WO2015199170A1 - Switching element, switching circuit, and alarm circuit - Google Patents

Switching element, switching circuit, and alarm circuit Download PDF

Info

Publication number
WO2015199170A1
WO2015199170A1 PCT/JP2015/068310 JP2015068310W WO2015199170A1 WO 2015199170 A1 WO2015199170 A1 WO 2015199170A1 JP 2015068310 W JP2015068310 W JP 2015068310W WO 2015199170 A1 WO2015199170 A1 WO 2015199170A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
electrodes
switch element
electrode
melting point
Prior art date
Application number
PCT/JP2015/068310
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167034238A priority Critical patent/KR102478195B1/en
Priority to CN201580034210.5A priority patent/CN106463313B/en
Publication of WO2015199170A1 publication Critical patent/WO2015199170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material

Definitions

  • the present invention relates to a switch element and a switch circuit, and more particularly to a switch element, a switch circuit, and an alarm circuit that can be reduced in size and can be easily incorporated into a circuit that is operated by surface mounting.
  • An alarm fuse is generally used as a switch element for operating an alarm device.
  • An example of the alarm fuse is shown in FIG. 18.
  • a pair of alarm contacts that are connected to alarm circuits 105 for operating the alarm devices and are spaced apart from each other in the fuse holder 100.
  • the alarm contacts 101 and 102 actuate the alarm circuit 105 when they come into contact with each other, and are formed of a conductive material having elasticity such as a leaf spring and are arranged close to each other.
  • the alarm circuit 105 operates, for example, an alarm system by operating a buzzer or a lamp, driving a thyristor or a relay circuit, or the like.
  • the spring 103 is held in a state of being biased to a position separated from the alarm contact 102 by the fuse wire 104. Then, the spring 103 is elastically restored when the fuse wire 104 is melted, and presses the alarm contact 102 to contact the alarm contact 101.
  • the fuse wire 104 is held in a state where the spring 103 is elastically displaced, and is fused by self-heating in response to an overcurrent exceeding the rated current flowing through the fuse wire 104 to open the spring 103.
  • the spring 103 is held in an elastically displaced state by the fuse wire 104, and the alarm contact 102 is physically pressed by fusing the fuse wire 104 to release the stress of the spring 103.
  • a configuration in which the alarm contacts 101 and 102 are short-circuited is used.
  • Such an alarm fuse uses a configuration in which an alarm circuit is activated by physical interlocking of mechanical elements. Therefore, the alarm fuse has a large configuration such as securing the movable range of the alarm contacts 101 and 102 and the spring 103. Therefore, it is difficult to use for a narrowed circuit, and the manufacturing cost is high.
  • the alarm circuit cannot be operated unless the current exceeding the rating is continuously supplied and the fuse wire 104 is blown.
  • the conventional alarm fuse operates the alarm circuit by short-circuiting the alarm contacts 101 and 102 that are normally open, for example, the pilot lamp that is lit in the normal state is turned off in the abnormal state. It cannot be used for alarm operation.
  • the detection of the cut-off state is also possible by detecting one cut-off end potential of the fuse.
  • an alarm signal is output to a signal system line separated from the power system power line where the fuse is arranged, it occurs at the time of the cut-off.
  • Large power supply noise becomes a problem, and a circuit for countermeasures against the noise is required separately.
  • the present invention is a switch element and a switch circuit that shuts off an external circuit such as an alarm circuit in the event of an abnormality, and is designed to be downsized and quickly connected to the external circuit regardless of the interlocking of physical mechanical elements. It is an object of the present invention to provide a switch element that switches power feeding, a switch circuit, and an alarm circuit using the switch element.
  • a switch element includes a first and second electrodes, a first soluble conductor connected across the first and second electrodes, and a proximity
  • the first fusible conductor is melted and the first and second electrodes are cut off by the heat generated when an overcurrent exceeding the rated current flows through the heat generating conductor, and the second possible electrode is cut off.
  • the molten conductor is melted to short-circuit the third and fourth electrodes.
  • the switch circuit according to the present invention includes a first fuse, a second fuse made of a material having a melting point lower than that of the first fuse, and a fusible material made of a material having a melting point lower than that of the first fuse.
  • the alarm circuit includes a control circuit in which a first fuse is connected in series, a first operating circuit in which a second fuse and a first alarm are connected in series, and an open state.
  • a second operating circuit in which a switch and a second alarm device are connected in series, and the second fuse is blown by heat generated when an overcurrent exceeding a rated current flows through the first fuse.
  • the first operation circuit is shut off to stop the first alarm device, and the open switch is short-circuited to open the second operation circuit to operate the second alarm device. .
  • the redundant circuit includes a control circuit in which a first fuse is connected in series, a normal operation circuit in which a second fuse is connected in series, and a backup that is connected in series to an open switch. Circuit, and the heat generated by overcurrent exceeding the rated current flowing through the first fuse causes the second fuse to be blown to stop the normal operation circuit, and the open switch is short-circuited. The backup circuit is activated.
  • the switching method includes a first electrode, a second electrode, a first fusible conductor connected between the first electrode and the second electrode, and a third electrode disposed close to the first electrode.
  • the first fusible conductor is melted by the heat generated by the overcurrent exceeding the rated current flowing through the first electrode, the first and second electrodes are disconnected, the second fusible conductor is melted, and the second fusible conductor is melted. 3. Short-circuit between the fourth and fourth electrodes.
  • the present invention since it can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, it can be designed compactly in the plane of the insulating substrate. It is possible to mount even in a narrowed mounting area.
  • the circuit that generates heat from the heat generating conductor and the circuit on which the soluble conductor is mounted are electrically independent, and the heat generating conductor generates heat to melt the soluble conductor. It is possible to detect an abnormal overcurrent without interrupting the circuit and operate the circuit, and there is no influence of noise when the heat-generating conductor is interrupted.
  • the insulating substrate can be surface-mounted by reflow mounting or the like, and can be easily mounted even in a narrowed mounting area.
  • FIG. 1 is a diagram showing a state before operation of a switch element to which the present invention is applied, in which (A) is a plan view, (B) is a cross-sectional view taken along line A-A ′, and (C) is a circuit diagram.
  • 2A and 2B are diagrams showing a state before the switch element to which the present invention is applied, in which FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along line A-A ′, and FIG. FIG. 3 shows a state in which the heat generating conductor of the switch element generates heat, the first and second fusible conductors melt, the first and second electrodes are cut off, and the third and fourth electrodes are short-circuited.
  • FIG. 4A is a plan view
  • FIG. 3B is a cross-sectional view along AA ′
  • FIG. 3C is a circuit diagram.
  • 4A and 4B are diagrams showing a state in which the heat generating conductor of the switch element is melted.
  • FIG. 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along line A-A ′
  • FIG. 5 is a circuit diagram showing an alarm circuit.
  • 6A and 6B are diagrams showing a switch element in which a heat generating conductor is connected to a first electrode and a third electrode.
  • FIG. 6A is a plan view
  • FIG. 6B is a cross-sectional view along AA ′
  • FIG. It is a circuit diagram.
  • FIG. 6A is a plan view
  • FIG. 6B is a cross-sectional view along AA ′
  • FIG. It is a circuit diagram.
  • FIG. 6A is a plan view
  • FIG. 6B
  • FIG. 7 is a cross-sectional view showing a switch element in which a cover portion electrode is formed at a position overlapping with the first electrode of the cover member.
  • FIG. 8 is a cross-sectional view showing a switch element in which a cover part electrode is formed at a position where it overlaps between the tip parts of the third and fourth electrodes of the cover member.
  • 9A and 9B are diagrams showing another switch element to which the present invention is applied.
  • FIG. 9A is a plan view
  • FIG. 9B is a cross-sectional view along AA ′
  • FIG. 9C is a cross-sectional view along BB ′. .
  • FIG. 10 is a diagram showing a switch element in which a heat generating conductor, first, third, and fourth electrodes and first to third fusible conductors are superposed on the surface of an insulating substrate. Is a plan view, and (B) is an AA ′ cross section of (A).
  • FIG. 11 shows a switch element in which a heat generating conductor is formed on the back surface of the insulating substrate and is superposed on the first, third, and fourth electrodes and the first to third soluble conductors formed on the surface of the insulating substrate.
  • FIG. 4A is a plan view
  • FIG. 3B is a cross-sectional view taken along line AA ′ in FIG. FIG.
  • FIG. 12 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a covering structure
  • (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer.
  • (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer.
  • FIG. 13 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer, wherein (A) shows a two-layer structure of upper and lower layers, and (B) shows a three-layer structure of an inner layer and an outer layer.
  • FIG. 14 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer.
  • FIG. 15 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting metal layer is exposed.
  • FIG. 15A shows the opening along the longitudinal direction.
  • the formed part (B) has an opening formed in the width direction.
  • FIG. 16 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed.
  • FIG. 17 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting point metal is filled therein.
  • 18A and 18B are diagrams showing a conventional alarm element, where FIG. 18A is a cross-sectional view before operation, and FIG. 18B is a cross-sectional view after operation.
  • the switch element 1 to which the present invention is applied includes an insulating substrate 10, first and second electrodes 11 and 12 formed on the insulating substrate 10, and first and second electrodes.
  • positioned adjacent to the insulated substrate 10, and the 3rd electrode are mounted.
  • the second soluble conductor 22 and the heat generating conductor 15 formed on the insulating substrate 10 and having a melting point higher than those of the first and second soluble conductors 21 and 22 are provided.
  • 1A is a plan view showing the switch element 1 excluding the cover member 20
  • FIG. 1B is a cross-sectional view taken along line A-A '
  • FIG. 1C is a circuit diagram.
  • the first and second electrodes 11 and 12 are connected in series with the first external circuit, and the third and fourth electrodes 13 and 14 are connected in series with the second external circuit.
  • the first fusible conductor 21 is melted by the heat generated by the heat generating conductor 15, the first and second electrodes 11, 12 are fused to cut off the first external circuit, and the second fusible conductor 22 is melted.
  • the third and fourth electrodes 13 and 14 are short-circuited to open the second external circuit.
  • the first and second electrodes 11 and 12 are connected to a first alarm 31 (see FIG. 5) made of a pilot lamp or the like, and the third and fourth electrodes 13 and 14 are buzzers.
  • the first and second fusible conductors 21 and 22 are connected to a second alarm device 32 (see FIG. 5) composed of a lamp, an alarm system, or the like, and generate heat due to overcurrent exceeding the rated current flowing through the heat conductor 15. Is melted, the power supply to the alarm device 31 is stopped, for example, the first and second electrodes 11 and 12 are melted and the pilot lamp is turned off, and the molten conductor 22a of the second fusible conductor 22 is stopped.
  • the third and fourth electrodes 13 and 14 are short-circuited via the switch to activate a buzzer, a lamp and other alarm systems.
  • the switch element 1 includes the heat generating conductor 15 made of a refractory metal, and after the interruption between the first and second electrodes 11 and 12 and the short circuit between the third and fourth electrodes 13 and 14, the heat generating conductor. Heat generation is stopped by fusing 15 by self-heating.
  • the insulating substrate 10 is formed using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the switch element 1 is used as an insulating substrate 10 to transmit heat of the heat generating conductor 15 to the first to fourth electrodes 11 to 14 and the first and second fusible conductors 21 and 22 through the insulating substrate 10.
  • the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but the heating conductor 15 and the first and second soluble conductors 21 and 22 may be used. It is necessary to pay attention to the temperature at the time of fusing.
  • the first to fourth electrodes 11 to 14 and the heating conductor 15 are formed on the same surface of the insulating substrate 10, and the first and second electrodes 11 and 12 are formed on one side of the heating conductor 15. Is arranged, and the third and fourth electrodes 13 and 14 are arranged on the other side of the heating conductor 15.
  • the first and second electrodes 11 and 12 are disposed on the surface 10a of the insulating substrate 10 so as to face each other and be separated from each other.
  • a first soluble conductor 21 described later is mounted across the front end portions 11b and 12b of the first and second electrodes 11 and 12 facing each other.
  • the first and second electrodes 11 and 12 are electrically connected via the first fusible conductor 21, and when the heat generating conductor 15 generates heat when energized, it is heated by this heat, and the first fusible conductor 15 is heated.
  • the conductor 21 is opened by fusing.
  • the third and fourth electrodes 13 and 14 are also arranged close to each other on the surface 10a of the insulating substrate 10 and opened by being separated from each other.
  • a second soluble conductor 22 described later is mounted on the tip portion 13 b of the third electrode 13 facing the fourth electrode 4.
  • the heat generating conductor 15 generates heat as the current is applied to the third and fourth electrodes 13 and 14, the second soluble conductor 22 heated and melted by this heat is interposed between the third and fourth electrodes 13 and 14.
  • a switch 2 that is electrically short-circuited is formed by aggregating across the two.
  • the switch element 1 may have the third soluble conductor 23 mounted on the tip portion 14 b of the fourth electrode 14 facing the third electrode 4.
  • the switch element 1 by providing the second and third fusible conductors 22 and 23, more molten conductors 22a and 23a are aggregated between the third and fourth electrodes 13 and 14, and more quickly and While short-circuiting between the 3rd, 4th electrodes 13 and 14 more reliably, the short circuit resistance after a short circuit can be reduced.
  • the configuration of the switch element 1 shown in FIG. 2 in which the second soluble conductor 22 is mounted on the third electrode 13 and the third soluble conductor 23 is mounted on the fourth electrode 14 will be described as an example. Explained.
  • the 3rd, 4th electrodes 13 and 14 can make the molten conductor 22a of the 2nd soluble conductor 22 easy to aggregate by being heated by the heat generating conductor 15.
  • the first to fourth electrodes 11 to 14 are provided with external connection terminals 11a to 14a on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the first and second electrodes 11 and 12 are always connected to the first alarm device 31 via these external connection terminals 11a and 12a, and the switch element 1 operates to move to the first alarm device 31. Shut off the power supply.
  • the third and fourth electrodes 13 and 14 are connected to the second alarm device 32 via the external connection terminals 13a and 14a, and the switch device 1 operates, so that the second alarm device 32 is connected. Can be fed.
  • the first to fourth electrodes 11 to 14 can be formed using a general electrode material such as silver or copper, or a refractory metal containing silver or copper as a main component.
  • the first to fourth electrodes 11 to 14 can be formed by patterning these electrode materials in the form of a paste on the surface 10a of the insulating substrate 10 using a screen printing technique, and firing the pattern. .
  • the first to fourth electrodes 11 to 14 are coated with a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating by a known technique such as plating. Preferably it is.
  • the switch element 1 can prevent the first to fourth electrodes 11 to 14 from being oxidized and can reliably hold the molten conductors 21a to 23a of the first to third soluble conductors 21 to 23. .
  • a low melting point that forms connection solder for connecting the first to third soluble conductors 21 to 23 or an outer layer of the first to third soluble conductors 21 to 23 It is possible to prevent the first to fourth electrodes 11 to 14 from being eroded (soldered) by melting the metal.
  • the heating conductor 15 that heats and melts the first and second soluble conductors 21 and 22 is a conductive material that generates heat when energized.
  • a conductive material that generates heat when energized.
  • a refractory metal material containing can be preferably used.
  • the heat generating conductor 15 is formed by mixing a powdered material of these alloys, compositions, or compounds with a resin binder or the like, patterning the paste using a screen printing technique, and firing the paste. Can do.
  • the heating conductor 15 is arranged on the surface 10 a of the insulating substrate 10 along with the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14. As a result, when the heat generating conductor 15 generates heat upon energization, the first to third soluble conductors 21 to 23 mounted on the first to fourth electrodes 11 to 14 can be melted.
  • the heating conductor 15 is provided with fifth and sixth external connection terminals 15 a 1 and 15 a 2 on the side edges 10 b and 10 c of the insulating substrate 10.
  • the heat generating conductor 15 is connected to a control circuit 34 (see FIG. 5) that triggers the operation of the first alarm device 31 via the fifth and sixth external connection terminals 15a 1 and 15a 2 and is controlled in the event of an abnormality.
  • the overcurrent exceeding the rating applied from the circuit 34 generates heat to a high temperature, and the first to third fusible conductors 21 to 23 are fused.
  • the heat conductor 15 is designed so that it generates heat at about 300 ° C. when 20 to 30 W of power is applied.
  • the heat generating conductor 15 becomes relatively thin at positions close to the first to third fusible conductors 21 to 23, and a heat generating portion 15b that generates heat locally to a high temperature is formed by the concentration of current. ing.
  • the heat generating conductor 15 efficiently melts the first to third soluble conductors 21 to 23 and quickly The first and second electrodes 11 and 12 can be blocked, and the third and fourth electrodes 13 and 14 can be short-circuited.
  • the switch element 1 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. 2, a tip portion 11b on which the first soluble conductor 21 of the first electrode 11 is mounted. It is preferable that the heat generating conductor 15 is formed so as to be close to the heat generating portion 15b. By providing the heat generating portion 15b at a position close to the tip portion 11b on which the first fusible conductor 21 of the first electrode 11 is mounted, the heat generating conductor 15 is efficient through the insulating substrate 10 and the tip portion 11b. It is possible to transfer heat to the first fusible conductor 21 and melt it so that the first and second electrodes 11 and 12 can be quickly cut off.
  • one area close to the heat generating portion 15b is wider than the other area. It is preferable to hold more first soluble conductors 21 than the other electrode.
  • the switch element 1 causes the tip portion 11 b of the first electrode 11 to It is preferable that the electrode 12 is formed wider than the tip portion 12 b and the first soluble conductor 21 is mounted on the tip portion 11 b side of the first electrode 11 more.
  • the tip portion 11b of the first electrode 11 Since the tip portion 11b of the first electrode 11 is close to the heat generating portion 15b, more heat is transmitted from the heat generating conductor 15, and the first soluble conductor 21 can be efficiently melted. Therefore, the tip 11b of the first electrode 11 has a relatively large area and holds more soluble conductors, so that heat can be transferred to the first soluble conductor 21 more quickly and melted. It is possible to block between the first and second electrodes 11 and 12.
  • the tip portion 11b of the first electrode 11 is close to the heat generating portion 15b and is formed in a relatively large area, so that most of the first soluble conductor 21 heated to a higher temperature and melted. Can be held.
  • the switch element 1 is preferably formed so that the tip portion 13b of the third electrode 13 on which the second soluble conductor 22 is mounted and the heat generating portion 15b are close to each other.
  • the heat generating conductor 15 passes through the insulating substrate 10 and the tip portion 13b. Heat can be efficiently transferred to the second soluble conductor 22 and melted, and the third and fourth electrodes 13 and 14 can be quickly short-circuited.
  • the third soluble conductor 23 may be mounted on the fourth electrode 14 and the tip portion 14b and the heat generating portion 15b of the fourth electrode 14 may be brought close to each other.
  • the heating conductor 15 when the control circuit 34 is operating normally, the heating conductor 15 is supplied with an appropriate current within the rating.
  • the heat generating conductor 15 generates heat when the overcurrent exceeding the rating flows when the control circuit 34 detects an abnormality or due to the abnormality of the control circuit 34.
  • the three fusible conductors 21 to 23 are blown, the first and second electrodes 11 and 12 are cut off, and the third and fourth electrodes 13 and 14 are short-circuited.
  • the heat generating conductor 15 continues to generate heat, so that it is melted by its own Joule heat as shown in FIG.
  • the switch element 1 cuts off the power supply path from the control circuit 34 to the heating conductor 15 and stops the heat generation of the heating conductor 15.
  • the heat generating conductor 15 functions as a fuse that melts the first to third fusible conductors 21 to 23 and interrupts its own power supply path by self-heating.
  • the heat generating conductor 15 is fused at the heat generating portion 15b by providing the heat generating portion 15b that is locally hot. At this time, since the heat generating conductor 15 has the heat generating portion 15b formed relatively thin, arc discharge generated at the time of fusing can be reduced to a small scale, and the effect of covering the insulating layer 16 to be described later can be dispersed. Can be prevented.
  • the heat conductor 15 is not limited to Ag, Cu, W, Mo, Ru, Nichrome, or a foil, plate-like body, wire, or other material made of these materials. You may form using a mounting body. Further, when the heating conductor 15 is configured using these mounting bodies, a ceramic substrate that is excellent in thermal conductivity and can quickly melt the first to third soluble conductors 21 to 23 is used as the insulating substrate 10. However, the problem of leakage of the molten conductor after fusing of the heat generating conductor 15 is less than that of the conductive pattern.
  • the first to fourth electrodes 11 to 14 and the heat generating conductor 15 are covered with an insulating layer 16 on the surface 10 a of the insulating substrate 10.
  • the insulating layer 16 is provided to protect and insulate the first to fourth electrodes 11 to 14 and the heating conductor 15, and to suppress arc discharge when the heating conductor 15 is melted.
  • a glass layer or glass is used. It is a layer made of a material having a main component.
  • the insulating layer 16 covers the heat generating portion 15 b of the heat generating conductor 15 and is formed on a region excluding the tip portions 11 b and 12 b of the first and second electrodes 11 and 12. Yes. That is, the first and second electrodes 11 and 12 have the tip portions 11b and 12b exposed from the insulating layer 16, and a first soluble conductor 21 described later can be mounted.
  • the insulating layer 16 on the region excluding the tip portions 11b and 12b of the first and second electrodes 11 and 12, the heat of the heat generating conductor 15 transmitted through the insulating substrate 10 is dissipated. , The tip portions 11b and 12b can be efficiently heated, and heat can be transferred to the first soluble conductor 21.
  • the first and second electrodes 11 and 12 are provided with an insulating layer 16 between the tip end portions 11b and 12b and the external connection electrodes 11a and 12a, so that the melted first soluble conductor 21 is external. It is possible to prevent a situation where the solder for connection to the circuit board on which the switch element 1 is mounted flows out to the connection electrodes 11a and 12a side and is melted.
  • the insulating layer 16 is formed on a region excluding the tip portions 13b and 13b of the third and fourth electrodes 13 and 14. That is, the tip portions 13b and 14b of the third and fourth electrodes 13 and 14 are exposed from the insulating layer 16, and second and third soluble conductors 22 and 23 described later can be aggregated and combined. .
  • the support portion 17 is exposed to the outside from an opening portion 16 a formed in a part of the insulating layer 16.
  • the third and fourth electrodes 13 and 14 are provided with connecting solder at the tip portions 13b and 14b and the support portion 17, and the connecting solder extends between the tip portions 13b and 14b and the support portion 17.
  • the second and third fusible conductors 22 and 23 are supported on the insulating layer 16.
  • the insulating layer 16 made of glass or the like may be formed between the heat generating conductor 15 and the insulating substrate 10, and the heat generating conductor 15 may be formed inside the insulating layer 16.
  • the switch element 1 can prevent leakage due to the molten conductor adhering to the surface of the insulating substrate 10 after the heat-generating conductor 15 is cut off, and can increase the insulation resistance.
  • the insulating layer 16 formed between the heat generating conductor 15 and the insulating substrate 10 is partially formed only in the vicinity of the center of the heat generating portion 15b, so that it is transmitted to the first and second fusible conductors 21 and 22. It is possible to ensure both heat resistance and insulation resistance after interruption.
  • any metal that can be quickly melted by the heat generated by the heating conductor 15 can be used.
  • a low-melting-point metal such as solder or solder that does not melt at the time of 260 ° C. reflow mounting mainly containing Pb can be used.
  • the first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal.
  • the low melting point metal it is preferable to use solder, Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components.
  • the first to third fusible conductors 21 to 23 can be formed by various configurations as will be described later.
  • the first to third soluble conductors 21 to 23 are preferably coated with a flux 28 on a part or all of the surface in order to prevent oxidation and improve wettability.
  • the switch element 1 as described above has a circuit configuration as shown in FIG. That is, in the switch element 1, the first electrode 11 and the second electrode 12 are normally connected via the first soluble conductor 21 (FIG. 2C), and the first heat generation conductor 15 generates heat to generate the first electrode 11 and the second electrode 12. When one soluble conductor 21 is melted, it is opened. (FIG. 3C).
  • the switch element 1 is opened when the third electrode 13 and the fourth electrode 14 are normal (FIG. 2C), and the second and third fusible conductors 22, When 23 is melted, the switch 2 is configured to be short-circuited via the molten conductors 22a and 23a (FIG. 3C).
  • the external connection terminals 13 a and 14 a of the third and fourth electrodes 13 and 14 constitute both terminals of the switch 2.
  • FIG. 5 is a diagram illustrating an example of a circuit configuration of the alarm circuit 30.
  • the alarm circuit 30 includes a control circuit 34 in which a first fuse 33 (heating conductor 15) made of a refractory metal body having a higher melting point than the first to third fusible conductors 21 to 23 is connected in series to a power source.
  • the first operating circuit 36 for operating the first alarm 31 via the second fuse 35 made of the first fusible conductor 21 and the molten conductors of the second and third fusible conductors 22 and 23
  • a second operating circuit 37 for operating the second alarm device 32 by the switch 2 that is short-circuited via 22a and 23a.
  • the control circuit 34 and the first and second operating circuits 36 and 37 are electrically connected. It was formed independently.
  • both external connection terminals 11a and 12a of the second fuse 35 are energized at normal times, such as pilot lamps, and energized at abnormal times.
  • the switch element 1 is connected to a second alarm device 31 composed of a buzzer, a lamp, an alarm system, or the like in which both external connection terminals 13a and 14a of the switch 2 are opened when normal and are energized when abnormal.
  • the fifth and sixth external connection terminals 15 a 1 and 15 a 2 of the first fuse 33 are connected to the control circuit 34.
  • the switch element 1 having such a configuration is configured such that the first heat generating conductor 15 formed adjacent to the first and second electrodes 11 and 12 that operate the first alarm device 31 generates heat.
  • the fusible conductor 21 is melted, and the first and second electrodes 11 and 12 are blocked. That is, the switch element 1 is configured such that the heat generating conductor 15 and the first and second electrodes 11 and 12 are physically and electrically independent, and the first soluble conductor 21 is melted by the heat of the heat generating conductor 15. It cuts off by doing, so to speak, it takes the structure linked by thermally connecting.
  • the switch element 1 is the first by the heat generation of the heat generating conductor 15 formed adjacent to the third and fourth electrodes 13 and 14 constituting the switch 2 that operates the second alarm device 32. 2.
  • the third soluble conductors 22 and 23 are melted and short-circuited through the molten conductors 22a and 23a. That is, the switch element 1 is configured so that the heat generating conductor 15 and the third and fourth electrodes 13 and 14 are physically and electrically independent, and the second and third soluble conductors are heated by the heat of the heat generating conductor 15. A short circuit occurs when the materials 22 and 23 are melted.
  • the switch element 1 since the switch element 1 can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, the switch element 1 should be designed to be compact in the plane of the insulating substrate 10. Can be mounted in a narrowed mounting area. Further, the switch element 1 can reduce the number of parts and the number of manufacturing steps, and can reduce the cost. Furthermore, the switch element 1 can be mounted on the surface of the insulating substrate 10 by reflow mounting or the like, and can be easily mounted even in a narrowed mounting region.
  • the heat generating conductor 15 and the first to fourth electrodes 11 to 14 are physically and electrically independent, and the heat generating conductor 15 functioning as the first fuse 33 is cut off.
  • the first alarm device 31 is shut off and the second alarm device 32 is operated. Therefore, for example, when an alarm signal is output to a signal system line separated from the power system power line in which the heat generating conductor 15 functioning as a fuse is arranged, there is no influence of power supply noise when the heat generating conductor 15 is cut off, and for noise countermeasures A circuit is also unnecessary, and a highly reliable alarm circuit can be configured.
