TWI740468B - Overcurrent protection device and method of manufacturing the same - Google Patents

Overcurrent protection device and method of manufacturing the same Download PDF

Info

Publication number
TWI740468B
TWI740468B TW109113860A TW109113860A TWI740468B TW I740468 B TWI740468 B TW I740468B TW 109113860 A TW109113860 A TW 109113860A TW 109113860 A TW109113860 A TW 109113860A TW I740468 B TWI740468 B TW I740468B
Authority
TW
Taiwan
Prior art keywords
conductive layer
protection device
overcurrent protection
substrate
layer
Prior art date
Application number
TW109113860A
Other languages
Chinese (zh)
Other versions
TW202141881A (en
Inventor
江財寶
江智偉
楊士賢
林伯軒
Original Assignee
大毅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大毅科技股份有限公司 filed Critical 大毅科技股份有限公司
Priority to TW109113860A priority Critical patent/TWI740468B/en
Application granted granted Critical
Publication of TWI740468B publication Critical patent/TWI740468B/en
Publication of TW202141881A publication Critical patent/TW202141881A/en

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

The present disclosure relates to an overcurrent protection device. The overcurrent protection device includes a substrate, a heat insulating layer disposed on the substrate, an electrode disposed on the heat insulating layer, and a conductive layer disposed on the heat insulating layer and at least partially covering the electrode. The present disclosure also relates to a method of manufacturing an overcurrent protection device.

Description

過電流保護裝置及其製造方法Overcurrent protection device and manufacturing method thereof

本發明係關於過電流保護裝置。 The present invention relates to an overcurrent protection device.

過電流保護裝置係一種可保護線路或電子裝置不因過大電流發熱而損壞的裝置。例如,當通過保險絲(或熔絲)的電流超過額定電流值時,保險絲可被熔斷,使線路斷路,達到保護的效果。 Overcurrent protection device is a device that can protect circuits or electronic devices from damage caused by excessive current heating. For example, when the current passing through the fuse (or fuse) exceeds the rated current value, the fuse can be blown, breaking the circuit, and achieving the effect of protection.

低功率(或低功耗)的電子裝置(例如,穿戴式裝置)的額定電流通常較低,例如為約10.0毫安培(mA)至約100.0mA。如何使過電流保護裝置應用於低功率的電子裝置係為本揭露之技術領域極欲解決之問題。 The rated current of low-power (or low-power consumption) electronic devices (for example, wearable devices) is generally low, for example, about 10.0 milliamps (mA) to about 100.0 mA. How to apply the over-current protection device to low-power electronic devices is a problem that the technical field disclosed in this disclosure is desperate to solve.

本揭露之一實施例係關於一種過電流保護裝置,包括基板、設置於該基板上的絕熱層、設置於該絕熱層上的電極、及設置於該絕熱層上並至少部分覆蓋該電極的傳導層。 An embodiment of the present disclosure relates to an overcurrent protection device, including a substrate, a thermal insulation layer provided on the substrate, an electrode provided on the thermal insulation layer, and a conductive layer provided on the thermal insulation layer and at least partially covering the electrode Floor.

本揭露之一實施例係關於一種過電流保護裝置,包括基板及設置於該基板上的傳導層。該傳導層具有一第一區段及一第二區段。該第一區段之一第一部分與該第二區段連接,且該第一區段之一第二部分與該第二區段分離以形成一缺口。該基板具有位於該缺口下方的凹陷處。 An embodiment of the disclosure relates to an overcurrent protection device, which includes a substrate and a conductive layer disposed on the substrate. The conductive layer has a first section and a second section. A first part of the first section is connected to the second section, and a second part of the first section is separated from the second section to form a gap. The substrate has a recess under the notch.

本揭露之一實施例係關於一種過電流保護裝置之製造方法,包括提供一基板、形成一絕熱層於該基板上、形成一傳導層於該絕熱層上、及局部地移除該傳導層。 An embodiment of the present disclosure relates to a manufacturing method of an overcurrent protection device, which includes providing a substrate, forming an insulating layer on the substrate, forming a conductive layer on the insulating layer, and partially removing the conductive layer.

1:過電流保護裝置 1: Overcurrent protection device

1':過電流保護裝置 1': Overcurrent protection device

10:基板 10: substrate

10r:凹陷部 10r: Depressed part

10rs:側壁 10rs: sidewall

10rm:底部表面 10rm: bottom surface

11:絕熱層 11: Insulation layer

11r:凹陷部 11r: Depressed part

11rs:側壁 11rs: sidewall

11rm:底部表面 11rm: bottom surface

12:電極 12: Electrode

13:傳導層 13: Conductive layer

13r:缺口 13r: gap

13s:側壁 13s: sidewall

14:保護層 14: protective layer

15:晶種層 15: Seed layer

16:端電極 16: terminal electrode

17:標示 17: marking

61:區段 61: Section

61a:部分 61a: part

61b:部分 61b: Part

62:區段 62: section

101:表面 101: Surface

102:表面 102: Surface

103:表面 103: Surface

111:表面 111: Surface

112:表面 112: Surface

113:表面 113: Surface

131:表面 131: Surface

132:表面 132: Surface

h:高度 h: height

s:間距 s: spacing

w:寬度 w: width

在下文中參考隨附圖式討論至少一項實施例之各種態樣,該等圖式並不意在按比例繪製。在圖、實施方式或任何請求項中之技術特徵伴隨元件符號之處,已出於增大圖、實施方式或申請專利範圍中之可理解性之唯一目的而包含該等元件符號。因此,元件符號之存在與否皆不意在具有對任何申請專利範圍元素之範疇之限制效應。在圖中,在各種圖中繪示之各相同或幾乎相同之組件藉由一相同數字表示。為清晰起見,並非每一組件皆在每一圖中標記。該等圖出於繪示及解釋之目的提供且不視為本發明之限制之一定義。在圖中:圖1A所示為根據本揭露之部分實施例之過電流保護裝置之側視圖;圖1B所示為根據本揭露之部分實施例之過電流保護裝置之側視圖;圖2A至圖9B所示為根據本揭露之部分實施例之過電流保護裝置之製造方法。 Various aspects of at least one embodiment are discussed below with reference to the accompanying drawings, which are not intended to be drawn to scale. Where technical features in the drawings, embodiments, or any claim are accompanied by component symbols, these component symbols have been included for the sole purpose of increasing the intelligibility of the drawings, embodiments, or the scope of the patent application. Therefore, the presence or absence of element symbols is not intended to have a limiting effect on the scope of any element in the scope of the patent application. In the figures, the same or almost the same components shown in the various figures are represented by the same number. For clarity, not every component is labeled in every figure. The figures are provided for the purpose of illustration and explanation and are not regarded as one of the definitions of the limitations of the present invention. In the drawings: FIG. 1A shows a side view of an overcurrent protection device according to some embodiments of the present disclosure; FIG. 1B shows a side view of an overcurrent protection device according to some embodiments of the present disclosure; FIGS. 2A to 2 9B shows the manufacturing method of the overcurrent protection device according to some embodiments of the present disclosure.

圖1A所示為根據本揭露之部分實施例之過電流保護裝置1之側視圖。過電流保護裝置1包括基板10、絕熱層11、電極12、傳導層13、保護層14、晶種層15、端電極16、及標示17。 FIG. 1A shows a side view of an overcurrent protection device 1 according to some embodiments of the present disclosure. The overcurrent protection device 1 includes a substrate 10, a heat insulating layer 11, an electrode 12, a conductive layer 13, a protective layer 14, a seed layer 15, a terminal electrode 16, and a label 17.

