JP2000149760A - Overcurrent breaking method and current fuse element - Google Patents

Overcurrent breaking method and current fuse element

Info

Publication number
JP2000149760A
JP2000149760A JP10323095A JP32309598A JP2000149760A JP 2000149760 A JP2000149760 A JP 2000149760A JP 10323095 A JP10323095 A JP 10323095A JP 32309598 A JP32309598 A JP 32309598A JP 2000149760 A JP2000149760 A JP 2000149760A
Authority
JP
Japan
Prior art keywords
metal film
fuse element
current fuse
overcurrent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10323095A
Other languages
Japanese (ja)
Inventor
Masanori Mitsube
昌紀 三邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP10323095A priority Critical patent/JP2000149760A/en
Publication of JP2000149760A publication Critical patent/JP2000149760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize miniaturization, by installing a metal film having a locally narrowed part on an easily splitting board, and by making centralized heat generation occur on the locally narrowed part of the metal film by overcurrent carrying, and by braking the easily splitting board by thermal stress generated by the centralized heat generation. SOLUTION: A metal film 1 having a locally narrowed part 11 of this current fuse element is installed on an easily splitting board 2. A breaking mechanism of an overcurrent by using the current fuse element is composed of such serial steps that, first of all, Joule heat is generated on the locally narrowed part 11 of the metal film 1 by an overcurrent, and then the locally narrowed part 11 of the metal film 1 and a nearby easily splitting board part 20 are heated by the Joule heat, and furthermore the easily splitting board 2 is broken by thermal stress by the heating. In this case, by the centralized heating of the locally narrowed part 11 of the metal film 1, the locally narrowed part 11 itself is changed into an insulator by oxidation, and the overcurrent breaking is preferably executed both by breaking by the thermal stress of the locally narrowed part 11 of the metal film 1 and by the change thereof into the insulator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は過電流遮断方法及び
この方法において使用する電流ヒュ−ズエレメントに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for interrupting an overcurrent and a current fuse element used in the method.

【0002】[0002]

【従来の技術】近来、半導体デバイスを用いた電子機器
の小型化を図るために、抵抗やコンデンサもチップサイ
ズとされ、電流ヒユ−ズにおいてもチップサイズ化が要
求されている。従来、絶縁基板上に蒸着等によりヒュ−
ズエレメントを設けた薄膜タイプの電流ヒュ−ズは公知
に属する。例えば、ヒュ−ズ抵抗器、すなわち、機器の
正常作動時には一般回路用抵抗器として機能させ、異常
な過電流に対しては断線により回路を遮断させる抵抗器
において、絶縁基板上に抵抗膜を設けたものが公知であ
る。
2. Description of the Related Art In recent years, in order to reduce the size of electronic equipment using semiconductor devices, resistors and capacitors have also been made to have a chip size, and a chip size has also been demanded for current consumption. Conventionally, heat is deposited on an insulating substrate by evaporation or the like.
A thin film type current fuse provided with a noise element belongs to a known art. For example, in a fuse resistor, that is, a resistor that functions as a general circuit resistor during normal operation of a device and disconnects a circuit due to disconnection of an abnormal overcurrent, a resistor film is provided on an insulating substrate. Are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
薄膜電流ヒュ−ズでは、遮断後絶縁基板上に残存物が残
り、それだけ遮断後の絶縁性が低くなり、絶縁距離の確
保のためにかなりの電極間距離の設定が余儀なくされ、
小型化に不利である。
However, in the conventional thin film current fuse, a residue is left on the insulating substrate after the interruption, and the insulation after the interruption is reduced accordingly. The distance between the electrodes must be set,
It is disadvantageous for miniaturization.

【0004】本発明の目的は、電流ヒュ−ズエレメント
の破断メカニズムを改変することにより電流ヒュ−ズエ
レメントの小型化を図ることにある。
An object of the present invention is to reduce the size of a current fuse element by modifying the breaking mechanism of the current fuse element.

【0005】[0005]

【課題の解決手段】本発明に係る過電流遮断方法は、局
部的狭巾部を有する金属膜を易割性基板上に設けて成る
電流ヒュ−ズエレメントを用い、過電流通電により金属
膜の局部的狭巾部を集中発熱させ、前記易割性基板を前
記集中発熱により発生する熱応力で破断させることを特
徴とする構成である。
An overcurrent interrupting method according to the present invention uses a current fuse element in which a metal film having a locally narrow portion is provided on an easily breakable substrate, and the overcurrent is applied to the metal film. The configuration is characterized in that concentrated heat is generated in a locally narrow portion, and the easily breakable substrate is broken by thermal stress generated by the concentrated heat.

