WO2015083341A1 - Switch element, switch circuit, and warning circuit - Google Patents

Switch element, switch circuit, and warning circuit Download PDF

Info

Publication number
WO2015083341A1
WO2015083341A1 PCT/JP2014/005865 JP2014005865W WO2015083341A1 WO 2015083341 A1 WO2015083341 A1 WO 2015083341A1 JP 2014005865 W JP2014005865 W JP 2014005865W WO 2015083341 A1 WO2015083341 A1 WO 2015083341A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
switch element
element according
electrodes
refractory metal
Prior art date
Application number
PCT/JP2014/005865
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480065692.6A priority Critical patent/CN105814657B/en
Priority to KR1020167014421A priority patent/KR102300950B1/en
Publication of WO2015083341A1 publication Critical patent/WO2015083341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices

Definitions

  • the present invention relates to a switch element and a switch circuit, and more particularly to a switch element and a switch circuit that can be reduced in size and can be easily incorporated into an element that is operated by surface mounting.
  • An alarm fuse is generally used as a switch element for operating an alarm device.
  • An example of the alarm fuse is shown in FIG. 16.
  • a pair of alarm contacts are connected to the alarm circuit 105 for operating the alarm device in the fuse holder 100 and are spaced apart from each other in the normal state. 101, 102, a spring 103 for contacting the alarm contacts 101, 102, and a fuse wire 104 for holding the spring 103 in a position biased to a position separated from the alarm contact 102.
  • the alarm contacts 101 and 102 actuate the alarm circuit 105 when they come into contact with each other, and are formed of a conductive material having elasticity such as a leaf spring and are arranged close to each other.
  • the alarm circuit 105 operates, for example, an alarm system by operating a buzzer or a lamp, driving a thyristor or a relay circuit, or the like.
  • the spring 103 is held in a state of being biased to a position separated from the alarm contact 102 by the fuse wire 104. Then, the spring 103 is elastically restored when the fuse wire 104 is melted, and presses the alarm contact 102 to contact the alarm contact 101.
  • the fuse wire 104 holds the spring 103 in an elastically displaced state, and when it is energized according to the detection of various sensors, it fuses by self-heating and opens the spring 103.
  • the spring 103 is held in an elastically displaced state by the fuse wire 104, and the alarm contact 102 is physically pressed by fusing the fuse wire 104 to release the stress of the spring 103.
  • a configuration in which the alarm contacts 101 and 102 are short-circuited is used.
  • Such an alarm fuse uses a configuration in which an alarm circuit is activated by physical interlocking of mechanical elements. Therefore, the alarm fuse has a large configuration such as securing the movable range of the alarm contacts 101 and 102 and the spring 103. Therefore, it is difficult to use for a narrowed circuit, and the manufacturing cost is high.
  • the alarm circuit cannot be operated unless the current exceeding the rating is continuously supplied and the fuse wire 104 is blown.
  • an object of the present invention is to provide a switch element and a switch circuit that can be miniaturized and quickly activate a circuit, and an alarm circuit using the same, regardless of the interlocking of physical mechanical elements.
  • a switch element according to the present invention is mounted on an insulating substrate, first and second electrodes formed close to each other on the insulating substrate, and the first electrode.
  • the first soluble conductor is melted, the first electrode and the second electrode are connected via the molten conductor of the first soluble conductor, and are electrically short-circuited.
  • the switch circuit according to the present invention includes first and second electrodes that are open to each other and connected to an external circuit, and at least one of which has a soluble conductor mounted thereon.
  • the alarm circuit includes first and second electrodes that are open to each other and on which at least one of the fusible conductors is mounted, and is alarmed by a switch unit that short-circuits the first and second electrodes.
  • a control circuit having an operating circuit for operating the device, a fuse formed electrically independent of the operating circuit and having a melting point higher than the melting point of the soluble conductor, and a functional circuit in which the fuse is connected in series with a power source
  • the fusible conductor is melted by heat generated when the fuse is blown due to an overcurrent flowing when the functional circuit is abnormal, and the first and second electrodes are melted by the molten conductor of the fusible conductor.
  • the alarm is activated by short-circuiting.
  • the present invention since it can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, it can be designed compactly in the plane of the insulating substrate. It is possible to mount even in a narrowed mounting area. Further, according to the present invention, the switch is turned on by the heat of the refractory metal body, so that an abnormal overcurrent can be detected and the circuit can be operated without requiring the fuse to be cut off. Furthermore, according to the present invention, the insulating substrate can be surface-mounted by reflow mounting or the like, and can be easily mounted even in a narrowed mounting area.
  • FIG. 1 is a diagram showing a state before operation of a switch element to which the present invention is applied, in which (A) is a plan view, (B) is a sectional view taken along line AA ′, and (C) is a circuit diagram.
  • 2A and 2B are diagrams showing a state before operation of a switch element in which a second fusible conductor is mounted on a second electrode, where FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view along AA ′.
  • (C) is a circuit diagram.
  • FIG. 1 is a diagram showing a state before operation of a switch element to which the present invention is applied, in which (A) is a plan view, (B) is a sectional view taken along line AA ′, and (C) is a circuit diagram.
  • 2A and 2B are diagrams showing a state before operation of a switch element in which a second fusible conductor is mounted on a second electrode, where FIG. 2A
  • FIG. 3 is a view showing a state in which the refractory metal body of the switch element generates heat and the first and second electrodes are short-circuited through the melted conductor of the soluble conductor
  • (A) is a plan view
  • ) Is a cross-sectional view along the line AA ′
  • (C) is a circuit diagram.
  • 4A and 4B are diagrams showing a state where the refractory metal body of the switch element is melted, where FIG. 4A is a plan view, FIG. 4B is a cross-sectional view taken along line AA ′, and FIG. 4C is a circuit diagram.
  • FIG. 5 is a circuit diagram showing an alarm circuit.
  • FIG. 6A and 6B are diagrams showing a switch element in which a refractory metal body and a first electrode are connected, where FIG. 6A is a plan view, FIG. 6B is a cross-sectional view along AA ′, and FIG. is there.
  • FIG. 7 is a cross-sectional view showing a switch element in which a cover part electrode is formed on a cover member.
  • FIG. 8 is a diagram showing a switch element in which a refractory metal body, first and second electrodes, and first and second fusible conductors are superimposed on the surface of an insulating substrate, and FIG. FIG. 4B is a cross-sectional view along AA ′.
  • FIG. 4B is a cross-sectional view along AA ′.
  • FIG. 9 is a diagram showing a switch element in which a refractory metal body is formed on the back surface of an insulating substrate and superimposed on the first and second electrodes and the first and second soluble conductors formed on the surface of the insulating substrate.
  • (A) is a plan view and (B) is an AA ′ cross-sectional view.
  • FIG. 10 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a coating structure, and (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer.
  • FIG. 11 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer, where (A) shows a two-layer structure of upper and lower layers, and (B) shows a three-layer structure of an inner layer and an outer layer.
  • FIG. 12 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer.
  • FIG. 13 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed.
  • FIG. 13A shows the opening along the longitudinal direction.
  • the formed part (B) has an opening formed in the width direction.
  • FIG. 14 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed.
  • FIG. 15 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting metal is filled therein.
  • 16A and 16B are diagrams showing a conventional alarm element, where FIG. 16A is a cross-sectional view before operation, and FIG. 16B is a cross-sectional view after operation.
  • the switch element 1 to which the present invention is applied includes an insulating substrate 10, first and second electrodes 11, 12 formed on the insulating substrate 10 in proximity to each other, The first soluble conductor 13 mounted on the electrode 11 and the refractory metal body 15 formed on the insulating substrate 10 and having a melting point higher than that of the first soluble conductor 13 are included.
  • 1A is a plan view showing the switch element 1 excluding the cover member 20
  • FIG. 1B is a cross-sectional view along AA ′
  • FIG. 1C is a circuit diagram.
  • the first and second electrodes 11 and 12 are connected to an alarm device 31 including a buzzer, a lamp, an alarm system, or the like, and the first fusible conductor 13 is melted by the heat generated by the refractory metal body 15. By doing so, the first and second electrodes 11 and 12 are short-circuited by the molten conductor, and a buzzer, a lamp, an alarm system, or the like as the alarm device 31 is operated.
  • the insulating substrate 10 is formed in a substantially rectangular shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the first soluble conductor 13 is melted.
  • the first and second electrodes 11 and 12 are opened by being arranged close to each other on the surface 10a of the insulating substrate 10 and separated from each other.
  • a first soluble conductor 13 described later is mounted on the first electrode 11.
  • the first and second electrodes 11 and 12 generate heat when the refractory metal body 15 is energized, so that the molten conductor of the first fusible conductor 13 extends between the first and second electrodes 11 and 12.
  • a switch 2 is formed which is agglomerated, joined and short-circuited via the molten conductor.
  • the switch element 1 may mount the 2nd soluble conductor 14 on the 2nd electrode 12, as shown in FIG.
  • the switch element 1 causes more molten conductors to aggregate between the first and second electrodes 11 and 12, faster and more reliably, The first and second electrodes 11 and 12 can be short-circuited.
  • the configuration of the switch element 1 shown in FIG. 2 in which the first soluble conductor 13 is provided on the first electrode 11 and the second soluble conductor 14 is provided on the second electrode 12 is taken as an example. explain.
  • the molten conductors of the first and second soluble conductors 13 and 14 can be easily aggregated.
  • the first and second electrodes 11 and 12 are provided with external connection terminals 11a and 12a on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the first and second electrodes 11 and 12 are connected to the alarm device 31 via these external connection terminals 11a and 12a, and the switch element 1 operates to provide a power supply path to the alarm device 31.
  • the first and second electrodes 11 and 12 can be formed using a general electrode material such as Cu or Ag.
  • a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is coated on the surfaces of the first and second electrodes 11 and 12 by a known method such as plating.
  • the switch element 1 can prevent the first and second electrodes 11 and 12 from being oxidized, and can reliably hold the molten conductors of the first and second soluble conductors 13 and 14.
  • the connection solder 17 for connecting the first and second soluble conductors 13 and 14 or the outer layer of the first and second soluble conductors 13 and 14 is formed. It is possible to prevent the first and second electrodes 11 and 12 from being eroded (soldered) by melting the melting point metal.
  • the refractory metal body 15 is a conductive member that generates heat when energized, and is made of, for example, W, Mo, Ru, Cu, Ag, or an alloy containing these as main components.
  • the refractory metal body 15 is formed by mixing powders of these alloys, compositions, or compounds with a resin binder, etc., forming a paste using a screen printing technique, firing, and the like. can do.
  • the refractory metal body 15 is arranged on the surface 10 a of the insulating substrate 10 along with the first and second electrodes 11 and 12. As a result, when the refractory metal body 15 generates heat upon energization, the first and second soluble conductors 13 and 14 mounted on the first and second electrodes 11 and 12 can be melted. .
  • the refractory metal body 15 is provided with external connection terminals 15 a on the side edges 10 b and 10 c of the insulating substrate 10.
  • the refractory metal body 15 is connected to the functional circuit 32 that triggers the operation of the alarm device 31 through the external connection terminal 15 a, and generates heat due to an overcurrent accompanying abnormality of the functional circuit 32.
  • the refractory metal body 15 is relatively thin at positions close to the first and second fusible conductors 11 and 12, and a heat generating portion 15b that locally generates heat to a high temperature due to current concentration is provided. Is formed.
  • the heat generating portion 15b By providing the heat generating portion 15b at a position close to the first and second soluble conductors 11 and 12, the refractory metal body 15 efficiently melts the first and second soluble conductors 13 and 14, The first and second electrodes 11 and 12 can be quickly short-circuited.
  • the refractory metal body 15 has an appropriate current flowing within the rating when the functional circuit 32 is operating normally.
  • the refractory metal body 15 generates heat when an overcurrent flows due to an abnormality in the functional circuit 32, and as shown in FIG. 3, the first and second fusible conductors 13 and 14 are melted and the molten conductor is interposed. Thus, the first and second electrodes 11 and 12 are short-circuited.
  • the refractory metal body 15 continues to generate heat and is melted by its own Joule heat as shown in FIG.
  • the refractory metal body 15 is cut off from overcurrent due to an abnormality in the functional circuit 32 and stops generating heat. That is, the refractory metal body 15 functions as a fuse that melts the first and second fusible conductors 13 and 14 and interrupts its power supply path by self-heating.
  • the refractory metal body 15 is fused at the heat generating portion 15b by providing the heat generating portion 15b that is locally high in temperature. At this time, since the refractory metal body 15 has the heat generating portion 15b formed relatively thin, the arc discharge generated at the time of fusing is also small, and together with the covering effect of the insulating layer 16 described later, the molten conductor Can be prevented.
  • the refractory metal body 15 uses a refractory metal foil such as a copper foil or a silver foil, or a refractory metal wire such as a copper wire or a silver wire. May be formed.
  • a refractory metal foil such as a copper foil or a silver foil
  • a refractory metal wire such as a copper wire or a silver wire. May be formed.
  • the problem of leakage of the molten conductor after the melting of the refractory metal body 15 is less than that of the conductive pattern.
  • a ceramic substrate that is excellent in thermal conductivity and can quickly melt the first and second soluble conductors 13 and 14 can be suitably used as the insulating substrate 10.
  • the first and second electrodes 11, 12 and the refractory metal body 15 are covered with an insulating layer 16 on the surface 10 a of the insulating substrate 10.
  • the insulating layer 16 is provided to protect and insulate the first and second electrodes 11 and 12 and the refractory metal body 15, and to suppress arc discharge when the refractory metal body 15 is melted. Consists of layers.
  • the insulating layer 16 covers the heat generating portion 15 b of the refractory metal body 15 and is formed on a region excluding the tip portions 11 b and 12 b of the first and second electrodes 11 and 12.
  • the tip portions 11b and 12b of the first and second electrodes 11 and 12 are exposed from the insulating layer 16, and first and second soluble conductors 13 and 14 described later can be aggregated and combined. .
  • first and second electrodes 11 and 12 have an opening 16 a formed in a part of the insulating layer 16.
  • the first and second electrodes 11 and 12 are provided with connecting solder 17 at the tip end portions 11b and 12b and the opening portion 16a, and the connecting solder 17 is provided between the tip end portions 11b and 12b and the opening portion 16a.
  • the first and second soluble conductors 13 and 14 are supported on the insulating layer 16.
  • an insulating layer 16 made of glass or the like may be formed between the refractory metal body 15 and the insulating substrate 10. Thereby, the insulation resistance after interruption
  • the first and second fusible conductors 13 and 14 mounted on the first and second electrodes 11 and 12 through the insulating layer 16 can be quickly melted by the heat generated by the refractory metal body 15.
  • a metal can be used.
  • a low melting point metal such as solder or Pb-free solder containing Sn as a main component can be preferably used.
  • the first and second soluble conductors 13 and 14 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder, Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components.
  • the low melting point metal melts, and the high melting point metal is eroded (soldered), so that the fusing can be quickly performed at a temperature lower than the melting point of the high melting point metal.
  • the 1st, 2nd soluble conductors 13 and 14 can be formed by various structures so that it may demonstrate later.
  • the first and second soluble conductors 13 and 14 are preferably coated with a flux 18 to prevent oxidation and improve wettability.
  • the switch element 1 as described above has a circuit configuration as shown in FIG. That is, in the switch element 1, the first electrode 11 and the second electrode 12 are opened during normal operation (FIG. 2C), and the first and second soluble conductors are generated by the heat generated by the refractory metal body 15. When 13 and 14 are melted, the switch 2 is configured to be short-circuited through the molten conductor (FIG. 3B).