根據本揭露之部分實施例,過電流保護裝置1可應用於電子 裝置中,若流經傳導層13的電流超過額定電流或預定電流,所產生的熱可使傳導層13被熔斷,藉此保護電子裝置中的線路、元件或組件等不受過大電流的發熱而損壞。在一些實施例中,過電流保護裝置1可應用於低功耗(或用電量低)的電子裝置中,例如(但不限於)應用於電子手環、電子手錶、耳機、手機、或其他穿戴式電子裝置中。例如,過電流保護裝置1可應用於操作電流為約10.0毫安培(mA)至約100.0mA的電子裝置中。 According to some embodiments of the present disclosure, the overcurrent protection device 1 can be applied to electronic In the device, if the current flowing through the conductive layer 13 exceeds the rated current or a predetermined current, the heat generated can cause the conductive layer 13 to be fused, thereby protecting the circuits, components, or components in the electronic device from the heat caused by the excessive current. damage. In some embodiments, the overcurrent protection device 1 can be applied to electronic devices with low power consumption (or low power consumption), such as (but not limited to) electronic bracelets, electronic watches, earphones, mobile phones, or other electronic devices. Wearable electronic devices. For example, the overcurrent protection device 1 can be applied to an electronic device with an operating current of about 10.0 milliamperes (mA) to about 100.0 mA.

在一些實施例中,基板10可包括(但不限於)硼矽酸鹽玻璃(borophosphosilicate glass,BPSG)、經摻雜矽酸鹽玻璃(undoped silicate glass,USG)、矽(silicon)、氧化矽(silicon oxide)、氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)、氧化鋁(aluminium oxide)、氮化鋁(aluminium nitride)、聚醯亞胺(Polyimide,PI)、ABF基材(Ajinomoto build-up film,ABF)、模塑膠(molding compounds)、預浸漬複合纖維(pre-impregnated composite fibers)(例如,預浸材料)、及其中之組合、或其他類似物。模塑膠的實例可包括(但不限於)環氧樹脂(epoxy resin)(包含分散其中的填料(fillers))。預浸材料的實例可包括(但不限於)通過堆疊或層壓(laminating)多個預浸漬材料及/或片料(sheets)所形成的多層結構。根據本揭露之部分實施例,基板10可為電路板(如FR4)。如圖1A所示,基板10具有表面101、與表面101相對的表面102、及延伸於表面101及表面102之間的表面103。 In some embodiments, the substrate 10 may include (but is not limited to) borophosphosilicate glass (BPSG), undoped silicate glass (USG), silicon (silicon), silicon oxide ( silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, polyimide (PI), ABF substrate (Ajinomoto Build-up film (ABF), molding compounds, pre-impregnated composite fibers (for example, prepreg materials), combinations thereof, or the like. Examples of molding compounds may include, but are not limited to, epoxy resins (including fillers dispersed therein). Examples of the prepreg material may include, but are not limited to, a multilayer structure formed by stacking or laminating a plurality of prepreg materials and/or sheets. According to some embodiments of the present disclosure, the substrate 10 may be a circuit board (such as FR4). As shown in FIG. 1A, the substrate 10 has a surface 101, a surface 102 opposite to the surface 101, and a surface 103 extending between the surface 101 and the surface 102.

絕熱層11設置於基板10的表面102上。換句話說,絕熱層11位於基板10及傳導層13之間。在一些實施例中,絕熱層11可包括(但不限於)環氧樹脂(包含分散其中的填料)、矽、或其他適合的材料。 The thermal insulation layer 11 is provided on the surface 102 of the substrate 10. In other words, the thermal insulation layer 11 is located between the substrate 10 and the conductive layer 13. In some embodiments, the thermal insulation layer 11 may include (but is not limited to) epoxy resin (including fillers dispersed therein), silicon, or other suitable materials.

在部分實施例中,過電流保護裝置(如圖1之過電流保護裝 置1)可不包括絕熱層(如圖1之絕熱層11)。然而,若過電流保護裝置1不包括絕熱層11,則電流流經傳導層13所產生的熱可能經由基板10逸散至環境中,熱來不及累積,致使通過過電流保護裝置之電流達到達額定電流時,傳導層13仍無法被熔斷,導致電子裝置之損壞。本揭露透過在基板10及傳導層13之間設置絕熱層11,可阻隔或減少熱經由基板10逸散,確保通過過電流保護裝置之電流在達額定電流時,傳導層13可即時被熔斷,以保護電子裝置,降低電子裝置的損害風險。 In some embodiments, the overcurrent protection device (such as the overcurrent protection device in Figure 1) Set 1) may not include a thermal insulation layer (such as the thermal insulation layer 11 in Figure 1). However, if the overcurrent protection device 1 does not include the thermal insulation layer 11, the heat generated by the current flowing through the conductive layer 13 may escape to the environment through the substrate 10. The heat is too late to accumulate, causing the current through the overcurrent protection device to reach the rated current. When current is applied, the conductive layer 13 still cannot be fused, resulting in damage to the electronic device. The present disclosure can block or reduce heat dissipation through the substrate 10 by providing an insulating layer 11 between the substrate 10 and the conductive layer 13, and ensure that the conductive layer 13 can be instantly fused when the current passing through the overcurrent protection device reaches the rated current. To protect the electronic device and reduce the risk of damage to the electronic device.

絕熱層11具有表面111、與表面111相對的表面112、及延伸於表面111及表面112之間的表面113。表面111接觸基板10且表面112接觸傳導層13。在一些實施例中,在大致上垂直於基板10的表面102的一方向上,絕熱層11可具有約0.1微米(rmicrometer,μm)至約40.0μm之厚度。然而,本揭露不限於此。在一些實施例中,絕熱層11可依裝置規格或製程要求而具有其他厚度。 The thermal insulation layer 11 has a surface 111, a surface 112 opposite to the surface 111, and a surface 113 extending between the surface 111 and the surface 112. The surface 111 contacts the substrate 10 and the surface 112 contacts the conductive layer 13. In some embodiments, in a direction substantially perpendicular to the surface 102 of the substrate 10, the thermal insulation layer 11 may have a thickness of about 0.1 micrometer (rmicrometer, μm) to about 40.0 μm. However, this disclosure is not limited to this. In some embodiments, the thermal insulation layer 11 may have other thicknesses according to device specifications or manufacturing process requirements.

在一些實施例中,絕熱層11之表面粗糙度大於或等於基板10之表面粗糙度。例如,絕熱層11之表面(例如表面111、及/或表面112)具有約0.3μm至約0.5μm之粗糙度,而基板10之表面(例如表面101、及/或表面102)具有約0.2μm至約0.3μm之粗糙度。在一些實施例中,絕熱層11之表面112之表面粗糙度大於或等於絕熱層11之表面111之表面粗糙度。在一些實施例中,絕熱層11之表面粗糙度與基板10之表面粗糙度可能受到個別使用的材料的影響,並不限於本揭露中所舉出的特定數值。 In some embodiments, the surface roughness of the thermal insulation layer 11 is greater than or equal to the surface roughness of the substrate 10. For example, the surface of the thermal insulation layer 11 (such as the surface 111 and/or the surface 112) has a roughness of about 0.3 μm to about 0.5 μm, and the surface of the substrate 10 (such as the surface 101 and/or the surface 102) has a roughness of about 0.2 μm. To a roughness of about 0.3μm. In some embodiments, the surface roughness of the surface 112 of the thermal insulation layer 11 is greater than or equal to the surface roughness of the surface 111 of the thermal insulation layer 11. In some embodiments, the surface roughness of the thermal insulation layer 11 and the surface roughness of the substrate 10 may be affected by the materials used individually, and are not limited to the specific values mentioned in this disclosure.

電極12設置於絕熱層11上。在一些實施例中,電極12可設置於基板10的兩端或兩側。在一些實施例中,在大致上垂直於基板10的表面102的一方向上,電極12可具有約1.0μm至約10.0μm之厚度。然而, 本揭露不限於此。在一些實施例中,電極12可依裝置規格或製程要求而具有其他厚度。 The electrode 12 is arranged on the heat insulating layer 11. In some embodiments, the electrodes 12 may be provided on both ends or both sides of the substrate 10. In some embodiments, the electrode 12 may have a thickness of about 1.0 μm to about 10.0 μm in a direction substantially perpendicular to the surface 102 of the substrate 10. However, This disclosure is not limited to this. In some embodiments, the electrode 12 may have other thicknesses according to device specifications or process requirements.

