WO2013146781A1 - NdFeB系焼結磁石 - Google Patents

NdFeB系焼結磁石 Download PDF

Info

Publication number
WO2013146781A1
WO2013146781A1 PCT/JP2013/058777 JP2013058777W WO2013146781A1 WO 2013146781 A1 WO2013146781 A1 WO 2013146781A1 JP 2013058777 W JP2013058777 W JP 2013058777W WO 2013146781 A1 WO2013146781 A1 WO 2013146781A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndfeb
sintered magnet
based sintered
base material
magnet according
Prior art date
Application number
PCT/JP2013/058777
Other languages
English (en)
French (fr)
Inventor
眞人 佐川
尚輝 藤本
一之 紺村
徹彦 溝口
Original Assignee
インターメタリックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメタリックス株式会社 filed Critical インターメタリックス株式会社
Priority to EP13769202.6A priority Critical patent/EP2833376A4/en
Priority to US14/389,519 priority patent/US20150059525A1/en
Priority to KR1020147027684A priority patent/KR20150002638A/ko
Priority to JP2014507915A priority patent/JP6305916B2/ja
Priority to CN201380018248.4A priority patent/CN104221100B/zh
Publication of WO2013146781A1 publication Critical patent/WO2013146781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a NdFeB based sintered magnet.
  • the “NdFeB system” is not limited to those containing only Nd, Fe and B, but also includes those containing rare earth elements other than Nd and other elements such as Co, Ni, Cu, Al.
  • NdFeB-based sintered magnets were discovered by Sagawa (the present inventors) in 1982, but have high magnetic properties far surpassing conventional permanent magnets, and Nd (a kind of rare earth) It can be produced from relatively abundant and inexpensive raw materials such as iron and boron. Therefore, it is used in various products such as motor-assisted bicycle motors, industrial motors, voice coil motors such as hard disks, high-class speakers, headphones, and permanent magnet magnetic resonance diagnostic apparatuses.
  • NdFeB-based sintered magnets There are three known methods for producing NdFeB-based sintered magnets: a sintering method, a method of casting / hot working / aging treatment, and a method of die-upsetting a quenched alloy.
  • a sintering method the manufacturing method which is excellent in magnetic characteristics and productivity and has been established industrially is a sintering method.
  • the sintering method a dense and uniform fine structure required for the permanent magnet can be obtained.
  • Dy and / or Tb (hereinafter, “Dy and / or Tb” is referred to as “R H ”) by coating or vapor deposition on the surface thereof.
  • R H a NdFeB-based sintered magnet manufactured by a sintering method
  • NdFeB-based sintered magnets demand for NdFeB-based sintered magnets is expected to increase in the future, such as permanent magnets for hybrid and electric vehicle motors due to their high magnetic properties.
  • automobiles must be assumed to be used under severe loads, and their motors must also be guaranteed to operate in a high temperature environment (eg 180 ° C.).
  • a high temperature environment eg 180 ° C.
  • the magnetic force magnetization
  • a phenomenon irreversible demagnetization
  • the magnet generates heat due to the magnetic field from the armature, and the heat may cause a decrease in magnetization or irreversible demagnetization as described above.
  • the problem to be solved by the present invention is to provide an NdFeB-based sintered magnet that is less susceptible to irreversible demagnetization in a high temperature environment.
  • the NdFeB-based sintered magnet according to the present invention made to solve the above problems is Dy and / or Tb was adhered to the surface of the base material produced by orienting and sintering the NdFeB-based alloy powder in a magnetic field, and diffused to the grain boundaries inside the base material by grain boundary diffusion treatment.
  • An NdFeB-based sintered magnet having a squareness ratio of 95% or more.
  • the squareness ratio referred to here is when the magnetization value corresponding to zero magnetic field is reduced by 10% in the JH (magnetization-magnetic field) curve crossing from the first quadrant to the second quadrant.
  • This is a value defined by a value H k / H cJ obtained by dividing the absolute value H k of the magnetic field by the coercive force H cJ .
  • a reverse magnetic field is applied from the current coil to the motor permanent magnet. Irreversible demagnetization occurs when a reverse magnetic field equal to or greater than the magnetic field corresponding to the inflection point C appearing in the second quadrant of the JH curve of the magnet is applied to the magnet.
  • the higher the coercive force and the higher the squareness ratio the greater the magnetic field strength at the inflection point C. Therefore, irreversible demagnetization is less likely to occur as the coercive force and the squareness ratio increase.