  • the switch element 1 interrupts
  • the alarm circuit 30 can notify the abnormality, for example, the pilot lamp is turned off when the energization to the alarm device 31 is stopped.
  • the switch element 1 when the heat generating conductor 15 generates heat, the second and third soluble conductors 22 and 23 are melted.
  • the molten conductors 22a and 23a of the second and third fusible conductors 22 and 23 have a larger area than the support portion 17 exposed from the opening 16a and are heated by the heating conductor 15 in the third and fourth.
  • the electrodes 13 and 14 are agglomerated and bonded onto the respective tip portions 13b and 14b.
  • the switch element 1 can short-circuit between the 3rd, 4th electrodes 13 and 14, and can operate the 2nd alarm device 32.
  • the second alarm circuit 32 In the alarm circuit 30, when the switch 2 of the switch element 1 is turned on, the second alarm circuit 32 is operated by the second operation circuit 37.
  • the switch element 1 includes the heat generating portion 15 b of the heat generating conductor 15, the tip end portion 11 b on which the first fusible conductor 21 of the first electrode 11 is mounted, and the second possible portion of the third electrode 13.
  • the tip portion 13b on which the molten conductor 22 is mounted close to the heat generating portion 15b which is thin and has a high resistance, the first and second soluble conductors 21 and 22 are efficiently melted.
  • the first and second electrodes 11 and 12 can be quickly cut off, and the third and fourth electrodes 13 and 14 can be short-circuited.
  • the heat generating conductor 15 is such that the high-resistance heat generating portion 15b is only locally heated, and the fifth and sixth external connection terminals 15a 1 and 15a 2 facing the side edges are relatively low in temperature due to the heat dissipation effect. To be kept. Therefore, in the switch element 1, the mounting solder for the fifth and sixth external connection terminals 15a 1 and 15a 2 is not melted.
  • the heat-generating conductor 15 continues to generate heat after being interrupted between the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14 are short-circuited, and is interrupted by its own Joule heat. (FIGS. 4A and 4B).
  • the switch element 1 is cut off from energization to the heat generating conductor 15 by the control circuit 34 and stops generating heat (FIG. 4C).
  • the switch element 1 can suppress large-scale arc discharge and suppress explosive scattering of the molten conductor.
  • the heat generating portion 15b that is thinly formed on the heat generating conductor 15, the fusing portion is narrowed, and the amount of the molten conductor that is scattered can be reduced.
  • the switch element 1 reliably generates the first to third soluble conductors 21 to 23 by the heat generation conductor 15 having a higher melting point than the first to third soluble conductors 21 to 23 generating heat. It melts before the heat generating conductor 15, the first and second electrodes 11 and 12 can be cut off, and the third and fourth electrodes 13 and 14 can be short-circuited. That is, in the switch element 1, the fusing of the heat generating conductor 15 is not a condition for cutting off the first and second electrodes 11 and 12 and short-circuiting the third and fourth electrodes 13 and 14.
  • the switch element 1 can be used as an alarm element that shuts off the first alarm device 31 and activates the second alarm device 32 when the control circuit 34 is abnormal. Therefore, according to the alarm circuit 30 in which the switch element 1 is incorporated, the first alarm device 31 is shut off such as turning off the pilot lamp, and the alarm buzzer, the alarm lamp, or the energization of the function circuit corresponding to the abnormality is second. By operating the alarm device 32, the abnormality of the control circuit 34 can be dealt with.
  • the alarm circuit in which the switch element 1 is incorporated can be used as an alarm element that transmits the abnormality even when an overcurrent exceeding the rating of the heating conductor 15 flows due to the abnormality detection of the control circuit 34.
  • the alarm element can quickly detect abnormality detection by the control circuit 34 in accordance with the operation of the first and second alarm devices 31 and 32, such as turning off the pilot lamp and operating the alarm buzzer, and stops the control circuit 34 proactively. In addition, it is possible to take measures such as operating the backup circuit.
  • the switch element 1 is always connected by being connected to the first and second electrodes 11 and 12 instead of the first and second alarm circuits 31 and 32.
  • any redundant circuit with a backup function including a normal operation circuit that is connected to the third and fourth electrodes 13 and 14, and a backup circuit that operates at the time of abnormality of the normal operation circuit.
  • the heat generating conductor 15 automatically stops generating heat by being cut off by its own Joule heat. Therefore, the switch element 1 does not need to be provided with a mechanism for restricting the power supply by the control circuit 34, can stop the heat generation of the heat generating conductor 15 with a simple configuration, and can reduce the size of the entire element.
  • the switch element 1 may connect one of the first or second electrodes 11 and 12 close to the heat generating portion 15 b of the heat generating conductor 15 and the heat generating conductor 15. For example, as shown in FIG. 6, when the heating element 15 b of the heating conductor 15 and the tip 11 b of the first electrode 11 are close to each other, the switch element 1 A first connection portion 18 that connects the electrode 11 may be formed.
  • the switch element 1 includes a heating conductor 15 and a third electrode 13 on which the second soluble conductor 22 is mounted or a fourth electrode 14 on which the third soluble conductor 23 is mounted. You may form the 2nd connection part 19 to connect.
  • the switch element 1 connects the vicinity of the heat generating portion 15b of the heat generating conductor 15 and the third electrode 13 when the heat generating portion 15b of the heat generating conductor 15 and the tip portion 13b of the third electrode 13 are close to each other.
  • the second connection portion 19 may be formed.
  • the first and second connecting portions 18 and 19 are made of the same conductive material as that of the heat conductor 15 and the first to fourth electrodes 11 to 14, for example, and the heat conductor 15 and the first to fourth electrodes 11 to 14 are used. Can be provided by forming a pattern in the same process.
  • the switch element 1 By connecting the heat generating conductor 15 and the first and third electrodes 11, 13, the switch element 1 can be connected via the first connecting portion 18 and the first electrode 11 when the heat generating conductor 15 generates heat when energized. The heat is transferred to the first soluble conductor 21 and can be melted more rapidly. Similarly, when the heat generating conductor 15 generates heat by energization, the heat is transmitted to the second soluble conductor 22 via the second connecting portion 19 and the third electrode 13 and can be melted more rapidly. For this reason, it is preferable to form the 1st, 2nd connection parts 18 and 19 with metal materials, such as Ag and Cu which are excellent in heat conductivity.
  • first and second connecting portions 18 and 19 are provided at positions slightly away from the center of the heat generating portion 15b of the heat generating conductor 15. Since the heating conductor 15 is provided with the first and second connection portions 18 and 19 so that the resistance value decreases and the temperature does not easily rise. This is because the center of the portion 15b and the first and second connecting portions 18 and 19 need to be provided at positions separated from each other.
  • a cover member 20 that protects the inside is attached on an insulating substrate 10.
  • the inside of the switch element 1 is protected by covering the insulating substrate 10 with the cover member 20.
  • the cover member 20 includes a side wall 24 that constitutes a side surface of the switch element 1 and a top surface portion 25 that constitutes an upper surface of the switch element 1, and the side wall 24 is connected to the insulating substrate 10. It becomes a lid that closes the inside of the.
  • the cover member 20 is formed using an insulating member such as a thermoplastic plastic, ceramics, or a glass epoxy substrate.
  • the cover member 20 may have a first cover electrode 26 formed on the inner surface side of the top surface portion 25.
  • the first cover part electrode 26 is formed at a position overlapping with one of the first electrode 11 and the second electrode 12.
  • the first cover part electrode 26 is close to the heat generating part 15b of the heat generating conductor 15, and overlaps with the tip part 11b of the first electrode 11 formed in a relatively large area. It is more preferable.
  • the first cover electrode 26 has the molten conductor 21a aggregated on the front end portion 11b of the first electrode 11. By contacting and spreading, the allowable amount for holding the molten conductor 21a can be increased, and the first and second electrodes 11 and 12 can be blocked more reliably.
  • the cover member 20 may have a second cover portion electrode 27 formed on the inner surface side of the top surface portion 25.
  • the second cover part electrode 27 is formed at a position that overlaps between the tip parts 13 b and 14 b of the third and fourth electrodes 13 and 14.
  • the second cover part electrode 27 is formed by melting the third and fourth electrodes 13 and 14 when the heat generating conductor 15 generates heat and the second and third fusible conductors 22 and 23 are melted.
  • the conductors 22a and 23a come into contact with each other to spread out, the allowable amount for holding the molten conductors 22a and 23a can be increased, and the third and fourth electrodes 13 and 14 can be short-circuited more reliably.
  • FIG. 9B is a cross-sectional view taken along the line AA ′ in FIG. 9A
  • FIG. 9C is a cross-sectional view taken along the line BB ′ in FIG.
  • the second soluble conductor 22 is exposed from the support portion 17 exposed from the opening portion 16 a opened in the insulating layer 16 laminated on the third and fourth electrodes 13 and 14, and exposed from the insulating layer 16.
  • the third electrode 13 is supported on the third electrode 13 by connecting solder provided at the tip portion 13 b of the third electrode 13.
  • the second fusible conductor 22 extends on the insulating layer 16 laminated on the fourth electrode 14 by projecting to the fourth electrode 14 side. This overlaps with the fourth electrode 14.
  • the second fusible conductor 22 extends on the insulating layer 16 so as to be separated from the tip end portion 14b exposed from the insulating layer 16, whereby the third and fourth electrodes 13, 14 are separated from each other. It is open.
  • the second fusible conductor 22 when the second fusible conductor 22 is melted by the heat generated by the heat generating conductor 15, the second conductive conductor 22 also comes into contact with the tip portion 14 b of the fourth electrode 14 in the process of agglomerating on the third electrode 13, 3. Aggregate between the tip portions 13b, 14b of the fourth electrodes 13, 14.
  • the second soluble conductor 22 supported by the third electrode 13 is protruded toward the fourth electrode side.
  • the second soluble conductor 22 is connected to the third electrode 13.
  • the third soluble conductor 23 may be supported by projecting from the fourth electrode 14 to the third electrode 13 side.
  • the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the third electrode 13 from the third electrode 13. 4 may protrude and be supported on the electrode 14 side.
  • the switch element to which the present invention is applied becomes a connection terminal for an external circuit on the surface 10a of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 are formed.
  • the first to fourth external connection terminals 11a to 14a may be provided.
  • the switch element to which the present invention is applied has fifth and sixth external connection terminals 15a 1 and 15a 2 serving as connection terminals for external circuits on the surface 10a of the insulating substrate 10 on which the heat generating conductor 15 is formed. May be provided.
  • the surface 10a side of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 and the heat generating conductor 15 are provided is a mounting surface.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are connection terminals for mounting on a substrate constituting an external circuit, and are formed using, for example, metal bumps or metal posts.
  • the shape of the metal bump or the metal post is not limited.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 have a height protruding from the cover member 10 provided on the insulating substrate 2, as shown in FIG. 9C. And can be mounted on the substrate side that is the mounting target of the short-circuit element 25.
  • the switch element 5 does not include the external connection terminals 11a to 14a, 15a 1 and 15a 2 continuous to the back surface of the insulating substrate 10 through the conductive through holes, but the first to fourth electrodes 11 to External connection terminals 11a to 14a, 15a 1 and 15a 2 are formed on the same surface as 14 and the heating conductor 15.
  • the external connection terminals 11a to 14a, 15a 1 and 15a 2 are provided on the first to fourth electrodes and the heat generating conductor 15, and have a high degree of freedom in shape and size and have a low conduction resistance. Can be easily provided.
  • the switch element 5 has the third and fourth electrodes 13 and 14 as compared with the case where the third and fourth external connection terminals 13a and 14a drawn to the back surface through the conductive through holes are used. It is possible to easily improve the rating when short-circuiting and opening an external circuit, and to handle a large current.
  • the switch element 5 is connected to the third external connection terminal 13a and the conductive resistance between the third and fourth electrodes 13 and 14 when the third electrode 13 and the fourth electrode 14 are short-circuited. It is preferable that the combined resistance with the fourth external connection terminal 14a is low. Thereby, the switch element 5 can prevent the improvement of the rating of the external circuit opened by the third and fourth external connection terminals 13a and 14a from being hindered.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be formed by providing a low melting point metal layer on the surface of the high melting point metal to be the core.
  • a solder such as Pb-free solder containing Sn as a main component can be suitably used.
  • the high melting point metal Cu or Ag or an alloy containing these as a main component can be used. It can be used suitably.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are connected to the first to fourth electrodes 11 to 14 and the heating conductor 15 by using a low melting point metal constituting the outer layer. be able to.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 can be formed by forming a low melting point metal on a high melting point metal by using a plating technique, and other well-known laminated layers. It can also be formed by using a technique or a film forming technique.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are formed by applying a conductive plating layer or a conductive paste in addition to using metal bumps or metal posts.
  • the conductive layer may be formed.
  • first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are provided in advance on the mounting object side such as a substrate on which the switch element 5 is mounted, and in the mounting body on which the short-circuit element is mounted, It may be connected to the first to fourth electrodes 11 to 14 and the heat generating conductor 15.
  • connection terminal for an external circuit is formed on the surface 10a of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 and the heating conductor 15 are formed.
  • the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be provided.
  • the switch element to which the present invention is applied includes the first electrode 11 and / or the second electrode 12 and the third electrode on the surface 10a of the insulating substrate 10 via the insulating layer on the heating conductor. 13 or the third electrode 13 and the fourth electrode 14 may be overlapped, and the first and second soluble conductors 21 and 22 or the first to third soluble conductors 21 to 23 may be overlapped. Good.
  • the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted.
  • a heat generating conductor 15 is formed between the opposite side edges 10d and 10e of the surface 10a of the insulating substrate 10.
  • the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10, respectively. .
  • the heat generating conductor 15 is covered with a first insulating layer 41 at a substantially central portion of the insulating substrate 10.
  • the heating conductor 15 has fifth and sixth external connection terminals 15a 1 and 15a 2 formed on the side edges 10d and 10e of the insulating substrate 10, respectively.
  • the heat generating conductor 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion narrower than both end portions.
  • the heat generating portion 15b overlaps with the tip portion 11b of the first electrode 11 and / or the tip portion 12b of the second electrode 12, and the first soluble conductor 21 mounted between the tip portions 11b and 12b. It can be heated efficiently.
  • the heat generating portion 15b is superposed on the tip portion 13b of the third electrode 13, and can efficiently heat the second soluble conductor 22 mounted on the tip portion 13b.
  • the heat generating portion 15b can also efficiently heat the third soluble conductor 23 mounted on the tip portion 14b by overlapping with the tip portion 14b of the fourth electrode 14.
  • the first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the first and second electrodes 11 and 12 are formed from the side edges 10 b and 10 c to the upper surface of the first insulating layer 41, and the tip portions 11 b and 12 b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated.
  • the first and second electrodes 11 and 12 are covered with a second insulating layer 42 except for the tip portions 11b and 12b.
  • the first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b, and the first soluble conductor 21 is mounted across the tip portions 11b and 12b by the connecting solder. Yes.
  • the switch element 40 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. A part of the first fusible conductor 21 mounted on the part 11 b is superimposed on the heat generating part 15 b of the heat generating conductor 15. On the first soluble conductor 21, a flux 28 is applied to a part or all of the surface for preventing oxidation and improving wettability.
  • the third and fourth electrodes 13 and 14 have external connection terminals 13a and 14a formed on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the third and fourth electrodes 13 and 14 are formed from the side edges 10b and 10c to the upper surface of the first insulating layer 41, and the tip portions 13b and 14b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated.
  • the third and fourth electrodes 13 and 14 are covered with the second insulating layer 42 except for the tip portions 13b and 14b.
  • an opening 42a is partially formed.
  • the third and fourth electrodes 13 and 14 are provided with connecting solder on the support portion 17 exposed outward from the tip end portions 13b and 14b and the opening 42a.
  • the second and third fusible conductors 22 and 23 are supported on the second insulating layer 42 between 14 b and the support portion 17. Thereby, the front-end
  • a flux 28 is applied to a part or all of the surface for preventing oxidation, improving wettability, and the like.
  • an insulating material such as glass can be suitably used, as with the insulating layer 16 of the switch element 1 described above.
  • the switch element 40 since the front end portion 11b of the first electrode 11 and the first fusible conductor 21 are arranged so as to overlap the heat generating portion 15b of the heat generating conductor 15, the heat generating portion 15b The first soluble conductor 21 can be quickly melted by heat generation, and the first and second electrodes 11 and 12 can be blocked. At this time, the switch element 40 has the heat generating portion 15b, the first electrode 11, and the first soluble conductor 21 continuously laminated via the first insulating layer 41 made of glass or the like. The heat of the heat generating part 15b can be transmitted efficiently.
  • the switch element 40 the third electrode 13 and the second fusible conductor 22, or the third and fourth electrodes 13 and 14, the second, Since the third fusible conductors 22 and 23 are disposed, the second fusible conductor 22 or the second and third fusible conductors 22 and 23 are quickly melted by the heat generated by the heat generating portion 15b, and the third The fourth electrodes 13 and 14 can be short-circuited.
  • the switch element 40 has the heat generating portion 15b, the third and fourth electrodes 13, 14 and the second and third fusible elements through the first and second insulating layers 41 and 42 made of glass or the like. Since the conductors 22 and 23 are continuously laminated, the heat of the heat generating portion 15b can be efficiently conducted.
  • the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the fourth electrode 13 from the third electrode 13. You may support by protruding to the electrode 14 side. Also in the switch element 40, similarly to the switch element 5, it becomes a connection terminal for an external circuit on the surface 10 a on which the first to fourth electrodes 11 to 14 and the heat generating conductor 15 of the insulating substrate 10 are formed. The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be provided.
  • the switch element to which the present invention is applied is formed on the refractory metal body by forming the first to fourth electrodes on the surface 10a of the insulating substrate 10 and forming the refractory metal body on the back surface of the insulating substrate.
  • the first electrode 11 and / or the second electrode 12 and the third electrode 13 or the third electrode 13 and the fourth electrode 14 are superimposed on each other, and the first and second soluble conductors 21 , 22 or the first to third fusible conductors 21 to 23 may be overlapped.
  • the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. As shown in FIG.
  • the heat generating conductor 15 is formed between the opposing side edges 10d and 10e of the back surface 10f of the insulating substrate 10.
  • the switch element 50 includes first and second electrodes 11 and 12 and third and fourth electrodes 13 and 14 formed on opposite side edges 10b and 10c of the surface 10a of the insulating substrate 10, respectively. Yes.
  • the heat generating conductor 15 is covered with a first insulating layer 51 at a substantially central portion of the insulating substrate 10.
  • the heating conductor 15 has fifth and sixth external connection terminals 15a 1 and 15a 2 formed on the side edges 10d and 10e of the insulating substrate 10, respectively.
  • the heat generating conductor 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion narrower than both end portions.
  • the heat generating portion 15b overlaps with the tip portion 11b of the first electrode 11 and / or the tip portion 12b of the second electrode 12, and the first soluble conductor 21 mounted between the tip portions 11b and 12b. It can be heated efficiently.
  • the heat generating portion 15b is superposed on the tip portion 13b of the third electrode 13, and can efficiently heat the second soluble conductor 22 mounted on the tip portion 13b.
  • the heat generating portion 15b can also efficiently heat the third soluble conductor 23 mounted on the tip portion 14b by overlapping with the tip portion 14b of the fourth electrode 14.
  • the first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. Further, the first and second electrodes 11 and 12 are opened when the front end portions 11b and 12b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing. The first and second electrodes 11 and 12 are covered with a second insulating layer 52 except for the tip portions 11b and 12b.
  • the first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b, and the first soluble conductor 21 is mounted across the tip portions 11b and 12b by the connecting solder.
  • the switch element 50 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. 11, a tip portion 11b of the first electrode 11 formed in a relatively large area, and a tip. A part of the first fusible conductor 21 mounted on the part 11 b is superimposed on the heat generating part 15 b of the heat generating conductor 15. On the first soluble conductor 21, a flux 28 is applied to a part or all of the surface for preventing oxidation and improving wettability.
  • the third and fourth electrodes 13 and 14 have external connection terminals 13a and 14a formed on the side edges 10b and 10c of the insulating substrate 10, respectively.
  • the third and fourth electrodes 13 and 14 are opened when the front end portions 13b and 14b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing.
  • the third and fourth electrodes 13 and 14 are covered with the second insulating layer 52 except for the tip portions 13b and 14b.
  • an opening 52a is formed in part.
  • the third and fourth electrodes 13 and 14 are provided with connecting solder on the support portion 17 exposed outward from the tip end portions 13b and 14b and the opening 52a.
  • the second and third fusible conductors 22 and 23 are supported on the second insulating layer 52 between 14 b and the support portion 17. Thereby, the front-end
  • a flux 28 is applied to a part or all of the surface for preventing oxidation, improving wettability, and the like.
  • an insulating material such as glass can be suitably used, as in the case of the insulating layer 16 of the switch element 1 described above.
  • the tip portion 11b of the first electrode 11 and the first fusible conductor 21 are arranged so as to overlap the heat generating portion 15b of the heat generating conductor 15, the heat generation of the heat generating portion 15b.
  • the first soluble conductor 21 can be quickly melted, and the first and second electrodes 11 and 12 can be blocked.
  • the switch element 50 the third electrode 13 and the second fusible conductor 22, or the third and fourth electrodes 13 and 14, the second, Since the third fusible conductors 22 and 23 are disposed, the second fusible conductor 22 or the second and third fusible conductors 22 and 23 are quickly melted by the heat generated by the heat generating portion 15b, and the third The fourth electrodes 13 and 14 can be short-circuited.
  • the switch element 50 is a surface on which the heat generating conductor 15 is provided with the first to third soluble conductors 21 to 23 by using an insulating substrate 10 having excellent thermal conductivity such as a ceramic substrate. It is preferable because it can be heated in the same manner as when formed on the same surface.
  • the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the fourth electrode 13 from the third electrode 13. You may support by protruding to the electrode 14 side.
  • any or all of the first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal.
  • the refractory metal layer 60 is made of Ag, Cu or an alloy containing these as a main component
  • the low melting metal layer 61 is made of solder, Pb-free solder containing Sn as a main component, or the like.
  • the first to third fusible conductors 21 to 23 may be provided with a high melting point metal layer 60 as an inner layer and a low melting point metal layer 61 as an outer layer.
  • a molten conductor may be used.
  • the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the high melting point metal layer 60 is covered with the low melting point metal layer 61 and is covered except for a pair of opposite side surfaces. It may be a structure.
  • the covering structure with the high melting point metal layer 60 and the low melting point metal layer 61 can be formed using a known film forming technique such as plating.
  • the first to third soluble conductors 21 to 23 are soluble in which a low melting point metal layer 61 is provided as an inner layer and a high melting point metal layer 60 is provided as an outer layer.
  • a conductor may be used.
  • the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the low melting point metal layer 61 is covered with the high melting point metal layer 60, and is covered except for a pair of opposing side surfaces. The structure may be different.
  • first to third fusible conductors 21 to 23 may have a laminated structure in which a high melting point metal layer 60 and a low melting point metal layer 61 are laminated as shown in FIG.
  • the first to third fusible conductors 21 to 23 are laminated on the lower layer supported by the first to fourth electrodes 11 to 14 and on the lower layer, as shown in FIG.
  • the upper refractory metal layer 60 may be laminated on the upper surface of the lower melting point metal layer 61, or the upper layer of the refractory metal layer 60 serving as the lower layer.
  • a low melting point metal layer 61 as an upper layer may be laminated.
  • the first to third soluble conductors 21 to 23 may be formed as a three-layer structure including an inner layer and an outer layer stacked on the upper and lower surfaces of the inner layer.
  • the refractory metal layer 60 serving as the outer layer may be laminated on the upper and lower surfaces of the low melting point metal layer 61 serving as the inner layer, and the low melting point metal layer 61 serving as the outer layer may be disposed on the upper and lower surfaces of the refractory metal layer 60 serving as the inner layer. You may laminate.
  • the first to third soluble conductors 21 to 23 may have a multilayer structure of four or more layers in which high melting point metal layers 60 and low melting point metal layers 61 are alternately laminated.
  • the first to third fusible conductors 21 to 23 may be structured so as to be covered with the metal layer constituting the outermost layer except for the entire surface or a pair of opposite side surfaces.
  • the refractory metal layer 60 may be partially laminated in a stripe shape on the surface of the low melting point metal layer 61 constituting the inner layer.
  • FIG. 15 is a plan view of the first to third fusible conductors 21 to 23.
  • the first to third fusible conductors 21 to 23 shown in FIG. 15A have a plurality of linear refractory metal layers 60 in the longitudinal direction on the surface of the low melting point metal layer 61 at predetermined intervals in the width direction.
  • a linear opening 62 is formed along the longitudinal direction, and the low melting point metal layer 61 is exposed from the opening 62.
  • the low melting point metal layer 61 is exposed from the opening 62, thereby increasing the contact area between the molten low melting point metal and the high melting point metal. It is possible to further improve the fusing property by further promoting the erosion action of.
  • the opening 62 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
  • the first to third soluble conductors 21 to 23 are formed on the surface of the low melting point metal layer 61 at a predetermined interval in the longitudinal direction at the linear refractory metal layer 60.
  • the linear openings 62 may be formed along the width direction.
  • the first to third fusible conductors 21 to 23 form a refractory metal layer 60 on the surface of the low melting point metal layer 61 and extend over the entire surface of the refractory metal layer 60.
  • a circular or rectangular opening 63 may be formed, and the low melting point metal layer 61 may be exposed from the opening 63.
  • the opening 63 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
  • the contact area between the molten low melting point metal and the high melting point metal increases, and the melting point of the high melting point metal is increased.
  • the phagocytosis can be further promoted to improve the fusing property.
  • the first to third soluble conductors 21 to 23 are formed with a large number of openings 64 in the refractory metal layer 60 serving as the inner layer, and the refractory metal layer 60 is plated.
  • the low melting point metal layer 61 may be formed using a technique or the like and filled in the opening 64.
  • the first to third soluble conductors 21 to 23 are preferably formed such that the volume of the low melting point metal layer 61 is larger than the volume of the high melting point metal layer 60.
  • the first to third fusible conductors 21 to 23 are heated by the heat generating conductor 15 to melt the low melting point metal and thereby melt the high melting point metal, thereby quickly melting and fusing. . Therefore, the first to third soluble conductors 21 to 23 promote this corrosion action by forming the volume of the low melting point metal layer 61 larger than the volume of the high melting point metal layer 60, and promptly. Blocking between the first and second electrodes 11 and 12 and short-circuiting between the third and fourth electrodes 13 and 14 can be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