【0006】本発明に係る電流ヒュ−ズエレメントは、
局部的狭巾部を有する金属膜をガラス基板上に設けたこ
とを特徴とする構成であり、ガラス基板に破断用溝を金
属膜の局部的狭巾部の近傍において設けることができ、
また金属膜にはマグネシウムまたはマグネシウム合金膜
を用いることができる。
[0006] The current fuse element according to the present invention comprises:
A configuration in which a metal film having a locally narrow portion is provided on a glass substrate, and a breaking groove can be provided in the glass substrate in the vicinity of the locally narrow portion of the metal film,
As the metal film, a magnesium or magnesium alloy film can be used.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1の(イ)及び図1の
(ロ)〔図1の(イ)におけるロ−ロ断面図〕は本発明
において使用する電流ヒュ−ズエレメントの一例を示
し、局部的狭巾部11を有する金属膜1を易割性基板2
上に設けてある。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 (a) and 1 (b) [a cross-sectional view taken along the roll of FIG. 1 (a)] show an example of a current fuse element used in the present invention. A metal film 1 having an easily splittable substrate 2
It is provided above.

【0008】この電流ヒュ−ズエレメントを用いた過電
流の遮断メカニズムは、(1)過電流により金属膜1の
局部的狭巾部11にジュ−ル熱が発生され、(2)この
ジュ−ル熱により金属膜の局部的狭巾部11及びその近
傍の易割性基板部分20が加熱され、(3)この加熱に
より前記易割性基板が熱応力で破断されることの経時的
段階からなる。
The overcurrent blocking mechanism using the current fuse element has the following features: (1) Joule heat is generated in the local narrow portion 11 of the metal film 1 due to the overcurrent, and (2) the joule heat is generated. Heat causes the local narrow portion 11 of the metal film and the easily breakable substrate portion 20 in the vicinity thereof to be heated, and (3) the heating causes the breakable substrate to break due to thermal stress. Become.

【0009】この場合、上記(2)での金属膜の局部的
狭巾部の集中加熱により、その局部的狭巾部自体を酸化
により絶縁物化させて上記の過電流遮断を、金属膜の局
部的狭巾部の熱応力による破断とその絶縁物化の双方か
ら行わせることが好ましく、かかる金属膜としてはマグ
ネシウムまたはマグネシウム合金膜を挙げることができ
る。マグネシウムまたはマグネシウム合金においては、
常温〜300℃程度ではさしたる活性を呈しないが、4
00℃を越えると活性化して激しく酸化し、その反応熱
により蒸気化して瞬時に酸化マグネシウムになり、この
酸化マグネシウムが高い絶縁性を呈するからである。
In this case, due to the concentrated heating of the local narrow portion of the metal film in the above (2), the local narrow portion itself is made into an insulator by oxidation, so that the above-mentioned overcurrent interruption is performed. It is preferable to perform both of the breaking due to the thermal stress in the narrow portion and the formation of the insulating material. Such a metal film may be a magnesium or magnesium alloy film. In magnesium or magnesium alloy,
At room temperature to about 300 ° C, no significant activity is exhibited.
If the temperature exceeds 00 ° C., it is activated and violently oxidized, and is vaporized by the heat of the reaction to instantaneously become magnesium oxide, and this magnesium oxide exhibits high insulating properties.

【0010】このマグネシウムまたはマグネシウム合金
膜の厚みは、数100Å〜数1000Å、好ましくは
0.1μm程度とされ、マグネシウム合金には、例えば
JISH 4201の1種マグネシウム合金板(Al:
2.5〜3.5重量%、Zn:0.5〜1.5重量、M
n:0.15重量%以上、Fe:0.01重量%以下、
Cu:0.10重量%以下、Ni:0.005重量%以
下、Ca:0.04重量%以下、残部Mg)を使用でき
る。マグネシウムまたはマグネシウム合金膜の形成に
は、真空蒸着法、蒸発金属を放電雰囲気中でイオン化し
印加電圧によって基板表面に衝撃的に蒸着させるイオン
プレ−ティング法、スパッタリング等を使用できる。
The thickness of the magnesium or magnesium alloy film is several hundreds to several thousand degrees, preferably about 0.1 μm. The magnesium alloy includes, for example, a type 1 magnesium alloy plate (Al:
2.5 to 3.5% by weight, Zn: 0.5 to 1.5% by weight, M
n: 0.15% by weight or more, Fe: 0.01% by weight or less,
Cu: 0.10% by weight or less, Ni: 0.005% by weight or less, Ca: 0.04% by weight or less, balance Mg) can be used. The magnesium or magnesium alloy film can be formed by a vacuum deposition method, an ion plating method in which a vaporized metal is ionized in a discharge atmosphere and is vapor-deposited on a substrate surface by an applied voltage, sputtering, or the like.