  • the external connection terminals 11 a and 12 a of the first and second electrodes 11 and 12 constitute both terminals of the switch 2.
  • FIG. 5 is a diagram illustrating an example of a circuit configuration of the alarm circuit 30.
  • the alarm circuit 30 is formed independently of the operation circuit 33 for operating the alarm device 31 by the switch 2 of the switch element 1 and the operation circuit, and has a melting point higher than that of the first and second soluble conductors 13 and 14.
  • a control circuit 34 having a functional circuit connected in series to a power source.
  • both external connection terminals 11a and 12a of the switch 2 are connected to an alarm device 31 including a buzzer, a lamp, an alarm system, or the like.
  • both external connection terminals 15 a of the refractory metal body 15 are connected to the functional circuit 32.
  • the switch element 1 having such a configuration generates heat from the refractory metal body 15 formed adjacent to the first and second electrodes 11 and 12 constituting the switch 2 that operates the alarm device 31.
  • the first and second soluble conductors 13 and 14 are melted and short-circuited through the molten conductors. That is, in the switch element 1, the refractory metal body 15 and the first and second electrodes 11 and 12 are configured physically and electrically independently, and the first and second electrodes are heated by the heat of the refractory metal body 15.
  • the fusible conductors 13 and 14 are short-circuited by melting, so to speak, they are connected in a thermal manner.
  • the switch element 1 since the switch element 1 can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, the switch element 1 should be designed to be compact in the plane of the insulating substrate 10. Can be mounted in a narrowed mounting area. Further, the switch element 1 can reduce the number of parts and the number of manufacturing steps, and can reduce the cost. Furthermore, the switch element 1 can be mounted on the surface of the insulating substrate 10 by reflow mounting or the like, and can be easily mounted even in a narrowed mounting region.
  • the switch element 1 is provided with a thin heat generating portion 15b in the vicinity of the first and second soluble conductors 13 and 14 of the refractory metal body 15, so that the high resistance heat generating portion 15b has a high temperature.
  • the first and second soluble conductors 13 and 14 can be efficiently melted, and the first and second electrodes 11 and 12 can be short-circuited quickly.
  • the high resistance heat generating portion 15b is only locally heated, and both the external connection terminals 15a facing the side edges are kept at a relatively low temperature due to the heat dissipation effect. Therefore, the switch element 1 does not melt the solder for mounting the external connection terminal 15a.
  • the refractory metal body 15 continues to generate heat after the short circuit between the first and second electrodes 11 and 12, and is blocked by its own Joule heat (FIGS. 4A and 4B).
  • the switch element 1 is deenergized by the functional circuit 32 and stops generating heat (FIG. 4C).
  • the switch element 1 can suppress arc discharge and suppress explosive scattering of the molten conductor.
  • the heat generating portion 15b that is thinly formed on the refractory metal body 15, the fusing part is narrowed, and the amount of the molten conductor scattered can be reduced.
  • the switch element 1 is surely configured so that the refractory metal body 15 having a higher melting point than the first and second soluble conductors 13 and 14 generates heat, so that the first and second soluble conductors 13, 14 melts before the refractory metal body 15, and the first and second electrodes 11 and 12 can be short-circuited. That is, in the switching element 1, the interruption of the refractory metal body 15 is not a requirement for short-circuiting the first and second electrodes 11 and 12. Therefore, the switch element 1 can be used as an alarm switch that notifies that a current exceeding the rating of the refractory metal body 15 has flowed due to an abnormality in the functional circuit 32.
  • the refractory metal body 15 automatically stops generating heat by being cut off by its own Joule heat. Therefore, the switch element 1 does not need to be provided with a mechanism for restricting the power supply by the functional circuit 32, can stop the heat generation of the refractory metal body 15 with a simple configuration, and can reduce the size of the entire element. .
  • connection portion 19 that connects the refractory metal body 15 and the first electrode 11 on which the first soluble conductor 13 is mounted.
  • the connection portion 19 can be provided by patterning in the same process as the refractory metal body 15 and the first electrode 11 using the same conductive material as that of the refractory metal body 15 and the first electrode 11, for example. .
  • the switch element 1 By connecting the refractory metal body 15 and the first electrode 11, the switch element 1 generates heat through the connection portion 19 and the first electrode 11 when the refractory metal body 15 generates heat when energized. It is transmitted to the soluble conductor 13 and can be melted more rapidly. Therefore, it is preferable to form the connection part 19 with metal materials, such as Ag and Cu, which are excellent in thermal conductivity.
  • a cover member 20 that protects the inside is attached on an insulating substrate 10.
  • the inside of the switch element 1 is protected by covering the insulating substrate 10 with the cover member 20.
  • the cover member 20 includes a side wall 21 that constitutes a side surface of the switch element 1 and a top surface portion 22 that constitutes an upper surface of the switch element 1, and the side wall 21 is connected to the insulating substrate 10. It becomes a lid that closes the inside of the.
  • the cover member 20 is formed using an insulating member such as a thermoplastic, ceramic, glass epoxy substrate, etc., as with the insulating substrate 10.
  • the cover member 20 may have a cover portion electrode 23 formed on the inner surface side of the top surface portion 22.
  • the cover part electrode 23 is formed at a position that overlaps between the tip parts 11 b and 12 b of the first and second electrodes 11 and 12.
  • the cover electrode 23 is a molten conductor that aggregates on the first and second electrodes 11 and 12 when the refractory metal body 15 generates heat and the first and second soluble conductors 13 and 14 are melted.
  • the allowable amount for holding the molten conductor can be increased, and the first and second electrodes 11 and 12 can be short-circuited more reliably.
  • the refractory metal body and the first and second electrodes may be superimposed on the surface of the insulating substrate.
  • the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted.
  • the refractory metal body 15 is formed between the opposite side edges 10d and 10e of the surface 10a of the insulating substrate 10.
  • the first and second electrodes 11 and 12 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10.
  • the refractory metal body 15 is covered with a first insulating layer 41 at a substantially central portion of the insulating substrate 10.
  • the refractory metal body 15 has external connection terminals 15 a formed on the side edges 10 d and 10 e of the insulating substrate 10. Further, the refractory metal body 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion where the first and second electrodes 11 and 12 overlap with each other narrower than both ends.
  • the first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the first and second electrodes 11 and 12 are formed from the side edges 10 b and 10 c to the upper surface of the first insulating layer 41, and the tip portions 11 b and 12 b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated.
  • the first and second electrodes 11 and 12 are covered with a second insulating layer 42 except for the tip portions 11b and 12b.
  • an opening 42a is partially formed.
  • the first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b and the opening 42a, and the connecting solder extends between the tip portions 11b and 12b and the opening 42a.
  • the first and second soluble conductors 13 and 14 are supported on the second insulating layer 42. Thereby, at least a part of the tip portions 11 b and 12 b of the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 overlap with the heat generating portion 15 b of the refractory metal body 15. Has been.
  • a flux 18 is applied on the first and second soluble conductors 13 and 14 to prevent oxidation and improve wettability.
  • an insulating material such as glass can be suitably used, as with the insulating layer 16 of the switch element 1 described above.
  • the switch element 40 includes the heat generating portion 15b, the first and second electrodes 11, 12 and the first and second fusible elements via the first and second insulating layers 41 and 42 made of glass or the like. Since the conductors 13 and 14 are continuously laminated, the heat of the heat generating portion 15b can be efficiently conducted.
  • the switch element to which the present invention is applied has the first and second electrodes formed on the surface of the insulating substrate, and the refractory metal body is formed on the back surface of the insulating substrate.
  • the second electrode may be overlapped.
  • the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted.
  • the refractory metal body 15 is formed between the opposite side edges 10d and 10e of the back surface 10f of the insulating substrate 10.
  • the first and second electrodes 11 and 12 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10.
  • the refractory metal body 15 is covered with a first insulating layer 51 at a substantially central portion of the insulating substrate 10.
  • the refractory metal body 15 has external connection terminals 15 a formed on the side edges 10 d and 10 e of the insulating substrate 10. Further, the refractory metal body 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion where the first and second electrodes 11 and 12 overlap with each other narrower than both ends.
  • the first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. Further, the first and second electrodes 11 and 12 are opened when the front end portions 11b and 12b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing. The first and second electrodes 11 and 12 are covered with a second insulating layer 52 except for the tip portions 11b and 12b.
  • an opening 52a is formed in part.
  • the first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b and the opening 52a, and the connecting solder extends between the tip portions 11b and 12b and the opening 52a.
  • the first and second soluble conductors 13 and 14 are supported on the second insulating layer 52. Thereby, at least a part of the tip portions 11 b and 12 b of the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 overlap with the heat generating portion 15 b of the refractory metal body 15. Has been.
  • a flux 18 is applied on the first and second soluble conductors 13 and 14 to prevent oxidation and improve wettability.
  • an insulating material such as glass can be suitably used, as in the case of the insulating layer 16 of the switch element 1 described above.
  • the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 are arranged so as to overlap the heat generating portion 15 b of the refractory metal body 15. Therefore, the first and second soluble conductors 13 and 14 can be quickly melted by the heat generated by the heat generating portion 15b, and the first and second electrodes 11 and 12 can be short-circuited.
  • the switch element 50 is provided with the refractory metal body 15 of the first and second fusible conductors 13 and 14 by using an insulating substrate 10 having excellent thermal conductivity such as a ceramic substrate. It is preferable because it can be heated to the same level as when it is formed on the same surface as the other surface.
  • any or all of the first and second soluble conductors 13 and 14 may contain a low melting point metal and a high melting point metal.
  • the refractory metal layer 60 is made of Ag, Cu or an alloy containing these as a main component
  • the low melting metal layer 61 is made of Pb-free solder containing Sn as a main component.
  • the first and second soluble conductors 13 and 14 may be provided with a high melting point metal layer 60 as an inner layer and a low melting point metal layer 61 as an outer layer.
  • a molten conductor may be used.
  • the first and second fusible conductors 13 and 14 may have a structure in which the entire surface of the high melting point metal layer 60 is covered with the low melting point metal layer 61 and is covered except for a pair of opposite side surfaces. It may be a structure.
  • the covering structure with the high melting point metal layer 60 and the low melting point metal layer 61 can be formed using a known film forming technique such as plating.
  • the first and second soluble conductors 13 and 14 are soluble in which a low melting point metal layer 61 is provided as an inner layer and a high melting point metal layer 60 is provided as an outer layer.
  • a conductor may be used.
  • the first and second fusible conductors 13 and 14 may have a structure in which the entire surface of the low melting point metal layer 61 is covered with the high melting point metal layer 60 and is covered except for a pair of opposing side surfaces. The structure may be different.
  • first and second fusible conductors 13 and 14 may have a laminated structure in which a high melting point metal layer 60 and a low melting point metal layer 61 are laminated as shown in FIG.
  • the first and second fusible conductors 13 and 14 are laminated on the lower layer supported by the first and second electrodes 11 and 12 and on the lower layer, as shown in FIG.
  • the lower melting point metal layer 61 may be laminated on the upper surface of the lower refractory metal layer 60, and on the contrary, the lower melting point metal layer 61 may be laminated on the upper surface.
  • the upper refractory metal layer 60 may be laminated.
  • the first and second soluble conductors 13 and 14 may be formed as a three-layer structure including an inner layer and an outer layer laminated on the upper and lower surfaces of the inner layer, as shown in FIG.
  • the low melting point metal layer 61 serving as the outer layer may be laminated on the upper and lower surfaces of the refractory metal layer 60 serving as the inner layer. Conversely, the refractory metal layer 60 serving as the outer layer may be disposed on the upper and lower surfaces of the low melting point metal layer 61 serving as the inner layer. You may laminate.
  • the first and second soluble conductors 13 and 14 may have a multilayer structure of four or more layers in which high melting point metal layers 60 and low melting point metal layers 61 are alternately laminated.
  • the 1st, 2nd soluble conductors 13 and 14 are good also as a structure coat
  • the first and second soluble conductors 13 and 14 may be formed by partially laminating the refractory metal layer 60 in a stripe shape on the surface of the low melting point metal layer 61 constituting the inner layer.
  • FIG. 13 is a plan view of the first and second fusible conductors 13 and 14.
  • the first and second soluble conductors 13 and 14 shown in FIG. 13A have a plurality of linear refractory metal layers 60 in the longitudinal direction on the surface of the low melting point metal layer 61 at predetermined intervals in the width direction.
  • a linear opening 62 is formed along the longitudinal direction, and the low melting point metal layer 61 is exposed from the opening 62.
  • the low melting point metal layer 61 is exposed from the opening 62, thereby increasing the contact area between the molten low melting point metal and the high melting point metal, and the high melting point metal layer 60. It is possible to improve the fusing property by further promoting the erosion action.
  • the opening 62 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
  • the first and second soluble conductors 13 and 14 are formed on the surface of the low melting point metal layer 61 at a predetermined interval in the longitudinal direction at the linear refractory metal layer 60.
  • the linear openings 62 may be formed along the width direction.
  • the first and second fusible conductors 13 and 14 form a refractory metal layer 60 on the surface of the low melting point metal layer 61 and extend over the entire surface of the refractory metal layer 60.
  • a circular opening 63 may be formed, and the low melting point metal layer 61 may be exposed from the opening 63.
  • the opening 63 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
  • the contact area between the molten low melting point metal and the high melting point metal is increased, and the high melting point metal is eroded.
  • the action can be further promoted to improve the fusing property.
  • the first and second soluble conductors 13 and 14 are formed with a large number of openings 64 in the refractory metal layer 60 serving as an inner layer, and the refractory metal layer 60 is plated.
  • the low melting point metal layer 61 may be formed using a technique or the like and filled in the opening 64.
  • the first and second soluble conductors 13 and 14 increase the area where the low melting point metal to be in contact with the high melting point metal increases, so that the low melting point metal erodes the high melting point metal in a shorter time. Will be able to.
  • the first and second soluble conductors 13 and 14 are preferably formed such that the volume of the low melting point metal layer 61 is larger than the volume of the high melting point metal layer 60.
  • the first and second soluble conductors 13 and 14 are heated by the high-melting point metal body 15 to melt the low-melting point metal when the low-melting point metal melts, thereby quickly melting and cutting. Can do. Therefore, the first and second fusible conductors 13 and 14 promote the erosion action by forming the volume of the low melting point metal layer 61 larger than the volume of the high melting point metal layer 60, and promptly. A short circuit between the first and second electrodes 11 and 12 can be performed.
  • switch element 2 switch, 10 insulating substrate, 10a front surface, 10f back surface, 11 first electrode, 12 second electrode, 13 first soluble conductor, 14 second soluble conductor, 15 Refractory metal body, 16 insulating layer, 17 connecting solder, 18 flux, 19 connecting part, 20 cover member, 21 side wall, 22 top surface part, 23 cover part electrode, 30 alarm circuit, 31 alarm device, 32 functional circuit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