傳導層13設置於絕熱層11上並且覆蓋電極12。在一些實施例中,傳導層13可包括(但不限於)銅(Cu)、金(Au)、銀(Ag)、鋁(Al)、鎳(Ni)、鈦(Ti)、鎢(W)、鉻(Cr)、錫(Sn)、或其他金屬或合金。例如,在一些實施例中,合金可包括鎳鉻合金(如鎳鉻鋁、鎳鉻矽)、鎳銅合金(如鎳銅錳)等。 The conductive layer 13 is disposed on the heat insulating layer 11 and covers the electrode 12. In some embodiments, the conductive layer 13 may include (but is not limited to) copper (Cu), gold (Au), silver (Ag), aluminum (Al), nickel (Ni), titanium (Ti), tungsten (W) , Chromium (Cr), Tin (Sn), or other metals or alloys. For example, in some embodiments, the alloy may include nickel-chromium alloys (such as nickel-chromium-aluminum, nickel-chromium-silicon), nickel-copper alloys (such as nickel-copper-manganese), and the like.

傳導層13具有表面131、及與表面131相對的表面132。在一些實施例中,從圖1A之側視圖觀看,傳導層13可具有若干個彼此分離的區段(未標示於圖1A中),各個區段以缺口13r彼此分隔或分離。缺口13r具有間距s。例如各個區段之側壁13s彼此間隔為s。各個區段可具有寬度w及高度h。當從俯視圖(如圖6A所示)觀看時,區段61及區段62可彼此連接。例如,當從俯視圖(如圖6A所示)觀看時,傳導層13具有彎曲的圖案。然而,本揭露不限於此。在一些實施例中,傳導層13可具有任意的圖案。在一些實施例中,可依裝置規格或製程要求而設計傳導層13之圖案。例如,當從俯視圖(如圖6A所示)觀看時,區段61之部分61a與區段62之部分62b連接,且區段61之部分61b與區段62分離形成缺口13r。 The conductive layer 13 has a surface 131 and a surface 132 opposite to the surface 131. In some embodiments, viewed from the side view of FIG. 1A, the conductive layer 13 may have a plurality of sections (not shown in FIG. 1A) separated from each other, and each section is separated or separated from each other by a gap 13r. The notch 13r has a spacing s. For example, the side walls 13s of each section are spaced from each other by s. Each section may have a width w and a height h. When viewed from a top view (as shown in FIG. 6A), the section 61 and the section 62 may be connected to each other. For example, when viewed from a top view (as shown in FIG. 6A), the conductive layer 13 has a curved pattern. However, this disclosure is not limited to this. In some embodiments, the conductive layer 13 may have any pattern. In some embodiments, the pattern of the conductive layer 13 can be designed according to device specifications or process requirements. For example, when viewed from a top view (as shown in FIG. 6A), the portion 61a of the section 61 is connected to the portion 62b of the section 62, and the portion 61b of the section 61 is separated from the section 62 to form a gap 13r.

在一些實施例中,傳導層13之各個部分之間距s可介於約10.0μm至約60.0μm之間。在一些實施例中,傳導層13之寬度w可介於約10.0μm至約100.0μm之間。在一些實施例中,傳導層13之高度(或厚度)h可小於約1.0μm。在一些實施例中,傳導層13之高度h可介於約0.1μm至約3.0μm之間。在一些實施例中,當從俯視圖(如圖6A所示)觀看時,傳導層13可具有繞線長度介於約50.0μm至約3000.0μm之間。在一些實施例中, 可依裝置規格或製程要求而設計傳導層13之高度(或厚度)h、間距s、寬度w、及繞線長度,並不限於本揭露中所舉出的特定數值。 In some embodiments, the distance s between the portions of the conductive layer 13 may be between about 10.0 μm and about 60.0 μm. In some embodiments, the width w of the conductive layer 13 may be between about 10.0 μm and about 100.0 μm. In some embodiments, the height (or thickness) h of the conductive layer 13 may be less than about 1.0 μm. In some embodiments, the height h of the conductive layer 13 may be between about 0.1 μm and about 3.0 μm. In some embodiments, when viewed from a top view (as shown in FIG. 6A), the conductive layer 13 may have a winding length between about 50.0 μm and about 3000.0 μm. In some embodiments, The height (or thickness) h, spacing s, width w, and winding length of the conductive layer 13 can be designed according to device specifications or process requirements, and are not limited to the specific values mentioned in this disclosure.

在一些實施例中,傳導層13可具有約為10歐姆(Ω)(或更低)的電阻值。在一些實施例中,傳導層13可在導通電流大於其所設計之額定電流時,在短時間內熔斷。例如,傳導層13可在其導通電流大於或等於約100mA時,於約5秒(或更短時間)內熔斷。 In some embodiments, the conductive layer 13 may have a resistance value of about 10 ohms (Ω) (or lower). In some embodiments, the conductive layer 13 can fuse in a short time when the conduction current is greater than its designed rated current. For example, the conductive layer 13 may fuse in about 5 seconds (or less) when its conduction current is greater than or equal to about 100 mA.

在部分實施例中,可使用黃光微影(photolithography)及/或電鍍(plating)製程形成傳導層(例如圖1A之傳導層13)。例如,在基板(例如圖1A之基板10)上形成經圖案化之光阻(patterned photoresist)以定義傳導層的圖案,再以電鍍的方式將傳導層的材料形成於光阻上,傳導層填入光阻界定的圖案中,接著將光阻移除,留下具有圖案的傳導層。由於光阻需要沉積(或附著)在較為平坦的表面上,因此實施例中,通常無法使用絕熱層(例如圖1A之絕熱層11),以避免絕熱層之粗糙(或不平整)的表面影響沈積或電鍍的效果(例如影響沈積或電鍍的均勻性)而使傳導層效能不彰。然而,如前揭所述,若不使用絕熱層,則可能使傳導層在達到額定電流時無法熔斷而增加電子裝置損害的風險。 In some embodiments, photolithography and/or plating processes may be used to form the conductive layer (for example, the conductive layer 13 in FIG. 1A). For example, a patterned photoresist is formed on a substrate (such as the substrate 10 of FIG. 1A) to define the pattern of the conductive layer, and then the conductive layer material is formed on the photoresist by electroplating, and the conductive layer is filled with Into the pattern defined by the photoresist, then the photoresist is removed, leaving a patterned conductive layer. Since the photoresist needs to be deposited (or attached) on a relatively flat surface, in this embodiment, a thermal insulation layer (such as the thermal insulation layer 11 in FIG. 1A) is usually not used to avoid the rough (or uneven) surface of the thermal insulation layer. The effect of deposition or electroplating (such as affecting the uniformity of deposition or electroplating) makes the conductive layer ineffective. However, as mentioned in the previous disclosure, if the insulation layer is not used, the conductive layer may not be fused when the rated current is reached, which increases the risk of damage to the electronic device.

本揭露之一實施例提供一製程方法(詳述於圖2A至圖9B),係透過濺鍍(sputtering)(如真空濺鍍)的方式形成傳導層13,並以雷射蝕刻的方式圖案化傳導層。由於本揭露之製程方法不需使用黃光微影及/或電鍍製程,亦不需要光阻,故該傳導層13可形成於相對粗糙的表面(如絕熱層11)上。因此,本揭露圖1A之實施例可使用絕熱層11,進而解決上述問題。此外,傳導層13之電阻值在雷射蝕刻的過程中可隨著截面積(如寬度w及高度h所形成之面積)與繞線長度改變而動態地(或即時)調整,且可精 準地控制在所期望的範圍內,進而增加傳導層13之準確性及設計彈性。再者,相較於黃光微影及電鍍製程,使用雷射蝕刻形成傳導層13可增加傳導層13尺寸(如寬度w、間距s及高度h等)之精準度。根據本揭露之部分實施例,傳導層13尺寸之誤差小於等於約±2%。 An embodiment of the present disclosure provides a process method (detailed in FIGS. 2A to 9B) in which the conductive layer 13 is formed by sputtering (such as vacuum sputtering) and patterned by laser etching Conductive layer. Since the process method of the present disclosure does not need to use yellow light lithography and/or electroplating process, and does not require photoresist, the conductive layer 13 can be formed on a relatively rough surface (such as the thermal insulation layer 11). Therefore, the embodiment of FIG. 1A of the present disclosure can use the heat insulating layer 11 to solve the above-mentioned problem. In addition, the resistance value of the conductive layer 13 can be dynamically (or real-time) adjusted as the cross-sectional area (such as the area formed by the width w and the height h) and the winding length change during the laser etching process, and can be precisely adjusted. It is accurately controlled within the desired range, thereby increasing the accuracy and design flexibility of the conductive layer 13. Furthermore, compared with the yellow light lithography and electroplating process, the use of laser etching to form the conductive layer 13 can increase the accuracy of the size of the conductive layer 13 (such as the width w, the spacing s, and the height h, etc.). According to some embodiments of the present disclosure, the size error of the conductive layer 13 is less than or equal to about ±2%.