【0011】上記(2)での易割性基板の局部的加熱の
ためには、金属膜の局部的狭巾部のジュ−ル熱を基板側
によく伝達できるように易割性基板を低熱抵抗にする必
要があり、その局部的加熱による熱応力で易割性基板を
破断させるには、易割性基板の熱膨張係数及びヤング率
が大でかつ機械的強度の低いことが要求される。
In order to locally heat the easily breakable substrate in the above (2), the easily breakable substrate is heated at a low temperature so that the Joule heat of the locally narrow portion of the metal film can be well transmitted to the substrate side. It is necessary to have a resistance, and in order to break the easily breakable substrate by thermal stress due to local heating, it is required that the easily expandable substrate has a large thermal expansion coefficient and a large Young's modulus and low mechanical strength. .

【0012】而して、金属膜が膜厚み0.1μm程度の
マグネシウムまたはマグネシウム合金膜の場合、易割性
基板には厚み0.2〜0.8mm程度のガラス板を用い
ることが好ましい。このガラス板を選択することは、ガ
ラス板がキャスト成形により製造されるために表面が平
滑であり、上記0.1μm程度のマグネシウムまたはマ
グネシウム合金膜の形成が容易である有利性もある(セ
ラミックス基板では、焼成法によるために表面が粗であ
り、膜厚0.1μm程度の超薄膜の金属膜の形成は困難
である)。
When the metal film is a magnesium or magnesium alloy film having a thickness of about 0.1 μm, it is preferable to use a glass plate having a thickness of about 0.2 to 0.8 mm for the easily breakable substrate. Selecting this glass plate has the advantage that the glass plate is manufactured by cast molding, the surface is smooth, and the above-mentioned magnesium or magnesium alloy film of about 0.1 μm is easily formed (ceramic substrate). In this case, the surface is rough because of the firing method, and it is difficult to form an ultrathin metal film having a thickness of about 0.1 μm).

【0013】上記易割性基板の熱応力による破断は、易
割性基板が部分的に加熱され、その部分的加熱による熱
応力で易割性基板が破断されることにあり、図1により
この破断を単純化して説明すると次の通りである。すな
わち、図1において、巾aの部分が局部的に加熱されそ
の温度上昇をΔT、基板のヤング率をE、基板の熱膨張
係数をαとし、金属膜の厚みが基板の厚みに較べて著し
く薄いために金属膜の機械的影響(熱膨張や熱応力)を
無視できるとすると、巾b/2の各部分に作用する熱応
力δは、
The breakage of the breakable substrate due to the thermal stress is caused by the fact that the breakable substrate is partially heated and the breakable substrate is broken by the thermal stress caused by the partial heating. The simplification will be described as follows. That is, in FIG. 1, the portion of width a is locally heated and its temperature rise is ΔT, the Young's modulus of the substrate is E, the coefficient of thermal expansion of the substrate is α, and the thickness of the metal film is remarkably compared to the thickness of the substrate. Assuming that the mechanical effects (thermal expansion and thermal stress) of the metal film can be neglected because of the thinness, the thermal stress δ acting on each portion of the width b / 2 is

【0014】 δ=aEαΔT/(a+b) Δ = aEαΔT / (a + b)

【0015】で把握でき、この熱応力δがガラス板の引
張り破断応力を越えたときに、ガラス基板が割れて通電
遮断される。
When the thermal stress δ exceeds the tensile rupture stress of the glass plate, the glass substrate is broken and the current is cut off.