For fast circuit operation and compactness without interlocking physical machine elements, this switch element is provided with an insulating substrate (10), a first and second electrode (11, 12) formed adjacently on the insulating substrate (10), a first fusible conductor (13) mounted on the first electrode (11), and a high-melting point metal body (15) formed on the insulating substrate (10) and having a higher melting point than that of the fusible conductor (13). The first fusible conductor (13) is melted by heat generated by overcurrent to the high-melting point metal body (15), connecting the first electrode (11) and the second electrode (12) through said melted conductor, causing an electrical short circuit.

Description

スイッチ素子、スイッチ回路、及び警報回路Switch element, switch circuit, and alarm circuit 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2013-249565号(2013年12月2日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2013-249565 (filed on Dec. 2, 2013), the entire disclosure of which is incorporated herein by reference.
 本発明は、スイッチ素子及びスイッチ回路に関し、特に小型化を図り、かつ表面実装により動作させる素子に容易に組み込むことができるスイッチ素子及びスイッチ回路に関する。 The present invention relates to a switch element and a switch circuit, and more particularly to a switch element and a switch circuit that can be reduced in size and can be easily incorporated into an element that is operated by surface mounting.
 警報器を作動させるスイッチ素子としては、一般に警報用ヒューズが用いられている。警報用ヒューズの一例を示すと、図16に示すように、ヒューズホルダ100内に、それぞれ警報器を作動させる警報回路105と接続されるとともに平常時は離間して配置されている一対の警報接点101,102と、警報接点101,102を接触させるスプリング103と、スプリング103を警報接点102と離間した位置に付勢した位置に保持するヒューズ線104が設けられている。 An alarm fuse is generally used as a switch element for operating an alarm device. An example of the alarm fuse is shown in FIG. 16. A pair of alarm contacts are connected to the alarm circuit 105 for operating the alarm device in the fuse holder 100 and are spaced apart from each other in the normal state. 101, 102, a spring 103 for contacting the alarm contacts 101, 102, and a fuse wire 104 for holding the spring 103 in a position biased to a position separated from the alarm contact 102.
 警報接点101,102は、接触することにより警報回路105を作動させるものであり、板バネ等の弾性を有する導通材料によって形成され、近接配置されている。警報回路105は、例えばブザーやランプの作動、サイリスタやリレー回路の駆動等による警報システムの作動等を行う。 The alarm contacts 101 and 102 actuate the alarm circuit 105 when they come into contact with each other, and are formed of a conductive material having elasticity such as a leaf spring and are arranged close to each other. The alarm circuit 105 operates, for example, an alarm system by operating a buzzer or a lamp, driving a thyristor or a relay circuit, or the like.
 スプリング103は、ヒューズ線104によって警報接点102と離間した位置に付勢された状態で保持される。そして、スプリング103は、ヒューズ線104が溶断することにより弾性復帰し、警報接点102を押圧して警報接点101に接触させる。 The spring 103 is held in a state of being biased to a position separated from the alarm contact 102 by the fuse wire 104. Then, the spring 103 is elastically restored when the fuse wire 104 is melted, and presses the alarm contact 102 to contact the alarm contact 101.
 ヒューズ線104は、スプリング103を弾性変位させた状態で保持するとともに、各種センサーの検出に応じて通電されると自己発熱により溶断し、スプリング103を開放する。 The fuse wire 104 holds the spring 103 in an elastically displaced state, and when it is energized according to the detection of various sensors, it fuses by self-heating and opens the spring 103.
特開2001-76610号公報JP 2001-76610 A
 従来の警報用ヒューズでは、ヒューズ線104によってスプリング103を弾性変位させた状態で保持するとともに、ヒューズ線104を溶断させて当該スプリング103の応力を開放することによって警報接点102を物理的に押圧し、これにより警報接点101,102間を短絡させる構成を用いている。このような警報用ヒューズでは、機械要素の物理的な連動により警報回路を作動させる構成を用いているため、警報接点101,102やスプリング103の可動範囲を確保するなど警報用ヒューズの構成が大きくなり、狭小化した回路に使用することは困難となり、また製造コストも高い。 In the conventional alarm fuse, the spring 103 is held in an elastically displaced state by the fuse wire 104, and the alarm contact 102 is physically pressed by fusing the fuse wire 104 to release the stress of the spring 103. Thus, a configuration in which the alarm contacts 101 and 102 are short-circuited is used. Such an alarm fuse uses a configuration in which an alarm circuit is activated by physical interlocking of mechanical elements. Therefore, the alarm fuse has a large configuration such as securing the movable range of the alarm contacts 101 and 102 and the spring 103. Therefore, it is difficult to use for a narrowed circuit, and the manufacturing cost is high.
 また、警報接点101,102の短絡にはヒューズ線104の溶断を必須とすることから、定格を超える電流を通電させ続け、ヒューズ線104を溶断させない限り警報回路を作動させることができない。 Also, since the fuse wire 104 must be blown to short-circuit the alarm contacts 101 and 102, the alarm circuit cannot be operated unless the current exceeding the rating is continuously supplied and the fuse wire 104 is blown.
 そこで、本発明は、物理的な機械要素の連動によらず、小型化を図るとともに、速やかに回路を作動させるスイッチ素子及びスイッチ回路、これを用いた警報回路を提供することを目的とする。 Accordingly, an object of the present invention is to provide a switch element and a switch circuit that can be miniaturized and quickly activate a circuit, and an alarm circuit using the same, regardless of the interlocking of physical mechanical elements.
 上述した課題を解決するために、本発明に係るスイッチ素子は、絶縁基板と、上記絶縁基板上に、近接して形成された第1、第2の電極と、上記第1の電極上に搭載された第1の可溶導体と、上記絶縁基板に形成され、上記第1の可溶導体よりも融点の高い高融点金属体とを有し、上記高融点金属体の通電に伴う発熱により上記第1の可溶導体を溶融させ、上記第1の可溶導体の溶融導体を介して上記第1の電極及び第2の電極を接続し、電気的に短絡させるものである。 In order to solve the above-described problems, a switch element according to the present invention is mounted on an insulating substrate, first and second electrodes formed close to each other on the insulating substrate, and the first electrode. The first soluble conductor formed and the refractory metal body formed on the insulating substrate and having a melting point higher than that of the first soluble conductor. The first soluble conductor is melted, the first electrode and the second electrode are connected via the molten conductor of the first soluble conductor, and are electrically short-circuited.
 また、本発明に係るスイッチ回路は、互いに開放されるとともに外部回路と接続され、少なくとも一方に可溶導体が搭載された第1及び第2の電極を有し、上記第1及び第2の電極が短絡することにより上記外部回路を作動させるスイッチ部と、上記可溶導体の融点よりも高い融点を有し、上記スイッチ部と電気的に独立して形成された機能回路に接続されるヒューズとを備え、上記機能回路による上記ヒューズの通電に伴う発熱により、上記可溶導体を溶融させ、上記可溶導体の溶融導体により上記第1、第2の電極を短絡させ上記外部回路を作動させるものである。 The switch circuit according to the present invention includes first and second electrodes that are open to each other and connected to an external circuit, and at least one of which has a soluble conductor mounted thereon. A switch part for operating the external circuit by short-circuiting, a fuse having a melting point higher than the melting point of the fusible conductor and connected to a functional circuit formed electrically independent of the switch part; And melting the fusible conductor by heat generated by energization of the fuse by the functional circuit, and operating the external circuit by short-circuiting the first and second electrodes by the molten conductor of the fusible conductor. It is.
 また、本発明に係る警報回路は、互いに開放され、少なくとも一方に可溶導体が搭載された第1、第2の電極を有し、上記第1、第2の電極が短絡するスイッチ部により警報器を作動させる作動回路と、上記作動回路と電気的に独立して形成され、上記可溶導体の融点よりも高い融点を有するヒューズと、上記ヒューズが電源に直列に繋がる機能回路を有する制御回路とを備え、上記機能回路の異常時に流れる過電流に伴って上記ヒューズが溶断時に発する熱により、上記可溶導体を溶融させ、上記可溶導体の溶融導体により上記第1、第2の電極を短絡させ上記警報器を作動させるものである。 The alarm circuit according to the present invention includes first and second electrodes that are open to each other and on which at least one of the fusible conductors is mounted, and is alarmed by a switch unit that short-circuits the first and second electrodes. A control circuit having an operating circuit for operating the device, a fuse formed electrically independent of the operating circuit and having a melting point higher than the melting point of the soluble conductor, and a functional circuit in which the fuse is connected in series with a power source The fusible conductor is melted by heat generated when the fuse is blown due to an overcurrent flowing when the functional circuit is abnormal, and the first and second electrodes are melted by the molten conductor of the fusible conductor. The alarm is activated by short-circuiting.
 本発明によれば、スプリングや警報接点等の機械要素を用いず、また機械要素の物理的な連動によらず構成することができるため、絶縁基板の面内において、コンパクトに設計することができ、狭小化された実装領域にも実装可能となる。また、本発明によれば、高融点金属体の熱によりスイッチをオンとするため、ヒューズの遮断を要せずに異常な過電流を検知し回路を作動させることができる。さらに、本発明によれば、絶縁基板をリフロー実装等により表面実装することができ、狭小化された実装領域においても、簡易に実装することができる。 According to the present invention, since it can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, it can be designed compactly in the plane of the insulating substrate. It is possible to mount even in a narrowed mounting area. Further, according to the present invention, the switch is turned on by the heat of the refractory metal body, so that an abnormal overcurrent can be detected and the circuit can be operated without requiring the fuse to be cut off. Furthermore, according to the present invention, the insulating substrate can be surface-mounted by reflow mounting or the like, and can be easily mounted even in a narrowed mounting area.
図1は、本発明が適用されたスイッチ素子の作動前の状態を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。FIG. 1 is a diagram showing a state before operation of a switch element to which the present invention is applied, in which (A) is a plan view, (B) is a sectional view taken along line AA ′, and (C) is a circuit diagram. 図2は、第2の電極上に第2の可溶導体を搭載したスイッチ素子の作動前の状態を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。2A and 2B are diagrams showing a state before operation of a switch element in which a second fusible conductor is mounted on a second electrode, where FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view along AA ′. (C) is a circuit diagram. 図3は、スイッチ素子の高融点金属体が発熱し、可溶導体の溶融導体を介して第1、第2の電極が短絡した状態を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。FIG. 3 is a view showing a state in which the refractory metal body of the switch element generates heat and the first and second electrodes are short-circuited through the melted conductor of the soluble conductor, (A) is a plan view, ) Is a cross-sectional view along the line AA ′, and (C) is a circuit diagram. 図4は、スイッチ素子の高融点金属体が溶断した状態を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。4A and 4B are diagrams showing a state where the refractory metal body of the switch element is melted, where FIG. 4A is a plan view, FIG. 4B is a cross-sectional view taken along line AA ′, and FIG. 4C is a circuit diagram. 図5は、警報回路を示す回路図である。FIG. 5 is a circuit diagram showing an alarm circuit. 図6は、高融点金属体と第1の電極とを接続したスイッチ素子を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。6A and 6B are diagrams showing a switch element in which a refractory metal body and a first electrode are connected, where FIG. 6A is a plan view, FIG. 6B is a cross-sectional view along AA ′, and FIG. is there. 図7は、カバー部材にカバー部電極を形成したスイッチ素子を示す断面図である。FIG. 7 is a cross-sectional view showing a switch element in which a cover part electrode is formed on a cover member. 図8は、絶縁基板の表面上において高融点金属体と第1、第2の電極及び第1、第2の可溶導体とを重畳させたスイッチ素子を示す図であり、(A)は平面図、(B)はA-A‘断面図である。FIG. 8 is a diagram showing a switch element in which a refractory metal body, first and second electrodes, and first and second fusible conductors are superimposed on the surface of an insulating substrate, and FIG. FIG. 4B is a cross-sectional view along AA ′. 図9は、高融点金属体を絶縁基板の裏面に形成し、絶縁基板の表面に形成した第1、第2の電極及び第1、第2の可溶導体と重畳させたスイッチ素子を示す図であり、(A)は平面図、(B)はA-A‘断面図である。FIG. 9 is a diagram showing a switch element in which a refractory metal body is formed on the back surface of an insulating substrate and superimposed on the first and second electrodes and the first and second soluble conductors formed on the surface of the insulating substrate. (A) is a plan view and (B) is an AA ′ cross-sectional view. 図10は、高融点金属層と低融点金属層を有し、被覆構造を備える可溶導体を示す斜視図であり、(A)は高融点金属層を内層とし低融点金属層で被覆した構造を示し、(B)は低融点金属層を内層とし高融点金属層で被覆した構造を示す。FIG. 10 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a coating structure, and (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer. (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer. 図11は、高融点金属層と低融点金属層の積層構造を備える可溶導体を示す斜視図であり、(A)は上下2層構造、(B)は内層及び外層の3層構造を示す。FIG. 11 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer, where (A) shows a two-layer structure of upper and lower layers, and (B) shows a three-layer structure of an inner layer and an outer layer. . 図12は、高融点金属層と低融点金属層の多層構造を備える可溶導体を示す断面図である。FIG. 12 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer. 図13は、高融点金属層の表面に線状の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図であり、(A)は長手方向に沿って開口部が形成されたもの、(B)は幅方向に沿って開口部が形成されたものである。FIG. 13 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting point metal layer is exposed. FIG. 13A shows the opening along the longitudinal direction. The formed part (B) has an opening formed in the width direction. 図14は、高融点金属層の表面に円形の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図である。FIG. 14 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed. 図15は、高融点金属層に円形の開口部が形成され、内部に低融点金属が充填された可溶導体を示す平面図である。FIG. 15 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting metal is filled therein. 図16は、従来の警報素子を示す図であり、(A)は作動前の断面図、(B)は作動後の断面図である。16A and 16B are diagrams showing a conventional alarm element, where FIG. 16A is a cross-sectional view before operation, and FIG. 16B is a cross-sectional view after operation.
 以下、本発明が適用されたスイッチ素子、スイッチ回路、及び警報回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a switch element, a switch circuit, and an alarm circuit to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [スイッチ素子]
 本発明が適用されたスイッチ素子1は、図1に示すように、絶縁基板10と、絶縁基板10上に、近接して形成された第1、第2の電極11,12と、第1の電極11上に搭載された第1の可溶導体13と、絶縁基板10に形成され、第1の可溶導体13よりも融点の高い高融点金属体15とを有する。なお、図1(A)はスイッチ素子1のカバー部材20を除いて示す平面図であり、図1(B)はA-A‘断面図であり、図1(C)は回路図である。
[Switch element]
As shown in FIG. 1, the switch element 1 to which the present invention is applied includes an insulating substrate 10, first and second electrodes 11, 12 formed on the insulating substrate 10 in proximity to each other, The first soluble conductor 13 mounted on the electrode 11 and the refractory metal body 15 formed on the insulating substrate 10 and having a melting point higher than that of the first soluble conductor 13 are included. 1A is a plan view showing the switch element 1 excluding the cover member 20, FIG. 1B is a cross-sectional view along AA ′, and FIG. 1C is a circuit diagram.
 このスイッチ素子1は、第1、第2の電極11,12がブザーやランプあるいは警報システム等からなる警報器31と接続され、高融点金属体15の発熱により第1の可溶導体13を溶融させることにより、この溶融導体によって第1、第2の電極11,12間を短絡させ、警報器31であるブザーやランプあるいは警報システム等を作動させるものである。 In the switch element 1, the first and second electrodes 11 and 12 are connected to an alarm device 31 including a buzzer, a lamp, an alarm system, or the like, and the first fusible conductor 13 is melted by the heat generated by the refractory metal body 15. By doing so, the first and second electrodes 11 and 12 are short-circuited by the molten conductor, and a buzzer, a lamp, an alarm system, or the like as the alarm device 31 is operated.