另一方面,若使用黃光微影及/或電鍍製程,可能需要使用穩定度較高的材料(如金,或其他較不易氧化而較不易改變電阻值的材料),才能維持較高的良率。然而若使用雷射蝕刻方式圖案化傳導層,電阻值可動態地調整,因此即使使用穩定度較低的金屬(如鋁、銅,或其他較易氧化而較易改變電阻值的材料),仍可以經由修改截面積與繞線長度而調整其電阻值至所需的規格,因此,使用本揭露之製程方法可不受製程材料的限制。此外,使用熔點低的材料作為傳導層材料,可進一步降低額定電流。 On the other hand, if yellow light lithography and/or electroplating processes are used, it may be necessary to use materials with higher stability (such as gold, or other materials that are less prone to oxidation and less likely to change the resistance value) in order to maintain a higher yield. However, if a laser etching method is used to pattern the conductive layer, the resistance value can be dynamically adjusted. Therefore, even if metals with lower stability (such as aluminum, copper, or other materials that are easier to oxidize and change the resistance value) are used, the resistance value can still be adjusted dynamically. The resistance value can be adjusted to the required specifications by modifying the cross-sectional area and the winding length. Therefore, the manufacturing method of the present disclosure is not limited by the manufacturing materials. In addition, using a material with a low melting point as the conductive layer material can further reduce the rated current.

繼續參照圖1A,在一些實施例中,在雷射蝕刻傳導層13的過程中,位於傳導層13下方的絕熱層11可被局部地蝕刻,而於絕熱層11中形成如圖1A之放大圖中所繪製的凹陷部(或凹陷處)11r。凹陷部11r位於傳導層13的缺口13r的下方。凹陷部11r從絕熱層11的表面112而凹陷進絕熱層11中。換句話說,凹陷部11r相對於傳導層13的表面131而凹陷。 Continuing to refer to FIG. 1A, in some embodiments, during the laser etching of the conductive layer 13, the thermal insulation layer 11 under the conductive layer 13 may be partially etched, and an enlarged view of FIG. 1A is formed in the thermal insulation layer 11 The depression (or depression) 11r drawn in. The recess 11r is located below the notch 13r of the conductive layer 13. The recess 11 r is recessed into the heat insulating layer 11 from the surface 112 of the heat insulating layer 11. In other words, the recess 11r is recessed with respect to the surface 131 of the conductive layer 13.

在一些實施例中,如圖1A之放大圖所示,凹陷部11r具有底部表面11rm、及延伸於表面112及底部表面11rm之間的側壁11rs。凹陷部11r之底部表面11rm位於絕熱層11之表面111與112之間。在一些實施例中,凹陷部11r之寬度約為s。 In some embodiments, as shown in the enlarged view of FIG. 1A, the recess 11r has a bottom surface 11rm and a side wall 11rs extending between the surface 112 and the bottom surface 11rm. The bottom surface 11rm of the recess 11r is located between the surfaces 111 and 112 of the heat insulating layer 11. In some embodiments, the width of the recess 11r is about s.

在一些實施例中,凹陷部11r之側壁11rs與傳導層13之側壁(或缺口的側壁)13s形成連續(continuous)的表面。例如,凹陷部11r之側 壁11rs與傳導層13之側壁(或缺口的側壁)13s形成大致上線性的輪廓(linear profile)。在一些實施例中,凹陷部11r之側壁13s可與傳導層13之側壁(或缺口的側壁)13s實質上共平面(coplanar)。在一些實施例中,凹陷部11r之側壁11s可大致上垂直於絕熱層11之表面111與112。在一些實施例中,凹陷部11r之側壁11s可相對於絕熱層11之表面111與112傾斜(tilted)。在一些實施例中,凹陷部11r之底部表面11rm可大致上平行於絕熱層11之表面111與112。在一些實施例中,凹陷部11r之底部表面11rm可為曲面(curved surface)。在一些實施例中,凹陷部11r可確保線路(例如傳導層13)為絕緣狀態,以避免發生微短路現象,並提高裝置穩定性。 In some embodiments, the sidewall 11rs of the recess 11r and the sidewall (or the sidewall of the notch) 13s of the conductive layer 13 form a continuous surface. For example, the side of the recess 11r The wall 11rs and the sidewall (or the sidewall of the notch) 13s of the conductive layer 13 form a substantially linear profile. In some embodiments, the sidewall 13s of the recess 11r may be substantially coplanar with the sidewall (or the sidewall of the notch) 13s of the conductive layer 13. In some embodiments, the sidewall 11s of the recess 11r may be substantially perpendicular to the surfaces 111 and 112 of the heat insulating layer 11. In some embodiments, the sidewall 11s of the recess 11r may be tilted relative to the surfaces 111 and 112 of the thermal insulation layer 11. In some embodiments, the bottom surface 11rm of the recess 11r may be substantially parallel to the surfaces 111 and 112 of the thermal insulation layer 11. In some embodiments, the bottom surface 11rm of the recess 11r may be a curved surface. In some embodiments, the recess 11r can ensure that the circuit (for example, the conductive layer 13) is in an insulated state, so as to avoid the occurrence of a micro short circuit phenomenon and improve the stability of the device.

保護層14設置於傳導層13上。在一些實施例中,保護層14覆蓋傳導層13之表面132之一部分。在一些實施例中,保護層14覆蓋、圍繞、或接觸傳導層13之側壁13s。一部分的保護層14容納或接收於凹陷部11r中。例如,保護層14從傳導層13之表面132通過傳導層13之側壁13s而沈積於凹陷部11r之底部表面11rm上。例如,保護層14接觸凹陷部11r之側壁11rs及底部表面11rm。例如,一部分的保護層14位於絕熱層11之表面111與112之間。 The protective layer 14 is disposed on the conductive layer 13. In some embodiments, the protective layer 14 covers a portion of the surface 132 of the conductive layer 13. In some embodiments, the protective layer 14 covers, surrounds, or contacts the sidewall 13s of the conductive layer 13. A part of the protective layer 14 is accommodated or received in the recess 11r. For example, the protective layer 14 is deposited on the bottom surface 11rm of the recess 11r from the surface 132 of the conductive layer 13 through the sidewall 13s of the conductive layer 13. For example, the protective layer 14 contacts the sidewall 11rs and the bottom surface 11rm of the recess 11r. For example, a part of the protective layer 14 is located between the surfaces 111 and 112 of the thermal insulation layer 11.

在一些實施例中,保護層14可包括(但不限於)與絕熱層11相同的材料。例如,環氧樹脂(包含分散其中的填料)、矽、或其他適合的材料。在一些實施例中,在大致上垂直於基板10的表面102的方向上,保護層14可具有介於約20.0μm至約40.0μm之厚度。然而,本揭露不限於此。在一些實施例中,保護層14可依裝置規格或製程要求而具有其他厚度。 In some embodiments, the protective layer 14 may include (but is not limited to) the same material as the thermal insulation layer 11. For example, epoxy resin (containing fillers dispersed therein), silicon, or other suitable materials. In some embodiments, the protective layer 14 may have a thickness ranging from about 20.0 μm to about 40.0 μm in a direction substantially perpendicular to the surface 102 of the substrate 10. However, this disclosure is not limited to this. In some embodiments, the protective layer 14 may have other thicknesses according to device specifications or process requirements.