【0016】上記において、金属膜の局部的狭巾部は巾
両側からのトリミングにより設けているが、巾一方側か
らのトリミングにより巾他方側に設けることもできる。
図2の(イ)に示すように、上記巾b/2の各部分に溝
21を加工して基板2を割れ易くすることもでき、この
場合、ガラス板の表面にマグネシウムまたはマグネシウ
ム合金膜を蒸着等により形成し、巾b/2の各部分の金
属膜をレ−ザ−でカッティングする加工法を使用するこ
とができる(金属膜がレ−ザ−照射で溶断される際にそ
の直下のガラス部分が溶融切削され、ガラスが露出され
たのちはレ−ザ−が透過してそれ以上ガラスは切削され
ない)。また、図2の(ロ)に示すようにガラス基板2
の裏面にダイヤモンドカットで破断用溝22を加工する
こともできる。更に、易割性基板に曲げ応力を予め残留
させておき、この残留応力に上記金属膜の局部的狭巾部
のジュ−ル発熱で発生する熱応力を重畳させて易割性基
板を破断させることも可能である。
In the above description, the local narrow portion of the metal film is provided by trimming from both sides of the width, but may be provided on the other side by trimming from one side of the width.
As shown in FIG. 2A, a groove 21 can be formed in each portion of the width b / 2 to make the substrate 2 easily cracked. In this case, a magnesium or magnesium alloy film is coated on the surface of the glass plate. It is possible to use a processing method of forming the metal film of each part of the width b / 2 with a laser by forming by vapor deposition or the like. After the glass part is melt-cut and the glass is exposed, the laser is transmitted and no more glass is cut). In addition, as shown in FIG.
The groove 22 for breaking can also be machined by diamond cutting on the back surface of. Further, a bending stress is left on the easily breakable substrate in advance, and a thermal stress generated by Joule heat generated in a locally narrow portion of the metal film is superimposed on the residual stress to break the easily breakable substrate. It is also possible.

【0017】図3は本発明に係るヒュ−ズエレメントを
用いた電流ヒュ−ズの一例を示している。図3におい
て、3はセラミックス絶縁基板、エポキシ樹脂含浸ガラ
ス基板等の絶縁基板であり、導電ペ−ストの塗布、銅箔
積層絶縁板の銅箔エッチング等により一対の電極31,
31を形成してある。Aは本発明に係る電流ヒュ−ズエ
レメントであり、金属膜1側を下にして絶縁基板3上に
配設し、金属膜1の各端と各電極31との間をはんだバ
ンプまたは導電性接着剤4等により接合してある。この
電流ヒュ−ズの寸法(絶縁基板の寸法)は例えば長さ
(2.0〜1.5)mm×巾(2.0〜1.0)mmと
され、電流ヒュ−ズエレメントの寸法は例えば長さ
(1.0〜0.5)mm×巾(0.5〜0.3)mmと
される。
FIG. 3 shows an example of a current fuse using the fuse element according to the present invention. In FIG. 3, reference numeral 3 denotes an insulating substrate such as a ceramic insulating substrate, an epoxy resin impregnated glass substrate, or the like.
31 are formed. A is a current fuse element according to the present invention, which is disposed on the insulating substrate 3 with the metal film 1 side down, and a solder bump or a conductive material is provided between each end of the metal film 1 and each electrode 31. They are joined by an adhesive 4 or the like. The dimension of the current fuse (dimension of the insulating substrate) is, for example, length (2.0 to 1.5) mm × width (2.0 to 1.0) mm, and the dimension of the current fuse element is For example, length (1.0 to 0.5) mm × width (0.5 to 0.3) mm.

【0018】[0018]

【実施例】〔実施例1〕厚み0.5mmのガラス板の片
面に厚み0.1μmの金属マグネシウム膜を真空蒸着に
より被覆し、金属マグネシウム膜にレ−ザ−トリマ−で
局部的狭巾部を加工して電流ヒュ−ズエレメントを作成
した。この電流ヒュ−ズエレメントについて通電遮断試
験を行ったところ、ガラス板に割れが生じて電流が遮断
された。この通電遮断試験を行った試料につき直流80
0Vの耐電圧試験を行ったところ、漏れ電流が1mAに
満たず絶縁不良は認められなかった。
Example 1 One side of a glass plate having a thickness of 0.5 mm was coated with a metal magnesium film having a thickness of 0.1 μm by vacuum deposition, and the metal magnesium film was locally narrowed with a laser trimmer. Was processed to form a current fuse element. When a current cutoff test was performed on this current fuse element, a break occurred in the glass plate and the current was cut off. DC 80
When a withstand voltage test of 0 V was performed, the leakage current was less than 1 mA, and no insulation failure was observed.

