WO2015107632A1
WO2015107632A1 PCT/JP2014/050524 JP2014050524W WO2015107632A1 WO 2015107632 A1 WO2015107632 A1 WO 2015107632A1 JP 2014050524 W JP2014050524 W JP 2014050524W WO 2015107632 A1 WO2015107632 A1 WO 2015107632A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
electrode
extraction electrode
electrodes
protective element
Prior art date
Application number
PCT/JP2014/050524
Other languages
French (fr)
Japanese (ja)
Inventor
千智 小森
幸市 向
古田 和隆
利顕 荒木
康二 江島
貴史 藤畑
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to PCT/JP2014/050524 priority Critical patent/WO2015107632A1/en
Publication of WO2015107632A1 publication Critical patent/WO2015107632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0283Structural association with a semiconductor device

Definitions

  • the present invention relates to a protection element that stops charging / discharging of a battery connected on the current path by fusing the current path and suppresses thermal runaway of the battery.
  • Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage
  • a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
  • a soluble conductor is connected across the first and second electrodes on the current path as described in Patent Document 1.
  • Some of the current paths form a part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element.
  • the molten liquid soluble conductor is collected on the first and second electrodes, thereby interrupting the current path.
  • the protective element using the soluble conductor described above it is preferable to increase the distance between the first and second electrodes in order to improve the insulation performance when the current path is interrupted.
  • further reduction in size and thickness is required as a protective element built in the battery pack, and it is difficult to increase the distance between the first and second electrodes.
  • the soluble conductor when the protective element is melted by the heat of the heating element and melted by being drawn onto the first and second electrodes, increasing the cross-sectional area of the soluble conductor also increases the amount of the soluble conductor to be melted. It may increase and exceed the allowable amount that can be held on the electrode. In this case, the soluble conductor overflowing from the electrodes may cause a short circuit between the electrodes.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, and an insulating member stacked on the insulating substrate so as to cover at least the heating element. And the first and second electrodes stacked on the insulating substrate on which the insulating member is stacked, and the first and second electrodes stacked on the insulating member so as to overlap the heating element.
  • a heating element extraction electrode electrically connected to the heating element on a current path between the heating element extraction electrode and the first and second electrodes from the heating element extraction electrode.
  • a fusible conductor that melts the current path between the second electrode and an inflow portion into which the melted fusible conductor flows is provided below the fusible portion of the fusible conductor. It is.
  • the path between the heating element extraction electrode and each of the first and second electrodes can be made longer, and the molten conductor melted and scattered by the arc discharge adheres.
  • FIG. 1A is a cross-sectional view showing a protective element to which the present invention is applied
  • FIG. 1B is a plan view showing the protective element to which the present invention is applied
  • FIG. 2 is a circuit diagram of a battery pack incorporating a protection element to which the present invention is applied.
  • FIG. 3 is an equivalent circuit of a protection element to which the present invention is applied.
  • FIG. 4 is a cross-sectional view showing a fusing portion of the soluble conductor.
  • FIG. 5 is a sectional view showing a modification of the protection element to which the present invention is applied.
  • FIG. 6 is a cross-sectional view showing a modification of the protection element to which the present invention is applied.
  • FIG. 1A is a cross-sectional view showing a protective element to which the present invention is applied
  • FIG. 1B is a plan view showing the protective element to which the present invention is applied.
  • FIG. 2 is a circuit diagram of a battery pack incorporating a protection element to which the present
  • FIG. 7 is a cross-sectional view showing a modification of the protection element to which the present invention is applied.
  • FIG. 8 is a sectional view showing a modification of the protection element to which the present invention is applied.
  • FIG. 9 is a sectional view showing a modification of the protection element to which the present invention is applied.
  • FIG. 10 is a cross-sectional view showing a modification of the protection element to which the present invention is applied.
  • a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A 1) and 12 (A 2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the electrodes 12 (A 1) and 12 (A 2) And a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16.
  • the insulating substrate 11 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 11 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature when the fuse is blown.
  • the heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • the insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15.
  • an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
  • One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1).
  • the other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
  • the fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14, and, for example, Pb-free solder containing Sn as a main component can be suitably used.
  • the soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
  • the soluble conductor 13 does not lead to fusing.
  • a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique.
  • the fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
  • the protective element 5 may apply a flux to almost the entire surface of the soluble conductor 13 in order to prevent oxidation of the outer low-melting-point metal layer 13b. Further, the protection element 5 may place the cover member 19 on the insulating substrate 11 in order to protect the inside.
  • the protection element 10 described above is used for a circuit in a battery pack 20 of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell.
  • a detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the current control element 27.
  • One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2.
  • the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generated by the heating resistor 14.
  • the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
  • the protective element 10 is provided with an inflow portion 40 under which a molten conductor melted and scattered by arc discharge flows and deposits below a melted portion 13a where the soluble conductor 13 is melted.
  • the fusible conductor 13 is connected across the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2), and melts due to self-heating (Joule heat) due to overcurrent and the heat of the heating resistor 14, The heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are fused. Thereby, the protection element 13 interrupts the current path.
  • the fusing part 13 a of the fusible conductor 13 refers to a fusing point in the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Specifically, it means between the heating element extraction electrode 16 and the electrode 12 (A1) and between the heating element extraction electrode 16 and the electrode 12 (A2).
  • the protective element 10 is generated at the time of fusing due to overcurrent below the fusing portion 13a of the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2).
  • An inflow portion 40 is provided in which molten conductor melted and scattered by the arc discharge flowing in and deposits. The molten conductor that has melted and scattered in the inflow portion 40 flows in and accumulates to prevent the molten conductor from forming a current path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). can do.
  • the protective element 10 forms the inflow portion 40 below the fusing portion 13a, thereby extending the path between the heating element extraction electrode 16, the electrode 12 (A1), and the electrode 12 (A2). Therefore, even when the molten conductor adheres, the protective element 10 lengthens the path where the molten conductor adheres, so that the molten conductor causes the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) to be connected. Thus, it is possible to prevent the current path extending over the range from being configured.
  • the protection element 10 can maintain the insulation performance without increasing the distance between the heating element extraction electrode 16 and the electrode 12 (A1) and the electrode 12 (A2), thereby realizing the downsizing of the protection element. be able to.
  • the inflow portion 40 is provided between the electrode 12 (A1) and the heating element extraction electrode 16, and between the electrode 12 (A2) and the heating element extraction electrode 16. That is, it is formed below the two fusing parts 13a in the soluble conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2).
  • the inflow portion 40 may be provided only between the electrode 12 (A1) and the heating element extraction electrode 16 or between the electrode 12 (A2) and the heating element extraction electrode 16. In either case, if the formation of the current path by the molten conductor can be prevented, the charge / discharge path of the device in which the protection element 10 is incorporated is blocked. However, in order to ensure the maintenance of the insulation performance, the inflow portion 40 is preferably provided between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2).
  • the inflow portion 40 can be constituted by a recess 41 formed in the insulating substrate 11.
  • the recess 41 is formed in a groove shape between the electrode 12 (A1) of the insulating substrate 11 and the heating element extraction electrode 16 and between the electrode 12 (A2) and the heating element extraction electrode 16.
  • the recess 41 can be formed by a known method such as cutting or etching of the surface according to the material of the insulating substrate 11 or laminating the substrate according to the shape of the recess 41.
  • the protection element 10 can lengthen the path between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2). Therefore, by flowing in the molten conductor that has been melted and scattered by arc discharge in the event of an overcurrent, the formation of a current path by the molten conductor can be prevented.
  • the protective element 10 has a case where the soluble conductor 13 melted by heat from the heating element extraction electrode 16 overflows from the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16.
  • the overflowing molten conductor flows into the recess 41, a short circuit between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2) can be prevented.
  • the recess 41 may be formed so as to increase in diameter toward the lower side of the insulating substrate 11. Accordingly, the path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be further extended, and the volume of the recess 41 can be increased. Therefore, the protection element 10 can more reliably prevent the formation of a current path even when the inflow amount of the molten conductor is large.
  • the recessed part 41 has a larger volume than the deposition of the melted part 13a of the soluble conductor 13.
  • the recessed part 41 is extended and extended to the outer side of the soluble conductor 13, as shown to FIG. 1B.
  • the recess 41 By forming the recess 41 extending below and below the soluble conductor 13, the molten conductor of the melted melted portion 13 a is scattered to the outside of the soluble conductor 13 due to arc discharge that occurs during overcurrent. Even in this case, it is possible to prevent a current path from being formed by the molten conductor scattered to the outside.
  • the inflow portion 40 may be constituted by a through hole 42 formed in the insulating substrate 11, as shown in FIG. Similar to the recess 41, the through hole 42 is formed in a groove shape between the electrode 12 (A 1) of the insulating substrate 11 and the heating element extraction electrode 16 and between the electrode 12 (A 2) and the heating element extraction electrode 16. Is formed.
  • the through hole 42 can be formed by a known method such as cutting or etching of the surface or laminating a substrate having an opening groove corresponding to the shape of the through hole 42 according to the material of the insulating substrate 11. .
  • the protection element 50 can lengthen the path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). By flowing and depositing the melted and scattered molten conductor, it is possible to prevent the current path from being formed by the molten conductor. Further, in the case of an overvoltage or the like, the protective element 50 is used when the soluble conductor 13 melted by heat from the heating element extraction electrode 16 overflows from the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16.
  • the overflowing molten conductor flows into the through-hole 42, a short circuit between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2) can be prevented.
  • the inflow portion 40 does not overflow even when the amount of the soluble conductor 13 overflowing from the electrode is large.
  • the through hole 42 may also be formed so as to increase in diameter toward the lower side of the insulating substrate 11 as shown in FIG. Moreover, it is preferable that the through-hole 42 has a larger volume than the deposition of the fusing part 13a of the soluble conductor 13. Furthermore, as shown in FIG. 1B, the through hole 42 is preferably formed to extend to the outside of the soluble conductor 13.
  • the protective element 60 has a portion where the heating element extraction electrode 16 of the insulating substrate 11 is provided between the electrode 12 (A1) and the heating element extraction electrode 16 as shown in FIG. Alternatively, it may be formed by providing a protruding portion 43 that protrudes more than between the electrode 12 (A2) and the heating element extraction electrode 16. Thereby, in the protection element 60, the inflow portion 40 having a concave groove shape is formed below the melted portion 13a of the soluble conductor 13 between the protruding portion 43 and the electrodes 12 (A1) and 12 (A2).
  • the protrusion 43 can be formed by a known method such as cutting or etching of the surface, or laminating the substrate at a position where the heating element extraction electrode 16 is provided, depending on the material of the insulating substrate 11.
  • the protection element 60 can lengthen the path between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2), thereby further improving the insulation performance. it can.
  • the inflow part 40 between the protrusion part 43 and the electrodes 12 (A1) and 12 (A2) has a larger volume than the deposition of the fusing part 13a of the soluble conductor 13.
  • the inflow portion 40 between the protrusion 43 and the electrodes 12 (A1) and 12 (A2) extends to the outside of the soluble conductor 13 by providing the protrusion 43 to the outside of the soluble conductor 13. Preferably it is formed.
  • the protective element 70 may be formed by mounting the heating element module 45 on the insulating substrate 11 as shown in FIG. On the insulating substrate 11, electrodes 12 (A1) and 12 (A2) are formed.
  • the heating element module 45 includes a base substrate 46, a heating resistor 14 laminated on the base substrate 46 and covered with an insulating member 15, and a heating element extraction electrode 16 formed so as to overlap the heating resistor 14.
  • the base substrate 46 is formed in a substantially rectangular shape using an insulating member such as alumina, glass ceramics, mullite, and zirconia.
  • the base substrate 46 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
  • the heating resistor 14, the insulating member 15, and the heating element extraction electrode 16 are the same as those described above.
  • the heating element module 45 is mounted between the electrodes 12 (A1) and 12 (A2) of the insulating substrate 11 by an adhesive. Thereby, in the protective element 10, the inflow portion 40 is formed between the electrode 12 (A 1) and the electrode 12 (A 2) and the heating element module 45. Thus, the protective element 70 forms the heating element module 45 and mounts it on the insulating substrate 11, whereby the inflow portion 40 can be easily formed.
  • the heating element module 45 makes the volume of the inflow part 40 larger than the fusing part 13a of the soluble conductor 13 by forming the base substrate 46 thick.
  • the heating element module 45 is preferably formed by extending the inflow portion 40 to the outside of the soluble conductor 13 by making the length of the base substrate 46 longer than that of the soluble conductor 13.
  • the protective element 80 may form the concave surface part 47 in the location which mounts the heat generating body module 45 of the insulating substrate 11.
  • the concave portion 47 is provided wider than the base substrate 46 of the heating element module 45 between the electrodes 12 (A1) and 12 (A2) of the insulating substrate 11.
  • the concave surface portion 47 is formed by a known method such as cutting or etching of the surface according to the material of the insulating substrate 11 or laminating the substrate according to the positions where the electrodes 12 (A1) and 12 (A2) are formed. can do.
  • the heating element module 45 is mounted on the concave portion 47 with a gap between the electrodes 12 (A1) and 12 (A2) and with an adhesive. Thereby, in the protective element 80, the inflow portion 40 is formed between the electrode 12 (A1) and the electrode 12 (A2) and the heating element module 45. Thus, the protection element 80 forms the heating element module 45 and mounts it on the insulating substrate 11, whereby the inflow portion 40 can be easily formed and the concave portion 47 is formed. , Low profile can be realized.
  • the heating element module 45 makes the volume of the inflow part 40 larger than the fusing part 13a of the soluble conductor 13 by deepening the concave surface part 47 and forming the base substrate 46 thick.
  • the heating element module 45 is preferably formed by extending the inflow portion 40 to the outside of the soluble conductor 13 by making the lengths of the concave surface portion 47 and the base substrate 46 longer than the soluble conductor 13.
  • the insulation performance can be improved as the depth of the inflow portion 40 is increased. That is, the protection elements 10, 50, 60, 70, 80 have longer paths between the heating element extraction electrode 16 and the electrodes 12 (A1), 12 (A2) as the depth of the inflow portion 40 is increased. Even if the molten conductor melted and scattered by the arc discharge adheres, the molten conductor forms a current path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Because it becomes difficult.