晶種層15設置於基板10之兩端且位於傳導層13上。例如晶 種層15圍繞基板10之表面103。在一些實施例中,晶種層15覆蓋傳導層13之表面132之一部分。在一些實施例中,覆蓋傳導層13之表面132之晶種層15與保護層14可大致上共平面。在一些實施例中,晶種層15可設置在基板10之表面101上。例如,晶種層15可具有夾住基板10之兩端的兩個部分(未標示於圖1A中),位於基板10之兩端的晶種層15覆蓋基板10之表面103、並且至少覆蓋基板10之表面101與102的一部分。在一些實施例中,位於基板10之兩端的晶種層15還覆蓋絕熱層11的表面113。 The seed layer 15 is disposed on both ends of the substrate 10 and on the conductive layer 13. E.g. crystal The seed layer 15 surrounds the surface 103 of the substrate 10. In some embodiments, the seed layer 15 covers a portion of the surface 132 of the conductive layer 13. In some embodiments, the seed layer 15 and the protective layer 14 covering the surface 132 of the conductive layer 13 may be substantially coplanar. In some embodiments, the seed layer 15 may be disposed on the surface 101 of the substrate 10. For example, the seed layer 15 may have two parts (not shown in FIG. 1A) sandwiching both ends of the substrate 10. The seed layer 15 located at both ends of the substrate 10 covers the surface 103 of the substrate 10 and at least covers the surface 103 of the substrate 10. Part of surfaces 101 and 102. In some embodiments, the seed layer 15 located at both ends of the substrate 10 also covers the surface 113 of the thermal insulation layer 11.

端電極16設置於基板10之兩端且位於晶種層15上。在一些實施例中,端電極16覆蓋晶種層15之一部分。在一些實施例中,端電極16藉由晶種層15而與基板10、絕熱層11、及傳導層13隔開。在一些實施例中,端電極16可設置在基板10之表面101上。例如,端電極16可具有夾住基板10之兩端的兩個部分(未標示於圖1A中),位於基板10之兩端的端電極16覆蓋基板10之表面103、並且至少覆蓋基板10之表面101與102的一部分。在一些實施例中,晶種層15及端電極16可包括(但不限於)上述針對傳導層13所列舉的材料,在此不再贅述。 The terminal electrodes 16 are arranged on both ends of the substrate 10 and on the seed layer 15. In some embodiments, the terminal electrode 16 covers a portion of the seed layer 15. In some embodiments, the terminal electrode 16 is separated from the substrate 10, the heat insulating layer 11, and the conductive layer 13 by the seed layer 15. In some embodiments, the terminal electrode 16 may be disposed on the surface 101 of the substrate 10. For example, the terminal electrode 16 may have two parts (not shown in FIG. 1A) sandwiching both ends of the substrate 10. The terminal electrodes 16 located at both ends of the substrate 10 cover the surface 103 of the substrate 10 and at least cover the surface 101 of the substrate 10. With part of 102. In some embodiments, the seed layer 15 and the terminal electrode 16 may include (but are not limited to) the materials listed above for the conductive layer 13, which will not be repeated here.

圖1B所示為根據本揭露之部分實施例之過電流保護裝置1'之側視圖。圖1B之過電流保護裝置1'與圖1A之過電流保護裝置1相似,針對相似或相同元件的敘述將不再贅述,以下僅描述兩者之差異。 FIG. 1B shows a side view of an overcurrent protection device 1'according to some embodiments of the present disclosure. The overcurrent protection device 1'of FIG. 1B is similar to the overcurrent protection device 1 of FIG.

過電流保護裝置1'之絕熱層11具有若干部分(未標示於圖1A中),各部分之側壁11s彼此間隔為s。側壁11s在絕熱層11之表面111與112之間延伸。 The thermal insulation layer 11 of the overcurrent protection device 1'has several parts (not shown in FIG. 1A), and the sidewalls 11s of each part are spaced from each other by s. The side wall 11s extends between the surfaces 111 and 112 of the heat insulating layer 11.

過電流保護裝置1'之基板10具有凹陷部(或凹陷處)10r。凹陷部10r位於傳導層13的缺口的下方。凹陷部10r從基板10之表面102凹 陷。換句話說,凹陷部10r相對於絕熱層11的表面111凹陷。 The substrate 10 of the overcurrent protection device 1'has a recessed portion (or recessed portion) 10r. The recess 10 r is located below the notch of the conductive layer 13. The recess 10r is recessed from the surface 102 of the substrate 10 trap. In other words, the recessed portion 10r is recessed with respect to the surface 111 of the heat insulating layer 11.

在一些實施例中,如圖1B之放大圖所示,凹陷部10r具有底部表面10rm、及延伸於基板10之表面102及底部表面10rm之間的側壁10rs。凹陷部10r之底部表面10rm位於基板10之表面101與102之間。在一些實施例中,凹陷部10r之寬度約為s。 In some embodiments, as shown in the enlarged view of FIG. 1B, the recess 10r has a bottom surface 10rm and a sidewall 10rs extending between the surface 102 and the bottom surface 10rm of the substrate 10. The bottom surface 10rm of the recess 10r is located between the surfaces 101 and 102 of the substrate 10. In some embodiments, the width of the recess 10r is about s.

在一些實施例中,凹陷部10r之側壁10rs與絕熱層11之側壁11s形成連續的表面。例如,凹陷部10r之側壁10rs與絕熱層11之側壁11s形成大致上線性的輪廓。在一些實施例中,凹陷部10r之側壁10s可與絕熱層11之側壁11s實質上共平面。在一些實施例中,凹陷部10r之側壁10s、絕熱層11之側壁11s、及傳導層13之側壁(或缺口的側壁)13s可實質上共平面。在一些實施例中,凹陷部10r之側壁10s可大致上垂直於基板10之表面101與102。在一些實施例中,凹陷部10r之側壁13s可相對於基板10之表面101與102傾斜。在一些實施例中,凹陷部10r之底部表面10rm可大致上平行於基板10之表面101與102。在一些實施例中,凹陷部10r之底部表面10rm可為曲面。 In some embodiments, the sidewall 10rs of the recess 10r and the sidewall 11s of the heat insulating layer 11 form a continuous surface. For example, the side wall 10rs of the recessed portion 10r and the side wall 11s of the heat insulating layer 11 form a substantially linear profile. In some embodiments, the sidewall 10s of the recess 10r may be substantially coplanar with the sidewall 11s of the thermal insulation layer 11. In some embodiments, the sidewall 10s of the recess 10r, the sidewall 11s of the heat insulating layer 11, and the sidewall (or the sidewall of the notch) 13s of the conductive layer 13 may be substantially coplanar. In some embodiments, the sidewall 10s of the recess 10r may be substantially perpendicular to the surfaces 101 and 102 of the substrate 10. In some embodiments, the sidewall 13s of the recess 10r may be inclined with respect to the surfaces 101 and 102 of the substrate 10. In some embodiments, the bottom surface 10rm of the recess 10r may be substantially parallel to the surfaces 101 and 102 of the substrate 10. In some embodiments, the bottom surface 10rm of the recessed portion 10r may be a curved surface.

在一些實施例中,保護層14覆蓋、圍繞、或接觸絕熱層11之側壁11s。一部分的保護層14容納或接收於凹陷部10r中。例如,保護層14從傳導層13之表面132通過傳導層13之側壁13s與絕熱層11之側壁11s而沈積於凹陷部10r之底部表面10rm上。例如,保護層14接觸凹陷部10r之側壁10rs及底部表面10rm。例如,一部分的保護層14位於基板10之表面101與102之間。 In some embodiments, the protective layer 14 covers, surrounds, or contacts the sidewall 11s of the thermal insulation layer 11. A part of the protective layer 14 is accommodated or received in the recess 10r. For example, the protective layer 14 is deposited on the bottom surface 10rm of the recess 10r from the surface 132 of the conductive layer 13 through the sidewall 13s of the conductive layer 13 and the sidewall 11s of the heat insulating layer 11. For example, the protective layer 14 contacts the sidewall 10rs and the bottom surface 10rm of the recess 10r. For example, a part of the protective layer 14 is located between the surfaces 101 and 102 of the substrate 10.