 絶縁基板10は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板10は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、第1の可溶導体13の溶断時の温度に留意する必要がある。 The insulating substrate 10 is formed in a substantially rectangular shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. In addition, the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the first soluble conductor 13 is melted.
 [第1、第2の電極]
 第1、第2の電極11,12は、絶縁基板10の表面10a上に、互いに近接配置されるとともに離間されることにより開放されている。また、第1の電極11には後述する第1の可溶導体13が搭載されている。第1、第2の電極11,12は、高融点金属体15が通電に伴って発熱することにより、第1の可溶導体13の溶融導体が第1、第2の電極11,12間にわたって凝集、結合し、この溶融導体を介して短絡されるスイッチ2を構成する。
[First and second electrodes]
The first and second electrodes 11 and 12 are opened by being arranged close to each other on the surface 10a of the insulating substrate 10 and separated from each other. In addition, a first soluble conductor 13 described later is mounted on the first electrode 11. The first and second electrodes 11 and 12 generate heat when the refractory metal body 15 is energized, so that the molten conductor of the first fusible conductor 13 extends between the first and second electrodes 11 and 12. A switch 2 is formed which is agglomerated, joined and short-circuited via the molten conductor.
 なお、スイッチ素子1は、図2に示すように、第2の電極12上に第2の可溶導体14を搭載してもよい。スイッチ素子1は、第1、第2の可溶導体13,14を設けることにより、より多くの溶融導体が第1、第2の電極11,12間にわたって凝集し、より速く、より確実に、第1、第2の電極11,12間を短絡させることができる。以下では、図2に示す、第1の電極11上に第1の可溶導体13を設け、第2の電極12上に第2の可溶導体14を設けたスイッチ素子1の構成を例に説明する。 In addition, the switch element 1 may mount the 2nd soluble conductor 14 on the 2nd electrode 12, as shown in FIG. By providing the first and second fusible conductors 13 and 14, the switch element 1 causes more molten conductors to aggregate between the first and second electrodes 11 and 12, faster and more reliably, The first and second electrodes 11 and 12 can be short-circuited. In the following, the configuration of the switch element 1 shown in FIG. 2 in which the first soluble conductor 13 is provided on the first electrode 11 and the second soluble conductor 14 is provided on the second electrode 12 is taken as an example. explain.
 第1、第2の電極11,12は、高融点金属体15によって加熱されることにより、第1、第2の可溶導体13,14の溶融導体を凝集しやすくすることができる。 When the first and second electrodes 11 and 12 are heated by the high melting point metal body 15, the molten conductors of the first and second soluble conductors 13 and 14 can be easily aggregated.
 第1、第2の電極11,12は、それぞれ、絶縁基板10の側縁10b,10cに外部接続端子11a,12aが設けられている。第1、第2の電極11,12は、これら外部接続端子11a,12aを介して警報器31と接続され、スイッチ素子1が動作することにより、当該警報器31への給電経路となる。 The first and second electrodes 11 and 12 are provided with external connection terminals 11a and 12a on the side edges 10b and 10c of the insulating substrate 10, respectively. The first and second electrodes 11 and 12 are connected to the alarm device 31 via these external connection terminals 11a and 12a, and the switch element 1 operates to provide a power supply path to the alarm device 31.
 第1、第2の電極11,12は、CuやAg等の一般的な電極材料を用いて形成することができる。また、第1、第2の電極11,12の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。これにより、スイッチ素子1は、第1、第2の電極11,12の酸化を防止し、第1、第2の可溶導体13,14の溶融導体を確実に保持させることができる。また、スイッチ素子1をリフロー実装する場合に、第1、第2の可溶導体13,14を接続する接続用ハンダ17あるいは第1、第2の可溶導体13,14の外層を形成する低融点金属が溶融することにより第1、第2の電極11,12を溶食(ハンダ食われ)するのを防ぐことができる。 The first and second electrodes 11 and 12 can be formed using a general electrode material such as Cu or Ag. In addition, a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is coated on the surfaces of the first and second electrodes 11 and 12 by a known method such as plating. Preferably it is. Thereby, the switch element 1 can prevent the first and second electrodes 11 and 12 from being oxidized, and can reliably hold the molten conductors of the first and second soluble conductors 13 and 14. Further, when the switch element 1 is reflow-mounted, the connection solder 17 for connecting the first and second soluble conductors 13 and 14 or the outer layer of the first and second soluble conductors 13 and 14 is formed. It is possible to prevent the first and second electrodes 11 and 12 from being eroded (soldered) by melting the melting point metal.
 [高融点金属体]
 高融点金属体15は、通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru、Cu、Ag、あるいはこれらを主成分とする合金等からなる。高融点金属体15は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものをスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
[High melting point metal]
The refractory metal body 15 is a conductive member that generates heat when energized, and is made of, for example, W, Mo, Ru, Cu, Ag, or an alloy containing these as main components. The refractory metal body 15 is formed by mixing powders of these alloys, compositions, or compounds with a resin binder, etc., forming a paste using a screen printing technique, firing, and the like. can do.
 高融点金属体15は、絶縁基板10の表面10a上に、第1、第2の電極11,12と並んで配置されている。これにより高融点金属体15は、通電に伴って発熱すると、第1、第2の電極11,12上に搭載されている第1、第2の可溶導体13,14を溶融させることができる。 The refractory metal body 15 is arranged on the surface 10 a of the insulating substrate 10 along with the first and second electrodes 11 and 12. As a result, when the refractory metal body 15 generates heat upon energization, the first and second soluble conductors 13 and 14 mounted on the first and second electrodes 11 and 12 can be melted. .
 また、高融点金属体15は、絶縁基板10の側縁10b,10cに外部接続端子15aが設けられている。高融点金属体15は、外部接続端子15aを介して、警報器31の作動のトリガーとなる機能回路32と接続され、機能回路32の異常に伴う過電流によって発熱する。 Further, the refractory metal body 15 is provided with external connection terminals 15 a on the side edges 10 b and 10 c of the insulating substrate 10. The refractory metal body 15 is connected to the functional circuit 32 that triggers the operation of the alarm device 31 through the external connection terminal 15 a, and generates heat due to an overcurrent accompanying abnormality of the functional circuit 32.
 また、高融点金属体15は、第1、第2の可溶導体11,12と近接する位置において、相対的に細くなり、電流が集中することにより局部的に高温に発熱する発熱部15bが形成されている。第1、第2の可溶導体11,12と近接する位置に発熱部15bを設けることにより、高融点金属体15は、効率よく第1、第2の可溶導体13,14を溶融させ、速やかに第1、第2の電極11,12を短絡させることができる。 Further, the refractory metal body 15 is relatively thin at positions close to the first and second fusible conductors 11 and 12, and a heat generating portion 15b that locally generates heat to a high temperature due to current concentration is provided. Is formed. By providing the heat generating portion 15b at a position close to the first and second soluble conductors 11 and 12, the refractory metal body 15 efficiently melts the first and second soluble conductors 13 and 14, The first and second electrodes 11 and 12 can be quickly short-circuited.
 図2に示すように、高融点金属体15は、機能回路32が正常に作動しているときは、定格内の適正な電流が流れている。そして、高融点金属体15は、機能回路32の異常によって過電流が流れると発熱し、図3に示すように、第1、第2の可溶導体13,14を溶融させ、溶融導体を介して第1、第2の電極11,12を短絡させる。その後も、高融点金属体15は発熱を続けることにより、図4に示すように、自身のジュール熱によって溶断する。これにより、高融点金属体15は、機能回路32の異常による過電流が遮断され、発熱が停止する。すなわち、高融点金属体15は、第1、第2の可溶導体13,14を溶融させるとともに自己発熱によって自身の給電経路を遮断するヒューズとして機能する。 As shown in FIG. 2, the refractory metal body 15 has an appropriate current flowing within the rating when the functional circuit 32 is operating normally. The refractory metal body 15 generates heat when an overcurrent flows due to an abnormality in the functional circuit 32, and as shown in FIG. 3, the first and second fusible conductors 13 and 14 are melted and the molten conductor is interposed. Thus, the first and second electrodes 11 and 12 are short-circuited. After that, the refractory metal body 15 continues to generate heat and is melted by its own Joule heat as shown in FIG. As a result, the refractory metal body 15 is cut off from overcurrent due to an abnormality in the functional circuit 32 and stops generating heat. That is, the refractory metal body 15 functions as a fuse that melts the first and second fusible conductors 13 and 14 and interrupts its power supply path by self-heating.
 また、高融点金属体15は、局部的に高温となる発熱部15bを設けることにより、当該発熱部15bにおいて溶断する。このとき、高融点金属体15は、発熱部15bが相対的に細く形成されているため、溶断時に発生するアーク放電も小規模なものに収まり、後述する絶縁層16の被覆効果とともに、溶融導体の飛散を防止することができる。 Further, the refractory metal body 15 is fused at the heat generating portion 15b by providing the heat generating portion 15b that is locally high in temperature. At this time, since the refractory metal body 15 has the heat generating portion 15b formed relatively thin, the arc discharge generated at the time of fusing is also small, and together with the covering effect of the insulating layer 16 described later, the molten conductor Can be prevented.
 なお、高融点金属体15は、上述した導電ペーストを印刷することによりパターン形成する他にも、銅箔や銀箔等の高融点金属箔や、銅線や銀線等の高融点金属ワイヤーを用いて形成してもよい。また、高融点金属箔や高融点金属ワイヤーを用いて高融点金属体15を構成する場合、高融点金属体15の溶断後における溶融導体のリークの問題が導電パターンに比して少ないことから、絶縁基板10として熱伝導性に優れ、第1、第2の可溶導体13,14を速やかに溶融させることができるセラミック基板を好適に用いることができる。 In addition to forming the pattern by printing the above-described conductive paste, the refractory metal body 15 uses a refractory metal foil such as a copper foil or a silver foil, or a refractory metal wire such as a copper wire or a silver wire. May be formed. In addition, when the refractory metal body 15 is configured using a refractory metal foil or a refractory metal wire, the problem of leakage of the molten conductor after the melting of the refractory metal body 15 is less than that of the conductive pattern. A ceramic substrate that is excellent in thermal conductivity and can quickly melt the first and second soluble conductors 13 and 14 can be suitably used as the insulating substrate 10.
 [絶縁層]
 第1、第2の電極11,12及び高融点金属体15は、絶縁基板10の表面10a上において絶縁層16に被覆されている。絶縁層16は、第1、第2の電極11,12及び高融点金属体15の保護及び絶縁を図るとともに、高融点金属体15の溶断時におけるアーク放電を抑制するために設けられ、例えばガラス層からなる。
[Insulation layer]
The first and second electrodes 11, 12 and the refractory metal body 15 are covered with an insulating layer 16 on the surface 10 a of the insulating substrate 10. The insulating layer 16 is provided to protect and insulate the first and second electrodes 11 and 12 and the refractory metal body 15, and to suppress arc discharge when the refractory metal body 15 is melted. Consists of layers.
 図1、図2に示すように、絶縁層16は、高融点金属体15の発熱部15bを覆うとともに、第1、第2の電極11,12の先端部11b,12bを除く領域上に形成されている。すなわち、第1、第2の電極11,12は、先端部11b,12bが絶縁層16より露出され、後述する第1、第2の可溶導体13,14が凝集、結合可能とされている。 As shown in FIGS. 1 and 2, the insulating layer 16 covers the heat generating portion 15 b of the refractory metal body 15 and is formed on a region excluding the tip portions 11 b and 12 b of the first and second electrodes 11 and 12. Has been. That is, the tip portions 11b and 12b of the first and second electrodes 11 and 12 are exposed from the insulating layer 16, and first and second soluble conductors 13 and 14 described later can be aggregated and combined. .
 また、第1、第2の電極11,12は、絶縁層16の一部に開口部16aが形成されている。そして、第1、第2の電極11,12は、先端部11b,12b及び開口部16aに接続用ハンダ17が設けられ、この接続用ハンダ17によって先端部11b,12bと開口部16aとの間にわたって、絶縁層16上に第1、第2の可溶導体13,14を支持している。 Further, the first and second electrodes 11 and 12 have an opening 16 a formed in a part of the insulating layer 16. The first and second electrodes 11 and 12 are provided with connecting solder 17 at the tip end portions 11b and 12b and the opening portion 16a, and the connecting solder 17 is provided between the tip end portions 11b and 12b and the opening portion 16a. The first and second soluble conductors 13 and 14 are supported on the insulating layer 16.
 また、高融点金属体15と絶縁基板10との間にガラス等からなる絶縁層16を形成してもよい。これにより、高融点金属体15の遮断後の絶縁抵抗を高くすることができる。 Further, an insulating layer 16 made of glass or the like may be formed between the refractory metal body 15 and the insulating substrate 10. Thereby, the insulation resistance after interruption | blocking of the refractory metal body 15 can be made high.
 [第1、第2の可溶導体]
 絶縁層16を介して第1、第2の電極11,12上に搭載される第1、第2の可溶導体13,14は、高融点金属体15の発熱により速やかに溶融されるいずれの金属を用いることができ、例えば、ハンダや、Snを主成分とするPbフリーハンダ等の低融点金属を好適に用いることができる。
[First and second soluble conductors]
The first and second fusible conductors 13 and 14 mounted on the first and second electrodes 11 and 12 through the insulating layer 16 can be quickly melted by the heat generated by the refractory metal body 15. A metal can be used. For example, a low melting point metal such as solder or Pb-free solder containing Sn as a main component can be preferably used.
 また、第1、第2の可溶導体13,14は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、ハンダや、Snを主成分とするPbフリーハンダなどを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、スイッチ素子1をリフロー実装する場合に、リフロー温度が低融点金属の溶融温度を超えて、低融点金属が溶融しても、低融点金属の外部への流出を抑制し、第1、第2の可溶導体13,14の形状を維持することができる。また、溶断時も、低融点金属が溶融することにより、高融点金属を溶食(ハンダ食われ)することで、高融点金属の融点以下の温度で速やかに溶断することができる。なお、第1、第2の可溶導体13,14は、後に説明するように、様々な構成によって形成することができる。 The first and second soluble conductors 13 and 14 may contain a low melting point metal and a high melting point metal. As the low melting point metal, it is preferable to use solder, Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components. By containing the high melting point metal and the low melting point metal, even when the reflow temperature exceeds the melting temperature of the low melting point metal and the low melting point metal melts when the switch element 1 is reflow mounted, Outflow to the outside can be suppressed, and the shapes of the first and second soluble conductors 13 and 14 can be maintained. In addition, even when fusing, the low melting point metal melts, and the high melting point metal is eroded (soldered), so that the fusing can be quickly performed at a temperature lower than the melting point of the high melting point metal. In addition, the 1st, 2nd soluble conductors 13 and 14 can be formed by various structures so that it may demonstrate later.
 なお、第1、第2の可溶導体13,14は、酸化防止、濡れ性の向上等のため、フラックス18が塗布されていることが好ましい。 The first and second soluble conductors 13 and 14 are preferably coated with a flux 18 to prevent oxidation and improve wettability.
 [スイッチ回路・警報回路]
 以上のようなスイッチ素子1は、図2(C)に示すような回路構成を有する。すなわち、スイッチ素子1は、第1の電極11と第2の電極12とが、正常時には開放され(図2(C))、高融点金属体15の発熱により第1、第2の可溶導体13,14が溶融すると、当該溶融導体を介して短絡するスイッチ2を構成する(図3(B))。そして、第1、第2の電極11,12の各外部接続端子11a,12aは、スイッチ2の両端子を構成する。
[Switch circuit / alarm circuit]
The switch element 1 as described above has a circuit configuration as shown in FIG. That is, in the switch element 1, the first electrode 11 and the second electrode 12 are opened during normal operation (FIG. 2C), and the first and second soluble conductors are generated by the heat generated by the refractory metal body 15. When 13 and 14 are melted, the switch 2 is configured to be short-circuited through the molten conductor (FIG. 3B). The external connection terminals 11 a and 12 a of the first and second electrodes 11 and 12 constitute both terminals of the switch 2.
 そして、スイッチ素子1は、例えば警報回路30に組み込まれて用いられる。図5は警報回路30の回路構成の一例を示す図である。警報回路30は、スイッチ素子1のスイッチ2により警報器31を作動させる作動回路33と、作動回路と電気的に独立して形成され、第1、第2の可溶導体13,14よりも融点の高い高融点金属体15からなるヒューズが電源に直列に繋がる機能回路を有する制御回路34とを備える。 The switch element 1 is used by being incorporated in the alarm circuit 30, for example. FIG. 5 is a diagram illustrating an example of a circuit configuration of the alarm circuit 30. The alarm circuit 30 is formed independently of the operation circuit 33 for operating the alarm device 31 by the switch 2 of the switch element 1 and the operation circuit, and has a melting point higher than that of the first and second soluble conductors 13 and 14. And a control circuit 34 having a functional circuit connected in series to a power source.