To reduce size and speedily switch supply of power to an external circuit without using linkage of physical mechanical elements. Provided is a switching element. The present invention has a first fusible conductor (21) connected across first and second electrodes (11, 12), third and fourth electrodes (13, 14) arranged nearby, a second fusible conductor (22) mounted on the third electrode (13), and a heat-emitting conductor (15) having a melting point higher than that of the first and second fusible conductors (21, 22). Heat generated by an overcurrent equal to or greater than the rated current flowing through the heat-emitting conductor (15) melts the first fusible conductor (21) and cuts off the first and second electrodes (11, 12) from each other, and melts the second fusible conductor (22) and causes a short-circuit between the third and fourth electrodes (13, 14).

Description

スイッチ素子、スイッチ回路及び警報回路Switch element, switch circuit and alarm circuit
 本発明は、スイッチ素子及びスイッチ回路に関し、特に小型化を図り、かつ表面実装により動作させる回路に容易に組み込むことができるスイッチ素子、スイッチ回路及び警報回路に関する。
 本出願は、日本国において2014年6月27日に出願された日本特許出願番号特願2014-132829を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
The present invention relates to a switch element and a switch circuit, and more particularly to a switch element, a switch circuit, and an alarm circuit that can be reduced in size and can be easily incorporated into a circuit that is operated by surface mounting.
This application claims priority on the basis of Japanese Patent Application No. 2014-132929 filed on June 27, 2014 in Japan. This application is incorporated herein by reference. Incorporated.
 警報器を作動させるスイッチ素子としては、一般に警報用ヒューズが用いられている。警報用ヒューズの一例を示すと、図18に示すように、ヒューズホルダ100内に、それぞれ警報器を作動させる警報回路105と接続されるとともに平常時は離間して配置されている一対の警報接点101,102と、警報接点101,102を接触させるスプリング103と、スプリング103を警報接点102と離間した位置に付勢した状態で保持するヒューズ線104が設けられている。 An alarm fuse is generally used as a switch element for operating an alarm device. An example of the alarm fuse is shown in FIG. 18. As shown in FIG. 18, a pair of alarm contacts that are connected to alarm circuits 105 for operating the alarm devices and are spaced apart from each other in the fuse holder 100. 101, 102, a spring 103 for contacting the alarm contacts 101, 102, and a fuse wire 104 for holding the spring 103 in a state of being biased to a position separated from the alarm contact 102.
 警報接点101,102は、接触することにより警報回路105を作動させるものであり、板バネ等の弾性を有する導通材料によって形成され、近接配置されている。警報回路105は、例えばブザーやランプの作動、サイリスタやリレー回路の駆動等による警報システムの作動等を行う。 The alarm contacts 101 and 102 actuate the alarm circuit 105 when they come into contact with each other, and are formed of a conductive material having elasticity such as a leaf spring and are arranged close to each other. The alarm circuit 105 operates, for example, an alarm system by operating a buzzer or a lamp, driving a thyristor or a relay circuit, or the like.
 スプリング103は、ヒューズ線104によって警報接点102と離間した位置に付勢された状態で保持される。そして、スプリング103は、ヒューズ線104が溶断することにより弾性復帰し、警報接点102を押圧して警報接点101に接触させる。 The spring 103 is held in a state of being biased to a position separated from the alarm contact 102 by the fuse wire 104. Then, the spring 103 is elastically restored when the fuse wire 104 is melted, and presses the alarm contact 102 to contact the alarm contact 101.
 ヒューズ線104は、スプリング103を弾性変位させた状態で保持するとともに、ヒューズ線104に流れる定格電流以上の過電流に応じて自己発熱により溶断し、スプリング103を開放する。 The fuse wire 104 is held in a state where the spring 103 is elastically displaced, and is fused by self-heating in response to an overcurrent exceeding the rated current flowing through the fuse wire 104 to open the spring 103.
特開2001-76610号公報JP 2001-76610 A
 従来の警報用ヒューズでは、ヒューズ線104によってスプリング103を弾性変位させた状態で保持するとともに、ヒューズ線104を溶断させて当該スプリング103の応力を開放することによって警報接点102を物理的に押圧し、これにより警報接点101,102間を短絡させる構成を用いている。このような警報用ヒューズでは、機械要素の物理的な連動により警報回路を作動させる構成を用いているため、警報接点101,102やスプリング103の可動範囲を確保するなど警報用ヒューズの構成が大きくなり、狭小化した回路に使用することは困難となり、また製造コストも高い。 In the conventional alarm fuse, the spring 103 is held in an elastically displaced state by the fuse wire 104, and the alarm contact 102 is physically pressed by fusing the fuse wire 104 to release the stress of the spring 103. Thus, a configuration in which the alarm contacts 101 and 102 are short-circuited is used. Such an alarm fuse uses a configuration in which an alarm circuit is activated by physical interlocking of mechanical elements. Therefore, the alarm fuse has a large configuration such as securing the movable range of the alarm contacts 101 and 102 and the spring 103. Therefore, it is difficult to use for a narrowed circuit, and the manufacturing cost is high.
 また、警報接点101,102の短絡にはヒューズ線104の溶断を必須とすることから、定格を超える電流を通電させ続け、ヒューズ線104を溶断させない限り警報回路を作動させることができない。 Also, since the fuse wire 104 must be blown to short-circuit the alarm contacts 101 and 102, the alarm circuit cannot be operated unless the current exceeding the rating is continuously supplied and the fuse wire 104 is blown.
 さらに、従来の警報ヒューズは、正常時は開放状態である警報接点101,102を短絡させることにより警報回路を作動させるものであるため、例えば正常時に点灯しているパイロットランプを異常時に消灯させる等の警報動作には使用できない。 Further, since the conventional alarm fuse operates the alarm circuit by short-circuiting the alarm contacts 101 and 102 that are normally open, for example, the pilot lamp that is lit in the normal state is turned off in the abnormal state. It cannot be used for alarm operation.
 遮断状態の検出は、ヒューズの1遮断端電位検出でも可能であるが、特に、ヒューズが配置される電力系パワーラインと分離した信号系ラインに警報信号を出力する場合には、遮断時に発生する大きな電源ノイズが問題となり、そのノイズ対策用回路が別途必要となる。 The detection of the cut-off state is also possible by detecting one cut-off end potential of the fuse. In particular, when an alarm signal is output to a signal system line separated from the power system power line where the fuse is arranged, it occurs at the time of the cut-off. Large power supply noise becomes a problem, and a circuit for countermeasures against the noise is required separately.
 そこで、本発明は、異常時は警報回路等の外部回路を遮断するスイッチ素子及びスイッチ回路であって、物理的な機械要素の連動によらず、小型化を図るとともに、速やかに外部回路への給電を切り替えるスイッチ素子、スイッチ回路及びこれを用いた警報回路を提供することを目的とする。 Therefore, the present invention is a switch element and a switch circuit that shuts off an external circuit such as an alarm circuit in the event of an abnormality, and is designed to be downsized and quickly connected to the external circuit regardless of the interlocking of physical mechanical elements. It is an object of the present invention to provide a switch element that switches power feeding, a switch circuit, and an alarm circuit using the switch element.
 上述した課題を解決するために、本発明に係るスイッチ素子は、第1、第2の電極と、上記第1、第2の電極間に跨って接続された第1の可溶導体と、近接して配置された第3、第4の電極と、上記第3の電極上に搭載された第2の可溶導体と、上記第1、第2の可溶導体よりも融点の高い発熱導体とを有し、上記発熱導体に定格電流以上の過電流が流れることに伴う発熱により、上記第1の可溶導体を溶断し上記第1、第2の電極間を遮断し、上記第2の可溶導体を溶融し上記第3、第4の電極間を短絡するものである。 In order to solve the above-described problem, a switch element according to the present invention includes a first and second electrodes, a first soluble conductor connected across the first and second electrodes, and a proximity The third and fourth electrodes, the second soluble conductor mounted on the third electrode, and the heat generating conductor having a higher melting point than the first and second soluble conductors. The first fusible conductor is melted and the first and second electrodes are cut off by the heat generated when an overcurrent exceeding the rated current flows through the heat generating conductor, and the second possible electrode is cut off. The molten conductor is melted to short-circuit the third and fourth electrodes.
 また、本発明に係るスイッチ回路は、第1のヒューズと、上記第1のヒューズよりも融点の低い材料からなる第2のヒューズと、上記第1のヒューズよりも融点の低い材料からなる可溶導体の溶融導体を介して短絡する開放状態のスイッチを備え、上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを遮断するとともに、開放状態の上記スイッチを短絡させるものである。 The switch circuit according to the present invention includes a first fuse, a second fuse made of a material having a melting point lower than that of the first fuse, and a fusible material made of a material having a melting point lower than that of the first fuse. A switch in an open state that is short-circuited through a molten conductor of the conductor, and the second fuse is shut off by heat generated when an overcurrent greater than or equal to a rated current flows through the first fuse; The switch is short-circuited.
 また、本発明に係る警報回路は、第1のヒューズが直列に接続された制御回路と、第2のヒューズと第1の警報器が直列に接続された第1の作動回路と、開放状態のスイッチと第2の警報器が直列に接続された第2の作動回路とを備え、上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを溶断させて上記第1の作動回路を遮断し上記第1の警報器を停止させるとともに、開放状態の上記スイッチを短絡させ上記第2の作動回路を開通し上記第2の警報器を作動させるものである。 The alarm circuit according to the present invention includes a control circuit in which a first fuse is connected in series, a first operating circuit in which a second fuse and a first alarm are connected in series, and an open state. A second operating circuit in which a switch and a second alarm device are connected in series, and the second fuse is blown by heat generated when an overcurrent exceeding a rated current flows through the first fuse. The first operation circuit is shut off to stop the first alarm device, and the open switch is short-circuited to open the second operation circuit to operate the second alarm device. .
 また、本発明に係る冗長回路は、第1のヒューズが直列に接続された制御回路と、第2のヒューズが直列に接続された通常作動回路と、開放状態のスイッチに直列に接続されたバックアップ回路とを備え、上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを溶断させて上記通常作動回路を停止させるとともに、開放状態の上記スイッチを短絡させ上記バックアップ回路を作動させるものである。 The redundant circuit according to the present invention includes a control circuit in which a first fuse is connected in series, a normal operation circuit in which a second fuse is connected in series, and a backup that is connected in series to an open switch. Circuit, and the heat generated by overcurrent exceeding the rated current flowing through the first fuse causes the second fuse to be blown to stop the normal operation circuit, and the open switch is short-circuited. The backup circuit is activated.
 また、本発明に係るスイッチ方法は、第1、第2の電極と、上記第1、第2の電極間に跨って接続された第1の可溶導体と、近接して配置された第3、第4の電極と、上記第3の電極上に搭載された第2の可溶導体と、上記第1、第2の可溶導体よりも融点の高い発熱導体とを有し、上記発熱導体に定格電流以上の過電流が流れることに伴う発熱により、上記第1の可溶導体を溶断し上記第1、第2の電極間を遮断し、上記第2の可溶導体を溶融し上記第3、第4の電極間を短絡するものである。 The switching method according to the present invention includes a first electrode, a second electrode, a first fusible conductor connected between the first electrode and the second electrode, and a third electrode disposed close to the first electrode. A fourth electrode; a second soluble conductor mounted on the third electrode; and a heating conductor having a melting point higher than that of the first and second soluble conductors, and the heating conductor. The first fusible conductor is melted by the heat generated by the overcurrent exceeding the rated current flowing through the first electrode, the first and second electrodes are disconnected, the second fusible conductor is melted, and the second fusible conductor is melted. 3. Short-circuit between the fourth and fourth electrodes.
 本発明によれば、スプリングや警報接点等の機械要素を用いず、また機械要素の物理的な連動によらず構成することができるため、絶縁基板の面内において、コンパクトに設計することができ、狭小化された実装領域にも実装可能となる。 According to the present invention, since it can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, it can be designed compactly in the plane of the insulating substrate. It is possible to mount even in a narrowed mounting area.
 また、本発明によれば、発熱導体を発熱させる回路と可溶導体が搭載されている回路とが電気的に独立し、発熱導体の発熱により可溶導体を溶断するものであるため、発熱導体の遮断を要せずに異常な過電流を検知し回路を作動させることができるとともに、発熱導体の遮断時のノイズによる影響もない。 In addition, according to the present invention, the circuit that generates heat from the heat generating conductor and the circuit on which the soluble conductor is mounted are electrically independent, and the heat generating conductor generates heat to melt the soluble conductor. It is possible to detect an abnormal overcurrent without interrupting the circuit and operate the circuit, and there is no influence of noise when the heat-generating conductor is interrupted.
 さらに、本発明によれば、絶縁基板をリフロー実装等により表面実装することができ、狭小化された実装領域においても、簡易に実装することができる。 Furthermore, according to the present invention, the insulating substrate can be surface-mounted by reflow mounting or the like, and can be easily mounted even in a narrowed mounting area.
図1は、本発明が適用されたスイッチ素子の作動前の状態を示す図であり、(A)は平面図、(B)はA-A’断面図、(C)は回路図である。FIG. 1 is a diagram showing a state before operation of a switch element to which the present invention is applied, in which (A) is a plan view, (B) is a cross-sectional view taken along line A-A ′, and (C) is a circuit diagram. 図2は、本発明が適用されたスイッチ素子の作動前の状態を示す図であり、(A)は平面図、(B)はA-A’断面図、(C)は回路図である。2A and 2B are diagrams showing a state before the switch element to which the present invention is applied, in which FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along line A-A ′, and FIG. 図3は、スイッチ素子の発熱導体が発熱し、第1、第2の可溶導体が溶融し第1、第2の電極間が遮断、第3、第4の電極間が短絡した状態を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。FIG. 3 shows a state in which the heat generating conductor of the switch element generates heat, the first and second fusible conductors melt, the first and second electrodes are cut off, and the third and fourth electrodes are short-circuited. 4A is a plan view, FIG. 3B is a cross-sectional view along AA ′, and FIG. 3C is a circuit diagram. 図4は、スイッチ素子の発熱導体が溶断した状態を示す図であり、(A)は平面図、(B)はA-A’断面図、(C)は回路図である。4A and 4B are diagrams showing a state in which the heat generating conductor of the switch element is melted. FIG. 4A is a plan view, FIG. 4B is a cross-sectional view taken along line A-A ′, and FIG. 図5は、警報回路を示す回路図である。FIG. 5 is a circuit diagram showing an alarm circuit. 図6は、発熱導体と第1の電極及び第3の電極とを接続したスイッチ素子を示す図であり、(A)は平面図、(B)はA-A‘断面図、(C)は回路図である。6A and 6B are diagrams showing a switch element in which a heat generating conductor is connected to a first electrode and a third electrode. FIG. 6A is a plan view, FIG. 6B is a cross-sectional view along AA ′, and FIG. It is a circuit diagram. 図7は、カバー部材の第1の電極と重畳する位置にカバー部電極を形成したスイッチ素子を示す断面図である。FIG. 7 is a cross-sectional view showing a switch element in which a cover portion electrode is formed at a position overlapping with the first electrode of the cover member. 図8は、カバー部材の第3、第4の電極の各先端部間にわたって重畳する位置にカバー部電極を形成したスイッチ素子を示す断面図である。FIG. 8 is a cross-sectional view showing a switch element in which a cover part electrode is formed at a position where it overlaps between the tip parts of the third and fourth electrodes of the cover member. 図9は、本発明が適用された他のスイッチ素子を示す図であり、(A)は平面図、(B)はA-A’断面図(C)は、B-B’断面図である。9A and 9B are diagrams showing another switch element to which the present invention is applied. FIG. 9A is a plan view, FIG. 9B is a cross-sectional view along AA ′, and FIG. 9C is a cross-sectional view along BB ′. . 図10は、絶縁基板の表面上において発熱導体と、第1、第3、第4の電極及び第1~第3の可溶導体とを重畳させたスイッチ素子を示す図であり、(A)は平面図、(B)は(A)のA-A’断面である。FIG. 10 is a diagram showing a switch element in which a heat generating conductor, first, third, and fourth electrodes and first to third fusible conductors are superposed on the surface of an insulating substrate. Is a plan view, and (B) is an AA ′ cross section of (A). 図11は、発熱導体を絶縁基板の裏面に形成し、絶縁基板の表面に形成した第1、第3、第4の電極及び第1~第3の可溶導体と重畳させたスイッチ素子を示す図であり、(A)は平面図、(B)は(A)のA-A’断面である。FIG. 11 shows a switch element in which a heat generating conductor is formed on the back surface of the insulating substrate and is superposed on the first, third, and fourth electrodes and the first to third soluble conductors formed on the surface of the insulating substrate. FIG. 4A is a plan view, and FIG. 3B is a cross-sectional view taken along line AA ′ in FIG. 図12は、高融点金属層と低融点金属層を有し、被覆構造を備える可溶導体を示す斜視図であり、(A)は高融点金属層を内層とし低融点金属層で被覆した構造を示し、(B)は低融点金属層を内層とし高融点金属層で被覆した構造を示す。FIG. 12 is a perspective view showing a soluble conductor having a high-melting-point metal layer and a low-melting-point metal layer and having a covering structure, and (A) is a structure in which the high-melting-point metal layer is an inner layer and is covered with a low-melting-point metal layer. (B) shows a structure in which a low melting point metal layer is used as an inner layer and is covered with a high melting point metal layer. 図13は、高融点金属層と低融点金属層の積層構造を備える可溶導体を示す斜視図であり、(A)は上下2層構造、(B)は内層及び外層の3層構造を示す。FIG. 13 is a perspective view showing a fusible conductor having a laminated structure of a high melting point metal layer and a low melting point metal layer, wherein (A) shows a two-layer structure of upper and lower layers, and (B) shows a three-layer structure of an inner layer and an outer layer. . 図14は、高融点金属層と低融点金属層の多層構造を備える可溶導体を示す断面図である。FIG. 14 is a cross-sectional view showing a soluble conductor having a multilayer structure of a high melting point metal layer and a low melting point metal layer. 図15は、高融点金属層の表面に線状の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図であり、(A)は長手方向に沿って開口部が形成されたもの、(B)は幅方向に沿って開口部が形成されたものである。FIG. 15 is a plan view showing a soluble conductor in which a linear opening is formed on the surface of the refractory metal layer and the low melting metal layer is exposed. FIG. 15A shows the opening along the longitudinal direction. The formed part (B) has an opening formed in the width direction. 図16は、高融点金属層の表面に円形の開口部が形成され低融点金属層が露出されている可溶導体を示す平面図である。FIG. 16 is a plan view showing a soluble conductor in which a circular opening is formed on the surface of the high melting point metal layer and the low melting point metal layer is exposed. 図17は、高融点金属層に円形の開口部が形成され、内部に低融点金属が充填された可溶導体を示す平面図である。FIG. 17 is a plan view showing a soluble conductor in which a circular opening is formed in a refractory metal layer and a low melting point metal is filled therein. 図18は、従来の警報素子を示す図であり、(A)は作動前の断面図、(B)は作動後の断面図である。18A and 18B are diagrams showing a conventional alarm element, where FIG. 18A is a cross-sectional view before operation, and FIG. 18B is a cross-sectional view after operation.
 以下、本発明が適用されたスイッチ素子、スイッチ回路及び警報回路について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a switch element, a switch circuit, and an alarm circuit to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 本発明が適用されたスイッチ素子1は、図1に示すように、絶縁基板10と、絶縁基板10上に形成された第1、第2の電極11,12と、第1、第2の電極11,12間に跨って接続された第1の可溶導体21と、絶縁基板10上に近接して配置された第3、第4の電極13,14と、第3の電極上に搭載された第2の可溶導体22と、絶縁基板10に形成され、第1、第2の可溶導体21,22よりも融点の高い発熱導体15とを有する。なお、図1(A)はスイッチ素子1のカバー部材20を除いて示す平面図であり、図1(B)はA-A’断面図であり、図1(C)は回路図である。 As shown in FIG. 1, the switch element 1 to which the present invention is applied includes an insulating substrate 10, first and second electrodes 11 and 12 formed on the insulating substrate 10, and first and second electrodes. 1st soluble conductor 21 connected across 11 and 12, 3rd and 4th electrodes 13 and 14 arrange | positioned adjacent to the insulated substrate 10, and the 3rd electrode are mounted. The second soluble conductor 22 and the heat generating conductor 15 formed on the insulating substrate 10 and having a melting point higher than those of the first and second soluble conductors 21 and 22 are provided. 1A is a plan view showing the switch element 1 excluding the cover member 20, FIG. 1B is a cross-sectional view taken along line A-A ', and FIG. 1C is a circuit diagram.
 このスイッチ素子1は、第1、第2の電極11,12が第1の外部回路と直列に接続され、第3、第4の電極13,14が第2の外部回路と直列に接続され、発熱導体15の発熱により第1の可溶導体21を溶融させて第1、第2の電極11,12間を溶断し第1の外部回路を遮断するとともに、第2の可溶導体22を溶融させて第3、第4の電極13,14間を短絡し第2の外部回路を開通するものである。 In the switch element 1, the first and second electrodes 11 and 12 are connected in series with the first external circuit, and the third and fourth electrodes 13 and 14 are connected in series with the second external circuit. The first fusible conductor 21 is melted by the heat generated by the heat generating conductor 15, the first and second electrodes 11, 12 are fused to cut off the first external circuit, and the second fusible conductor 22 is melted. Thus, the third and fourth electrodes 13 and 14 are short-circuited to open the second external circuit.
 例えば、スイッチ素子1は、第1、第2の電極11,12がパイロットランプ等からなる第1の警報器31(図5参照)と接続され、第3、第4の電極13,14がブザーやランプあるいは警報システム等からなる第2の警報器32(図5参照)と接続され、発熱導体15に流れる定格電流以上の過電流に伴う発熱により第1、第2の可溶導体21,22を溶融させることにより、第1、第2の電極11,12間を溶断させ、パイロットランプを消灯させる等、警報器31への給電を停止するとともに、第2の可溶導体22の溶融導体22aを介して第3、第4の電極13,14を短絡させ、ブザーやランプその他の警報システムを作動させるものである。また、スイッチ素子1は、発熱導体15を高融点金属により構成し、第1、第2の電極11,12間の遮断、及び第3、第4の電極13,14間の短絡後に、発熱導体15が自己発熱により溶断することにより、発熱が停止する。 For example, in the switch element 1, the first and second electrodes 11 and 12 are connected to a first alarm 31 (see FIG. 5) made of a pilot lamp or the like, and the third and fourth electrodes 13 and 14 are buzzers. The first and second fusible conductors 21 and 22 are connected to a second alarm device 32 (see FIG. 5) composed of a lamp, an alarm system, or the like, and generate heat due to overcurrent exceeding the rated current flowing through the heat conductor 15. Is melted, the power supply to the alarm device 31 is stopped, for example, the first and second electrodes 11 and 12 are melted and the pilot lamp is turned off, and the molten conductor 22a of the second fusible conductor 22 is stopped. The third and fourth electrodes 13 and 14 are short-circuited via the switch to activate a buzzer, a lamp and other alarm systems. Further, the switch element 1 includes the heat generating conductor 15 made of a refractory metal, and after the interruption between the first and second electrodes 11 and 12 and the short circuit between the third and fourth electrodes 13 and 14, the heat generating conductor. Heat generation is stopped by fusing 15 by self-heating.
 [絶縁基板]
 絶縁基板10は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて形成されている。スイッチ素子1は、絶縁基板10を介して発熱導体15の熱を第1~第4の電極11~14及び第1、第2の可溶導体21,22に伝達するために、絶縁基板10としては、セラミックス基板等の耐熱性に優れ、かつ熱伝導率の高い材料により形成することが好ましい。なお、絶縁基板10は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、発熱導体15や第1、第2の可溶導体21,22の溶断時の温度に留意する必要がある。
[Insulated substrate]
The insulating substrate 10 is formed using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like. The switch element 1 is used as an insulating substrate 10 to transmit heat of the heat generating conductor 15 to the first to fourth electrodes 11 to 14 and the first and second fusible conductors 21 and 22 through the insulating substrate 10. Is preferably made of a material having excellent heat resistance and high thermal conductivity, such as a ceramic substrate. In addition, the insulating substrate 10 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but the heating conductor 15 and the first and second soluble conductors 21 and 22 may be used. It is necessary to pay attention to the temperature at the time of fusing.
 スイッチ素子1は、第1~第4の電極11~14と発熱導体15とが、絶縁基板10の同一面に形成され、発熱導体15の一方の側に第1、第2の電極11,12が配置され、発熱導体15の他方の側に第3、第4の電極13,14が配置されている。 In the switch element 1, the first to fourth electrodes 11 to 14 and the heating conductor 15 are formed on the same surface of the insulating substrate 10, and the first and second electrodes 11 and 12 are formed on one side of the heating conductor 15. Is arranged, and the third and fourth electrodes 13 and 14 are arranged on the other side of the heating conductor 15.
 [第1~第4の電極]
 第1、第2の電極11,12は、絶縁基板10の表面10a上に、対向配置されるとともに離間されることにより開放されている。また、第1、第2の電極11,12の対向する先端部11b,12b間には、後述する第1の可溶導体21が跨って搭載されている。第1、第2の電極11,12は、第1の可溶導体21を介して電気的に接続され、発熱導体15が通電に伴って発熱すると、この熱により加熱され、第1の可溶導体21を溶断させることにより、開放される。
[First to fourth electrodes]
The first and second electrodes 11 and 12 are disposed on the surface 10a of the insulating substrate 10 so as to face each other and be separated from each other. In addition, a first soluble conductor 21 described later is mounted across the front end portions 11b and 12b of the first and second electrodes 11 and 12 facing each other. The first and second electrodes 11 and 12 are electrically connected via the first fusible conductor 21, and when the heat generating conductor 15 generates heat when energized, it is heated by this heat, and the first fusible conductor 15 is heated. The conductor 21 is opened by fusing.
 第3、第4の電極13,14も、絶縁基板10の表面10a上に、対向して近接配置されるとともに離間されることにより開放されている。また、第3の電極13の第4の電極4と対向する先端部13bには、後述する第2の可溶導体22が搭載されている。第3、第4の電極13,14は、発熱導体15が通電に伴って発熱すると、この熱により加熱溶融された第2の可溶導体22が第3、第4の電極13,14間に跨って凝集することにより、電気的に短絡されるスイッチ2を構成する。 The third and fourth electrodes 13 and 14 are also arranged close to each other on the surface 10a of the insulating substrate 10 and opened by being separated from each other. In addition, a second soluble conductor 22 described later is mounted on the tip portion 13 b of the third electrode 13 facing the fourth electrode 4. When the heat generating conductor 15 generates heat as the current is applied to the third and fourth electrodes 13 and 14, the second soluble conductor 22 heated and melted by this heat is interposed between the third and fourth electrodes 13 and 14. A switch 2 that is electrically short-circuited is formed by aggregating across the two.
 また、スイッチ素子1は、図2に示すように、第4の電極14の第3の電極4と対向する先端部14bに第3の可溶導体23を搭載してもよい。スイッチ素子1は、第2、第3の可溶導体22,23を設けることにより、より多くの溶融導体22a,23aが第3、第4の電極13,14間にわたって凝集し、より速やかに且つより確実に第3、第4の電極13,14間を短絡させるとともに、短絡後における短絡抵抗を低下させることができる。以下では、図2に示す、第3の電極13上に第2の可溶導体22を搭載し、第4の電極14上に第3の可溶導体23を搭載したスイッチ素子1の構成を例に説明する。 Further, as shown in FIG. 2, the switch element 1 may have the third soluble conductor 23 mounted on the tip portion 14 b of the fourth electrode 14 facing the third electrode 4. In the switch element 1, by providing the second and third fusible conductors 22 and 23, more molten conductors 22a and 23a are aggregated between the third and fourth electrodes 13 and 14, and more quickly and While short-circuiting between the 3rd, 4th electrodes 13 and 14 more reliably, the short circuit resistance after a short circuit can be reduced. Hereinafter, the configuration of the switch element 1 shown in FIG. 2 in which the second soluble conductor 22 is mounted on the third electrode 13 and the third soluble conductor 23 is mounted on the fourth electrode 14 will be described as an example. Explained.
 なお、第3、第4の電極13,14は、発熱導体15によって加熱されることにより、第2の可溶導体22の溶融導体22aを凝集しやすくすることができる。 In addition, the 3rd, 4th electrodes 13 and 14 can make the molten conductor 22a of the 2nd soluble conductor 22 easy to aggregate by being heated by the heat generating conductor 15. FIG.
 第1~第4の電極11~14は、それぞれ、絶縁基板10の側縁10b,10cに外部接続端子11a~14aが設けられている。第1、第2の電極11,12は、これら外部接続端子11a,12aを介して常時第1の警報器31と接続され、スイッチ素子1が動作することにより、当該第1の警報器31への給電を遮断する。また、第3、第4の電極13,14は、外部接続端子13a,14aを介して第2の警報器32と接続され、スイッチ素子1が動作することにより、当該第2の警報器32への給電を可能とする。 The first to fourth electrodes 11 to 14 are provided with external connection terminals 11a to 14a on the side edges 10b and 10c of the insulating substrate 10, respectively. The first and second electrodes 11 and 12 are always connected to the first alarm device 31 via these external connection terminals 11a and 12a, and the switch element 1 operates to move to the first alarm device 31. Shut off the power supply. In addition, the third and fourth electrodes 13 and 14 are connected to the second alarm device 32 via the external connection terminals 13a and 14a, and the switch device 1 operates, so that the second alarm device 32 is connected. Can be fed.