在一些實施例中,過電流保護裝置可同時具有位於基板10中的凹陷部10r及位於絕熱層11中的凹陷部11r,而並不限於如本揭露所繪 製的態樣。例如,在一些實施例中,保護層14可部分延伸至基板10且部分延伸至絕熱層11。例如,在一些實施例中,絕熱層11可具有側壁11s,其中兩個側壁11s在大致上垂直於絕熱層11之表面112的一方向上具有相異的深度。在一些實施例中,可依裝置規格或製程要求而設計凹陷部10r及凹陷部11r的配置。 In some embodiments, the overcurrent protection device may have both a recessed portion 10r in the substrate 10 and a recessed portion 11r in the heat insulating layer 11, and it is not limited to as depicted in this disclosure. The state of the system. For example, in some embodiments, the protective layer 14 may partially extend to the substrate 10 and partially extend to the thermal insulation layer 11. For example, in some embodiments, the insulation layer 11 may have side walls 11 s, wherein the two side walls 11 s have different depths in a direction substantially perpendicular to the surface 112 of the insulation layer 11. In some embodiments, the configuration of the recessed portion 10r and the recessed portion 11r can be designed according to device specifications or process requirements.

圖2A至圖9B所示為根據本揭露之部分實施例之過電流保護裝置之製造方法。在一些實施例中,圖2B、圖3B、圖4B、圖5B、圖6B、圖7B、圖8B及圖9B分別為圖2A、圖3A、圖4A、圖5A、圖6A、圖7A、圖8A及圖9A之結構沿線AA’切割的剖面圖。根據本揭露之部分實施例,圖2A至圖9B所揭露之製造方法可用以製造如圖1A或圖1B所示之過電流保護裝置1或1'。根據本揭露之部分實施例,圖2A至圖9B所揭露之製造方法亦可用以製造其他過電流保護裝置。 2A to 9B show a method of manufacturing an overcurrent protection device according to some embodiments of the disclosure. In some embodiments, Figure 2B, Figure 3B, Figure 4B, Figure 5B, Figure 6B, Figure 7B, Figure 8B and Figure 9B are Figure 2A, Figure 3A, Figure 4A, Figure 5A, Figure 6A, Figure 7A, Figure 8A and the cross-sectional view of the structure of FIG. 9A cut along the line AA'. According to some embodiments of the present disclosure, the manufacturing method disclosed in FIGS. 2A to 9B can be used to manufacture the overcurrent protection device 1 or 1'as shown in FIG. 1A or FIG. 1B. According to some embodiments of the present disclosure, the manufacturing method disclosed in FIGS. 2A to 9B can also be used to manufacture other overcurrent protection devices.

參照圖2A及圖2B,提供基板10。基板10具有表面101、與表面101相對的表面102、及延伸於表面101及表面102之間的表面103。在一些實施例中,可以雷射切割的方式在基板10中形成切割道。在一些實施例中,切割道之深度可占基板10之厚度約20%至約60%的比例。 2A and 2B, a substrate 10 is provided. The substrate 10 has a surface 101, a surface 102 opposite to the surface 101, and a surface 103 extending between the surface 101 and the surface 102. In some embodiments, the scribe line may be formed in the substrate 10 by means of laser cutting. In some embodiments, the depth of the scribe channel may account for about 20% to about 60% of the thickness of the substrate 10.

參照圖3A及圖3B,於基板10的表面102上形成絕熱層11。絕熱層11具有表面111、與表面111相對的表面112、及延伸於表面111及表面112之間的表面113。在一些實施例中,可透過塗佈(coating)、層壓(lamination)、或其他適合的方式形成絕熱層11。 3A and 3B, a heat insulating layer 11 is formed on the surface 102 of the substrate 10. The thermal insulation layer 11 has a surface 111, a surface 112 opposite to the surface 111, and a surface 113 extending between the surface 111 and the surface 112. In some embodiments, the thermal insulation layer 11 may be formed by coating, lamination, or other suitable methods.

參照圖4A及圖4B,於絕熱層11上形成電極12。在一些實施例中,電極12可藉由濺射、無電電鍍(electroless plating)、電鍍(plating)、印刷(printing)或其他可行的方式而形成。 4A and 4B, an electrode 12 is formed on the heat insulating layer 11. In some embodiments, the electrode 12 may be formed by sputtering, electroless plating, plating, printing or other feasible methods.

參照圖5A及圖5B,於絕熱層11上形成傳導層13。在一些實施例中,傳導層13可保型地(comformally)形成於絕熱層11與電極12上。在一些實施例中,傳導層13可藉由濺射的方式而形成。 5A and 5B, a conductive layer 13 is formed on the heat insulating layer 11. In some embodiments, the conductive layer 13 can be conformally formed on the heat insulating layer 11 and the electrode 12. In some embodiments, the conductive layer 13 may be formed by sputtering.

參照圖6A及圖6B,移除部分的傳導層13以得到所需的傳導層13圖案及電阻值。在一些實施例中,可經由雷射蝕刻的方式移除部分的傳導層13(或圖案化傳導層13)。 6A and 6B, part of the conductive layer 13 is removed to obtain the desired pattern and resistance of the conductive layer 13. In some embodiments, part of the conductive layer 13 (or patterned conductive layer 13) can be removed by laser etching.

在一些實施例中,在圖6A及圖6B的步驟中,可同時量測傳導層13之電阻值而即時地調整傳導層13之形狀。例如,可先形成進行一次圖案化,接著量測傳導層13之電阻值,再根據所測得的電阻值而微調傳導層13之圖案(或形狀),進而得到精準的電阻值。在一些實施例中,上述量測及微調圖案的步驟可重複多次。 In some embodiments, in the steps of FIGS. 6A and 6B, the resistance value of the conductive layer 13 can be measured at the same time to adjust the shape of the conductive layer 13 in real time. For example, first patterning can be performed, and then the resistance value of the conductive layer 13 is measured, and then the pattern (or shape) of the conductive layer 13 can be fine-tuned according to the measured resistance value to obtain an accurate resistance value. In some embodiments, the above steps of measuring and fine-tuning the pattern can be repeated multiple times.

在一些實施例中,傳導層13之圖案亦可以乾式蝕刻(dry etching)、離子撞擊(ion bumping)、或其他可行的方式形成。例如,以雷射蝕刻結合可行的其他蝕刻方式圖案化傳導層13,並不限於本揭露中所列舉的方式。 In some embodiments, the pattern of the conductive layer 13 can also be formed by dry etching, ion bumping, or other feasible methods. For example, the patterning of the conductive layer 13 by laser etching combined with other possible etching methods is not limited to the methods listed in this disclosure.

從圖6A的俯視圖觀看,經圖案化的傳導層13可具有彎曲的圖案。例如,經圖案化的傳導層13可具有在絕熱層11上彎曲延伸的圖案。在一些實施例中,在圖5A之步驟至圖6A之步驟中,可依裝置規格或製程要求而設計傳導層13之高度、間距、寬度、及繞線長度。 Viewed from the top view of FIG. 6A, the patterned conductive layer 13 may have a curved pattern. For example, the patterned conductive layer 13 may have a pattern bent and extended on the heat insulating layer 11. In some embodiments, in the steps from FIG. 5A to FIG. 6A, the height, spacing, width, and winding length of the conductive layer 13 can be designed according to device specifications or process requirements.