【0019】〔実施例2〕実施例1に対しガラス板に代
え薄膜用アルミナスム−ス基板を用い、金属マグネシウ
ム膜にレ−ザ−トリマ−で局部的狭巾部を形成する際に
基板に深さ0.2mm程度の溝を切削加工した。実施例
1と同様に、この電流ヒュ−ズエレメントについても通
電遮断試験を行ったところ、ガラス板に割れが生じて電
流が遮断され、更にこの通電遮断試験を行った試料につ
き直流800Vの耐電圧試験を行ったところ、漏れ電流
が1mAに満たず絶縁不良は認められなかった。
[Embodiment 2] An alumina smooth substrate for a thin film is used in place of the glass plate in the embodiment 1, and when forming a locally narrow portion with a laser trimmer on the metal magnesium film, the substrate is not deeply formed. A groove of about 0.2 mm was cut. As in the case of Example 1, the current fuse element was also subjected to a current cutoff test. As a result, the glass plate was cracked and the current was cut off, and the withstand voltage of 800 V DC was measured for the sample subjected to the current cutoff test. As a result of the test, the leakage current was less than 1 mA, and no insulation failure was observed.

【0020】〔実施例3〕真空蒸着の蒸着源としてJI
S H 4201の1種マグネシウム合金板を用いて厚
み0.5mmのガラス板の片面に厚み0.1μmのマグ
ネシウム合金膜を真空蒸着により被覆し、マグネシウム
合金膜にレ−ザ−トリマ−で局部的狭巾部を加工して電
流ヒュ−ズエレメントを作成した。実施例1と同様に、
この電流ヒュ−ズエレメントについても通電遮断試験を
行ったところ、ガラス板に割れが生じて電流が遮断さ
れ、更にこの通電遮断試験を行った試料につき直流80
0Vの耐電圧試験を行ったところ、漏れ電流が1mAに
満たず絶縁不良は認められなかった。
[Embodiment 3] JI was used as a deposition source for vacuum deposition.
One side of a glass plate having a thickness of 0.5 mm was coated with a magnesium alloy film having a thickness of 0.1 μm by vacuum deposition using a SH 4201 type 1 magnesium alloy plate, and the magnesium alloy film was locally formed with a laser trimmer. A current fuse element was prepared by processing the narrow portion. As in Example 1,
The current fuse element was also subjected to a current interruption test. As a result, the glass plate was cracked and the current was interrupted.
When a withstand voltage test of 0 V was performed, the leakage current was less than 1 mA, and no insulation failure was observed.

【0021】〔比較例〕実施例1に対し、金属マグネシ
ウム膜に代え銅膜を使用し、通電遮断試験を行った試料
につき直流800Vの耐電圧試験を行ったところ、耐電
圧試験に不合格となり絶縁不良が認められた。
[Comparative Example] With respect to Example 1, when a copper film was used in place of the metal magnesium film, and the sample subjected to the power cutoff test was subjected to a withstand voltage test of 800 V DC, the withstand voltage test was rejected. Poor insulation was observed.

【0022】[0022]

【発明の効果】本発明は、局部的狭巾部を有する金属膜
に一体化した易割性基板を過電流通電時に熱応力破壊さ
せて通電遮断させる構成であり、通電遮断後の絶縁性が
高く、小サイズ化のもとでも通電遮断後の充分に高い絶
縁性を保証でき、電流ヒュ−ズエレメントのチップサイ
ズ化に極めて有用である。
According to the present invention, the easily breakable substrate integrated with the metal film having a locally narrow portion is subjected to thermal stress destruction when an overcurrent is applied, and the current is cut off. Even if the size is high and the size is small, a sufficiently high insulating property can be guaranteed after the current is cut off, and it is extremely useful for the chip size of the current fuse element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電流ヒュ−ズエレメントの一例を
示す図面である。
FIG. 1 is a drawing showing an example of a current fuse element according to the present invention.

【図2】本発明に係る電流ヒュ−ズエレメントの異なる
別例の要部を示す図面である。
FIG. 2 is a view showing a main part of another different example of the current fuse element according to the present invention.

【図3】本発明に係る電流ヒュ−ズエレメントを用いた
電流ヒュ−ズを示す図面である。
FIG. 3 is a drawing showing a current fuse using a current fuse element according to the present invention.