 第1~第4の電極11~14は、銀若しくは銅、又は銀若しくは銅を主成分とする高融点金属等の一般的な電極材料を用いて形成することができる。第1~第4の電極11~14は、これら電極材料をペースト状にしたものをスクリーン印刷技術を用いて絶縁基板10の表面10a上にパターン形成して、焼成する等によって形成することができる。 The first to fourth electrodes 11 to 14 can be formed using a general electrode material such as silver or copper, or a refractory metal containing silver or copper as a main component. The first to fourth electrodes 11 to 14 can be formed by patterning these electrode materials in the form of a paste on the surface 10a of the insulating substrate 10 using a screen printing technique, and firing the pattern. .
 なお、第1~第4の電極11~14の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜が、メッキ処理等の公知の手法によりコーティングされていることが好ましい。これにより、スイッチ素子1は、第1~第4の電極11~14の酸化を防止し、第1~第3の可溶導体21~23の溶融導体21a~23aを確実に保持させることができる。また、スイッチ素子1をリフロー実装する場合に、第1~第3の可溶導体21~23を接続する接続用ハンダあるいは第1~第3の可溶導体21~23の外層を形成する低融点金属が溶融することにより第1~第4の電極11~14を溶食(ハンダ食われ)するのを防ぐことができる。 The first to fourth electrodes 11 to 14 are coated with a coating such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating by a known technique such as plating. Preferably it is. As a result, the switch element 1 can prevent the first to fourth electrodes 11 to 14 from being oxidized and can reliably hold the molten conductors 21a to 23a of the first to third soluble conductors 21 to 23. . In addition, when the switch element 1 is mounted by reflow soldering, a low melting point that forms connection solder for connecting the first to third soluble conductors 21 to 23 or an outer layer of the first to third soluble conductors 21 to 23 It is possible to prevent the first to fourth electrodes 11 to 14 from being eroded (soldered) by melting the metal.
 [発熱導体]
 第1、第2の可溶導体21,22を加熱、溶融させる発熱導体15は、通電すると発熱する導電性を有する材料であって、たとえばニクロム、W、Mo、Ru、Cu、Ag等又はこれらを含む高融点金属材料を好適に用いることができる。発熱導体15は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものをスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
[Heat conductor]
The heating conductor 15 that heats and melts the first and second soluble conductors 21 and 22 is a conductive material that generates heat when energized. For example, Nichrome, W, Mo, Ru, Cu, Ag, or the like A refractory metal material containing can be preferably used. The heat generating conductor 15 is formed by mixing a powdered material of these alloys, compositions, or compounds with a resin binder or the like, patterning the paste using a screen printing technique, and firing the paste. Can do.
 発熱導体15は、絶縁基板10の表面10a上に、第1、第2の電極11,12及び第3、第4の電極13,14と並んで配置されている。これにより発熱導体15は、通電に伴って発熱すると、第1~第4の電極11~14上に搭載されている第1~第3の可溶導体21~23を溶融させることができる。 The heating conductor 15 is arranged on the surface 10 a of the insulating substrate 10 along with the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14. As a result, when the heat generating conductor 15 generates heat upon energization, the first to third soluble conductors 21 to 23 mounted on the first to fourth electrodes 11 to 14 can be melted.
 また、発熱導体15は、絶縁基板10の側縁10b,10cに第5、第6の外部接続端子15a,15aが設けられている。発熱導体15は、第5、第6の外部接続端子15a,15aを介して、第1の警報器31の作動のトリガーとなる制御回路34(図5参照)と接続され、異常時に制御回路34より印加される定格を超えた過電流によって高温に発熱し、第1~第3の可溶導体21~23を溶断させる。例えば、発熱導体15は、20~30Wの電力が印加されることにより300℃程度に発熱する電力設計が採られる。 The heating conductor 15 is provided with fifth and sixth external connection terminals 15 a 1 and 15 a 2 on the side edges 10 b and 10 c of the insulating substrate 10. The heat generating conductor 15 is connected to a control circuit 34 (see FIG. 5) that triggers the operation of the first alarm device 31 via the fifth and sixth external connection terminals 15a 1 and 15a 2 and is controlled in the event of an abnormality. The overcurrent exceeding the rating applied from the circuit 34 generates heat to a high temperature, and the first to third fusible conductors 21 to 23 are fused. For example, the heat conductor 15 is designed so that it generates heat at about 300 ° C. when 20 to 30 W of power is applied.
 また、発熱導体15は、第1~第3の可溶導体21~23と近接する位置において、相対的に細くなり、電流が集中することにより局部的に高温に発熱する発熱部15bが形成されている。第1~第3の可溶導体21~23と近接する位置に発熱部15bを設けることにより、発熱導体15は、効率よく第1~第3の可溶導体21~23を溶融させ、速やかに第1、第2の電極11,12間を遮断させ、また第3、第4の電極13,14間を短絡させることができる。 Further, the heat generating conductor 15 becomes relatively thin at positions close to the first to third fusible conductors 21 to 23, and a heat generating portion 15b that generates heat locally to a high temperature is formed by the concentration of current. ing. By providing the heat generating portion 15b at a position close to the first to third soluble conductors 21 to 23, the heat generating conductor 15 efficiently melts the first to third soluble conductors 21 to 23 and quickly The first and second electrodes 11 and 12 can be blocked, and the third and fourth electrodes 13 and 14 can be short-circuited.
 また、スイッチ素子1は、第1又は第2の電極11,12の一方、例えば図2に示すように、第1の電極11の第1の可溶導体21が搭載されている先端部11bと発熱導体15の発熱部15bとが近接するように形成されることが好ましい。第1の電極11の第1の可溶導体21が搭載されている先端部11bと近接する位置に発熱部15bを設けることにより、発熱導体15は、絶縁基板10及び先端部11bを介して効率よく第1の可溶導体21に熱を伝えて溶融させ、速やかに第1、第2の電極11,12間を遮断させることができる。 Further, the switch element 1 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. 2, a tip portion 11b on which the first soluble conductor 21 of the first electrode 11 is mounted. It is preferable that the heat generating conductor 15 is formed so as to be close to the heat generating portion 15b. By providing the heat generating portion 15b at a position close to the tip portion 11b on which the first fusible conductor 21 of the first electrode 11 is mounted, the heat generating conductor 15 is efficient through the insulating substrate 10 and the tip portion 11b. It is possible to transfer heat to the first fusible conductor 21 and melt it so that the first and second electrodes 11 and 12 can be quickly cut off.
 また、第1又は第2の電極11,12の第1の可溶導体21が搭載されている先端部11b,12bのうち、発熱部15bに近接する一方の面積が他方の面積よりも広く、他方の電極よりも多くの第1の可溶導体21を保持することが好ましい。例えば図2に示すように、スイッチ素子1は、発熱導体15の発熱部15bと第1の電極11の先端部11bとを近接させた場合、第1の電極11の先端部11bを第2の電極12の先端部12bよりも広く形成し、第1の可溶導体21を第1の電極11の先端部11b側に多く搭載することが好ましい。 In addition, of the tip portions 11b and 12b on which the first soluble conductor 21 of the first or second electrode 11 or 12 is mounted, one area close to the heat generating portion 15b is wider than the other area. It is preferable to hold more first soluble conductors 21 than the other electrode. For example, as shown in FIG. 2, when the heat generating portion 15 b of the heat generating conductor 15 and the tip portion 11 b of the first electrode 11 are brought close to each other, the switch element 1 causes the tip portion 11 b of the first electrode 11 to It is preferable that the electrode 12 is formed wider than the tip portion 12 b and the first soluble conductor 21 is mounted on the tip portion 11 b side of the first electrode 11 more.
 第1の電極11の先端部11bは、発熱部15bに近接されているため、発熱導体15からの熱がより多く伝わり、第1の可溶導体21を効率よく溶融させることができる。したがって、第1の電極11の先端部11bを相対的に広面積とし、より多くの可溶導体を保持させることで、より速やかに第1の可溶導体21に熱を伝えて溶融させ、第1、第2の電極11,12間を遮断させることができる。 Since the tip portion 11b of the first electrode 11 is close to the heat generating portion 15b, more heat is transmitted from the heat generating conductor 15, and the first soluble conductor 21 can be efficiently melted. Therefore, the tip 11b of the first electrode 11 has a relatively large area and holds more soluble conductors, so that heat can be transferred to the first soluble conductor 21 more quickly and melted. It is possible to block between the first and second electrodes 11 and 12.
 また、第1の電極11の先端部11bは、発熱部15bに近接されるとともに相対的に広面積に形成することにより、より高温に加熱され、溶融した第1の可溶導体21の大部分を保持することができる。 Further, the tip portion 11b of the first electrode 11 is close to the heat generating portion 15b and is formed in a relatively large area, so that most of the first soluble conductor 21 heated to a higher temperature and melted. Can be held.
 また、スイッチ素子1は、第2の可溶導体22が搭載されている第3の電極13の先端部13bと発熱部15bとが近接するように形成されることが好ましい。第3の電極13の第2の可溶導体22が搭載されている先端部13bと発熱部15bとを近接する位置に設けることにより、発熱導体15は、絶縁基板10及び先端部13bを介して効率よく第2の可溶導体22に熱を伝えて溶融させ、速やかに第3、第4の電極13,14間を短絡させることができる。なお、第4の電極14に第3の可溶導体23を搭載するとともに、第4の電極14の先端部14bと発熱部15bとを近接させてもよい。 The switch element 1 is preferably formed so that the tip portion 13b of the third electrode 13 on which the second soluble conductor 22 is mounted and the heat generating portion 15b are close to each other. By providing the tip portion 13b on which the second soluble conductor 22 of the third electrode 13 is mounted and the heat generating portion 15b in a close position, the heat generating conductor 15 passes through the insulating substrate 10 and the tip portion 13b. Heat can be efficiently transferred to the second soluble conductor 22 and melted, and the third and fourth electrodes 13 and 14 can be quickly short-circuited. The third soluble conductor 23 may be mounted on the fourth electrode 14 and the tip portion 14b and the heat generating portion 15b of the fourth electrode 14 may be brought close to each other.
 図2に示すように、発熱導体15は、制御回路34が正常に作動しているときは、定格内の適正な電流が流れている。そして、発熱導体15は、制御回路34が異常を検知することによって、又は制御回路34の異常によって、定格を超える過電流が流れると高温に発熱し、図3に示すように、第1~第3の可溶導体21~23を溶断させ、第1、第2の電極11,12を遮断させるとともに、第3、第4の電極13,14を短絡させる。その後も、発熱導体15は発熱を続けることにより、図4に示すように、自身のジュール熱によって溶断する。これにより、スイッチ素子1は、制御回路34から発熱導体15への給電経路が遮断され、発熱導体15の発熱が停止する。すなわち、発熱導体15は、第1~第3の可溶導体21~23を溶融させるとともに自己発熱によって自身の給電経路を遮断するヒューズとして機能する。 As shown in FIG. 2, when the control circuit 34 is operating normally, the heating conductor 15 is supplied with an appropriate current within the rating. The heat generating conductor 15 generates heat when the overcurrent exceeding the rating flows when the control circuit 34 detects an abnormality or due to the abnormality of the control circuit 34. As shown in FIG. The three fusible conductors 21 to 23 are blown, the first and second electrodes 11 and 12 are cut off, and the third and fourth electrodes 13 and 14 are short-circuited. After that, the heat generating conductor 15 continues to generate heat, so that it is melted by its own Joule heat as shown in FIG. As a result, the switch element 1 cuts off the power supply path from the control circuit 34 to the heating conductor 15 and stops the heat generation of the heating conductor 15. In other words, the heat generating conductor 15 functions as a fuse that melts the first to third fusible conductors 21 to 23 and interrupts its own power supply path by self-heating.
 また、発熱導体15は、局部的に高温となる発熱部15bを設けることにより、当該発熱部15bにおいて溶断する。このとき、発熱導体15は、発熱部15bが相対的に細く形成されているため、溶断時に発生するアーク放電も小規模なものに収まり、後述する絶縁層16の被覆効果とともに、溶融導体の飛散を防止することができる。 Also, the heat generating conductor 15 is fused at the heat generating portion 15b by providing the heat generating portion 15b that is locally hot. At this time, since the heat generating conductor 15 has the heat generating portion 15b formed relatively thin, arc discharge generated at the time of fusing can be reduced to a small scale, and the effect of covering the insulating layer 16 to be described later can be dispersed. Can be prevented.
 なお、発熱導体15は、上述した導電ペーストを印刷することによりパターン形成する他にも、Ag、Cu、W,Mo、Ru、ニクロム若しくはこれらを含む材料からなる箔、板状体、ワイヤーその他の実装体を用いて形成してもよい。また、これら実装体を用いて発熱導体15を構成する場合、絶縁基板10として熱伝導性に優れ、第1~第3の可溶導体21~23を速やかに溶融させることができるセラミックス基板を用いても、発熱導体15の溶断後における溶融導体のリークの問題が導電パターンに比して少ない。 In addition to forming the pattern by printing the above-mentioned conductive paste, the heat conductor 15 is not limited to Ag, Cu, W, Mo, Ru, Nichrome, or a foil, plate-like body, wire, or other material made of these materials. You may form using a mounting body. Further, when the heating conductor 15 is configured using these mounting bodies, a ceramic substrate that is excellent in thermal conductivity and can quickly melt the first to third soluble conductors 21 to 23 is used as the insulating substrate 10. However, the problem of leakage of the molten conductor after fusing of the heat generating conductor 15 is less than that of the conductive pattern.
 [絶縁層]
 第1~第4の電極11~14及び発熱導体15は、絶縁基板10の表面10a上において絶縁層16に被覆されている。絶縁層16は、第1~第4の電極11~14及び発熱導体15の保護及び絶縁を図るとともに、発熱導体15の溶断時におけるアーク放電を抑制するために設けられ、例えばガラス層やガラスを主成分とする材料からなる層である。
[Insulation layer]
The first to fourth electrodes 11 to 14 and the heat generating conductor 15 are covered with an insulating layer 16 on the surface 10 a of the insulating substrate 10. The insulating layer 16 is provided to protect and insulate the first to fourth electrodes 11 to 14 and the heating conductor 15, and to suppress arc discharge when the heating conductor 15 is melted. For example, a glass layer or glass is used. It is a layer made of a material having a main component.
 図1~図4に示すように、絶縁層16は、発熱導体15の発熱部15bを覆うとともに、第1、第2の電極11,12の先端部11b,12bを除く領域上に形成されている。すなわち、第1、第2の電極11,12は、先端部11b,12bが絶縁層16より露出され、後述する第1の可溶導体21が搭載可能とされている。 As shown in FIGS. 1 to 4, the insulating layer 16 covers the heat generating portion 15 b of the heat generating conductor 15 and is formed on a region excluding the tip portions 11 b and 12 b of the first and second electrodes 11 and 12. Yes. That is, the first and second electrodes 11 and 12 have the tip portions 11b and 12b exposed from the insulating layer 16, and a first soluble conductor 21 described later can be mounted.
 また、絶縁層16を第1、第2の電極11,12の先端部11b,12bを除く領域上に形成することで、絶縁基板10を介して伝わった発熱導体15の熱が放熱されることを防止し、効率よく先端部11b,12bを加熱し、第1の可溶導体21に熱を伝えることができる。また、第1、第2の電極11,12は、先端部11b,12bと外部接続電極11a,12aとの間に絶縁層16が設けられることにより、溶融した第1の可溶導体21が外部接続電極11a,12a側に流出し、スイッチ素子1が実装される回路基板との接続用ハンダを溶融させる事態を防止することができる。 Further, by forming the insulating layer 16 on the region excluding the tip portions 11b and 12b of the first and second electrodes 11 and 12, the heat of the heat generating conductor 15 transmitted through the insulating substrate 10 is dissipated. , The tip portions 11b and 12b can be efficiently heated, and heat can be transferred to the first soluble conductor 21. The first and second electrodes 11 and 12 are provided with an insulating layer 16 between the tip end portions 11b and 12b and the external connection electrodes 11a and 12a, so that the melted first soluble conductor 21 is external. It is possible to prevent a situation where the solder for connection to the circuit board on which the switch element 1 is mounted flows out to the connection electrodes 11a and 12a side and is melted.
 また、図1~図4に示すように、絶縁層16は、第3、第4の電極13,14の先端部13b,13bを除く領域上に形成されている。すなわち、第3、第4の電極13,14は、先端部13b,14bが絶縁層16より露出され、後述する第2、第3の可溶導体22,23が凝集、結合可能とされている。 Also, as shown in FIGS. 1 to 4, the insulating layer 16 is formed on a region excluding the tip portions 13b and 13b of the third and fourth electrodes 13 and 14. That is, the tip portions 13b and 14b of the third and fourth electrodes 13 and 14 are exposed from the insulating layer 16, and second and third soluble conductors 22 and 23 described later can be aggregated and combined. .
 また、第3、第4の電極13,14は、絶縁層16の一部に形成された開口部16aから支持部17が外方に露出されている。そして、第3、第4の電極13,14は、先端部13b,14b及び支持部17に接続用ハンダが設けられ、この接続用ハンダによって先端部13b,14bと支持部17との間にわたって、絶縁層16上に第2、第3の可溶導体22,23を支持している。 Further, in the third and fourth electrodes 13 and 14, the support portion 17 is exposed to the outside from an opening portion 16 a formed in a part of the insulating layer 16. The third and fourth electrodes 13 and 14 are provided with connecting solder at the tip portions 13b and 14b and the support portion 17, and the connecting solder extends between the tip portions 13b and 14b and the support portion 17. The second and third fusible conductors 22 and 23 are supported on the insulating layer 16.
 また、スイッチ素子1は、発熱導体15と絶縁基板10との間にもガラス等からなる絶縁層16を形成し、発熱導体15を絶縁層16の内部に形成してもよい。これにより、スイッチ素子1は、発熱導体15の遮断後において溶融導体が絶縁基板10の表面に付着することによるリークを防止し、絶縁抵抗を高くすることができる。更に、発熱導体15と絶縁基板10との間に形成する絶縁層16を発熱部15bの中心付近のみに部分的に形成する事で、第1、第2の可溶導体21,22への伝熱性確保と遮断後の絶縁抵抗確保の両立が可能となる。 In the switch element 1, the insulating layer 16 made of glass or the like may be formed between the heat generating conductor 15 and the insulating substrate 10, and the heat generating conductor 15 may be formed inside the insulating layer 16. Thereby, the switch element 1 can prevent leakage due to the molten conductor adhering to the surface of the insulating substrate 10 after the heat-generating conductor 15 is cut off, and can increase the insulation resistance. Further, the insulating layer 16 formed between the heat generating conductor 15 and the insulating substrate 10 is partially formed only in the vicinity of the center of the heat generating portion 15b, so that it is transmitted to the first and second fusible conductors 21 and 22. It is possible to ensure both heat resistance and insulation resistance after interruption.
 [可溶導体]
 第1~第4の電極11~14上に搭載される第1~第3の可溶導体21~23は、発熱導体15の発熱により速やかに溶融されるいずれの金属を用いることができ、例えば、ハンダや、Pbを主成分とする260℃リフロー実装時に溶融しないハンダ等の低融点金属を好適に用いることができる。
[Soluble conductor]
As the first to third soluble conductors 21 to 23 mounted on the first to fourth electrodes 11 to 14, any metal that can be quickly melted by the heat generated by the heating conductor 15 can be used. A low-melting-point metal such as solder or solder that does not melt at the time of 260 ° C. reflow mounting mainly containing Pb can be used.
 また、第1~第3の可溶導体21~23は、低融点金属と高融点金属とを含有してもよい。低融点金属としては、ハンダや、Snを主成分とするPbフリーハンダなどを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、スイッチ素子1をリフロー実装する場合に、リフロー温度が低融点金属の溶融温度を超えて、低融点金属が溶融しても、低融点金属の外部への流出を抑制し、第1~第3の可溶導体21~23の形状を維持することができる。また、溶融時も、低融点金属が溶融することにより、高融点金属を溶食(ハンダ食われ)することで、高融点金属の融点以下の温度で速やかに溶融することができる。なお、第1~第3の可溶導体21~23は、後に説明するように、様々な構成によって形成することができる。 The first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal. As the low melting point metal, it is preferable to use solder, Pb-free solder containing Sn as a main component, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as main components. By containing the high melting point metal and the low melting point metal, even when the reflow temperature exceeds the melting temperature of the low melting point metal and the low melting point metal melts when the switch element 1 is reflow mounted, Outflow to the outside can be suppressed, and the shapes of the first to third soluble conductors 21 to 23 can be maintained. In addition, even during melting, the low melting point metal melts, so that the high melting point metal is eroded (soldered), so that it can be rapidly melted at a temperature lower than the melting point of the high melting point metal. The first to third fusible conductors 21 to 23 can be formed by various configurations as will be described later.
 なお、第1~第3の可溶導体21~23は、表面上の一部又は全部に、酸化防止、濡れ性の向上等のため、フラックス28が塗布されていることが好ましい。 The first to third soluble conductors 21 to 23 are preferably coated with a flux 28 on a part or all of the surface in order to prevent oxidation and improve wettability.
 [スイッチ回路・警報回路]
 以上のようなスイッチ素子1は、図2(C)に示すような回路構成を有する。すなわち、スイッチ素子1は、第1の電極11と第2の電極12とが、正常時には第1の可溶導体21を介して接続され(図2(C))、発熱導体15の発熱により第1の可溶導体21が溶融すると、開放される。(図3(C))。また、スイッチ素子1は、第3の電極13と第4の電極14とが、正常時には開放され(図2(C))、発熱導体15の発熱により第2、第3の可溶導体22,23が溶融すると、当該溶融導体22a,23aを介して短絡するスイッチ2を構成する(図3(C))。そして、第3、第4の電極13,14の各外部接続端子13a,14aは、スイッチ2の両端子を構成する。
[Switch circuit / alarm circuit]
The switch element 1 as described above has a circuit configuration as shown in FIG. That is, in the switch element 1, the first electrode 11 and the second electrode 12 are normally connected via the first soluble conductor 21 (FIG. 2C), and the first heat generation conductor 15 generates heat to generate the first electrode 11 and the second electrode 12. When one soluble conductor 21 is melted, it is opened. (FIG. 3C). The switch element 1 is opened when the third electrode 13 and the fourth electrode 14 are normal (FIG. 2C), and the second and third fusible conductors 22, When 23 is melted, the switch 2 is configured to be short-circuited via the molten conductors 22a and 23a (FIG. 3C). The external connection terminals 13 a and 14 a of the third and fourth electrodes 13 and 14 constitute both terminals of the switch 2.
 そして、スイッチ素子1は、例えば警報回路30に組み込まれて用いられる。図5は警報回路30の回路構成の一例を示す図である。警報回路30は、第1~第3の可溶導体21~23よりも融点の高い高融点金属体からなる第1のヒューズ33(発熱導体15)が電源に直列に接続された制御回路34と、第1の可溶導体21からなる第2のヒューズ35を介して第1の警報器31を作動させる第1の作動回路36と、第2、第3の可溶導体22,23の溶融導体22a,23aを介して短絡されるスイッチ2により第2の警報器32を作動させる第2の作動回路37とを備え、制御回路34と第1、第2の作動回路36,37とが電気的に独立して形成されたものである。 The switch element 1 is used by being incorporated in the alarm circuit 30, for example. FIG. 5 is a diagram illustrating an example of a circuit configuration of the alarm circuit 30. The alarm circuit 30 includes a control circuit 34 in which a first fuse 33 (heating conductor 15) made of a refractory metal body having a higher melting point than the first to third fusible conductors 21 to 23 is connected in series to a power source. The first operating circuit 36 for operating the first alarm 31 via the second fuse 35 made of the first fusible conductor 21 and the molten conductors of the second and third fusible conductors 22 and 23 And a second operating circuit 37 for operating the second alarm device 32 by the switch 2 that is short-circuited via 22a and 23a. The control circuit 34 and the first and second operating circuits 36 and 37 are electrically connected. It was formed independently.
 図5に示すように、スイッチ素子1は、第2のヒューズ35(第1の可溶導体21)の両外部接続端子11a,12aが、パイロットランプ等の、正常時に通電し異常時に通電が遮断される第1の警報器31に接続される。また、スイッチ素子1は、スイッチ2の両外部接続端子13a,14aが、正常時には開放され異常時に通電されるブザーやランプあるいは警報システム等からなる第2の警報器31に接続される。さらに、スイッチ素子1は、第1のヒューズ33(発熱導体15)の第5、第6の外部接続端子15a,15aが、制御回路34に接続される。 As shown in FIG. 5, in the switch element 1, both external connection terminals 11a and 12a of the second fuse 35 (first fusible conductor 21) are energized at normal times, such as pilot lamps, and energized at abnormal times. Connected to the first alarm device 31. In addition, the switch element 1 is connected to a second alarm device 31 composed of a buzzer, a lamp, an alarm system, or the like in which both external connection terminals 13a and 14a of the switch 2 are opened when normal and are energized when abnormal. Further, in the switch element 1, the fifth and sixth external connection terminals 15 a 1 and 15 a 2 of the first fuse 33 (heating conductor 15) are connected to the control circuit 34.
 このような構成を有するスイッチ素子1は、第1の警報器31を動作させる第1、第2の電極11,12に対して、隣接して形成されている発熱導体15の発熱により第1の可溶導体21を溶融させ、第1、第2の電極11,12間を遮断させる。すなわち、スイッチ素子1は、発熱導体15と第1、第2の電極11,12とは物理的、電気的に独立して構成され、発熱導体15の熱によって第1の可溶導体21が溶融することにより遮断する、いわば熱的に接続することにより連動する構成を取る。 The switch element 1 having such a configuration is configured such that the first heat generating conductor 15 formed adjacent to the first and second electrodes 11 and 12 that operate the first alarm device 31 generates heat. The fusible conductor 21 is melted, and the first and second electrodes 11 and 12 are blocked. That is, the switch element 1 is configured such that the heat generating conductor 15 and the first and second electrodes 11 and 12 are physically and electrically independent, and the first soluble conductor 21 is melted by the heat of the heat generating conductor 15. It cuts off by doing, so to speak, it takes the structure linked by thermally connecting.
 同様に、スイッチ素子1は、第2の警報器32を動作させるスイッチ2を構成する第3、第4の電極13,14に対して、隣接して形成されている発熱導体15の発熱により第2、第3の可溶導体22,23を溶融させ、この溶融導体22a,23aを介して短絡させる。すなわち、スイッチ素子1は、発熱導体15と第3、第4の電極13,14とは物理的、電気的に独立して構成され、発熱導体15の熱によって第2、第3の可溶導体22,23が溶融することにより短絡する、いわば熱的に接続することにより連動する構成を取る。 Similarly, the switch element 1 is the first by the heat generation of the heat generating conductor 15 formed adjacent to the third and fourth electrodes 13 and 14 constituting the switch 2 that operates the second alarm device 32. 2. The third soluble conductors 22 and 23 are melted and short-circuited through the molten conductors 22a and 23a. That is, the switch element 1 is configured so that the heat generating conductor 15 and the third and fourth electrodes 13 and 14 are physically and electrically independent, and the second and third soluble conductors are heated by the heat of the heat generating conductor 15. A short circuit occurs when the materials 22 and 23 are melted.
 したがって、スイッチ素子1は、スプリングや警報接点等の機械要素を用いず、また機械要素の物理的な連動によらず構成することができるため、絶縁基板10の面内において、コンパクトに設計することができ、狭小化された実装領域にも実装可能となる。また、スイッチ素子1は、部品点数、製造工数の削減を図り、低コスト化を図ることができる。さらに、スイッチ素子1は、絶縁基板10をリフロー実装等により表面実装することができ、狭小化された実装領域においても、簡易に実装することができる。 Therefore, since the switch element 1 can be configured without using mechanical elements such as springs and alarm contacts and without being physically linked with the mechanical elements, the switch element 1 should be designed to be compact in the plane of the insulating substrate 10. Can be mounted in a narrowed mounting area. Further, the switch element 1 can reduce the number of parts and the number of manufacturing steps, and can reduce the cost. Furthermore, the switch element 1 can be mounted on the surface of the insulating substrate 10 by reflow mounting or the like, and can be easily mounted even in a narrowed mounting region.
 また、スイッチ素子1は、発熱導体15と第1~第4の電極11~14とは物理的、電気的に独立して構成され、第1のヒューズ33として機能する発熱導体15の遮断によらず第1の警報器31の遮断や第2の警報器32の作動を行う。したがって、例えば、ヒューズとして機能する発熱導体15が配置される電力系パワーラインと分離した信号系ラインに警報信号を出す場合に、発熱導体15の遮断時における電源ノイズの影響もなく、ノイズ対策用回路も不要で、信頼性の高い警報回路を構成することができる。 In the switch element 1, the heat generating conductor 15 and the first to fourth electrodes 11 to 14 are physically and electrically independent, and the heat generating conductor 15 functioning as the first fuse 33 is cut off. First, the first alarm device 31 is shut off and the second alarm device 32 is operated. Therefore, for example, when an alarm signal is output to a signal system line separated from the power system power line in which the heat generating conductor 15 functioning as a fuse is arranged, there is no influence of power supply noise when the heat generating conductor 15 is cut off, and for noise countermeasures A circuit is also unnecessary, and a highly reliable alarm circuit can be configured.
 実使用時において、スイッチ素子1は、制御回路34に異常が発生すると、発熱導体15に定格を超える過電流が流れる。すると、図3(A)に示すように、発熱導体15が発熱し、絶縁基板10及び第1、第2の電極11,12の各先端部11b,12bを通じて第1の可溶導体21に熱が伝わり、これにより、第1の可溶導体21が溶融する。第1の可溶導体21の溶融導体21aは、発熱導体15によって加熱された第1、第2の電極11,12の各先端部11b,12bの上に凝集する。これにより、スイッチ素子1は、第1、第2の電極11,12間が遮断し、第1の作動回路36の第1の警報器31への通電を停止させることができる(図3(C))。警報回路30は、警報器31への通電が停止されることにより、例えばパイロットランプが消灯する等、異常を知らせることができる。 In actual use, when an abnormality occurs in the control circuit 34 in the switch element 1, an overcurrent exceeding the rating flows through the heating conductor 15. Then, as shown in FIG. 3A, the heat generating conductor 15 generates heat, and heat is applied to the first soluble conductor 21 through the insulating substrate 10 and the tip portions 11b, 12b of the first and second electrodes 11, 12. As a result, the first soluble conductor 21 is melted. The molten conductor 21a of the first fusible conductor 21 aggregates on the tip portions 11b and 12b of the first and second electrodes 11 and 12 heated by the heating conductor 15. Thereby, the switch element 1 interrupts | blocks between the 1st, 2nd electrodes 11 and 12, and can stop the electricity supply to the 1st alarm device 31 of the 1st operation circuit 36 (FIG.3 (C )). The alarm circuit 30 can notify the abnormality, for example, the pilot lamp is turned off when the energization to the alarm device 31 is stopped.