在一些實施例中,如前述,在雷射蝕刻傳導層13的過程中,位於傳導層13下方的絕熱層11可被局部地蝕刻,而於絕熱層11中形成凹陷部11r(參照圖6B之放大圖)。在一些實施例中,若進一步蝕刻穿過絕熱層11,亦可於基板10中形成凹陷部(如圖2B所示)。 In some embodiments, as described above, during the laser etching of the conductive layer 13, the heat insulating layer 11 located under the conductive layer 13 may be partially etched, and a recess 11r is formed in the heat insulating layer 11 (refer to FIG. 6B Enlarged image). In some embodiments, if further etching through the thermal insulation layer 11 is performed, a recessed portion may also be formed in the substrate 10 (as shown in FIG. 2B).

參照圖7A及圖7B,在傳導層13上形成保護層14以覆蓋傳導層13之一部分。在一些實施例中,可透過塗佈、層壓、或其他適合的方式形成保護層14。在一些實施例中,保護層14可沉積在凹陷部11r中(參照圖6B之放大圖)。 Referring to FIGS. 7A and 7B, a protective layer 14 is formed on the conductive layer 13 to cover a part of the conductive layer 13. In some embodiments, the protective layer 14 may be formed by coating, laminating, or other suitable methods. In some embodiments, the protective layer 14 may be deposited in the recess 11r (refer to the enlarged view of FIG. 6B).

參照圖8A及圖8B,在傳導層13上形成晶種層15覆蓋傳導層13之一部分。在一些實施例中,晶種層15可藉由濺射鈦及銅(Ti/Cu)或TiW而形成。在一些實施例中,晶種層15可藉由無電電鍍Ni或Cu而形成。在一些實施例中,可於保護層14上形成標示17,以標示過電流保護元件的額定電流。在一些實施例中,在形成晶種層15之前,可將基板10沿著經由雷射劃線而形成的切割道而分離成複數個獨立的元件,以露出基板10之表面103。 Referring to FIGS. 8A and 8B, a seed layer 15 is formed on the conductive layer 13 to cover a part of the conductive layer 13. In some embodiments, the seed layer 15 may be formed by sputtering titanium and copper (Ti/Cu) or TiW. In some embodiments, the seed layer 15 may be formed by electroless plating of Ni or Cu. In some embodiments, a mark 17 may be formed on the protective layer 14 to mark the rated current of the overcurrent protection device. In some embodiments, before forming the seed layer 15, the substrate 10 may be separated into a plurality of independent elements along the dicing line formed by laser scribing, so as to expose the surface 103 of the substrate 10.

參照圖9A及圖9B,於基板10之兩端形成端電極16。在一些實施例中,端電極16可藉由電鍍Ni、Cu、Ag、Au或其他金屬而形成。在一些實施例中,端電極16可藉由無電電鍍Ni、Pb或其他金屬而形成。在一些實施例中,端電極16可藉由印刷Cu、Ag、Au或其他金屬而形成。在一些實施例中,透過圖2A及圖2B至圖9A及圖9B所示方法而形成的過電流保護裝置可與圖1A所示之過電流保護裝置1相同。 9A and 9B, terminal electrodes 16 are formed on both ends of the substrate 10. In some embodiments, the terminal electrode 16 may be formed by electroplating Ni, Cu, Ag, Au or other metals. In some embodiments, the terminal electrode 16 may be formed by electroless plating of Ni, Pb or other metals. In some embodiments, the terminal electrode 16 may be formed by printing Cu, Ag, Au or other metals. In some embodiments, the overcurrent protection device formed by the methods shown in FIGS. 2A and 2B to 9A and 9B may be the same as the overcurrent protection device 1 shown in FIG. 1A.

將瞭解,本文討論之方法及裝置之實施例在應用中不限於在下列描述中提出或在隨附圖式中繪示之組件之構造及配置之細節。方法及裝置能夠實現於其他實施例中且可以各種方式實踐或執行。特定實施方案之實例在本文中僅用於繪示之目的而提供且不意在限制。特定言之,結合任何一或多項實施例討論之動作、元件及特徵不意在從任何其他實施例中之一類似角色排除。 It will be understood that the embodiments of the methods and devices discussed herein are not limited in application to the details of the structure and configuration of the components set forth in the following description or illustrated in the accompanying drawings. The method and device can be implemented in other embodiments and can be practiced or executed in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting. In particular, the actions, elements, and features discussed in connection with any one or more embodiments are not intended to be excluded from a similar role in any other embodiment.

而且,在本文中使用之措辭及術語出於描述之目的且不應視為限制。對以單數形式指涉之本文之系統及方法之實施例或元件或動作之任何參考亦可包括包含複數個此等元件之實施例,且以複數形式對本文之任何實施例或元件或動作之任何參考亦可包括僅包含一單一元件之實施例。單數形式或複數形式之參考不意在限制當前所揭示之系統或方法、其等組件、動作或元件。本文中「包含」、「包括」、「具有」、「含有」、「涉及」及其等之變形之使用意欲涵蓋在其後列出之項目及其等之等效物以及額外項目。對「或」之參考可視為包含性的使得使用「或」之任何項可指示所描述之項之一單一、一個以上及所有之任一者。對前部及後部、左側及右側、頂部及底部、上部及下部及垂直及水平之任何參考意在為方便描述,而不將本系統及方法或其等組件限於任何一個位置或空間定向。 Moreover, the wording and terms used in this article are for descriptive purposes and should not be considered as limiting. Any reference to the embodiments or elements or actions of the systems and methods herein referred to in the singular form may also include an embodiment including a plurality of these elements, and any reference to any embodiment or element or action in the text in the plural form Any reference may also include embodiments that include only a single element. The reference in the singular or plural form is not intended to limit the currently disclosed system or method, its components, actions, or elements. The use of "include", "include", "have", "contain", "involved" and other variants in this article intends to cover the items listed thereafter and their equivalents and additional items. References to "or" can be regarded as inclusive so that the use of any term of "or" can indicate any one, more than one, and all of the described items. Any references to front and rear, left and right, top and bottom, upper and lower, and vertical and horizontal are intended to facilitate the description, and do not limit the system and method or its components to any one position or spatial orientation.

因此,在已描述至少一項實施例之若干態樣之情況下,應瞭解,熟習此項技術者容易想到各種更改、修改及改良。此等更改、修改及改良意在係本發明之部分且意在處於本發明之範疇內。因此,以上描述及圖式僅係藉由實例,且應從隨附申請專利範圍及其等之等效物之正確建構來判定本發明之範疇。 Therefore, when several aspects of at least one embodiment have been described, it should be understood that various changes, modifications, and improvements can be easily thought of by those familiar with the technology. These changes, modifications and improvements are intended to be part of the present invention and are intended to be within the scope of the present invention. Therefore, the above description and drawings are merely examples, and the scope of the present invention should be determined from the correct construction of the scope of the attached patent application and its equivalents.

1:過電流保護裝置 1: Overcurrent protection device

10:基板 10: substrate

11:絕熱層 11: Insulation layer

11r:凹陷部 11r: Depressed part

11rs:側壁 11rs: sidewall

11rm:底部表面 11rm: bottom surface

12:電極 12: Electrode

13:傳導層 13: Conductive layer

13s:側壁 13s: sidewall

14:保護層 14: protective layer

15:晶種層 15: Seed layer

16:端電極 16: terminal electrode

17:標示 17: marking

101:表面 101: Surface

102:表面 102: Surface

103:表面 103: Surface

111:表面 111: Surface

112:表面 112: Surface

113:表面 113: Surface

131:表面 131: Surface

132:表面 132: Surface

h:高度 h: height

s:間距 s: spacing

w:寬度 w: width

Claims (15)