Abstract

In the present invention, the cross section of a fusible conductor is increased to raise the rating of the protective element while maintaining the insulation capability thereof. The protective element is provided with: an insulation substrate (11); a heating body (14) layered over the insulation substrate (11); an insulation member (15) covering the heating body (14); first and second electrodes (12) layered over the insulation substrate (11) whereon the insulation member (15) has been layered; a heating body drawing electrode (16) layered over the insulation member (15) so as to overlap with the heating body (14) and electrically connected to the heating body (14) in a current path between the first and second electrodes (12); and a fusible conductor (13) layered throughout from the heating body drawing electrode (16) to the first and second electrodes (12) and blown out by heat so as to interrupt the current path between the first electrode (12) and the second electrode (12). An in-flow portion (40) where the molten fusible conductor (13) flows into is provided under a blow-out portion (13a) of the fusible conductor (13).

Description

保護素子Protective element
 本発明は、電流経路を溶断することにより、電流経路上に接続されたバッテリへの充放電を停止し、バッテリの熱暴走を抑制する保護素子に関する。 The present invention relates to a protection element that stops charging / discharging of a battery connected on the current path by fusing the current path and suppresses thermal runaway of the battery.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the rechargeable batteries that can be charged and used repeatedly are processed into battery packs and provided to users. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, several protection circuits such as overcharge protection and overdischarge protection are built in the battery pack, It has a function of shutting off the output of the battery pack in a predetermined case.
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。 Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage Even when a battery pack is output, battery packs and electronic devices must be protected from accidents such as fire. Therefore, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used. .
 このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、特許文献1に記載されているように、電流経路上の第1及び第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を第1及び第2の電極上に集めることにより電流経路を遮断する。 As a protection element of a protection circuit for such a lithium ion secondary battery, a soluble conductor is connected across the first and second electrodes on the current path as described in Patent Document 1. Some of the current paths form a part of the current path, and the fusible conductor on the current path is melted by self-heating due to overcurrent or by a heating element provided inside the protective element. In such a protective element, the molten liquid soluble conductor is collected on the first and second electrodes, thereby interrupting the current path.
特開2010-003665号公報JP 2010-003665 A
 上述した可溶導体を用いた保護素子においては、電流経路の遮断時の絶縁性能を向上させるためには、第1及び第2の電極間の距離を離すことが好ましい。しかし、電子機器の小型化、薄型化に伴い、バッテリパックに内蔵される保護素子としても更なる小型化、薄型化が求められ、第1及び第2の電極間の距離を離すことが難しい。また、二次電池の高容量化、高出力化に伴い、保護素子の定格についてより大きなものが求められている。 In the protective element using the soluble conductor described above, it is preferable to increase the distance between the first and second electrodes in order to improve the insulation performance when the current path is interrupted. However, along with the downsizing and thinning of electronic devices, further reduction in size and thickness is required as a protective element built in the battery pack, and it is difficult to increase the distance between the first and second electrodes. In addition, with the increase in capacity and output of secondary batteries, there is a demand for higher protection element ratings.
 ここで、保護素子の定格を上げるためには、可溶導体の導体抵抗の低減と、電流経路の遮断時における絶縁性能とのバランスを取る必要がある。すなわち、電流をより多く流すためには、導体抵抗を下げる必要があり、よって可溶導体の断面積を大きくする必要がある。一方、電流経路の遮断の際には、発生するアーク放電によって可溶導体を構成する金属体が周囲に飛散し、新たに電流経路が形成されるおそれがあり、可溶導体の断面積が大きくなるほど、そのリスクが高くなる。 Here, in order to raise the rating of the protective element, it is necessary to balance the reduction of the conductor resistance of the fusible conductor and the insulation performance when the current path is interrupted. That is, in order to flow a larger amount of current, it is necessary to reduce the conductor resistance, and thus it is necessary to increase the cross-sectional area of the soluble conductor. On the other hand, when the current path is interrupted, the metal body constituting the soluble conductor is scattered by the generated arc discharge, and a new current path may be formed, resulting in a large cross-sectional area of the soluble conductor. The higher the risk.
 また、保護素子を発熱体の熱によって溶融させ、第1及び第2の電極上に引き込むことにより溶断する場合も、可溶導体の断面積を増加させると、溶融すべき可溶導体の量も増加し、電極上に保持できる許容量を超えるおそれがある。この場合、電極上から溢れた可溶導体が電極間を短絡させるおそれがある。 Also, when the protective element is melted by the heat of the heating element and melted by being drawn onto the first and second electrodes, increasing the cross-sectional area of the soluble conductor also increases the amount of the soluble conductor to be melted. It may increase and exceed the allowable amount that can be held on the electrode. In this case, the soluble conductor overflowing from the electrodes may cause a short circuit between the electrodes.
 以上のように、定格を向上させるために可溶導体の断面積を大きくしつつ、絶縁性能を維持することができる保護素子の開発が望まれている。 As described above, it is desired to develop a protective element capable of maintaining the insulation performance while increasing the cross-sectional area of the soluble conductor in order to improve the rating.
 上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、上記絶縁基板に積層された発熱体と、少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、上記可溶導体の溶断部の下方には、溶融した上記可溶導体が流入する流入部が設けられているものである。 In order to solve the above-described problems, a protection element according to the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, and an insulating member stacked on the insulating substrate so as to cover at least the heating element. And the first and second electrodes stacked on the insulating substrate on which the insulating member is stacked, and the first and second electrodes stacked on the insulating member so as to overlap the heating element. A heating element extraction electrode electrically connected to the heating element on a current path between the heating element extraction electrode and the first and second electrodes from the heating element extraction electrode. A fusible conductor that melts the current path between the second electrode and an inflow portion into which the melted fusible conductor flows is provided below the fusible portion of the fusible conductor. It is.
 本発明によれば、流入部を設けることにより、発熱体引出電極と第1及び第2の電極の各間の経路をより長くすることができ、アーク放電によって溶融、飛散した溶融導体が付着しても、当該溶融導体によって発熱体引出電極と第1及び第2の電極の各間に亘る電流経路が形成されることを防止することができ、電流経路の遮断時における絶縁性能を向上させることができる。 According to the present invention, by providing the inflow portion, the path between the heating element extraction electrode and each of the first and second electrodes can be made longer, and the molten conductor melted and scattered by the arc discharge adheres. However, it is possible to prevent the molten conductor from forming a current path between the heating element extraction electrode and each of the first and second electrodes, and to improve the insulation performance when the current path is interrupted. Can do.