 また、スイッチ素子1は、発熱導体15が発熱すると、第2、第3の可溶導体22,23が溶融する。第2、第3の可溶導体22,23の溶融導体22a,23aは、開口部16aより露出する支持部17に比して広面積で、かつ発熱導体15によって加熱された第3、第4の電極13,14の各先端部13b,14bの上に凝集し、結合する。これにより、スイッチ素子1は、第3、第4の電極13,14間が短絡し、第2の警報器32を作動させることができる。すなわち、スイッチ素子1は、スイッチ2がオンとなる(図3(C))。警報回路30は、スイッチ素子1のスイッチ2がオンとなることにより、第2の作動回路37によって第2の警報器32が作動される。 In the switching element 1, when the heat generating conductor 15 generates heat, the second and third soluble conductors 22 and 23 are melted. The molten conductors 22a and 23a of the second and third fusible conductors 22 and 23 have a larger area than the support portion 17 exposed from the opening 16a and are heated by the heating conductor 15 in the third and fourth. The electrodes 13 and 14 are agglomerated and bonded onto the respective tip portions 13b and 14b. Thereby, the switch element 1 can short-circuit between the 3rd, 4th electrodes 13 and 14, and can operate the 2nd alarm device 32. FIG. That is, in the switch element 1, the switch 2 is turned on (FIG. 3C). In the alarm circuit 30, when the switch 2 of the switch element 1 is turned on, the second alarm circuit 32 is operated by the second operation circuit 37.
 このとき、スイッチ素子1は、発熱導体15の発熱部15bと、第1の電極11の第1の可溶導体21が搭載されている先端部11bや、第3の電極13の第2の可溶導体22が搭載されている先端部13bとを近接して配置することにより、細く形成され高抵抗の発熱部15bが高温となり、効率よく第1、第2の可溶導体21,22を溶融させ、速やかに第1、第2の電極11,12を遮断させるとともに第3、第4の電極13,14を短絡させることができる。また、発熱導体15は、高抵抗の発熱部15bが局部的に高温となるのみで、側縁に面する第5、第6の外部接続端子15a,15aは放熱効果も相まって比較的低温に保たれる。そのため、スイッチ素子1は、第5、第6の外部接続端子15a,15aの実装用ハンダが溶融することもない。 At this time, the switch element 1 includes the heat generating portion 15 b of the heat generating conductor 15, the tip end portion 11 b on which the first fusible conductor 21 of the first electrode 11 is mounted, and the second possible portion of the third electrode 13. By disposing the tip portion 13b on which the molten conductor 22 is mounted close to the heat generating portion 15b which is thin and has a high resistance, the first and second soluble conductors 21 and 22 are efficiently melted. Thus, the first and second electrodes 11 and 12 can be quickly cut off, and the third and fourth electrodes 13 and 14 can be short-circuited. Further, the heat generating conductor 15 is such that the high-resistance heat generating portion 15b is only locally heated, and the fifth and sixth external connection terminals 15a 1 and 15a 2 facing the side edges are relatively low in temperature due to the heat dissipation effect. To be kept. Therefore, in the switch element 1, the mounting solder for the fifth and sixth external connection terminals 15a 1 and 15a 2 is not melted.
 図4に示すように、第1、第2の電極11,12間の遮断及び第3、第4の電極13,14の短絡後も発熱導体15は発熱を続け、自身のジュール熱によって遮断する(図4(A)(B))。これにより、スイッチ素子1は、制御回路34による発熱導体15への通電が遮断され、発熱が停止する(図4(C))。このとき、スイッチ素子1は、発熱導体15が絶縁層16によって被覆されているため、大規模なアーク放電を抑制し、溶融導体の爆発的な飛散を抑制することができる。また、発熱導体15に細く形成された発熱部15bを設けることにより、溶断箇所が狭小化され、飛散する溶融導体の量を低減させることができる。 As shown in FIG. 4, the heat-generating conductor 15 continues to generate heat after being interrupted between the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14 are short-circuited, and is interrupted by its own Joule heat. (FIGS. 4A and 4B). As a result, the switch element 1 is cut off from energization to the heat generating conductor 15 by the control circuit 34 and stops generating heat (FIG. 4C). At this time, since the heat generating conductor 15 is covered with the insulating layer 16, the switch element 1 can suppress large-scale arc discharge and suppress explosive scattering of the molten conductor. In addition, by providing the heat generating portion 15b that is thinly formed on the heat generating conductor 15, the fusing portion is narrowed, and the amount of the molten conductor that is scattered can be reduced.
 このように、スイッチ素子1は、第1~第3の可溶導体21~23よりも融点の高い発熱導体15が発熱することにより、確実に第1~第3の可溶導体21~23が発熱導体15よりも先に溶融し、第1、第2の電極11,12を遮断させ、かつ第3、第4の電極13,14を短絡させることができる。すなわち、スイッチ素子1は、発熱導体15の溶断が第1、第2の電極11,12の遮断及び第3、第4の電極13,14の短絡の条件とはなっていない。 In this way, the switch element 1 reliably generates the first to third soluble conductors 21 to 23 by the heat generation conductor 15 having a higher melting point than the first to third soluble conductors 21 to 23 generating heat. It melts before the heat generating conductor 15, the first and second electrodes 11 and 12 can be cut off, and the third and fourth electrodes 13 and 14 can be short-circuited. That is, in the switch element 1, the fusing of the heat generating conductor 15 is not a condition for cutting off the first and second electrodes 11 and 12 and short-circuiting the third and fourth electrodes 13 and 14.
 これにより、スイッチ素子1は、制御回路34の異常に伴い第1の警報器31を遮断させるとともに第2の警報器32を作動させる警報素子として使用することができる。したがって、スイッチ素子1が組み込まれた警報回路30によれば、パイロットランプの消灯など第1の警報器31の遮断、及び警報ブザーや警報ランプあるいは当該異常に対応した機能回路への通電など第2の警報器32の作動によって、制御回路34の異常に対応させることができる。 Thus, the switch element 1 can be used as an alarm element that shuts off the first alarm device 31 and activates the second alarm device 32 when the control circuit 34 is abnormal. Therefore, according to the alarm circuit 30 in which the switch element 1 is incorporated, the first alarm device 31 is shut off such as turning off the pilot lamp, and the alarm buzzer, the alarm lamp, or the energization of the function circuit corresponding to the abnormality is second. By operating the alarm device 32, the abnormality of the control circuit 34 can be dealt with.
 なお、スイッチ素子1が組み込まれた警報回路は、制御回路34の異常検知に伴い発熱導体15の定格を超える過電流が流れた場合にも、当該異常を伝える警報素子として使用することができる。当該警報素子は、パイロットランプの消灯や警報ブザーの作動など第1、第2の警報器31,32の動作に応じて制御回路34による異常検知をいち早く察知でき、予防的に制御回路34を停止するとともに、バックアップ回路を作動させる等の対応を図ることができる。 The alarm circuit in which the switch element 1 is incorporated can be used as an alarm element that transmits the abnormality even when an overcurrent exceeding the rating of the heating conductor 15 flows due to the abnormality detection of the control circuit 34. The alarm element can quickly detect abnormality detection by the control circuit 34 in accordance with the operation of the first and second alarm devices 31 and 32, such as turning off the pilot lamp and operating the alarm buzzer, and stops the control circuit 34 proactively. In addition, it is possible to take measures such as operating the backup circuit.
 また、スイッチ素子1は、警報回路に適用する以外にも、第1、第2の警報回路31,32に代えて、第1、第2の電極11,12に接続されることにより常時導通されている通常作動回路と、第3、第4の電極13,14に接続されることにより常時遮断され、通常作動回路の異常時に作動するバックアップ回路とを備える、バックアップ機能付きのあらゆる冗長回路に適用することもできる。 In addition to applying to the alarm circuit, the switch element 1 is always connected by being connected to the first and second electrodes 11 and 12 instead of the first and second alarm circuits 31 and 32. Applied to any redundant circuit with a backup function, including a normal operation circuit that is connected to the third and fourth electrodes 13 and 14, and a backup circuit that operates at the time of abnormality of the normal operation circuit. You can also
 また、発熱導体15は、自身のジュール熱により遮断することにより、自動的に発熱を停止する。したがって、スイッチ素子1は、制御回路34による給電を規制する機構を設ける必要がなく、簡易な構成で発熱導体15の発熱を停止することができ、素子全体の小型化を図ることができる。 Also, the heat generating conductor 15 automatically stops generating heat by being cut off by its own Joule heat. Therefore, the switch element 1 does not need to be provided with a mechanism for restricting the power supply by the control circuit 34, can stop the heat generation of the heat generating conductor 15 with a simple configuration, and can reduce the size of the entire element.
 [接続部]
 また、スイッチ素子1は、第1又は第2の電極11,12のうち、発熱導体15の発熱部15bに近い一方の電極と、発熱導体15とを接続してもよい。例えば図6に示すように、スイッチ素子1は、発熱導体15の発熱部15bと、第1の電極11の先端部11bが近接されている場合、発熱導体15の発熱部15bの近傍と第1の電極11とを接続する第1の接続部18を形成してもよい。
[Connection]
Further, the switch element 1 may connect one of the first or second electrodes 11 and 12 close to the heat generating portion 15 b of the heat generating conductor 15 and the heat generating conductor 15. For example, as shown in FIG. 6, when the heating element 15 b of the heating conductor 15 and the tip 11 b of the first electrode 11 are close to each other, the switch element 1 A first connection portion 18 that connects the electrode 11 may be formed.
 同様に、スイッチ素子1は、発熱導体15と、第2の可溶導体22が搭載されている第3の電極13又は第3の可溶導体23が搭載されている第4の電極14とを接続する第2の接続部19を形成してもよい。例えば、スイッチ素子1は、発熱導体15の発熱部15bと第3の電極13の先端部13bとが近接されている場合、発熱導体15の発熱部15bの近傍と第3の電極13とを接続する第2の接続部19を形成してもよい。 Similarly, the switch element 1 includes a heating conductor 15 and a third electrode 13 on which the second soluble conductor 22 is mounted or a fourth electrode 14 on which the third soluble conductor 23 is mounted. You may form the 2nd connection part 19 to connect. For example, the switch element 1 connects the vicinity of the heat generating portion 15b of the heat generating conductor 15 and the third electrode 13 when the heat generating portion 15b of the heat generating conductor 15 and the tip portion 13b of the third electrode 13 are close to each other. The second connection portion 19 may be formed.
 第1、第2の接続部18,19は、例えば発熱導体15や第1~第4の電極11~14と同じ導電材料を用いて、発熱導体15や第1~第4の電極11~14と同じ工程においてパターン形成されることにより設けることができる。 The first and second connecting portions 18 and 19 are made of the same conductive material as that of the heat conductor 15 and the first to fourth electrodes 11 to 14, for example, and the heat conductor 15 and the first to fourth electrodes 11 to 14 are used. Can be provided by forming a pattern in the same process.
 発熱導体15と第1、第3の電極11,13とを接続することにより、スイッチ素子1は、発熱導体15が通電により発熱すると、第1の接続部18及び第1の電極11を介しても熱が第1の可溶導体21に伝わり、より速やかに溶融させることができる。同様に、発熱導体15が通電により発熱すると、第2の接続部19及び第3の電極13を介しても熱が第2の可溶導体22に伝わり、より速やかに溶融させることができる。このため、第1、第2の接続部18,19は、熱伝導性に優れるAgやCu等の金属材料により形成することが好ましい。 By connecting the heat generating conductor 15 and the first and third electrodes 11, 13, the switch element 1 can be connected via the first connecting portion 18 and the first electrode 11 when the heat generating conductor 15 generates heat when energized. The heat is transferred to the first soluble conductor 21 and can be melted more rapidly. Similarly, when the heat generating conductor 15 generates heat by energization, the heat is transmitted to the second soluble conductor 22 via the second connecting portion 19 and the third electrode 13 and can be melted more rapidly. For this reason, it is preferable to form the 1st, 2nd connection parts 18 and 19 with metal materials, such as Ag and Cu which are excellent in heat conductivity.
 なお、第1、第2の接続部18,19は、発熱導体15の発熱部15bの中心から若干離れた位置に設ける。発熱導体15は、第1、第2の接続部18,19を設けることで抵抗値が下がり温度が上がり難いため、発熱部15bが高温に発熱するとともに自己発熱による遮断を行うためには、発熱部15bの中心と第1、第2の接続部18,19とは離間した位置に設ける必要があるためである。 Note that the first and second connecting portions 18 and 19 are provided at positions slightly away from the center of the heat generating portion 15b of the heat generating conductor 15. Since the heating conductor 15 is provided with the first and second connection portions 18 and 19 so that the resistance value decreases and the temperature does not easily rise. This is because the center of the portion 15b and the first and second connecting portions 18 and 19 need to be provided at positions separated from each other.
 [カバー部電極]
 スイッチ素子1は、絶縁基板10上に内部を保護するカバー部材20が取り付けられている。スイッチ素子1は、絶縁基板10がカバー部材20に覆われることによりその内部が保護されている。カバー部材20は、スイッチ素子1の側面を構成する側壁24と、スイッチ素子1の上面を構成する天面部25とを有し、側壁24が絶縁基板10上に接続されることにより、スイッチ素子1の内部を閉塞する蓋体となる。このカバー部材20は、例えば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成されている。
[Cover electrode]
In the switch element 1, a cover member 20 that protects the inside is attached on an insulating substrate 10. The inside of the switch element 1 is protected by covering the insulating substrate 10 with the cover member 20. The cover member 20 includes a side wall 24 that constitutes a side surface of the switch element 1 and a top surface portion 25 that constitutes an upper surface of the switch element 1, and the side wall 24 is connected to the insulating substrate 10. It becomes a lid that closes the inside of the. The cover member 20 is formed using an insulating member such as a thermoplastic plastic, ceramics, or a glass epoxy substrate.
 また、図7に示すように、カバー部材20は、天面部25の内面側に、第1のカバー部電極26が形成されても良い。第1のカバー部電極26は、第1の電極11及び第2の電極12の一方と重畳する位置に形成されている。図7に示すように、第1のカバー部電極26は、発熱導体15の発熱部15bと近接され、かつ相対的に広面積に形成されている第1の電極11の先端部11bと重畳することがより好ましい。これにより、この第1のカバー部電極26は、発熱導体15が発熱し、第1の可溶導体21が溶融されると、第1の電極11の先端部11b上に凝集した溶融導体21aが接触して濡れ広がることにより、溶融導体21aを保持する許容量を増加させ、より確実に第1、第2の電極11,12を遮断させることができる。 Further, as shown in FIG. 7, the cover member 20 may have a first cover electrode 26 formed on the inner surface side of the top surface portion 25. The first cover part electrode 26 is formed at a position overlapping with one of the first electrode 11 and the second electrode 12. As shown in FIG. 7, the first cover part electrode 26 is close to the heat generating part 15b of the heat generating conductor 15, and overlaps with the tip part 11b of the first electrode 11 formed in a relatively large area. It is more preferable. As a result, when the heat generating conductor 15 generates heat and the first fusible conductor 21 is melted, the first cover electrode 26 has the molten conductor 21a aggregated on the front end portion 11b of the first electrode 11. By contacting and spreading, the allowable amount for holding the molten conductor 21a can be increased, and the first and second electrodes 11 and 12 can be blocked more reliably.
 また、図8に示すように、カバー部材20は、天面部25の内面側に、第2のカバー部電極27が形成されても良い。第2のカバー部電極27は、第3、第4の電極13,14の各先端部13b,14b間にわたって重畳する位置に形成されている。この第2のカバー部電極27は、発熱導体15が発熱し、第2、第3の可溶導体22,23が溶融されると、第3、第4の電極13,14上に凝集した溶融導体22a,23aが接触して濡れ広がることにより、溶融導体22a,23aを保持する許容量を増加させ、より確実に第3、第4の電極13,14を短絡させることができる。 Further, as shown in FIG. 8, the cover member 20 may have a second cover portion electrode 27 formed on the inner surface side of the top surface portion 25. The second cover part electrode 27 is formed at a position that overlaps between the tip parts 13 b and 14 b of the third and fourth electrodes 13 and 14. The second cover part electrode 27 is formed by melting the third and fourth electrodes 13 and 14 when the heat generating conductor 15 generates heat and the second and third fusible conductors 22 and 23 are melted. When the conductors 22a and 23a come into contact with each other to spread out, the allowable amount for holding the molten conductors 22a and 23a can be increased, and the third and fourth electrodes 13 and 14 can be short-circuited more reliably.
 [第2の可溶導体の突出支持]
 また、本発明が適用されたスイッチ素子は、図9に示すように、第4の電極14上に第3の可溶導体23を設けず、第2の可溶導体22を第3の電極13から第4の電極14側に突出して支持してもよい。なお、以下の説明において、上述したスイッチ素子1と同様の構成については、同じ符号を付してその詳細を省略する。図9に示すスイッチ素子5は、第3の電極13に支持されている第2の可溶導体22が第4の電極14側に突出されることにより、発熱導体15の発熱によって溶融すると、溶融導体が第3、第4の電極13,14の各先端部13b,14bの上に凝集し結合する。これにより、スイッチ素子5は、第3、第4の電極13,14が短絡する。なお、図9(B)は、同図(a)のA-A’断面図であり、図9(C)は同図(a)のB-B’断面図である。
[Projection support of second soluble conductor]
Further, in the switch element to which the present invention is applied, as shown in FIG. 9, the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is replaced with the third electrode 13. May be supported by projecting to the fourth electrode 14 side. In the following description, the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. The switch element 5 shown in FIG. 9 is melted when the second soluble conductor 22 supported by the third electrode 13 protrudes toward the fourth electrode 14 and is melted by the heat generated by the heat conductor 15. The conductor aggregates and bonds onto the tip portions 13b and 14b of the third and fourth electrodes 13 and 14, respectively. As a result, the switch element 5 is short-circuited between the third and fourth electrodes 13 and 14. FIG. 9B is a cross-sectional view taken along the line AA ′ in FIG. 9A, and FIG. 9C is a cross-sectional view taken along the line BB ′ in FIG.
 第2の可溶導体22は、第3、第4の電極13,14上に積層された絶縁層16に開口された開口部16aより露出されている支持部17と、絶縁層16より露出されている第3の電極13の先端部13bとに設けられた接続用ハンダによって第3の電極13上に支持されている。また、第2の可溶導体22は、図9(C)に示すように、第4の電極14側突出することにより、第4の電極14上に積層された絶縁層16上に延在され、これにより第4の電極14と重畳されている。第2の可溶導体22は、絶縁層16上に延在されることにより、絶縁層16から露出されている先端部14bと離間され、これにより第3、第4の電極13,14間が開放されている。 The second soluble conductor 22 is exposed from the support portion 17 exposed from the opening portion 16 a opened in the insulating layer 16 laminated on the third and fourth electrodes 13 and 14, and exposed from the insulating layer 16. The third electrode 13 is supported on the third electrode 13 by connecting solder provided at the tip portion 13 b of the third electrode 13. Further, as shown in FIG. 9C, the second fusible conductor 22 extends on the insulating layer 16 laminated on the fourth electrode 14 by projecting to the fourth electrode 14 side. This overlaps with the fourth electrode 14. The second fusible conductor 22 extends on the insulating layer 16 so as to be separated from the tip end portion 14b exposed from the insulating layer 16, whereby the third and fourth electrodes 13, 14 are separated from each other. It is open.
 そして、第2の可溶導体22は、発熱導体15の発熱によって溶融すると、溶融導体が第3の電極13上に凝集する過程で第4の電極14の先端部14b上にも接触し、第3、第4の電極13,14の各先端部13b,14b間に跨って凝集する。 Then, when the second fusible conductor 22 is melted by the heat generated by the heat generating conductor 15, the second conductive conductor 22 also comes into contact with the tip portion 14 b of the fourth electrode 14 in the process of agglomerating on the third electrode 13, 3. Aggregate between the tip portions 13b, 14b of the fourth electrodes 13, 14.
 なお、図9では、第3の電極13に支持された第2の可溶導体22を第4の電極側に突出させたが、反対に、第3の電極13に第2の可溶導体22を設けず、第3の可溶導体23を第4の電極14から第3の電極13側に突出させて支持するようにしてもよい。 In FIG. 9, the second soluble conductor 22 supported by the third electrode 13 is protruded toward the fourth electrode side. On the contrary, the second soluble conductor 22 is connected to the third electrode 13. The third soluble conductor 23 may be supported by projecting from the fourth electrode 14 to the third electrode 13 side.
 また、上述したスイッチ素子1においても、スイッチ素子5と同様に、第4の電極14上に第3の可溶導体23を設けず、第2の可溶導体22を第3の電極13から第4の電極14側に突出して支持してもよい。 In the switch element 1 described above, as in the switch element 5, the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the third electrode 13 from the third electrode 13. 4 may protrude and be supported on the electrode 14 side.
 [第5、第6の外部接続端子]
 また、本発明が適用されたスイッチ素子は、図9に示すように、絶縁基板10の第1~第4の電極11~14が形成された表面10a上に、外部回路との接続端子となる第1~第4の外部接続端子11a~14aを設けてもよい。また、本発明が適用されたスイッチ素子は、絶縁基板10の発熱導体15が形成された表面10a上に、外部回路との接続端子となる第5、第6の外部接続端子15a,15aを設けてもよい。図9に示すスイッチ素子5は、第1~第4の電極11~14及び発熱導体15が設けられる絶縁基板10の表面10a側が実装面となる。
[Fifth and sixth external connection terminals]
Further, as shown in FIG. 9, the switch element to which the present invention is applied becomes a connection terminal for an external circuit on the surface 10a of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 are formed. The first to fourth external connection terminals 11a to 14a may be provided. In addition, the switch element to which the present invention is applied has fifth and sixth external connection terminals 15a 1 and 15a 2 serving as connection terminals for external circuits on the surface 10a of the insulating substrate 10 on which the heat generating conductor 15 is formed. May be provided. In the switch element 5 shown in FIG. 9, the surface 10a side of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 and the heat generating conductor 15 are provided is a mounting surface.
 第1~第6の外部接続端子11a~14a,15a,15aは、外部回路を構成する基板へ実装するための接続端子であり、例えば金属バンプや金属ポストを用いて形成されている。金属バンプや金属ポストの形状は問わない。また、第1~第6の外部接続端子11a~14a,15a,15aは、図9(C)に示すように、絶縁基板2上に設けられたカバー部材10よりも突出する高さを有し、短絡素子25の実装対象物となる基板側に実装可能とされている。 The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are connection terminals for mounting on a substrate constituting an external circuit, and are formed using, for example, metal bumps or metal posts. The shape of the metal bump or the metal post is not limited. Further, the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 have a height protruding from the cover member 10 provided on the insulating substrate 2, as shown in FIG. 9C. And can be mounted on the substrate side that is the mounting target of the short-circuit element 25.
 このように、スイッチ素子5は、導電スルーホールを介して絶縁基板10の裏面に連続する外部接続端子11a~14a,15a,15aを設けるものではなく、第1~第4の電極11~14や発熱導体15と同一表面に、外部接続端子11a~14a,15a,15aを形成している。そして、この外部接続端子11a~14a,15a,15aは、第1~第4の電極や発熱導体15上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、スイッチ素子5は、導電スルーホールを介して裏面に引き出された第3、第4の外部接続端子13a,14aを用いる場合に比して、第3、第4の電極13,14が短絡し外部回路を開通した際における定格を容易に向上させ、大電流に対応することができる。 As described above, the switch element 5 does not include the external connection terminals 11a to 14a, 15a 1 and 15a 2 continuous to the back surface of the insulating substrate 10 through the conductive through holes, but the first to fourth electrodes 11 to External connection terminals 11a to 14a, 15a 1 and 15a 2 are formed on the same surface as 14 and the heating conductor 15. The external connection terminals 11a to 14a, 15a 1 and 15a 2 are provided on the first to fourth electrodes and the heat generating conductor 15, and have a high degree of freedom in shape and size and have a low conduction resistance. Can be easily provided. Thereby, the switch element 5 has the third and fourth electrodes 13 and 14 as compared with the case where the third and fourth external connection terminals 13a and 14a drawn to the back surface through the conductive through holes are used. It is possible to easily improve the rating when short-circuiting and opening an external circuit, and to handle a large current.
 なお、スイッチ素子5は、第3の電極13と第4の電極14とが短絡したときの、第3、第4の電極13,14間の導通抵抗よりも、第3の外部接続端子13aと第4の外部接続端子14aとの合成抵抗が低く構成されていることが好ましい。これにより、スイッチ素子5は、第3、第4の外部接続端子13a,14aによって開通された外部回路の定格の向上が阻害されることを防止することができる。 Note that the switch element 5 is connected to the third external connection terminal 13a and the conductive resistance between the third and fourth electrodes 13 and 14 when the third electrode 13 and the fourth electrode 14 are short-circuited. It is preferable that the combined resistance with the fourth external connection terminal 14a is low. Thereby, the switch element 5 can prevent the improvement of the rating of the external circuit opened by the third and fourth external connection terminals 13a and 14a from being hindered.
 第1~第6の外部接続端子11a~14a,15a,15aは、コアとなる高融点金属の表面に低融点金属層を設けることにより形成してもよい。低融点金属層を構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属としては、Cu若しくはAg又はこれらを主成分とする合金などを好適に用いることができる。 The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be formed by providing a low melting point metal layer on the surface of the high melting point metal to be the core. As the metal constituting the low melting point metal layer, a solder such as Pb-free solder containing Sn as a main component can be suitably used. As the high melting point metal, Cu or Ag or an alloy containing these as a main component can be used. It can be used suitably.
 高融点金属の表面に低融点金属層を設けることにより、スイッチ素子5をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、第1~第6の外部接続端子11a~14a,15a,15aとして溶融することを防止することができる。また、第1~第6の外部接続端子11a~14a,15a,15aは、外層を構成する低融点金属を用いて、第1~第4の電極11~14や発熱導体15へ接続することができる。 By providing the low melting point metal layer on the surface of the high melting point metal, even when the reflow temperature exceeds the melting temperature of the low melting point metal layer when the switch element 5 is reflow mounted, It is possible to prevent the sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 from melting. The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are connected to the first to fourth electrodes 11 to 14 and the heating conductor 15 by using a low melting point metal constituting the outer layer. be able to.
 第1~第6の外部接続端子11a~14a,15a,15aは、高融点金属に低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。 The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 can be formed by forming a low melting point metal on a high melting point metal by using a plating technique, and other well-known laminated layers. It can also be formed by using a technique or a film forming technique.
 なお、第1~第6の外部接続端子11a~14a,15a,15aは、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。 The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are formed by applying a conductive plating layer or a conductive paste in addition to using metal bumps or metal posts. Alternatively, the conductive layer may be formed.
 また、第1~第6の外部接続端子11a~14a,15a,15aは、スイッチ素子5が実装される基板等の実装対象物側に予め設け、短絡素子が実装された実装体において、第1~第4の電極11~14や発熱導体15と接続されるようにしてもよい。 Further, the first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 are provided in advance on the mounting object side such as a substrate on which the switch element 5 is mounted, and in the mounting body on which the short-circuit element is mounted, It may be connected to the first to fourth electrodes 11 to 14 and the heat generating conductor 15.
 また、上述したスイッチ素子1においても、スイッチ素子5と同様に、絶縁基板10の第1~第4の電極11~14及び発熱導体15が形成された表面10a上に、外部回路との接続端子となる第1~第6の外部接続端子11a~14a,15a,15aを設けてもよい。 Also in the switch element 1 described above, similarly to the switch element 5, a connection terminal for an external circuit is formed on the surface 10a of the insulating substrate 10 on which the first to fourth electrodes 11 to 14 and the heating conductor 15 are formed. The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be provided.
 [変形例1]
 なお、本発明が適用されたスイッチ素子は、絶縁基板10の表面10a上において、発熱導体上に絶縁層を介して、第1の電極11及び/又は第2の電極12と、第3の電極13又は第3の電極13及び第4の電極14とを重畳させるとともに、第1及び第2の可溶導体21,22、又は第1~第3の可溶導体21~23を重畳させてもよい。なお、以下の説明において、上述したスイッチ素子1と同様の構成については、同じ符号を付してその詳細を省略する。このスイッチ素子40は、図10に示すように、絶縁基板10の表面10aの相対向する側縁10d,10e間にわたって発熱導体15が形成される。また、スイッチ素子40は、第1、第2の電極11,12、及び第3、第4の電極13,14がそれぞれ絶縁基板10の表面10aの相対向する側縁10b,10cに形成される。
[Modification 1]
Note that the switch element to which the present invention is applied includes the first electrode 11 and / or the second electrode 12 and the third electrode on the surface 10a of the insulating substrate 10 via the insulating layer on the heating conductor. 13 or the third electrode 13 and the fourth electrode 14 may be overlapped, and the first and second soluble conductors 21 and 22 or the first to third soluble conductors 21 to 23 may be overlapped. Good. In the following description, the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. As shown in FIG. 10, in the switch element 40, a heat generating conductor 15 is formed between the opposite side edges 10d and 10e of the surface 10a of the insulating substrate 10. In the switch element 40, the first and second electrodes 11 and 12 and the third and fourth electrodes 13 and 14 are formed on opposite side edges 10 b and 10 c of the surface 10 a of the insulating substrate 10, respectively. .