 図5に示すように、スイッチ素子1は、スイッチ2の両外部接続端子11a,12aが、ブザーやランプあるいは警報システム等からなる警報器31に接続される。また、スイッチ素子1は、高融点金属体15の両外部接続端子15aが、機能回路32に接続される。 As shown in FIG. 5, in the switch element 1, both external connection terminals 11a and 12a of the switch 2 are connected to an alarm device 31 including a buzzer, a lamp, an alarm system, or the like. In the switch element 1, both external connection terminals 15 a of the refractory metal body 15 are connected to the functional circuit 32.
 このような構成を有するスイッチ素子1は、警報器31を動作させるスイッチ2を構成する第1、第2の電極11,12に対して、隣接して形成されている高融点金属体15の発熱により第1、第2の可溶導体13,14を溶融させ、この溶融導体を介して短絡させる。すなわち、スイッチ素子1は、高融点金属体15と第1、第2の電極11,12とは物理的、電気的に独立して構成され、高融点金属体15の熱によって第1、第2の可溶導体13,14が溶融することにより短絡する、いわば熱的に接続することにより連動する構成を取る。 The switch element 1 having such a configuration generates heat from the refractory metal body 15 formed adjacent to the first and second electrodes 11 and 12 constituting the switch 2 that operates the alarm device 31. Thus, the first and second soluble conductors 13 and 14 are melted and short-circuited through the molten conductors. That is, in the switch element 1, the refractory metal body 15 and the first and second electrodes 11 and 12 are configured physically and electrically independently, and the first and second electrodes are heated by the heat of the refractory metal body 15. The fusible conductors 13 and 14 are short-circuited by melting, so to speak, they are connected in a thermal manner.
 したがって、スイッチ素子1は、スプリングや警報接点等の機械要素を用いず、また機械要素の物理的な連動によらず構成することができるため、絶縁基板10の面内において、コンパクトに設計することができ、狭小化された実装領域にも実装可能となる。また、スイッチ素子1は、部品点数、製造工数の削減を図り、低コスト化を図ることができる。さらに、スイッチ素子1は、絶縁基板10をリフロー実装等により表面実装することができ、狭小化された実装領域においても、簡易に実装することができる。 Therefore, since the switch element 1 can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, the switch element 1 should be designed to be compact in the plane of the insulating substrate 10. Can be mounted in a narrowed mounting area. Further, the switch element 1 can reduce the number of parts and the number of manufacturing steps, and can reduce the cost. Furthermore, the switch element 1 can be mounted on the surface of the insulating substrate 10 by reflow mounting or the like, and can be easily mounted even in a narrowed mounting region.
 実使用時において、スイッチ素子1は、機能回路32の不具合によって高融点金属体15に過電流が流れる。すると、図3(A)に示すように、高融点金属体15が発熱し、これにより、第1、第2の可溶導体13,14が溶融する。第1、第2の可溶導体13,14の溶融導体は、開口部16aに比して広面積で、かつ高融点金属体15によって加熱された第1、第2の電極11,12の各先端部11b,12bの上に凝集し、結合する。これにより、スイッチ素子1は、第1、第2の電極11,12間が短絡し、警報器31を作動させることができる。すなわち、スイッチ素子1は、スイッチ2がオンとなる(図3(C))。警報回路30は、スイッチ素子1のスイッチ2がオンとなることにより、作動回路33によって警報器31が作動される。 In actual use, overcurrent flows through the refractory metal body 15 in the switch element 1 due to the malfunction of the functional circuit 32. Then, as shown in FIG. 3A, the refractory metal body 15 generates heat, and thereby the first and second soluble conductors 13 and 14 are melted. The molten conductors of the first and second fusible conductors 13 and 14 have a larger area than the opening 16a and each of the first and second electrodes 11 and 12 heated by the refractory metal body 15. Aggregates and bonds on the tip portions 11b and 12b. Thereby, the switch element 1 can short-circuit between the 1st, 2nd electrodes 11 and 12, and can operate the alarm device 31. FIG. That is, in the switch element 1, the switch 2 is turned on (FIG. 3C). In the alarm circuit 30, the alarm device 31 is operated by the operation circuit 33 when the switch 2 of the switch element 1 is turned on.
 このとき、スイッチ素子1は、高融点金属体15の第1、第2の可溶導体13,14の近傍に、細く形成された発熱部15bを設けることで、高抵抗の発熱部15bが高温となり、効率よく第1、第2の可溶導体13,14を溶融させ、速やかに第1、第2の電極11,12を短絡させることができる。また、高融点金属体15は、高抵抗の発熱部15bが局部的に高温となるのみで、側縁に面する両外部接続端子15aは放熱効果も相まって比較的低温に保たれる。そのため、スイッチ素子1は、外部接続端子15aの実装用ハンダが溶融することもない。 At this time, the switch element 1 is provided with a thin heat generating portion 15b in the vicinity of the first and second soluble conductors 13 and 14 of the refractory metal body 15, so that the high resistance heat generating portion 15b has a high temperature. Thus, the first and second soluble conductors 13 and 14 can be efficiently melted, and the first and second electrodes 11 and 12 can be short-circuited quickly. In the refractory metal body 15, the high resistance heat generating portion 15b is only locally heated, and both the external connection terminals 15a facing the side edges are kept at a relatively low temperature due to the heat dissipation effect. Therefore, the switch element 1 does not melt the solder for mounting the external connection terminal 15a.
 図4に示すように、第1、第2の電極11,12間の短絡後も高融点金属体15は発熱を続け、自身のジュール熱によって遮断する(図4(A)(B))。これにより、スイッチ素子1は、機能回路32による通電が遮断され、発熱が停止する(図4(C))。このとき、スイッチ素子1は、高融点金属体15が絶縁層16によって被覆されているため、アーク放電を抑制し、溶融導体の爆発的な飛散を抑制することができる。また、高融点金属体15に細く形成された発熱部15bを設けることにより、溶断箇所が狭小化され、飛散する溶融導体の量を低減させることができる。 As shown in FIG. 4, the refractory metal body 15 continues to generate heat after the short circuit between the first and second electrodes 11 and 12, and is blocked by its own Joule heat (FIGS. 4A and 4B). As a result, the switch element 1 is deenergized by the functional circuit 32 and stops generating heat (FIG. 4C). At this time, since the high melting point metal body 15 is covered with the insulating layer 16, the switch element 1 can suppress arc discharge and suppress explosive scattering of the molten conductor. Further, by providing the heat generating portion 15b that is thinly formed on the refractory metal body 15, the fusing part is narrowed, and the amount of the molten conductor scattered can be reduced.
 このように、スイッチ素子1は、第1、第2の可溶導体13,14よりも融点の高い高融点金属体15が発熱することにより、確実に第1、第2の可溶導体13,14が高融点金属体15よりも先に溶融し、第1、第2の電極11,12を短絡させることができる。すなわち、スイッチ素子1は、高融点金属体15の遮断が第1、第2の電極11,12を短絡させる要件とはなっていない。したがって、スイッチ素子1は、機能回路32の異常に伴い高融点金属体15の定格を超える電流が流れたことを伝える警報スイッチとして使用することができる。 As described above, the switch element 1 is surely configured so that the refractory metal body 15 having a higher melting point than the first and second soluble conductors 13 and 14 generates heat, so that the first and second soluble conductors 13, 14 melts before the refractory metal body 15, and the first and second electrodes 11 and 12 can be short-circuited. That is, in the switching element 1, the interruption of the refractory metal body 15 is not a requirement for short-circuiting the first and second electrodes 11 and 12. Therefore, the switch element 1 can be used as an alarm switch that notifies that a current exceeding the rating of the refractory metal body 15 has flowed due to an abnormality in the functional circuit 32.
 また、高融点金属体15は、自身のジュール熱により遮断することにより、自動的に発熱を停止する。したがって、スイッチ素子1は、機能回路32による給電を規制する機構を設ける必要がなく、簡易な構成で高融点金属体15の発熱を停止することができ、素子全体の小型化を図ることができる。 Further, the refractory metal body 15 automatically stops generating heat by being cut off by its own Joule heat. Therefore, the switch element 1 does not need to be provided with a mechanism for restricting the power supply by the functional circuit 32, can stop the heat generation of the refractory metal body 15 with a simple configuration, and can reduce the size of the entire element. .
 [高融点金属体と第1の電極との接続]
 また、スイッチ素子1は、図6に示すように、高融点金属体15と、第1の可溶導体13が搭載されている第1の電極11とを接続する接続部19を形成してもよい。接続部19は、例えば高融点金属体15や第1の電極11と同じ導電材料を用いて、高融点金属体15や第1の電極11と同じ工程においてパターン形成されることにより設けることができる。
[Connection between refractory metal body and first electrode]
In addition, as shown in FIG. 6, the switch element 1 forms a connection portion 19 that connects the refractory metal body 15 and the first electrode 11 on which the first soluble conductor 13 is mounted. Good. The connection portion 19 can be provided by patterning in the same process as the refractory metal body 15 and the first electrode 11 using the same conductive material as that of the refractory metal body 15 and the first electrode 11, for example. .
 高融点金属体15と第1の電極11とを接続することにより、スイッチ素子1は、高融点金属体15が通電により発熱すると、接続部19及び第1の電極11を介して熱が第1の可溶導体13に伝わり、より速やかに溶融させることができる。したがって、接続部19は、熱伝導性に優れるAgやCu等の金属材料により形成することが好ましい。 By connecting the refractory metal body 15 and the first electrode 11, the switch element 1 generates heat through the connection portion 19 and the first electrode 11 when the refractory metal body 15 generates heat when energized. It is transmitted to the soluble conductor 13 and can be melted more rapidly. Therefore, it is preferable to form the connection part 19 with metal materials, such as Ag and Cu, which are excellent in thermal conductivity.
 [カバー部材/カバー部電極]
 スイッチ素子1は、絶縁基板10上に内部を保護するカバー部材20が取り付けられている。スイッチ素子1は、絶縁基板10がカバー部材20に覆われることによりその内部が保護されている。カバー部材20は、スイッチ素子1の側面を構成する側壁21と、スイッチ素子1の上面を構成する天面部22とを有し、側壁21が絶縁基板10上に接続されることにより、スイッチ素子1の内部を閉塞する蓋体となる。このカバー部材20は、上記絶縁基板10と同様に、たとえば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
[Cover member / Cover part electrode]
In the switch element 1, a cover member 20 that protects the inside is attached on an insulating substrate 10. The inside of the switch element 1 is protected by covering the insulating substrate 10 with the cover member 20. The cover member 20 includes a side wall 21 that constitutes a side surface of the switch element 1 and a top surface portion 22 that constitutes an upper surface of the switch element 1, and the side wall 21 is connected to the insulating substrate 10. It becomes a lid that closes the inside of the. The cover member 20 is formed using an insulating member such as a thermoplastic, ceramic, glass epoxy substrate, etc., as with the insulating substrate 10.
 また、図7に示すように、カバー部材20は、天面部22の内面側に、カバー部電極23が形成されても良い。カバー部電極23は、第1、第2の電極11,12の各先端部11b,12b間にわたって重畳する位置に形成されている。このカバー部電極23は、高融点金属体15が発熱し、第1、第2の可溶導体13,14が溶融されると、第1、第2の電極11,12上に凝集した溶融導体が接触して濡れ広がることにより、溶融導体を保持する許容量を増加させ、より確実に第1、第2の電極11,12を短絡させることができる。 Also, as shown in FIG. 7, the cover member 20 may have a cover portion electrode 23 formed on the inner surface side of the top surface portion 22. The cover part electrode 23 is formed at a position that overlaps between the tip parts 11 b and 12 b of the first and second electrodes 11 and 12. The cover electrode 23 is a molten conductor that aggregates on the first and second electrodes 11 and 12 when the refractory metal body 15 generates heat and the first and second soluble conductors 13 and 14 are melted. As a result of contact and wetting and spreading, the allowable amount for holding the molten conductor can be increased, and the first and second electrodes 11 and 12 can be short-circuited more reliably.
 [高融点金属体の配置:変形例1]
 なお、本発明が適用されたスイッチ素子は、絶縁基板の表面上において、高融点金属体と第1、第2の電極とを重畳させてもよい。なお、以下の説明において、上述したスイッチ素子1と同様の構成については、同じ符号を付してその詳細を省略する。このスイッチ素子40は、図8に示すように、絶縁基板10の表面10aの相対向する側縁10d,10e間にわたって高融点金属体15が形成される。また、スイッチ素子40は、第1、第2の電極11,12が絶縁基板10の表面10aの相対向する側縁10b,10cに形成される。
[Arrangement of refractory metal body: Modification 1]
In the switch element to which the present invention is applied, the refractory metal body and the first and second electrodes may be superimposed on the surface of the insulating substrate. In the following description, the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. In the switch element 40, as shown in FIG. 8, the refractory metal body 15 is formed between the opposite side edges 10d and 10e of the surface 10a of the insulating substrate 10. In the switch element 40, the first and second electrodes 11 and 12 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10.
 高融点金属体15は、絶縁基板10の略中央部において第1の絶縁層41によって被覆されている。また、高融点金属体15は、絶縁基板10の側縁10d,10eに、それぞれ外部接続端子15aが形成されている。また、高融点金属体15は、第1、第2の電極11,12が重畳する中間部が両端部よりも細く形成されることにより高温に発熱する発熱部15bが形成されている。 The refractory metal body 15 is covered with a first insulating layer 41 at a substantially central portion of the insulating substrate 10. The refractory metal body 15 has external connection terminals 15 a formed on the side edges 10 d and 10 e of the insulating substrate 10. Further, the refractory metal body 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion where the first and second electrodes 11 and 12 overlap with each other narrower than both ends.
 第1、第2の電極11,12は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子11a,12aが形成されている。また、第1、第2の電極11,12は、側縁10b,10cから第1の絶縁層41の上面にわたって形成され、第1の絶縁層41の上面において互いの先端部11b,12bが近接されるとともに離間することにより、開放されている。また、第1、第2の電極11,12は、先端部11b,12bを除き、第2の絶縁層42によって被覆されている。 The first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. The first and second electrodes 11 and 12 are formed from the side edges 10 b and 10 c to the upper surface of the first insulating layer 41, and the tip portions 11 b and 12 b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated. The first and second electrodes 11 and 12 are covered with a second insulating layer 42 except for the tip portions 11b and 12b.
 第2の絶縁層42には、一部に開口部42aが形成されている。そして、第1、第2の電極11,12は、先端部11b,12b及び開口部42aに接続用ハンダが設けられ、この接続用ハンダによって先端部11b,12bと開口部42aとの間にわたって、第2の絶縁層42上に第1、第2の可溶導体13,14を支持している。これにより、第1、第2の電極11,12の先端部11b,12b、及び第1、第2の可溶導体13,14の少なくとも一部は、高融点金属体15の発熱部15bと重畳されている。なお、第1、第2の可溶導体13,14上には、酸化防止、濡れ性の向上等のため、フラックス18が塗布されている。 In the second insulating layer 42, an opening 42a is partially formed. The first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b and the opening 42a, and the connecting solder extends between the tip portions 11b and 12b and the opening 42a. The first and second soluble conductors 13 and 14 are supported on the second insulating layer 42. Thereby, at least a part of the tip portions 11 b and 12 b of the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 overlap with the heat generating portion 15 b of the refractory metal body 15. Has been. A flux 18 is applied on the first and second soluble conductors 13 and 14 to prevent oxidation and improve wettability.
 第1、第2の絶縁層41,42は、上述したスイッチ素子1の絶縁層16と同様に、ガラス等の絶縁材料を好適に用いることができる。 As the first and second insulating layers 41 and 42, an insulating material such as glass can be suitably used, as with the insulating layer 16 of the switch element 1 described above.
 このようなスイッチ素子40によれば、高融点金属体15の発熱部15bに重畳して第1、第2の電極11,12及び第1、第2の可溶導体13,14が配置されているため、発熱部15bの発熱により速やかに第1、第2の可溶導体13,14を溶融させ、第1、第2の電極11,12を短絡させることができる。このとき、スイッチ素子40は、ガラス等からなる第1、第2の絶縁層41,42を介して、発熱部15bと第1、第2の電極11,12及び第1、第2の可溶導体13,14とが連続的に積層されているため、発熱部15bの熱を効率よく伝導させることができる。 According to such a switch element 40, the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 are arranged so as to overlap the heat generating portion 15 b of the refractory metal body 15. Therefore, the first and second soluble conductors 13 and 14 can be quickly melted by the heat generated by the heat generating portion 15b, and the first and second electrodes 11 and 12 can be short-circuited. At this time, the switch element 40 includes the heat generating portion 15b, the first and second electrodes 11, 12 and the first and second fusible elements via the first and second insulating layers 41 and 42 made of glass or the like. Since the conductors 13 and 14 are continuously laminated, the heat of the heat generating portion 15b can be efficiently conducted.