図1Aは、本発明が適用された保護素子を示す断面図、図1Bは、本発明が適用された保護素子を示す平面図である。FIG. 1A is a cross-sectional view showing a protective element to which the present invention is applied, and FIG. 1B is a plan view showing the protective element to which the present invention is applied. 図2は、本発明が適用された保護素子が組み込まれたバッテリパックの回路図である。FIG. 2 is a circuit diagram of a battery pack incorporating a protection element to which the present invention is applied. 図3は、本発明が適用された保護素子の等価回路である。FIG. 3 is an equivalent circuit of a protection element to which the present invention is applied. 図4は、可溶導体の溶断部を示す断面図である。FIG. 4 is a cross-sectional view showing a fusing portion of the soluble conductor. 図5は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 5 is a sectional view showing a modification of the protection element to which the present invention is applied. 図6は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the protection element to which the present invention is applied. 図7は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a modification of the protection element to which the present invention is applied. 図8は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 8 is a sectional view showing a modification of the protection element to which the present invention is applied. 図9は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 9 is a sectional view showing a modification of the protection element to which the present invention is applied. 図10は、本発明が適用された保護素子の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the protection element to which the present invention is applied.
 以下、本発明が適用された保護素子について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a protection element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [保護素子の構成]
 図1に示すように、本発明が適用された保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱抵抗体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)にそれぞれ接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
[Configuration of protection element]
As shown in FIG. 1, a protection element 10 to which the present invention is applied is formed on an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A 1) and 12 (A 2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the electrodes 12 (A 1) and 12 (A 2) And a fusible conductor 13 having a central portion connected to the heating element extraction electrode 16.
 絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板11は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 11 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, the insulating substrate 11 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature when the fuse is blown.
 発熱抵抗体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
 発熱抵抗体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱抵抗体14に対向するように発熱体引出電極16が配置される。発熱抵抗体14の熱を効率良く可溶導体に伝えるために、発熱抵抗体14と絶縁基板11の間に絶縁部材15を積層しても良い。 The insulating member 15 is disposed so as to cover the heating resistor 14, and the heating element extraction electrode 16 is disposed so as to face the heating resistor 14 through the insulating member 15. In order to efficiently transfer the heat of the heating resistor 14 to the soluble conductor, an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11.
 発熱体引出電極16の一端は、発熱体電極18(P1)に接続される。また、発熱抵抗体14の他端は、他方の発熱体電極18(P2)に接続される。 One end of the heating element extraction electrode 16 is connected to the heating element electrode 18 (P1). The other end of the heating resistor 14 is connected to the other heating element electrode 18 (P2).
 可溶導体13は、発熱抵抗体14の発熱により速やかに溶断される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。また、可溶導体13は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。 The fusible conductor 13 is made of a low-melting-point metal that is quickly melted by the heat generated by the heating resistor 14, and, for example, Pb-free solder containing Sn as a main component can be suitably used. The soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
 高融点金属と低融点金属とを積層することによって、保護素子5をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、可溶導体13として溶断するに至らない。かかる可溶導体13は、高融点金属に低融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。なお、可溶導体13は、外層を構成する低融点金属を用いて、発熱体引出電極16及び電極12(A1),12(A2)へ、ハンダ接続することができる。 Even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts when the protective element 5 is reflow mounted by laminating the high melting point metal and the low melting point metal, the soluble conductor 13 does not lead to fusing. Such a soluble conductor 13 may be formed by depositing a low melting point metal on a high melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique. . The fusible conductor 13 can be solder-connected to the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) using a low melting point metal constituting the outer layer.
 なお、保護素子5は、外層の低融点金属層13bの酸化防止のために、可溶導体13上のほぼ全面にフラックスを塗布してもよい。また、保護素子5は、内部を保護するためにカバー部材19を絶縁基板11上に載置してもよい。 Note that the protective element 5 may apply a flux to almost the entire surface of the soluble conductor 13 in order to prevent oxidation of the outer low-melting-point metal layer 13b. Further, the protection element 5 may place the cover member 19 on the insulating substrate 11 in order to protect the inside.
 [保護素子の使用方法]
 図2に示すように、上述した保護素子10は、リチウムイオン二次電池のバッテリパック20内の回路に用いられる。
[How to use protection elements]
As shown in FIG. 2, the protection element 10 described above is used for a circuit in a battery pack 20 of a lithium ion secondary battery.
 たとえば、保護素子10は、合計4個のリチウムイオン二次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。 For example, the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25の異常時に充電を遮断する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。 The battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charging / discharging of the battery stack 25, a protection element 10 to which the present invention that cuts off charging when the battery stack 25 is abnormal, and each battery cell. A detection circuit 26 for detecting voltages 21 to 24 and a current control element 27 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
 バッテリスタック25は、過充電及び過放電状態から保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20の正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 25 is a series of battery cells 21 to 24 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 20a and the negative terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto. The electronic device can be operated by connecting the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20 charged by the charging device 35 to the electronic device operated by the battery.
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。 The charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided. The current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. . The control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。 Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。 The detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30. The detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子27は、たとえばFETにより構成され、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。 The current control element 27 is constituted by, for example, an FET, and when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 26, the protection element 10 is operated to control the charge / discharge current path of the battery stack 25 to be cut off regardless of the switch operation of the current control elements 31 and 32.