 発熱導体15は、絶縁基板10の略中央部において第1の絶縁層41によって被覆されている。また、発熱導体15は、絶縁基板10の側縁10d,10eに、それぞれ第5、第6の外部接続端子15a,15aが形成されている。また、発熱導体15は、中間部が両端部よりも細く形成されることにより高温に発熱する発熱部15bが形成されている。発熱部15bは、第1の電極11の先端部11b及び/又は第2の電極12の先端部12bと重畳され、当該先端部11b,12b間にわたって搭載されている第1の可溶導体21を効率よく加熱することができる。同様に、発熱部15bは、第3の電極13の先端部13bと重畳され、先端部13bに搭載されている第2の可溶導体22を効率よく加熱することができる。なお、発熱部15bは、第4の電極14の先端部14bとも重畳することにより、先端部14bに搭載されている第3の可溶導体23を効率よく加熱することができる。 The heat generating conductor 15 is covered with a first insulating layer 41 at a substantially central portion of the insulating substrate 10. The heating conductor 15 has fifth and sixth external connection terminals 15a 1 and 15a 2 formed on the side edges 10d and 10e of the insulating substrate 10, respectively. Further, the heat generating conductor 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion narrower than both end portions. The heat generating portion 15b overlaps with the tip portion 11b of the first electrode 11 and / or the tip portion 12b of the second electrode 12, and the first soluble conductor 21 mounted between the tip portions 11b and 12b. It can be heated efficiently. Similarly, the heat generating portion 15b is superposed on the tip portion 13b of the third electrode 13, and can efficiently heat the second soluble conductor 22 mounted on the tip portion 13b. The heat generating portion 15b can also efficiently heat the third soluble conductor 23 mounted on the tip portion 14b by overlapping with the tip portion 14b of the fourth electrode 14.
 第1、第2の電極11,12は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子11a,12aが形成されている。また、第1、第2の電極11,12は、側縁10b,10cから第1の絶縁層41の上面にわたって形成され、第1の絶縁層41の上面において互いの先端部11b,12bが近接されるとともに離間することにより、開放されている。また、第1、第2の電極11,12は、先端部11b,12bを除き、第2の絶縁層42によって被覆されている。 The first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. The first and second electrodes 11 and 12 are formed from the side edges 10 b and 10 c to the upper surface of the first insulating layer 41, and the tip portions 11 b and 12 b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated. The first and second electrodes 11 and 12 are covered with a second insulating layer 42 except for the tip portions 11b and 12b.
 第1、第2の電極11,12は、先端部11b,12bに接続用ハンダが設けられ、この接続用ハンダによって先端部11b,12b間に跨って第1の可溶導体21が搭載されている。また、スイッチ素子40は、第1、第2の電極11,12の一方、例えば図7に示すように、相対的に広面積に形成されている第1の電極11の先端部11b、及び先端部11bに搭載されている第1の可溶導体21の一部が、発熱導体15の発熱部15bに重畳されている。なお、第1の可溶導体21上には、酸化防止、濡れ性の向上等のため、表面上の一部又は全部に、フラックス28が塗布されている。 The first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b, and the first soluble conductor 21 is mounted across the tip portions 11b and 12b by the connecting solder. Yes. In addition, the switch element 40 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. A part of the first fusible conductor 21 mounted on the part 11 b is superimposed on the heat generating part 15 b of the heat generating conductor 15. On the first soluble conductor 21, a flux 28 is applied to a part or all of the surface for preventing oxidation and improving wettability.
 第3、第4の電極13,14は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子13a,14aが形成されている。また、第3、第4の電極13,14は、側縁10b,10cから第1の絶縁層41の上面にわたって形成され、第1の絶縁層41の上面において互いの先端部13b,14bが近接されるとともに離間することにより、開放されている。また、第3、第4の電極13,14は、先端部13b,14bを除き、第2の絶縁層42によって被覆されている。 The third and fourth electrodes 13 and 14 have external connection terminals 13a and 14a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. The third and fourth electrodes 13 and 14 are formed from the side edges 10b and 10c to the upper surface of the first insulating layer 41, and the tip portions 13b and 14b are close to each other on the upper surface of the first insulating layer 41. And opened by being separated. The third and fourth electrodes 13 and 14 are covered with the second insulating layer 42 except for the tip portions 13b and 14b.
 第2の絶縁層42には、一部に開口部42aが形成されている。そして、第3、第4の電極13,14は、先端部13b,14b及び開口部42aから外方に露出された支持部17に接続用ハンダが設けられ、この接続用ハンダによって先端部13b,14bと支持部17との間にわたって、第2の絶縁層42上に第2、第3の可溶導体22,23を支持している。これにより、第3の電極13の先端部13b及び第2の可溶導体22、又は第3、第4の電極13,14の先端部13b,14b及び第2、第3の可溶導体22,23は、少なくとも一部が発熱導体15の発熱部15bと重畳されている。なお、第2、第3の可溶導体22,23上には、酸化防止、濡れ性の向上等のため、表面上の一部又は全部に、フラックス28が塗布されている。 In the second insulating layer 42, an opening 42a is partially formed. The third and fourth electrodes 13 and 14 are provided with connecting solder on the support portion 17 exposed outward from the tip end portions 13b and 14b and the opening 42a. The second and third fusible conductors 22 and 23 are supported on the second insulating layer 42 between 14 b and the support portion 17. Thereby, the front-end | tip part 13b of the 3rd electrode 13, and the 2nd soluble conductor 22, or the front-end | tip parts 13b, 14b of the 3rd, 4th electrodes 13 and 14, and the 2nd, 3rd soluble conductor 22, 23 is at least partially overlapped with the heat generating portion 15 b of the heat generating conductor 15. On the second and third soluble conductors 22 and 23, a flux 28 is applied to a part or all of the surface for preventing oxidation, improving wettability, and the like.
 第1、第2の絶縁層41,42は、上述したスイッチ素子1の絶縁層16と同様に、ガラス等の絶縁材料を好適に用いることができる。 As the first and second insulating layers 41 and 42, an insulating material such as glass can be suitably used, as with the insulating layer 16 of the switch element 1 described above.
 このようなスイッチ素子40によれば、発熱導体15の発熱部15bに重畳して、第1の電極11の先端部11b及び第1の可溶導体21が配置されているため、発熱部15bの発熱により速やかに第1の可溶導体21を溶融させ、第1、第2の電極11,12間を遮断させることができる。このとき、スイッチ素子40は、ガラス等からなる第1の絶縁層41を介して、発熱部15bと第1の電極11及び第1の可溶導体21とが連続的に積層されているため、発熱部15bの熱を効率よく伝えることができる。 According to such a switch element 40, since the front end portion 11b of the first electrode 11 and the first fusible conductor 21 are arranged so as to overlap the heat generating portion 15b of the heat generating conductor 15, the heat generating portion 15b The first soluble conductor 21 can be quickly melted by heat generation, and the first and second electrodes 11 and 12 can be blocked. At this time, the switch element 40 has the heat generating portion 15b, the first electrode 11, and the first soluble conductor 21 continuously laminated via the first insulating layer 41 made of glass or the like. The heat of the heat generating part 15b can be transmitted efficiently.
 また、スイッチ素子40によれば、発熱導体15の発熱部15bに重畳して、第3の電極13及び第2の可溶導体22、又は第3、第4の電極13,14及び第2、第3の可溶導体22,23が配置されているため、発熱部15bの発熱により速やかに第2の可溶導体22又は第2、第3の可溶導体22,23を溶融させ、第3、第4の電極13,14を短絡させることができる。このとき、スイッチ素子40は、ガラス等からなる第1、第2の絶縁層41,42を介して、発熱部15bと第3、第4の電極13,14及び第2、第3の可溶導体22,23とが連続的に積層されているため、発熱部15bの熱を効率よく伝導させることができる。 Further, according to the switch element 40, the third electrode 13 and the second fusible conductor 22, or the third and fourth electrodes 13 and 14, the second, Since the third fusible conductors 22 and 23 are disposed, the second fusible conductor 22 or the second and third fusible conductors 22 and 23 are quickly melted by the heat generated by the heat generating portion 15b, and the third The fourth electrodes 13 and 14 can be short-circuited. At this time, the switch element 40 has the heat generating portion 15b, the third and fourth electrodes 13, 14 and the second and third fusible elements through the first and second insulating layers 41 and 42 made of glass or the like. Since the conductors 22 and 23 are continuously laminated, the heat of the heat generating portion 15b can be efficiently conducted.
 なお、スイッチ素子40においても、スイッチ素子5と同様に、第4の電極14上に第3の可溶導体23を設けず、第2の可溶導体22を第3の電極13から第4の電極14側に突出して支持してもよい。また、スイッチ素子40においても、スイッチ素子5と同様に、絶縁基板10の第1~第4の電極11~14及び発熱導体15が形成された表面10a上に、外部回路との接続端子となる第1~第6の外部接続端子11a~14a,15a,15aを設けてもよい。 In the switch element 40 as well as the switch element 5, the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the fourth electrode 13 from the third electrode 13. You may support by protruding to the electrode 14 side. Also in the switch element 40, similarly to the switch element 5, it becomes a connection terminal for an external circuit on the surface 10 a on which the first to fourth electrodes 11 to 14 and the heat generating conductor 15 of the insulating substrate 10 are formed. The first to sixth external connection terminals 11a to 14a, 15a 1 and 15a 2 may be provided.
 [変形例2]
 また、本発明が適用されたスイッチ素子は、絶縁基板10の表面10aに第1~第4の電極を形成し、絶縁基板の裏面に高融点金属体を形成することにより、高融点金属体上に、第1の電極11及び/又は第2の電極12と、第3の電極13又は第3の電極13及び第4の電極14とを重畳させるとともに、第1及び第2の可溶導体21,22又は第1~第3の可溶導体21~23を重畳させてもよい。なお、以下の説明において、上述したスイッチ素子1と同様の構成については、同じ符号を付してその詳細を省略する。このスイッチ素子50は、図11に示すように、絶縁基板10の裏面10fの相対向する側縁10d,10e間にわたって発熱導体15が形成される。また、スイッチ素子50は、第1、第2の電極11,12、及び第3、第4の電極13,14がそれぞれ絶縁基板10の表面10aの相対向する側縁10b,10cに形成されている。
[Modification 2]
In addition, the switch element to which the present invention is applied is formed on the refractory metal body by forming the first to fourth electrodes on the surface 10a of the insulating substrate 10 and forming the refractory metal body on the back surface of the insulating substrate. The first electrode 11 and / or the second electrode 12 and the third electrode 13 or the third electrode 13 and the fourth electrode 14 are superimposed on each other, and the first and second soluble conductors 21 , 22 or the first to third fusible conductors 21 to 23 may be overlapped. In the following description, the same components as those of the above-described switch element 1 are denoted by the same reference numerals and the details thereof are omitted. As shown in FIG. 11, in the switch element 50, the heat generating conductor 15 is formed between the opposing side edges 10d and 10e of the back surface 10f of the insulating substrate 10. The switch element 50 includes first and second electrodes 11 and 12 and third and fourth electrodes 13 and 14 formed on opposite side edges 10b and 10c of the surface 10a of the insulating substrate 10, respectively. Yes.
 発熱導体15は、絶縁基板10の略中央部において第1の絶縁層51によって被覆されている。また、発熱導体15は、絶縁基板10の側縁10d,10eに、それぞれ第5、第6の外部接続端子15a,15aが形成されている。また、発熱導体15は、中間部が両端部よりも細く形成されることにより高温に発熱する発熱部15bが形成されている。発熱部15bは、第1の電極11の先端部11b及び/又は第2の電極12の先端部12bと重畳され、当該先端部11b,12b間にわたって搭載されている第1の可溶導体21を効率よく加熱することができる。同様に、発熱部15bは、第3の電極13の先端部13bと重畳され、先端部13bに搭載されている第2の可溶導体22を効率よく加熱することができる。なお、発熱部15bは、第4の電極14の先端部14bとも重畳することにより、先端部14bに搭載されている第3の可溶導体23を効率よく加熱することができる。 The heat generating conductor 15 is covered with a first insulating layer 51 at a substantially central portion of the insulating substrate 10. The heating conductor 15 has fifth and sixth external connection terminals 15a 1 and 15a 2 formed on the side edges 10d and 10e of the insulating substrate 10, respectively. Further, the heat generating conductor 15 is formed with a heat generating portion 15b that generates heat at a high temperature by forming an intermediate portion narrower than both end portions. The heat generating portion 15b overlaps with the tip portion 11b of the first electrode 11 and / or the tip portion 12b of the second electrode 12, and the first soluble conductor 21 mounted between the tip portions 11b and 12b. It can be heated efficiently. Similarly, the heat generating portion 15b is superposed on the tip portion 13b of the third electrode 13, and can efficiently heat the second soluble conductor 22 mounted on the tip portion 13b. The heat generating portion 15b can also efficiently heat the third soluble conductor 23 mounted on the tip portion 14b by overlapping with the tip portion 14b of the fourth electrode 14.
 第1、第2の電極11,12は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子11a,12aが形成されている。また、第1、第2の電極11,12は、側縁10b,10cから絶縁基板10の表面10aの略中央部において互いの先端部11b,12bが近接されるとともに離間することにより、開放されている。また、第1、第2の電極11,12は、先端部11b,12bを除き、第2の絶縁層52によって被覆されている。 The first and second electrodes 11 and 12 have external connection terminals 11a and 12a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. Further, the first and second electrodes 11 and 12 are opened when the front end portions 11b and 12b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing. The first and second electrodes 11 and 12 are covered with a second insulating layer 52 except for the tip portions 11b and 12b.
 第1、第2の電極11,12は、先端部11b,12bに接続用ハンダが設けられ、この接続用ハンダによって先端部11b,12b間に跨って第1の可溶導体21が搭載されている。また、スイッチ素子50は、第1、第2の電極11,12の一方、例えば図11に示すように、相対的に広面積に形成されている第1の電極11の先端部11b、及び先端部11bに搭載されている第1の可溶導体21の一部が、発熱導体15の発熱部15bに重畳されている。なお、第1の可溶導体21上には、酸化防止、濡れ性の向上等のため、表面上の一部又は全部に、フラックス28が塗布されている。 The first and second electrodes 11 and 12 are provided with connecting solder at the tip portions 11b and 12b, and the first soluble conductor 21 is mounted across the tip portions 11b and 12b by the connecting solder. Yes. In addition, the switch element 50 includes one of the first and second electrodes 11 and 12, for example, as shown in FIG. 11, a tip portion 11b of the first electrode 11 formed in a relatively large area, and a tip. A part of the first fusible conductor 21 mounted on the part 11 b is superimposed on the heat generating part 15 b of the heat generating conductor 15. On the first soluble conductor 21, a flux 28 is applied to a part or all of the surface for preventing oxidation and improving wettability.
 第3、第4の電極13,14は、絶縁基板10の側縁10b,10cに、それぞれ外部接続端子13a,14aが形成されている。また、第3、第4の電極13,14は、側縁10b,10cから絶縁基板10の表面10aの略中央部において互いの先端部13b,14bが近接されるとともに離間することにより、開放されている。また、第3、第4の電極13,14は、先端部13b,14bを除き、第2の絶縁層52によって被覆されている。 The third and fourth electrodes 13 and 14 have external connection terminals 13a and 14a formed on the side edges 10b and 10c of the insulating substrate 10, respectively. In addition, the third and fourth electrodes 13 and 14 are opened when the front end portions 13b and 14b are brought close to and separated from the side edges 10b and 10c at the substantially central portion of the surface 10a of the insulating substrate 10. ing. The third and fourth electrodes 13 and 14 are covered with the second insulating layer 52 except for the tip portions 13b and 14b.
 第2の絶縁層52には、一部に開口部52aが形成されている。そして、第3、第4の電極13,14は、先端部13b,14b及び開口部52aから外方に露出された支持部17に接続用ハンダが設けられ、この接続用ハンダによって先端部13b,14bと支持部17との間にわたって、第2の絶縁層52上に第2、第3の可溶導体22,23を支持している。これにより、第3の電極13の先端部13b及び第2の可溶導体22、又は第3、第4の電極13,14の先端部13b,14b及び第2、第3の可溶導体22,23は、少なくとも一部が発熱導体15の発熱部15bと重畳されている。なお、第2、第3の可溶導体22,23上には、酸化防止、濡れ性の向上等のため、表面上の一部又は全部に、フラックス28が塗布されている。 In the second insulating layer 52, an opening 52a is formed in part. The third and fourth electrodes 13 and 14 are provided with connecting solder on the support portion 17 exposed outward from the tip end portions 13b and 14b and the opening 52a. The second and third fusible conductors 22 and 23 are supported on the second insulating layer 52 between 14 b and the support portion 17. Thereby, the front-end | tip part 13b of the 3rd electrode 13, and the 2nd soluble conductor 22, or the front-end | tip parts 13b, 14b of the 3rd, 4th electrodes 13 and 14, and the 2nd, 3rd soluble conductor 22, 23 is at least partially overlapped with the heat generating portion 15 b of the heat generating conductor 15. On the second and third soluble conductors 22 and 23, a flux 28 is applied to a part or all of the surface for preventing oxidation, improving wettability, and the like.
 第1、第2の絶縁層51,52は、上述したスイッチ素子1の絶縁層16と同様に、ガラス等の絶縁材料を好適に用いることができる。 As for the first and second insulating layers 51 and 52, an insulating material such as glass can be suitably used, as in the case of the insulating layer 16 of the switch element 1 described above.
 このようなスイッチ素子50によれば、発熱導体15の発熱部15bに重畳して第1の電極11の先端部11b及び第1の可溶導体21が配置されているため、発熱部15bの発熱により速やかに第1の可溶導体21を溶融させ、第1、第2の電極11,12間を遮断させることができる。 According to such a switch element 50, since the tip portion 11b of the first electrode 11 and the first fusible conductor 21 are arranged so as to overlap the heat generating portion 15b of the heat generating conductor 15, the heat generation of the heat generating portion 15b. Thus, the first soluble conductor 21 can be quickly melted, and the first and second electrodes 11 and 12 can be blocked.
 また、スイッチ素子50によれば、発熱導体15の発熱部15bに重畳して、第3の電極13及び第2の可溶導体22、又は第3、第4の電極13,14及び第2、第3の可溶導体22,23が配置されているため、発熱部15bの発熱により速やかに第2の可溶導体22又は第2、第3の可溶導体22,23を溶融させ、第3、第4の電極13,14を短絡させることができる。 Further, according to the switch element 50, the third electrode 13 and the second fusible conductor 22, or the third and fourth electrodes 13 and 14, the second, Since the third fusible conductors 22 and 23 are disposed, the second fusible conductor 22 or the second and third fusible conductors 22 and 23 are quickly melted by the heat generated by the heat generating portion 15b, and the third The fourth electrodes 13 and 14 can be short-circuited.
 このとき、スイッチ素子50は、絶縁基板10として、セラミックス基板等の熱伝導性に優れたものを用いることにより、発熱導体15を第1~第3の可溶導体21~23の設けられた面と同一面に形成した場合と同等に加熱することができるため好適である。 At this time, the switch element 50 is a surface on which the heat generating conductor 15 is provided with the first to third soluble conductors 21 to 23 by using an insulating substrate 10 having excellent thermal conductivity such as a ceramic substrate. It is preferable because it can be heated in the same manner as when formed on the same surface.
 なお、スイッチ素子50においても、スイッチ素子5と同様に、第4の電極14上に第3の可溶導体23を設けず、第2の可溶導体22を第3の電極13から第4の電極14側に突出して支持してもよい。 In the switch element 50, as in the switch element 5, the third soluble conductor 23 is not provided on the fourth electrode 14, and the second soluble conductor 22 is connected to the fourth electrode 13 from the third electrode 13. You may support by protruding to the electrode 14 side.
 [可溶導体の変形例]
 上述したように、第1~第3の可溶導体21~23のいずれか又は全部は、低融点金属と高融点金属とを含有してもよい。高融点金属層60はAg、Cu又はこれらを主成分とする合金等からなり、低融点金属層61はハンダや、Snを主成分とするPbフリーハンダ等からなる。このとき、第1~第3の可溶導体21~23は、図12(A)に示すように、内層として高融点金属層60が設けられ、外層として低融点金属層61が設けられた可溶導体を用いてもよい。この場合、第1~第3の可溶導体21~23は、高融点金属層60の全面が低融点金属層61によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。高融点金属層60や低融点金属層61による被覆構造は、メッキ等の公知の成膜技術を用いて形成することができる。
[Modified example of soluble conductor]
As described above, any or all of the first to third soluble conductors 21 to 23 may contain a low melting point metal and a high melting point metal. The refractory metal layer 60 is made of Ag, Cu or an alloy containing these as a main component, and the low melting metal layer 61 is made of solder, Pb-free solder containing Sn as a main component, or the like. At this time, as shown in FIG. 12A, the first to third fusible conductors 21 to 23 may be provided with a high melting point metal layer 60 as an inner layer and a low melting point metal layer 61 as an outer layer. A molten conductor may be used. In this case, the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the high melting point metal layer 60 is covered with the low melting point metal layer 61 and is covered except for a pair of opposite side surfaces. It may be a structure. The covering structure with the high melting point metal layer 60 and the low melting point metal layer 61 can be formed using a known film forming technique such as plating.
 また、図12(B)に示すように、第1~第3の可溶導体21~23は、内層として低融点金属層61が設けられ、外層として高融点金属層60が設けられた可溶導体を用いてもよい。この場合も、第1~第3の可溶導体21~23は、低融点金属層61の全面が高融点金属層60によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。 Further, as shown in FIG. 12B, the first to third soluble conductors 21 to 23 are soluble in which a low melting point metal layer 61 is provided as an inner layer and a high melting point metal layer 60 is provided as an outer layer. A conductor may be used. Also in this case, the first to third fusible conductors 21 to 23 may have a structure in which the entire surface of the low melting point metal layer 61 is covered with the high melting point metal layer 60, and is covered except for a pair of opposing side surfaces. The structure may be different.
 また、第1~第3の可溶導体21~23は、図13に示すように、高融点金属層60と低融点金属層61とが積層された積層構造としてもよい。 Further, the first to third fusible conductors 21 to 23 may have a laminated structure in which a high melting point metal layer 60 and a low melting point metal layer 61 are laminated as shown in FIG.
 この場合、第1~第3の可溶導体21~23は、図13(A)に示すように、第1~第4の電極11~14に支持される下層と、下層の上に積層される上層からなる2層構造として形成され、下層となる低融点金属層61の上面に上層となる高融点金属層60を積層してもよく、反対に下層となる高融点金属層60の上面に上層となる低融点金属層61を積層してもよい。あるいは、第1~第3の可溶導体21~23は、図13(B)に示すように、内層と内層の上下面に積層される外層とからなる3層構造として形成してもよく、内層となる低融点金属層61の上下面に外層となる高融点金属層60を積層してもよく、反対に内層となる高融点金属層60の上下面に外層となる低融点金属層61を積層してもよい。 In this case, the first to third fusible conductors 21 to 23 are laminated on the lower layer supported by the first to fourth electrodes 11 to 14 and on the lower layer, as shown in FIG. The upper refractory metal layer 60 may be laminated on the upper surface of the lower melting point metal layer 61, or the upper layer of the refractory metal layer 60 serving as the lower layer. A low melting point metal layer 61 as an upper layer may be laminated. Alternatively, as shown in FIG. 13B, the first to third soluble conductors 21 to 23 may be formed as a three-layer structure including an inner layer and an outer layer stacked on the upper and lower surfaces of the inner layer. The refractory metal layer 60 serving as the outer layer may be laminated on the upper and lower surfaces of the low melting point metal layer 61 serving as the inner layer, and the low melting point metal layer 61 serving as the outer layer may be disposed on the upper and lower surfaces of the refractory metal layer 60 serving as the inner layer. You may laminate.
 また、第1~第3の可溶導体21~23は、図14に示すように、高融点金属層60と低融点金属層61とが交互に積層された4層以上の多層構造としてもよい。この場合、第1~第3の可溶導体21~23は、最外層を構成する金属層によって、全面又は相対向する一対の側面を除き被覆された構造としてもよい。 Further, as shown in FIG. 14, the first to third soluble conductors 21 to 23 may have a multilayer structure of four or more layers in which high melting point metal layers 60 and low melting point metal layers 61 are alternately laminated. . In this case, the first to third fusible conductors 21 to 23 may be structured so as to be covered with the metal layer constituting the outermost layer except for the entire surface or a pair of opposite side surfaces.
 また、第1~第3の可溶導体21~23は、内層を構成する低融点金属層61の表面に高融点金属層60をストライプ状に部分的に積層させてもよい。図15は、第1~第3の可溶導体21~23の平面図である。 In the first to third soluble conductors 21 to 23, the refractory metal layer 60 may be partially laminated in a stripe shape on the surface of the low melting point metal layer 61 constituting the inner layer. FIG. 15 is a plan view of the first to third fusible conductors 21 to 23.
 図15(A)に示す第1~第3の可溶導体21~23は、低融点金属層61の表面に、幅方向に所定間隔で、線状の高融点金属層60が長手方向に複数形成されることにより、長手方向に沿って線状の開口部62が形成され、この開口部62から低融点金属層61が露出されている。第1~第3の可溶導体21~23は、低融点金属層61が開口部62より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属層60の溶食作用をより促進させて溶断性を向上させることができる。開口部62は、例えば、低融点金属層61に高融点金属層60を構成する金属の部分メッキを施すことにより形成することができる。 The first to third fusible conductors 21 to 23 shown in FIG. 15A have a plurality of linear refractory metal layers 60 in the longitudinal direction on the surface of the low melting point metal layer 61 at predetermined intervals in the width direction. By being formed, a linear opening 62 is formed along the longitudinal direction, and the low melting point metal layer 61 is exposed from the opening 62. In the first to third fusible conductors 21 to 23, the low melting point metal layer 61 is exposed from the opening 62, thereby increasing the contact area between the molten low melting point metal and the high melting point metal. It is possible to further improve the fusing property by further promoting the erosion action of. The opening 62 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
 また、第1~第3の可溶導体21~23は、図15(B)に示すように、低融点金属層61の表面に、長手方向に所定間隔で、線状の高融点金属層60を幅方向に複数形成することにより、幅方向に沿って線状の開口部62を形成してもよい。 Further, as shown in FIG. 15B, the first to third soluble conductors 21 to 23 are formed on the surface of the low melting point metal layer 61 at a predetermined interval in the longitudinal direction at the linear refractory metal layer 60. By forming a plurality of holes in the width direction, the linear openings 62 may be formed along the width direction.
 また、第1~第3の可溶導体21~23は、図16に示すように、低融点金属層61の表面に高融点金属層60を形成するとともに、高融点金属層60の全面に亘って円形状又は矩形状の開口部63が形成され、この開口部63から低融点金属層61を露出させてもよい。開口部63は、例えば、低融点金属層61に高融点金属層60を構成する金属の部分メッキを施すことにより形成することができる。 Further, as shown in FIG. 16, the first to third fusible conductors 21 to 23 form a refractory metal layer 60 on the surface of the low melting point metal layer 61 and extend over the entire surface of the refractory metal layer 60. Alternatively, a circular or rectangular opening 63 may be formed, and the low melting point metal layer 61 may be exposed from the opening 63. The opening 63 can be formed, for example, by subjecting the low melting point metal layer 61 to partial plating of a metal constituting the high melting point metal layer 60.
 第1~第3の可溶導体21~23は、低融点金属層61が開口部63より露出することにより、溶融した低融点金属と高融点金属との接触面積が増え、高融点金属の溶食作用をより促進させて溶断性を向上させることができる。 In the first to third fusible conductors 21 to 23, when the low melting point metal layer 61 is exposed from the opening 63, the contact area between the molten low melting point metal and the high melting point metal increases, and the melting point of the high melting point metal is increased. The phagocytosis can be further promoted to improve the fusing property.
 また、第1~第3の可溶導体21~23は、図17に示すように、内層となる高融点金属層60に多数の開口部64を形成し、この高融点金属層60に、メッキ技術等を用いて低融点金属層61を成膜し、開口部64内に充填してもよい。これにより、第1~第3の可溶導体21~23は、溶融する低融点金属が高融点金属に接する面積が増大するので、より短時間で低融点金属が高融点金属を溶食することができるようになる。 In addition, as shown in FIG. 17, the first to third soluble conductors 21 to 23 are formed with a large number of openings 64 in the refractory metal layer 60 serving as the inner layer, and the refractory metal layer 60 is plated. The low melting point metal layer 61 may be formed using a technique or the like and filled in the opening 64. Thereby, in the first to third soluble conductors 21 to 23, the area where the low-melting-point metal that is melted contacts the high-melting-point metal increases. Will be able to.
 また、第1~第3の可溶導体21~23は、低融点金属層61の体積を、高融点金属層60の体積よりも多く形成することが好ましい。第1~第3の可溶導体21~23は、発熱導体15によって加熱されることにより、低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、第1~第3の可溶導体21~23は、低融点金属層61の体積を、高融点金属層60の体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の電極11,12間の遮断、及び第3、第4の電極13,14間の短絡を行うことができる。 The first to third soluble conductors 21 to 23 are preferably formed such that the volume of the low melting point metal layer 61 is larger than the volume of the high melting point metal layer 60. The first to third fusible conductors 21 to 23 are heated by the heat generating conductor 15 to melt the low melting point metal and thereby melt the high melting point metal, thereby quickly melting and fusing. . Therefore, the first to third soluble conductors 21 to 23 promote this corrosion action by forming the volume of the low melting point metal layer 61 larger than the volume of the high melting point metal layer 60, and promptly. Blocking between the first and second electrodes 11 and 12 and short-circuiting between the third and fourth electrodes 13 and 14 can be performed.
1,40,50 スイッチ素子、10 絶縁基板、10a 表面、10f 裏面、11 第1の電極、12 第2の電極、13 第3の電極、14 第4の電極、15 発熱導体、16 絶縁層、18 第1の接続部、19 第2の接続部、20 カバー部材、21 第1の可溶導体、22 第2の可溶導体、23 第3の可溶導体、24 側壁、25 天面部、26 第1のカバー部電極、27 第2のカバー部電極、28 フラックス、30 警報回路、31 第1の警報器、32 第2の警報器、33 第1のヒューズ、34 制御回路、35 第2のヒューズ、36 第1の作動回路、37 第2の作動回路、41 第1の絶縁層、42 第2の絶縁層 1, 40, 50 switch element, 10 insulating substrate, 10a front surface, 10f back surface, 11 first electrode, 12 second electrode, 13 third electrode, 14 fourth electrode, 15 heating conductor, 16 insulating layer, 18 1st connection part, 19 2nd connection part, 20 Cover member, 21 1st soluble conductor, 22 2nd soluble conductor, 23 3rd soluble conductor, 24 Side wall, 25 Top surface part, 26 1st cover part electrode, 27 2nd cover part electrode, 28 flux, 30 alarm circuit, 31 1st alarm device, 32 2nd alarm device, 33 1st fuse, 34 control circuit, 35 2nd Fuse, 36 first operating circuit, 37 second operating circuit, 41 first insulating layer, 42 second insulating layer