 [高融点金属体の配置:変形例2]
 また、本発明が適用されたスイッチ素子は、絶縁基板の表面に第1、第2の電極を形成し、絶縁基板の裏面に高融点金属体を形成することにより、高融点金属体と第1、第2の電極とを重畳させてもよい。なお、以下の説明において、上述したスイッチ素子1と同様の構成については、同じ符号を付してその詳細を省略する。このスイッチ素子50は、図9に示すように、絶縁基板10の裏面10fの相対向する側縁10d,10e間にわたって高融点金属体15が形成される。また、スイッチ素子50は、第1、第2の電極11,12が絶縁基板10の表面10aの相対向する側縁10b,10cに形成される。
[Arrangement of refractory metal body: Modification 2]
In addition, the switch element to which the present invention is applied has the first and second electrodes formed on the surface of the insulating substrate, and the refractory metal body is formed on the back surface of the insulating substrate. The second electrode may be overlapped. In the following description, the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. In the switch element 50, as shown in FIG. 9, the refractory metal body 15 is formed between the opposite side edges 10d and 10e of the back surface 10f of the insulating substrate 10. In the switch element 50, the first and second electrodes 11 and 12 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10.
 高融点金属体15は、絶縁基板10の略中央部において第1の絶縁層51によって被覆されている。また、高融点金属体15は、絶縁基板10の側縁10d,10eに、それぞれ外部接続端子15aが形成されている。また、高融点金属体15は、第1、第2の電極11,12が重畳する中間部が両端部よりも細く形成されることにより高温に発熱する発熱部15bが形成されている。 The refractory metal body 15 is covered with a first insulating layer 51 at a substantially central portion of the insulating substrate 10. The refractory metal body 15 has external connection terminals 15 a formed on the side edges 10 d and 10 e of the insulating substrate 10. Further, the refractory metal body 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion where the first and second electrodes 11 and 12 overlap with each other narrower than both ends.
 第1、第2の電極11,12は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子11a,12aが形成されている。また、第1、第2の電極11,12は、側縁10b,10cから絶縁基板10の表面10aの略中央部において互いの先端部11b,12bが近接されるとともに離間することにより、開放されている。また、第1、第2の電極11,12は、先端部11b,12bを除き、第2の絶縁層52によって被覆されている。 The first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. Further, the first and second electrodes 11 and 12 are opened when the front end portions 11b and 12b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing. The first and second electrodes 11 and 12 are covered with a second insulating layer 52 except for the tip portions 11b and 12b.
 第2の絶縁層52には、一部に開口部52aが形成されている。そして、第1、第2の電極11,12は、先端部11b,12b及び開口部52aに接続用ハンダが設けられ、この接続用ハンダによって先端部11b,12bと開口部52aとの間にわたって、第2の絶縁層52上に第1、第2の可溶導体13,14を支持している。これにより、第1、第2の電極11,12の先端部11b,12b、及び第1、第2の可溶導体13,14の少なくとも一部は、高融点金属体15の発熱部15bと重畳されている。なお、第1、第2の可溶導体13,14上には、酸化防止、濡れ性の向上等のため、フラックス18が塗布されている。 In the second insulating layer 52, an opening 52a is formed in part. The first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b and the opening 52a, and the connecting solder extends between the tip portions 11b and 12b and the opening 52a. The first and second soluble conductors 13 and 14 are supported on the second insulating layer 52. Thereby, at least a part of the tip portions 11 b and 12 b of the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 overlap with the heat generating portion 15 b of the refractory metal body 15. Has been. A flux 18 is applied on the first and second soluble conductors 13 and 14 to prevent oxidation and improve wettability.
 第1、第2の絶縁層51,52は、上述したスイッチ素子1の絶縁層16と同様に、ガラス等の絶縁材料を好適に用いることができる。 As for the first and second insulating layers 51 and 52, an insulating material such as glass can be suitably used, as in the case of the insulating layer 16 of the switch element 1 described above.
 このようなスイッチ素子50によれば、高融点金属体15の発熱部15bに重畳して第1、第2の電極11,12及び第1、第2の可溶導体13,14が配置されているため、発熱部15bの発熱により速やかに第1、第2の可溶導体13,14を溶融させ、第1、第2の電極11,12を短絡させることができる。このとき、スイッチ素子50は、絶縁基板10として、セラミック基板等の熱伝導性に優れたものを用いることにより、高融点金属体15を第1、第2の可溶導体13,14の設けられた面と同一面に形成した場合と同等に加熱することができるため好適である。 According to such a switch element 50, the first and second electrodes 11 and 12 and the first and second soluble conductors 13 and 14 are arranged so as to overlap the heat generating portion 15 b of the refractory metal body 15. Therefore, the first and second soluble conductors 13 and 14 can be quickly melted by the heat generated by the heat generating portion 15b, and the first and second electrodes 11 and 12 can be short-circuited. At this time, the switch element 50 is provided with the refractory metal body 15 of the first and second fusible conductors 13 and 14 by using an insulating substrate 10 having excellent thermal conductivity such as a ceramic substrate. It is preferable because it can be heated to the same level as when it is formed on the same surface as the other surface.
 [可溶導体の変形例]
 上述したように、第1、第2の可溶導体13,14のいずれか又は全部は、低融点金属と高融点金属とを含有してもよい。高融点金属層60はAg、Cu又はこれらを主成分とする合金等からなり、低融点金属層61はSnを主成分とするPbフリーハンダ等からなる。このとき、第1、第2の可溶導体13,14は、図10(A)に示すように、内層として高融点金属層60が設けられ、外層として低融点金属層61が設けられた可溶導体を用いてもよい。この場合、第1、第2の可溶導体13,14は、高融点金属層60の全面が低融点金属層61によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。高融点金属層60や低融点金属層61による被覆構造は、メッキ等の公知の成膜技術を用いて形成することができる。
[Modified example of soluble conductor]
As described above, any or all of the first and second soluble conductors 13 and 14 may contain a low melting point metal and a high melting point metal. The refractory metal layer 60 is made of Ag, Cu or an alloy containing these as a main component, and the low melting metal layer 61 is made of Pb-free solder containing Sn as a main component. At this time, as shown in FIG. 10 (A), the first and second soluble conductors 13 and 14 may be provided with a high melting point metal layer 60 as an inner layer and a low melting point metal layer 61 as an outer layer. A molten conductor may be used. In this case, the first and second fusible conductors 13 and 14 may have a structure in which the entire surface of the high melting point metal layer 60 is covered with the low melting point metal layer 61 and is covered except for a pair of opposite side surfaces. It may be a structure. The covering structure with the high melting point metal layer 60 and the low melting point metal layer 61 can be formed using a known film forming technique such as plating.
 また、図10(B)に示すように、第1、第2の可溶導体13,14は、内層として低融点金属層61が設けられ、外層として高融点金属層60が設けられた可溶導体を用いてもよい。この場合も、第1、第2の可溶導体13,14は、低融点金属層61の全面が高融点金属層60によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。 Further, as shown in FIG. 10B, the first and second soluble conductors 13 and 14 are soluble in which a low melting point metal layer 61 is provided as an inner layer and a high melting point metal layer 60 is provided as an outer layer. A conductor may be used. Also in this case, the first and second fusible conductors 13 and 14 may have a structure in which the entire surface of the low melting point metal layer 61 is covered with the high melting point metal layer 60 and is covered except for a pair of opposing side surfaces. The structure may be different.
 また、第1、第2の可溶導体13,14は、図11に示すように、高融点金属層60と低融点金属層61とが積層された積層構造としてもよい。 Further, the first and second fusible conductors 13 and 14 may have a laminated structure in which a high melting point metal layer 60 and a low melting point metal layer 61 are laminated as shown in FIG.
 この場合、第1、第2の可溶導体13,14は、図11(A)に示すように、第1、第2の電極11,12に支持される下層と、下層の上に積層される上層からなる2層構造として形成され、下層となる高融点金属層60の上面に上層となる低融点金属層61を積層してもよく、反対に下層となる低融点金属層61の上面に上層となる高融点金属層60を積層してもよい。あるいは、第1、第2の可溶導体13,14は、図11(B)に示すように、内層と内層の上下面に積層される外層とからなる3層構造として形成してもよく、内層となる高融点金属層60の上下面に外層となる低融点金属層61を積層してもよく、反対に内層となる低融点金属層61の上下面に外層となる高融点金属層60を積層してもよい。 In this case, the first and second fusible conductors 13 and 14 are laminated on the lower layer supported by the first and second electrodes 11 and 12 and on the lower layer, as shown in FIG. The lower melting point metal layer 61 may be laminated on the upper surface of the lower refractory metal layer 60, and on the contrary, the lower melting point metal layer 61 may be laminated on the upper surface. The upper refractory metal layer 60 may be laminated. Alternatively, the first and second soluble conductors 13 and 14 may be formed as a three-layer structure including an inner layer and an outer layer laminated on the upper and lower surfaces of the inner layer, as shown in FIG. The low melting point metal layer 61 serving as the outer layer may be laminated on the upper and lower surfaces of the refractory metal layer 60 serving as the inner layer. Conversely, the refractory metal layer 60 serving as the outer layer may be disposed on the upper and lower surfaces of the low melting point metal layer 61 serving as the inner layer. You may laminate.
 また、第1、第2の可溶導体13,14は、図12に示すように、高融点金属層60と低融点金属層61とが交互に積層された4層以上の多層構造としてもよい。この場合、第1、第2の可溶導体13,14は、最外層を構成する金属層によって、全面又は相対向する一対の側面を除き被覆された構造としてもよい。 Further, as shown in FIG. 12, the first and second soluble conductors 13 and 14 may have a multilayer structure of four or more layers in which high melting point metal layers 60 and low melting point metal layers 61 are alternately laminated. . In this case, the 1st, 2nd soluble conductors 13 and 14 are good also as a structure coat | covered by the metal layer which comprises outermost layer except the whole surface or a pair of side surface which opposes.
 また、第1、第2の可溶導体13,14は、内層を構成する低融点金属層61の表面に高融点金属層60をストライプ状に部分的に積層させてもよい。図13は、第1、第2の可溶導体13,14の平面図である。 The first and second soluble conductors 13 and 14 may be formed by partially laminating the refractory metal layer 60 in a stripe shape on the surface of the low melting point metal layer 61 constituting the inner layer. FIG. 13 is a plan view of the first and second fusible conductors 13 and 14.
 図13(A)に示す第1、第2の可溶導体13,14は、低融点金属層61の表面に、幅方向に所定間隔で、線状の高融点金属層60が長手方向に複数形成されることにより、長手方向に沿って線状の開口部62が形成され、この開口部62から低融点金属層61が露出されている。第1、第2の可溶導体13,14は、低融点金属層61が開口部62より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属層60の浸食作用をより促進させて溶断性を向上させることができる。開口部62は、例えば、低融点金属層61に高融点金属層60を構成する金属の部分メッキを施すことにより形成することができる。 The first and second soluble conductors 13 and 14 shown in FIG. 13A have a plurality of linear refractory metal layers 60 in the longitudinal direction on the surface of the low melting point metal layer 61 at predetermined intervals in the width direction. By being formed, a linear opening 62 is formed along the longitudinal direction, and the low melting point metal layer 61 is exposed from the opening 62. In the first and second fusible conductors 13 and 14, the low melting point metal layer 61 is exposed from the opening 62, thereby increasing the contact area between the molten low melting point metal and the high melting point metal, and the high melting point metal layer 60. It is possible to improve the fusing property by further promoting the erosion action. The opening 62 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
 また、第1、第2の可溶導体13,14は、図13(B)に示すように、低融点金属層61の表面に、長手方向に所定間隔で、線状の高融点金属層60を幅方向に複数形成することにより、幅方向に沿って線状の開口部62を形成してもよい。 Further, as shown in FIG. 13B, the first and second soluble conductors 13 and 14 are formed on the surface of the low melting point metal layer 61 at a predetermined interval in the longitudinal direction at the linear refractory metal layer 60. By forming a plurality of holes in the width direction, the linear openings 62 may be formed along the width direction.
 また、第1、第2の可溶導体13,14は、図14に示すように、低融点金属層61の表面に高融点金属層60を形成するとともに、高融点金属層60の全面に亘って円形の開口部63が形成され、この開口部63から低融点金属層61を露出させてもよい。開口部63は、例えば、低融点金属層61に高融点金属層60を構成する金属の部分メッキを施すことにより形成することができる。 In addition, as shown in FIG. 14, the first and second fusible conductors 13 and 14 form a refractory metal layer 60 on the surface of the low melting point metal layer 61 and extend over the entire surface of the refractory metal layer 60. A circular opening 63 may be formed, and the low melting point metal layer 61 may be exposed from the opening 63. The opening 63 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
 第1、第2の可溶導体13,14は、低融点金属層61が開口部63より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属の浸食作用をより促進させて溶断性を向上させることができる。 In the first and second fusible conductors 13 and 14, when the low melting point metal layer 61 is exposed from the opening 63, the contact area between the molten low melting point metal and the high melting point metal is increased, and the high melting point metal is eroded. The action can be further promoted to improve the fusing property.
 また、第1、第2の可溶導体13,14は、図15に示すように、内層となる高融点金属層60に多数の開口部64を形成し、この高融点金属層60に、メッキ技術等を用いて低融点金属層61を成膜し、開口部64内に充填してもよい。これにより、第1、第2の可溶導体13,14は、溶融する低融点金属が高融点金属に接する面積が増大するので、より短時間で低融点金属が高融点金属を溶食することができるようになる。 Further, as shown in FIG. 15, the first and second soluble conductors 13 and 14 are formed with a large number of openings 64 in the refractory metal layer 60 serving as an inner layer, and the refractory metal layer 60 is plated. The low melting point metal layer 61 may be formed using a technique or the like and filled in the opening 64. As a result, the first and second soluble conductors 13 and 14 increase the area where the low melting point metal to be in contact with the high melting point metal increases, so that the low melting point metal erodes the high melting point metal in a shorter time. Will be able to.
 また、第1、第2の可溶導体13,14は、低融点金属層61の体積を、高融点金属層60の体積よりも多く形成することが好ましい。第1、第2の可溶導体13,14は、高融点金属体15によって加熱されることにより、低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、第1、第2の可溶導体13,14は、低融点金属層61の体積を、高融点金属層60の体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の電極11,12間の短絡を行うことができる。 The first and second soluble conductors 13 and 14 are preferably formed such that the volume of the low melting point metal layer 61 is larger than the volume of the high melting point metal layer 60. The first and second soluble conductors 13 and 14 are heated by the high-melting point metal body 15 to melt the low-melting point metal when the low-melting point metal melts, thereby quickly melting and cutting. Can do. Therefore, the first and second fusible conductors 13 and 14 promote the erosion action by forming the volume of the low melting point metal layer 61 larger than the volume of the high melting point metal layer 60, and promptly. A short circuit between the first and second electrodes 11 and 12 can be performed.
1,40,50 スイッチ素子、2 スイッチ、10 絶縁基板、10a 表面、10f 裏面、11 第1の電極、12 第2の電極、13 第1の可溶導体、14 第2の可溶導体、15 高融点金属体、16 絶縁層、17 接続用ハンダ、18 フラックス、19 接続部、20 カバー部材、21 側壁、22 天面部、23 カバー部電極、30 警報回路、31 警報器、32 機能回路 1, 40, 50 switch element, 2 switch, 10 insulating substrate, 10a front surface, 10f back surface, 11 first electrode, 12 second electrode, 13 first soluble conductor, 14 second soluble conductor, 15 Refractory metal body, 16 insulating layer, 17 connecting solder, 18 flux, 19 connecting part, 20 cover member, 21 side wall, 22 top surface part, 23 cover part electrode, 30 alarm circuit, 31 alarm device, 32 functional circuit