  • the coercive force decreases as the magnet temperature rises, generally, the higher the coercive force and squareness ratio at room temperature (room temperature), the higher the coercive force and squareness ratio at high temperatures. Therefore, if both the coercive force and the squareness ratio at normal temperature are increased, irreversible demagnetization is less likely to occur even when the temperature of the magnet increases.
  • the coercivity of the NdFeB-based sintered magnet is increased by using the grain boundary diffusion method.
  • a high squareness ratio could not be obtained with the NdFeB sintered magnet manufactured by the conventional grain boundary diffusion method.
  • the squareness ratio of a NdFeB-based sintered magnet manufactured by a grain boundary diffusion method is 81.5-93.4%.
  • the NdFeB-based sintered magnet according to the present invention a high coercive force is obtained by the grain boundary diffusion treatment, and since it has a high squareness ratio of 95% or more, irreversible demagnetization is less likely to occur compared to conventional NdFeB-based magnets. .
  • the amount of RH added is adjusted so that the coercive force is 20 kOe or more, irreversible demagnetization does not occur even when exposed to the maximum operating temperature of 180 ° C. assumed in automobiles. Therefore, the high magnetic characteristics of the NdFeB-based sintered magnet can be exhibited as a magnet for a motor.
  • the NdFeB-based sintered magnet according to the present invention suppresses the difference in the concentration of RH in the grain boundary, and a large number of crystal grains of the Nd 2 Fe 14 B-based cubic compound constituting the NdFeB-based sintered magnet (hereinafter, This is referred to as “main phase particles”) and can be obtained so as to be uniformly covered with a grain boundary phase mainly composed of a rare earth-rich phase. The reason will be described below.
  • the grain boundary diffusion method diffuses RH only in the region very close to the grain boundary inside each main phase particle from the boundary (grain boundary) of each main phase particle constituting the NdFeB-based sintered magnet.
  • the coercive force of each main phase particle is improved while suppressing a decrease in some magnetic properties such as the maximum energy product and the residual magnetic flux density (see, for example, Patent Document 1).
  • RH does not diffuse sufficiently at grain boundaries located far (deep) from the magnet surface, and from grain boundaries close to the magnet surface and the magnet surface. There was a large difference in the concentration of RH after the grain boundary diffusion treatment between distant grain boundaries.
  • the factors that determine the squareness in the JH curve of the entire NdFeB-based sintered magnet have not yet been clarified, but if the heterogeneity of the grain boundary structure or the difference in the RH element concentration in the grain boundary phase is significant
  • the JH curve of the entire NdFeB based sintered magnet changes more gradually.
  • the squareness ratio after the grain boundary diffusion treatment of the NdFeB-based sintered magnet of Patent Document 1 remained at about 81.5-93.4% because of the nonuniformity of the grain boundary structure and the RH element concentration in the grain boundary phase. The difference is considered to be the cause.
  • the NdFeB-based sintered magnet according to the present invention is manufactured so as to keep the difference in RH concentration in the grain boundary low and to make the grain boundary structure uniform, so a high square shape of 95% or more. A ratio can be obtained.
  • a high coercive force can be obtained by the grain boundary diffusion treatment, an NdFeB-based sintered magnet that hardly causes irreversible demagnetization in a high temperature environment can be obtained.
  • the NdFeB-based sintered magnet according to the present invention has a high coercive force due to the grain boundary diffusion treatment and a high squareness ratio of 95% or more, so that irreversible demagnetization hardly occurs in a high temperature environment. Therefore, it can be suitably used as a magnet that requires high magnetic properties such as an automobile motor.
  • FIG. 2 is a schematic view showing an alloy plate (a) having a rare earth-rich phase lamella and alloy powder particles (b) obtained by pulverizing the alloy plate.
  • a graph showing changes in magnetic properties when a strip cast alloy having a lamella spacing of about 3 ⁇ m and a strip cast alloy having a lamella spacing of about 4 ⁇ m are used as starting alloys, respectively.
  • the graph which shows the change of the carbon content in a NdFeB type
  • Graph of JH curve showing the relationship between squareness ratio and inflection point.
  • NdFeB-based sintered magnets using a conventional grain boundary diffusion method For comparison, first, a method for producing a NdFeB-based sintered magnet using a conventional grain boundary diffusion method will be described with reference to the flowchart of FIG.
  • Conventional manufacturing methods of NdFeB-based sintered magnets using the grain boundary diffusion method are roughly divided into a hydrogen storage process, a dehydrogenation process, a fine grinding process, a filling process, an orientation process, a sintering process, and a grain boundary diffusion process. It is divided into two.
  • NdFeB-based alloy plate NdFeB-based alloy (starting alloy) (hereinafter referred to as “NdFeB-based alloy plate”) prepared in advance by a strip cast method or the like (step B1).