 以上のような構成からなるバッテリパック20において、本発明が適用された保護素子10は、図3に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱抵抗体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱抵抗体14が電流制御素子27と接続される。保護素子10の2個の電極12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。 In the battery pack 20 configured as described above, the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat. This is a circuit configuration including the resistor 14. In the protection element 10, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the current control element 27. One of the two electrodes 12 of the protection element 10 is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
 このような回路構成からなる保護素子10は、発熱抵抗体14の発熱により、電流経路上の可溶導体13を確実に溶断することができる。 The protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generated by the heating resistor 14.
 なお、本発明の保護素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。 Note that the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
 [溶断部]
 次いで、本発明が適用された保護素子10のさらに具体的な構成について説明する。保護素子10は、可溶導体13が溶断される溶断部13aの下方に、アーク放電によって溶融、飛散した溶融導体が流入、堆積する流入部40が設けられている。可溶導体13は、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続され、過電流による自己発熱(ジュール熱)や、発熱抵抗体14の熱により溶融し、発熱体引出電極16と、電極12(A1),12(A2)間が溶断される。これにより、保護素子13は、電流経路を遮断する。
[Fusing part]
Next, a more specific configuration of the protection element 10 to which the present invention is applied will be described. The protective element 10 is provided with an inflow portion 40 under which a molten conductor melted and scattered by arc discharge flows and deposits below a melted portion 13a where the soluble conductor 13 is melted. The fusible conductor 13 is connected across the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2), and melts due to self-heating (Joule heat) due to overcurrent and the heat of the heating resistor 14, The heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) are fused. Thereby, the protection element 13 interrupts the current path.
 可溶導体13の溶断部13aとは、図4に示すように、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続された可溶導体13における溶断箇所をいい、具体的には、発熱体引出電極16と電極12(A1)との間、及び発熱体引出電極16と電極12(A2)との間をいう。 As shown in FIG. 4, the fusing part 13 a of the fusible conductor 13 refers to a fusing point in the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Specifically, it means between the heating element extraction electrode 16 and the electrode 12 (A1) and between the heating element extraction electrode 16 and the electrode 12 (A2).
 [流入部]
 そして、保護素子10は、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続された可溶導体13の溶断部13aの下方に、過電流による溶断の際に発生するアーク放電によって溶融、飛散した溶融導体が流入、堆積する流入部40が設けられている。流入部40に溶融、飛散した溶融導体が流入、堆積することにより、当該溶融導体によって発熱体引出電極16及び電極12(A1),12(A2)間に亘る電流経路が構成されることを防止することができる。
[Inflow section]
The protective element 10 is generated at the time of fusing due to overcurrent below the fusing portion 13a of the fusible conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). An inflow portion 40 is provided in which molten conductor melted and scattered by the arc discharge flowing in and deposits. The molten conductor that has melted and scattered in the inflow portion 40 flows in and accumulates to prevent the molten conductor from forming a current path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). can do.
 すなわち、保護素子10は、溶断部13aの下方に流入部40を形成することにより、発熱体引出電極16と電極12(A1)及び電極12(A2)間に亘る経路が延長される。したがって、保護素子10は、溶融導体が付着した場合にも、当該溶融導体が付着する経路を長くすることで、当該溶融導体によって発熱体引出電極16及び電極12(A1),12(A2)間に亘る電流経路が構成されることを防止することができる。 That is, the protective element 10 forms the inflow portion 40 below the fusing portion 13a, thereby extending the path between the heating element extraction electrode 16, the electrode 12 (A1), and the electrode 12 (A2). Therefore, even when the molten conductor adheres, the protective element 10 lengthens the path where the molten conductor adheres, so that the molten conductor causes the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) to be connected. Thus, it is possible to prevent the current path extending over the range from being configured.
 そして、保護素子10は、可溶導体13の断面積を大きくすることで定格向上させると、溶断の際に発生するアーク放電によって溶融、飛散する溶融導体も増えるが、流入部40を設けることにより、当該溶融導体による電流経路が形成されることを防止することができる。また、保護素子10は、発熱体引出電極16と電極12(A1)及び電極12(A2)間の距離を長く取ることなく、絶縁性能を維持することができ、保護素子の小型化を実現することができる。 When the rating of the protective element 10 is increased by increasing the cross-sectional area of the fusible conductor 13, the molten conductor that melts and scatters due to arc discharge generated at the time of fusing also increases, but by providing the inflow portion 40 It is possible to prevent a current path from being formed by the molten conductor. Further, the protection element 10 can maintain the insulation performance without increasing the distance between the heating element extraction electrode 16 and the electrode 12 (A1) and the electrode 12 (A2), thereby realizing the downsizing of the protection element. be able to.
 [流入部の構成1]
 流入部40は、電極12(A1)と発熱体引出電極16との間、及び電極12(A2)と発熱体引出電極16との間に設けられている。すなわち、発熱体引出電極16及び電極12(A1),12(A2)間に亘って接続された可溶導体13における2つの溶断部13aの下方にそれぞれ形成されている。
[Configuration 1 of the inflow section]
The inflow portion 40 is provided between the electrode 12 (A1) and the heating element extraction electrode 16, and between the electrode 12 (A2) and the heating element extraction electrode 16. That is, it is formed below the two fusing parts 13a in the soluble conductor 13 connected between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2).
 なお、流入部40は、電極12(A1)と発熱体引出電極16との間、又は電極12(A2)と発熱体引出電極16との間のいずれか一方にのみ設けてもよい。いずれか一方において、溶融導体による電流経路の形成を防止することができれば、保護素子10が組み込まれた機器の充放電経路は遮断される。しかし、絶縁性能の維持を確実なものとするためには、流入部40は、発熱体引出電極16と電極12(A1),12(A2)の各間に設けられることが好ましい。 The inflow portion 40 may be provided only between the electrode 12 (A1) and the heating element extraction electrode 16 or between the electrode 12 (A2) and the heating element extraction electrode 16. In either case, if the formation of the current path by the molten conductor can be prevented, the charge / discharge path of the device in which the protection element 10 is incorporated is blocked. However, in order to ensure the maintenance of the insulation performance, the inflow portion 40 is preferably provided between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2).
 [流入部の構成2]
 流入部40は、図1や図4に示すように、絶縁基板11に形成された凹部41により構成することができる。凹部41は、絶縁基板11の電極12(A1)と発熱体引出電極16との間、及び電極12(A2)と発熱体引出電極16との間に、溝状に形成されている。
[Configuration 2 of the inflow section]
As shown in FIGS. 1 and 4, the inflow portion 40 can be constituted by a recess 41 formed in the insulating substrate 11. The recess 41 is formed in a groove shape between the electrode 12 (A1) of the insulating substrate 11 and the heating element extraction electrode 16 and between the electrode 12 (A2) and the heating element extraction electrode 16.