Claims (32)

  1.  絶縁基板と、
     上記絶縁基板上に、近接して形成された第1、第2の電極と、
     上記第1の電極上に搭載された第1の可溶導体と、
     上記絶縁基板に形成され、上記第1の可溶導体よりも融点の高い高融点金属体とを有し、
     上記高融点金属体の通電に伴う発熱により上記第1の可溶導体を溶融させ、上記第1の可溶導体の溶融導体を介して上記第1の電極及び第2の電極を接続し、電気的に短絡させるスイッチ素子。
    An insulating substrate;
    First and second electrodes formed in proximity to each other on the insulating substrate;
    A first soluble conductor mounted on the first electrode;
    A refractory metal body formed on the insulating substrate and having a melting point higher than that of the first soluble conductor;
    The first soluble conductor is melted by heat generated by energization of the refractory metal body, the first electrode and the second electrode are connected via the molten conductor of the first soluble conductor, Switch element for short circuit.
  2.  上記高融点金属体は、上記第1の可溶導体を溶融させ、上記第1、第2の電極を短絡させた後、溶断する請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the refractory metal body melts the first soluble conductor, short-circuits the first and second electrodes, and then blows off.
  3.  上記高融点金属体は、自身のジュール熱により溶断する請求項2記載のスイッチ素子。 3. The switch element according to claim 2, wherein the refractory metal body is melted by its own Joule heat.
  4.  上記第2の電極上に第2の可溶導体が搭載されている請求項3記載のスイッチ素子。 The switch element according to claim 3, wherein a second soluble conductor is mounted on the second electrode.
  5.  上記高融点金属体は、上記絶縁基板の表面に積層された電極パターンからなる請求項1に記載のスイッチ素子。 The switch element according to claim 1, wherein the refractory metal body comprises an electrode pattern laminated on the surface of the insulating substrate.
  6.  上記高融点金属体は、銀若しくは銅を主成分とする金属である請求項5記載のスイッチ素子。 The switch element according to claim 5, wherein the refractory metal body is a metal mainly composed of silver or copper.
  7.  上記高融点金属体の電極パターンは、上記第1の可溶導体に近接する位置が相対的に細くなり、電流が集中することにより局部的に高温に発熱する発熱部が形成されている請求項5又は6に記載のスイッチ素子。 The electrode pattern of the refractory metal body is formed with a heat generating portion that is locally thinned at a position close to the first fusible conductor and locally generates heat to a high temperature when current is concentrated. The switch element according to 5 or 6.
  8.  上記高融点金属体が絶縁層に被覆されている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the refractory metal body is covered with an insulating layer.
  9.  上記高融点金属体と絶縁基板の間に絶縁層が形成されている請求項5記載のスイッチ素子。 The switch element according to claim 5, wherein an insulating layer is formed between the refractory metal body and the insulating substrate.
  10.  上記絶縁層は、ガラスを主成分とする請求項8又は9に記載のスイッチ素子。 The switch element according to claim 8 or 9, wherein the insulating layer is mainly composed of glass.
  11.  上記高融点金属体は、銅若しくは銀を主成分とする箔若しくはワイヤーである請求項1~4のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 4, wherein the refractory metal body is a foil or a wire mainly composed of copper or silver.
  12.  上記絶縁基板は、セラミック基板である請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 6, 8, and 9, wherein the insulating substrate is a ceramic substrate.
  13.  上記第1の可溶導体が搭載された上記第1の電極と、上記高融点金属体とが接続されている請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 10. The switching element according to claim 1, wherein the first electrode on which the first soluble conductor is mounted and the refractory metal body are connected.
  14.  上記第1、第2の電極と上記高融点金属体とが、上記絶縁基板の同一平面に並んで配置されている請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 6, 8, and 9, wherein the first and second electrodes and the refractory metal body are arranged side by side on the same plane of the insulating substrate.
  15.  上記絶縁基板の一方の面において、上記第1、第2の電極が上記高融点金属体上に絶縁層を介して積層されている請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 10. The first and second electrodes according to claim 1, wherein the first and second electrodes are laminated on the refractory metal body via an insulating layer on one surface of the insulating substrate. Switch element.
  16.  上記絶縁基板の一方の面に上記第1、第2の電極が配置され、上記絶縁基板の他方の面に上記高融点金属体が配置され、少なくとも上記第1の電極上に搭載された上記第1の可溶導体と上記高融点金属体とが重畳する請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 The first and second electrodes are disposed on one surface of the insulating substrate, the refractory metal body is disposed on the other surface of the insulating substrate, and is mounted on at least the first electrode. The switch element according to any one of claims 1 to 6, 8, and 9, wherein one soluble conductor and the refractory metal body overlap each other.
  17.  上記第1の可溶導体は、ハンダである請求項1~6、8、9のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 6, 8, and 9, wherein the first soluble conductor is solder.
  18.  上記第1の可溶導体は、低融点金属と高融点金属とを含有し、
     上記低融点金属が上記高融点金属体の発熱により溶融し、上記高融点金属を溶食する請求項1記載のスイッチ素子。
    The first soluble conductor contains a low melting point metal and a high melting point metal,
    The switch element according to claim 1, wherein the low melting point metal melts due to heat generation of the high melting point metal body and erodes the high melting point metal.
  19.  上記低融点金属はハンダであり、
     上記高融点金属は、Ag、Cu又はAg若しくはCuを主成分とする合金である請求項18記載のスイッチ素子。
    The low melting point metal is solder,
    19. The switch element according to claim 18, wherein the refractory metal is Ag, Cu, or an alloy containing Ag or Cu as a main component.
  20.  上記第1の可溶導体は、内層が上記高融点金属であり、外層が上記低融点金属の被覆構造である請求項18記載のスイッチ素子。 19. The switch element according to claim 18, wherein the first soluble conductor has an inner layer made of the high melting point metal and an outer layer made of the low melting point metal.
  21.  上記第1の可溶導体は、内層が上記低融点金属であり、外層が上記高融点金属の被覆構造である請求項18記載のスイッチ素子。 19. The switch element according to claim 18, wherein the first soluble conductor has an inner layer made of the low melting point metal and an outer layer made of the high melting point metal.
  22.  上記第1の可溶導体は、上記低融点金属と、上記高融点金属とが積層された積層構造である請求項18記載のスイッチ素子。 19. The switch element according to claim 18, wherein the first soluble conductor has a laminated structure in which the low melting point metal and the high melting point metal are laminated.
  23.  上記第1の可溶導体は、上記低融点金属と、上記高融点金属とが交互に積層された4層以上の多層構造である請求項18記載のスイッチ素子。 The switch element according to claim 18, wherein the first soluble conductor has a multilayer structure of four or more layers in which the low melting point metal and the high melting point metal are alternately laminated.
  24.  上記第1の可溶導体は、内層を構成する上記低融点金属の表面に形成された上記高融点金属に、開口部が設けられている請求項18記載のスイッチ素子。 19. The switch element according to claim 18, wherein the first soluble conductor is provided with an opening in the high melting point metal formed on the surface of the low melting point metal constituting the inner layer.
  25.  上記第1の可溶導体は、多数の開口部を有する上記高融点金属の層と、上記高融点金属の層上に形成された上記低融点金属の層とを有し、上記開口部に上記低融点金属が充填されている請求項18記載のスイッチ素子。 The first soluble conductor includes the refractory metal layer having a large number of openings, and the low melting point metal layer formed on the refractory metal layer. The switch element according to claim 18, which is filled with a low melting point metal.
  26.  上記第1の可溶導体は、上記低融点金属の体積が、上記高融点金属の体積よりも多い請求項18~25のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 18 to 25, wherein the first soluble conductor has a volume of the low melting point metal larger than a volume of the high melting point metal.
  27.  上記第1の可溶導体の上にフラックスがコーティングされている請求項1~6、8、9、18~25のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 6, 8, 9, and 18 to 25, wherein a flux is coated on the first soluble conductor.
  28.  上記第1及び第2の電極表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキのいずれかが被覆されている請求項1~6、8、9、18~25のいずれか1項に記載のスイッチ素子。 Any one of Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating is coated on the surfaces of the first and second electrodes. The switch element according to claim 1.
  29.  上記絶縁基板上に設けられ、内部を保護するカバー部材を備え、
     上記カバー部材は、上記第1及び第2の電極と重畳する位置に、カバー部電極が設けられている請求項1~6、8、9、18~25のいずれか1項に記載のスイッチ素子。
    A cover member provided on the insulating substrate for protecting the inside;
    The switch element according to any one of claims 1 to 6, 8, 9, and 18 to 25, wherein the cover member is provided with a cover portion electrode at a position overlapping the first and second electrodes. .
  30.  互いに開放されるとともに外部回路と接続され、少なくとも一方に可溶導体が搭載された第1及び第2の電極を有し、上記第1及び第2の電極が短絡することにより上記外部回路を作動させるスイッチ部と、
     上記可溶導体の融点よりも高い融点を有し、上記スイッチ部と電気的に独立して形成された機能回路に接続されるヒューズとを備え、
     上記機能回路による上記ヒューズの通電に伴う発熱により、上記可溶導体を溶融させ、上記可溶導体の溶融導体により上記第1、第2の電極を短絡させ上記外部回路を作動させるスイッチ回路。
    It has first and second electrodes that are open to each other and connected to an external circuit, and at least one of which has a soluble conductor mounted thereon, and the external circuit is operated by short-circuiting the first and second electrodes A switch part to be
    A fuse having a melting point higher than the melting point of the fusible conductor and connected to a functional circuit formed electrically independent of the switch part;
    A switch circuit that melts the fusible conductor by heat generated by energization of the fuse by the functional circuit, short-circuits the first and second electrodes by the molten conductor of the fusible conductor, and operates the external circuit.
  31.  上記ヒューズへの通電は、金属体が自身のジュール熱により溶断することにより停止する請求項30記載のスイッチ回路。 The switch circuit according to claim 30, wherein energization of the fuse is stopped when the metal body is melted by its own Joule heat.
  32.  互いに開放され、少なくとも一方に可溶導体が搭載された第1、第2の電極を有し、上記第1、第2の電極が短絡するスイッチ部により警報器を作動させる作動回路と、
     上記作動回路と電気的に独立して形成され、上記可溶導体の融点よりも高い融点を有するヒューズと、上記ヒューズが電源に直列に繋がる機能回路を有する制御回路とを備え、
     上記機能回路の異常時に流れる過電流に伴って上記ヒューズが溶断時に発する熱により、上記可溶導体を溶融させ、上記可溶導体の溶融導体により上記第1、第2の電極を短絡させ上記警報器を作動させる警報回路。
    An operating circuit that has first and second electrodes that are open to each other and on which at least one of the soluble conductors is mounted, and that activates an alarm by a switch unit that short-circuits the first and second electrodes;
    A fuse formed electrically independent of the operating circuit, having a melting point higher than the melting point of the fusible conductor, and a control circuit having a functional circuit in which the fuse is connected in series to a power source;
    The fusible conductor is melted by the heat generated when the fuse is blown due to an overcurrent flowing when the functional circuit is abnormal, and the first and second electrodes are short-circuited by the melted conductor of the fusible conductor. Alarm circuit that operates the device.
PCT/JP2014/005865 2013-12-02 2014-11-21 Switch element, switch circuit, and warning circuit WO2015083341A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480065692.6A CN105814657B (en) 2013-12-02 2014-11-21 Switch element, switching circuit and warning circuit
KR1020167014421A KR102300950B1 (en) 2013-12-02 2014-11-21 Switch element, switch circuit, and warning circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013249565A JP6389603B2 (en) 2013-12-02 2013-12-02 Switch element, switch circuit, and alarm circuit
JP2013-249565 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083341A1 true WO2015083341A1 (en) 2015-06-11