  • hydrogen is desorbed from the NdFeB alloy plate by heating the NdFeB alloy plate having occluded hydrogen to about 500 ° C. (step B2).
  • the NdFeB alloy plate is crushed into pieces of metal having a maximum width of several millimeters.
  • a lubricant is added to the metal piece thus obtained, and this is finely pulverized to a target particle size by a jet mill method or the like (step B3).
  • a lubricant mainly composed of an alkyl carboxylate such as methyl caprylate or methyl myristate is added to the fine powder obtained in the fine grinding step (hereinafter referred to as “alloy powder”),
  • the alloy powder is filled into a filling container having a shape necessary for obtaining a target dimension (step B4).
  • a magnetic field is applied to the alloy powder together with the filled container, and the particles of the alloy powder are oriented in the same direction (step B5).
  • the alloy powder is heated to about 950-1050 ° C. together with the filled container (step B6).
  • step B7 RH is attached to the predetermined surface by vapor deposition or coating, and heated to about 900 ° C. (step B7).
  • An aging treatment may be performed after the sintering process or after the grain boundary diffusion process. The aging process may be performed in multiple steps.
  • the manufacturing method of the NdFeB-based sintered magnet of this example is first a plate-like shape in the main phase 11 as shown in FIG. 2 (a) as an NdFeB-based alloy plate used in the hydrogen storage process. It is characterized by using an alloy plate 10 in which rare earth-rich phases 12 (called lamella) are dispersed almost uniformly at predetermined intervals.
  • lamella rare earth-rich phases 12
  • Such an alloy plate 10 can be produced by strip casting as described in Patent Document 2.
  • the average interval between lamellas (hereinafter referred to as “average lamella interval”) L is to adjust the rotational speed of the cooling roller used in the strip casting method and the speed at which the molten NdFeB alloy is supplied to the cooling roller. Can be controlled.
  • the NdFeB-based sintered magnet manufacturing method of the present embodiment is characterized in that the dehydrogenation step is not performed (FIG. 1 (a)). That is, in the manufacturing method of the NdFeB-based sintered magnet of the present example, after the hydrogen is occluded by the hydrogen occlusion process, the sintering process is performed without going through the dehydrogenation process by heating. Hydrogen stored in the alloy powder is desorbed by heating during the sintering process.
  • a method for producing a base material of an NdFeB-based sintered magnet without performing a dehydrogenation step is referred to as a “base material production method without dehydrogenation”.
  • a conventional method for producing a base material of an NdFeB-based sintered magnet by performing a dehydrogenation step by heating is referred to as a “base material production method with dehydrogenation”.
  • the reason for using an alloy plate in which rare earth-rich phase lamellae are dispersed almost uniformly at a predetermined interval in the hydrogen storage step is as follows. As described above, in the hydrogen storage process, hydrogen is stored in the NdFeB alloy. As a result, the NdFeB-based alloy becomes brittle. However, since the rare earth-rich phase occludes more hydrogen than the main phase, the embrittlement progresses particularly in the rare earth-rich phase lamella. Therefore, in the next fine pulverization step, fine pulverization is performed with the same size as the interval between the rare earth rich phase lamellae. As a result, an alloy powder having a substantially uniform particle size is obtained, and as shown in FIG. 2B, a part 14 of the rare earth rich phase lamella adheres to the surface of each particle 13 of the alloy powder. .
  • the size of the main phase particles in the base material obtained after the sintering step becomes uniform.
  • the size of the magnetic domain becomes uniform, and the magnetic characteristics of the sintered base material are improved.
  • the rare earth-rich phase adheres to the surface of each particle of the alloy powder, the rare earth-rich phase is uniformly dispersed at the grain boundaries in the base material.
  • Rare earth-rich phase to become a major passage of time to diffuse the R H at the grain boundary diffusion process, by the rare earth-rich phase are uniformly dispersed in the grain boundaries in the base material, is R H at the grain boundary diffusion process Diffusion from the adhesion surface to a sufficiently deep depth makes it difficult to produce a difference in RH concentration with respect to the depth direction.
  • the target value of the particle diameter of the alloy powder to be produced is set to be equal to or less than the average lamella spacing of the NdFeB alloy. This is because when the particle size of the alloy powder is set larger than the average lamella spacing of the NdFeB-based alloy, the alloy powder particles containing the rare earth-rich phase increase and disperse relatively at the grain boundaries in the sintered base material. This is because the rare earth-rich phase is reduced and the above effect cannot be obtained sufficiently.