 凹部41は、絶縁基板11の材質に応じて、表面の切削やエッチング、あるいは基板を凹部41の形状に応じて積層する等、公知の手法により形成することができる。保護素子10は、凹部41を形成することにより、発熱体引出電極16と電極12(A1),12(A2)の各間の経路を長くすることができる。したがって、過電流の際にアーク放電によって溶融、飛散した溶融導体を流入させることにより、当該溶融導体による電流経路の形成を防止することができる。また、保護素子10は、過電圧等の際には、発熱体引出電極16による熱で溶融した可溶導体13が電極12(A1),12(A2)や発熱体引出電極16上から溢れた場合にも、溢れた溶融導体が凹部41に流入することで、発熱体引出電極16と電極12(A1),12(A2)の各間の短絡を防止することができる。 The recess 41 can be formed by a known method such as cutting or etching of the surface according to the material of the insulating substrate 11 or laminating the substrate according to the shape of the recess 41. By forming the recess 41, the protection element 10 can lengthen the path between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2). Therefore, by flowing in the molten conductor that has been melted and scattered by arc discharge in the event of an overcurrent, the formation of a current path by the molten conductor can be prevented. Further, in the case of an overvoltage or the like, the protective element 10 has a case where the soluble conductor 13 melted by heat from the heating element extraction electrode 16 overflows from the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, since the overflowing molten conductor flows into the recess 41, a short circuit between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2) can be prevented.
 また、凹部41は、図5に示すように、絶縁基板11の下方に向かって拡径するように形成してもよい。これにより、発熱体引出電極16と電極12(A1),12(A2)の各間の経路をより延長すると共に、凹部41の容積を増大することができる。したがって、保護素子10は、溶融導体の流入量が多い場合にも、電流経路の形成をより確実に防止することができる。 Further, as shown in FIG. 5, the recess 41 may be formed so as to increase in diameter toward the lower side of the insulating substrate 11. Accordingly, the path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2) can be further extended, and the volume of the recess 41 can be increased. Therefore, the protection element 10 can more reliably prevent the formation of a current path even when the inflow amount of the molten conductor is large.
 また、凹部41は、可溶導体13の溶断部13aの堆積よりも大きな容積を有していることが好ましい。これにより、保護素子10は、凹部41に溶断部13aの溶融導体が流入した場合にも、凹部41から溶融導体が溢れることがなく、溢れた溶融導体によって電流経路が形成されることを防止することができる。 Moreover, it is preferable that the recessed part 41 has a larger volume than the deposition of the melted part 13a of the soluble conductor 13. Thereby, even when the molten conductor of the fusing part 13a flows into the recess 41, the protective element 10 prevents the molten conductor from overflowing from the recess 41 and prevents the current path from being formed by the overflowing molten conductor. be able to.
 また、凹部41は、図1Bに示すように、可溶導体13の外側まで延長して形成されることが好ましい。凹部41が可溶導体13の下方と、その外側まで延長して形成されることにより、過電流時に発生するアーク放電によって、溶融した溶断部13aの溶融導体が、可溶導体13の外側まで飛散した場合にも、この外側まで飛散した溶融導体によって電流経路が形成されることを防止することができる。 Moreover, it is preferable that the recessed part 41 is extended and extended to the outer side of the soluble conductor 13, as shown to FIG. 1B. By forming the recess 41 extending below and below the soluble conductor 13, the molten conductor of the melted melted portion 13 a is scattered to the outside of the soluble conductor 13 due to arc discharge that occurs during overcurrent. Even in this case, it is possible to prevent a current path from being formed by the molten conductor scattered to the outside.
 [流入部の構成3]
 また、保護素子50は、流入部40を、図6に示すように、絶縁基板11に形成された貫通孔42により構成してもよい。貫通孔42は、凹部41と同様に、絶縁基板11の電極12(A1)と発熱体引出電極16との間、及び電極12(A2)と発熱体引出電極16との間に、溝状に形成されている。
[Configuration 3 of the inflow section]
Further, in the protection element 50, the inflow portion 40 may be constituted by a through hole 42 formed in the insulating substrate 11, as shown in FIG. Similar to the recess 41, the through hole 42 is formed in a groove shape between the electrode 12 (A 1) of the insulating substrate 11 and the heating element extraction electrode 16 and between the electrode 12 (A 2) and the heating element extraction electrode 16. Is formed.
 貫通孔42は、絶縁基板11の材質に応じて、表面の切削やエッチング、あるいは貫通孔42の形状に応じた開口溝が形成された基板を積層する等、公知の手法により形成することができる。保護素子50は、貫通孔42を形成することにより、発熱体引出電極16と電極12(A1),12(A2)の各間の経路を長くすることができ、過電流の際にアーク放電によって溶融、飛散した溶融導体を流入、堆積させることにより、当該溶融導体による電流経路の形成を防止することができる。また、保護素子50は、過電圧等の際には、発熱体引出電極16による熱で溶融した可溶導体13が電極12(A1),12(A2)や発熱体引出電極16上から溢れた場合にも、溢れた溶融導体が貫通孔42に流入することで、発熱体引出電極16と電極12(A1),12(A2)の各間の短絡を防止することができる。このとき、貫通孔42によって流入部40を構成することで、電極上から溢れた可溶導体13の量が多い場合にも、流入部40が溢れることはない。 The through hole 42 can be formed by a known method such as cutting or etching of the surface or laminating a substrate having an opening groove corresponding to the shape of the through hole 42 according to the material of the insulating substrate 11. . By forming the through hole 42, the protection element 50 can lengthen the path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). By flowing and depositing the melted and scattered molten conductor, it is possible to prevent the current path from being formed by the molten conductor. Further, in the case of an overvoltage or the like, the protective element 50 is used when the soluble conductor 13 melted by heat from the heating element extraction electrode 16 overflows from the electrodes 12 (A1) and 12 (A2) and the heating element extraction electrode 16. In addition, since the overflowing molten conductor flows into the through-hole 42, a short circuit between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2) can be prevented. At this time, by forming the inflow portion 40 with the through hole 42, the inflow portion 40 does not overflow even when the amount of the soluble conductor 13 overflowing from the electrode is large.
 また、貫通孔42においても、図7に示すように、絶縁基板11の下方に向かって拡径するように形成してもよい。また、貫通孔42は、可溶導体13の溶断部13aの堆積よりも大きな容積を有していることが好ましい。さらに、貫通孔42は、図1Bに示すように、可溶導体13の外側まで延長して形成されることが好ましい。 Further, the through hole 42 may also be formed so as to increase in diameter toward the lower side of the insulating substrate 11 as shown in FIG. Moreover, it is preferable that the through-hole 42 has a larger volume than the deposition of the fusing part 13a of the soluble conductor 13. Furthermore, as shown in FIG. 1B, the through hole 42 is preferably formed to extend to the outside of the soluble conductor 13.
 [流入部の構成4]
 また、保護素子60は、流入部40を、図8に示すように、絶縁基板11の発熱体引出電極16が設けられた箇所が、電極12(A1)と発熱体引出電極16との間、及び電極12(A2)と発熱体引出電極16との間よりも突出する突出部43を設けることにより形成してもよい。これにより、保護素子60は、突出部43と電極12(A1),12(A2)との間の、可溶導体13の溶断部13a下方に、凹溝状の流入部40が形成される。
[Configuration 4 of the inflow section]
Further, as shown in FIG. 8, the protective element 60 has a portion where the heating element extraction electrode 16 of the insulating substrate 11 is provided between the electrode 12 (A1) and the heating element extraction electrode 16 as shown in FIG. Alternatively, it may be formed by providing a protruding portion 43 that protrudes more than between the electrode 12 (A2) and the heating element extraction electrode 16. Thereby, in the protection element 60, the inflow portion 40 having a concave groove shape is formed below the melted portion 13a of the soluble conductor 13 between the protruding portion 43 and the electrodes 12 (A1) and 12 (A2).
 突出部43は、絶縁基板11の材質に応じて、表面の切削やエッチング、あるいは発熱体引出電極16を設ける箇所に基板を積層する等、公知の手法により形成することができる。保護素子60は、突出部43を形成することにより、発熱体引出電極16と電極12(A1),12(A2)の各間の経路を長くすることができ、より絶縁性能を向上させることができる。 The protrusion 43 can be formed by a known method such as cutting or etching of the surface, or laminating the substrate at a position where the heating element extraction electrode 16 is provided, depending on the material of the insulating substrate 11. By forming the protrusion 43, the protection element 60 can lengthen the path between the heating element extraction electrode 16 and each of the electrodes 12 (A1) and 12 (A2), thereby further improving the insulation performance. it can.