Family

ID=53273126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005865 WO2015083341A1 (en) 2013-12-02 2014-11-21 Switch element, switch circuit, and warning circuit

Country Status (5)

Country Link
JP (1) JP6389603B2 (en)
KR (1) KR102300950B1 (en)
CN (1) CN105814657B (en)
TW (1) TWI655661B (en)
WO (1) WO2015083341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4054024A1 (en) * 2021-03-03 2022-09-07 Aptiv Technologies Limited Passive detection of overheating in a power connector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886810B2 (en) * 2016-12-12 2021-06-16 デクセリアルズ株式会社 Protective element
WO2019103211A1 (en) * 2017-11-27 2019-05-31 (주)알엔투테크놀로지 Lead-free ceramic chip fuse and manufacturing method thereof
DE102017222642A1 (en) 2017-12-13 2019-06-27 Bayerische Motoren Werke Aktiengesellschaft ELECTROCHEMICAL ENERGY STORAGE MODULE AND VEHICLE
JP1701719S (en) * 2021-01-18 2021-12-06
JP1701720S (en) * 2021-01-18 2021-12-06
JP1701718S (en) * 2021-01-18 2021-12-06

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245144A (en) * 1988-08-04 1990-02-15 Toray Ind Inc Laminate and manufacture thereof
JP2001313202A (en) * 2000-04-28 2001-11-09 Nec Schott Components Corp Protective device
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073559Y2 (en) * 1989-04-17 1995-01-30 内橋エステック株式会社 Temperature sensitive switch
JP3242849B2 (en) * 1996-10-30 2001-12-25 矢崎総業株式会社 High current fuse unit
JP4203190B2 (en) 1999-08-31 2008-12-24 大東通信機株式会社 Fuse device
JP2003051232A (en) * 2001-05-31 2003-02-21 Mitsubishi Electric Corp Overload-protecting device, electric compressor and refrigerating air conditioner
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device
JP6249600B2 (en) * 2012-03-29 2017-12-20 デクセリアルズ株式会社 Protective element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245144A (en) * 1988-08-04 1990-02-15 Toray Ind Inc Laminate and manufacture thereof
JP2001313202A (en) * 2000-04-28 2001-11-09 Nec Schott Components Corp Protective device
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4054024A1 (en) * 2021-03-03 2022-09-07 Aptiv Technologies Limited Passive detection of overheating in a power connector
FR3120481A1 (en) * 2021-03-03 2022-09-09 Aptiv Technologies Limited Passive detection of overheating in a power connector
US11799250B2 (en) 2021-03-03 2023-10-24 Aptiv Technologies Limited Passive detection of overheating in a power connector

Also Published As

Publication number Publication date
JP6389603B2 (en) 2018-09-12
KR102300950B1 (en) 2021-09-13
JP2015106542A (en) 2015-06-08
CN105814657B (en) 2018-11-09
TW201535449A (en) 2015-09-16
CN105814657A (en) 2016-07-27
KR20160093620A (en) 2016-08-08
TWI655661B (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP6389603B2 (en) Switch element, switch circuit, and alarm circuit
CN109074988B (en) Protective element
CN108701566B (en) Protective element
JP6097178B2 (en) Switch circuit and switch control method using the same
TWI629702B (en) Blocking element and blocking element circuit
JP6622960B2 (en) Switch element
JP6615951B2 (en) Switch element, switch circuit, and alarm circuit
JP6266355B2 (en) Switch element, switch circuit, and alarm circuit
JP6437221B2 (en) Switch element, switch circuit and alarm circuit
TWI683335B (en) Temperature short-circuit element, temperature switching element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868119

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167014421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868119

Country of ref document: EP

Kind code of ref document: A1