WO2014021157A1 - Protective element and battery pack - Google Patents

Protective element and battery pack Download PDF

Info

Publication number
WO2014021157A1
WO2014021157A1 PCT/JP2013/069996 JP2013069996W WO2014021157A1 WO 2014021157 A1 WO2014021157 A1 WO 2014021157A1 JP 2013069996 W JP2013069996 W JP 2013069996W WO 2014021157 A1 WO2014021157 A1 WO 2014021157A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
extraction electrode
soluble conductor
electrode
protective
Prior art date
Application number
PCT/JP2013/069996
Other languages
French (fr)
Japanese (ja)
Inventor
武雄 木村
後藤 一夫
吉弘 米田
佐藤 浩二
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020157004832A priority Critical patent/KR101946106B1/en
Priority to CN201380040789.7A priority patent/CN104508789B/en
Publication of WO2014021157A1 publication Critical patent/WO2014021157A1/en
Priority to HK15109361.5A priority patent/HK1208759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0283Structural association with a semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element that protects a circuit connected on a current path by fusing the current path.
  • an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied, and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell.
  • the battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Accordingly, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
  • a heating element is provided inside the protection element.
  • a structure that melts a molten conductor is generally used.
  • the fusible conductor has a current capacity of about 15 A at the maximum because it is used for applications having a relatively low current capacity such as a mobile phone or a notebook computer. is doing.
  • Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly at startup. Realization of a protection element corresponding to such a current capacity is desired.
  • the cross-sectional area of the soluble conductor may be increased.
  • Sn / Ag / Cu solder molded into a 1.6 mm ⁇ line When Sn / Ag / Cu solder molded into a 1.6 mm ⁇ line is used, a current capacity of about 50 A can be obtained.
  • the protection element needs to detect the overvoltage state of the battery cell, flow current through the resistance heating element of the protection element, and cut the soluble conductor by the heat generation, in addition to the case where the protection element is melted by an overcurrent state. is there. For this reason, the “thick” soluble conductor has a problem that heat conduction from the heating element is lowered and it is difficult to cut the soluble conductor. Further, when the “thick” fusible conductor is blown, there is a problem that the circuit cannot be cut off unless the melted solder is surely cut.
  • an object is to obtain a protective element that can be easily blown by heat generated by a heating element while ensuring a current capacity at the time of overcurrent protection, and can reliably cut off a circuit by dividing molten solder.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, and an insulating member stacked on the insulating substrate so as to cover at least the heating element.
  • the first and second electrodes are stacked on the insulating member so as to overlap the heating element, and are electrically connected to the current path between the first and second electrodes and one terminal of the heating element.
  • a heating element extraction electrode that is electrically connected to an external circuit, and is connected across the first and second electrodes from the heating element extraction electrode, and is heated between the first electrode and the second electrode.
  • a soluble conductor that melts the current path.
  • the heating element extraction electrode is arranged to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode extends more than the area at the connection position between the heating element extraction electrode and the soluble conductor. The side area is larger.
  • the battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element.
  • the protective element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, first and second electrodes, and a heating element. Are stacked on the insulating member so as to overlap with each other, and are electrically connected to the current path between the first and second electrodes and one terminal of the heating element to make electrical connection with an external circuit.
  • the heating element extraction electrode is arranged so as to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode is on the side where the heating element extraction electrode extends than the area at the connection position of the heating element extraction electrode and the soluble conductor The area is larger.
  • the present invention is arranged such that the shape of the heating element extraction electrode extends in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction is more than the area at the connection position of the heating element extraction electrode and the soluble conductor. Since the area on the side where the electrode extends is larger, the molten solder can be stably divided by drawing the molten solder toward the larger area.
  • FIG. 1A is a plan view of a protection element to which the present invention is applied.
  • FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. 2A to 2C are plan views for explaining the fusing operation of the protection element to which the present invention is applied.
  • FIG. 3 is a block diagram showing an application example of a protection element to which the present invention is applied.
  • FIG. 4 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • 5A to 5D are plan views showing variations in the shape of the heating element extraction electrode of the protection element to which the present invention is applied.
  • FIG. 6A is a plan view of a heating element extraction electrode according to a modification of the present invention.
  • FIG. 6B is a cross-sectional view taken along the line AA ′ in FIG.
  • the protection element 10 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A1) and 12 (A2) formed on the heating member 14 and the heating element lead electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends of the electrodes 12 (A1) and 12 (A2). And a soluble conductor 13 connected to (). At both ends of the heating element 14, heating element electrodes 18 (P1) and 18 (P2) are connected to which a power source is connected in order to cause the heating element to generate current and generate heat.
  • the fusible conductor 13 is preferably formed to be thinner and flatter than the thick portion 13a so that the thickness is substantially uniform at the position where it overlaps with the heating element 14 and the round wire-like thick portion 13a of 1.6 mm ⁇ .
  • the thin portion 13b is, for example, 1/2 of the thickness (thickness) of the thick portion 13a.
  • the cross-sectional area or electric current capacity of the thick part 13a and the thin part 13b is substantially the same.
  • the thin portion 13 b of the soluble conductor 13 is electrically connected to the heating element extraction electrode 16.