 なお、突出部43と電極12(A1),12(A2)との間の流入部40は、可溶導体13の溶断部13aの堆積よりも大きな容積を有していることが好ましい。また、突出部43と電極12(A1),12(A2)との間の流入部40は、突出部43を可溶導体13の外側まで設けることにより、可溶導体13の外側まで延長して形成されることが好ましい。 In addition, it is preferable that the inflow part 40 between the protrusion part 43 and the electrodes 12 (A1) and 12 (A2) has a larger volume than the deposition of the fusing part 13a of the soluble conductor 13. The inflow portion 40 between the protrusion 43 and the electrodes 12 (A1) and 12 (A2) extends to the outside of the soluble conductor 13 by providing the protrusion 43 to the outside of the soluble conductor 13. Preferably it is formed.
 [流入部の構成5]
 また、保護素子70は、流入部40を、図9に示すように、絶縁基板11上に、発熱体モジュール45を搭載することにより形成してもよい。絶縁基板11上には、電極12(A1),12(A2)が形成されている。発熱体モジュール45は、ベース基板46と、ベース基板46に積層され、絶縁部材15に覆われた発熱抵抗体14と、発熱抵抗体14と重畳するように形成された発熱体引出電極16とを有する。ベース基板46は、上記絶縁基板11と同様に、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。また、ベース基板46は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。発熱抵抗体14、絶縁部材15、及び発熱体引出電極16は、上述したものと同じである。
[Structure 5 of the inflow section]
Further, the protective element 70 may be formed by mounting the heating element module 45 on the insulating substrate 11 as shown in FIG. On the insulating substrate 11, electrodes 12 (A1) and 12 (A2) are formed. The heating element module 45 includes a base substrate 46, a heating resistor 14 laminated on the base substrate 46 and covered with an insulating member 15, and a heating element extraction electrode 16 formed so as to overlap the heating resistor 14. Have. Similar to the insulating substrate 11, the base substrate 46 is formed in a substantially rectangular shape using an insulating member such as alumina, glass ceramics, mullite, and zirconia. In addition, the base substrate 46 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board. The heating resistor 14, the insulating member 15, and the heating element extraction electrode 16 are the same as those described above.
 保護素子70は、発熱体モジュール45が絶縁基板11の電極12(A1),12(A2)間に、接着剤によって搭載される。これにより、保護素子10は、電極12(A1)及び電極12(A2)と、発熱体モジュール45との間に流入部40が形成される。このように、保護素子70は、発熱体モジュール45を形成し、これを絶縁基板11上に搭載することで、簡易に流入部40を形成することができる。 In the protective element 70, the heating element module 45 is mounted between the electrodes 12 (A1) and 12 (A2) of the insulating substrate 11 by an adhesive. Thereby, in the protective element 10, the inflow portion 40 is formed between the electrode 12 (A 1) and the electrode 12 (A 2) and the heating element module 45. Thus, the protective element 70 forms the heating element module 45 and mounts it on the insulating substrate 11, whereby the inflow portion 40 can be easily formed.
 なお、発熱体モジュール45は、ベース基板46を厚く形成する等により、流入部40の容積を、可溶導体13の溶断部13aよりも大きくすることが好ましい。また、発熱体モジュール45は、ベース基板46の長さを可溶導体13よりも長くすることにより、流入部40を可溶導体13の外側まで延長して形成することが好ましい。 In addition, it is preferable that the heating element module 45 makes the volume of the inflow part 40 larger than the fusing part 13a of the soluble conductor 13 by forming the base substrate 46 thick. The heating element module 45 is preferably formed by extending the inflow portion 40 to the outside of the soluble conductor 13 by making the length of the base substrate 46 longer than that of the soluble conductor 13.
 [流入部の構成6]
 また、保護素子80は、図10に示すように、絶縁基板11の発熱体モジュール45を搭載する箇所に凹面部47を形成してもよい。凹面部47は、絶縁基板11の電極12(A1),12(A2)間に、発熱体モジュール45のベース基板46よりも広く設けられている。また、凹面部47は、絶縁基板11の材質に応じて、表面の切削やエッチング、あるいは基板を電極12(A1),12(A2)の形成位置に応じて積層する等、公知の手法により形成することができる。
[Configuration 6 of the inflow section]
Moreover, as shown in FIG. 10, the protective element 80 may form the concave surface part 47 in the location which mounts the heat generating body module 45 of the insulating substrate 11. As shown in FIG. The concave portion 47 is provided wider than the base substrate 46 of the heating element module 45 between the electrodes 12 (A1) and 12 (A2) of the insulating substrate 11. The concave surface portion 47 is formed by a known method such as cutting or etching of the surface according to the material of the insulating substrate 11 or laminating the substrate according to the positions where the electrodes 12 (A1) and 12 (A2) are formed. can do.
 発熱体モジュール45は、凹面部47に、電極12(A1),12(A2)との間に間隙を設け、接着剤によって搭載される。これにより、保護素子80は、電極12(A1)及び電極12(A2)と、発熱体モジュール45との間に流入部40が形成される。このように、保護素子80は、発熱体モジュール45を形成し、これを絶縁基板11上に搭載することで、簡易に流入部40を形成することができるとともに、凹面部47を形成することにより、低背化を実現することができる。 The heating element module 45 is mounted on the concave portion 47 with a gap between the electrodes 12 (A1) and 12 (A2) and with an adhesive. Thereby, in the protective element 80, the inflow portion 40 is formed between the electrode 12 (A1) and the electrode 12 (A2) and the heating element module 45. Thus, the protection element 80 forms the heating element module 45 and mounts it on the insulating substrate 11, whereby the inflow portion 40 can be easily formed and the concave portion 47 is formed. , Low profile can be realized.
 なお、発熱体モジュール45は、凹面部47を深くするととともにベース基板46を厚く形成する等により、流入部40の容積を、可溶導体13の溶断部13aよりも大きくすることが好ましい。また、発熱体モジュール45は、凹面部47及びベース基板46の長さを可溶導体13よりも長くすることにより、流入部40を可溶導体13の外側まで延長して形成することが好ましい。 In addition, it is preferable that the heating element module 45 makes the volume of the inflow part 40 larger than the fusing part 13a of the soluble conductor 13 by deepening the concave surface part 47 and forming the base substrate 46 thick. The heating element module 45 is preferably formed by extending the inflow portion 40 to the outside of the soluble conductor 13 by making the lengths of the concave surface portion 47 and the base substrate 46 longer than the soluble conductor 13.
 [流入部40の深さ]
 上述したいずれの保護素子10,50,60,70,80においても、流入部40の深さを深くする程、絶縁性能を向上させることができる。すなわち、保護素子10,50,60,70,80は、流入部40の深さを深くする程、発熱体引出電極16と電極12(A1),12(A2)の各間の経路をより長くすることができ、アーク放電によって溶融、飛散した溶融導体が付着しても、当該溶融導体によって発熱体引出電極16と電極12(A1),12(A2)の各間に亘る電流経路が形成され難くなるからである。
[Depth of Inflow Portion 40]
In any of the protection elements 10, 50, 60, 70, 80 described above, the insulation performance can be improved as the depth of the inflow portion 40 is increased. That is, the protection elements 10, 50, 60, 70, 80 have longer paths between the heating element extraction electrode 16 and the electrodes 12 (A1), 12 (A2) as the depth of the inflow portion 40 is increased. Even if the molten conductor melted and scattered by the arc discharge adheres, the molten conductor forms a current path between the heating element extraction electrode 16 and the electrodes 12 (A1) and 12 (A2). Because it becomes difficult.
10,50,60,70,80 保護素子、11 絶縁基板、12 電極、13 可溶導体、13a 溶断部、14 発熱体、15 絶縁部材、16 発熱体引出電極、18 発熱体電極、19 カバー部材、20 バッテリパック、21~24 バッテリセル、26 検出回路、27 電流制御素子、30 充放電制御回路、31,32 電流制御素子、33 制御部、35 充電装置、40 流入部、41 凹部、42 貫通孔、45 発熱体モジュール、46 ベース基板、47 凹面部 10, 50, 60, 70, 80 Protection element, 11 Insulating substrate, 12 Electrode, 13 Soluble conductor, 13a Fusing part, 14 Heating element, 15 Insulating member, 16 Heating element extraction electrode, 18 Heating element electrode, 19 Cover member , 20 battery pack, 21-24 battery cells, 26 detection circuit, 27 current control element, 30 charge / discharge control circuit, 31, 32 current control element, 33 control unit, 35 charging device, 40 inflow unit, 41 recess, 42 penetration Hole, 45 heating element module, 46 base substrate, 47 concave surface