  • the average lamella spacing of the alloy plate 10 is approximately equal to the particle size (several ⁇ m) of the alloy powder. Since there is a correlation between the thickness of the alloy plate 10 and the average lamella interval, in order to make the average lamella interval of the alloy plate 10 about several ⁇ m, the thickness of the alloy plate 10 is adjusted to be 350 ⁇ m or less on average.
  • the reason for using the base material manufacturing method without dehydrogenation is as follows.
  • a lubricant is added in the fine grinding step and the filling step.
  • the lubricant is generally organic and contains a lot of carbon.
  • carbon remaining inside the substrate forms a carbon-rich phase with a high carbon concentration in the grain boundary. This carbon-rich phase acts as a weir in diffusing RH through the grain boundary and prevents RH diffusion. This makes it difficult for RH to reach sufficiently deep from the adhesion surface.
  • the RH concentration locally increases in the vicinity of the carbon-rich phase, and the RH concentration becomes non-uniform.
  • the lubricant needs to be mixed to some extent in order to increase the fluidity of the powder.
  • the alloy powder is a hydrogen compound.
  • Hydrogen in this hydride reacts with carbon contained in the lubricant by heating during the sintering process, and is discharged as a hydrocarbon compound.
  • the concentration of carbon remaining in the substrate is lowered, and the magnetic properties of the substrate are improved.
  • a carbon-rich phase is hardly formed in the grain boundary, RH is uniformly diffused by the grain boundary diffusion treatment, and the coercivity of the main phase particles in the NdFeB-based sintered magnet after the grain boundary diffusion treatment is substantially reduced. Will be equal.
  • Oxygen and nitrogen may be mixed as impurities, but these also react with hydrogen and are discharged as a gas such as H 2 O or a hydrogen nitride compound.
  • the R H during the grain boundary diffusion process is obtained by having the above two features (rare earth rich phase lamellar alloy and base material manufacturing method without dehydrogenation). It is possible to uniformly diffuse RH from the surface on which is adhered to a sufficiently deep depth. As a result, the NdFeB-based sintered magnet manufactured by the manufacturing method of this example can obtain a squareness ratio of 95% or more as described later.
  • an NdFeB alloy having an average lamella spacing of 3.7 ⁇ m (hereinafter referred to as “3 ⁇ m lamella alloy”) is used, and a laser diffraction method is performed by a hydrogen occlusion process (step A1) and a fine grinding process (step A3).
  • An NdFeB-based alloy powder having a measured median value D 50 of 3 ⁇ m was prepared.
  • an NdFeB alloy powder having a median D 50 of particle size distribution measured by laser diffraction method of 3 ⁇ m was prepared for an NdFeB alloy having a lamellar spacing of 4.5 ⁇ m (hereinafter referred to as “4 ⁇ m lamella alloy”).
  • the average lamella spacing was evaluated by the method described in Japanese Patent No. 2665590.
  • the alloy compositions of the 3 ⁇ m lamella alloy and the 4 ⁇ m lamella alloy are as shown in Table 1 below.
  • Step A1 embrittlement of the alloys in Table 1 by hydrogen storage (Step A1), without dehydrogenation heating (Step A2), 0.05 wt% of alkyl carboxylate was mixed with the obtained metal piece, and 100AFG type made by Hosokawa Micron
  • the metal piece is finely pulverized in a nitrogen gas stream using a jet mill device (step A3).
  • the particle size of the finely pulverized powder is adjusted to 3 ⁇ m with the median value D 50 of the particle size distribution measured with a laser particle size distribution measuring device (HELOS & RODOS manufactured by Sympatec).
  • step A4 0.07 wt% of alkyl carboxylate is mixed with the produced alloy powder, and this alloy powder is filled in a filling container (step A4). Then, the powder is oriented in the magnetic field while filling the fine powder in the filling container (step A5), and then the whole filling container is sintered in a vacuum at 950-1000 ° C. for 4 hours (step A6). Further, as an aging treatment after sintering, heating is performed at 800 ° C. for 0.5 hours in an inert gas atmosphere, followed by rapid cooling, and further heating is performed at 480-580 ° C. for 1.5 hours to quench.
  • the base materials S1 to S8 in the table are base materials made from a 3 ⁇ m lamella alloy, and the base materials C1 to C8 are base materials made from a 4 ⁇ m lamella alloy.