  • the soluble conductor 13 By making the soluble conductor 13 a thin portion 13b where the position overlapping the heating element 14 is thinned, the heat conduction in the thickness direction of the thin portion 13b is improved, and the soluble conductor 13 can be easily blown. it can. Further, by molding the thin wall portion 13b into a flat shape, the contact area with the overlapping portion of the heating element 14 can be increased, heat from the heating element 14 can be efficiently transmitted, and stable fusing characteristics. Can be realized. When the cross-sectional areas of the thick portion 13a and the thin portion 13b are substantially the same, the current capacity of the fusible conductor 13 is the same. A current corresponding to the material (specific resistance) can be passed.
  • the two electrodes 12 (A1) and 12 (A2) connect the fusible conductor 13 inside the protective element 10, and are connected to an external circuit through the two electrodes 12 (A1) and 12 (A2). To do.
  • the two electrodes 12 (A 1) and 12 (A 2) may be formed on the insulating substrate 11, or may be formed on an insulating material made of an epoxy resin or the like integrated with the insulating substrate 11.
  • One end of the heating element extraction electrode 16 is connected to one end of the heating element electrode 18 (P1) and the heating element 14.
  • the other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
  • the insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15.
  • the insulating member 15 may be a laminated substrate in which the heating elements 14 are integrally laminated.
  • the fusible conductor 13 may be any conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • SnAgCu-based Pb-free solder BiPbSn alloy, BiPb alloy, BiSn An alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
  • the soluble conductor 13 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. Good.
  • the support member 3 is formed on the electrode 2 formed on the insulating substrate 11.
  • the fusible conductor 13 may be connected to the support member 3.
  • a “thick” soluble conductor is used to cope with a large current capacity.
  • the amount of solder to be melted is large. Therefore, it is necessary to consider the treatment of the melted solder in order to ensure that the melted solder is divided and to shut off the circuit.
  • the heating element extraction electrode 16 is stretched in a direction different from the longitudinal direction of the fusible conductor 13, for example, in a direction perpendicular to the longitudinal direction of the fusible conductor 13.
  • One side is connected to the thin portion 13 b of the fusible conductor 13, and the other extended side is connected to the electrode 18 a (P 1) for the heating element 14 formed on the insulating member 15.
  • the shape of the heating element extraction electrode 16 is, for example, such that the area on the electrode 18a (P1) side of the heating element 14 is larger than the area at the connection position of the fusible conductor 13 with the thin portion 13b.
  • the shape of the isosceles triangle is set such that the side of the connecting position is the apex and the extended side of the electrode 18a (P1) is the base.
  • the thin portion 13b of the soluble conductor 13 is heated to the heating element 14 by heating the heating element 14.
  • the overlapping part begins to melt. Since the molten solder has a property of moving to a wider area and higher wettability, the thin portion 13b is drawn in the direction of the arrow in FIG.
  • FIG. 2 (C) since the molten solder tends to flow on the wide side of the heating element extraction electrode 16, that is, on the bottom side of the isosceles triangle, the force that the molten solder flows is used. As a result, it is possible to divide the solder more quickly. As a result, the soluble conductor 13 is divided and the circuit can be stably shut off.
  • an isosceles triangular electrode can be formed directly on the insulating member 15 by using a known pattern molding technique.
  • an insulating protective layer having an isosceles triangular opening may be provided on the surface of the substantially rectangular heating element extraction electrode 16.
  • the protection element 10 described above is used in a circuit in a battery pack of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charge / discharge of the battery stack 25, a protection element 10 to which the present invention that protects the battery stack 25 and the charge / discharge control circuit 30 is applied, A detection circuit 26 that detects the voltages of the battery cells 21 to 24 and a current control element 27 that controls the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 includes battery cells 21 to 24 that need to be controlled to protect overcharge and overdischarge states.
  • the battery stack 25 is detachable via the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the battery pack 20 charged by the charging device 35 to the positive terminal 20a and the negative terminal 20b to the electronic device that is operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 operates the protection element 10 when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 26, Control is performed so that the charging / discharging current path of the battery stack 25 is cut off regardless of the switching operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • This is a circuit configuration comprising the body 14.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27.
  • the two electrodes 12 and 12 of the protective element 10 one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protection element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing a low profile.
  • the shape of the heating element extraction electrode 16 on the insulating member 15 may be any shape as long as the area at the connection position with the thin portion 13b of the fusible conductor 13 increases as the distance from the position increases.
  • the two sides of the isosceles triangle may have a curved wedge shape.
  • the heating element extraction electrode 16 is usually patterned by Cu or Ag (Ag paste or the like), but these metals (or alloys containing them as a main component) are in the molten solder when the solder melts. Solder corrosion phenomenon that dissolves in is known. In the conventional protective element having a current capacity of up to about 15 A, the amount of soluble conductor (solder) is smaller than the amount of metal used for the heating element extraction electrode, so there is no need to consider the solder corrosion phenomenon. .
  • solder corrosion becomes noticeable during the operation of the protection element 10, and a heating element is generated during the operation of the protection element.
  • the extraction electrode 16 may disappear, the power supply to the heating element 14 may stop, and the fusing operation may stop.
  • a protective film 8 that resists solder corrosion is formed on the surface of the heating element extraction electrode 16.
  • the solder of the fusible conductor 13 can continue to receive the supply of power without eroding the heating element lead electrode 16,
  • the soluble conductor 13 can be blown stably.
  • Any material can be used for the protective film 8 depending on resistance to solder corrosion, ease of manufacture, and the like. For example, Ni / Au plating is preferably used.

Abstract

In order to obtain a protective element that can be easily made to fuse and that is capable of reliably dividing molten solder, a protective element (10) is provided with: an insulating substrate (11), a heating element (14) that is layered on the insulating substrate (11) and covered by an insulating member (15); electrodes (12)(A1) and (12)(A2); a heating element-drawing electrode (16) that is layered on the insulating member (15) so as to overlap with the heating element (14); and a fusible conductor (13), both ends of which are connected to the electrodes (12)(A1) and (12)(A2) and the central section of which is connected to the heating element-drawing electrode (16), said heating element-drawing electrode (16) being provided with a protective layer (8). The fusible conductor (13) comprises a thick section (13a) and a thin section (13b) that is molded so as to be thin and flat. The form of the heating element-drawing electrode (16) that is extended in the lengthwise direction of the fusible conductor (13) and in the direction that is perpendicular to said lengthwise direction is set so that the area of the electrode (18a)(P1) side of the heating element (14) is larger than the area at the connecting position of the heating element-drawing electrode (16) and the thin section (13b) of the fusible conductor (13).

Description

保護素子及びバッテリパックProtective element and battery pack
 本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子に関する。本出願は、日本国において2012年8月1日に出願された日本特許出願番号特願2012-171334を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to a protective element that protects a circuit connected on a current path by fusing the current path. This application claims priority on the basis of Japanese Patent Application No. 2012-171334 filed in Japan on August 1, 2012, and is incorporated herein by reference. Is done.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the rechargeable batteries that can be charged and used repeatedly are processed into battery packs and provided to users. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, several protection circuits such as overcharge protection and overdischarge protection are built in the battery pack, It has a function of shutting off the output of the battery pack in a predetermined case.
 多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態において、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。 In many electronic devices using lithium ion secondary batteries, an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge or the like is applied, and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell. The battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Accordingly, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
 このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。 As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, a heating element is provided inside the protection element. A structure that melts a molten conductor is generally used.
特開2010-3665号公報JP 2010-3665 A
 特許文献1に記載されている保護素子においては、携帯電話やノートパソコンのような電流容量が比較的低い用途に用いるために、可溶導体(ヒューズ)は、最大でも15A程度の電流容量を有している。リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、たとえば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途においては、特に起動時に、数10A~100Aを超えるような大電流が流れる場合がある。このような電流容量に対応した保護素子の実現が望まれている。 In the protective element described in Patent Document 1, the fusible conductor (fuse) has a current capacity of about 15 A at the maximum because it is used for applications having a relatively low current capacity such as a mobile phone or a notebook computer. is doing. Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly at startup. Realization of a protection element corresponding to such a current capacity is desired.
 大電流に対応する保護素子を実現するにためには、可溶導体の断面積を増大させればよい。1.6mmφの線状に成型したSn/Ag/Cu系ハンダを用いると、50A程度の電流容量を得ることができる。しかしながら、保護素子は、過電流状態により溶断させる場合以外にも、電池セルの過電圧状態を検出して、保護素子の抵抗発熱体に電流を流して、その発熱によって可溶導体を切断する必要がある。このため、「太い」可溶導体では、発熱体からの熱伝導が低下し、可溶導体の切断をすることが困難になるとの問題がある。さらに、「太い」可溶導体を溶断させる場合に、溶融したハンダを確実に分断しないと、回路の遮断をすることができないという問題がある。 In order to realize a protective element corresponding to a large current, the cross-sectional area of the soluble conductor may be increased. When Sn / Ag / Cu solder molded into a 1.6 mmφ line is used, a current capacity of about 50 A can be obtained. However, the protection element needs to detect the overvoltage state of the battery cell, flow current through the resistance heating element of the protection element, and cut the soluble conductor by the heat generation, in addition to the case where the protection element is melted by an overcurrent state. is there. For this reason, the “thick” soluble conductor has a problem that heat conduction from the heating element is lowered and it is difficult to cut the soluble conductor. Further, when the “thick” fusible conductor is blown, there is a problem that the circuit cannot be cut off unless the melted solder is surely cut.
 そこで、過電流保護時の電流容量を確保しつつ、発熱体による発熱によって容易に溶断させることができ、確実に溶融ハンダを分断して回路遮断することを可能にする保護素子を得ることを目的とする。 Therefore, an object is to obtain a protective element that can be easily blown by heat generated by a heating element while ensuring a current capacity at the time of overcurrent protection, and can reliably cut off a circuit by dividing molten solder. And
 上述した課題を解決するための手段として、本発明に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路と発熱体の一方の端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって接続され、加熱により、第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、発熱体引出電極は、可溶導体の長手方向とは異なる方向に延伸するように配置され、発熱体引出電極と可溶導体との接続位置における面積よりも、発熱体引出電極が延伸する側の面積の方が大きい。 As means for solving the above-described problems, a protection element according to the present invention includes an insulating substrate, a heating element stacked on the insulating substrate, and an insulating member stacked on the insulating substrate so as to cover at least the heating element. The first and second electrodes are stacked on the insulating member so as to overlap the heating element, and are electrically connected to the current path between the first and second electrodes and one terminal of the heating element. And a heating element extraction electrode that is electrically connected to an external circuit, and is connected across the first and second electrodes from the heating element extraction electrode, and is heated between the first electrode and the second electrode. And a soluble conductor that melts the current path. The heating element extraction electrode is arranged to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode extends more than the area at the connection position between the heating element extraction electrode and the soluble conductor. The side area is larger.
 本発明に係るバッテリパックは、1つ以上のバッテリセルと、バッテリセルに流れる電流を遮断するように接続された保護素子と、バッテリセルそれぞれの電圧値を検出して保護素子を加熱する電流を制御する電流制御素子とを備える。そして、保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも上記発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路と発熱体の一方の端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって接続され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを有し、発熱体引出電極は、可溶導体の長手方向とは異なる方向に延伸するように配置され、発熱体引出電極と可溶導体との接続位置における面積よりも、発熱体引出電極が延伸する側の面積の方が大きい。 The battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element. A current control element to be controlled. The protective element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, first and second electrodes, and a heating element. Are stacked on the insulating member so as to overlap with each other, and are electrically connected to the current path between the first and second electrodes and one terminal of the heating element to make electrical connection with an external circuit. A body lead electrode and a soluble conductor connected from the heating element lead electrode to the first and second electrodes, and by heating, melts a current path between the first electrode and the second electrode; The heating element extraction electrode is arranged so as to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode is on the side where the heating element extraction electrode extends than the area at the connection position of the heating element extraction electrode and the soluble conductor The area is larger.
 本発明は、発熱体引出電極の形状が、可溶導体の長手方向とは異なる方向に延伸するように配置され、発熱体引出電極と可溶導体との接続位置における面積よりも、発熱体引出電極が延伸する側の面積の方が大きいので、溶融したハンダを面積の大きい側に引き寄せることによって、安定して溶融ハンダを分断することを可能にする。 The present invention is arranged such that the shape of the heating element extraction electrode extends in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction is more than the area at the connection position of the heating element extraction electrode and the soluble conductor. Since the area on the side where the electrode extends is larger, the molten solder can be stably divided by drawing the molten solder toward the larger area.
図1(A)は、本発明が適用された保護素子の平面図である。図1(B)は、(A)のAA’線における断面図である。FIG. 1A is a plan view of a protection element to which the present invention is applied. FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. 図2(A)~(C)は、本発明が適用された保護素子の溶断動作を説明するための平面図である。2A to 2C are plan views for explaining the fusing operation of the protection element to which the present invention is applied. 図3は、本発明が適用された保護素子の応用例を示すブロック図である。FIG. 3 is a block diagram showing an application example of a protection element to which the present invention is applied. 図4は、本発明が適用された保護素子の回路構成例を示す図である。FIG. 4 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied. 図5(A)~(D)は、本発明が適用された保護素子の発熱体引出電極の形状のバリエーションを示す平面図である。5A to 5D are plan views showing variations in the shape of the heating element extraction electrode of the protection element to which the present invention is applied. 図6(A)は、本発明の変形例に係る発熱体引出電極の平面図である。図6(B)は、図6(A)のAA’線における断面図である。FIG. 6A is a plan view of a heating element extraction electrode according to a modification of the present invention. FIG. 6B is a cross-sectional view taken along the line AA ′ in FIG.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited only to the following embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.
 [保護素子の構成]
 本発明に係る保護素子では、溶融ハンダを分断して確実に回路遮断するために、以下に説明する発熱体引出電極の形状を工夫した。
[Configuration of protection element]
In the protection element according to the present invention, the shape of the heating element extraction electrode described below has been devised in order to divide the molten solder to ensure circuit interruption.
 図1(A)及び図1(B)に示すように、保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続された可溶導体13とを備える。発熱体14の両端には、発熱体に電流を流して発熱させるために電源を接続する発熱体電極18(P1),18(P2)が接続される。可溶導体13は、好ましくは1.6mmφの丸線状の厚肉部13aと、発熱体14に重畳する位置において厚さがほぼ均一になるように厚肉部13aよりも薄く扁平に成型された薄肉部13bとからなる。薄肉部13bの厚さは、厚肉部13aの厚さ(太さ)のたとえば1/2である。なお、厚肉部13a及び薄肉部13bの断面積又は電流容量はほぼ同一であることが好ましい。可溶導体13の薄肉部13bは、発熱体引出電極16と電気的に接続される。 As shown in FIGS. 1A and 1B, the protection element 10 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A1) and 12 (A2) formed on the heating member 14 and the heating element lead electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends of the electrodes 12 (A1) and 12 (A2). And a soluble conductor 13 connected to (). At both ends of the heating element 14, heating element electrodes 18 (P1) and 18 (P2) are connected to which a power source is connected in order to cause the heating element to generate current and generate heat. The fusible conductor 13 is preferably formed to be thinner and flatter than the thick portion 13a so that the thickness is substantially uniform at the position where it overlaps with the heating element 14 and the round wire-like thick portion 13a of 1.6 mmφ. The thin portion 13b. The thickness of the thin portion 13b is, for example, 1/2 of the thickness (thickness) of the thick portion 13a. In addition, it is preferable that the cross-sectional area or electric current capacity of the thick part 13a and the thin part 13b is substantially the same. The thin portion 13 b of the soluble conductor 13 is electrically connected to the heating element extraction electrode 16.
 可溶導体13を、発熱体14に重畳する位置を薄肉化した薄肉部13bとすることによって、薄肉部13bにおける厚さ方向の熱伝導が向上し、可溶導体13を容易に溶断させることができる。また、薄肉部13bを扁平に成型することによって、発熱体14の重畳部との接触面積を増大させることができ、発熱体14からの熱を効率的に伝達することができ、安定した溶断特性を実現することができる。なお、厚肉部13a及び薄肉部13bの断面積をほぼ同一とした場合には、可溶導体13の電流容量が同じになるので、可溶導体13の通電方向の断面積及び可溶導体13の材質(比抵抗)に応じた電流を流すことができる。 By making the soluble conductor 13 a thin portion 13b where the position overlapping the heating element 14 is thinned, the heat conduction in the thickness direction of the thin portion 13b is improved, and the soluble conductor 13 can be easily blown. it can. Further, by molding the thin wall portion 13b into a flat shape, the contact area with the overlapping portion of the heating element 14 can be increased, heat from the heating element 14 can be efficiently transmitted, and stable fusing characteristics. Can be realized. When the cross-sectional areas of the thick portion 13a and the thin portion 13b are substantially the same, the current capacity of the fusible conductor 13 is the same. A current corresponding to the material (specific resistance) can be passed.
 2つの電極12(A1),12(A2)は、可溶導体13を、保護素子10の内部で接続し、この2つの電極12(A1),12(A2)を介して、外部回路に接続する。2つの電極12(A1),12(A2)は、絶縁基板11上に形成してもよく、あるいは絶縁基板11と一体となったエポキシ樹脂等からなる絶縁素材に形成するようにしてもよい。 The two electrodes 12 (A1) and 12 (A2) connect the fusible conductor 13 inside the protective element 10, and are connected to an external circuit through the two electrodes 12 (A1) and 12 (A2). To do. The two electrodes 12 (A 1) and 12 (A 2) may be formed on the insulating substrate 11, or may be formed on an insulating material made of an epoxy resin or the like integrated with the insulating substrate 11.
 発熱体引出電極16の一端は、発熱体電極18(P1)及び発熱体14の一端に接続される。また、発熱体14の他端は、他方の発熱体電極18(P2)に接続される。 One end of the heating element extraction electrode 16 is connected to one end of the heating element electrode 18 (P1) and the heating element 14. The other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
 絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.
 発熱体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
 発熱体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱体14に対向するように発熱体引出電極16が配置される。この絶縁部材15は、発熱体14が内部に一体的に積層された積層基板であってもよいのはもちろんである。 An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15. Of course, the insulating member 15 may be a laminated substrate in which the heating elements 14 are integrally laminated.
 可溶導体13は、過電流状態によって、及び発熱体14の発熱によって溶融し、溶断する導電性の材料であればよく、たとえば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。 The fusible conductor 13 may be any conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14. For example, in addition to SnAgCu-based Pb-free solder, BiPbSn alloy, BiPb alloy, BiSn An alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
 また、可溶導体13は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなる高融点金属と、Snを主成分とするPbフリーハンダ等の低融点金属との積層体であってもよい。 Further, the soluble conductor 13 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. Good.
 なお、可溶導体13を絶縁基板11に対して支持して、可溶導体13の機械的強度を向上させるために、絶縁基板11上に形成された電極2上に支持部材3を形成して、支持部材3に可溶導体13を接続するようにしてもよい。 In order to support the fusible conductor 13 with respect to the insulating substrate 11 and improve the mechanical strength of the fusible conductor 13, the support member 3 is formed on the electrode 2 formed on the insulating substrate 11. The fusible conductor 13 may be connected to the support member 3.
 本発明に係る保護素子では、大きな電流容量に対応するため、「太い」可溶導体を用いる。可溶導体が溶断する場合に、溶融するハンダの量が多いために、溶融ハンダの分断を確実にして、回路を遮断するために、溶融ハンダの処理を考慮する必要がある。 In the protective element according to the present invention, a “thick” soluble conductor is used to cope with a large current capacity. When the soluble conductor is melted, the amount of solder to be melted is large. Therefore, it is necessary to consider the treatment of the melted solder in order to ensure that the melted solder is divided and to shut off the circuit.
 そこで、図1(A)に示すように、発熱体引出電極16は、可溶導体13の長手方向とは異なる方向、たとえば可溶導体13の長手方向と直角の方向に延伸され、延伸された一方の側が可溶導体13の薄肉部13bに接続され、延伸された他方の側が絶縁部材15に形成された発熱体14のための電極18a(P1)に接続される。発熱体引出電極16の形状は、可溶導体13の薄肉部13bとの接続位置における面積に比べて、発熱体14の電極18a(P1)側の面積が大きくなるように、たとえば薄肉部13bとの接続位置の側を頂点とし、延伸された側の電極18a(P1)の側を底辺とする二等辺三角形の形状に設定される。 Therefore, as shown in FIG. 1A, the heating element extraction electrode 16 is stretched in a direction different from the longitudinal direction of the fusible conductor 13, for example, in a direction perpendicular to the longitudinal direction of the fusible conductor 13. One side is connected to the thin portion 13 b of the fusible conductor 13, and the other extended side is connected to the electrode 18 a (P 1) for the heating element 14 formed on the insulating member 15. The shape of the heating element extraction electrode 16 is, for example, such that the area on the electrode 18a (P1) side of the heating element 14 is larger than the area at the connection position of the fusible conductor 13 with the thin portion 13b. The shape of the isosceles triangle is set such that the side of the connecting position is the apex and the extended side of the electrode 18a (P1) is the base.
 このように、発熱体引出電極16の形状を二等辺三角形にすると、図2(A)に示すように、可溶導体の13の薄肉部13bは、発熱体14の加熱によって、発熱体14に重畳する部分が溶融し始める。溶融したハンダは、より面積の広いぬれ性の高い方へ移動する性質があるので、薄肉部13bは、図2(B)の矢印の方向へと引き寄せられる。そして、図2(C)に示すように、発熱体引出電極16の面積の広い側、すなわち二等辺三角形の底辺の側に溶融したハンダが流れようとするので、溶融ハンダが流れる力を利用してよりはやくハンダを分断することができる。これによって、可溶導体13は分断されて、回路の安定した遮断が可能になる。 Thus, when the shape of the heating element extraction electrode 16 is an isosceles triangle, as shown in FIG. 2A, the thin portion 13b of the soluble conductor 13 is heated to the heating element 14 by heating the heating element 14. The overlapping part begins to melt. Since the molten solder has a property of moving to a wider area and higher wettability, the thin portion 13b is drawn in the direction of the arrow in FIG. As shown in FIG. 2 (C), since the molten solder tends to flow on the wide side of the heating element extraction electrode 16, that is, on the bottom side of the isosceles triangle, the force that the molten solder flows is used. As a result, it is possible to divide the solder more quickly. As a result, the soluble conductor 13 is divided and the circuit can be stably shut off.
 なお、周知のパターン成型技術を用いることによって絶縁部材15上に直接このような二等辺三角形の電極を形成することができる。また、略長方形の発熱体引出電極16の表面に、二等辺三角形の形状の開口を有する絶縁性の保護層を設けることによって形成してもよい。
 [保護素子の使用方法]
Note that such an isosceles triangular electrode can be formed directly on the insulating member 15 by using a known pattern molding technique. Alternatively, an insulating protective layer having an isosceles triangular opening may be provided on the surface of the substantially rectangular heating element extraction electrode 16.
[How to use protection elements]
 図3に示すように、上述した保護素子10は、リチウムイオン二次電池のバッテリパック内の回路に用いられる。 As shown in FIG. 3, the protection element 10 described above is used in a circuit in a battery pack of a lithium ion secondary battery.
 たとえば、保護素子10は、合計4個のリチウムイオン二次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。 For example, the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25と充放電制御回路30とを保護する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。 The battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charge / discharge of the battery stack 25, a protection element 10 to which the present invention that protects the battery stack 25 and the charge / discharge control circuit 30 is applied, A detection circuit 26 that detects the voltages of the battery cells 21 to 24 and a current control element 27 that controls the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
 バッテリスタック25は、過充電及び過放電状態を保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20を正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 25 includes battery cells 21 to 24 that need to be controlled to protect overcharge and overdischarge states. The battery stack 25 is detachable via the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto. The electronic device can be operated by connecting the battery pack 20 charged by the charging device 35 to the positive terminal 20a and the negative terminal 20b to the electronic device that is operated by the battery.
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。 The charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided. The current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. . The control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。 Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。 The detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30. The detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子27は、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。 The current control element 27 operates the protection element 10 when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 26, Control is performed so that the charging / discharging current path of the battery stack 25 is cut off regardless of the switching operation of the current control elements 31 and 32.
 以上のような構成からなるバッテリパック20において、保護素子10の構成について具体的に説明する。 In the battery pack 20 having the above configuration, the configuration of the protection element 10 will be specifically described.
 まず、本発明が適用された保護素子10は、たとえば図4に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱体14が電流制御素子27と接続される。保護素子10の2個の電極12,12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。 First, the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat. This is a circuit configuration comprising the body 14. In the protection element 10, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27. Of the two electrodes 12 and 12 of the protective element 10, one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
 このような回路構成からなる保護素子10は、低背化を実現しつつ、発熱体14の発熱により、電流経路上の可溶導体13を確実に溶断させることができる。
 [変形例]
The protection element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing a low profile.
[Modification]
 発熱体引出電極16の絶縁部材15上における形状は、可溶導体13の薄肉部13bとの接続位置における面積が、この位置から離れるにしたがって広くなるものであればいかなる形状であってもよいが、上述した二等辺三角形(図5(A))や、図5(B)に示すように、二等辺三角形の2つの辺が曲線状のくさび形であってもよい。また、図5(C)及び図5(D)のように可溶導体13薄肉部13bの接続位置に対して、両側に面積の広い部分を有する形状としてもよい。 The shape of the heating element extraction electrode 16 on the insulating member 15 may be any shape as long as the area at the connection position with the thin portion 13b of the fusible conductor 13 increases as the distance from the position increases. As shown in the above-mentioned isosceles triangle (FIG. 5 (A)) and FIG. 5 (B), the two sides of the isosceles triangle may have a curved wedge shape. Moreover, it is good also as a shape which has a part with a large area on both sides with respect to the connection position of the soluble conductor 13 thin part 13b like FIG.5 (C) and FIG.5 (D).
 一方、発熱体引出電極16は、通常、CuやAg(Agペースト等)によってパターン形成されるが、これらの金属(又はこれらを主成分とする合金)は、ハンダが溶融するときに溶融ハンダ中に溶解するハンダ溶食現象が知られている。15A程度までの電流容量を有する従来の保護素子においては、発熱体引出電極に用いる金属の量に比べて可溶導体(ハンダ)の量が少ないため、ハンダ溶食現象について考慮する必要がなかった。ここで、保護素子の大電流容量化に伴い、「太い」ハンダを可溶導体13として用いるようになると、保護素子10の動作時においてハンダ溶食が顕著となり、保護素子の動作中に発熱体引出電極16が消失し、発熱体14への電力供給が停止し、溶断動作が停止してしまうことがある。これを防止するために、図6(A)及び図6(B)に示すように、発熱体引出電極16の表面にハンダ溶食に耐える保護膜8を形成する。保護膜8を介して可溶導体13を接続することによって、可溶導体13のハンダは、発熱体引出電極16を浸食することなく、発熱体14は電力の供給を受け続けることができるので、安定して可溶導体13を溶断することができる。保護膜8としては、ハンダ溶食に対する耐性及び製造の容易さ等によって、任意の材料を用いることができるが、たとえばNi/Auメッキを用いることが好ましい。 On the other hand, the heating element extraction electrode 16 is usually patterned by Cu or Ag (Ag paste or the like), but these metals (or alloys containing them as a main component) are in the molten solder when the solder melts. Solder corrosion phenomenon that dissolves in is known. In the conventional protective element having a current capacity of up to about 15 A, the amount of soluble conductor (solder) is smaller than the amount of metal used for the heating element extraction electrode, so there is no need to consider the solder corrosion phenomenon. . Here, when the “thick” solder is used as the soluble conductor 13 along with the increase in the current capacity of the protection element, solder corrosion becomes noticeable during the operation of the protection element 10, and a heating element is generated during the operation of the protection element. The extraction electrode 16 may disappear, the power supply to the heating element 14 may stop, and the fusing operation may stop. In order to prevent this, as shown in FIGS. 6A and 6B, a protective film 8 that resists solder corrosion is formed on the surface of the heating element extraction electrode 16. By connecting the fusible conductor 13 via the protective film 8, the solder of the fusible conductor 13 can continue to receive the supply of power without eroding the heating element lead electrode 16, The soluble conductor 13 can be blown stably. Any material can be used for the protective film 8 depending on resistance to solder corrosion, ease of manufacture, and the like. For example, Ni / Au plating is preferably used.
 2 電極、3 支持部材、開口、8 保護膜、10 保護素子、11 絶縁基板、12(A1),12(A2) 電極、13 可溶導体、13a 厚肉部、13b 薄肉部、14 発熱体、15 絶縁部材、16 発熱体引出電極、18(P1),18(P2) 発熱体電極、18a(P1),18a(P2) 電極、20 バッテリパック、20a 正極端子、20b 負極端子、21~24 バッテリセル、25 バッテリスタック、26 検出回路、27、31,32 電流制御素子、30 充放電制御回路、33 制御部、35 充電装置 2 electrode, 3 support member, opening, 8 protective film, 10 protective element, 11 insulating substrate, 12 (A1), 12 (A2) electrode, 13 soluble conductor, 13a thick part, 13b thin part, 14 heating element, 15 insulation member, 16 heating element extraction electrode, 18 (P1), 18 (P2) heating element electrode, 18a (P1), 18a (P2) electrode, 20 battery pack, 20a positive terminal, 20b negative terminal, 21-24 battery Cell, 25 battery stack, 26 detection circuit, 27, 31, 32 current control element, 30 charge / discharge control circuit, 33 control unit, 35 charging device

Claims (10)

  1.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路と該発熱体の一方の端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって接続され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記発熱体引出電極は、上記可溶導体の長手方向とは異なる方向に延伸するように配置され、該発熱体引出電極と該可溶導体との接続位置における面積よりも、該発熱体引出電極が延伸する側の面積の方が大きいことを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes;
    Laminated on the insulating member so as to overlap with the heating element, and electrically connected to the current path between the first and second electrodes and one terminal of the heating element; A heating element extraction electrode for electrical connection;
    A soluble conductor that is connected from the heating element extraction electrode to the first and second electrodes and that melts a current path between the first electrode and the second electrode by heating;
    The heating element extraction electrode is disposed so as to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode is larger than the area at the connection position of the heating element extraction electrode and the soluble conductor. A protective element characterized by having a larger area on the side where the film extends.
  2.  上記発熱体引出電極は、上記可溶導体の長手方向と直角の方向に延伸するように配置されることを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein the heating element extraction electrode is arranged so as to extend in a direction perpendicular to the longitudinal direction of the soluble conductor.
  3.  上記発熱体引出電極は、その形状が上記可溶導体と接続される側に頂点をなし、該発熱体引出電極が延伸される側において底辺をなす三角形であることを特徴とする請求項1記載の保護素子。 2. The heating element extraction electrode according to claim 1, wherein the shape of the heating element extraction electrode is a triangle having a vertex on a side connected to the soluble conductor and forming a base on the side on which the heating element extraction electrode is extended. Protection element.
  4.  上記発熱体引出電極は、上記可溶導体の長手方向を対称軸とする線対称の位置に延伸されることを特徴とする請求項3記載の保護素子。 4. The protective element according to claim 3, wherein the heating element extraction electrode is extended to a line-symmetrical position with the longitudinal direction of the soluble conductor as the axis of symmetry.
  5.  上記発熱体引出電極は、Ag又はAgを主成分とする金属或いはCu又はCuを主成分とする金属からなることを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein the heating element extraction electrode is made of Ag or a metal containing Ag as a main component, or a metal containing Cu or Cu as a main component.
  6.  上記発熱体引出電極は、その表面に保護層を有することを特徴とする請求項5記載の保護素子。 The protective element according to claim 5, wherein the heating element extraction electrode has a protective layer on a surface thereof.
  7.  上記保護層は、Ni/Auメッキであることを特徴とする請求項6記載の保護素子。 The protective element according to claim 6, wherein the protective layer is Ni / Au plated.
  8.  上記可溶導体は、厚肉部と、上記発熱体に重畳して位置する部分が凹状に厚さを薄く扁平に成形された薄肉部とからなることを特徴とする請求項1記載の保護素子。 2. The protection element according to claim 1, wherein the soluble conductor includes a thick portion and a thin portion formed in a concave shape with a portion located so as to overlap the heating element being thin and flat. .
  9.  上記可溶導体は、上記厚肉部及び上記薄肉部における断面積がほぼ同一であることを特徴とする請求項8記載の保護素子。 The protective element according to claim 8, wherein the soluble conductor has substantially the same cross-sectional area in the thick part and the thin part.
  10.  1つ以上のバッテリセルと、
     上記バッテリセルに流れる電流を遮断するように接続された保護素子と、
     上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、
     上記保護素子は、
     絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路と該発熱体の一方の端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって接続され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを有し、
     上記発熱体引出電極は、上記可溶導体の長手方向とは異なる方向に延伸するように配置され、該発熱体引出電極と該可溶導体との接続位置における面積よりも、該発熱体引出電極が延伸する側の面積の方が大きいことを特徴とするバッテリパック。
    One or more battery cells;
    A protective element connected to cut off the current flowing through the battery cell;
    A current control element that detects a voltage value of each of the battery cells and controls a current for heating the protection element;
    The protective element is
    An insulating substrate;
    A heating element laminated on the insulating substrate;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes;
    Laminated on the insulating member so as to overlap with the heating element, and electrically connected to the current path between the first and second electrodes and one terminal of the heating element; A heating element extraction electrode for electrical connection;
    A soluble conductor which is connected from the heating element extraction electrode to the first and second electrodes and melts a current path between the first electrode and the second electrode by heating;
    The heating element extraction electrode is disposed so as to extend in a direction different from the longitudinal direction of the soluble conductor, and the heating element extraction electrode is larger than the area at the connection position of the heating element extraction electrode and the soluble conductor. The battery pack is characterized in that the area on the side where the wire extends is larger.
PCT/JP2013/069996 2012-08-01 2013-07-24 Protective element and battery pack WO2014021157A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157004832A KR101946106B1 (en) 2012-08-01 2013-07-24 Protective element and battery pack
CN201380040789.7A CN104508789B (en) 2012-08-01 2013-07-24 Protection element and battery pack
HK15109361.5A HK1208759A1 (en) 2012-08-01 2015-09-24 Protective element and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012171334A JP6081096B2 (en) 2012-08-01 2012-08-01 Protective element and battery pack
JP2012-171334 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021157A1 true WO2014021157A1 (en) 2014-02-06

Family

ID=50027836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069996 WO2014021157A1 (en) 2012-08-01 2013-07-24 Protective element and battery pack

Country Status (6)

Country Link
JP (1) JP6081096B2 (en)
KR (1) KR101946106B1 (en)
CN (1) CN104508789B (en)
HK (1) HK1208759A1 (en)
TW (1) TWI585801B (en)
WO (1) WO2014021157A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436729B2 (en) * 2014-11-11 2018-12-12 デクセリアルズ株式会社 Fuse element, fuse element, protection element, short-circuit element, switching element
JP6708387B2 (en) * 2015-10-07 2020-06-10 デクセリアルズ株式会社 Switch element, electronic parts, battery system
JP6739922B2 (en) * 2015-10-27 2020-08-12 デクセリアルズ株式会社 Fuse element
DE102016107707B3 (en) * 2016-04-26 2017-07-27 Lisa Dräxlmaier GmbH Protective device for a high-voltage power supply
TWI651747B (en) 2017-10-19 2019-02-21 聚鼎科技股份有限公司 Protection device and circuit protection apparatus containing the same
CN109727833B (en) * 2017-10-30 2021-07-30 聚鼎科技股份有限公司 Protection element and circuit protection device thereof
JP2020173965A (en) * 2019-04-10 2020-10-22 デクセリアルズ株式会社 Protection element and battery pack
JP2023127740A (en) * 2022-03-02 2023-09-14 デクセリアルズ株式会社 protection element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (en) * 1995-02-28 2001-05-11 Sony Chem Corp Protective element
WO2010084817A1 (en) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 Protection element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126930A (en) * 1999-10-25 2001-05-11 Fuji Electric Co Ltd Divided transport transformer
JP2001325869A (en) * 2000-05-17 2001-11-22 Sony Chem Corp Protective element
JP2004265618A (en) * 2003-02-05 2004-09-24 Sony Chem Corp Protection element
JP2004265617A (en) * 2003-02-05 2004-09-24 Sony Chem Corp Protective element
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP5351860B2 (en) * 2009-09-04 2013-11-27 乾坤科技股▲ふん▼有限公司 Protective device
JP5260592B2 (en) * 2010-04-08 2013-08-14 デクセリアルズ株式会社 Protective element, battery control device, and battery pack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (en) * 1995-02-28 2001-05-11 Sony Chem Corp Protective element
WO2010084817A1 (en) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 Protection element

Also Published As

Publication number Publication date
TW201419351A (en) 2014-05-16
CN104508789B (en) 2016-11-09
JP6081096B2 (en) 2017-02-15
KR101946106B1 (en) 2019-02-08
HK1208759A1 (en) 2016-03-11
CN104508789A (en) 2015-04-08
JP2014032770A (en) 2014-02-20
TWI585801B (en) 2017-06-01
KR20150040955A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP6081096B2 (en) Protective element and battery pack
TWI671777B (en) Protective components and battery pack
JP5952674B2 (en) Protective element and battery pack
JP5952673B2 (en) Protective element and battery pack
WO2016039208A1 (en) Protection element and mounted body
JP6151550B2 (en) Protective element
WO2015182355A1 (en) Protective element and battery pack
JP2015111526A (en) Protection element and fuse element
WO2016017567A1 (en) Protection element and protection circuit
JP6356470B2 (en) Protective element
JP2016018683A (en) Protection element
JP6078332B2 (en) Protection element, battery module
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
WO2015025885A1 (en) Protection element
WO2021210634A1 (en) Protective element, and battery pack
JP7390825B2 (en) Protection element, battery pack
WO2018100984A1 (en) Protection element
JP2024057541A (en) PROTECTION ELEMENT AND METHOD FOR MANUFACTURING PROTECTION ELEMENT
WO2015107633A1 (en) Protective element and battery module
WO2015107632A1 (en) Protective element
JP2014127270A (en) Protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004832

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13825006

Country of ref document: EP

Kind code of ref document: A1