Claims (11)

  1.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     上記絶縁部材が積層された上記絶縁基板に積層された第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路上で該発熱体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体の溶断部の下方には、溶融した上記可溶導体が流入する流入部が設けられている保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes stacked on the insulating substrate on which the insulating member is stacked;
    A heating element extraction electrode laminated on the insulating member so as to overlap the heating element and electrically connected to the heating element on a current path between the first and second electrodes;
    A laminate that extends from the heating element extraction electrode to the first and second electrodes, and includes a soluble conductor that melts a current path between the first electrode and the second electrode by heat;
    The protective element provided with the inflow part into which the said melt | dissolved soluble conductor flows in under the melt | fusion part of the said soluble conductor.
  2.  上記流入部は、上記第1の電極と上記発熱体引出電極との間、及び/又は上記第2の電極と上記発熱体引出電極との間に設けられている請求項1記載の保護素子。 The protective element according to claim 1, wherein the inflow portion is provided between the first electrode and the heating element extraction electrode and / or between the second electrode and the heating element extraction electrode.
  3.  上記流入部は、上記絶縁基板に形成された凹部である請求項1又は2に記載の保護素子。 3. The protective element according to claim 1, wherein the inflow portion is a recess formed in the insulating substrate.
  4.  上記流入部は、上記絶縁部材の下方に向かって拡径されている請求項3に記載の保護素子。 The protective element according to claim 3, wherein the inflow portion has a diameter expanded toward a lower side of the insulating member.
  5.  上記流入部は、上記絶縁基板に形成された貫通孔である請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the inflow portion is a through hole formed in the insulating substrate.
  6.  上記流入部は、上記絶縁部材の下方に向かって拡径されている請求項5に記載の保護素子。 The protective element according to claim 5, wherein the inflow portion has a diameter expanded toward a lower side of the insulating member.
  7.  上記流入部は、上記絶縁基板の上記発熱体引出電極が設けられた箇所が、上記第1の電極と上記発熱体引出電極との間、及び上記第2の電極と上記発熱体引出電極との間よりも突出することにより形成される請求項1又は2に記載の保護素子。 The inflow portion has a place where the heating element extraction electrode of the insulating substrate is provided between the first electrode and the heating element extraction electrode and between the second electrode and the heating element extraction electrode. The protective element according to claim 1, wherein the protective element is formed by projecting from a gap.
  8.  上記流入部は、ベース基板上に上記発熱体、上記絶縁部材及び上記発熱体引出電極が形成された発熱体モジュールが、上記絶縁基板上に、搭載されることにより形成される請求項1又は2に記載の保護素子。 3. The inflow portion is formed by mounting a heating element module in which the heating element, the insulating member, and the heating element extraction electrode are formed on a base substrate on the insulating substrate. The protective element as described in.
  9.  上記絶縁部材の上記発熱体モジュールが搭載される箇所が、上記第1及び第2の電極が積層されている箇所よりも低い請求項7記載の保護素子。 The protective element according to claim 7, wherein a portion of the insulating member where the heating element module is mounted is lower than a portion where the first and second electrodes are stacked.
  10.  上記流入部の容積は、上記可溶導体の溶断部の体積よりも大きい請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the volume of the inflow portion is larger than the volume of the melted portion of the soluble conductor.
  11.  上記流入部は、上記可溶導体の外側まで延長して形成されている請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the inflow portion is formed to extend to the outside of the soluble conductor.
PCT/JP2014/050524 2014-01-15 2014-01-15 Protective element WO2015107632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050524 WO2015107632A1 (en) 2014-01-15 2014-01-15 Protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050524 WO2015107632A1 (en) 2014-01-15 2014-01-15 Protective element