Claims (45)

  1.  第1、第2の電極と、
     上記第1、第2の電極間に跨って接続された第1の可溶導体と、
     近接して配置された第3、第4の電極と、
     上記第3の電極上に搭載された第2の可溶導体と、
     上記第1、第2の可溶導体よりも融点の高い発熱導体とを有し、
     上記発熱導体に定格電流以上の過電流が流れることに伴う発熱により、上記第1の可溶導体を溶断し上記第1、第2の電極間を遮断し、上記第2の可溶導体を溶融し上記第3、第4の電極間を短絡するスイッチ素子。
    First and second electrodes;
    A first soluble conductor connected across the first and second electrodes;
    Third and fourth electrodes arranged in close proximity;
    A second soluble conductor mounted on the third electrode;
    A heating conductor having a higher melting point than the first and second soluble conductors,
    The first fusible conductor is melted and the first and second electrodes are cut off by melting the second fusible conductor due to heat generated when an overcurrent exceeding the rated current flows through the heating conductor. And a switch element for short-circuiting the third and fourth electrodes.
  2.  上記発熱導体は、高融点金属からなり、上記第1、第2の電極間を遮断させた後、定格電流以上の過電流に伴う自己発熱(ジュール熱)により溶断する請求項1に記載のスイッチ素子。 2. The switch according to claim 1, wherein the heating conductor is made of a refractory metal, and is cut off by self-heating (Joule heat) accompanying overcurrent exceeding a rated current after the first and second electrodes are cut off. element.
  3.  上記第2の可溶導体が上記第3の電極から上記第4の電極側に突出して支持されている請求項1又は2に記載のスイッチ素子。 3. The switch element according to claim 1, wherein the second soluble conductor is supported by protruding from the third electrode toward the fourth electrode.
  4.  上記第4の電極上に第3の可溶導体が搭載されている請求項1又は2に記載のスイッチ素子。 The switch element according to claim 1 or 2, wherein a third soluble conductor is mounted on the fourth electrode.
  5.  上記発熱導体及び上記第1~第4の電極は、銀、銅、又は銀若しくは銅を主成分とする高融点金属である請求項1又は2に記載のスイッチ素子。 3. The switch element according to claim 1, wherein the heating conductor and the first to fourth electrodes are made of silver, copper, or a refractory metal mainly composed of silver or copper.
  6.  上記発熱導体及び上記第1~第4の電極は、絶縁基板の面上に設けられている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the heating conductor and the first to fourth electrodes are provided on a surface of an insulating substrate.
  7.  上記発熱導体及び上記第1~第4の電極は、絶縁基板の面上に積層された電極パターンである請求項6に記載のスイッチ素子。 The switch element according to claim 6, wherein the heating conductor and the first to fourth electrodes are electrode patterns laminated on a surface of an insulating substrate.
  8.  上記発熱導体は、上記第1、第2の可溶導体に近接する位置が相対的に細くなり、電流が集中することにより局部的に高温に発熱する発熱部が形成されている請求項1又は2に記載のスイッチ素子。 2. The heat generating conductor is formed such that a position close to the first and second fusible conductors is relatively thin, and a heat generating portion that generates heat locally is formed by current concentration. 2. The switch element according to 2.
  9.  上記第1又は第2の電極の上記第1の可溶導体が搭載されている先端部の一方と、上記発熱部とが近接されている請求項8に記載のスイッチ素子。 The switch element according to claim 8, wherein one of the tip portions of the first or second electrode on which the first soluble conductor is mounted and the heat generating portion are close to each other.
  10.  先端部が上記発熱部と近接されている上記第1又は第2の電極の一方と、上記発熱部の近傍とが接続されている請求項9に記載のスイッチ素子。 10. The switch element according to claim 9, wherein one of the first and second electrodes whose tip is close to the heat generating part is connected to the vicinity of the heat generating part.
  11.  上記第1又は第2の電極の上記第1の可溶導体が搭載されている先端部のうち、上記発熱部と近接する一方の面積が他方の面積よりも広い請求項9記載のスイッチ素子。 10. The switch element according to claim 9, wherein, of the tip portions of the first or second electrode on which the first soluble conductor is mounted, one area close to the heat generating portion is wider than the other area.
  12.  上記第3の電極の上記第2の可溶導体が搭載されている先端部と上記発熱部とが近接されている請求項8記載のスイッチ素子。 The switch element according to claim 8, wherein a tip portion of the third electrode on which the second fusible conductor is mounted and the heat generating portion are close to each other.
  13.  上記第3の電極と上記発熱部の近傍とが接続されている請求項12に記載のスイッチ素子。 The switch element according to claim 12, wherein the third electrode and the vicinity of the heat generating portion are connected.
  14.  上記発熱導体が絶縁層に被覆されている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the heating conductor is covered with an insulating layer.
  15.  上記発熱導体が絶縁層の内部に形成されている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the heat generating conductor is formed inside an insulating layer.
  16.  上記第1、第2の電極は、絶縁層が積層されるとともに、上記第1の可溶導体が搭載されている先端部が外方に露出されている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the first and second electrodes are laminated with an insulating layer, and a front end portion on which the first soluble conductor is mounted is exposed to the outside.
  17.  上記第3、第4の電極は、絶縁層が積層されるとともに、相対向する先端部及び上記先端部と上記絶縁層を介して離間する支持部が外方に露出され、上記先端部及び上記支持部で上記第2の可溶導体を支持する請求項1記載のスイッチ素子。 In the third and fourth electrodes, an insulating layer is laminated, and a front end portion facing each other and a support portion that is separated from the front end portion via the insulating layer are exposed to the outside. The switch element according to claim 1, wherein the second soluble conductor is supported by a support portion.
  18.  上記絶縁層は、ガラス又はガラスを主成分とする絶縁材料からなる請求項14~17のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 14 to 17, wherein the insulating layer is made of glass or an insulating material containing glass as a main component.
  19.  上記発熱導体は、Ag、Cu、W,Mo、Ru、ニクロム若しくはこれらを含む材料からなるパターン又は実装体である請求項1又は2に記載のスイッチ素子。 3. The switch element according to claim 1, wherein the heating conductor is a pattern or a mounting body made of Ag, Cu, W, Mo, Ru, nichrome, or a material containing these.
  20.  上記第1~第4の電極と上記発熱導体とが、上記絶縁基板の同一面に形成され、上記発熱導体の一方の側に上記第1、第2の電極が配置され、上記発熱導体の他方の側に上記第3、第4の電極が配置されている請求項6に記載のスイッチ素子。 The first to fourth electrodes and the heat generating conductor are formed on the same surface of the insulating substrate, the first and second electrodes are disposed on one side of the heat generating conductor, and the other of the heat generating conductors The switch element according to claim 6, wherein the third and fourth electrodes are arranged on the side of the switch.
  21.  上記絶縁基板の一方の面において、上記第1、第2の電極間に搭載されている上記第1の可溶導体と、上記第3の電極に支持されている上記第2の可溶導体とが、上記発熱導体上に、絶縁層を介して重畳されている請求項6に記載のスイッチ素子。 On one surface of the insulating substrate, the first soluble conductor mounted between the first and second electrodes, and the second soluble conductor supported by the third electrode; Is overlaid on the heating conductor via an insulating layer.
  22.  上記絶縁基板の一方の面に上記第1~4の電極が配置され、上記絶縁基板の他方の面に上記発熱導体が配置され、
     上記発熱導体が、上記第1又は第2の電極の一方及び当該一方の電極に搭載されている上記第1の可溶導体と、上記第3の電極及び上記第3の電極に搭載されている上記第2の可溶導体とに、上記絶縁基板を介して重畳されている請求項6に記載のスイッチ素子。
    The first to fourth electrodes are disposed on one surface of the insulating substrate, and the heating conductor is disposed on the other surface of the insulating substrate.
    The heating conductor is mounted on one of the first or second electrode and the first soluble conductor mounted on the one electrode, and the third electrode and the third electrode. The switch element according to claim 6, wherein the switch element is superimposed on the second soluble conductor via the insulating substrate.
  23.  上記絶縁基板は、セラミックス基板である請求項6、7、20~22のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 6, 7, and 20 to 22, wherein the insulating substrate is a ceramic substrate.
  24.  上記第1、第2の可溶導体は、ハンダである請求項1又は2に記載のスイッチ素子。 3. The switch element according to claim 1, wherein the first and second soluble conductors are solder.
  25.  上記第1、第2の可溶導体は、低融点金属と高融点金属とを含有し、
     上記低融点金属が上記発熱導体の発熱により溶融し、上記高融点金属を溶食する請求項1記載のスイッチ素子。
    The first and second soluble conductors contain a low melting point metal and a high melting point metal,
    The switch element according to claim 1, wherein the low-melting-point metal is melted by the heat generated by the heat-generating conductor and erodes the high-melting-point metal.
  26.  上記低融点金属はハンダであり、
     上記高融点金属は、Ag、Cu又はAg若しくはCuを主成分とする合金である請求項25記載のスイッチ素子。
    The low melting point metal is solder,
    26. The switch element according to claim 25, wherein the refractory metal is Ag, Cu, or an alloy mainly composed of Ag or Cu.
  27.  上記第1、第2の可溶導体は、内層が高融点金属であり、外層が低融点金属の被覆構造である請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein the first and second soluble conductors have a coating structure in which an inner layer is a high melting point metal and an outer layer is a low melting point metal.
  28.  上記第1、第2の可溶導体は、内層が低融点金属であり、外層が高融点金属の被覆構造である請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein the first and second soluble conductors have a coating structure in which an inner layer is a low melting point metal and an outer layer is a high melting point metal.
  29.  上記第1、第2の可溶導体は、低融点金属と、高融点金属とが積層された積層構造である請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein the first and second soluble conductors have a laminated structure in which a low melting point metal and a high melting point metal are laminated.
  30.  上記第1、第2の可溶導体は、低融点金属と、高融点金属とが交互に積層された4層以上の多層構造である請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25, wherein the first and second soluble conductors have a multilayer structure of four or more layers in which a low melting point metal and a high melting point metal are alternately laminated.
  31.  上記第1、第2の可溶導体は、内層を構成する低融点金属の表面に形成された高融点金属に、開口部が設けられている請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein the first and second soluble conductors are provided with openings in a high melting point metal formed on a surface of a low melting point metal constituting the inner layer.
  32.  上記第1、第2の可溶導体は、多数の開口部を有する高融点金属層と、上記高融点金属層上に形成された低融点金属層とを有し、上記開口部に低融点金属が充填されている請求項25又は26に記載のスイッチ素子。 The first and second soluble conductors have a high melting point metal layer having a large number of openings and a low melting point metal layer formed on the high melting point metal layer, and the low melting point metal is formed in the openings. 27. The switch element according to claim 25 or 26, wherein:
  33.  上記第1、第2の可溶導体は、低融点金属の体積が、高融点金属の体積よりも多い請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein the first and second soluble conductors have a volume of a low melting point metal larger than a volume of a high melting point metal.
  34.  上記第1、第2の可溶導体の表面上の一部又は全部にフラックスがコーティングされている請求項25又は26に記載のスイッチ素子。 27. The switch element according to claim 25 or 26, wherein a flux is coated on a part or all of the surfaces of the first and second soluble conductors.
  35.  上記第1~第4の電極表面に、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキのいずれかが被覆されている請求項1、2、6、7、14~17、20~22、25、26のいずれか1項に記載のスイッチ素子。 The surface of the first to fourth electrodes is coated with any one of Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating. 27. The switch element according to any one of -22, 25, and 26.
  36.  上記絶縁基板上に設けられ、内部を保護するカバー部材を備え、
     上記カバー部材は、上記第1及び第2の電極のいずれか一方と重畳する位置に、第1のカバー部電極が設けられている請求項6、7、20~22のいずれか1項に記載のスイッチ素子。
    A cover member provided on the insulating substrate for protecting the inside;
    23. The cover member according to claim 6, wherein a first cover part electrode is provided at a position overlapping with any one of the first and second electrodes. Switch element.
  37.  上記絶縁基板上に設けられ、内部を保護するカバー部材を備え、
     上記カバー部材は、上記第3及び第4の電極の各先端部間に亘って重畳する位置に、第2のカバー部電極が設けられている請求項6、7、20~22のいずれか1項に記載のスイッチ素子。
    A cover member provided on the insulating substrate for protecting the inside;
    The cover member according to any one of claims 6, 7, and 20 to 22, wherein the cover member is provided with a second cover part electrode at a position overlapping between the tip parts of the third and fourth electrodes. The switch element according to item.
  38.  上記絶縁基板の上記第1~第4の電極が配置された面上に、上記第1~第4の電極各々と連続する第1~第4の外部接続端子と上記発熱導体の両端と連続する第5及び第6の外部接続端子とを有する請求項6、7、20~22のいずれか1項に記載のスイッチ素子。 On the surface of the insulating substrate on which the first to fourth electrodes are disposed, the first to fourth external connection terminals that are continuous with the first to fourth electrodes and the ends of the heat generating conductor are continuous. The switch element according to any one of claims 6, 7, and 20 to 22, further comprising fifth and sixth external connection terminals.
  39.  第1のヒューズと、
     上記第1のヒューズよりも融点の低い材料からなる第2のヒューズと、
     上記第1のヒューズよりも融点の低い材料からなる可溶導体の溶融導体を介して短絡する開放状態のスイッチを備え、
     上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを遮断するとともに、開放状態の上記スイッチを短絡させるスイッチ回路。
    A first fuse;
    A second fuse made of a material having a melting point lower than that of the first fuse;
    A switch in an open state that short-circuits through a molten conductor of a fusible conductor made of a material having a melting point lower than that of the first fuse;
    A switch circuit that shuts off the second fuse and short-circuits the open switch due to heat generated when an overcurrent greater than or equal to a rated current flows through the first fuse.
  40.  上記第1のヒューズが、上記第2のヒューズの遮断及び上記スイッチの短絡の後、定格電流以上の過電流に伴う自己発熱(ジュール熱)により溶断する請求項39に記載のスイッチ回路。 40. The switch circuit according to claim 39, wherein the first fuse is blown by self-heating (Joule heat) accompanying overcurrent exceeding a rated current after the second fuse is cut off and the switch is short-circuited.
  41.  第1のヒューズが直列に接続された制御回路と、
     第2のヒューズと第1の警報器が直列に接続された第1の作動回路と、
     開放状態のスイッチと第2の警報器が直列に接続された第2の作動回路とを備え、
     上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを溶断させて上記第1の作動回路を遮断し上記第1の警報器を停止させるとともに、開放状態の上記スイッチを短絡させ上記第2の作動回路を開通し上記第2の警報器を作動させる警報回路。
    A control circuit having a first fuse connected in series;
    A first operating circuit in which a second fuse and a first alarm are connected in series;
    An open switch and a second operating circuit with a second alarm connected in series;
    The heat generated by the overcurrent exceeding the rated current flowing through the first fuse causes the second fuse to blow, shuts off the first operating circuit, stops the first alarm device, and opens. An alarm circuit for operating the second alarm device by short-circuiting the switch in a state to open the second operation circuit;
  42.  上記第1のヒューズが、上記第2のヒューズの溶断及び上記スイッチの短絡の後、定格電流以上の過電流に伴う自己発熱(ジュール熱)により溶断する請求項41に記載の警報回路。 42. The alarm circuit according to claim 41, wherein the first fuse is blown by self-heating (Joule heat) accompanying overcurrent exceeding a rated current after the second fuse is blown and the switch is short-circuited.
  43.  第1のヒューズが直列に接続された制御回路と、
     第2のヒューズが直列に接続された通常作動回路と、
     開放状態のスイッチに直列に接続されたバックアップ回路とを備え、
     上記第1のヒューズに定格電流以上の過電流が流れることに伴う発熱により、上記第2のヒューズを溶断させて上記通常作動回路を停止させるとともに、開放状態の上記スイッチを短絡させ上記バックアップ回路を作動させる冗長回路。
    A control circuit having a first fuse connected in series;
    A normal operating circuit with a second fuse connected in series;
    A backup circuit connected in series to the open switch,
    Due to the heat generated when overcurrent exceeding the rated current flows through the first fuse, the second fuse is blown to stop the normal operation circuit, and the open switch is short-circuited to short-circuit the backup circuit. Redundant circuit to operate.
  44.  上記第1のヒューズが、上記第2のヒューズの溶断及び上記バックアップ回路の作動後に、定格電流以上の過電流に伴う自己発熱(ジュール熱)により溶断する請求項43に記載の冗長回路。 44. The redundant circuit according to claim 43, wherein the first fuse is blown by self-heating (Joule heat) accompanying overcurrent exceeding a rated current after the second fuse is blown and the backup circuit is activated.
  45.  第1、第2の電極と、
     上記第1、第2の電極間に跨って接続された第1の可溶導体と、
     近接して配置された第3、第4の電極と、
     上記第3の電極上に搭載された第2の可溶導体と、
     上記第1、第2の可溶導体よりも融点の高い発熱導体とを有し、
     上記発熱導体に定格電流以上の過電流が流れることに伴う発熱により、上記第1の可溶導体を溶断し上記第1、第2の電極間を遮断し、上記第2の可溶導体を溶融し上記第3、第4の電極間を短絡するスイッチ方法。
    First and second electrodes;
    A first soluble conductor connected across the first and second electrodes;
    Third and fourth electrodes arranged in close proximity;
    A second soluble conductor mounted on the third electrode;
    A heating conductor having a higher melting point than the first and second soluble conductors,
    The first fusible conductor is melted and the first and second electrodes are cut off by melting the second fusible conductor due to heat generated when an overcurrent exceeding the rated current flows through the heating conductor. A switch method for short-circuiting the third and fourth electrodes.
PCT/JP2015/068310 2014-06-27 2015-06-25 Switching element, switching circuit, and alarm circuit WO2015199170A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167034238A KR102478195B1 (en) 2014-06-27 2015-06-25 Switching element, switching circuit, and alarm circuit
CN201580034210.5A CN106463313B (en) 2014-06-27 2015-06-25 Switch element, switching circuit and circuit for alarming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014132829A JP6437221B2 (en) 2014-06-27 2014-06-27 Switch element, switch circuit and alarm circuit
JP2014-132829 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015199170A1 true WO2015199170A1 (en) 2015-12-30

Family

ID=54938247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068310 WO2015199170A1 (en) 2014-06-27 2015-06-25 Switching element, switching circuit, and alarm circuit

Country Status (5)

Country Link
JP (1) JP6437221B2 (en)
KR (1) KR102478195B1 (en)
CN (1) CN106463313B (en)
TW (1) TWI670740B (en)
WO (1) WO2015199170A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201740417A (en) * 2017-07-07 2017-11-16 Pao-Hsuan Chen Switching device including an insulative housing, a plurality of terminal electrodes, a first overcurrent protection device, and a first heat generating component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245144A (en) * 1988-08-04 1990-02-15 Toray Ind Inc Laminate and manufacture thereof
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2001035331A (en) * 1999-07-19 2001-02-09 Sony Corp Switching element
JP2010003665A (en) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp Protection element and secondary battery device
JP2012216478A (en) * 2011-04-01 2012-11-08 Tamura Thermal Device Corp Thermal fuse
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073559Y2 (en) * 1989-04-17 1995-01-30 内橋エステック株式会社 Temperature sensitive switch
JP4203190B2 (en) 1999-08-31 2008-12-24 大東通信機株式会社 Fuse device
JP4110967B2 (en) * 2002-12-27 2008-07-02 ソニーケミカル&インフォメーションデバイス株式会社 Protective element
JP4899651B2 (en) * 2006-06-07 2012-03-21 ソニー株式会社 Light emitting diode lighting circuit, lighting device, and liquid crystal display device
JP5448921B2 (en) * 2010-02-25 2014-03-19 京セラ株式会社 Fuse device
JP2010165685A (en) * 2010-03-04 2010-07-29 Sony Chemical & Information Device Corp Protection element, and battery pack
US8941461B2 (en) * 2011-02-02 2015-01-27 Tyco Electronics Corporation Three-function reflowable circuit protection device
JP6249600B2 (en) * 2012-03-29 2017-12-20 デクセリアルズ株式会社 Protective element
JP5952674B2 (en) * 2012-08-01 2016-07-13 デクセリアルズ株式会社 Protective element and battery pack
KR101401141B1 (en) * 2012-11-26 2014-05-30 스마트전자 주식회사 The complex protection device of blocking the abnormal state of current and voltage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245144A (en) * 1988-08-04 1990-02-15 Toray Ind Inc Laminate and manufacture thereof
JP2000133318A (en) * 1998-08-21 2000-05-12 Sony Corp Battery pack
JP2001035331A (en) * 1999-07-19 2001-02-09 Sony Corp Switching element
JP2010003665A (en) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp Protection element and secondary battery device
JP2012216478A (en) * 2011-04-01 2012-11-08 Tamura Thermal Device Corp Thermal fuse
WO2013146889A1 (en) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 Protection element

Also Published As

Publication number Publication date
JP6437221B2 (en) 2018-12-12
CN106463313A (en) 2017-02-22
JP2016012445A (en) 2016-01-21
KR20170020338A (en) 2017-02-22
TWI670740B (en) 2019-09-01
KR102478195B1 (en) 2022-12-15
CN106463313B (en) 2019-05-14
TW201601179A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
JP6389603B2 (en) Switch element, switch circuit, and alarm circuit
JP6437262B2 (en) Mounting body manufacturing method, thermal fuse element mounting method, and thermal fuse element
WO2017163765A1 (en) Protection element
WO2017163730A1 (en) Protection element
JP6097178B2 (en) Switch circuit and switch control method using the same
TWI705468B (en) Switching element
JP6437221B2 (en) Switch element, switch circuit and alarm circuit
JP6266355B2 (en) Switch element, switch circuit, and alarm circuit
JP6615951B2 (en) Switch element, switch circuit, and alarm circuit
TWI683335B (en) Temperature short-circuit element, temperature switching element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034238

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812034

Country of ref document: EP

Kind code of ref document: A1