【符号の説明】 1 金属膜 11 局部的狭巾部 2 易割性基板[Explanation of Signs] 1 Metal film 11 Local narrow portion 2 Easily splittable substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】局部的狭巾部を有する金属膜を易割性基板
上に設けて成る電流ヒュ−ズエレメントを用い、過電流
通電により金属膜の局部的狭巾部を集中発熱させ、前記
易割性基板を前記集中発熱により発生する熱応力で破断
させることを特徴とする過電流遮断方法。
A current fuse element comprising a metal film having a locally narrow portion provided on an easily breakable substrate, and causing a local narrow portion of the metal film to generate heat by applying an overcurrent; An overcurrent interruption method, wherein the easily breakable substrate is broken by thermal stress generated by the concentrated heat generation.
【請求項2】局部的狭巾部を有する金属膜をガラス基板
上に設けたことを特徴とする電流ヒュ−ズエレメント。
2. A current fuse element wherein a metal film having a locally narrow portion is provided on a glass substrate.
【請求項3】ガラス基板に破断用溝を金属膜の局部的狭
巾部の近傍において設けた請求項2記載の電流ヒュ−ズ
エレメント。
3. The current fuse element according to claim 2, wherein a breaking groove is provided in the glass substrate in the vicinity of a locally narrow portion of the metal film.
【請求項4】金属膜がマグネシウムまたはマグネシウム
合金膜である請求項2または3記載の電流ヒュ−ズエレ
メント。
4. The current fuse element according to claim 2, wherein the metal film is a magnesium or magnesium alloy film.
JP10323095A 1998-11-13 1998-11-13 Overcurrent breaking method and current fuse element Pending JP2000149760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10323095A JP2000149760A (en) 1998-11-13 1998-11-13 Overcurrent breaking method and current fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10323095A JP2000149760A (en) 1998-11-13 1998-11-13 Overcurrent breaking method and current fuse element

Publications (1)

Publication Number Publication Date
JP2000149760A true JP2000149760A (en) 2000-05-30

Family

ID=18151030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10323095A Pending JP2000149760A (en) 1998-11-13 1998-11-13 Overcurrent breaking method and current fuse element

Country Status (1)

Country Link
JP (1) JP2000149760A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220440A (en) * 2006-02-16 2007-08-30 Uchihashi Estec Co Ltd Method of using alloy thermal fuse
JP2011071126A (en) * 2010-11-10 2011-04-07 Mitsubishi Electric Corp Power semiconductor device having circuit breaking mechanism
JP2012212689A (en) * 2012-07-23 2012-11-01 Mitsubishi Electric Corp Power semiconductor device having breaking mechanism
JP2014175129A (en) * 2013-03-07 2014-09-22 Murata Mfg Co Ltd Fuse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220440A (en) * 2006-02-16 2007-08-30 Uchihashi Estec Co Ltd Method of using alloy thermal fuse
JP2011071126A (en) * 2010-11-10 2011-04-07 Mitsubishi Electric Corp Power semiconductor device having circuit breaking mechanism
JP2012212689A (en) * 2012-07-23 2012-11-01 Mitsubishi Electric Corp Power semiconductor device having breaking mechanism
JP2014175129A (en) * 2013-03-07 2014-09-22 Murata Mfg Co Ltd Fuse

Similar Documents

Publication Publication Date Title
KR101128250B1 (en) Safety fuse for a chip
US6034589A (en) Multi-layer and multi-element monolithic surface mount fuse and method of making the same
JP4340997B2 (en) Electrical fuse
CN101261914A (en) Chip fuse and its making method
WO2004061885A1 (en) Protection element
JP2009016338A (en) Chip fuse and its manufacturing method
JP2001052593A (en) Fuse and its manufacture
US7173510B2 (en) Thermal fuse and method of manufacturing fuse
JP2005197660A (en) Overcurrent protection element and its manufacturing method
JP2000149760A (en) Overcurrent breaking method and current fuse element
JP3774871B2 (en) Delay type thin film fuse
JP2006310277A (en) Chip type fuse
JP2006286224A (en) Chip-type fuse
WO2005008853A1 (en) Surge absorber
JP2002140975A (en) Fuse element and its manufacturing method
JPH09129115A (en) Chip fuse
JPH10125508A (en) Chip thermistor and its manufacture
TWI714713B (en) Semiconductor device
KR101081099B1 (en) Chip fuse manufacturing method using porous amorphous nanotemplate
JP2003173730A (en) Fuse resistor
JP4264091B2 (en) Wiring board manufacturing method
JPH10308156A (en) Fuse
TWI262513B (en) Over-current protection device and manufacturing method thereof
RU2166812C1 (en) Film fuse
JPH10308161A (en) Fuse

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210