一種過電流保護裝置,包含:一基板;一絕熱層,設置於該基板上;一電極,其設置於該絕熱層上;及一傳導層,設置於該絕熱層上,並至少部分覆蓋該電極;其中該絕熱層具有一凹陷處,其位於該缺口下方,且該凹陷處之側壁與該缺口之側壁實質上共平面。 An overcurrent protection device, comprising: a substrate; an insulating layer arranged on the substrate; an electrode arranged on the insulating layer; and a conductive layer arranged on the insulating layer and at least partially covering the electrode ; Wherein the thermal insulation layer has a recess, which is located below the gap, and the side wall of the recess and the side wall of the gap are substantially coplanar. 如請求項1所述之過電流保護裝置,其中該傳導層具有一第一區段及一第二區段,該第一區段之一第一部分與該第二區段連接,且該第一區段之一第二部分與該第二區段分離以形成一缺口。 The overcurrent protection device according to claim 1, wherein the conductive layer has a first section and a second section, a first part of the first section is connected to the second section, and the first section A second part of one of the sections is separated from the second section to form a gap. 如請求項1所述之過電流保護裝置,其中該絕熱層具有面對該基板之一第一表面及與該第一表面相對之一第二表面,且該第二表面之粗糙度大於該第一表面之粗糙度。 The overcurrent protection device according to claim 1, wherein the heat insulating layer has a first surface facing the substrate and a second surface opposite to the first surface, and the roughness of the second surface is greater than that of the first surface The roughness of a surface. 如請求項1所述之過電流保護裝置,其中該傳導層之厚度小於1.0微米(micrometer,μm),且該傳導層之寬度介於10.0μm與100.0μm之間。 The overcurrent protection device according to claim 1, wherein the thickness of the conductive layer is less than 1.0 micrometer (micrometer, μm), and the width of the conductive layer is between 10.0 μm and 100.0 μm. 如請求項1所述之過電流保護裝置,其中該傳導層經組態以在流過該傳導層之一電流大於或等於100毫安培時,於小於或等於5秒之時間內熔 斷。 The overcurrent protection device of claim 1, wherein the conductive layer is configured to melt in less than or equal to 5 seconds when a current flowing through the conductive layer is greater than or equal to 100 mA Off. 一種過電流保護裝置,包含:一基板;及一傳導層,設置於該基板上,其中該傳導層具有一第一區段及一第二區段,該第一區段之一第一部分與該第二區段連接,且該第一區段之一第二部分與該第二區段分離以形成一缺口;其中該基板具有一凹陷處,其位於該缺口下方。 An overcurrent protection device includes: a substrate; and a conductive layer disposed on the substrate, wherein the conductive layer has a first section and a second section, a first part of the first section and the The second section is connected, and a second part of the first section is separated from the second section to form a gap; wherein the substrate has a recess, which is located under the gap. 如請求項6所述之過電流保護裝置,更包括:一絕熱層,設置於該基板與該傳導層之間。 The overcurrent protection device according to claim 6, further comprising: a heat insulating layer disposed between the substrate and the conductive layer. 如請求項7所述之過電流保護裝置,其中該絕熱層之側壁與該缺口之側壁實質上共平面。 The overcurrent protection device according to claim 7, wherein the side wall of the heat insulating layer and the side wall of the notch are substantially coplanar. 如請求項7所述之過電流保護裝置,其中該絕熱層之側壁與該凹陷處之側壁實質上共平面。 The overcurrent protection device according to claim 7, wherein the side wall of the heat insulating layer and the side wall of the recess are substantially coplanar. 如請求項7所述之過電流保護裝置,其中該絕熱層具有面對該基板之一第一表面及與該第一表面相對之一第二表面,且該第二表面之粗糙度大於該第一表面之粗糙度。 The overcurrent protection device according to claim 7, wherein the heat insulating layer has a first surface facing the substrate and a second surface opposite to the first surface, and the roughness of the second surface is greater than that of the first surface The roughness of a surface. 如請求項6所述之過電流保護裝置,其中該傳導層之厚度小於1.0微 米(micrometer,μm),且該傳導層之寬度介於10.0μm與100.0μm之間。 The overcurrent protection device according to claim 6, wherein the thickness of the conductive layer is less than 1.0 micrometer Meter (micrometer, μm), and the width of the conductive layer is between 10.0 μm and 100.0 μm. 如請求項6所述之過電流保護裝置,其中該傳導層經組態以在流過該傳導層之一電流大於或等於100毫安培時,於小於或等於5秒之時間內熔斷。 The overcurrent protection device according to claim 6, wherein the conductive layer is configured to fuse in less than or equal to 5 seconds when a current flowing through one of the conductive layers is greater than or equal to 100 mA. 一種過電流保護裝置之製造方法,包含:提供一基板;形成一絕熱層於該基板上;形成一傳導層於該絕熱層上;及局部地移除該傳導層與該絕熱層。 A manufacturing method of an overcurrent protection device includes: providing a substrate; forming a heat insulating layer on the substrate; forming a conductive layer on the heat insulating layer; and partially removing the conductive layer and the heat insulating layer. 如請求項13所述之過電流保護裝置之製造方法,其中局部地移除該傳導層包括執行一雷射蝕刻操作。 The method for manufacturing an overcurrent protection device according to claim 13, wherein the partial removal of the conductive layer includes performing a laser etching operation. 如請求項13所述之過電流保護裝置之製造方法,其中局部地移除該傳導層包括量測該傳導層的一電阻值並依據該電阻值而調整該傳導層的圖案。 The method for manufacturing an overcurrent protection device according to claim 13, wherein partially removing the conductive layer includes measuring a resistance value of the conductive layer and adjusting the pattern of the conductive layer according to the resistance value.
TW109113860A 2020-04-24 2020-04-24 Overcurrent protection device and method of manufacturing the same TWI740468B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109113860A TWI740468B (en) 2020-04-24 2020-04-24 Overcurrent protection device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109113860A TWI740468B (en) 2020-04-24 2020-04-24 Overcurrent protection device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI740468B true TWI740468B (en) 2021-09-21
TW202141881A TW202141881A (en) 2021-11-01

Family

ID=78778211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113860A TWI740468B (en) 2020-04-24 2020-04-24 Overcurrent protection device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI740468B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988277A (en) * 2011-12-19 2014-08-13 迪睿合电子材料有限公司 Protective element, protective element fabrication method, and battery module equipped with the protective element
TW201438034A (en) * 2013-03-22 2014-10-01 Polytronics Technology Corp Over-current protection device
WO2015020111A1 (en) * 2013-08-07 2015-02-12 デクセリアルズ株式会社 Protective element and battery pack
TW201528305A (en) * 2014-01-15 2015-07-16 Dexerials Corp Protection element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988277A (en) * 2011-12-19 2014-08-13 迪睿合电子材料有限公司 Protective element, protective element fabrication method, and battery module equipped with the protective element
TW201438034A (en) * 2013-03-22 2014-10-01 Polytronics Technology Corp Over-current protection device
WO2015020111A1 (en) * 2013-08-07 2015-02-12 デクセリアルズ株式会社 Protective element and battery pack
TW201528305A (en) * 2014-01-15 2015-07-16 Dexerials Corp Protection element

Also Published As

Publication number Publication date
TW202141881A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US10354826B2 (en) Fuse in chip design
US20090151982A1 (en) Metal-ceramic composite substrate and method of its manufacture
TWI740468B (en) Overcurrent protection device and method of manufacturing the same
TWM610652U (en) Firing resistor
JP2002140975A (en) Fuse element and its manufacturing method
KR101075664B1 (en) Chip resister and method of manufacturing the same
WO2021088386A1 (en) Thin film fuse and manufacturing method
TWI793929B (en) Electrostatic discharge suppressor and method of manufacturing the same
TWI759865B (en) Firing resistor and method of manufacturing the same
TWI842008B (en) Protection element and method of manufacturing the same
JP2006164639A (en) Chip type fuse and its manufacturing method
WO2012144578A1 (en) Electric power fuse
US20240212890A1 (en) Chip resistor
JP4306892B2 (en) Method for manufacturing circuit protection element
TWI836504B (en) Protection element and method of manufacturing the same
US11810697B2 (en) Resistor
CN218336527U (en) Static suppressor
US11017923B1 (en) Resistor component
WO2023053594A1 (en) Chip resistor
JP4371324B2 (en) Chip fuse and its manufacturing method
US20240021345A1 (en) Resistor
KR102127807B1 (en) An electronic component and manufacturing method thereof
TWM625275U (en) Electrostatic discharge suppressor
TWM633776U (en) Protection element
JP2000149760A (en) Overcurrent breaking method and current fuse element