Publications (1)

Publication Number Publication Date
WO2015107632A1 true WO2015107632A1 (en) 2015-07-23

Family

ID=53542555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050524 WO2015107632A1 (en) 2014-01-15 2014-01-15 Protective element

Country Status (1)

Country Link
WO (1) WO2015107632A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315451A (en) * 1999-04-30 2000-11-14 Sony Chem Corp Protection element
JP2011243472A (en) * 2010-05-20 2011-12-01 Kyocera Corp Resistor thermal fuse, and resistor thermal fuse package
JP2013258011A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Protection element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315451A (en) * 1999-04-30 2000-11-14 Sony Chem Corp Protection element
JP2011243472A (en) * 2010-05-20 2011-12-01 Kyocera Corp Resistor thermal fuse, and resistor thermal fuse package
JP2013258011A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Protection element

Similar Documents

Publication Publication Date Title
JP6437253B2 (en) Protective element and mounting body
JP2013229295A (en) Protective element
JP7281274B2 (en) Protective elements and battery packs
JP6336725B2 (en) Protective element and protective circuit board using the same
WO2015156019A1 (en) Protection element, protection circuit and battery circuit
JP6151550B2 (en) Protective element
JP5952674B2 (en) Protective element and battery pack
TWI765940B (en) Protection element
CN109937464B (en) Protective element
WO2014021157A1 (en) Protective element and battery pack
JP2015111526A (en) Protection element and fuse element
JP2024009983A (en) Protection element and battery pack
WO2015107631A1 (en) Protective element
JP6254859B2 (en) Breaking element, breaking element circuit,
JP6356470B2 (en) Protective element
JP6030431B2 (en) Protective element
JP6078332B2 (en) Protection element, battery module
CN109891546B (en) Protective element
WO2015025885A1 (en) Protection element
TW201528305A (en) Protection element
JP7390825B2 (en) Protection element, battery pack
JP6202992B2 (en) Protective circuit, battery circuit, protective element, and driving method of protective element
JP6231323B2 (en) Protective element and protective circuit board using the same
WO2015107632A1 (en) Protective element
JP2014127270A (en) Protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP