WO2015020111A1 - Protective element and battery pack - Google Patents

Protective element and battery pack Download PDF

Info

Publication number
WO2015020111A1
WO2015020111A1 PCT/JP2014/070785 JP2014070785W WO2015020111A1 WO 2015020111 A1 WO2015020111 A1 WO 2015020111A1 JP 2014070785 W JP2014070785 W JP 2014070785W WO 2015020111 A1 WO2015020111 A1 WO 2015020111A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
electrode
heating element
conductor
melting point
Prior art date
Application number
PCT/JP2014/070785
Other languages
French (fr)
Japanese (ja)
Inventor
武雄 木村
佐藤 浩二
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167003293A priority Critical patent/KR102251913B1/en
Priority to CN201480044945.1A priority patent/CN105453211B/en
Publication of WO2015020111A1 publication Critical patent/WO2015020111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • H01H85/175Casings characterised by the casing shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protection element and a battery pack for protecting a circuit connected on a current path by fusing the current path.
  • This application is based on Japanese Patent Application No. 2013-163950 filed on August 7, 2013 in Japan and Japanese Patent Application No. 2014-113044 filed on May 30, 2014. Priority is claimed and these applications are incorporated herein by reference.
  • a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
  • an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge, etc. is applied, an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell.
  • the battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Therefore, a protective element made of a fuse element having a function of cutting off a current path by a signal from the outside is used in order to safely cut off the output of the battery cell in any possible abnormal state.
  • a heating element is provided inside the protection element.
  • a structure that melts a molten conductor is generally used.
  • a fusible conductor has a current capacity of about 15 A at the maximum in order to be used for an application having a relatively low current capacity such as a mobile phone or a notebook computer.
  • a fusible conductor has a current capacity of about 15 A at the maximum in order to be used for an application having a relatively low current capacity such as a mobile phone or a notebook computer.
  • Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly during startup. The realization of a protective element corresponding to such a large current capacity is desired.
  • the cross-sectional area of the soluble conductor may be increased.
  • the protective element detects an overvoltage state of the battery cell in addition to the case where the battery is blown by an overcurrent state, and causes a current to flow through the heating element formed of the resistor, thereby cutting the soluble conductor by the heat generation.
  • the cross-sectional area is increased in order to cope with a large current, the melting amount of the soluble conductor at the time of melting increases, so that it becomes difficult to stably melt the soluble conductor.
  • the molten conductor when the melting amount of the fusible conductor increases, the molten conductor also increases in agglomeration immediately before the current interruption due to overcurrent, and the molten conductor scatters a lot due to arc discharge at the time of interruption, resulting in a decrease in insulation resistance or fusibility. The risk of a short circuit in the peripheral circuit at the conductor mounting position is also increased. Another problem is that the fusing operation varies depending on the posture in which the protective element is arranged.
  • an object of the present invention is to obtain a protection element and a battery pack that can suppress the scattering of a molten conductor due to arc discharge at the time of current interruption due to overcurrent while securing a current capacity at the time of overcurrent protection. It is another object of the present invention to provide a protection element and a battery pack that can reliably melt a soluble conductor by heat generated by a heating element while securing a current capacity during overcurrent protection.
  • a protection element according to the present invention that solves the above-described problem has a first insulating substrate and a soluble conductor mounted on the surface of the first insulating substrate, and is provided on the surface of the first insulating substrate. Are those in which suction holes for sucking the melted soluble conductor are opened.
  • the battery pack according to the present invention includes one or more battery cells and a protection element that is connected to the charge / discharge path of the battery cell and blocks the charge / discharge path. And a soluble conductor mounted on the surface of the first insulating substrate and serving as the charging / discharging path, and the surface of the first insulating substrate is suctioned to suck the molten soluble conductor A hole is opened.
  • the protective element according to the present invention includes the first and second external electrodes, the soluble conductor connected between the first and second external electrodes, and the molten conductor connected to the soluble conductor.
  • a suction member that sucks the soluble conductor, and the suction member is formed on the surface of the first insulating substrate and the first insulating substrate disposed between the first and second external electrodes.
  • a through-hole that cuts off a current path between the first external electrode and the second external electrode by melting the soluble conductor.
  • the battery pack according to the present invention detects one or more battery cells, a protection element that is connected to the charge / discharge path of the battery cell and blocks the charge / discharge path, and a voltage value of the battery cell.
  • a current control element for controlling energization to the protection element, the protection element comprising: first and second external electrodes; a soluble conductor connected across the first and second external electrodes;
  • a suction member that sucks the melted soluble conductor, and the suction member includes a first insulating substrate disposed between the first and second external electrodes, and the first insulating substrate.
  • a protection element according to the present invention that solves the above-described problems includes the first insulating substrate, the first and second external electrodes, and the first insulating substrate on one surface side of the first insulating substrate.
  • An intermediate electrode provided between the external electrode and the second external electrode, a heating element provided on the other surface side of the first insulating substrate, and one surface of the first insulating substrate Are connected to the intermediate electrode and connected to the first and second external electrodes, and a current path between the first external electrode and the second external electrode is heated by the heating element.
  • a fusible conductor to be melted a heating element lead electrode provided on the other surface side of the first insulating substrate and electrically connected to one terminal of the heating element, the intermediate electrode and the heating element lead Between the electrodes in the thickness direction of the first insulating substrate, and the intermediate power And and a through hole conductive layer is provided which is continuous with the heating element lead electrode.
  • the battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element.
  • the protective element includes a first insulating substrate, first and second external electrodes, and the first external electrode and the second external electrode on one surface side of the first insulating substrate. And an intermediate electrode provided between the intermediate electrode, a heating element provided on the other surface of the first insulating substrate, and one surface of the first insulating substrate connected to the intermediate electrode.
  • a soluble conductor connected across the first and second external electrodes and fusing a current path between the first external electrode and the second external electrode by heating by the heating element; and the first A heating element extraction electrode provided on the other surface side of the insulating substrate and electrically connected to one terminal of the heating element; and the first insulation between the intermediate electrode and the heating element extraction electrode.
  • the inner surface is connected to the intermediate electrode and the heating element extraction electrode. And a through hole layer is provided.
  • the fusible conductor when the fusible conductor is melted, the melted fusible conductor is drawn into the suction holes formed in the first insulating substrate. . Therefore, even when the cross-sectional area of the fusible conductor is increased in order to improve the rating, the current path can be reliably cut.
  • FIG. 1 is a cross-sectional view showing a protection element to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing a state in which a molten conductor is sucked in the protection element to which the present invention is applied.
  • FIG. 3 is a cross-sectional view showing a state where a soluble conductor is blown in a protective element to which the present invention is applied.
  • FIG. 4 is a block diagram illustrating a configuration example of a battery pack in which a protection element is used.
  • FIG. 5 is a circuit diagram of a protection element to which the present invention is applied.
  • FIG. 6 is a cross-sectional view showing a protection element having a heating element on the surface side of the first insulating substrate.
  • FIG. 7 is a cross-sectional view showing a protection element having a heating element on the back side of the first insulating substrate.
  • FIG. 8 is a cross-sectional view showing a protection element having a heating element in the first insulating substrate.
  • FIG. 9 is a block diagram illustrating a configuration example of a battery pack in which a protection element is used.
  • FIG. 10 is a circuit diagram of a protection element to which the present invention is applied.
  • FIG. 11A is a plan view of a protection element to which the present invention is applied.
  • FIG. 11B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 12 is a block diagram showing an application example of a protection element to which the present invention is applied.
  • FIG. 13 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • FIG. 14A is a cross-sectional view showing the operation of the heating element of the protection element to which the present invention is applied.
  • FIG. 14B is a cross-sectional view showing a state where the fusible conductor is melted.
  • FIGS. 15A to 15E are views showing the posture of the usage mode of the protection element to which the present invention is applied.
  • FIG. 16 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 15 (A) to 15 (E).
  • FIG. 17A is a plan view of a cohesive protection element as a reference example
  • FIG. 17B is a cross-sectional view taken along the line AA ′ of FIG. FIG.
  • FIG. 17C is a cross-sectional view of the melted state.
  • 18 (A) to 18 (E) are views showing the posture in the usage mode of the protective element of the reference example shown in FIG.
  • FIG. 19 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 18 (A) to 18 (E).
  • FIG. 20 is a view showing a modification of the through holes provided in the intermediate electrode of the first insulating substrate, (A) shows an example in which the through holes are provided in two rows, and (B) shows the through holes. An example in which is used as a slit is shown.
  • FIG. 21 is a cross-sectional view showing a protection element having a heating element on the surface side of the first insulating substrate.
  • FIG. 22 (A) to 22 (E) are views showing postures of usage modes of the protection element to which the present invention is applied.
  • FIG. 23 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 22 (A) to (E).
  • FIG. 24 is a cross-sectional view showing a protective element provided with an aggregating member, where (A) shows the fusible conductor before fusing and (B) shows the fusible conductor after fusing.
  • FIG. 25 is a circuit diagram showing a protection element provided with an aggregating member.
  • FIG. 26 is a cross-sectional view showing a protection element having a plurality of suction members, where (A) shows before melting of the soluble conductor and (B) shows after melting of the soluble conductor.
  • FIG. 27 is a circuit diagram showing a protection element having a plurality of suction members.
  • FIG. 28 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a covering structure, and (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer. (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer.
  • FIG. 29 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer. .
  • FIG. 30 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer.
  • FIG. 31 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed.
  • FIG. 31A shows the opening along the longitudinal direction.
  • the formed part (B) has an opening formed in the width direction.
  • FIG. 32 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed.
  • FIG. 33 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting metal is filled therein.
  • FIG. 34 is a plan view showing a soluble conductor provided with a thick first side edge portion covered with a high melting point metal and a second side edge portion where the low melting point metal is exposed.
  • the protection element 1 to which the present invention is applied includes a first insulating substrate 10 and a soluble conductor 13 mounted on a surface 10 a of the first insulating substrate 10.
  • a suction hole 20 for sucking the melted soluble conductor 13 is formed in the surface 10a of the insulating substrate 10.
  • the protection element 1 is incorporated in an external circuit, so that the fusible conductor 13 constitutes a part of the current path of the external circuit, and cuts off the current path by fusing due to overcurrent exceeding the rating. is there.
  • the first insulating substrate 10 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia.
  • the material used for printed wiring boards such as a glass epoxy board
  • First and second electrodes 11 and 12 are formed at opposite ends of the surface 10 a of the first insulating substrate 10.
  • the first and second electrodes 11 and 12 are each formed by a conductive pattern such as a Cu wiring, and a protective layer such as Sn plating is appropriately provided on the surface as an anti-oxidation measure.
  • the first and second electrodes 11 and 12 are formed on the back surface 10b via the conductive layers 11b and 12b that reach the back surface 10b via the side surface of the first insulating substrate 10.
  • the external connection electrodes 11a and 12a are connected.
  • the protection element 1 is connected on the current path of the circuit board by connecting the first and second external connection electrodes 11a and 12a to the circuit board constituting the external circuit.
  • the protection element 1 mounts the soluble conductor 13 mentioned later over between the 1st, 2nd electrodes 11, 12, and the soluble conductor 13 makes the 1st, 2nd external connection electrodes 11a, 12a. And becomes part of the current path of the circuit board.
  • the first insulating substrate 10 has a suction hole 20 formed between the first and second electrodes 11 and 12.
  • the suction hole 20 sucks the molten conductor 13a by capillary action and decreases the volume of the molten conductor 13a (see FIG. 2).
  • the protective element 1 increases the cross-sectional area of the fusible conductor 13 in order to cope with a large current application, so that the suction hole 20 sucks the volume of the molten conductor 13a even when the melting amount increases. Can be reduced.
  • the protection element 1 reduces scattering of the molten conductor 13a due to arc discharge at the time of interruption, prevents a decrease in insulation resistance, and prevents a short circuit failure due to adhesion of the fusible conductor 13 to the peripheral circuit. Can be prevented.
  • the suction hole 20 has a conductive layer 21 formed on the inner surface.
  • the conductive layer 21 is formed of, for example, copper, silver, gold, iron, nickel, palladium, lead, tin, or an alloy mainly containing any of them, and the inner surface of the suction hole 20 is made of electrolytic plating or conductive paste. It can be formed by a known method such as printing. Further, the conductive layer 21 may be formed by inserting a plurality of metal wires or a collection of conductive ribbons into the suction hole 20.
  • the suction hole 20 is preferably formed as a through-hole penetrating in the thickness direction of the first insulating substrate 10. Thereby, the suction hole 20 can suck the molten conductor 13a to the back surface 10b side of the first insulating substrate 10, sucks more molten conductor 13a, and reduces the volume of the molten conductor 13a at the fusing site. be able to.
  • the suction hole 20 may be formed as a non-through hole.
  • a surface electrode 22 connected to the conductive layer 21 of the suction hole 20 is formed on the surface 10 a of the first insulating substrate 10.
  • the surface electrode 22 serves as a support electrode to which the soluble conductor 13 is connected. Further, the surface electrode 22 is continuous with the conductive layer 21, so that when the soluble conductor 13 is melted, the molten conductor 13 a is aggregated and easily guided into the suction hole 20.
  • a back surface electrode 23 connected to the conductive layer 21 of the suction hole 20 is formed on the back surface 10 b of the first insulating substrate 10.
  • the back electrode 23 is continuous with the conductive layer 21, and when the soluble conductor 13 is melted, the molten conductor 13 a moved through the suction hole 20 is aggregated (see FIG. 3).
  • the protection element 1 can attract more molten conductor 13a, and can reduce the volume of the molten conductor 13a in a fusing part.
  • the protection element 1 increases the path
  • the fusible conductor 13 is mounted between the first and second electrodes 11, 12, and is melted by self-heating (Joule heat) when a current exceeding the rating is applied, so that the first electrode 11 and the second electrode The current path to 12 is cut off.
  • the soluble conductor 13 may be any conductive material that melts in an overcurrent state.
  • a conductive material that melts in an overcurrent state.
  • SnAgCu-based Pb-free solder BiPbSn alloy, BiPb alloy, BiSn alloy, SnPb alloy, PbIn alloy, ZnAl alloy, An InSn alloy, a PbAgSn alloy, or the like can be used.
  • the soluble conductor 13 may be a structure containing a high melting point metal and a low melting point metal.
  • the soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and a low melting point metal layer 13b as an inner layer and a high melting point metal layer as an outer layer laminated on the low melting point metal layer 13b. 13c.
  • the soluble conductor 13 is connected to the first and second electrodes 11 and 12 and the surface electrode 22 via a bonding material such as solder.
  • the low melting point metal layer 13b is preferably a metal mainly composed of solder or Sn, and is a material generally called “Pb-free solder” (for example, M705, manufactured by Senju Metal Industry).
  • the melting point of the low melting point metal layer 13b is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
  • the high melting point metal layer 13c is a metal layer laminated on the surface of the low melting point metal layer 13b.
  • the high melting point metal layer 13c is a metal mainly composed of Ag or Cu or any one of them. Therefore, even when mounting on an external circuit board, it has a high melting point that does not melt.
  • Such a soluble conductor 13 can be formed by depositing a high melting point metal layer on a low melting point metal foil using a plating technique, or using another known lamination technique or film forming technique. It can also be formed.
  • the fusible conductor 13 may be constituted by a high melting point metal layer as an inner layer and a low melting point metal layer as an outer layer, or four or more layers in which low melting point metal layers and high melting point metal layers are alternately laminated. As will be described later, it can be formed in various configurations, such as a multilayer structure.
  • the soluble conductor 13 can be used even when the reflow temperature exceeds the melting temperature of the low melting point metal layer 13b by laminating the high melting point metal layer 13c as the outer layer on the low melting point metal layer 13b as the inner layer.
  • the molten conductor 13 is not blown out. Therefore, the protection element 1 can be efficiently mounted by reflow.
  • the fusible conductor 13 is not melted by self-heating while a predetermined rated current flows.
  • a current having a value higher than the rating flows, the current is melted by self-heating, and the current path between the first and second electrodes 11 and 12 is interrupted.
  • the fusible conductor 13 is melted at a temperature lower than the melting temperature because the melted low melting point metal layer 13b erodes the high melting point metal layer 13c. Therefore, the soluble conductor 13 can be melted in a short time by utilizing the erosion action of the high melting point metal layer 13c by the low melting point metal layer 13b.
  • the molten conductor 13a of the soluble conductor 13 is divided by the physical drawing action of the surface electrode 22 and the first and second electrodes 11 and 12 in addition to the suction action by the suction hole 20 described above.
  • the current path between the first and second electrodes 11 and 12 can be interrupted quickly and reliably.
  • the fusible conductor 13 is formed by laminating a high melting point metal layer 13c on a low melting point metal layer 13b serving as an inner layer, so that the fusing temperature is significantly reduced compared to a chip fuse made of a conventional high melting point metal. can do. Therefore, the fusible conductor 13 can have a larger cross-sectional area and can greatly improve the current rating as compared to a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
  • the fusible conductor 13 can improve the resistance (pulse resistance) to a surge in which an abnormally high voltage is instantaneously applied to the electrical system in which the protective element 1 is incorporated. That is, the fusible conductor 13 must not be blown until, for example, a current of 100 A flows for several milliseconds. In this respect, since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fusible conductor 13 is provided with a refractory metal layer 13c such as Ag plating having a low resistance value as the outer layer. The current applied by the surge can easily flow, and fusing due to self-heating can be prevented. Therefore, the fusible conductor 13 can greatly improve the resistance to surge as compared with a fuse made of a conventional solder alloy.
  • the fusible conductor 13 is coated with a flux 14 in order to prevent oxidation and improve wettability at the time of fusing. Further, the inside of the protection element 1 is protected by the first insulating substrate 10 being covered with the cover member 15.
  • the cover member 15 can be formed using an insulating member such as a thermoplastic plastic, ceramics, glass epoxy substrate, or the like, similar to the first insulating substrate 10.
  • Such a protection element 1 is used by being incorporated in a circuit in a battery pack 30 of a lithium ion secondary battery, for example.
  • the battery pack 30 has a battery stack 35 including battery cells 31 to 34 of a total of four lithium ion secondary batteries, for example.
  • the battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 1 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell And a detection circuit 36 for detecting voltages 31 to 34.
  • the battery stack 35 is a series of battery cells 31 to 34 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 30a and the negative terminal 30b of the battery pack 30.
  • the electronic device can be operated by connecting the positive electrode terminal 30a and the negative electrode terminal 30b of the battery pack 30 charged by the charging device 45 to an electronic device operating with a battery.
  • the charge / discharge control circuit 40 includes two current control elements 41 and 42 connected in series to a current path flowing from the battery stack 35 to the charging device 45, and a control unit 43 that controls the operation of these current control elements 41 and 42. Is provided.
  • the current control elements 41 and 42 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 43 to control conduction and interruption of the current path of the battery stack 35.
  • FETs field effect transistors
  • the control unit 43 operates by receiving power supply from the charging device 45, and controls the current so as to cut off the current path when the battery stack 35 is overdischarged or overcharged according to the detection result by the detection circuit 36. The operation of the elements 41 and 42 is controlled.
  • the protection element 1 is connected on a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, for example.
  • the detection circuit 36 is connected to the battery cells 31 to 34, detects the voltage values of the battery cells 31 to 34, and supplies the voltage values to the control unit 43 of the charge / discharge control circuit 40.
  • the protection element 1 to which the present invention is applied used for the battery pack 30 having the above-described configuration, has a circuit configuration as shown in FIG. That is, in the protection element 1, the first external connection electrode 11a is connected to the battery stack 35 side, and the second external connection electrode 12a is connected to the positive electrode terminal 30a side. It is connected in series on the charge / discharge path.
  • the protection element 1 melts the fusible conductor 13 due to self-heating and blocks the charge / discharge path of the battery pack 30.
  • the protection element 1 is soluble in order to cope with a large current application because the molten conductor 13 a is sucked into the suction hole 20 through the surface electrode 22 by capillary action. Even when the cross-sectional area of the conductor 13 is increased, the volume of the molten conductor 13a at the time of interruption can be reduced, and scattering of the molten conductor 13a due to arc discharge can be reduced.
  • the protective element 1 is formed by including the high-melting point metal and the low-melting point metal so that the low-melting point metal is melted before the high-melting point metal is melted. The suction hole 20 can be sucked.
  • the protection element 1 according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path due to overcurrent.
  • the protection element to which the present invention is applied may be provided with a heating element 25 for fusing the soluble conductor 13 on the first insulating substrate 10.
  • a heating element 25 for fusing the soluble conductor 13 on the first insulating substrate 10.
  • the protective element 24 provided with the heating element 25 is incorporated in a battery pack, for example, in addition to self-melting of the fusible conductor 13 at the time of overcurrent, the overheating of the battery cell is detected to energize and heat the heating element 25. By melting the fusible conductor 13, the charge / discharge path of the battery pack can be shut off.
  • the heating element 25 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders mixed with a resin binder or the like to form a paste are patterned on the surface 10a of the first insulating substrate 10 using a screen printing technique and fired. It is formed by etc.
  • the heating element 25 is covered with an insulating layer 26 on the surface 10 a of the first insulating substrate 10. On the insulating layer 26, the surface electrode 22 is laminated.
  • the insulating layer 26 is provided to protect and insulate the heating element 25 and to efficiently transmit the heat of the heating element 25 to the surface electrode 22 and the fusible conductor 13, and is made of, for example, a glass layer.
  • the heating element 25 is connected to the surface electrode 22 at one end and is electrically connected to the soluble conductor 13 mounted on the surface electrode 22 via the surface electrode 22. Further, the other end of the heating element 25 is connected to a heating element electrode (not shown).
  • the heating element electrode is formed on the front surface 10a of the first insulating substrate 10 and is connected to a third external connection electrode 27 (see FIG. 9) formed on the back surface 10b. And connected to an external circuit.
  • the protection element 1 is mounted on a circuit board constituting an external circuit, so that the heating element 25 is incorporated into a power supply path to the heating element 25 formed on the circuit board via the third external connection electrode 27. It is.
  • the protection element 24 may form the heating element 25 on the back surface 10 b of the first insulating substrate 10.
  • the heating element 25 is formed on the back surface 10b of the first insulating substrate 10 and is covered with the insulating layer 26 on the back surface 10b.
  • a back electrode 23 is laminated on the insulating layer 26.
  • One end of the heating element 25 is connected to the back electrode 23 and is electrically connected to the soluble conductor 13 mounted on the surface electrode 22 through the conductive layer 21 and the surface electrode 22 formed in the suction hole 20.
  • the other end of the heating element 25 is connected to the third external connection electrode 27 via a heating element electrode (not shown).
  • the protective element 24 is likely to aggregate more molten conductors 13a when the back electrode 23 is heated by the heating element 25. Therefore, the protective element 24 can promote the action of attracting the molten conductor 13a from the front electrode 22 to the back electrode 23 via the conductive layer 21, and can reliably melt the soluble conductor 13.
  • the protective element 24 may form the heating element 25 inside the first insulating substrate 10.
  • the heating element 25 does not need to be covered with an insulating layer such as glass.
  • one end of the heating element 25 is connected to the front surface electrode 22 or the back surface electrode 23, and is electrically connected to the soluble conductor 13 mounted on the front surface electrode 22.
  • the other end of the heating element 25 is connected to the third external connection electrode 27 via a heating element electrode (not shown).
  • the protective element 24 By forming the heating element 25 inside the first insulating substrate 10, the protective element 24 has more surface elements 22 and 23 that are heated by the heating element 25 through the conductive layer 21, thereby increasing the number of the heating elements 25. It becomes easy to agglomerate the molten conductor 13a. Therefore, the protective element 24 can promote the action of attracting the molten conductor 13a from the front electrode 22 to the back electrode 23 via the conductive layer 21, and can reliably melt the soluble conductor 13.
  • the heating element 25 can be formed on both sides of the suction hole 20 to heat the front electrode 22 and the back electrode 23 in any case formed on the front surface 10b, the back surface 10b, or the inside of the first insulating substrate 10. In addition, it is preferable for agglomerating and sucking more molten conductor 13a.
  • Such a protection element 24 is used by being incorporated in a circuit in a battery pack 30 of a lithium ion secondary battery, for example.
  • a battery pack 30 of a lithium ion secondary battery for example.
  • the same members as those of the above-described battery pack 30 are denoted by the same reference numerals and the details thereof are omitted.
  • the battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 24 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell.
  • a detection circuit 36 for detecting voltages 31 to 34 and a current control element 37 serving as a switch element for controlling the operation of the protection element 24 according to the detection result of the detection circuit 36 are provided.
  • the protection element 24 is connected to, for example, a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, and its operation is controlled by the current control element 37.
  • the detection circuit 36 is connected to the battery cells 31 to 34, detects the voltage values of the battery cells 31 to 34, and supplies the voltage values to the control unit 43 of the charge / discharge control circuit 40.
  • the detection circuit 36 outputs a control signal for controlling the current control element 37 when any one of the battery cells 31 to 34 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 37 is constituted by, for example, an FET, and when the voltage value of the battery cells 31 to 34 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 36, the current control element 37 is a protection element. 24 is operated to control the charge / discharge current path of the battery stack 35 to be cut off regardless of the switch operation of the current control elements 41 and 42.
  • the protection element 24 to which the present invention is applied which is used in the battery pack 30 having the above-described configuration, has a circuit configuration as shown in FIG. That is, the protective element 24 has the first external connection electrode 11a connected to the battery stack 35 side, and the second external connection electrode 12a connected to the positive electrode terminal 30a side. It is connected in series on the charge / discharge path. Further, the protection element 24 has the heating element 25 connected to the current control element 37 via the heating element electrode and the third external connection electrode 27, and the heating element 25 is connected to the open end of the battery stack 35.
  • one end of the heating element 25 is connected to one open end of the fusible conductor 13 and the battery stack 35 via the surface electrode 22, and the other end is connected to the current control element 37 via the third external connection electrode 27.
  • a power supply path to the heating element 25 that is connected to the other open end of the battery stack 35 and whose energization is controlled by the current control element 37 is formed.
  • the protection element 24 melts the fusible conductor 13 due to self-heating and blocks the charge / discharge path of the battery pack 30.
  • the protective element 24 increases the cross-sectional area of the soluble conductor 13 in order to cope with a large current application.
  • the volume of the molten conductor 13a at the time of interruption can be reduced, and scattering of the molten conductor 13a due to arc discharge can be reduced.
  • the protective element 24 is formed by including the high-melting point metal and the low-melting point metal so that the low-melting point metal is melted before the high-melting point metal is melted. The suction hole 20 can be sucked.
  • the detection circuit 36 detects any abnormal voltage of the battery cells 31 to 34, it outputs a cutoff signal to the current control element 37. Then, the current control element 37 controls the current so that the heating element 25 is energized. In the protection element 24, a current flows from the battery stack 35 to the heating element 25 via the first electrode 11, the soluble conductor 13, and the surface electrode 22, whereby the heating element 25 starts to generate heat. In the protection element 24, the fusible conductor 13 is melted by the heat generated by the heating element 25, and the charge / discharge path of the battery stack 35 is blocked.
  • the protective element 24 increases the cross-sectional area of the soluble conductor 13 in order to cope with a large current application.
  • the charging / discharging path of the battery pack 30 can be reliably interrupted.
  • the protective element 24 is formed by melting the meltable conductor 13 containing a high-melting point metal and a low-melting point metal so that the high-melting point metal is melted by a molten low-melting point metal in a short time. can do.
  • the protection element 24 according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, but can of course be applied to various uses that require interruption of a current path by an electric signal.
  • the protection element 50 is laminated between the first and second external electrodes 51 and 52 and the first and second external electrodes 51 and 52.
  • a fusible conductor 53 and a suction member 54 connected to the fusible conductor 53 and sucking the molten conductor 53a of the fusible conductor 53 are provided.
  • the suction member 54 includes an insulating substrate 55 disposed between the first and second external electrodes 51 and 52, and a surface electrode formed on the surface 55 a of the insulating substrate 55 and connected to a part of the soluble conductor 53.
  • the protection element 50 melts the soluble conductor 53 when the heating element 57 generates heat. At this time, the protection element 50 sucks the melted conductor 53a in which the soluble conductor 53 is melted by the suction member 54, reliably blows the soluble conductor 53, and the first external electrode 51 and the second external electrode 52 The current path between is interrupted.
  • the first and second external electrodes 51 and 52 are connection terminals for connecting the protection element 50 to an external circuit, and are connected to each other through a soluble conductor 53 inside the protection element 50.
  • the first and second external electrodes 51 and 52 are disposed on the inside and outside of the protection element 50 by being supported by the outer casing of the protection element 50.
  • the first and second external electrodes 51 and 52 may be formed on the insulating substrate 55 of the suction member 54, or formed of an insulating material made of an epoxy resin or the like adjacent to or integrated with the insulating substrate 55. You may make it do.
  • the fusible conductor 53 is melted by an overcurrent state and by the heat generated by the heating element 57. Therefore, any conductive material that melts may be used.
  • any conductive material that melts may be used.
  • SnAgCu-based Pb-free solder, BiPbSn alloy BiPb alloy, BiSn alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
  • the soluble conductor 53 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn.
  • it can be formed in various configurations, as will be described later, such as a multi-layer structure of four or more layers in which low melting point metal layers and high melting point metal layers are alternately laminated.
  • the insulating substrate 55 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the heating element 57 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like.
  • the heating element 57 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like.
  • the first heating element electrode 59 is connected to the soluble conductor 53 via a heating element extraction electrode 63 described later, and the second heating element electrode 60 is connected to the third external connection electrode 61 (see FIGS. 12 and 13).
  • the heating element 57 is connected to a power source for generating heat.
  • the heating element 57 is covered with an insulating member 62 such as glass, and the heating element extraction electrode 63 is disposed so as to face the heating element 57 through the insulating member 62.
  • the insulating member 62 may be a laminated substrate in which the heating elements 57 are integrally laminated. Further, the heating element 57 may be provided only on one side of the back electrode 64 or so as to surround the back electrode 64 in addition to being provided on both sides of the back electrode 64 described later.
  • a surface electrode 56 is formed on the surface 55 a of the insulating substrate 55.
  • the surface electrode 56 is connected to a soluble conductor 53 that connects between the first and second external electrodes 51 and 52 via a connection material such as solder.
  • the surface electrode 56 is continuous with a through hole 58 formed in the thickness direction of the insulating substrate 55.
  • the protection element 50 does not excessively aggregate the molten conductor 53a on the surface 55a of the insulating substrate 55 even when the cross-sectional area of the soluble conductor 53 is increased in order to cope with a large current application.
  • the current path between the first and second external electrodes 51 and 52 can be cut off reliably.
  • the through hole 58 is provided in the center in the width direction of the surface electrode 56.
  • a plurality of through holes 58 may be provided.
  • a plurality of through holes 58 are provided in a line in a straight line.
  • a conductive layer 65 continuous with the surface electrode 56 is provided on the inner peripheral surface of the through hole 58.
  • the conductive layer 65 is, for example, a metal material in which the molten conductor 53a spreads and is formed by a paste process, a plating process, or the like. Accordingly, the protection element 50 can easily draw the molten conductor 53a aggregated on the surface electrode 56 into the through hole 58, and can attract more molten conductor 53a.
  • the protective element 50 is provided with a back electrode 64 that is continuous with the through hole 58 and the conductive layer 65 on the back surface 55 b of the insulating substrate 55.
  • the protective element 50 causes the molten conductor 53a sucked into the through-hole 58 through the conductive layer 65 to be aggregated into the back surface electrode 64, so that more molten conductor 53a is attracted. be able to.
  • the heating element 57 described above is provided in the vicinity of the back electrode 64, for example, on both sides, one side, or the periphery. Thereby, the heat of the heat generating body 57 is efficiently transmitted to the back surface electrode 64, the conductive layer 65, and the surface electrode 56, and the protection element 50 can heat and melt the soluble conductor 53 quickly.
  • the protective element 50 is partially or entirely filled with the same or similar material as the soluble conductor 53 or the preliminary solder 66 having a melting point lower than that of the soluble conductor 53.
  • the spare solder 66 has a temperature on the back surface 55b side of the insulating substrate 55 higher than that on the front surface 55a side, and further, the conductive layer 65, the surface electrode 56, the back electrode 64, and the heating element lead electrode.
  • the temperature of 63 is increased before the insulating substrate 55, it is melted before the soluble conductor 53, and then the molten conductor 53 a can be called into the through hole 58.
  • the molten conductor 53a moves from the front surface 55a to the back surface 55b of the insulating substrate 55, and reliably blocks the current path between the first external electrode 51 and the second external electrode 52 regardless of the posture. be able to.
  • the heating element extraction electrode 63 provided on the back surface 55b of the insulating substrate 55 is overlapped with and electrically connected to the back surface electrode 64 of the back surface 55b.
  • the heating element extraction electrode 63 is connected to the fusible conductor 53 through the back electrode 64, the through hole 58, the preliminary solder 66, and the front electrode 56, and a tab 63a formed at one end includes the first heating element electrode 59. It is connected to the.
  • the protection element 50 by providing the heating element 57 on the back surface 55b side of the insulating substrate 55, when the heating element 57 generates heat, the temperature of the back surface 55b side becomes higher than that of the front surface 55a side.
  • the conductive layer 65, the front surface electrode 56, the back surface electrode 64, and the heating element extraction electrode 63 are generally conductive materials such as a copper pattern and have excellent thermal conductivity.
  • the back surface electrode 64 of the back surface 55b is provided between the heat generating elements 57, and the heat of the heat generating elements 57 is efficiently transmitted.
  • the protection element 50 can attract more molten conductor 53a to the back surface 55b side of the insulating substrate 55, increase the cross-sectional area of the soluble conductor 53 to cope with a large current, and melt at the time of fusing Even when the amount of melting of the conductor 53a increases, the soluble conductor 53 can be stably blown.
  • the preliminary solder 66 is filled in the through hole 58 so that the temperature of the conductive layer 65, the front surface electrode 56, the back surface electrode 64, and the heating element extraction electrode 63 becomes higher than the insulating substrate 55.
  • the preliminary solder 66 is melted before the fusible conductor 53, and the molten conductor 53 a can be called into the through hole 58.
  • the molten conductor 53a is efficiently sucked from the front surface 55a to the back surface 55b of the insulating substrate 55, and the current path between the first external electrode 51 and the second external electrode 52 is ensured regardless of the posture. Can be blocked.
  • the suction member 54 may be filled with a part or all of the flux in the through hole 58 together with the spare solder 66 or instead of the spare solder 66. Also by filling the flux, the wettability of the soluble conductor 53 can be improved, and the molten conductor 53a can be efficiently drawn into the through hole 58.
  • the protection element 50 is used in a circuit in the battery pack 30 of the above-described lithium ion secondary battery. Similarly to the protection element 10, the protection element 50 is connected on a charge / discharge current path between the battery stack 31 and the charge / discharge control circuit 32, and its operation is controlled by the current control element 34.
  • the protection element 50 has a circuit configuration as shown in FIG. That is, the protective element 50 is connected between the first and second external electrodes 51 and 52 and is connected to the surface electrode 56 formed on the surface 55 a of the insulating substrate 55, and the surface electrode 56.
  • One end of the heating element 57 is connected to the surface electrode 56 via the first heating element electrode 59, the heating element extraction electrode 63, the back surface electrode 64 and the conductive layer 65, and the other end via the second heating element electrode 60.
  • the soluble conductor 53 is connected in series on the charge / discharge current path between the first and second external electrodes 51, 52, and the heating element 57 is connected to the soluble conductor 53 via the surface electrode 56. At the same time, it is connected to the current control element 34 via the third external connection electrode 61.
  • the current control element 37 operates the protection element 50, Control is performed so that the charge / discharge current path of the battery stack 35 is cut off regardless of the switching operation of the current control elements 41 and 42.
  • the protection element 50 the heating element 57 generates heat, and the soluble conductor 53 and the preliminary solder 66 in the through hole 58 are heated as shown in FIG.
  • the insulating substrate 55 has a temperature gradient in which the temperature on the back surface 55b side where the heating element 57 is disposed is higher than that on the front surface 55a side.
  • the back electrode 64 on the back surface 55b side of the insulating substrate 55, the heating element extraction electrode 63, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a of the insulating substrate 55 are superior in thermal conductivity to the insulating substrate 55 such as ceramic. .
  • the heat of the heating element 57 mainly includes the back surface electrode 64 provided between the heating elements 57, the heating element extraction electrode 63 on the heating element 57, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a.
  • the heat of the heating element 57 mainly includes the back surface electrode 64 provided between the heating elements 57, the heating element extraction electrode 63 on the heating element 57, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a.
  • the heat of the heating element 57 mainly includes the back surface electrode 64 provided between the heating elements 57, the heating element extraction electrode 63 on the heating element 57, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a.
  • the fusible conductor 53 is inefficient, but is also melted by heat transmitted through an insulating layer such as a ceramic of the insulating substrate 55.
  • an insulating layer such as a ceramic of the insulating substrate 55.
  • the spare solder 66 starts to melt before the soluble conductor 53 and gradually gets wet with the front electrode 56, the conductive layer 65, the back electrode 64, and the heating element extraction electrode 63.
  • the fusible conductor 53 that has moved to the back surface 11b of the insulating substrate 55 and melted behind the spare solder 66 also moves so as to be dragged to the back surface 55b side of the insulating substrate 55 through the through hole 58 due to wettability. To do.
  • Part of the molten conductor 53a is also held by the island-shaped electrodes 67a and 67b on the surface 55a of the insulating substrate 55 (see the arrow in FIG. 14A). Thereby, the protection element 50 can surely melt the soluble conductor 53 on the current path between the first and second external electrodes 51 and 52.
  • the protective element 50 of the present invention can easily melt the soluble conductor 53 by guiding a large amount of the soluble conductor 53 (solder) from the front surface 55a of the insulating substrate 55 to the back surface 55b.
  • the soluble conductor 53 can be stably melted regardless of the posture in which the protective element 50 is disposed.
  • FIGS. 15 and 16 show the relationship between each posture of the protection element 50 of the present invention shown in FIGS. 15A to 15E and the fusing time.
  • the protection element 50 is operated at 15 W.
  • FIG. 15A is a plan view showing a state after fusing of the protective element 50 placed with the front surface 55a side of the insulating substrate 55 facing upward and the back surface 55b side of the insulating substrate 55 facing downward.
  • 15B shows that the protective element 50 is inverted 90 ° from the position shown in FIG. 15A and the through hole 58 is directed horizontally, and the second external electrode 52 faces upward and is soluble in the vertical direction.
  • FIG. 5 is a side view showing a state after the protective element 50 supporting the conductor 53 is melted.
  • 15C is further rotated by 90 ° from the posture of FIG. 15B, the through-holes 58 are juxtaposed in the vertical direction, and the protection element 50 that supports the fusible conductor 53 in the horizontal direction is blown out.
  • FIG. 15D shows a state in which the posture of FIG. That is, it is a plan view showing a state after fusing of the protection element 50 placed with the front surface 55a side of the insulating substrate 55 facing downward and the back surface 55b side of the insulating substrate 55 facing upward.
  • FIG. 15E shows that the insulating substrate 55 is rotated 45 ° in the in-plane direction from the posture in which the first external electrode 51 is turned upside down, and the through-holes 58 are diagonally arranged, and the fusible conductor 53 is It is a side view which shows the state after fusing of the protection element 50 supported diagonally.
  • the protection element 50 of the present invention has no variation in the fusing time and can surely melt the soluble conductor 53 in any posture.
  • FIG. 17 shows a protective element 100 which is a comparative example of the present invention, which is of the aggregation type.
  • the protection element 100 includes an insulating substrate 101, first and second external electrodes 102 and 103 formed on the end of the surface 101a of the insulating substrate 101, The heating element 104 provided on the surface 101 a of the insulating substrate 101 and the first and second external electrodes 102 and 103 are stacked, traverse the heating element 104, and heated by the heating element 104, thereby heating the first external electrode 102. And a soluble conductor 105 for fusing a current path between the first external electrode 103 and the second external electrode 103.
  • the heating element 104 is provided at both ends on the surface 101a of the insulating substrate 101, and is connected to first and second heating element electrodes 106 and 107 for connecting a power source to cause the heating element 104 to generate current by flowing current. .
  • the first and second heating element electrodes 106 and 107 are formed on the surface 101 a of the insulating substrate 101.
  • the first heating element electrode 106 is connected to the heating element 104 and to the tab 108a of the heating element extraction electrode 108.
  • the second heating element electrode 107 is connected to the heating element 104 and to an external connection electrode (not shown).
  • the heating element extraction electrode 108 has one end connected to the fusible conductor 105 and the other end connected to the first heating element electrode 106 by a tab 108a of the heating element extraction electrode 108.
  • island electrodes 109 a and 109 b are provided outside the heating element 104 so as to be separated from the heating element 104.
  • the fusible conductor 105 is melted, the island-like electrodes 109a and 109b hold the molten conductor 105a in which the fusible conductor 105 is melted due to wettability, and the first electrode 102 and the second outer electrode 103 are Fuse the current path between. That is, in the protection element 100, the through hole is not provided in the insulating substrate 101, and the molten conductor 105a does not move to the back surface 101b of the insulating substrate 101.
  • the protection element 100 is also used in the same manner as the protection element 50. As shown in FIG. 12, the voltage values of the battery cells 31 to 34 are set to a predetermined overdischarge or overload by the detection signal output from the detection circuit 36. When the voltage exceeds the charged state, the current control element 37 operates the protection element 100 to cut off the charge / discharge current path of the battery stack 35 regardless of the switching operation of the current control elements 41 and 42. As a result, the heating element 104 generates heat and melts the fusible conductor 105 as shown in FIG. 17C, and a part of the molten conductor 105a is held by the island-shaped electrodes 109a and 109b to interrupt the current path. To do.
  • FIG. 19 shows the relationship between the posture of the protective element 100 as a reference example and the fusing time.
  • the protection element 100 is operated at 15 W.
  • each posture in FIGS. 18A to 18E corresponds to each posture in FIGS. 15A to 15E.
  • FIG. 18A is a plan view showing a state after fusing of the protection element 100 placed with the front surface 101a side of the insulating substrate 101 facing upward and the back surface 101b side of the insulating substrate 101 facing downward.
  • FIG. 18B shows the protection element 100 in which the protection element 100 is inverted 90 degrees from the posture of FIG. 18A and the soluble conductor 105 is supported in the vertical direction with the first external electrode 102 facing upward. It is a side view which shows the state after fusing.
  • FIG. 18C is a side view showing a state after the fusing of the protective element 100 that further rotates 90 ° from the posture of FIG. 18B and supports the fusible conductor 105 in the horizontal direction.
  • FIG. 18D illustrates a state in which the posture illustrated in FIG.
  • FIG. 18E shows a state in which the insulating substrate 101 is rotated 45 ° in the in-plane direction from the posture in which the first external electrode 102 is turned upside down, and the protective element 100 that supports the fusible conductor 105 obliquely is blown. It is a side view which shows the state.
  • FIG. 19 shows the fusing time of the fusible conductor 105 when the protective element 100 of the present invention is in the posture shown in FIGS. 18 (A)-(E).
  • the protection element 100 of the comparative example has a large variation in the fusing time depending on the wiring posture of the protection element 100. That is, the protection element 50 of the present invention can reduce the variation in fusing time regardless of the posture as compared with the protection device 100 of the reference example, and thus can be reliably performed in a substantially constant time regardless of the posture.
  • the molten conductor 53 can be blown.
  • the through holes 58 may be provided in two rows as shown in FIG. 20A, in addition to the case where the through holes 58 are provided in a straight line as shown in FIG. 11B. More than that may be provided. Further, as shown in FIG. 20 (B), it may be constituted by an elongated slit 58a instead of a plurality of through holes, or may be plural.
  • the protection element to which the present invention is applied may use a suction member 70 in which a heating element 57 is formed on the surface 55a side of the insulating substrate 55.
  • the same members as those of the protection element 50 described above are denoted by the same reference numerals and their details are omitted.
  • the protection element 71 using the suction member 70 in which the heating element 57 is formed on the surface 55 a side of the insulating substrate 55 is covered with the insulating member 62 while the heating element 57 is formed on the surface 55 a of the insulating substrate 55. .
  • the heat generating element 57 is connected to the first and second heat generating element electrodes 59 and 60 formed on the surface 55a of the insulating substrate 55 at both ends.
  • the first heating element electrode 59 is connected to the soluble conductor 53 via the heating element extraction electrode 63, whereby the heating element 57 is connected to the soluble conductor 53.
  • the second heating element electrode 60 is connected to a third external connection electrode 61 (see FIGS. 12 and 13), whereby the heating element 57 is connected to a power source for generating heat.
  • the heating element 57 is covered with an insulating member 62, and the heating element extraction electrode 63 is disposed so as to face the heating element 57 through the insulating member 62.
  • the insulating member 62 may be a laminated substrate in which the heating elements 57 are integrally laminated. Further, the heating element 57 may be provided only on one side of the surface electrode 56 or so as to surround the surface electrode 56 in addition to being provided on both sides of the surface electrode 56.
  • the heating element extraction electrode 63 is formed on the surface 55 a of the insulating substrate 55 so as to overlap the heating element 57 with the insulating member 62 interposed therebetween.
  • the heating element extraction electrode 63 is connected to the soluble conductor 53 via the surface electrode 56, and a tab 63 a formed at one end is connected to the first heating element electrode 59.
  • the protective element 71 has a through hole 58 formed in the same manner as the protective element 50 described above, and is provided with a conductive layer 65 and a back electrode 64, and a part or all of the through hole 58 is filled with spare solder 66. You may let them. Further, the suction member 70 may be filled with a part or all of the flux in the through hole 58 together with the spare solder 66 or instead of the spare solder 66. Also by filling the flux, the wettability of the soluble conductor 53 can be improved, and the molten conductor 53a can be efficiently drawn into the through hole 58.
  • the protection element 71 can efficiently transmit the heat to the soluble conductor 53 when the heating element 57 generates heat, and promptly attach the soluble conductor 53 to the soluble element 53. Can be blown.
  • the temperature 55a of the insulating substrate 55 has a temperature gradient higher than that of the back surface 55b. Therefore, the protective element 71 can cause the molten conductor 53a to agglomerate on the high temperature surface electrode 56 and to be quickly sucked into the through hole 58 through the conductive layer 65 continuous with the surface electrode 56, and the cross-sectional area can be increased. Even when a large amount of the molten conductor 53a is melted, the soluble conductor 53 can be surely blown.
  • the protective element 71 of the present invention can easily melt the soluble conductor 53 by guiding a large amount of the soluble conductor 53 from the front surface 55a of the insulating substrate 55 to the back surface 55b.
  • experiments shown in FIGS. 22 and 23 were performed.
  • a 0.85 ⁇ through-hole 58 was formed in an alumina-based substrate having a thickness of 0.635 mm as the insulating substrate 55, and the inner surface was subjected to Ni / Au plating.
  • a Sn-Ag-Cu-based metal foil having a thickness of 0.35 mm was subjected to an Ag plating process having a thickness of 6 ⁇ m.
  • FIG. 23 shows the relationship between each posture of the protection element 71 of the present invention shown in FIGS. 22A to 22E and the fusing time.
  • Each posture in FIGS. 22A to 22E corresponds to each posture in FIGS. 15A to 15E.
  • 22A is a plan view showing a state after the fusing of the protective element 71 placed with the front surface 55a side of the insulating substrate 55 facing upward and the back surface 55b side of the insulating substrate 55 facing downward.
  • 22B the protective element 71 is inverted 90 ° from the posture of FIG. 22A to direct the through hole 58 in the horizontal direction, and the second external electrode 52 is directed upward to be soluble in the vertical direction.
  • FIG. 7 is a side view showing a state after the protection element 71 supporting the conductor 53 is melted. 22C is further rotated by 90 ° from the posture of FIG.
  • FIG. 22B shows a side view which shows a state.
  • FIG. 22D shows a state in which the posture of FIG. That is, it is a plan view showing a state after fusing of the protective element 71 placed with the front surface 55a side of the insulating substrate 55 facing downward and the back surface 55b side of the insulating substrate 55 facing upward.
  • FIG. 22D shows a state in which the posture of FIG. That is, it is a plan view showing a state after fusing of the protective element 71 placed with the front surface 55a side of the insulating substrate 55 facing downward and the back surface 55b side of the insulating substrate 55 facing upward.
  • 22E shows that the insulating substrate 55 is rotated by 45 ° in the in-plane direction from the posture in which the second external electrode 52 is turned upside down, and the through-holes 58 are obliquely arranged in parallel, and the fusible conductor 53 is It is a side view which shows the state after fusing of the protection element 71 supported diagonally.
  • the protective element 71 of the present invention has no variation in the fusing time and can surely melt the soluble conductor 53 in any posture.
  • the protective element to which the present invention is applied may be formed inside the insulating substrate 55 in addition to forming the heating element 57 on the front surface 55a and the back surface 55b of the insulating substrate 55.
  • the heating element 57 does not need to be covered with the insulating member 62, and the heating element 57 is connected to the front surface electrode 56 or the back surface electrode 64 through the conductive layer 65.
  • the protective element to which the present invention is applied may be used in combination with an aggregating member 75 that agglomerates the molten conductor 53 a and assists the melting of the soluble conductor 53.
  • 24A and 24B are cross-sectional views of a protective element 74 using the suction member 70 and the aggregation member 75 in combination. As shown in FIGS. 24A and 24B, the aggregating member 75 covers the second insulating substrate 76, the heating element 77 provided on the surface 76a of the second insulating substrate 76, and the heating element 77. And a collecting electrode 79 that is laminated on the insulating member 78 and aggregates the molten conductor 53a.
  • the aggregating member 75 can use the same members as the insulating substrate 55, the heating element 57 and the insulating member 62 of the protection element 50 as the second insulating substrate 76, the heating element 77 and the insulating member 78.
  • the collector electrode 79 can be formed by printing and baking a high melting point metal paste such as Ag or Cu.
  • FIG. 25 shows a circuit diagram of the protection element 74.
  • the aggregating member 75 has a heat generating element 77 electrically connected to the third external connection electrode 61 via a heat generating element electrode (not shown), and a current control element 37 provided in an external circuit. The energization is controlled in conjunction with the heating element 57 of the suction member 70. Further, the aggregating member 75 has a heating element 77 connected to a collecting electrode 79 via a heating element electrode (not shown), and is electrically connected to the soluble conductor 53 via the collecting electrode 79.
  • the collector electrode 79 is connected to the surface opposite to the surface on which the suction member 70 of the soluble conductor 53 is provided. Therefore, when the heating element 57 of the suction member 70 is energized and heated, the protection element 74 energizes and generates heat at the same time as the heating element 77 of the aggregating member 75 and heats the fusible conductor 53 from both sides. Melt.
  • the protection element 74 sucks the molten conductor 53a into the through-hole 58 by the suction member 70, and agglomerates the molten conductor 53a to the collector electrode 79 by the aggregation member 75, thereby sucking and holding the molten conductor 53a.
  • the tolerance is increased. Therefore, the protective element 74 can be surely blown even when a large amount of the molten conductor 53a is generated using the soluble conductor 53 having a large cross-sectional area and a high rating, while improving the rating. The fusing characteristics can be maintained and improved.
  • the protective element 74 can quickly melt the soluble conductor 53 even when a covering structure in which the low melting point metal constituting the inner layer is covered with the high melting point metal is used as the soluble conductor 53. That is, the soluble conductor 53 covered with the refractory metal takes time to be heated to a temperature at which the outer refractory metal melts even when the heating elements 57 and 77 generate heat.
  • the protective element 74 includes the suction member 54 and the aggregating member 75, and simultaneously heats the heating elements 57 and 77, so that the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 74, the thickness of the refractory metal layer constituting the outer layer can be increased, and the fast fusing characteristics can be maintained while further increasing the rating.
  • the protective element 74 preferably has the collecting electrode 79 of the aggregation member 75 opposed to the through hole 58 of the suction member 70. Thereby, more molten conductors 53a gather on the through-hole 58, the molten conductor 53a can be efficiently sucked into the through-hole 58, and the soluble conductor 53 can be blown out quickly.
  • the protection element to which the present invention is applied may include a plurality of suction members 54 and 70 as shown in FIGS. 26 (A) and 26 (B), and may be disposed on the front and back surfaces of the soluble conductor 53.
  • the above-described suction member 54 is disposed on the front surface and the back surface of the soluble conductor 53.
  • FIG. 27 is a circuit diagram of the protection element 80.
  • Each suction member 54 disposed on the front and back surfaces of the soluble conductor 53 has one end of the heating element 57 connected to the soluble conductor 53 via the first heating element electrode 59 and the heating element extraction electrode 63.
  • the other end of the heating element 57 is connected to a power source for generating heat from the heating element 57 via the second heating element electrode 60 and the third external connection electrode 61.
  • the protective element 80 When the fusible conductor 53 is melted, the protective element 80 generates heat from the heating elements 57 of the suction members 54 and 54 and sucks the molten conductor 53 into the through holes 58. Accordingly, the protective element 80 is attracted by the plurality of suction members 54 even when the melted conductor 53a is generated in a large amount by increasing the cross-sectional area of the soluble conductor 13 in order to cope with the use of a large current, and is reliably soluble.
  • the conductor 53 can be fused. Further, the protection element 80 can melt the soluble conductor 53 more quickly by sucking the molten conductor 53 a by the plurality of suction members 54.
  • the protective element 80 can quickly melt the soluble conductor 53 even when a covering structure in which the low melting point metal constituting the inner layer is covered with the high melting point metal is used as the soluble conductor 53. That is, the fusible conductor 53 covered with the high melting point metal takes time to be heated to a temperature at which the outer layer high melting point metal melts even when the heating element 57 generates heat.
  • the protection element 80 includes a plurality of suction members 54 and simultaneously heats the heating elements 57, whereby the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 80, the thickness of the refractory metal layer constituting the outer layer can be increased, and the fast fusing characteristics can be maintained while further increasing the rating.
  • the protection element 80 is preferably connected to the soluble conductor 53 with a pair of suction members 54 and 54 facing each other. As a result, the protection element 80 can simultaneously heat the same portion of the soluble conductor 53 from both sides with the pair of suction members 54 and 54 and suck the molten conductor 53a more quickly. It can be heated and melted.
  • the protection element 80 uses the suction member 54 in which the heating element 57 is provided on the back surface 55b side of the insulating substrate 55 as a suction member, and the suction member in which the heating element 57 is provided on the front surface 55a side of the insulating substrate 55.
  • a plurality of 70 may be used, or both suction members 54 and 70 may be used in combination.
  • the soluble conductors 13 and 53 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder such as Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components.
  • the fusible conductors 13 and 53 may be made of a fusible conductor in which a high melting point metal layer 90 is provided as an inner layer and a low melting point metal layer 91 is provided as an outer layer. Good.
  • the soluble conductors 13 and 53 may have a structure in which the entire surface of the high melting point metal layer 90 is covered with the low melting point metal layer 91, or may be a structure in which a pair of opposite side surfaces are covered.
  • the covering structure with the high melting point metal layer 90 and the low melting point metal layer 91 can be formed using a known film forming technique such as plating.
  • the fusible conductors 13 and 53 may be made of a fusible conductor in which a low melting point metal layer 91 is provided as an inner layer and a high melting point metal layer 90 is provided as an outer layer.
  • the soluble conductors 13 and 53 may have a structure in which the entire surface of the low-melting-point metal layer 91 is covered with the high-melting-point metal layer 90. Good.
  • the soluble conductors 13 and 53 may have a laminated structure in which a high melting point metal layer 90 and a low melting point metal layer 91 are laminated as shown in FIG.
  • the fusible conductor 13 includes the first and second electrodes 11 and 12 and the surface electrode 22, or the first and second external electrodes 51 and 52 and the surface electrode 56.
  • the lower melting point metal layer 91 may be stacked on the upper surface of the lower melting point metal layer 90.
  • the refractory metal layer 90 as the upper layer may be laminated on the upper surface of the low melting point metal layer 91 as the lower layer.
  • the soluble conductors 13 and 53 may be formed as a three-layer structure including an inner layer and an outer layer laminated on the upper and lower surfaces of the inner layer, as shown in FIG.
  • the low melting point metal layer 91 serving as the outer layer may be stacked on the upper and lower surfaces of the layer 90, and the high melting point metal layer 90 serving as the outer layer may be stacked on the upper and lower surfaces of the low melting point metal layer 91 serving as the inner layer.
  • the soluble conductors 13 and 53 may have a multilayer structure of four or more layers in which high melting point metal layers 90 and low melting point metal layers 91 are alternately laminated.
  • the soluble conductors 13 and 53 may have a structure in which the entire surface or a pair of opposite side surfaces are covered with a metal layer constituting the outermost layer.
  • the fusible conductors 13 and 53 may be formed by partially laminating the high melting point metal layer 90 in a stripe shape on the surface of the low melting point metal layer 91 constituting the inner layer.
  • FIG. 31 is a plan view of the fusible conductors 13 and 53.
  • the soluble conductors 13 and 53 shown in FIG. 31A have a plurality of linear refractory metal layers 90 formed in the longitudinal direction on the surface of the low melting point metal layer 91 at predetermined intervals in the width direction.
  • a linear opening 92 is formed along the longitudinal direction, and the low melting point metal layer 91 is exposed from the opening 92.
  • the low melting point metal layer 91 is exposed from the opening 92, thereby increasing the contact area between the molten low melting point metal and the high melting point metal, and further promoting the erosion action of the high melting point metal layer 90.
  • the fusing property can be improved.
  • the opening 92 can be formed, for example, by subjecting the low melting point metal layer 91 to partial plating of a metal constituting the high melting point metal layer 90.
  • the soluble conductors 13 and 53 are formed with a plurality of linear refractory metal layers 90 in the width direction on the surface of the low melting point metal layer 91 at predetermined intervals in the longitudinal direction. By doing so, a linear opening 92 may be formed along the width direction.
  • the fusible conductors 13 and 53 form a refractory metal layer 90 on the surface of the low melting point metal layer 91 and a circular opening 93 across the entire surface of the refractory metal layer 90.
  • the low melting point metal layer 91 may be exposed from the opening 93.
  • the opening 93 can be formed, for example, by subjecting the low melting point metal layer 91 to partial plating of a metal constituting the high melting point metal layer 90.
  • the fusible conductors 13 and 53 are exposed to the low melting point metal layer 91 from the opening 93, thereby increasing the contact area between the molten low melting point metal and the high melting point metal and further promoting the erosion action of the high melting point metal.
  • the fusing property can be improved.
  • the fusible conductors 13 and 53 are formed with a large number of openings 94 in the refractory metal layer 90 which is an inner layer, and the refractory metal layer 90 is low in thickness using a plating technique or the like.
  • a melting point metal layer 91 may be formed and filled in the opening 94.
  • the fusible conductors 13 and 53 have an increased area where the molten low melting point metal contacts the high melting point metal, so that the low melting point metal can corrode the high melting point metal in a shorter time.
  • the soluble conductors 13 and 53 are formed such that the volume of the low melting point metal layer 91 is larger than the volume of the high melting point metal layer 90.
  • the fusible conductors 13 and 53 are heated by the heat generated by the heating elements 25 and 57, and when the low melting point metal melts, the high melting point metal is eroded and can thereby be melted and blown quickly. Therefore, the soluble conductors 13 and 53 promote this corrosion action by forming the volume of the low melting point metal layer 91 larger than the volume of the high melting point metal layer 90, and promptly the first and second electrodes. 11, 12 or between the first and second external electrodes 51, 52 can be blocked.
  • the fusible conductors 13 and 53 are formed in a substantially rectangular plate shape, and are covered with a high melting point metal constituting the outer layer and are opposed to each other and formed thicker than the main surface portion 96. And a pair of opposing second side edges 98 that are formed to have a thickness lower than that of the first side edge 97 by exposing the low melting point metal constituting the inner layer. You may have.
  • the side surface of the first side edge portion 97 is covered with the refractory metal layer 90, and is thereby formed thicker than the main surface portion 96 of the soluble conductors 13 and 53.
  • the second side edge 98 has a low melting point metal layer 91 whose outer periphery is surrounded by a high melting point metal layer 90 on the side surface.
  • the second side edge portion 98 is formed to have the same thickness as the main surface portion 96 except for both end portions adjacent to the first side edge portion 97.
  • the fusible conductor 13 has the first side edge 97 mounted along the width direction of the first and second electrodes 11, 12, and the second side edge 98 has the energization direction. Are connected across the first and second electrodes 11 and 12 in the direction of the opposite ends.
  • the fusible conductor 53 has the first side edge 97 mounted along the width direction of the first and second external electrodes 51 and 52, and the second side edge 98. Are connected across the first and second external electrodes 51 and 52 in the direction of the opposite ends in the energization direction.
  • the fusible conductors 13 and 53 are quickly blown, and the current path of the external circuit can be cut off.
  • the second side edge portion 98 is formed to be relatively thinner than the first side edge portion 97. Further, the low melting point metal layer 91 constituting the inner layer is exposed on the side surface of the second side edge portion 98. As a result, the second side edge portion 98 acts to cause the erosion action of the refractory metal layer 90 by the low melting point metal layer 91, and the thickness of the refractory metal layer 90 to be eroded is also the first side edge portion. Since it is formed thinner than 97, it can be rapidly melted with less heat energy as compared with the first side edge 97 formed thick by the refractory metal layer 90. On the other hand, the first side edge 97 is covered with the refractory metal layer 90 to a thickness, and requires a lot of heat energy to blow out as compared with the second side edge 98.
  • the protective elements 1 and 50 are heated immediately between the first electrode 11 and the second electrode 12 where the second side edge 98 is passed, or when the heating elements 25 and 57 generate heat, or The space between the first external electrode 51 and the second external electrode 52 is fused.
  • the protection elements 1 and 50 block the charge / discharge path between the first and second electrodes 11 and 12 or between the first and second external electrodes 51 and 52, and to the heating elements 25 and 57. Is interrupted, and the heat generation of the heating elements 25 and 57 is stopped.
  • the soluble conductors 13 and 53 having such a configuration are manufactured by coating a low melting point metal foil such as a solder foil constituting the low melting point metal layer 91 with a metal such as Ag constituting the high melting point metal layer 90. Is done.
  • a low melting point metal foil such as a solder foil constituting the low melting point metal layer 91
  • a metal such as Ag constituting the high melting point metal layer 90.
  • an electrolytic plating method capable of continuously applying a high melting point metal plating to a long low melting point metal foil is advantageous in terms of work efficiency and manufacturing cost. It becomes.
  • the electric field strength is relatively increased at the edge portion of the long low melting point metal foil, that is, the side edge portion, and the refractory metal layer 90 is thickly plated (FIG. 34). reference).
  • a long conductor ribbon 95 is formed in which the side edge is formed thick by the refractory metal layer.
  • the conductor ribbon 95 is cut into a predetermined length in the width direction (C-C ′ direction in FIG. 34) perpendicular to the longitudinal direction, whereby the soluble conductors 13 and 53 are manufactured.
  • the side edge of the conductor ribbon 95 becomes the first side edge 97
  • the cut surface of the conductor ribbon 95 becomes the second side edge 98.
  • the first side edge portion 97 is covered with a refractory metal
  • the second side edge portion 98 has a pair of upper and lower refractory metal layers 90 and a refractory metal layer on an end surface (cut surface of the conductor ribbon 95).
  • a low melting point metal layer 91 surrounded by 90 is exposed to the outside.

Abstract

Provided are a protective element and a battery pack that maintain current capacity at the time of overcurrent protection and that use heat emitted by a heating element to reliably cause melting. The protective element is provided with: a first insulating substrate (55); first and second external electrodes (51, 52); a heating element (57) that is provided to the rear surface (55b) side of the first insulating substrate (55); front/rear surface electrodes (56, 64) that are provided between the first external electrode (51) and the second external electrode (52) of the surface (55a) of the first insulating substrate (55); a meltable conductor (53) that is layered across the first and second external electrodes (51, 52) so as to overlap with the surface electrode (56) on the front surface (55a); a through hole (58) comprising a conductive layer (65) on the inner surface thereof; and a preliminary solder (66) that is used to fill the interior of the through hole (58). The heat of the heating element (57) causes the preliminary solder (66) and the meltable conductor (53) to melt. The wettability of the front/rear surface electrodes (56, 64), the conductor layer (65) that is within the through hole (58), and the like causes the melted preliminary solder (66) and the meltable conductor (53) to move to the rear surface (55b) side of the high-temperature first insulating substrate (55).

Description

保護素子及びバッテリパックProtective element and battery pack
 本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子及びバッテリパックに関する。本出願は、日本国において2013年8月7日に出願された日本特許出願番号特願2013-163950、及び2014年5月30日に出願された日本特許出願番号特願2014-113044を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。 The present invention relates to a protection element and a battery pack for protecting a circuit connected on a current path by fusing the current path. This application is based on Japanese Patent Application No. 2013-163950 filed on August 7, 2013 in Japan and Japanese Patent Application No. 2014-113044 filed on May 30, 2014. Priority is claimed and these applications are incorporated herein by reference.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the rechargeable batteries that can be charged and used repeatedly are processed into battery packs and provided to users. Particularly in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
 多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、或いはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。 In many electronic devices using lithium ion secondary batteries, an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge, etc. is applied, an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell. The battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Therefore, a protective element made of a fuse element having a function of cutting off a current path by a signal from the outside is used in order to safely cut off the output of the battery cell in any possible abnormal state.
 このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。 As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, a heating element is provided inside the protection element. A structure that melts a molten conductor is generally used.
特開2010-3665号公報JP 2010-3665 A
 特許文献1に記載されている保護素子において、携帯電話やノートパソコンのような電流容量が比較的低い用途に用いるために、可溶導体(ヒューズ)は、最大でも15A程度の電流容量を有している。リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、例えば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途において、特に起動時等には、数10A~100Aを超えるような大電流が流れる場合がある。このような大電流容量に対応した保護素子の実現が望まれている。 In the protective element described in Patent Document 1, a fusible conductor (fuse) has a current capacity of about 15 A at the maximum in order to be used for an application having a relatively low current capacity such as a mobile phone or a notebook computer. ing. Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly during startup. The realization of a protective element corresponding to such a large current capacity is desired.
 大電流に対応する保護素子を実現するためには、可溶導体の断面積を増大させればよい。しかしながら、保護素子は、過電流状態により溶断させる場合以外にも、電池セルの過電圧状態を検出して、抵抗体で形成された発熱体に電流を流して、その発熱によって可溶導体を切断する必要がある。大電流に対応するために断面積を増大させると、溶断時の可溶導体の溶融量が多くなるため、可溶導体を安定して溶断することが困難となる。また、可溶導体の溶融量が多くなると過電流による電流遮断の直前に、溶融導体が凝集量も増大し、遮断時のアーク放電によって溶融導体が多量に飛散し、絶縁抵抗の低下や可溶導体の搭載位置の周辺回路の短絡等のリスクも高まる。さらに、保護素子の配置される姿勢によって溶断動作が変動することも問題である。 In order to realize a protective element corresponding to a large current, the cross-sectional area of the soluble conductor may be increased. However, the protective element detects an overvoltage state of the battery cell in addition to the case where the battery is blown by an overcurrent state, and causes a current to flow through the heating element formed of the resistor, thereby cutting the soluble conductor by the heat generation. There is a need. If the cross-sectional area is increased in order to cope with a large current, the melting amount of the soluble conductor at the time of melting increases, so that it becomes difficult to stably melt the soluble conductor. Also, when the melting amount of the fusible conductor increases, the molten conductor also increases in agglomeration immediately before the current interruption due to overcurrent, and the molten conductor scatters a lot due to arc discharge at the time of interruption, resulting in a decrease in insulation resistance or fusibility. The risk of a short circuit in the peripheral circuit at the conductor mounting position is also increased. Another problem is that the fusing operation varies depending on the posture in which the protective element is arranged.
 そこで、本発明は、過電流保護時の電流容量を確保しつつ、過電流による電流遮断の際にアーク放電による溶融導体の飛散を抑制できる保護素子及びバッテリパックを得ることを目的とする。また、本発明は、過電流保護時の電流容量を確保しつつ、発熱体による発熱によって可溶導体を確実に溶断させることができる保護素子及びバッテリパックを得ることを目的とする。 Therefore, an object of the present invention is to obtain a protection element and a battery pack that can suppress the scattering of a molten conductor due to arc discharge at the time of current interruption due to overcurrent while securing a current capacity at the time of overcurrent protection. It is another object of the present invention to provide a protection element and a battery pack that can reliably melt a soluble conductor by heat generated by a heating element while securing a current capacity during overcurrent protection.
 上述した課題を解決する本発明に係る保護素子は、第1の絶縁基板と、上記第1の絶縁基板の表面に搭載された可溶導体とを有し、上記第1の絶縁基板の表面には、溶融した上記可溶導体を吸引する吸引孔が開口されているものである。 A protection element according to the present invention that solves the above-described problem has a first insulating substrate and a soluble conductor mounted on the surface of the first insulating substrate, and is provided on the surface of the first insulating substrate. Are those in which suction holes for sucking the melted soluble conductor are opened.
 また、本発明に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子とを備え、上記保護素子は、第1のと、上記第1の絶縁基板の表面に搭載され、上記充放電経路となる可溶導体とを有し、上記第1の絶縁基板の表面には、溶融した上記可溶導体を吸引する吸引孔が開口されているものである。 The battery pack according to the present invention includes one or more battery cells and a protection element that is connected to the charge / discharge path of the battery cell and blocks the charge / discharge path. And a soluble conductor mounted on the surface of the first insulating substrate and serving as the charging / discharging path, and the surface of the first insulating substrate is suctioned to suck the molten soluble conductor A hole is opened.
 また、本発明に係る保護素子は、第1、第2の外部電極と、上記第1、第2の外部電極間にわたって接続された可溶導体と、上記可溶導体に接続され、溶融した上記可溶導体を吸引する吸引部材とを有し、上記吸引部材は、上記第1、第2の外部電極間に配設された第1の絶縁基板と、上記第1の絶縁基板の表面に形成され、上記可溶導体の一部と接続された表面電極と、上記第1の絶縁基板に設けられた発熱体と、上記第1の絶縁基板の厚さ方向に設けられ、上記表面電極と連続する貫通孔とを備え、上記可溶導体が溶融することにより上記第1の外部電極と上記第2の外部電極との間の電流経路を遮断するものである。 The protective element according to the present invention includes the first and second external electrodes, the soluble conductor connected between the first and second external electrodes, and the molten conductor connected to the soluble conductor. A suction member that sucks the soluble conductor, and the suction member is formed on the surface of the first insulating substrate and the first insulating substrate disposed between the first and second external electrodes. A surface electrode connected to a part of the soluble conductor, a heating element provided on the first insulating substrate, and provided in the thickness direction of the first insulating substrate, and continuous with the surface electrode. A through-hole that cuts off a current path between the first external electrode and the second external electrode by melting the soluble conductor.
 また、本発明に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子と、上記バッテリセルの電圧値を検出して上記保護素子への通電を制御する電流制御素子とを備え、上記保護素子は、第1、第2の外部電極と、上記第1、第2の外部電極間にわたって接続された可溶導体と、溶融した上記可溶導体を吸引する吸引部材とを有し、上記吸引部材は、上記第1、第2の外部電極間に配設された第1の絶縁基板と、上記第1の絶縁基板の表面に形成され、上記可溶導体の一部と接続された表面電極と、上記第1の絶縁基板に設けられた発熱体と、上記第1の絶縁基板の厚さ方向に設けられ、上記表面電極と連続する貫通孔とを備え、上記可溶導体が溶融することにより上記第1の外部電極と上記第2の外部電極との間の電流経路を遮断するものである。 In addition, the battery pack according to the present invention detects one or more battery cells, a protection element that is connected to the charge / discharge path of the battery cell and blocks the charge / discharge path, and a voltage value of the battery cell. A current control element for controlling energization to the protection element, the protection element comprising: first and second external electrodes; a soluble conductor connected across the first and second external electrodes; A suction member that sucks the melted soluble conductor, and the suction member includes a first insulating substrate disposed between the first and second external electrodes, and the first insulating substrate. A surface electrode connected to a part of the soluble conductor, a heating element provided on the first insulating substrate, and a thickness direction of the first insulating substrate, It has a surface electrode and a continuous through hole, and the soluble conductor melts It is intended to further block the current path between the first external electrode and the second external electrode.
 また、上述した課題を解決する本発明に係る保護素子は、第1の絶縁基板と、第1及び第2の外部電極と、上記第1の絶縁基板の一方の面側にある、上記第1の外部電極と上記第2の外部電極との間に設けられた中間電極と、上記第1の絶縁基板の他方の面側に設けられた発熱体と、上記第1の絶縁基板の一方の面に、上記中間電極と接続されるとともに上記第1及び第2の外部電極にわたって接続され、上記発熱体による加熱により、該第1の外部電極と該第2の外部電極との間の電流経路を溶断する可溶導体と、上記第1の絶縁基板の他方の面側に設けられ、上記発熱体の一方の端子に電気的に接続された発熱体引出電極と、上記中間電極と上記発熱体引出電極との間に上記第1の絶縁基板の厚さ方向に設けられ、内側面に上記中間電極と上記発熱体引出電極と連続する導電層が設けられた貫通孔とを備える。 In addition, a protection element according to the present invention that solves the above-described problems includes the first insulating substrate, the first and second external electrodes, and the first insulating substrate on one surface side of the first insulating substrate. An intermediate electrode provided between the external electrode and the second external electrode, a heating element provided on the other surface side of the first insulating substrate, and one surface of the first insulating substrate Are connected to the intermediate electrode and connected to the first and second external electrodes, and a current path between the first external electrode and the second external electrode is heated by the heating element. A fusible conductor to be melted, a heating element lead electrode provided on the other surface side of the first insulating substrate and electrically connected to one terminal of the heating element, the intermediate electrode and the heating element lead Between the electrodes in the thickness direction of the first insulating substrate, and the intermediate power And and a through hole conductive layer is provided which is continuous with the heating element lead electrode.
 本発明に係るバッテリパックは、1つ以上のバッテリセルと、バッテリセルに流れる電流を遮断するように接続された保護素子と、バッテリセルそれぞれの電圧値を検出して保護素子を加熱する電流を制御する電流制御素子とを備える。そして、保護素子は、第1の絶縁基板と、第1及び第2の外部電極と、上記第1の絶縁基板の一方の面側にある、上記第1の外部電極と上記第2の外部電極との間に設けられた中間電極と、上記第1の絶縁基板の他方の面側に設けられた発熱体と、上記第1の絶縁基板の一方の面に、上記中間電極と接続されるとともに上記第1及び第2の外部電極にわたって接続され、上記発熱体による加熱により、該第1の外部電極と該第2の外部電極との間の電流経路を溶断する可溶導体と、上記第1の絶縁基板の他方の面側に設けられ、上記発熱体の一方の端子に電気的に接続された発熱体引出電極と、上記中間電極と上記発熱体引出電極との間に上記第1の絶縁基板の厚さ方向に設けられ、内側面に上記中間電極と上記発熱体引出電極と連続する導電層が設けられた貫通孔とを備える。 The battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element. A current control element to be controlled. The protective element includes a first insulating substrate, first and second external electrodes, and the first external electrode and the second external electrode on one surface side of the first insulating substrate. And an intermediate electrode provided between the intermediate electrode, a heating element provided on the other surface of the first insulating substrate, and one surface of the first insulating substrate connected to the intermediate electrode. A soluble conductor connected across the first and second external electrodes and fusing a current path between the first external electrode and the second external electrode by heating by the heating element; and the first A heating element extraction electrode provided on the other surface side of the insulating substrate and electrically connected to one terminal of the heating element; and the first insulation between the intermediate electrode and the heating element extraction electrode. Provided in the thickness direction of the substrate, the inner surface is connected to the intermediate electrode and the heating element extraction electrode. And a through hole layer is provided.
 本発明によれば、可溶導体が溶融すると、溶融した可溶導体が第1の絶縁基板に形成された吸引孔に引き込まれるため、溶融導体が多量に発生した場合にも確実に溶断される。したがって、定格を向上させるために可溶導体の断面積を増大させた場合にも、電流経路を確実に切断することができる。 According to the present invention, when the fusible conductor is melted, the melted fusible conductor is drawn into the suction holes formed in the first insulating substrate. . Therefore, even when the cross-sectional area of the fusible conductor is increased in order to improve the rating, the current path can be reliably cut.
図1は、本発明が適用された保護素子を示す断面図である。FIG. 1 is a cross-sectional view showing a protection element to which the present invention is applied. 図2は、本発明が適用された保護素子において、溶融導体が吸引されている状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which a molten conductor is sucked in the protection element to which the present invention is applied. 図3は、本発明が適用された保護素子において、可溶導体が溶断された状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where a soluble conductor is blown in a protective element to which the present invention is applied. 図4は、保護素子が用いられたバッテリパックの構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of a battery pack in which a protection element is used. 図5は、本発明が適用された保護素子の回路図である。FIG. 5 is a circuit diagram of a protection element to which the present invention is applied. 図6は、第1の絶縁基板の表面側に発熱体を備えた保護素子を示す断面図である。FIG. 6 is a cross-sectional view showing a protection element having a heating element on the surface side of the first insulating substrate. 図7は、第1の絶縁基板の裏面側に発熱体を備えた保護素子を示す断面図である。FIG. 7 is a cross-sectional view showing a protection element having a heating element on the back side of the first insulating substrate. 図8は、第1の絶縁基板内に発熱体を備えた保護素子を示す断面図である。FIG. 8 is a cross-sectional view showing a protection element having a heating element in the first insulating substrate. 図9は、保護素子が用いられたバッテリパックの構成例を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration example of a battery pack in which a protection element is used. 図10は、本発明が適用された保護素子の回路図である。FIG. 10 is a circuit diagram of a protection element to which the present invention is applied. 図11(A)は、本発明が適用された保護素子の平面図である。図11(B)は、図11(A)のAA’線断面図である。FIG. 11A is a plan view of a protection element to which the present invention is applied. FIG. 11B is a cross-sectional view taken along the line AA ′ of FIG. 図12は、本発明が適用された保護素子の応用例を示すブロック図である。FIG. 12 is a block diagram showing an application example of a protection element to which the present invention is applied. 図13は、本発明が適用された保護素子の回路構成例を示す図である。FIG. 13 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied. 図14(A)は、本発明が適用された保護素子の発熱体の動作時を示す断面図である。図14(B)は、可溶導体が溶断した状態を示す断面図である。FIG. 14A is a cross-sectional view showing the operation of the heating element of the protection element to which the present invention is applied. FIG. 14B is a cross-sectional view showing a state where the fusible conductor is melted. 図15(A)-(E)は、本発明が適用された保護素子の使用態様の姿勢を示す図である。FIGS. 15A to 15E are views showing the posture of the usage mode of the protection element to which the present invention is applied. 図16は、図15(A)-(E)の各姿勢における可溶導体の溶断時間を示す図である。FIG. 16 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 15 (A) to 15 (E). 図17(A)は、参考例となる凝集式の保護素子の平面図であり、図17(B)は、図17(A)のAA’線断面図である。図17(C)は、溶断した状態の断面図である。FIG. 17A is a plan view of a cohesive protection element as a reference example, and FIG. 17B is a cross-sectional view taken along the line AA ′ of FIG. FIG. 17C is a cross-sectional view of the melted state. 図18(A)-(E)は、図17に示す参考例の保護素子の使用態様における姿勢を示す図である。18 (A) to 18 (E) are views showing the posture in the usage mode of the protective element of the reference example shown in FIG. 図19は、図18(A)-(E)の各姿勢における可溶導体の溶断時間を示す図である。FIG. 19 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 18 (A) to 18 (E). 図20は、第1の絶縁基板の中間電極に設けられる貫通孔の変形例を示す図であり、(A)は、貫通孔を2列に設けた例を示し、(B)は、貫通孔をスリットにした例を示す。FIG. 20 is a view showing a modification of the through holes provided in the intermediate electrode of the first insulating substrate, (A) shows an example in which the through holes are provided in two rows, and (B) shows the through holes. An example in which is used as a slit is shown. 図21は、第1の絶縁基板の表面側に発熱体を備えた保護素子を示す断面図である。FIG. 21 is a cross-sectional view showing a protection element having a heating element on the surface side of the first insulating substrate. 図22(A)-(E)は、本発明が適用された保護素子の使用態様の姿勢を示す図である。22 (A) to 22 (E) are views showing postures of usage modes of the protection element to which the present invention is applied. 図23は、図22(A)-(E)の各姿勢における可溶導体の溶断時間を示す図である。FIG. 23 is a diagram showing fusing time of the soluble conductor in each posture of FIGS. 22 (A) to (E). 図24は、凝集部材を備えた保護素子を示す断面図であり、(A)は可溶導体の溶断前、(B)は可溶導体の溶断後を示す。FIG. 24 is a cross-sectional view showing a protective element provided with an aggregating member, where (A) shows the fusible conductor before fusing and (B) shows the fusible conductor after fusing. 図25は、凝集部材を備えた保護素子を示す回路図である。FIG. 25 is a circuit diagram showing a protection element provided with an aggregating member. 図26は、吸引部材を複数備えた保護素子を示す断面図であり、(A)は可溶導体の溶断前、(B)は可溶導体の溶断後を示す。FIG. 26 is a cross-sectional view showing a protection element having a plurality of suction members, where (A) shows before melting of the soluble conductor and (B) shows after melting of the soluble conductor. 図27は、吸引部材を複数備えた保護素子を示す回路図である。FIG. 27 is a circuit diagram showing a protection element having a plurality of suction members. 図28は、高融点金属層と低融点金属層を有し、被覆構造を備える可溶導体を示す斜視図であり、(A)は高融点金属層を内層とし低融点金属層で被覆した構造を示し、(B)は低融点金属層を内層とし高融点金属層で被覆した構造を示す。FIG. 28 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a covering structure, and (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer. (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer. 図29は、高融点金属層と低融点金属層の積層構造を備える可溶導体を示す斜視図であり、(A)は上下2層構造、(B)は内層及び外層の3層構造を示す。FIG. 29 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer. . 図30は、高融点金属層と低融点金属層の多層構造を備える可溶導体を示す断面図である。FIG. 30 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer. 図31は、高融点金属層の表面に線状の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図であり、(A)は長手方向に沿って開口部が形成されたもの、(B)は幅方向に沿って開口部が形成されたものである。FIG. 31 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed. FIG. 31A shows the opening along the longitudinal direction. The formed part (B) has an opening formed in the width direction. 図32は、高融点金属層の表面に円形の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図である。FIG. 32 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed. 図33は、高融点金属層に円形の開口部が形成され、内部に低融点金属が充填された可溶導体を示す平面図である。FIG. 33 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting metal is filled therein. 図34は、高融点金属に被覆され肉厚な第1の側縁部と、低融点金属が露出する第2の側縁部が設けられた可溶導体を示す平面図である。FIG. 34 is a plan view showing a soluble conductor provided with a thick first side edge portion covered with a high melting point metal and a second side edge portion where the low melting point metal is exposed.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.
 [第1の実施の形態]
 本発明が適用された保護素子1は、図1に示すように、第1の絶縁基板10と、第1の絶縁基板10の表面10aに搭載された可溶導体13とを有し、第1の絶縁基板10の表面10aには、溶融した可溶導体13を吸引する吸引孔20が開口されている。そして、保護素子1は、外部回路に組み込まれることにより、可溶導体13が当該外部回路の電流経路の一部を構成し、定格を超える過電流によって溶断することにより電流経路を遮断するものである。
[First Embodiment]
As shown in FIG. 1, the protection element 1 to which the present invention is applied includes a first insulating substrate 10 and a soluble conductor 13 mounted on a surface 10 a of the first insulating substrate 10. A suction hole 20 for sucking the melted soluble conductor 13 is formed in the surface 10a of the insulating substrate 10. The protection element 1 is incorporated in an external circuit, so that the fusible conductor 13 constitutes a part of the current path of the external circuit, and cuts off the current path by fusing due to overcurrent exceeding the rating. is there.
 第1の絶縁基板10は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、第1の絶縁基板10は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。 The first insulating substrate 10 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia. In addition, the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used for the 1st insulated substrate 10. FIG.
 第1の絶縁基板10の表面10aの相対向する両端部には、第1、第2の電極11,12が形成されている。第1、第2の電極11,12は、それぞれ、Cu配線等の導電パターンによって形成され、表面に適宜、酸化防止対策としてSnメッキ等の保護層が設けられている。また、第1、第2の電極11,12は、第1の絶縁基板10の側面を介して裏面10bに至る導電層11b,12bを介して、裏面10bに形成された第1、第2の外部接続電極11a,12aと接続されている。保護素子1は、第1、第2の外部接続電極11a,12aが外部回路を構成する回路基板に接続されることにより、当該回路基板の電流経路上に接続される。そして、保護素子1は、第1、第2の電極11,12間にわたって後述する可溶導体13が搭載されることにより、可溶導体13が第1、第2の外部接続電極11a,12aを介して回路基板の電流経路の一部となる。 First and second electrodes 11 and 12 are formed at opposite ends of the surface 10 a of the first insulating substrate 10. The first and second electrodes 11 and 12 are each formed by a conductive pattern such as a Cu wiring, and a protective layer such as Sn plating is appropriately provided on the surface as an anti-oxidation measure. The first and second electrodes 11 and 12 are formed on the back surface 10b via the conductive layers 11b and 12b that reach the back surface 10b via the side surface of the first insulating substrate 10. The external connection electrodes 11a and 12a are connected. The protection element 1 is connected on the current path of the circuit board by connecting the first and second external connection electrodes 11a and 12a to the circuit board constituting the external circuit. And the protection element 1 mounts the soluble conductor 13 mentioned later over between the 1st, 2nd electrodes 11, 12, and the soluble conductor 13 makes the 1st, 2nd external connection electrodes 11a, 12a. And becomes part of the current path of the circuit board.
 また、第1の絶縁基板10は、第1、第2の電極11,12の間に、吸引孔20が形成されている。吸引孔20は、可溶導体13が過電流による自己発熱により溶融すると、毛管現象によってこの溶融導体13aを吸引し、溶融導体13aの体積を減少させるものである(図2参照)。保護素子1は、大電流用途に対応するために可溶導体13の断面積を増大させることにより、溶融量が増大した場合にも、吸引孔20に吸引させることで、溶融導体13aの体積を減少させることができる。これにより、保護素子1は、遮断時のアーク放電による溶融導体13aの飛散を軽減し、絶縁抵抗の低下を防止し、また、可溶導体13の搭載位置の周辺回路への付着による短絡故障を防止することができる。 Further, the first insulating substrate 10 has a suction hole 20 formed between the first and second electrodes 11 and 12. When the fusible conductor 13 is melted by self-heating due to overcurrent, the suction hole 20 sucks the molten conductor 13a by capillary action and decreases the volume of the molten conductor 13a (see FIG. 2). The protective element 1 increases the cross-sectional area of the fusible conductor 13 in order to cope with a large current application, so that the suction hole 20 sucks the volume of the molten conductor 13a even when the melting amount increases. Can be reduced. Thereby, the protection element 1 reduces scattering of the molten conductor 13a due to arc discharge at the time of interruption, prevents a decrease in insulation resistance, and prevents a short circuit failure due to adhesion of the fusible conductor 13 to the peripheral circuit. Can be prevented.
 吸引孔20は、内面に導電層21が形成されている。導電層21が形成されることにより、吸引孔20は、溶融導体13aを吸引しやすくすることができる。導電層21は、例えば銅、銀、金、鉄、ニッケル、パラジウム、鉛、錫のいずれか、又はいずれかを主成分とする合金によって形成され、吸引孔20の内面を電解メッキや導電ペーストの印刷等の公知の方法により形成することができる。また、導電層21は、複数の金属線や、導電性を有するリボンの集合体を吸引孔20内に挿入することにより形成してもよい。 The suction hole 20 has a conductive layer 21 formed on the inner surface. By forming the conductive layer 21, the suction hole 20 can easily suck the molten conductor 13 a. The conductive layer 21 is formed of, for example, copper, silver, gold, iron, nickel, palladium, lead, tin, or an alloy mainly containing any of them, and the inner surface of the suction hole 20 is made of electrolytic plating or conductive paste. It can be formed by a known method such as printing. Further, the conductive layer 21 may be formed by inserting a plurality of metal wires or a collection of conductive ribbons into the suction hole 20.
 また、吸引孔20は、第1の絶縁基板10の厚さ方向に貫通する貫通孔として形成されることが好ましい。これにより、吸引孔20は、溶融導体13aを第1の絶縁基板10の裏面10b側まで吸引することができ、より多くの溶融導体13aを吸引し、溶断部位における溶融導体13aの体積を減少させることができる。なお、吸引孔20は、非貫通孔として形成してもよい。 Further, the suction hole 20 is preferably formed as a through-hole penetrating in the thickness direction of the first insulating substrate 10. Thereby, the suction hole 20 can suck the molten conductor 13a to the back surface 10b side of the first insulating substrate 10, sucks more molten conductor 13a, and reduces the volume of the molten conductor 13a at the fusing site. be able to. Note that the suction hole 20 may be formed as a non-through hole.
 第1の絶縁基板10の表面10aには、吸引孔20の導電層21と接続された表面電極22が形成されている。表面電極22は、可溶導体13が接続される支持電極となる。また、表面電極22は、導電層21と連続することにより、可溶導体13が溶融すると、溶融導体13aが凝集し吸引孔20内に導きやすくする。 A surface electrode 22 connected to the conductive layer 21 of the suction hole 20 is formed on the surface 10 a of the first insulating substrate 10. The surface electrode 22 serves as a support electrode to which the soluble conductor 13 is connected. Further, the surface electrode 22 is continuous with the conductive layer 21, so that when the soluble conductor 13 is melted, the molten conductor 13 a is aggregated and easily guided into the suction hole 20.
 また、第1の絶縁基板10の裏面10bには、吸引孔20の導電層21と接続された裏面電極23が形成されている。裏面電極23は、導電層21と連続することにより、可溶導体13が溶融すると、吸引孔20を介して移動した溶融導体13aが凝集する(図3参照)。これにより、保護素子1は、より多くの溶融導体13aを吸引し、溶断部位における溶融導体13aの体積を減少させることができる。 Further, a back surface electrode 23 connected to the conductive layer 21 of the suction hole 20 is formed on the back surface 10 b of the first insulating substrate 10. The back electrode 23 is continuous with the conductive layer 21, and when the soluble conductor 13 is melted, the molten conductor 13 a moved through the suction hole 20 is aggregated (see FIG. 3). Thereby, the protection element 1 can attract more molten conductor 13a, and can reduce the volume of the molten conductor 13a in a fusing part.
 なお、保護素子1は、吸引孔20を複数形成することにより、可溶導体13の溶融導体13aを吸引する経路を増やし、より多くの溶融導体13aを吸引することで、溶断部位における溶融導体13aの体積を減少させるようにしてもよい。 In addition, the protection element 1 increases the path | route which attracts | sucks the molten conductor 13a of the soluble conductor 13 by forming the suction hole 20 in multiple numbers, and attracts | sucks more molten conductor 13a, The molten conductor 13a in a fusing part You may make it reduce the volume of.
 次いで、可溶導体13について説明する。可溶導体13は、第1及び第2の電極11,12間にわたって実装され、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、第1の電極11と第2の電極12との間の電流経路を遮断するものである。 Next, the soluble conductor 13 will be described. The fusible conductor 13 is mounted between the first and second electrodes 11, 12, and is melted by self-heating (Joule heat) when a current exceeding the rating is applied, so that the first electrode 11 and the second electrode The current path to 12 is cut off.
 可溶導体13は、過電流状態によって溶融する導電性の材料であればよく、例えば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。 The soluble conductor 13 may be any conductive material that melts in an overcurrent state. For example, in addition to SnAgCu-based Pb-free solder, BiPbSn alloy, BiPb alloy, BiSn alloy, SnPb alloy, PbIn alloy, ZnAl alloy, An InSn alloy, a PbAgSn alloy, or the like can be used.
 また、可溶導体13は、高融点金属と、低融点金属とを含有する構造体であってもよい。例えば、図1に示すように、可溶導体13は、内層と外層とからなる積層構造体であり、内層として低融点金属層13b、低融点金属層13bに積層された外層として高融点金属層13cを有する。可溶導体13は、第1、第2の電極11,12及び表面電極22上にハンダ等の接合材料を介して接続される。 Further, the soluble conductor 13 may be a structure containing a high melting point metal and a low melting point metal. For example, as shown in FIG. 1, the soluble conductor 13 is a laminated structure composed of an inner layer and an outer layer, and a low melting point metal layer 13b as an inner layer and a high melting point metal layer as an outer layer laminated on the low melting point metal layer 13b. 13c. The soluble conductor 13 is connected to the first and second electrodes 11 and 12 and the surface electrode 22 via a bonding material such as solder.
 低融点金属層13bは、好ましくは、ハンダ又はSnを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である(たとえば千住金属工業製、M705等)。低融点金属層13bの融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。高融点金属層13cは、低融点金属層13bの表面に積層された金属層であり、例えば、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、保護素子1をリフロー炉によって外部回路基板上に実装を行う場合においても溶融しない高い融点を有する。 The low melting point metal layer 13b is preferably a metal mainly composed of solder or Sn, and is a material generally called “Pb-free solder” (for example, M705, manufactured by Senju Metal Industry). The melting point of the low melting point metal layer 13b is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C. The high melting point metal layer 13c is a metal layer laminated on the surface of the low melting point metal layer 13b. For example, the high melting point metal layer 13c is a metal mainly composed of Ag or Cu or any one of them. Therefore, even when mounting on an external circuit board, it has a high melting point that does not melt.
 このような可溶導体13は、低融点金属箔に、高融点金属層をメッキ技術を用いて成膜することによって形成することができ、あるいは、他の周知の積層技術、膜形成技術を用いて形成することもできる。なお、可溶導体13は、高融点金属層を内層とし、低融点金属層を外層として構成してもよく、また低融点金属層と高融点金属層とが交互に積層された4層以上の多層構造とするなど、後に説明するように、様々な構成によって形成することができる。 Such a soluble conductor 13 can be formed by depositing a high melting point metal layer on a low melting point metal foil using a plating technique, or using another known lamination technique or film forming technique. It can also be formed. The fusible conductor 13 may be constituted by a high melting point metal layer as an inner layer and a low melting point metal layer as an outer layer, or four or more layers in which low melting point metal layers and high melting point metal layers are alternately laminated. As will be described later, it can be formed in various configurations, such as a multilayer structure.
 可溶導体13は、内層となる低融点金属層13bに、外層として高融点金属層13cを積層することによって、リフロー温度が低融点金属層13bの溶融温度を超えた場合であっても、可溶導体13として溶断するに至らない。したがって、保護素子1は、リフローによって効率よく実装することができる。 The soluble conductor 13 can be used even when the reflow temperature exceeds the melting temperature of the low melting point metal layer 13b by laminating the high melting point metal layer 13c as the outer layer on the low melting point metal layer 13b as the inner layer. The molten conductor 13 is not blown out. Therefore, the protection element 1 can be efficiently mounted by reflow.
 また、可溶導体13は、所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、定格よりも高い値の電流が流れると、自己発熱によって溶融し、第1、第2の電極11,12間の電流経路を遮断する。このとき、可溶導体13は、溶融した低融点金属層13bが高融点金属層13cを浸食することにより、高融点金属層13cが溶融温度よりも低い温度で溶融する。したがって、可溶導体13は、低融点金属層13bによる高融点金属層13cの浸食作用を利用して短時間で溶断することができる。また、可溶導体13の溶融導体13aは、上述した吸引孔20による吸引作用に加えて、表面電極22及び第1、第2の電極11,12の物理的な引き込み作用により分断されることから、速やかに、かつ確実に、第1、第2の電極11,12間の電流経路を遮断することができる。 Further, the fusible conductor 13 is not melted by self-heating while a predetermined rated current flows. When a current having a value higher than the rating flows, the current is melted by self-heating, and the current path between the first and second electrodes 11 and 12 is interrupted. At this time, the fusible conductor 13 is melted at a temperature lower than the melting temperature because the melted low melting point metal layer 13b erodes the high melting point metal layer 13c. Therefore, the soluble conductor 13 can be melted in a short time by utilizing the erosion action of the high melting point metal layer 13c by the low melting point metal layer 13b. Further, the molten conductor 13a of the soluble conductor 13 is divided by the physical drawing action of the surface electrode 22 and the first and second electrodes 11 and 12 in addition to the suction action by the suction hole 20 described above. The current path between the first and second electrodes 11 and 12 can be interrupted quickly and reliably.
 また、可溶導体13は、内層となる低融点金属層13bに高融点金属層13cが積層されて構成されているため、溶断温度を従来の高融点金属からなるチップヒューズ等よりも大幅に低減することができる。したがって、可溶導体13は、同一サイズのチップヒューズ等に比して、断面積を大きくでき電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも小型化、薄型化を図ることができ、速溶断性に優れる。 Further, the fusible conductor 13 is formed by laminating a high melting point metal layer 13c on a low melting point metal layer 13b serving as an inner layer, so that the fusing temperature is significantly reduced compared to a chip fuse made of a conventional high melting point metal. can do. Therefore, the fusible conductor 13 can have a larger cross-sectional area and can greatly improve the current rating as compared to a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
 また、可溶導体13は、保護素子1が組み込まれた電気系統に異常に高い電圧が瞬間的に印加されるサージへの耐性(耐パルス性)を向上することができる。すなわち、可溶導体13は、例えば100Aの電流が数msec流れたような場合にまで溶断してはならない。この点、極短時間に流れる大電流は導体の表層を流れることから(表皮効果)、可溶導体13は、外層として抵抗値の低いAgメッキ等の高融点金属層13cが設けられているため、サージによって印加された電流を流しやすく、自己発熱による溶断を防止することができる。したがって、可溶導体13は、従来のハンダ合金からなるヒューズに比して、大幅にサージに対する耐性を向上させることができる。 Moreover, the fusible conductor 13 can improve the resistance (pulse resistance) to a surge in which an abnormally high voltage is instantaneously applied to the electrical system in which the protective element 1 is incorporated. That is, the fusible conductor 13 must not be blown until, for example, a current of 100 A flows for several milliseconds. In this respect, since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fusible conductor 13 is provided with a refractory metal layer 13c such as Ag plating having a low resistance value as the outer layer. The current applied by the surge can easily flow, and fusing due to self-heating can be prevented. Therefore, the fusible conductor 13 can greatly improve the resistance to surge as compared with a fuse made of a conventional solder alloy.
 なお、可溶導体13は、酸化防止、及び溶断時の濡れ性の向上等のため、フラックス14が塗布されている。また、保護素子1は、第1の絶縁基板10がカバー部材15に覆われることによりその内部が保護されている。カバー部材15は、上記第1の絶縁基板10と同様に、たとえば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成することができる。 The fusible conductor 13 is coated with a flux 14 in order to prevent oxidation and improve wettability at the time of fusing. Further, the inside of the protection element 1 is protected by the first insulating substrate 10 being covered with the cover member 15. The cover member 15 can be formed using an insulating member such as a thermoplastic plastic, ceramics, glass epoxy substrate, or the like, similar to the first insulating substrate 10.
 [回路構成]
 このような保護素子1は、図4に示すように、例えばリチウムイオン二次電池のバッテリパック30内の回路に組み込まれて用いられる。バッテリパック30は、例えば、合計4個のリチウムイオン二次電池のバッテリセル31~34からなるバッテリスタック35を有する。
[Circuit configuration]
As shown in FIG. 4, such a protection element 1 is used by being incorporated in a circuit in a battery pack 30 of a lithium ion secondary battery, for example. The battery pack 30 has a battery stack 35 including battery cells 31 to 34 of a total of four lithium ion secondary batteries, for example.
 バッテリパック30は、バッテリスタック35と、バッテリスタック35の充放電を制御する充放電制御回路40と、バッテリスタック35の異常時に充電を遮断する本発明が適用された保護素子1と、各バッテリセル31~34の電圧を検出する検出回路36とを備える。 The battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 1 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell And a detection circuit 36 for detecting voltages 31 to 34.
 バッテリスタック35は、過充電及び過放電状態から保護するための制御を要するバッテリセル31~34が直列接続されたものであり、バッテリパック30の正極端子30a、負極端子30bを介して、着脱可能に充電装置45に接続され、充電装置45からの充電電圧が印加される。充電装置45により充電されたバッテリパック30の正極端子30a、負極端子30bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 35 is a series of battery cells 31 to 34 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 30a and the negative terminal 30b of the battery pack 30. Are connected to the charging device 45, and a charging voltage from the charging device 45 is applied thereto. The electronic device can be operated by connecting the positive electrode terminal 30a and the negative electrode terminal 30b of the battery pack 30 charged by the charging device 45 to an electronic device operating with a battery.
 充放電制御回路40は、バッテリスタック35から充電装置45に流れる電流経路に直列接続された2つの電流制御素子41、42と、これらの電流制御素子41、42の動作を制御する制御部43とを備える。電流制御素子41、42は、たとえば電界効果トランジスタ(以下、FETという。)により構成され、制御部43によりゲート電圧を制御することによって、バッテリスタック35の電流経路の導通と遮断とを制御する。制御部43は、充電装置45から電力供給を受けて動作し、検出回路36による検出結果に応じて、バッテリスタック35が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子41、42の動作を制御する。 The charge / discharge control circuit 40 includes two current control elements 41 and 42 connected in series to a current path flowing from the battery stack 35 to the charging device 45, and a control unit 43 that controls the operation of these current control elements 41 and 42. Is provided. The current control elements 41 and 42 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 43 to control conduction and interruption of the current path of the battery stack 35. The control unit 43 operates by receiving power supply from the charging device 45, and controls the current so as to cut off the current path when the battery stack 35 is overdischarged or overcharged according to the detection result by the detection circuit 36. The operation of the elements 41 and 42 is controlled.
 保護素子1は、例えば、バッテリスタック35と充放電制御回路40との間の充放電電流経路上に接続される。 The protection element 1 is connected on a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, for example.
 検出回路36は、各バッテリセル31~34と接続され、各バッテリセル31~34の電圧値を検出して、各電圧値を充放電制御回路40の制御部43に供給する。 The detection circuit 36 is connected to the battery cells 31 to 34, detects the voltage values of the battery cells 31 to 34, and supplies the voltage values to the control unit 43 of the charge / discharge control circuit 40.
 以上のような構成からなるバッテリパック30に用いられる、本発明が適用された保護素子1は、図5に示すような回路構成を有する。すなわち、保護素子1は、第1の外部接続電極11aがバッテリスタック35側と接続され、第2の外部接続電極12aが正極端子30a側と接続され、これにより可溶導体13がバッテリスタック35の充放電経路上に直列に接続される。 The protection element 1 to which the present invention is applied, used for the battery pack 30 having the above-described configuration, has a circuit configuration as shown in FIG. That is, in the protection element 1, the first external connection electrode 11a is connected to the battery stack 35 side, and the second external connection electrode 12a is connected to the positive electrode terminal 30a side. It is connected in series on the charge / discharge path.
 [保護素子の動作]
 バッテリパック30に定格を超える過電流が通電されると、保護素子1は、可溶導体13が自己発熱により溶融し、バッテリパック30の充放電経路を遮断する。このとき、図2、図3に示すように、保護素子1は、溶融導体13aが毛管現象により表面電極22を介して吸引孔20に吸引されるため、大電流用途に対応するために可溶導体13の断面積を増大させた場合にも、遮断時における溶融導体13aの体積を減少させ、アーク放電による溶融導体13aの飛散を軽減することができる。また、保護素子1は、可溶導体13を高融点金属と低融点金属とを含有させて形成することにより、高融点金属の溶断前に低融点金属が溶融し、効率よく可溶導体13を吸引孔20に吸引することができる。
[Operation of protection element]
When an overcurrent exceeding the rating is applied to the battery pack 30, the protection element 1 melts the fusible conductor 13 due to self-heating and blocks the charge / discharge path of the battery pack 30. At this time, as shown in FIGS. 2 and 3, the protection element 1 is soluble in order to cope with a large current application because the molten conductor 13 a is sucked into the suction hole 20 through the surface electrode 22 by capillary action. Even when the cross-sectional area of the conductor 13 is increased, the volume of the molten conductor 13a at the time of interruption can be reduced, and scattering of the molten conductor 13a due to arc discharge can be reduced. In addition, the protective element 1 is formed by including the high-melting point metal and the low-melting point metal so that the low-melting point metal is melted before the high-melting point metal is melted. The suction hole 20 can be sucked.
 なお、本発明に係る保護素子1は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、過電流による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。 The protection element 1 according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path due to overcurrent.
 [発熱体]
 また、本発明が適用された保護素子は、図6に示すように、第1の絶縁基板10に可溶導体13を溶断する発熱体25を設けてもよい。なお、以下の説明において上述した保護素子1と同じ部材については同じ符号を付して、その詳細を省略する。
[Heating element]
Further, as shown in FIG. 6, the protection element to which the present invention is applied may be provided with a heating element 25 for fusing the soluble conductor 13 on the first insulating substrate 10. In addition, in the following description, the same code | symbol is attached | subjected about the same member as the protection element 1 mentioned above, and the detail is abbreviate | omitted.
 発熱体25が設けられた保護素子24は、例えばバッテリパックに組み込まれると、過電流時における可溶導体13の自己溶断に加え、バッテリセルの過電圧を検知して発熱体25を通電、発熱させ、可溶導体13を溶断させることにより、バッテリパックの充放電経路を遮断することができる。 When the protective element 24 provided with the heating element 25 is incorporated in a battery pack, for example, in addition to self-melting of the fusible conductor 13 at the time of overcurrent, the overheating of the battery cell is detected to energize and heat the heating element 25. By melting the fusible conductor 13, the charge / discharge path of the battery pack can be shut off.
 発熱体25は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合してペースト状にしたものを、第1の絶縁基板10の表面10aにスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating element 25 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders mixed with a resin binder or the like to form a paste are patterned on the surface 10a of the first insulating substrate 10 using a screen printing technique and fired. It is formed by etc.
 発熱体25は、第1の絶縁基板10の表面10a上において絶縁層26に被覆されている。絶縁層26上には、表面電極22が積層される。絶縁層26は、発熱体25の保護及び絶縁を図るとともに、発熱体25の熱を効率よく表面電極22及び可溶導体13へ伝えるために設けられ、例えばガラス層からなる。表面電極22は、発熱体25によって加熱されることにより、可溶導体13の溶融導体13aを凝集しやすくするとともに、吸引孔20内へ吸引させやすくすることができる。 The heating element 25 is covered with an insulating layer 26 on the surface 10 a of the first insulating substrate 10. On the insulating layer 26, the surface electrode 22 is laminated. The insulating layer 26 is provided to protect and insulate the heating element 25 and to efficiently transmit the heat of the heating element 25 to the surface electrode 22 and the fusible conductor 13, and is made of, for example, a glass layer. By heating the surface electrode 22 by the heating element 25, the molten conductor 13 a of the soluble conductor 13 can be easily aggregated and can be easily sucked into the suction hole 20.
 発熱体25は、一端が表面電極22と接続され、表面電極22を介して、表面電極22上に搭載された可溶導体13と電気的に接続される。また、発熱体25は、他端が図示しない発熱体電極と接続されている。発熱体電極は、第1の絶縁基板10の表面10aに形成されるとともに、裏面10bに形成された第3の外部接続電極27(図9参照)と接続され、この第3の外部接続電極27を介して外部回路と接続される。そして、保護素子1は、外部回路を構成する回路基板に実装されることにより、第3の外部接続電極27を介して発熱体25が回路基板に形成された発熱体25への給電経路に組み込まれる。 The heating element 25 is connected to the surface electrode 22 at one end and is electrically connected to the soluble conductor 13 mounted on the surface electrode 22 via the surface electrode 22. Further, the other end of the heating element 25 is connected to a heating element electrode (not shown). The heating element electrode is formed on the front surface 10a of the first insulating substrate 10 and is connected to a third external connection electrode 27 (see FIG. 9) formed on the back surface 10b. And connected to an external circuit. The protection element 1 is mounted on a circuit board constituting an external circuit, so that the heating element 25 is incorporated into a power supply path to the heating element 25 formed on the circuit board via the third external connection electrode 27. It is.
 また、図7に示すように、保護素子24は、発熱体25を第1の絶縁基板10の裏面10bに形成してもよい。発熱体25は、第1の絶縁基板10の裏面10bに形成されるとともに、裏面10b上において絶縁層26に被覆される。絶縁層26上には、裏面電極23が積層される。 Further, as shown in FIG. 7, the protection element 24 may form the heating element 25 on the back surface 10 b of the first insulating substrate 10. The heating element 25 is formed on the back surface 10b of the first insulating substrate 10 and is covered with the insulating layer 26 on the back surface 10b. A back electrode 23 is laminated on the insulating layer 26.
 発熱体25は、一端が裏面電極23と接続され、吸引孔20に形成された導電層21及び表面電極22を介して、表面電極22上に搭載された可溶導体13と電気的に接続される。また、発熱体25は、他端が図示しない発熱体電極を介して第3の外部接続電極27と接続される。 One end of the heating element 25 is connected to the back electrode 23 and is electrically connected to the soluble conductor 13 mounted on the surface electrode 22 through the conductive layer 21 and the surface electrode 22 formed in the suction hole 20. The The other end of the heating element 25 is connected to the third external connection electrode 27 via a heating element electrode (not shown).
 発熱体25を第1の絶縁基板10の裏面10bに形成することにより、保護素子24は、裏面電極23が発熱体25によって加熱されることにより、より多くの溶融導体13aを凝集しやすくなる。したがって、保護素子24は、表面電極22から導電層21を介して裏面電極23へ溶融導体13aを吸引する作用を促進させ、確実に可溶導体13を溶断することができる。 By forming the heating element 25 on the back surface 10b of the first insulating substrate 10, the protective element 24 is likely to aggregate more molten conductors 13a when the back electrode 23 is heated by the heating element 25. Therefore, the protective element 24 can promote the action of attracting the molten conductor 13a from the front electrode 22 to the back electrode 23 via the conductive layer 21, and can reliably melt the soluble conductor 13.
 また、図8に示すように、保護素子24は、発熱体25を第1の絶縁基板10の内部に形成してもよい。この場合、発熱体25は、ガラス等の絶縁層によって被覆する必要はない。また、発熱体25は、一端が表面電極22又は裏面電極23と接続され、表面電極22上に搭載された可溶導体13と電気的に接続される。また、発熱体25は、他端が図示しない発熱体電極を介して第3の外部接続電極27と接続される。 Further, as shown in FIG. 8, the protective element 24 may form the heating element 25 inside the first insulating substrate 10. In this case, the heating element 25 does not need to be covered with an insulating layer such as glass. Further, one end of the heating element 25 is connected to the front surface electrode 22 or the back surface electrode 23, and is electrically connected to the soluble conductor 13 mounted on the front surface electrode 22. The other end of the heating element 25 is connected to the third external connection electrode 27 via a heating element electrode (not shown).
 発熱体25を第1の絶縁基板10の内部に形成することにより、保護素子24は、導電層21を介して表面電極22及び裏面電極23が発熱体25によって加熱されることにより、より多くの溶融導体13aを凝集しやすくなる。したがって、保護素子24は、表面電極22から導電層21を介して裏面電極23へ溶融導体13aを吸引する作用を促進させ、確実に可溶導体13を溶断することができる。 By forming the heating element 25 inside the first insulating substrate 10, the protective element 24 has more surface elements 22 and 23 that are heated by the heating element 25 through the conductive layer 21, thereby increasing the number of the heating elements 25. It becomes easy to agglomerate the molten conductor 13a. Therefore, the protective element 24 can promote the action of attracting the molten conductor 13a from the front electrode 22 to the back electrode 23 via the conductive layer 21, and can reliably melt the soluble conductor 13.
 なお、発熱体25は、第1の絶縁基板10の表面10b、裏面10b又は内部に形成するいずれの場合においても、吸引孔20の両側に形成することが、表面電極22及び裏面電極23を加熱し、またより多くの溶融導体13aを凝集、吸引するうえで好ましい。 Note that the heating element 25 can be formed on both sides of the suction hole 20 to heat the front electrode 22 and the back electrode 23 in any case formed on the front surface 10b, the back surface 10b, or the inside of the first insulating substrate 10. In addition, it is preferable for agglomerating and sucking more molten conductor 13a.
 [回路構成]
 このような保護素子24は、図9に示すように、例えばリチウムイオン二次電池のバッテリパック30内の回路に組み込まれて用いられる。なお、以下の説明においては、上述したバッテリパック30と同じ部材については、同じ符号を付してその詳細を省略する。
[Circuit configuration]
As shown in FIG. 9, such a protection element 24 is used by being incorporated in a circuit in a battery pack 30 of a lithium ion secondary battery, for example. In the following description, the same members as those of the above-described battery pack 30 are denoted by the same reference numerals and the details thereof are omitted.
 バッテリパック30は、バッテリスタック35と、バッテリスタック35の充放電を制御する充放電制御回路40と、バッテリスタック35の異常時に充電を遮断する本発明が適用された保護素子24と、各バッテリセル31~34の電圧を検出する検出回路36と、検出回路36の検出結果に応じて保護素子24の動作を制御するスイッチ素子となる電流制御素子37とを備える。 The battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 24 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell. A detection circuit 36 for detecting voltages 31 to 34 and a current control element 37 serving as a switch element for controlling the operation of the protection element 24 according to the detection result of the detection circuit 36 are provided.
 保護素子24は、例えば、バッテリスタック35と充放電制御回路40との間の充放電電流経路上に接続され、その動作が電流制御素子37によって制御される。 The protection element 24 is connected to, for example, a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, and its operation is controlled by the current control element 37.
 検出回路36は、各バッテリセル31~34と接続され、各バッテリセル31~34の電圧値を検出して、各電圧値を充放電制御回路40の制御部43に供給する。また、検出回路36は、いずれか1つのバッテリセル31~34が過充電電圧又は過放電電圧になったときに電流制御素子37を制御する制御信号を出力する。 The detection circuit 36 is connected to the battery cells 31 to 34, detects the voltage values of the battery cells 31 to 34, and supplies the voltage values to the control unit 43 of the charge / discharge control circuit 40. The detection circuit 36 outputs a control signal for controlling the current control element 37 when any one of the battery cells 31 to 34 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子37は、たとえばFETにより構成され、検出回路36から出力される検出信号によって、バッテリセル31~34の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子24を動作させて、バッテリスタック35の充放電電流経路を電流制御素子41、42のスイッチ動作によらず遮断するように制御する。 The current control element 37 is constituted by, for example, an FET, and when the voltage value of the battery cells 31 to 34 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 36, the current control element 37 is a protection element. 24 is operated to control the charge / discharge current path of the battery stack 35 to be cut off regardless of the switch operation of the current control elements 41 and 42.
 以上のような構成からなるバッテリパック30に用いられる、本発明が適用された保護素子24は、図10に示すような回路構成を有する。すなわち、保護素子24は、第1の外部接続電極11aがバッテリスタック35側と接続され、第2の外部接続電極12aが正極端子30a側と接続され、これにより可溶導体13がバッテリスタック35の充放電経路上に直列に接続される。また、保護素子24は、発熱体25が発熱体電極及び第3の外部接続電極27を介して電流制御素子37と接続されるとともに、発熱体25がバッテリスタック35の開放端と接続される。これにより、発熱体25は、一端を表面電極22を介して可溶導体13及びバッテリスタック35の一方の開放端と接続され、他端を第3の外部接続電極27を介して電流制御素子37及びバッテリスタック35の他方の開放端と接続され、電流制御素子37によって通電が制御される発熱体25への給電経路が形成される。 The protection element 24 to which the present invention is applied, which is used in the battery pack 30 having the above-described configuration, has a circuit configuration as shown in FIG. That is, the protective element 24 has the first external connection electrode 11a connected to the battery stack 35 side, and the second external connection electrode 12a connected to the positive electrode terminal 30a side. It is connected in series on the charge / discharge path. Further, the protection element 24 has the heating element 25 connected to the current control element 37 via the heating element electrode and the third external connection electrode 27, and the heating element 25 is connected to the open end of the battery stack 35. Thereby, one end of the heating element 25 is connected to one open end of the fusible conductor 13 and the battery stack 35 via the surface electrode 22, and the other end is connected to the current control element 37 via the third external connection electrode 27. In addition, a power supply path to the heating element 25 that is connected to the other open end of the battery stack 35 and whose energization is controlled by the current control element 37 is formed.
 [保護素子の動作]
 バッテリパック30に定格を超える過電流が通電されると、保護素子24は、可溶導体13が自己発熱により溶融し、バッテリパック30の充放電経路を遮断する。このとき、保護素子24は、溶融導体13aが毛管現象により表面電極22を介して吸引孔20に吸引されるため、大電流用途に対応するために可溶導体13の断面積を増大させた場合にも、遮断時における溶融導体13aの体積を減少させ、アーク放電による溶融導体13aの飛散を軽減することができる。また、保護素子24は、可溶導体13を高融点金属と低融点金属とを含有させて形成することにより、高融点金属の溶断前に低融点金属が溶融し、効率よく可溶導体13を吸引孔20に吸引することができる。
[Operation of protection element]
When an overcurrent exceeding the rating is applied to the battery pack 30, the protection element 24 melts the fusible conductor 13 due to self-heating and blocks the charge / discharge path of the battery pack 30. At this time, when the molten conductor 13a is sucked into the suction hole 20 through the surface electrode 22 by capillary action, the protective element 24 increases the cross-sectional area of the soluble conductor 13 in order to cope with a large current application. In addition, the volume of the molten conductor 13a at the time of interruption can be reduced, and scattering of the molten conductor 13a due to arc discharge can be reduced. In addition, the protective element 24 is formed by including the high-melting point metal and the low-melting point metal so that the low-melting point metal is melted before the high-melting point metal is melted. The suction hole 20 can be sucked.
 また、検出回路36がバッテリセル31~34のいずれかの異常電圧を検出すると、電流制御素子37へ遮断信号を出力する。すると、電流制御素子37は、発熱体25に通電するよう電流を制御する。保護素子24は、バッテリスタック35から、第1の電極11、可溶導体13及び表面電極22を介して発熱体25に電流が流れ、これにより発熱体25が発熱を開始する。保護素子24は、発熱体25の発熱により可溶導体13が溶断し、バッテリスタック35の充放電経路を遮断する。 Further, when the detection circuit 36 detects any abnormal voltage of the battery cells 31 to 34, it outputs a cutoff signal to the current control element 37. Then, the current control element 37 controls the current so that the heating element 25 is energized. In the protection element 24, a current flows from the battery stack 35 to the heating element 25 via the first electrode 11, the soluble conductor 13, and the surface electrode 22, whereby the heating element 25 starts to generate heat. In the protection element 24, the fusible conductor 13 is melted by the heat generated by the heating element 25, and the charge / discharge path of the battery stack 35 is blocked.
 このとき、保護素子24は、溶融導体13aが毛管現象により表面電極22を介して吸引孔20に吸引されるため、大電流用途に対応するために可溶導体13の断面積を増大させた場合にも、確実にバッテリパック30の充放電経路を遮断することができる。また、保護素子24は、可溶導体13を高融点金属と低融点金属とを含有させて形成することにより、溶融した低融点金属による高融点金属の溶食作用を利用して短時間で溶断することができる。 At this time, when the molten conductor 13a is sucked into the suction hole 20 through the surface electrode 22 by capillary action, the protective element 24 increases the cross-sectional area of the soluble conductor 13 in order to cope with a large current application. In addition, the charging / discharging path of the battery pack 30 can be reliably interrupted. In addition, the protective element 24 is formed by melting the meltable conductor 13 containing a high-melting point metal and a low-melting point metal so that the high-melting point metal is melted by a molten low-melting point metal in a short time. can do.
 なお、保護素子24は、可溶導体13が溶断することにより、発熱体25への給電経路も遮断されるため、発熱体25の発熱が停止される。 In addition, since the power supply path | route to the heat generating body 25 is also interrupted | blocked by the fusible conductor 13, the protection element 24 stops the heat_generation | fever of the heat generating body 25. FIG.
 本発明に係る保護素子24は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。 The protection element 24 according to the present invention is not limited to use in a battery pack of a lithium ion secondary battery, but can of course be applied to various uses that require interruption of a current path by an electric signal.
 [第2の実施の形態]
 [保護素子の構成]
 次いで、第2の実施の形態について説明する。図11(A)及び図11(B)に示すように、保護素子50は、第1及び第2の外部電極51,52と、第1及び第2の外部電極51,52間にわたって積層された可溶導体53と、可溶導体53に接続され、可溶導体53の溶融導体53aを吸引する吸引部材54とを備える。吸引部材54は、第1、第2の外部電極51,52間に配設された絶縁基板55と、絶縁基板55の表面55aに形成され、可溶導体53の一部と接続された表面電極56と、絶縁基板55に設けられた発熱体57と、絶縁基板55の厚さ方向に設けられ、表面電極56と連続する貫通孔58とを備える。保護素子50は、発熱体57が発熱することにより可溶導体53を溶融させる。このとき、保護素子50は、吸引部材54によって可溶導体53が溶融した溶融導体53aを吸引し、確実に可溶導体53を溶断させ、第1の外部電極51と第2の外部電極52との間の電流経路を遮断する。
[Second Embodiment]
[Configuration of protection element]
Next, a second embodiment will be described. As shown in FIG. 11A and FIG. 11B, the protection element 50 is laminated between the first and second external electrodes 51 and 52 and the first and second external electrodes 51 and 52. A fusible conductor 53 and a suction member 54 connected to the fusible conductor 53 and sucking the molten conductor 53a of the fusible conductor 53 are provided. The suction member 54 includes an insulating substrate 55 disposed between the first and second external electrodes 51 and 52, and a surface electrode formed on the surface 55 a of the insulating substrate 55 and connected to a part of the soluble conductor 53. 56, a heating element 57 provided on the insulating substrate 55, and a through hole 58 provided in the thickness direction of the insulating substrate 55 and continuous with the surface electrode 56. The protection element 50 melts the soluble conductor 53 when the heating element 57 generates heat. At this time, the protection element 50 sucks the melted conductor 53a in which the soluble conductor 53 is melted by the suction member 54, reliably blows the soluble conductor 53, and the first external electrode 51 and the second external electrode 52 The current path between is interrupted.
 第1及び第2の外部電極51,52は、保護素子50を外部回路に接続する接続端子であり、保護素子50の内部で可溶導体53を介して接続されている。第1及び第2の外部電極51,52は、保護素子50の外筐体に支持されることにより保護素子50の内外にわたって配設されている。なお、第1及び第2の外部電極51,52は、吸引部材54の絶縁基板55上に形成してもよく、或いは絶縁基板55と隣接あるいは一体となったエポキシ樹脂等からなる絶縁素材に形成するようにしてもよい。 The first and second external electrodes 51 and 52 are connection terminals for connecting the protection element 50 to an external circuit, and are connected to each other through a soluble conductor 53 inside the protection element 50. The first and second external electrodes 51 and 52 are disposed on the inside and outside of the protection element 50 by being supported by the outer casing of the protection element 50. The first and second external electrodes 51 and 52 may be formed on the insulating substrate 55 of the suction member 54, or formed of an insulating material made of an epoxy resin or the like adjacent to or integrated with the insulating substrate 55. You may make it do.
 可溶導体53は、過電流状態によって、及び発熱体57の発熱によって溶融するものであり、したがって、溶断する導電性の材料であればよく、例えば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。なお、可溶導体53は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなる高融点金属と、Snを主成分とするPbフリーハンダ等の低融点金属との積層体であってもよく、また、低融点金属層と高融点金属層とが交互に積層された4層以上の多層構造とするなど、後に説明するように、様々な構成によって形成することができる。 The fusible conductor 53 is melted by an overcurrent state and by the heat generated by the heating element 57. Therefore, any conductive material that melts may be used. For example, SnAgCu-based Pb-free solder, BiPbSn alloy BiPb alloy, BiSn alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used. Note that the soluble conductor 53 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. In addition, it can be formed in various configurations, as will be described later, such as a multi-layer structure of four or more layers in which low melting point metal layers and high melting point metal layers are alternately laminated.
 絶縁基板55は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 55 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.
 発熱体57は、比較的抵抗値が高く、通電すると発熱する導電性を有する部材であって、例えばW、Mo、Ru等からなる。これらの合金或いは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板55の裏面55b上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。発熱体57は、両端が、第1、第2の発熱体電極59,60と接続されている。第1、第2の発熱体電極59,60は、発熱体57と同じ絶縁基板55の裏面55bに設けられている。第1の発熱体電極59は、後述する発熱体引出電極63を介して可溶導体53と接続され、第2の発熱体電極60は、第3の外部接続電極61(図12、図13参照)と接続され、これにより発熱体57を発熱させるための電源に接続する。 The heating element 57 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. By mixing powders of these alloys, compositions, or compounds with a resin binder or the like and forming a paste on the back surface 55b of the insulating substrate 55 using a screen printing technique, firing, etc. Form. Both ends of the heating element 57 are connected to the first and second heating element electrodes 59 and 60. The first and second heating element electrodes 59, 60 are provided on the back surface 55 b of the same insulating substrate 55 as the heating element 57. The first heating element electrode 59 is connected to the soluble conductor 53 via a heating element extraction electrode 63 described later, and the second heating element electrode 60 is connected to the third external connection electrode 61 (see FIGS. 12 and 13). Thus, the heating element 57 is connected to a power source for generating heat.
 発熱体57は、ガラス等の絶縁部材62によって覆われ、この絶縁部材62を介して発熱体57に対向するように発熱体引出電極63が配置される。この絶縁部材62は、発熱体57が内部に一体的に積層された積層基板であってもよい。また、発熱体57は、後述する裏面電極64の両側に設ける他に、裏面電極64の一方の側のみ、又は、裏面電極64を囲むように設けてもよい。 The heating element 57 is covered with an insulating member 62 such as glass, and the heating element extraction electrode 63 is disposed so as to face the heating element 57 through the insulating member 62. The insulating member 62 may be a laminated substrate in which the heating elements 57 are integrally laminated. Further, the heating element 57 may be provided only on one side of the back electrode 64 or so as to surround the back electrode 64 in addition to being provided on both sides of the back electrode 64 described later.
 絶縁基板55の表面55aには表面電極56が形成されている。表面電極56は、半田等の接続材料を介して、第1、第2の外部電極51,52間を接続する可溶導体53と接続されている。また、表面電極56は、絶縁基板55の厚さ方向に形成された貫通孔58と連続されている。表面電極56は、可溶導体53が発熱体57の発熱により溶融すると、溶融導体53aが凝集し、毛管現象により貫通孔58内に吸引させることができる。これにより、保護素子50は、大電流用途に対応するために可溶導体53の断面積を増大させた場合にも、溶融導体53aが絶縁基板55の表面55a上に過剰に凝集することが無く、確実に第1、第2の外部電極51,52間の電流経路を遮断することができる。 A surface electrode 56 is formed on the surface 55 a of the insulating substrate 55. The surface electrode 56 is connected to a soluble conductor 53 that connects between the first and second external electrodes 51 and 52 via a connection material such as solder. The surface electrode 56 is continuous with a through hole 58 formed in the thickness direction of the insulating substrate 55. When the soluble conductor 53 is melted by the heat generated by the heating element 57, the surface electrode 56 can be agglomerated and melted into the through hole 58 by capillary action. Thereby, the protection element 50 does not excessively aggregate the molten conductor 53a on the surface 55a of the insulating substrate 55 even when the cross-sectional area of the soluble conductor 53 is increased in order to cope with a large current application. The current path between the first and second external electrodes 51 and 52 can be cut off reliably.
 図11(A)に示すように、貫通孔58は、表面電極56の幅方向に中央に設けられている。なお、貫通孔58は、複数設けてもよい。ここでは、複数の貫通孔58が直線状に一列に並んで設けられている。 As shown in FIG. 11A, the through hole 58 is provided in the center in the width direction of the surface electrode 56. A plurality of through holes 58 may be provided. Here, a plurality of through holes 58 are provided in a line in a straight line.
 貫通孔58の内周面には、表面電極56と連続する導電層65が設けられている。導電層65は、例えば、溶融導体53aがぬれ広がる金属材料で、ペースト処理、メッキ処理等で形成される。これにより、保護素子50は、表面電極56に凝集した溶融導体53aを貫通孔58内に引き込みやすくなり、より多くの溶融導体53aを吸引させることができる。 A conductive layer 65 continuous with the surface electrode 56 is provided on the inner peripheral surface of the through hole 58. The conductive layer 65 is, for example, a metal material in which the molten conductor 53a spreads and is formed by a paste process, a plating process, or the like. Accordingly, the protection element 50 can easily draw the molten conductor 53a aggregated on the surface electrode 56 into the through hole 58, and can attract more molten conductor 53a.
 また、保護素子50は、絶縁基板55の裏面55bに貫通孔58及び導電層65と連続する裏面電極64が設けられている。保護素子50は、裏面電極64を設けることにより、導電層65を伝って貫通孔58内に吸引された溶融導体53aが裏面電極64に凝集することから、さらにより多くの溶融導体53aを吸引させることができる。 Further, the protective element 50 is provided with a back electrode 64 that is continuous with the through hole 58 and the conductive layer 65 on the back surface 55 b of the insulating substrate 55. By providing the back surface electrode 64, the protective element 50 causes the molten conductor 53a sucked into the through-hole 58 through the conductive layer 65 to be aggregated into the back surface electrode 64, so that more molten conductor 53a is attracted. be able to.
 また、上述したように、裏面電極64の近傍、例えば両側、一方側又は周囲には、上述した発熱体57が設けられている。これにより、保護素子50は、発熱体57の熱が効率よく裏面電極64、導電層65、及び表面電極56へ伝達され、速やかに可溶導体53を加熱、溶断させることができる。 Further, as described above, the heating element 57 described above is provided in the vicinity of the back electrode 64, for example, on both sides, one side, or the periphery. Thereby, the heat of the heat generating body 57 is efficiently transmitted to the back surface electrode 64, the conductive layer 65, and the surface electrode 56, and the protection element 50 can heat and melt the soluble conductor 53 quickly.
 また、保護素子50は、貫通孔58内の一部又は全部に可溶導体53と同一若しくは類似の材料又は可溶導体53より融点の低い予備ハンダ66が充填されている。予備ハンダ66は、発熱体57が発熱したとき、絶縁基板55の裏面55b側の温度が表面55a側の温度より高くなり、更に、導電層65や表面電極56や裏面電極64や発熱体引出電極63が絶縁基板55より先に温度が高くなることによって、可溶導体53より先に溶融し、次いで溶融導体53aを貫通孔58に呼び込むことができる。これにより、溶融導体53aは、絶縁基板55の表面55aから裏面55bに移動し、姿勢に拘わらず、第1の外部電極51と第2の外部電極52との間の電流経路を確実に遮断することができる。 In addition, the protective element 50 is partially or entirely filled with the same or similar material as the soluble conductor 53 or the preliminary solder 66 having a melting point lower than that of the soluble conductor 53. When the heating element 57 generates heat, the spare solder 66 has a temperature on the back surface 55b side of the insulating substrate 55 higher than that on the front surface 55a side, and further, the conductive layer 65, the surface electrode 56, the back electrode 64, and the heating element lead electrode. When the temperature of 63 is increased before the insulating substrate 55, it is melted before the soluble conductor 53, and then the molten conductor 53 a can be called into the through hole 58. As a result, the molten conductor 53a moves from the front surface 55a to the back surface 55b of the insulating substrate 55, and reliably blocks the current path between the first external electrode 51 and the second external electrode 52 regardless of the posture. be able to.
 絶縁基板55の裏面55bに設けられる発熱体引出電極63は、裏面55bの裏面電極64と重畳して電気的に接続される。また、発熱体引出電極63は、裏面電極64,貫通孔58及び予備ハンダ66、表面電極56を介して可溶導体53と接続され、一端に形成されたタブ63aが第1の発熱体電極59に接続されている。 The heating element extraction electrode 63 provided on the back surface 55b of the insulating substrate 55 is overlapped with and electrically connected to the back surface electrode 64 of the back surface 55b. The heating element extraction electrode 63 is connected to the fusible conductor 53 through the back electrode 64, the through hole 58, the preliminary solder 66, and the front electrode 56, and a tab 63a formed at one end includes the first heating element electrode 59. It is connected to the.
 なお、絶縁基板55の表面55aの表面電極56の外側には、離間して島状電極67a,67bが設けられている。島状電極67a,67bは、可溶導体53が溶断したとき、ぬれ性によって、溶融導体53aの一部を、表面電極56や第1、第2の外部電極51,52と離間して保持する。 Note that island electrodes 67 a and 67 b are provided outside the surface electrode 56 on the surface 55 a of the insulating substrate 55 so as to be separated from each other. When the fusible conductor 53 is melted, the island electrodes 67a and 67b hold a part of the molten conductor 53a apart from the surface electrode 56 and the first and second external electrodes 51 and 52 by wettability. .
 以上のような保護素子50では、発熱体57を絶縁基板55の裏面55b側に設けることで、発熱体57が発熱したとき、裏面55b側が表面55a側より温度が高くなる。加えて、導電層65、表面電極56及び裏面電極64や発熱体引出電極63は、一般に銅パターン等の導電材料で熱伝導性にも優れている。また、裏面55bの裏面電極64は、発熱体57の間に設けられ、発熱体57の熱が効率よく伝わる構成となっている。したがって、保護素子50は、より多くの溶融導体53aを絶縁基板55の裏面55b側に吸引させることができ、大電流に対応するために可溶導体53の断面積を増大させ、溶断時の溶融導体53aの溶融量が多くなった場合にも、可溶導体53を安定して溶断することができる。 In the protection element 50 as described above, by providing the heating element 57 on the back surface 55b side of the insulating substrate 55, when the heating element 57 generates heat, the temperature of the back surface 55b side becomes higher than that of the front surface 55a side. In addition, the conductive layer 65, the front surface electrode 56, the back surface electrode 64, and the heating element extraction electrode 63 are generally conductive materials such as a copper pattern and have excellent thermal conductivity. Further, the back surface electrode 64 of the back surface 55b is provided between the heat generating elements 57, and the heat of the heat generating elements 57 is efficiently transmitted. Therefore, the protection element 50 can attract more molten conductor 53a to the back surface 55b side of the insulating substrate 55, increase the cross-sectional area of the soluble conductor 53 to cope with a large current, and melt at the time of fusing Even when the amount of melting of the conductor 53a increases, the soluble conductor 53 can be stably blown.
 また、保護素子50は、貫通孔58内に予備ハンダ66を充填することにより、導電層65や表面電極56や裏面電極64や発熱体引出電極63が絶縁基板55より先に温度が高くなることによって、予備ハンダ66が可溶導体53より先に溶融し、溶融導体53aを貫通孔58に呼び込むことができる。これにより、溶融導体53aを、効率よく絶縁基板55の表面55aから裏面55bに吸引し、姿勢に拘わらず、第1の外部電極51と第2の外部電極52との間の電流経路を確実に遮断することができる。なお、吸引部材54は、予備ハンダ66と共に、又は予備ハンダ66に代えて、フラックスを貫通孔58内の一部又は全部に充填させてもよい。フラックスを充填させることによっても、可溶導体53の濡れ性を高め、効率よく溶融導体53aを貫通孔58に呼び込むことができる。 Further, in the protection element 50, the preliminary solder 66 is filled in the through hole 58 so that the temperature of the conductive layer 65, the front surface electrode 56, the back surface electrode 64, and the heating element extraction electrode 63 becomes higher than the insulating substrate 55. Thus, the preliminary solder 66 is melted before the fusible conductor 53, and the molten conductor 53 a can be called into the through hole 58. As a result, the molten conductor 53a is efficiently sucked from the front surface 55a to the back surface 55b of the insulating substrate 55, and the current path between the first external electrode 51 and the second external electrode 52 is ensured regardless of the posture. Can be blocked. The suction member 54 may be filled with a part or all of the flux in the through hole 58 together with the spare solder 66 or instead of the spare solder 66. Also by filling the flux, the wettability of the soluble conductor 53 can be improved, and the molten conductor 53a can be efficiently drawn into the through hole 58.
 [保護素子の使用方法]
 保護素子50は、図12に示すように、上述したリチウムイオン二次電池のバッテリパック30内の回路に用いられる。保護素子50は、保護素子10と同様に、バッテリスタック31と充放電制御回路32との間の充放電電流経路上に接続され、その動作が電流制御素子34によって制御される。
[How to use protection elements]
As shown in FIG. 12, the protection element 50 is used in a circuit in the battery pack 30 of the above-described lithium ion secondary battery. Similarly to the protection element 10, the protection element 50 is connected on a charge / discharge current path between the battery stack 31 and the charge / discharge control circuit 32, and its operation is controlled by the current control element 34.
 バッテリパック30において、保護素子50は、図13に示すような回路構成を有する。すなわち、保護素子50は、第1、第2の外部電極51,52間にわたって接続されるとともに絶縁基板55の表面55aに形成された表面電極56と接続された可溶導体53と、表面電極56を介して通電、発熱されることにより可溶導体53を溶融する発熱体57とからなる回路構成である。発熱体57は、一端が第1の発熱体電極59、発熱体引出電極63、裏面電極64及び導電層65を介して表面電極56に接続され、他方が第2の発熱体電極60を介して第3の外部接続電極61に接続される。保護素子50では、可溶導体53が第1、第2の外部電極51,52の間の充放電電流経路上に直列接続され、発熱体57が表面電極56を介して可溶導体53と接続されるとともに、第3の外部接続電極61を介して電流制御素子34と接続される。 In the battery pack 30, the protection element 50 has a circuit configuration as shown in FIG. That is, the protective element 50 is connected between the first and second external electrodes 51 and 52 and is connected to the surface electrode 56 formed on the surface 55 a of the insulating substrate 55, and the surface electrode 56. This is a circuit configuration comprising a heating element 57 that melts the soluble conductor 53 by being energized and heated via the. One end of the heating element 57 is connected to the surface electrode 56 via the first heating element electrode 59, the heating element extraction electrode 63, the back surface electrode 64 and the conductive layer 65, and the other end via the second heating element electrode 60. Connected to the third external connection electrode 61. In the protection element 50, the soluble conductor 53 is connected in series on the charge / discharge current path between the first and second external electrodes 51, 52, and the heating element 57 is connected to the soluble conductor 53 via the surface electrode 56. At the same time, it is connected to the current control element 34 via the third external connection electrode 61.
 このような回路構成からなるバッテリパック30は、バッテリセル31~34の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、電流制御素子37が保護素子50を動作させて、バッテリスタック35の充放電電流経路を電流制御素子41,42のスイッチ動作によらず遮断するように制御する。具体的に、保護素子50は、発熱体57が発熱し、図14(A)に示すように、可溶導体53及び貫通孔58内の予備ハンダ66を加熱する。この際、絶縁基板55は、発熱体57が配設された裏面55b側の方が表面55a側より温度が高い温度勾配となる。絶縁基板55の裏面55b側の裏面電極64や発熱体引出電極63や貫通孔58の導電層65や絶縁基板55の表面55aの表面電極56は、セラミック等の絶縁基板55より熱伝導性に優れる。 In the battery pack 30 having such a circuit configuration, when the voltage value of the battery cells 31 to 34 exceeds a predetermined overdischarge or overcharge state, the current control element 37 operates the protection element 50, Control is performed so that the charge / discharge current path of the battery stack 35 is cut off regardless of the switching operation of the current control elements 41 and 42. Specifically, in the protection element 50, the heating element 57 generates heat, and the soluble conductor 53 and the preliminary solder 66 in the through hole 58 are heated as shown in FIG. At this time, the insulating substrate 55 has a temperature gradient in which the temperature on the back surface 55b side where the heating element 57 is disposed is higher than that on the front surface 55a side. The back electrode 64 on the back surface 55b side of the insulating substrate 55, the heating element extraction electrode 63, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a of the insulating substrate 55 are superior in thermal conductivity to the insulating substrate 55 such as ceramic. .
 したがって、発熱体57の熱は、主に、発熱体57の間に設けられた裏面電極64、発熱体57上の発熱体引出電極63、貫通孔58の導電層65、表面55aの表面電極56の経路で、絶縁基板55の表面55aに伝達され、経路にある予備ハンダ66と可溶導体53を溶融する。勿論、可溶導体53は、効率は劣るが、絶縁基板55のセラミック等の絶縁層を介して伝わる熱によっても溶融される。これにより、図14(B)に示すように、予備ハンダ66は、可溶導体53より先に溶融開始し、次第に、表面電極56、導電層65、裏面電極64、発熱体引出電極63のぬれ性によって、絶縁基板55の裏面11bへ移動し、予備ハンダ66に遅れて溶融した可溶導体53も、ぬれ性によって貫通孔58を介して絶縁基板55の裏面55b側に引きずられるようにして移動する。また、溶融導体53aの一部は、絶縁基板55の表面55aの島状電極67a,67bにも保持される(図14(A)中矢印参照)。これにより、保護素子50は、第1及び第2の外部電極51,52間の電流経路上にある可溶導体53を確実に溶断することができる。 Therefore, the heat of the heating element 57 mainly includes the back surface electrode 64 provided between the heating elements 57, the heating element extraction electrode 63 on the heating element 57, the conductive layer 65 of the through hole 58, and the surface electrode 56 of the surface 55a. In this path, it is transmitted to the surface 55a of the insulating substrate 55, and the spare solder 66 and the soluble conductor 53 in the path are melted. Of course, the fusible conductor 53 is inefficient, but is also melted by heat transmitted through an insulating layer such as a ceramic of the insulating substrate 55. As a result, as shown in FIG. 14B, the spare solder 66 starts to melt before the soluble conductor 53 and gradually gets wet with the front electrode 56, the conductive layer 65, the back electrode 64, and the heating element extraction electrode 63. The fusible conductor 53 that has moved to the back surface 11b of the insulating substrate 55 and melted behind the spare solder 66 also moves so as to be dragged to the back surface 55b side of the insulating substrate 55 through the through hole 58 due to wettability. To do. Part of the molten conductor 53a is also held by the island-shaped electrodes 67a and 67b on the surface 55a of the insulating substrate 55 (see the arrow in FIG. 14A). Thereby, the protection element 50 can surely melt the soluble conductor 53 on the current path between the first and second external electrodes 51 and 52.
 本発明の保護素子50は、上述したように、大量の可溶導体53(ハンダ)を絶縁基板55の表面55aから裏面55bに導くことにより、可溶導体53を容易に溶断することができる。ここでは、保護素子50が配置された姿勢に拘わらず安定して可溶導体53を溶断できるかを確認するため、図15及び図16に示す実験を行った。ここで、図16は、図15(A)-(E)に示した本発明の保護素子50の各姿勢と溶断時間の関係を示す。なお、ここでは、保護素子50を15Wで動作させている。 As described above, the protective element 50 of the present invention can easily melt the soluble conductor 53 by guiding a large amount of the soluble conductor 53 (solder) from the front surface 55a of the insulating substrate 55 to the back surface 55b. Here, in order to confirm whether the soluble conductor 53 can be stably melted regardless of the posture in which the protective element 50 is disposed, experiments shown in FIGS. 15 and 16 were performed. Here, FIG. 16 shows the relationship between each posture of the protection element 50 of the present invention shown in FIGS. 15A to 15E and the fusing time. Here, the protection element 50 is operated at 15 W.
・図15(A)は、絶縁基板55の表面55a側を上向きにして、絶縁基板55の裏面55b側を下向きにして載置した保護素子50の溶断後の状態を示す平面図である。
・図15(B)は、保護素子50を図15(A)の姿勢から90°倒立させて貫通孔58を水平方向に向けるとともに、第2の外部電極52を上向きにして上下方向に可溶導体53を支持した保護素子50の溶断後の状態を示す側面図である。
・図15(C)は、更に図15(B)の姿勢から90°回転し、貫通孔58を上下方向に並列させるとともに、可溶導体53を水平方向に支持した保護素子50の溶断後の状態を示す側面図である。
・図15(D)は、図15(A)の姿勢を裏向きにした状態である。すなわち、絶縁基板55の表面55a側を下向きにして、絶縁基板55の裏面55b側を上向きにして載置した保護素子50の溶断後の状態を示す平面図である。
・図15(E)は、第1の外部電極51を上向きに倒立させた姿勢から絶縁基板55を面内方向に45°回転し、貫通孔58が斜めに並列するとともに、可溶導体53を斜めに支持した保護素子50の溶断後の状態を示す側面図である。
FIG. 15A is a plan view showing a state after fusing of the protective element 50 placed with the front surface 55a side of the insulating substrate 55 facing upward and the back surface 55b side of the insulating substrate 55 facing downward.
15B shows that the protective element 50 is inverted 90 ° from the position shown in FIG. 15A and the through hole 58 is directed horizontally, and the second external electrode 52 faces upward and is soluble in the vertical direction. FIG. 5 is a side view showing a state after the protective element 50 supporting the conductor 53 is melted.
15C is further rotated by 90 ° from the posture of FIG. 15B, the through-holes 58 are juxtaposed in the vertical direction, and the protection element 50 that supports the fusible conductor 53 in the horizontal direction is blown out. It is a side view which shows a state.
FIG. 15D shows a state in which the posture of FIG. That is, it is a plan view showing a state after fusing of the protection element 50 placed with the front surface 55a side of the insulating substrate 55 facing downward and the back surface 55b side of the insulating substrate 55 facing upward.
FIG. 15E shows that the insulating substrate 55 is rotated 45 ° in the in-plane direction from the posture in which the first external electrode 51 is turned upside down, and the through-holes 58 are diagonally arranged, and the fusible conductor 53 is It is a side view which shows the state after fusing of the protection element 50 supported diagonally.
 図16に示すように、本発明の保護素子50は、どの様な姿勢であっても、溶断時間にバラツキが無く、確実に、可溶導体53を溶断できることを確認することができる。 As shown in FIG. 16, it can be confirmed that the protection element 50 of the present invention has no variation in the fusing time and can surely melt the soluble conductor 53 in any posture.
 図17は、本発明の比較例となる保護素子100で、凝集方式のものを示す。この保護素子100は、図17(A)及び(B)に示すように、絶縁基板101と、絶縁基板101の表面101aの端に形成された第1及び第2の外部電極102,103と、絶縁基板101の表面101aに設けられた発熱体104と、第1及び第2の外部電極102,103にわたって積層され、発熱体104を横断し、発熱体104による加熱により、第1の外部電極102と第2の外部電極103との間の電流経路を溶断する可溶導体105とを備える。発熱体104は、両端が絶縁基板101の表面101aに設けられ、発熱体104に電流を流して発熱させるために電源を接続する第1、第2の発熱体電極106,107と接続されている。 FIG. 17 shows a protective element 100 which is a comparative example of the present invention, which is of the aggregation type. As shown in FIGS. 17A and 17B, the protection element 100 includes an insulating substrate 101, first and second external electrodes 102 and 103 formed on the end of the surface 101a of the insulating substrate 101, The heating element 104 provided on the surface 101 a of the insulating substrate 101 and the first and second external electrodes 102 and 103 are stacked, traverse the heating element 104, and heated by the heating element 104, thereby heating the first external electrode 102. And a soluble conductor 105 for fusing a current path between the first external electrode 103 and the second external electrode 103. The heating element 104 is provided at both ends on the surface 101a of the insulating substrate 101, and is connected to first and second heating element electrodes 106 and 107 for connecting a power source to cause the heating element 104 to generate current by flowing current. .
 第1、第2の発熱体電極106,107は、絶縁基板101の表面101aに形成されている。第1の発熱体電極106は、発熱体104と接続されるとともに発熱体引出電極108のタブ108aが接続されている。第2の発熱体電極107は、発熱体104と接続されるとともに、図示しない外部接続電極と接続されている。 The first and second heating element electrodes 106 and 107 are formed on the surface 101 a of the insulating substrate 101. The first heating element electrode 106 is connected to the heating element 104 and to the tab 108a of the heating element extraction electrode 108. The second heating element electrode 107 is connected to the heating element 104 and to an external connection electrode (not shown).
 発熱体引出電極108は、一端が可溶導体105と接続され、他端が発熱体引出電極108のタブ108aによって第1の発熱体電極106に接続されている。また、発熱体104の外側には、発熱体104と離間して島状電極109a,109bが設けられている。島状電極109a,109bは、可溶導体105が溶断したとき、ぬれ性によって、可溶導体105が溶融した溶融導体105aを保持し、第1の外部電極102と第2の外部電極103との間の電流経路を溶断する。すなわち、この保護素子100は、絶縁基板101に貫通孔が設けられておらず、溶融導体105aが絶縁基板101の裏面101bに移動することはない。 The heating element extraction electrode 108 has one end connected to the fusible conductor 105 and the other end connected to the first heating element electrode 106 by a tab 108a of the heating element extraction electrode 108. In addition, island electrodes 109 a and 109 b are provided outside the heating element 104 so as to be separated from the heating element 104. When the fusible conductor 105 is melted, the island- like electrodes 109a and 109b hold the molten conductor 105a in which the fusible conductor 105 is melted due to wettability, and the first electrode 102 and the second outer electrode 103 are Fuse the current path between. That is, in the protection element 100, the through hole is not provided in the insulating substrate 101, and the molten conductor 105a does not move to the back surface 101b of the insulating substrate 101.
 この保護素子100も、保護素子50と同様な用い方がされ、図12に示すように、検出回路36から出力される検出信号によって、バッテリセル31~34の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、電流制御素子37は、保護素子100を動作させて、バッテリスタック35の充放電電流経路を電流制御素子41,42のスイッチ動作によらず遮断する。これにより、発熱体104は発熱し、図17(C)に示すように、可溶導体105を溶断し、溶融導体105aの一部は、島状電極109a,109bに保持され、電流経路を遮断する。 The protection element 100 is also used in the same manner as the protection element 50. As shown in FIG. 12, the voltage values of the battery cells 31 to 34 are set to a predetermined overdischarge or overload by the detection signal output from the detection circuit 36. When the voltage exceeds the charged state, the current control element 37 operates the protection element 100 to cut off the charge / discharge current path of the battery stack 35 regardless of the switching operation of the current control elements 41 and 42. As a result, the heating element 104 generates heat and melts the fusible conductor 105 as shown in FIG. 17C, and a part of the molten conductor 105a is held by the island-shaped electrodes 109a and 109b to interrupt the current path. To do.
 図19は、参考例となる保護素子100の姿勢と溶断時間の関係を示す。なお、ここでは、保護素子100を15Wで動作させている。また、図18(A)-(E)の各姿勢は、図15(A)-(E)の各姿勢と対応している。 FIG. 19 shows the relationship between the posture of the protective element 100 as a reference example and the fusing time. Here, the protection element 100 is operated at 15 W. Further, each posture in FIGS. 18A to 18E corresponds to each posture in FIGS. 15A to 15E.
・図18(A)は、絶縁基板101の表面101a側を上向きにして、絶縁基板101の裏面101b側を下向きにして載置した保護素子100の溶断後の状態を示す平面図である。
・図18(B)は、保護素子100を図18(A)の姿勢から90°倒立させて、第1の外部電極102を上向きにして上下方向に可溶導体105を支持した保護素子100の溶断後の状態を示す側面図である。
・図18(C)は、更に図18(B)の姿勢から90°回転し、可溶導体105を水平方向に支持した保護素子100の溶断後の状態を示す側面図である。
・図18(D)は、図18(A)の姿勢を裏向きにした状態である。すなわち、絶縁基板101の表面101a側を下向きにして、絶縁基板101の裏面101b側を上向きにして載置した保護素子100の溶断後の状態を示す平面図である。
・図18(E)は、第1の外部電極102を上向きに倒立させた姿勢から絶縁基板101を面内方向に45°回転し、可溶導体105を斜めに支持した保護素子100の溶断後の状態を示す側面図である。
・図19は、本発明の保護素子100を図18(A)-(E)のような姿勢にしたときの可溶導体105の溶断時間を示す。
18A is a plan view showing a state after fusing of the protection element 100 placed with the front surface 101a side of the insulating substrate 101 facing upward and the back surface 101b side of the insulating substrate 101 facing downward.
FIG. 18B shows the protection element 100 in which the protection element 100 is inverted 90 degrees from the posture of FIG. 18A and the soluble conductor 105 is supported in the vertical direction with the first external electrode 102 facing upward. It is a side view which shows the state after fusing.
FIG. 18C is a side view showing a state after the fusing of the protective element 100 that further rotates 90 ° from the posture of FIG. 18B and supports the fusible conductor 105 in the horizontal direction.
FIG. 18D illustrates a state in which the posture illustrated in FIG. That is, it is a plan view showing a state after fusing of the protection element 100 placed with the front surface 101a side of the insulating substrate 101 facing downward and the back surface 101b side of the insulating substrate 101 facing upward.
FIG. 18E shows a state in which the insulating substrate 101 is rotated 45 ° in the in-plane direction from the posture in which the first external electrode 102 is turned upside down, and the protective element 100 that supports the fusible conductor 105 obliquely is blown. It is a side view which shows the state.
FIG. 19 shows the fusing time of the fusible conductor 105 when the protective element 100 of the present invention is in the posture shown in FIGS. 18 (A)-(E).
 図19に示すように、比較例の保護素子100は、保護素子100の配線姿勢によって溶断時間にバラツキが大きいことを確認することができる。すなわち、本発明の保護素子50は、参考例の保護素子100と比較して姿勢に拘わらず溶断時間のバラツキを小さくすることができ、したがって、姿勢に拘わらず、略一定の時間で確実に可溶導体53を溶断することができる。 As shown in FIG. 19, it can be confirmed that the protection element 100 of the comparative example has a large variation in the fusing time depending on the wiring posture of the protection element 100. That is, the protection element 50 of the present invention can reduce the variation in fusing time regardless of the posture as compared with the protection device 100 of the reference example, and thus can be reliably performed in a substantially constant time regardless of the posture. The molten conductor 53 can be blown.
 なお、図20に示すように、貫通孔58は、図11(B)に示すように、直線状に一列設ける場合の他、図20(A)に示すように、2列にしても良いし、それ以上設けても良い。また、図20(B)に示すように、複数の貫通孔で構成するのではなく、細長いスリット58aで構成するようにしても良く、複数本であってもよい。 As shown in FIG. 20, the through holes 58 may be provided in two rows as shown in FIG. 20A, in addition to the case where the through holes 58 are provided in a straight line as shown in FIG. 11B. More than that may be provided. Further, as shown in FIG. 20 (B), it may be constituted by an elongated slit 58a instead of a plurality of through holes, or may be plural.
 [発熱体]
 また、本発明が適用された保護素子は、図21に示すように、発熱体57を絶縁基板55の表面55a側に形成した吸引部材70を用いてもよい。なお、以下の説明において、上述した保護素子50と同じ部材については、同じ符号を付してその詳細を省略する。発熱体57が絶縁基板55の表面55a側に形成された吸引部材70を用いた保護素子71は、発熱体57が絶縁基板55の表面55aに形成されるとともに、絶縁部材62によって被覆されている。
[Heating element]
Further, as shown in FIG. 21, the protection element to which the present invention is applied may use a suction member 70 in which a heating element 57 is formed on the surface 55a side of the insulating substrate 55. In the following description, the same members as those of the protection element 50 described above are denoted by the same reference numerals and their details are omitted. The protection element 71 using the suction member 70 in which the heating element 57 is formed on the surface 55 a side of the insulating substrate 55 is covered with the insulating member 62 while the heating element 57 is formed on the surface 55 a of the insulating substrate 55. .
 発熱体57は、両端が同じく絶縁基板55の表面55aに形成された第1、第2の発熱体電極59,60と接続されている。第1の発熱体電極59は、発熱体引出電極63を介して可溶導体53と接続され、これにより発熱体57が可溶導体53と接続される。また、第2の発熱体電極60は、第3の外部接続電極61(図12、図13参照)と接続され、これにより発熱体57が発熱させるための電源に接続される。 The heat generating element 57 is connected to the first and second heat generating element electrodes 59 and 60 formed on the surface 55a of the insulating substrate 55 at both ends. The first heating element electrode 59 is connected to the soluble conductor 53 via the heating element extraction electrode 63, whereby the heating element 57 is connected to the soluble conductor 53. In addition, the second heating element electrode 60 is connected to a third external connection electrode 61 (see FIGS. 12 and 13), whereby the heating element 57 is connected to a power source for generating heat.
 発熱体57は、絶縁部材62によって覆われ、この絶縁部材62を介して発熱体57に対向するように発熱体引出電極63が配置される。この絶縁部材62は、発熱体57が内部に一体的に積層された積層基板であってもよい。また、発熱体57は、表面電極56の両側に設ける他に、表面電極56の一方の側のみ、又は、表面電極56を囲むように設けてもよい。 The heating element 57 is covered with an insulating member 62, and the heating element extraction electrode 63 is disposed so as to face the heating element 57 through the insulating member 62. The insulating member 62 may be a laminated substrate in which the heating elements 57 are integrally laminated. Further, the heating element 57 may be provided only on one side of the surface electrode 56 or so as to surround the surface electrode 56 in addition to being provided on both sides of the surface electrode 56.
 また、発熱体引出電極63は、絶縁基板55の表面55aに、絶縁部材62を介して発熱体57と重畳して形成されている。発熱体引出電極63は、表面電極56を介して可溶導体53と接続され、一端に形成されたタブ63aが第1の発熱体電極59に接続されている。 The heating element extraction electrode 63 is formed on the surface 55 a of the insulating substrate 55 so as to overlap the heating element 57 with the insulating member 62 interposed therebetween. The heating element extraction electrode 63 is connected to the soluble conductor 53 via the surface electrode 56, and a tab 63 a formed at one end is connected to the first heating element electrode 59.
 なお、保護素子71は、上述した保護素子50と同様に貫通孔58が形成されるとともに、導電層65や裏面電極64を設け、貫通孔58内の一部又は全部には予備ハンダ66を充填させてもよい。また、吸引部材70は、予備ハンダ66と共に、又は予備ハンダ66に代えて、フラックスを貫通孔58内の一部又は全部に充填させてもよい。フラックスを充填させることによっても、可溶導体53の濡れ性を高め、効率よく溶融導体53aを貫通孔58に呼び込むことができる。 The protective element 71 has a through hole 58 formed in the same manner as the protective element 50 described above, and is provided with a conductive layer 65 and a back electrode 64, and a part or all of the through hole 58 is filled with spare solder 66. You may let them. Further, the suction member 70 may be filled with a part or all of the flux in the through hole 58 together with the spare solder 66 or instead of the spare solder 66. Also by filling the flux, the wettability of the soluble conductor 53 can be improved, and the molten conductor 53a can be efficiently drawn into the through hole 58.
 保護素子71は、発熱体57を絶縁基板55の表面55a側に設けることにより、発熱体57が発熱したとき、熱を効率よく可溶導体53に伝えることができ、速やかに可溶導体53を溶断させることができる。また、保護素子71は、発熱初期においては、絶縁基板55の表面55a側が裏面55b側よりも温度が高い温度勾配となる。したがって、保護素子71は、溶融導体53aが高温の表面電極56上に凝集するとともに、表面電極56と連続する導電層65を介して貫通孔58内に速やかに吸引させることができ、断面積が大きく多量の溶融導体53aが溶融した場合にも、確実に可溶導体53を溶断させることができる。 By providing the heating element 57 on the surface 55a side of the insulating substrate 55, the protection element 71 can efficiently transmit the heat to the soluble conductor 53 when the heating element 57 generates heat, and promptly attach the soluble conductor 53 to the soluble element 53. Can be blown. Further, in the protective element 71, in the initial stage of heat generation, the temperature 55a of the insulating substrate 55 has a temperature gradient higher than that of the back surface 55b. Therefore, the protective element 71 can cause the molten conductor 53a to agglomerate on the high temperature surface electrode 56 and to be quickly sucked into the through hole 58 through the conductive layer 65 continuous with the surface electrode 56, and the cross-sectional area can be increased. Even when a large amount of the molten conductor 53a is melted, the soluble conductor 53 can be surely blown.
 [実施例]
 本発明の保護素子71は、上述したように、大量の可溶導体53を絶縁基板55の表面55aから裏面55bに導くことにより、可溶導体53を容易に溶断することができる。ここでは、保護素子71が配置された姿勢に拘わらず安定して可溶導体53を溶断できるかを確認するため、図22及び図23に示す実験を行った。実験に用いた保護素子71は、絶縁基板55として厚さ0.635mmのアルミナ系基板に、0.85φの貫通孔58を形成し、内側面にNi/Auめっき処理を施した。また、可溶導体53として、厚さ0.35mmのSn‐Ag‐Cu系金属箔に厚さ6μmのAgメッキ処理を施したものを用いた。
[Example]
As described above, the protective element 71 of the present invention can easily melt the soluble conductor 53 by guiding a large amount of the soluble conductor 53 from the front surface 55a of the insulating substrate 55 to the back surface 55b. Here, in order to confirm whether the soluble conductor 53 can be stably melted regardless of the posture in which the protective element 71 is disposed, experiments shown in FIGS. 22 and 23 were performed. In the protective element 71 used in the experiment, a 0.85φ through-hole 58 was formed in an alumina-based substrate having a thickness of 0.635 mm as the insulating substrate 55, and the inner surface was subjected to Ni / Au plating. Further, as the soluble conductor 53, a Sn-Ag-Cu-based metal foil having a thickness of 0.35 mm was subjected to an Ag plating process having a thickness of 6 μm.
 このような保護素子71を31Wで動作させたときの、図22に示す各姿勢における可溶導体53の溶断時間を計測した。ここで、図23は、図22(A)-(E)に示した本発明の保護素子71の各姿勢と溶断時間の関係を示す。また、図22(A)-(E)の各姿勢は、図15(A)-(E)の各姿勢と対応している。 When the protective element 71 was operated at 31 W, the fusing time of the fusible conductor 53 in each posture shown in FIG. 22 was measured. Here, FIG. 23 shows the relationship between each posture of the protection element 71 of the present invention shown in FIGS. 22A to 22E and the fusing time. Each posture in FIGS. 22A to 22E corresponds to each posture in FIGS. 15A to 15E.
・図22(A)は、絶縁基板55の表面55a側を上向きにして、絶縁基板55の裏面55b側を下向きにして載置した保護素子71の溶断後の状態を示す平面図である。
・図22(B)は、保護素子71を図22(A)の姿勢から90°倒立させて貫通孔58を水平方向に向けるとともに、第2の外部電極52を上向きにして上下方向に可溶導体53を支持した保護素子71の溶断後の状態を示す側面図である。
・図22(C)は、更に図22(B)の姿勢から90°回転し、貫通孔58を上下方向に並列させるとともに、可溶導体53を水平方向に支持した保護素子71の溶断後の状態を示す側面図である。
・図22(D)は、図22(A)の姿勢を裏向きにした状態である。すなわち、絶縁基板55の表面55a側を下向きにして、絶縁基板55の裏面55b側を上向きにして載置した保護素子71の溶断後の状態を示す平面図である。
・図22(E)は、第2の外部電極52を上向きに倒立させた姿勢から絶縁基板55を面内方向に45°回転し、貫通孔58が斜めに並列するとともに、可溶導体53を斜めに支持した保護素子71の溶断後の状態を示す側面図である。
22A is a plan view showing a state after the fusing of the protective element 71 placed with the front surface 55a side of the insulating substrate 55 facing upward and the back surface 55b side of the insulating substrate 55 facing downward.
22B, the protective element 71 is inverted 90 ° from the posture of FIG. 22A to direct the through hole 58 in the horizontal direction, and the second external electrode 52 is directed upward to be soluble in the vertical direction. FIG. 7 is a side view showing a state after the protection element 71 supporting the conductor 53 is melted.
22C is further rotated by 90 ° from the posture of FIG. 22B, the through-holes 58 are arranged in parallel in the vertical direction, and the protective element 71 that supports the fusible conductor 53 in the horizontal direction is blown out. It is a side view which shows a state.
FIG. 22D shows a state in which the posture of FIG. That is, it is a plan view showing a state after fusing of the protective element 71 placed with the front surface 55a side of the insulating substrate 55 facing downward and the back surface 55b side of the insulating substrate 55 facing upward.
FIG. 22E shows that the insulating substrate 55 is rotated by 45 ° in the in-plane direction from the posture in which the second external electrode 52 is turned upside down, and the through-holes 58 are obliquely arranged in parallel, and the fusible conductor 53 is It is a side view which shows the state after fusing of the protection element 71 supported diagonally.
 図23に示すように、本発明の保護素子71は、どの様な姿勢であっても、溶断時間にバラツキが無く、確実に、可溶導体53を溶断できることを確認することができる。 As shown in FIG. 23, it can be confirmed that the protective element 71 of the present invention has no variation in the fusing time and can surely melt the soluble conductor 53 in any posture.
 なお、本発明が適用された保護素子は、発熱体57を絶縁基板55の表面55aや裏面55bに形成する他、絶縁基板55の内部に形成してもよい。この場合、発熱体57は絶縁部材62で被覆する必要はなく、また、発熱体57は導電層65を介して表面電極56又は裏面電極64と接続される。 The protective element to which the present invention is applied may be formed inside the insulating substrate 55 in addition to forming the heating element 57 on the front surface 55a and the back surface 55b of the insulating substrate 55. In this case, the heating element 57 does not need to be covered with the insulating member 62, and the heating element 57 is connected to the front surface electrode 56 or the back surface electrode 64 through the conductive layer 65.
 [凝集部材]
 また、本発明が適用された保護素子は、吸引部材54,70に加え、溶融導体53aを凝集し、可溶導体53の溶断を補助する凝集部材75を併用してもよい。図24(A)(B)は、吸引部材70及び凝集部材75を併用した保護素子74の断面図である。図24(A)(B)に示すように、凝集部材75は、第2の絶縁基板76と、第2の絶縁基板76の表面76a上に設けられた発熱体77と、発熱体77を被覆する絶縁部材78と、絶縁部材78上に積層され、溶融導体53aを凝集する集電極79とを備える。
[Aggregating member]
In addition to the suction members 54 and 70, the protective element to which the present invention is applied may be used in combination with an aggregating member 75 that agglomerates the molten conductor 53 a and assists the melting of the soluble conductor 53. 24A and 24B are cross-sectional views of a protective element 74 using the suction member 70 and the aggregation member 75 in combination. As shown in FIGS. 24A and 24B, the aggregating member 75 covers the second insulating substrate 76, the heating element 77 provided on the surface 76a of the second insulating substrate 76, and the heating element 77. And a collecting electrode 79 that is laminated on the insulating member 78 and aggregates the molten conductor 53a.
 凝集部材75は、第2の絶縁基板76、発熱体77及び絶縁部材78として、保護素子50の絶縁基板55、発熱体57及び絶縁部材62と同様の部材を用いることができる。また、集電極79は、例えばAgやCu等の高融点金属ペーストを印刷、焼成すること等により形成することができる。 The aggregating member 75 can use the same members as the insulating substrate 55, the heating element 57 and the insulating member 62 of the protection element 50 as the second insulating substrate 76, the heating element 77 and the insulating member 78. The collector electrode 79 can be formed by printing and baking a high melting point metal paste such as Ag or Cu.
 図25に保護素子74の回路図を示す。凝集部材75は、発熱体57と同様に、発熱体77が図示しない発熱体電極を介して第3の外部接続電極61と電気的に接続され、外部回路に設けられた電流制御素子37等によって、吸引部材70の発熱体57と連動して通電が制御されている。また、凝集部材75は、発熱体77が図示しない発熱体電極を介して集電極79と接続され、集電極79を介して可溶導体53と電気的に接続されている。 FIG. 25 shows a circuit diagram of the protection element 74. Like the heat generating element 57, the aggregating member 75 has a heat generating element 77 electrically connected to the third external connection electrode 61 via a heat generating element electrode (not shown), and a current control element 37 provided in an external circuit. The energization is controlled in conjunction with the heating element 57 of the suction member 70. Further, the aggregating member 75 has a heating element 77 connected to a collecting electrode 79 via a heating element electrode (not shown), and is electrically connected to the soluble conductor 53 via the collecting electrode 79.
 凝集部材75は、集電極79が可溶導体53の吸引部材70が設けられた面と反対側の面に接続されている。したがって、保護素子74は、吸引部材70の発熱体57が通電、発熱されると、同時に凝集部材75の発熱体77も通電、発熱し、可溶導体53を両側から加熱することにより、速やかに溶融させる。 In the aggregating member 75, the collector electrode 79 is connected to the surface opposite to the surface on which the suction member 70 of the soluble conductor 53 is provided. Therefore, when the heating element 57 of the suction member 70 is energized and heated, the protection element 74 energizes and generates heat at the same time as the heating element 77 of the aggregating member 75 and heats the fusible conductor 53 from both sides. Melt.
 このとき、保護素子74は、吸引部材70によって溶融導体53aを貫通孔58内に吸引するとともに、凝集部材75によって溶融導体53aを集電極79に凝集させることにより、溶融導体53aを吸引、保持する許容量が増大されている。したがって、保護素子74は、断面積が大きく高定格化された可溶導体53を用いて、多量の溶融導体53aが発生した場合にも、確実に溶断させることができ、定格の向上を図りつつ溶断特性を維持、向上させることができる。 At this time, the protection element 74 sucks the molten conductor 53a into the through-hole 58 by the suction member 70, and agglomerates the molten conductor 53a to the collector electrode 79 by the aggregation member 75, thereby sucking and holding the molten conductor 53a. The tolerance is increased. Therefore, the protective element 74 can be surely blown even when a large amount of the molten conductor 53a is generated using the soluble conductor 53 having a large cross-sectional area and a high rating, while improving the rating. The fusing characteristics can be maintained and improved.
 また、保護素子74は、可溶導体53として、内層を構成する低融点金属を高融点金属で被覆する被覆構造を用いた場合にも、可溶導体53を速やかに溶断させることができる。すなわち、高融点金属で被覆された可溶導体53は、発熱体57,77が発熱した場合にも、外層の高融点金属が溶融する温度まで加熱するのに時間を要する。ここで、保護素子74は、吸引部材54及び凝集部材75を備え、同時に発熱体57,77を発熱させることで、外層の高融点金属を速やかに溶融温度まで加熱することができる。したがって、保護素子74によれば、外層を構成する高融点金属層の厚みを厚くすることができ、さらなる高定格化を図りつつ、速溶断特性を維持することができる。 Also, the protective element 74 can quickly melt the soluble conductor 53 even when a covering structure in which the low melting point metal constituting the inner layer is covered with the high melting point metal is used as the soluble conductor 53. That is, the soluble conductor 53 covered with the refractory metal takes time to be heated to a temperature at which the outer refractory metal melts even when the heating elements 57 and 77 generate heat. Here, the protective element 74 includes the suction member 54 and the aggregating member 75, and simultaneously heats the heating elements 57 and 77, so that the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 74, the thickness of the refractory metal layer constituting the outer layer can be increased, and the fast fusing characteristics can be maintained while further increasing the rating.
 また、保護素子74は、凝集部材75の集電極79を吸引部材70の貫通孔58と対向させることが好ましい。これにより、貫通孔58上により多くの溶融導体53aが集まり、効率よく溶融導体53aを貫通孔58内に吸引させることができ、速やかに可溶導体53を溶断することができる。 Further, the protective element 74 preferably has the collecting electrode 79 of the aggregation member 75 opposed to the through hole 58 of the suction member 70. Thereby, more molten conductors 53a gather on the through-hole 58, the molten conductor 53a can be efficiently sucked into the through-hole 58, and the soluble conductor 53 can be blown out quickly.
 [複数の吸引部材]
 また、本発明が適用された保護素子は、図26(A)(B)に示すように、吸引部材54,70を複数備え、可溶導体53の表面及び裏面に配設してもよい。図26に示す保護素子80は、例えば上述した吸引部材54が、可溶導体53の表面及び裏面にそれぞれ配設されている。図27は、保護素子80の回路図である。可溶導体53の表面及び裏面に配設された各吸引部材54は、それぞれ発熱体57の一端が、第1の発熱体電極59及び発熱体引出気電極63を介して可溶導体53と接続され、発熱体57の他端が第2の発熱体電極60及び第3の外部接続電極61を介して発熱体57を発熱させるための電源に接続される。
[Multiple suction members]
Moreover, the protection element to which the present invention is applied may include a plurality of suction members 54 and 70 as shown in FIGS. 26 (A) and 26 (B), and may be disposed on the front and back surfaces of the soluble conductor 53. In the protection element 80 shown in FIG. 26, for example, the above-described suction member 54 is disposed on the front surface and the back surface of the soluble conductor 53. FIG. 27 is a circuit diagram of the protection element 80. Each suction member 54 disposed on the front and back surfaces of the soluble conductor 53 has one end of the heating element 57 connected to the soluble conductor 53 via the first heating element electrode 59 and the heating element extraction electrode 63. The other end of the heating element 57 is connected to a power source for generating heat from the heating element 57 via the second heating element electrode 60 and the third external connection electrode 61.
 保護素子80は、可溶導体53を溶断する際には、各吸引部材54,54の発熱体57がそれぞれ発熱するとともに溶融導体53を各貫通孔58内に吸引する。したがって、保護素子80は、大電流用途に対応するために可溶導体13の断面積を増大させ溶融導体53aが多量に発生した場合にも、複数の吸引部材54によって吸引し、確実に可溶導体53を溶断させることができる。また、保護素子80は、複数の吸引部材54によって溶融導体53aを吸引することにより、より速やかに可溶導体53を溶断させることができる。 When the fusible conductor 53 is melted, the protective element 80 generates heat from the heating elements 57 of the suction members 54 and 54 and sucks the molten conductor 53 into the through holes 58. Accordingly, the protective element 80 is attracted by the plurality of suction members 54 even when the melted conductor 53a is generated in a large amount by increasing the cross-sectional area of the soluble conductor 13 in order to cope with the use of a large current, and is reliably soluble. The conductor 53 can be fused. Further, the protection element 80 can melt the soluble conductor 53 more quickly by sucking the molten conductor 53 a by the plurality of suction members 54.
 保護素子80は、可溶導体53として、内層を構成する低融点金属を高融点金属で被覆する被覆構造を用いた場合にも、可溶導体53を速やかに溶断させることができる。すなわち、高融点金属で被覆された可溶導体53は、発熱体57が発熱した場合にも、外層の高融点金属が溶融する温度まで加熱するのに時間を要する。ここで、保護素子80は、複数の吸引部材54を備え、同時に各発熱体57を発熱させることで、外層の高融点金属を速やかに溶融温度まで加熱することができる。したがって、保護素子80によれば、外層を構成する高融点金属層の厚みを厚くすることができ、さらなる高定格化を図りつつ、速溶断特性を維持することができる。 The protective element 80 can quickly melt the soluble conductor 53 even when a covering structure in which the low melting point metal constituting the inner layer is covered with the high melting point metal is used as the soluble conductor 53. That is, the fusible conductor 53 covered with the high melting point metal takes time to be heated to a temperature at which the outer layer high melting point metal melts even when the heating element 57 generates heat. Here, the protection element 80 includes a plurality of suction members 54 and simultaneously heats the heating elements 57, whereby the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 80, the thickness of the refractory metal layer constituting the outer layer can be increased, and the fast fusing characteristics can be maintained while further increasing the rating.
 また、保護素子80は、図26に示すように、一対の吸引部材54,54が対向して可溶導体53に接続されることが好ましい。これにより、保護素子80は、一対の吸引部材54,54で、可溶導体53の同一箇所を両面側から同時に加熱するとともに溶融導体53aを吸引することができ、より速やかに可溶導体53を加熱、溶断することができる。 Further, as shown in FIG. 26, the protection element 80 is preferably connected to the soluble conductor 53 with a pair of suction members 54 and 54 facing each other. As a result, the protection element 80 can simultaneously heat the same portion of the soluble conductor 53 from both sides with the pair of suction members 54 and 54 and suck the molten conductor 53a more quickly. It can be heated and melted.
 なお、保護素子80は、吸引部材として発熱体57が絶縁基板55の裏面55b側に設けられた上記吸引部材54を用いる他、発熱体57が絶縁基板55の表面55a側に設けられた吸引部材70を複数用いてもよく、あるいは両吸引部材54,70を併用してもよい。 The protection element 80 uses the suction member 54 in which the heating element 57 is provided on the back surface 55b side of the insulating substrate 55 as a suction member, and the suction member in which the heating element 57 is provided on the front surface 55a side of the insulating substrate 55. A plurality of 70 may be used, or both suction members 54 and 70 may be used in combination.
 [可溶導体の構成]
 上述したように、可溶導体13,53は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、Snを主成分とするPbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。このとき、可溶導体13,53は、図28(A)に示すように、内層として高融点金属層90が設けられ、外層として低融点金属層91が設けられた可溶導体を用いてもよい。この場合、可溶導体13,53は、高融点金属層90の全面が低融点金属層91によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。高融点金属層90や低融点金属層91による被覆構造は、メッキ等の公知の成膜技術を用いて形成することができる。
[Configuration of soluble conductor]
As described above, the soluble conductors 13 and 53 may contain a low melting point metal and a high melting point metal. As the low melting point metal, it is preferable to use solder such as Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components. At this time, as shown in FIG. 28A, the fusible conductors 13 and 53 may be made of a fusible conductor in which a high melting point metal layer 90 is provided as an inner layer and a low melting point metal layer 91 is provided as an outer layer. Good. In this case, the soluble conductors 13 and 53 may have a structure in which the entire surface of the high melting point metal layer 90 is covered with the low melting point metal layer 91, or may be a structure in which a pair of opposite side surfaces are covered. . The covering structure with the high melting point metal layer 90 and the low melting point metal layer 91 can be formed using a known film forming technique such as plating.
 また、図28(B)に示すように、可溶導体13,53は、内層として低融点金属層91が設けられ、外層として高融点金属層90が設けられた可溶導体を用いてもよい。この場合も、可溶導体13,53は、低融点金属層91の全面が高融点金属層90によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。 As shown in FIG. 28B, the fusible conductors 13 and 53 may be made of a fusible conductor in which a low melting point metal layer 91 is provided as an inner layer and a high melting point metal layer 90 is provided as an outer layer. . Also in this case, the soluble conductors 13 and 53 may have a structure in which the entire surface of the low-melting-point metal layer 91 is covered with the high-melting-point metal layer 90. Good.
 また、可溶導体13,53は、図29に示すように、高融点金属層90と低融点金属層91とが積層された積層構造としてもよい。 Moreover, the soluble conductors 13 and 53 may have a laminated structure in which a high melting point metal layer 90 and a low melting point metal layer 91 are laminated as shown in FIG.
 この場合、可溶導体13は、図29(A)に示すように、第1、第2の電極11,12や表面電極22、あるいは第1、第2の外部電極51,52や表面電極56に接続される下層と、下層の上に積層される上層からなる2層構造として形成され、下層となる高融点金属層90の上面に上層となる低融点金属層91を積層してもよく、反対に下層となる低融点金属層91の上面に上層となる高融点金属層90を積層してもよい。あるいは、可溶導体13,53は、図29(B)に示すように、内層と内層の上下面に積層される外層とからなる3層構造として形成してもよく、内層となる高融点金属層90の上下面に外層となる低融点金属層91を積層してもよく、反対に内層となる低融点金属層91の上下面に外層となる高融点金属層90を積層してもよい。 In this case, as shown in FIG. 29A, the fusible conductor 13 includes the first and second electrodes 11 and 12 and the surface electrode 22, or the first and second external electrodes 51 and 52 and the surface electrode 56. The lower melting point metal layer 91 may be stacked on the upper surface of the lower melting point metal layer 90. On the contrary, the refractory metal layer 90 as the upper layer may be laminated on the upper surface of the low melting point metal layer 91 as the lower layer. Alternatively, the soluble conductors 13 and 53 may be formed as a three-layer structure including an inner layer and an outer layer laminated on the upper and lower surfaces of the inner layer, as shown in FIG. The low melting point metal layer 91 serving as the outer layer may be stacked on the upper and lower surfaces of the layer 90, and the high melting point metal layer 90 serving as the outer layer may be stacked on the upper and lower surfaces of the low melting point metal layer 91 serving as the inner layer.
 また、可溶導体13,53は、図30に示すように、高融点金属層90と低融点金属層91とが交互に積層された4層以上の多層構造としてもよい。この場合、可溶導体13,53は、最外層を構成する金属層によって、全面又は相対向する一対の側面を除き被覆された構造としてもよい。 Further, as shown in FIG. 30, the soluble conductors 13 and 53 may have a multilayer structure of four or more layers in which high melting point metal layers 90 and low melting point metal layers 91 are alternately laminated. In this case, the soluble conductors 13 and 53 may have a structure in which the entire surface or a pair of opposite side surfaces are covered with a metal layer constituting the outermost layer.
 また、可溶導体13,53は、内層を構成する低融点金属層91の表面に高融点金属層90をストライプ状に部分的に積層させてもよい。図31は、可溶導体13,53の平面図である。 Further, the fusible conductors 13 and 53 may be formed by partially laminating the high melting point metal layer 90 in a stripe shape on the surface of the low melting point metal layer 91 constituting the inner layer. FIG. 31 is a plan view of the fusible conductors 13 and 53.
 図31(A)に示す可溶導体13,53は、低融点金属層91の表面に、幅方向に所定間隔で、線状の高融点金属層90が長手方向に複数形成されることにより、長手方向に沿って線状の開口部92が形成され、この開口部92から低融点金属層91が露出されている。可溶導体13,53は、低融点金属層91が開口部92より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属層90の浸食作用をより促進させて溶断性を向上させることができる。開口部92は、例えば、低融点金属層91に高融点金属層90を構成する金属の部分メッキを施すことにより形成することができる。 The soluble conductors 13 and 53 shown in FIG. 31A have a plurality of linear refractory metal layers 90 formed in the longitudinal direction on the surface of the low melting point metal layer 91 at predetermined intervals in the width direction. A linear opening 92 is formed along the longitudinal direction, and the low melting point metal layer 91 is exposed from the opening 92. In the fusible conductors 13 and 53, the low melting point metal layer 91 is exposed from the opening 92, thereby increasing the contact area between the molten low melting point metal and the high melting point metal, and further promoting the erosion action of the high melting point metal layer 90. The fusing property can be improved. The opening 92 can be formed, for example, by subjecting the low melting point metal layer 91 to partial plating of a metal constituting the high melting point metal layer 90.
 また、可溶導体13,53は、図31(B)に示すように、低融点金属層91の表面に、長手方向に所定間隔で、線状の高融点金属層90を幅方向に複数形成することにより、幅方向に沿って線状の開口部92を形成してもよい。 Further, as shown in FIG. 31B, the soluble conductors 13 and 53 are formed with a plurality of linear refractory metal layers 90 in the width direction on the surface of the low melting point metal layer 91 at predetermined intervals in the longitudinal direction. By doing so, a linear opening 92 may be formed along the width direction.
 また、可溶導体13,53は、図32に示すように、低融点金属層91の表面に高融点金属層90を形成するとともに、高融点金属層90の全面に亘って円形の開口部93が形成され、この開口部93から低融点金属層91を露出させてもよい。開口部93は、例えば、低融点金属層91に高融点金属層90を構成する金属の部分メッキを施すことにより形成することができる。 Further, as shown in FIG. 32, the fusible conductors 13 and 53 form a refractory metal layer 90 on the surface of the low melting point metal layer 91 and a circular opening 93 across the entire surface of the refractory metal layer 90. The low melting point metal layer 91 may be exposed from the opening 93. The opening 93 can be formed, for example, by subjecting the low melting point metal layer 91 to partial plating of a metal constituting the high melting point metal layer 90.
 可溶導体13,53は、低融点金属層91が開口部93より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属の浸食作用をより促進させて溶断性を向上させることができる。 The fusible conductors 13 and 53 are exposed to the low melting point metal layer 91 from the opening 93, thereby increasing the contact area between the molten low melting point metal and the high melting point metal and further promoting the erosion action of the high melting point metal. The fusing property can be improved.
 また、可溶導体13,53は、図33に示すように、内層となる高融点金属層90に多数の開口部94を形成し、この高融点金属層90に、メッキ技術等を用いて低融点金属層91を成膜し、開口部94内に充填してもよい。これにより、可溶導体13,53は、溶融する低融点金属が高融点金属に接する面積が増大するので、より短時間で低融点金属が高融点金属を溶食することができるようになる。 In addition, as shown in FIG. 33, the fusible conductors 13 and 53 are formed with a large number of openings 94 in the refractory metal layer 90 which is an inner layer, and the refractory metal layer 90 is low in thickness using a plating technique or the like. A melting point metal layer 91 may be formed and filled in the opening 94. As a result, the fusible conductors 13 and 53 have an increased area where the molten low melting point metal contacts the high melting point metal, so that the low melting point metal can corrode the high melting point metal in a shorter time.
 また、可溶導体13,53は、低融点金属層91の体積を、高融点金属層90の体積よりも多く形成することが好ましい。可溶導体13,53は、発熱体25,57の発熱によって加熱され、低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、可溶導体13,53は、低融点金属層91の体積を高融点金属層90の体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の電極11,12間、あるいは第1、第2の外部電極51,52間を遮断することができる。 Moreover, it is preferable that the soluble conductors 13 and 53 are formed such that the volume of the low melting point metal layer 91 is larger than the volume of the high melting point metal layer 90. The fusible conductors 13 and 53 are heated by the heat generated by the heating elements 25 and 57, and when the low melting point metal melts, the high melting point metal is eroded and can thereby be melted and blown quickly. Therefore, the soluble conductors 13 and 53 promote this corrosion action by forming the volume of the low melting point metal layer 91 larger than the volume of the high melting point metal layer 90, and promptly the first and second electrodes. 11, 12 or between the first and second external electrodes 51, 52 can be blocked.
 また、可溶導体13,53は、図34に示すように、略矩形板状に形成され、外層を構成する高融点金属によって被覆され主面部96よりも肉厚に形成された相対向する一対の第1の側縁部97と、内層を構成する低融点金属が露出され第1の側縁部97よりも薄い厚さに形成された相対向する一対の第2の側縁部98とを有してもよい。 Further, as shown in FIG. 34, the fusible conductors 13 and 53 are formed in a substantially rectangular plate shape, and are covered with a high melting point metal constituting the outer layer and are opposed to each other and formed thicker than the main surface portion 96. And a pair of opposing second side edges 98 that are formed to have a thickness lower than that of the first side edge 97 by exposing the low melting point metal constituting the inner layer. You may have.
 第1の側縁部97は、側面が高融点金属層90によって被覆されるとともに、これにより可溶導体13,53の主面部96よりも肉厚に形成されている。第2の側縁部98は、側面に、外周を高融点金属層90によって囲繞された低融点金属層91が露出されている。第2の側縁部98は、第1の側縁部97と隣接する両端部を除き主面部96と同じ厚さに形成されている。 The side surface of the first side edge portion 97 is covered with the refractory metal layer 90, and is thereby formed thicker than the main surface portion 96 of the soluble conductors 13 and 53. The second side edge 98 has a low melting point metal layer 91 whose outer periphery is surrounded by a high melting point metal layer 90 on the side surface. The second side edge portion 98 is formed to have the same thickness as the main surface portion 96 except for both end portions adjacent to the first side edge portion 97.
 保護素子1においては、可溶導体13は、第1の側縁部97が第1、第2の電極11,12の幅方向に沿って搭載され、第2の側縁部98が、通電方向の両側端となる向きで、第1、第2の電極11,12間に跨って接続されている。同様に、保護素子50においては、可溶導体53は、第1の側縁部97が第1、第2の外部電極51,52の幅方向に沿って搭載され、第2の側縁部98が、通電方向の両側端となる向きで、第1、第2の外部電極51,52間に跨って接続されている。 In the protective element 1, the fusible conductor 13 has the first side edge 97 mounted along the width direction of the first and second electrodes 11, 12, and the second side edge 98 has the energization direction. Are connected across the first and second electrodes 11 and 12 in the direction of the opposite ends. Similarly, in the protection element 50, the fusible conductor 53 has the first side edge 97 mounted along the width direction of the first and second external electrodes 51 and 52, and the second side edge 98. Are connected across the first and second external electrodes 51 and 52 in the direction of the opposite ends in the energization direction.
 これにより、保護素子1,50は、可溶導体13,53が速やかに溶断し、外部回路の電流経路を遮断させることができる。 Thereby, in the protection elements 1 and 50, the fusible conductors 13 and 53 are quickly blown, and the current path of the external circuit can be cut off.
 すなわち、第2の側縁部98は、第1の側縁部97よりも相対的に薄肉に形成されている。また、第2の側縁部98の側面は、内層を構成する低融点金属層91が露出されている。これにより、第2の側縁部98は、低融点金属層91による高融点金属層90の溶食作用が働き、かつ、溶食される高融点金属層90の厚さも第1の側縁部97に比して薄く形成されていることにより、高融点金属層90によって肉厚に形成されている第1の側縁部97に比して、少ない熱エネルギーで速やかに溶融させることができる。これに対し、第1の側縁部97は、高融点金属層90によって肉厚に被覆され、第2の側縁部98に比して溶断するまでに多くの熱エネルギーを要する。 That is, the second side edge portion 98 is formed to be relatively thinner than the first side edge portion 97. Further, the low melting point metal layer 91 constituting the inner layer is exposed on the side surface of the second side edge portion 98. As a result, the second side edge portion 98 acts to cause the erosion action of the refractory metal layer 90 by the low melting point metal layer 91, and the thickness of the refractory metal layer 90 to be eroded is also the first side edge portion. Since it is formed thinner than 97, it can be rapidly melted with less heat energy as compared with the first side edge 97 formed thick by the refractory metal layer 90. On the other hand, the first side edge 97 is covered with the refractory metal layer 90 to a thickness, and requires a lot of heat energy to blow out as compared with the second side edge 98.
 したがって、保護素子1,50は、発熱体25,57が発熱することにより、直ちに、第2の側縁部98がわたされている第1の電極11と第2の電極12との間、あるいは第1の外部電極51と第2の外部電極52との間が溶断する。これにより、保護素子1,50は、第1、第2の電極11,12間、あるいは第1、第2の外部電極51,52間の充放電経路が遮断するとともに、発熱体25,57への給電経路が遮断され、発熱体25,57の発熱が停止される。 Therefore, the protective elements 1 and 50 are heated immediately between the first electrode 11 and the second electrode 12 where the second side edge 98 is passed, or when the heating elements 25 and 57 generate heat, or The space between the first external electrode 51 and the second external electrode 52 is fused. As a result, the protection elements 1 and 50 block the charge / discharge path between the first and second electrodes 11 and 12 or between the first and second external electrodes 51 and 52, and to the heating elements 25 and 57. Is interrupted, and the heat generation of the heating elements 25 and 57 is stopped.
 このような構成を有する可溶導体13,53は、低融点金属層91を構成するハンダ箔等の低融点金属箔を、高融点金属層90を構成するAg等の金属で被覆することにより製造される。低融点金属層箔を高融点金属被覆する工法としては、長尺状の低融点金属箔に連続して高融点金属メッキを施すことができる電解メッキ法が、作業効率上、製造コスト上、有利となる。 The soluble conductors 13 and 53 having such a configuration are manufactured by coating a low melting point metal foil such as a solder foil constituting the low melting point metal layer 91 with a metal such as Ag constituting the high melting point metal layer 90. Is done. As a method for coating a low melting point metal layer foil with a high melting point metal, an electrolytic plating method capable of continuously applying a high melting point metal plating to a long low melting point metal foil is advantageous in terms of work efficiency and manufacturing cost. It becomes.
 電解メッキによって高融点金属メッキを施すと、長尺状の低融点金属箔のエッジ部分、すなわち、側縁部において電界強度が相対的に強まり、高融点金属層90が厚くメッキされる(図34参照)。これにより、側縁部が高融点金属層によって肉厚に形成された長尺状の導体リボン95が形成される。次いで、この導体リボン95を長手方向と直交する幅方向(図34中C-C’方向)に、所定長さに切断することにより、可溶導体13,53が製造される。これにより、可溶導体13,53は、導体リボン95の側縁部が第1の側縁部97となり、導体リボン95の切断面が第2の側縁部98となる。また、第1の側縁部97は、高融点金属によって被覆され、第2の側縁部98は、端面(導体リボン95の切断面)に上下一対の高融点金属層90と高融点金属層90によって囲繞された低融点金属層91が外方に露出されている。 When refractory metal plating is performed by electrolytic plating, the electric field strength is relatively increased at the edge portion of the long low melting point metal foil, that is, the side edge portion, and the refractory metal layer 90 is thickly plated (FIG. 34). reference). As a result, a long conductor ribbon 95 is formed in which the side edge is formed thick by the refractory metal layer. Next, the conductor ribbon 95 is cut into a predetermined length in the width direction (C-C ′ direction in FIG. 34) perpendicular to the longitudinal direction, whereby the soluble conductors 13 and 53 are manufactured. Thus, in the fusible conductors 13 and 53, the side edge of the conductor ribbon 95 becomes the first side edge 97, and the cut surface of the conductor ribbon 95 becomes the second side edge 98. The first side edge portion 97 is covered with a refractory metal, and the second side edge portion 98 has a pair of upper and lower refractory metal layers 90 and a refractory metal layer on an end surface (cut surface of the conductor ribbon 95). A low melting point metal layer 91 surrounded by 90 is exposed to the outside.
1 保護素子、10 第1の絶縁基板、10a 表面、10b 裏面、11 第1の電極、11a 第1の外部接続電極、11b 導電層、12 第2の電極、12a 第2の外部接続電極、12b 導電層、13 可溶導体、13a 溶融導体、14 フラックス、15 カバー部材、20 吸引孔、21 導電層、22 表面電極、23 裏面電極、24 保護素子、25 発熱体、26 絶縁層、27 第3の外部接続電極、30 バッテリパック、30a 正極端子、30b 負極端子、31~34 バッテリセル、35 バッテリスタック、36 検出回路、37 電流制御素子、40 充放電制御回路、41,42 電流制御素子、43 制御部、50 保護素子、51 第1の外部電極、52 第2の外部電極、53 可溶導体、53a 溶融導体、54 吸引部材、55 絶縁部材、55a 表面、55b 裏面、56 表面電極、57 発熱体、58 貫通孔、59 第1の発熱体電極、60 第2の発熱体電極、61 第3の外部接続電極、62 絶縁部材、63 発熱体引出電極、63a タブ、64 裏面電極、65 導電層、66 予備ハンダ、67 島状電極、70 吸引部材、71 保護素子、74 保護素子、75 凝集部材、76 第2の絶縁基板、77 発熱体、78 絶縁部材、79 集電極、80 保護素子、90 高融点金属層、91 低融点金属層、95 導体リボン、97 第1の側縁部、98 第2の側縁部 1 protection element, 10 first insulating substrate, 10a front surface, 10b back surface, 11 first electrode, 11a first external connection electrode, 11b conductive layer, 12 second electrode, 12a second external connection electrode, 12b Conductive layer, 13 soluble conductor, 13a molten conductor, 14 flux, 15 cover member, 20 suction hole, 21 conductive layer, 22 surface electrode, 23 back electrode, 24 protective element, 25 heating element, 26 insulating layer, 27 3rd External connection electrode, 30 battery pack, 30a positive terminal, 30b negative terminal, 31-34 battery cell, 35 battery stack, 36 detection circuit, 37 current control element, 40 charge / discharge control circuit, 41, 42 current control element, 43 Control unit, 50 protection elements, 51 first external electrode, 52 second external electrode, 53 soluble guide , 53a molten conductor, 54 suction member, 55 insulating member, 55a surface, 55b back surface, 56 surface electrode, 57 heating element, 58 through hole, 59 first heating element electrode, 60 second heating element electrode, 61 third External connection electrode, 62 insulation member, 63 heating element extraction electrode, 63a tab, 64 back electrode, 65 conductive layer, 66 spare solder, 67 island electrode, 70 suction member, 71 protection element, 74 protection element, 75 aggregation member 76, second insulating substrate, 77 heating element, 78 insulating member, 79 collector electrode, 80 protective element, 90 high melting point metal layer, 91 low melting point metal layer, 95 conductor ribbon, 97 first side edge, 98th 2 side edges

Claims (53)

  1.  第1の絶縁基板と、
     上記第1の絶縁基板の表面に搭載された可溶導体とを有し、
     上記第1の絶縁基板の表面には、溶融した上記可溶導体を吸引する吸引孔が開口されている保護素子。
    A first insulating substrate;
    A fusible conductor mounted on the surface of the first insulating substrate;
    A protection element in which a suction hole for sucking the melted soluble conductor is opened on a surface of the first insulating substrate.
  2.  上記吸引孔は、内面に導電層が形成されるとともに、上記第1の絶縁基板の厚さ方向に設けられた貫通孔又は非貫通孔である請求項1記載の保護素子。 The protective element according to claim 1, wherein the suction hole is a through hole or a non-through hole provided in the thickness direction of the first insulating substrate while a conductive layer is formed on an inner surface thereof.
  3.  上記第1の絶縁基板の表面には、上記導電層と接続された表面電極が形成されている請求項2記載の保護素子。 The protective element according to claim 2, wherein a surface electrode connected to the conductive layer is formed on a surface of the first insulating substrate.
  4.  上記吸引孔は貫通孔であり、
     上記第1の絶縁基板の裏面には、上記導電層と接続された裏面電極が形成されている請求項3記載の保護素子。
    The suction hole is a through hole,
    The protection element according to claim 3, wherein a back surface electrode connected to the conductive layer is formed on the back surface of the first insulating substrate.
  5.  上記吸引孔が1又は複数形成されている請求項1~4のいずれか1項に記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein one or a plurality of the suction holes are formed.
  6.  上記第1の絶縁基板は、上記可溶導体と接続された第1、第2の電極が形成され、
     上記第1、第2の電極は、上記第1の絶縁基板の裏面に形成された外部接続電極と接続されている請求項1~4のいずれか1項に記載の保護素子。
    The first insulating substrate is formed with first and second electrodes connected to the soluble conductor,
    The protection element according to any one of claims 1 to 4, wherein the first and second electrodes are connected to an external connection electrode formed on a back surface of the first insulating substrate.
  7.  上記第1の絶縁基板に、上記可溶導体を溶融させる発熱体が設けられている請求項6に記載の保護素子。 The protective element according to claim 6, wherein a heating element for melting the soluble conductor is provided on the first insulating substrate.
  8.  上記発熱体は、上記第1の絶縁基板の表面に形成され、絶縁部材を介して上記可溶導体と重畳されている請求項7に記載の保護素子。 The protection element according to claim 7, wherein the heating element is formed on a surface of the first insulating substrate and is overlapped with the soluble conductor via an insulating member.
  9.  上記発熱体は、上記第1の絶縁基板の裏面に形成され、上記可溶導体と重畳されている請求項7に記載の保護素子。 The protection element according to claim 7, wherein the heating element is formed on a back surface of the first insulating substrate and is superimposed on the soluble conductor.
  10.  上記発熱体は、上記第1の絶縁基板の内部に形成されている請求項7記載の保護素子。 The protective element according to claim 7, wherein the heating element is formed inside the first insulating substrate.
  11.  上記第1の絶縁基板に、上記可溶導体を溶融させる発熱体が設けられ、
     上記発熱体は、上記表面電極を介して上記可溶導体と接続されている請求項3又は4に記載の保護素子。
    A heating element for melting the soluble conductor is provided on the first insulating substrate,
    The protective element according to claim 3 or 4, wherein the heating element is connected to the soluble conductor via the surface electrode.
  12.  上記第1の絶縁基板は、上記可溶導体と接続された第1、第2の電極が形成され、
     上記第1、第2の電極は、上記第1の絶縁基板の裏面に形成された外部接続電極と接続されている請求項11記載の保護素子。
    The first insulating substrate is formed with first and second electrodes connected to the soluble conductor,
    The protection element according to claim 11, wherein the first and second electrodes are connected to an external connection electrode formed on a back surface of the first insulating substrate.
  13.  上記発熱体は、上記第1の絶縁基板の表面に形成され、絶縁部材を介して上記可溶導体と重畳されている請求項12に記載の保護素子。 13. The protective element according to claim 12, wherein the heating element is formed on a surface of the first insulating substrate and is superimposed on the soluble conductor via an insulating member.
  14.  上記発熱体は、上記第1の絶縁基板の裏面に形成され、上記可溶導体と重畳されている請求項12に記載の保護素子。 13. The protective element according to claim 12, wherein the heating element is formed on a back surface of the first insulating substrate and is superimposed on the soluble conductor.
  15.  上記可溶導体の表面にフラックスが塗布されている請求項1~4のいずれか1項に記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein a flux is applied to a surface of the soluble conductor.
  16.  上記導電層は、銅、銀、金、鉄、ニッケル、パラジウム、鉛、錫のいずれか、又はいずれかを主成分とする請求項2~4のいずれか1項に記載の保護素子。 The protective element according to any one of claims 2 to 4, wherein the conductive layer contains copper, silver, gold, iron, nickel, palladium, lead, or tin as a main component.
  17.  上記可溶導体は、ハンダである請求項1~4のいずれか1項に記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein the soluble conductor is solder.
  18.  上記可溶導体は、低融点金属と高融点金属とを含有する請求項1~4のいずれか1項に記載の保護素子。 The protective element according to any one of claims 1 to 4, wherein the soluble conductor contains a low melting point metal and a high melting point metal.
  19.  上記低融点金属はハンダであり、
     上記高融点金属は、銀、銅、又は銀若しくは銅を主成分とする合金である請求項18に記載の保護素子。
    The low melting point metal is solder,
    The protective element according to claim 18, wherein the refractory metal is silver, copper, or an alloy containing silver or copper as a main component.
  20.  上記可溶導体は、内層が上記高融点金属であり、外層が上記低融点金属の被覆構造である請求項18に記載の保護素子。 19. The protective element according to claim 18, wherein the soluble conductor has an inner layer made of the refractory metal and an outer layer covered with the low-melting metal.
  21.  上記可溶導体は、内層が上記低融点金属であり、外層が上記高融点金属の被覆構造である請求項18に記載の保護素子。 The protective element according to claim 18, wherein the soluble conductor has an inner layer made of the low melting point metal and an outer layer made of the high melting point metal.
  22.  上記可溶導体は、上記低融点金属と上記高融点金属とが積層された積層構造である請求項18に記載の保護素子。 The protection element according to claim 18, wherein the soluble conductor has a laminated structure in which the low melting point metal and the high melting point metal are laminated.
  23.  上記可溶導体は、上記低融点金属と上記高融点金属とが交互に積層された4層以上の多層構造である請求項18に記載の保護素子。 The protective element according to claim 18, wherein the soluble conductor has a multilayer structure of four or more layers in which the low melting point metal and the high melting point metal are alternately laminated.
  24.  上記可溶導体は、内層を構成する上記低融点金属の表面に形成された上記高融点金属に、開口部が設けられている請求項18に記載の保護素子。 The protective element according to claim 18, wherein the soluble conductor is provided with an opening in the high melting point metal formed on the surface of the low melting point metal constituting the inner layer.
  25.  上記可溶導体は、複数の開口部を有する高融点金属層と、上記高融点金属層上に形成された低融点金属層とを有し、上記開口部に上記低融点金属が充填されている請求項18に記載の保護素子。 The soluble conductor has a high melting point metal layer having a plurality of openings and a low melting point metal layer formed on the high melting point metal layer, and the openings are filled with the low melting point metal. The protective element according to claim 18.
  26.  上記可溶導体は、外層を構成する上記高融点金属によって被覆され主面部よりも肉厚に形成された相対向する一対の第1の側縁部と、内層を構成する上記低融点金属が露出され上記第1の側縁部よりも薄い厚さに形成された相対向する一対の第2の側縁部とを有し、
     上記第1の側縁部が上記第1の絶縁基板の表面に形成された上記第1、第2の電極に沿って搭載され、上記第2の側縁部が第1、第2の電極間にわたって接続されている請求項18に記載の保護素子。
    The fusible conductor is exposed to a pair of opposing first side edges that are covered with the refractory metal constituting the outer layer and formed thicker than the main surface portion, and the low melting point metal constituting the inner layer is exposed. A pair of opposing second side edges formed in a thickness thinner than the first side edges,
    The first side edge is mounted along the first and second electrodes formed on the surface of the first insulating substrate, and the second side edge is between the first and second electrodes. The protective element according to claim 18, which is connected over the entire area.
  27.  上記可溶導体は、上記低融点金属の体積が、上記高融点金属の体積よりも多い請求項18に記載の保護素子。 The protective element according to claim 18, wherein the soluble conductor has a volume of the low melting point metal larger than a volume of the high melting point metal.
  28.  1つ以上のバッテリセルと、
     上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子とを備え、
     上記保護素子は、
     第1の絶縁基板と、
     上記第1の絶縁基板の表面に搭載され、上記充放電経路となる可溶導体とを有し、
     上記第1の絶縁基板の表面には、溶融した上記可溶導体を吸引する吸引孔が開口されているバッテリパック。
    One or more battery cells;
    A protection element connected to the charge / discharge path of the battery cell and blocking the charge / discharge path;
    The protective element is
    A first insulating substrate;
    A soluble conductor mounted on the surface of the first insulating substrate and serving as the charge / discharge path;
    A battery pack in which a suction hole for sucking the melted soluble conductor is opened on a surface of the first insulating substrate.
  29.  第1、第2の外部電極と、
     上記第1、第2の外部電極間にわたって接続された可溶導体と、
     上記可溶導体に接続され、溶融した上記可溶導体を吸引する吸引部材とを有し、
     上記吸引部材は、
     上記第1、第2の外部電極間に配設された第1の絶縁基板と、
     上記第1の絶縁基板の表面に形成され、上記可溶導体の一部と接続された表面電極と、
     上記第1の絶縁基板に設けられた発熱体と、
     上記第1の絶縁基板の厚さ方向に設けられ、上記表面電極と連続する貫通孔とを備え、
     上記可溶導体が溶融することにより上記第1の外部電極と上記第2の外部電極との間の電流経路を遮断する保護素子。
    First and second external electrodes;
    A fusible conductor connected between the first and second external electrodes;
    A suction member connected to the soluble conductor and sucking the melted soluble conductor;
    The suction member is
    A first insulating substrate disposed between the first and second external electrodes;
    A surface electrode formed on the surface of the first insulating substrate and connected to a part of the soluble conductor;
    A heating element provided on the first insulating substrate;
    Provided in the thickness direction of the first insulating substrate, comprising a through-hole continuous with the surface electrode,
    A protective element that blocks a current path between the first external electrode and the second external electrode by melting the soluble conductor.
  30.  上記貫通孔は、内周面に上記表面電極と連続する導電層が形成されている請求項29に記載の保護素子。 30. The protective element according to claim 29, wherein the through-hole is formed with a conductive layer continuous with the surface electrode on an inner peripheral surface.
  31.  上記第1の絶縁基板の裏面に形成された裏面電極を備え、
     上記貫通孔は、上記表面電極と上記裏面電極との間に上記第1の絶縁基板の厚さ方向に設けられ、上記導電層が上記表面電極及び上記裏面電極と連続されている請求項30に記載の保護素子。
    A back electrode formed on the back surface of the first insulating substrate;
    The said through-hole is provided in the thickness direction of the said 1st insulated substrate between the said surface electrode and the said back surface electrode, The said conductive layer is continued with the said surface electrode and the said back surface electrode. The protective element as described.
  32.  上記発熱体は、上記第1の絶縁基板の表面側に設けられ、上記表面電極と電気的に接続されている請求項31に記載の保護素子。 32. The protection element according to claim 31, wherein the heating element is provided on a surface side of the first insulating substrate and is electrically connected to the surface electrode.
  33.  上記発熱体は、上記第1の絶縁基板の裏面側に設けられ、上記裏面電極と電気的に接続されている請求項31に記載の保護素子。 32. The protection element according to claim 31, wherein the heating element is provided on a back surface side of the first insulating substrate and is electrically connected to the back electrode.
  34.  上記発熱体は、上記第1の絶縁基板の内部に設けられ、上記表面電極又は裏面電極と電気的に接続されている請求項31に記載の保護素子。 32. The protection element according to claim 31, wherein the heating element is provided inside the first insulating substrate and is electrically connected to the front surface electrode or the back surface electrode.
  35.  上記貫通孔内の一部又は全部には、予備ハンダ及び/又はフラックスが充填されている請求項29~34のいずれか1項に記載の保護素子。 The protective element according to any one of claims 29 to 34, wherein a part or all of the inside of the through hole is filled with preliminary solder and / or flux.
  36.  上記第1の絶縁基板は、上記発熱体が発熱したとき、上記発熱体が設けられた表面側又は裏面側の一方が他方より温度が高い温度勾配となる請求項32~34のいずれか1項に記載の保護素子。 The first insulating substrate according to any one of claims 32 to 34, wherein when the heating element generates heat, one of the front side and the back side where the heating element is provided has a temperature gradient higher than the other. The protective element as described in.
  37.  上記第1の絶縁基板は、上記発熱体が発熱したとき、上記発熱体が設けられた表面側又は裏面側の一方が他方より温度が高い温度勾配となる請求項35に記載の保護素子。 36. The protection element according to claim 35, wherein when the heating element generates heat, the first insulating substrate has a temperature gradient in which one of the front side and the back side where the heating element is provided has a temperature higher than the other.
  38.  上記発熱体は、上記貫通孔の両側に配置されている請求項29~34のいずれか1項に記載の保護素子。 The protective element according to any one of claims 29 to 34, wherein the heating element is disposed on both sides of the through hole.
  39.  複数の上記貫通孔が設けられ、
     上記発熱体は、上記複数の貫通孔の両側に配置されている請求項38に記載の保護素子。
    A plurality of the through holes are provided;
    The protection element according to claim 38, wherein the heating element is disposed on both sides of the plurality of through holes.
  40.  第2の絶縁基板と、
     上記第2の絶縁基板に設けられ、上記可溶導体を溶融させる発熱体と、
     上記可溶導体と接続され、上記可溶導体が溶融した溶融導体を凝集させる集電極とを有する凝集部材を備える請求項29~34のいずれか1項に記載の保護素子。
    A second insulating substrate;
    A heating element provided on the second insulating substrate for melting the soluble conductor;
    The protective element according to any one of claims 29 to 34, further comprising an aggregating member connected to the fusible conductor and having a collecting electrode for aggregating the molten conductor in which the fusible conductor is melted.
  41.  上記凝集部材は、上記集電極が上記可溶導体の上記吸引部材が接続された面と反対側の面に接続されている請求項40に記載の保護素子。 41. The protective element according to claim 40, wherein the aggregating member has the collector electrode connected to a surface of the fusible conductor opposite to the surface to which the suction member is connected.
  42.  上記凝集部材は、上記集電極が上記吸引部材の上記貫通孔と対向されている請求項41に記載の保護素子。 42. The protective element according to claim 41, wherein the aggregating member has the collecting electrode opposed to the through hole of the suction member.
  43.  上記可溶導体には、複数の上記吸引部材が接続されている請求項29~34のいずれか1項に記載の保護素子。 The protection element according to any one of claims 29 to 34, wherein a plurality of the suction members are connected to the soluble conductor.
  44.  上記可溶導体には、2つの上記吸引部材が対向して接続されている請求項43に記載の保護素子。 44. The protective element according to claim 43, wherein the two suction members are connected to the soluble conductor in opposition to each other.
  45.  上記可溶導体は、内層が低融点金属であり、外層が高融点金属の被覆構造である請求項40に記載の保護素子。 41. The protective element according to claim 40, wherein the soluble conductor has a coating structure in which an inner layer is a low melting point metal and an outer layer is a high melting point metal.
  46.  上記可溶導体は、内層が低融点金属であり、外層が高融点金属の被覆構造である請求項43に記載の保護素子。 45. The protective element according to claim 43, wherein the soluble conductor has a coating structure in which an inner layer is a low melting point metal and an outer layer is a high melting point metal.
  47.  1つ以上のバッテリセルと、
     上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子と、
     上記バッテリセルの電圧値を検出して上記保護素子への通電を制御する電流制御素子とを備え、
     上記保護素子は、
     第1、第2の外部電極と、
     上記第1、第2の外部電極間にわたって接続された可溶導体と、
     溶融した上記可溶導体を吸引する吸引部材とを有し、
     上記吸引部材は、
     上記第1、第2の外部電極間に配設された第1の絶縁基板と、
     上記第1の絶縁基板の表面に形成され、上記可溶導体の一部と接続された表面電極と、
     上記第1の絶縁基板に設けられた発熱体と、
     上記第1の絶縁基板の厚さ方向に設けられ、上記表面電極と連続する貫通孔とを備え、
     上記可溶導体が溶融することにより上記第1の外部電極と上記第2の外部電極との間の電流経路を遮断するバッテリパック。
    One or more battery cells;
    A protection element connected to the charge / discharge path of the battery cell and blocking the charge / discharge path;
    A current control element that detects a voltage value of the battery cell and controls energization to the protection element;
    The protective element is
    First and second external electrodes;
    A fusible conductor connected between the first and second external electrodes;
    A suction member for sucking the melted soluble conductor,
    The suction member is
    A first insulating substrate disposed between the first and second external electrodes;
    A surface electrode formed on the surface of the first insulating substrate and connected to a part of the soluble conductor;
    A heating element provided on the first insulating substrate;
    Provided in the thickness direction of the first insulating substrate, comprising a through-hole continuous with the surface electrode,
    A battery pack that interrupts a current path between the first external electrode and the second external electrode by melting the soluble conductor.
  48.  第1の絶縁基板と、
     第1及び第2の外部電極と、
     上記第1の絶縁基板の一方の面側にある、上記第1の外部電極と上記第2の外部電極との間に設けられた中間電極と、
     上記第1の絶縁基板の他方の面側に設けられた発熱体と、
     上記第1の絶縁基板の一方の面に、上記中間電極と接続されるとともに上記第1及び第2の外部電極にわたって接続され、上記発熱体による加熱により、該第1の外部電極と該第2の外部電極との間の電流経路を溶断する可溶導体と、
     上記第1の絶縁基板の他方の面側に設けられ、上記発熱体の一方の端子に電気的に接続された発熱体引出電極と、
     上記中間電極と上記発熱体引出電極との間に上記第1の絶縁基板の厚さ方向に設けられ、内側面に上記中間電極と上記発熱体引出電極と連続する導電層が設けられた貫通孔とを備える保護素子。
    A first insulating substrate;
    First and second external electrodes;
    An intermediate electrode provided between the first external electrode and the second external electrode on one surface side of the first insulating substrate;
    A heating element provided on the other surface side of the first insulating substrate;
    One surface of the first insulating substrate is connected to the intermediate electrode and connected to the first and second external electrodes, and the first external electrode and the second electrode are heated by the heating element. A fusible conductor that melts the current path between the external electrodes of
    A heating element extraction electrode provided on the other surface side of the first insulating substrate and electrically connected to one terminal of the heating element;
    A through-hole provided between the intermediate electrode and the heating element extraction electrode in the thickness direction of the first insulating substrate, and provided with a conductive layer continuous with the intermediate electrode and the heating element extraction electrode on the inner surface And a protective element.
  49.  更に、当該保護素子は、上記貫通孔内に充填された予備ハンダを備えることを特徴とする請求項48記載の保護素子。 49. The protective element according to claim 48, wherein the protective element further comprises a spare solder filled in the through hole.
  50.  上記第1の絶縁基板は、上記発熱体が発熱したとき、上記第1の絶縁基板の他方の面側の方が一方の面側より温度が高い温度勾配となることを特徴とする請求項48記載の保護素子。 49. The first insulating substrate is characterized in that when the heating element generates heat, the other surface side of the first insulating substrate has a temperature gradient higher than that of one surface side. The protective element as described.
  51.  上記発熱体は、上記貫通孔の両側に設けられることを特徴とする請求項48記載の保護素子。 49. The protective element according to claim 48, wherein the heating element is provided on both sides of the through hole.
  52.  上記貫通孔は、複数であり、
     上記発熱体は、上記複数の貫通孔の両側に配置されていることを特徴とする請求項51記載の保護素子。
    The through hole is plural,
    52. The protection element according to claim 51, wherein the heating element is disposed on both sides of the plurality of through holes.
  53.  1つ以上のバッテリセルと、
     上記バッテリセルに流れる電流を遮断するように接続された保護素子と、
     上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、
     上記保護素子は、
     第1の絶縁基板と、
     第1及び第2の外部電極と、
     上記第1の絶縁基板の一方の面側にある、上記第1の外部電極と上記第2の外部電極との間に設けられた中間電極と、
     上記第1の絶縁基板の他方の面側に設けられた発熱体と、
     上記第1の絶縁基板の一方の面に、上記中間電極と接続されるとともに上記第1及び第2の外部電極にわたって接続され、上記発熱体による加熱により、該第1の外部電極と該第2の外部電極との間の電流経路を溶断する可溶導体と、
     上記第1の絶縁基板の他方の面側に設けられ、上記発熱体の一方の端子に電気的に接続された発熱体引出電極と、
     上記中間電極と上記発熱体引出電極との間に上記第1の絶縁基板の厚さ方向に設けられ、内側面に上記中間電極と上記発熱体引出電極と連続する導電層が設けられた貫通孔とを有するバッテリパック。
    One or more battery cells;
    A protective element connected to cut off the current flowing through the battery cell;
    A current control element that detects a voltage value of each of the battery cells and controls a current for heating the protection element;
    The protective element is
    A first insulating substrate;
    First and second external electrodes;
    An intermediate electrode provided between the first external electrode and the second external electrode on one surface side of the first insulating substrate;
    A heating element provided on the other surface side of the first insulating substrate;
    One surface of the first insulating substrate is connected to the intermediate electrode and connected to the first and second external electrodes, and the first external electrode and the second electrode are heated by the heating element. A fusible conductor that melts the current path between the external electrodes of
    A heating element extraction electrode provided on the other surface side of the first insulating substrate and electrically connected to one terminal of the heating element;
    A through-hole provided between the intermediate electrode and the heating element extraction electrode in the thickness direction of the first insulating substrate, and provided with a conductive layer continuous with the intermediate electrode and the heating element extraction electrode on the inner surface And having a battery pack.
PCT/JP2014/070785 2013-08-07 2014-08-06 Protective element and battery pack WO2015020111A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167003293A KR102251913B1 (en) 2013-08-07 2014-08-06 Protective element and battery pack
CN201480044945.1A CN105453211B (en) 2013-08-07 2014-08-06 Protection element and battery pack

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013163950 2013-08-07
JP2013-163950 2013-08-07
JP2014-113044 2014-05-30
JP2014113044A JP6364243B2 (en) 2013-08-07 2014-05-30 Protective element and battery pack

Publications (1)

Publication Number Publication Date
WO2015020111A1 true WO2015020111A1 (en) 2015-02-12

Family

ID=52461441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070785 WO2015020111A1 (en) 2013-08-07 2014-08-06 Protective element and battery pack

Country Status (5)

Country Link
JP (1) JP6364243B2 (en)
KR (1) KR102251913B1 (en)
CN (1) CN105453211B (en)
TW (1) TWI671777B (en)
WO (1) WO2015020111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740468B (en) * 2020-04-24 2021-09-21 大毅科技股份有限公司 Overcurrent protection device and method of manufacturing the same
CN114420518A (en) * 2022-03-30 2022-04-29 嘉兴模度新能源有限公司 Vacuum temperature fuse, series battery row, parallel battery row and battery pack
US20220336173A1 (en) * 2019-08-29 2022-10-20 Dexerials Corporation Protecting device and battery pack

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223142B2 (en) * 2013-11-20 2017-11-01 デクセリアルズ株式会社 Short circuit element
WO2017104597A1 (en) * 2015-12-18 2017-06-22 デクセリアルズ株式会社 Fuse element
JP6797565B2 (en) * 2015-12-18 2020-12-09 デクセリアルズ株式会社 Fuse element
JP6801974B2 (en) 2016-03-24 2020-12-16 デクセリアルズ株式会社 Protective element
JP6853447B2 (en) * 2016-04-26 2021-03-31 三菱マテリアル株式会社 Surge protection element
JP7002955B2 (en) * 2017-02-28 2022-01-20 デクセリアルズ株式会社 Fuse element
JP6912314B2 (en) * 2017-08-01 2021-08-04 ショット日本株式会社 Protective element
KR102382386B1 (en) * 2018-02-09 2022-04-01 주식회사 엘지에너지솔루션 Bus Bar Having Current Interruption Part and Battery Module Having the Same
TWI691995B (en) * 2018-07-25 2020-04-21 大陸商江門市鈞崴電子科技有限公司 Protection element and insulated conductive heating module and method for manufacturing insulated conductive heating module
CN110828254B (en) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 Protective element
JP7281274B2 (en) 2018-12-19 2023-05-25 デクセリアルズ株式会社 Protective elements and battery packs
JP7055109B2 (en) * 2019-01-17 2022-04-15 三菱電機株式会社 Semiconductor device
TWI811301B (en) * 2019-02-13 2023-08-11 南韓商Lg新能源股份有限公司 Battery module
JP7280151B2 (en) * 2019-08-29 2023-05-23 デクセリアルズ株式会社 protection element, battery pack
JP7339071B2 (en) * 2019-08-29 2023-09-05 デクセリアルズ株式会社 protection element, battery pack
JP2022177335A (en) * 2019-10-29 2022-12-01 三洋電機株式会社 Power supply device, power storage device including the same, and electric vehicle
KR102280596B1 (en) * 2019-11-28 2021-07-22 주식회사 인세코 High current protection element for secondary battery and battery pack including that
TWI700719B (en) * 2019-12-13 2020-08-01 聚鼎科技股份有限公司 Protection device and circuit protection apparatus containing the same
TWI820279B (en) * 2019-12-26 2023-11-01 日商迪睿合股份有限公司 Protection element and battery pack
JP7443144B2 (en) * 2020-04-17 2024-03-05 デクセリアルズ株式会社 Protection elements and battery packs
JP7344857B2 (en) * 2020-09-17 2023-09-14 ショット日本株式会社 protection element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (en) * 1982-02-15 1983-08-20 株式会社フジクラ fusible link
JPH11273541A (en) * 1998-03-25 1999-10-08 Skk:Kk Fuse
JP2001313202A (en) * 2000-04-28 2001-11-09 Nec Schott Components Corp Protective device
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
JP2008112735A (en) * 2007-12-11 2008-05-15 Nec Schott Components Corp Protection device using temperature fuse
JP2009267371A (en) * 2008-03-31 2009-11-12 Fuji Electric Device Technology Co Ltd Semiconductor device and production method therefor
JP2011175893A (en) * 2010-02-25 2011-09-08 Kyocera Corp Resistance temperature fuse package and resistance temperature fuse
JP2013149606A (en) * 2011-12-19 2013-08-01 Dexerials Corp Protective element, protective element fabrication method, and battery module equipped with protective element
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3774871B2 (en) * 1995-10-16 2006-05-17 松尾電機株式会社 Delay type thin film fuse
US6445277B1 (en) * 1999-06-22 2002-09-03 Yazaki Corporation Safety device of electric circuit and process for producing the same
JP5072796B2 (en) 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP5301298B2 (en) * 2009-01-21 2013-09-25 デクセリアルズ株式会社 Protective element
JP5260592B2 (en) * 2010-04-08 2013-08-14 デクセリアルズ株式会社 Protective element, battery control device, and battery pack

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (en) * 1982-02-15 1983-08-20 株式会社フジクラ fusible link
JPH11273541A (en) * 1998-03-25 1999-10-08 Skk:Kk Fuse
JP2001313202A (en) * 2000-04-28 2001-11-09 Nec Schott Components Corp Protective device
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
JP2008112735A (en) * 2007-12-11 2008-05-15 Nec Schott Components Corp Protection device using temperature fuse
JP2009267371A (en) * 2008-03-31 2009-11-12 Fuji Electric Device Technology Co Ltd Semiconductor device and production method therefor
JP2011175893A (en) * 2010-02-25 2011-09-08 Kyocera Corp Resistance temperature fuse package and resistance temperature fuse
JP2013149606A (en) * 2011-12-19 2013-08-01 Dexerials Corp Protective element, protective element fabrication method, and battery module equipped with protective element
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220336173A1 (en) * 2019-08-29 2022-10-20 Dexerials Corporation Protecting device and battery pack
US11791116B2 (en) * 2019-08-29 2023-10-17 Dexerials Corporation Protecting device and battery pack
TWI740468B (en) * 2020-04-24 2021-09-21 大毅科技股份有限公司 Overcurrent protection device and method of manufacturing the same
CN114420518A (en) * 2022-03-30 2022-04-29 嘉兴模度新能源有限公司 Vacuum temperature fuse, series battery row, parallel battery row and battery pack

Also Published As

Publication number Publication date
KR20160040567A (en) 2016-04-14
TWI671777B (en) 2019-09-11
CN105453211B (en) 2018-11-06
JP6364243B2 (en) 2018-07-25
KR102251913B1 (en) 2021-05-13
CN105453211A (en) 2016-03-30
JP2015053260A (en) 2015-03-19
TW201523679A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP6364243B2 (en) Protective element and battery pack
JP6437253B2 (en) Protective element and mounting body
JP7281274B2 (en) Protective elements and battery packs
JP2013229295A (en) Protective element
JP6371118B2 (en) Protective element and battery pack
JP6538936B2 (en) Protective element and battery pack
JP6173859B2 (en) Short circuit element
JP6621255B2 (en) Protection element, fuse element
US11804347B2 (en) Protecting device and battery pack
JP6381975B2 (en) Short circuit element
KR102233539B1 (en) Bypass element and bypass circuit
WO2015111683A1 (en) Interrupting element and interrupting-element circuit
US20220200111A1 (en) Protecting device and battery pack
US11791116B2 (en) Protecting device and battery pack
TWI615940B (en) Short circuit element
JP2018018835A (en) Protection element and fuse element
JP2016035881A (en) Short-circuit element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044945.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834342

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167003293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834342

Country of ref document: EP

Kind code of ref document: A1