  • Br is the residual magnetic flux density (magnetization J or magnetic flux density B when the magnetic field H of the JH curve or BH curve is 0)
  • Js is the saturation magnetization (maximum value of the magnetization J)
  • H cB is the coercivity defined by the BH curve
  • H cJ is the coercivity defined by the JH curve
  • (BH) Max is the maximum energy product (the maximum value of the product of magnetic flux density B and magnetic field H on the BH curve)
  • B r / J s is the degree of orientation
  • H k is the value of the magnetic field H when the magnetization J is 90% of the residual magnetic flux density B r
  • SQ is the squareness ratio (H k / H cJ ). The larger these values are, the better magnet characteristics are obtained.
  • the magnetic properties shown in Tables 2 and 3 were measured with a pulse magnetization measuring device.
  • the pulse magnetization measuring device is manufactured by Nippon Electromagnetic Sequential Co., Ltd. (trade name: Pulse BH Curve Tracer BHP-1000), the maximum applied magnetic field is 10T, and the measurement accuracy is ⁇ 1%.
  • the pulse magnetization measuring apparatus is suitable for evaluating a high H cJ magnet, which is a subject of the present invention.
  • the pulse magnetization measuring device tends to have a lower squareness ratio SQ of the JH curve than a magnetization measuring device (also called a DC BH tracer) by applying a normal DC magnetic field.
  • the squareness ratio SQ measured by the direct current magnetization measuring device is 95% is about 90% in the pulse magnetization measuring device.
  • FIG. 3 is but a graph of the magnetic properties of the base materials in Table 2, this as shown in the figure, the residual magnetic flux density B r in substrate S1 ⁇ S8 are obtained relatively high substrate It can be seen that C1 to C8 have a relatively high coercive force H cJ .
  • all the base materials shown in Table 1 have a high degree of orientation B r / J s of around 95%. This is because the magnetic anisotropy of each particle of the alloy powder was lowered and the coercive force of each particle was lowered because no dehydrogenation heating was performed.
  • the coercive force of each particle is low, after the alloy powder is oriented, a reverse magnetic domain is generated in each particle with a decrease in the applied magnetic field, resulting in multiple magnetic domains. As a result, the magnetization of each particle is reduced, so that the deterioration of the degree of orientation due to the magnetic interaction between adjacent particles is alleviated, and a high degree of orientation is obtained.
  • Grain boundary diffusion treatment is performed on each of the substrates S1 to S8 and C1 to C8 (step A7).
  • Specific conditions for the grain boundary diffusion treatment are as follows. First, 0.07 g of silicone oil was added to 10 g of a mixture of TbNiAl alloy powder of Tb (R H ): 92 wt%, Ni: 4.3 wt%, Al: 3.7 wt% and silicone grease in a ratio of 80:20 by weight. Apply 10mg each of the paste to both pole faces (7mm square face) of the substrate.
  • the cuboid base material coated with the paste is placed on a molybdenum tray provided with a plurality of point-shaped support portions, and the cuboid base material is supported by the support portions while being in a vacuum of 10 ⁇ 4 Pa.
  • the heating temperature is 800-950 ° C and the heating temperature is 4 hours. Then, it is rapidly cooled to near room temperature, then heated at 480-560 ° C. for 1.5 hours and then rapidly cooled to room temperature.
  • T1 to T8 and D1 to D8 were prepared by the above grain boundary diffusion treatment.
  • T1 to T8 are samples corresponding to the substrates S1 to S8, respectively
  • D1 to D8 are samples corresponding to the substrates C1 to C8, respectively.
  • Tables 4 and 5 below show the results of measuring these samples with a pulse magnetization measuring apparatus.
  • Samples T1 to T8 have an extremely high squareness ratio of 96.8-98.5%.
  • the squareness ratio of samples D1 to D8 shown in Table 5 is between 90.4-94.4%, which is lower than the squareness ratio at the time of the base material shown in Table 3.
  • the base material is manufactured by the base material manufacturing method without dehydrogenation, but there are cases where care is taken when using this method.
  • impurities such as carbon can be reduced by the base material manufacturing method without dehydrogenation.
  • the amount of impurities is reduced too much, the main phase particles grow by heating in the grain boundary diffusion treatment, and coarse particles may be generated as shown in FIG. 4 (about 100 ⁇ m in the micrograph in FIG. 4).
  • coarse particles may be generated as shown in FIG. 4 (about 100 ⁇ m in the micrograph in FIG. 4).
  • the squareness ratio decreases.
  • impurities are mixed in the substrate to some extent.
  • carbon is 500 ppm or more
  • oxygen is 500 ppm or more
  • nitrogen is 150 ppm or more
  • the total of these is 1150 ppm
  • it may be within the range of 3000 ppm or less.
  • a method of adjusting these contents there is a method of adjusting the amount of lubricant added to the alloy powder after pulverizing the NdFeB alloy.
  • the addition amount is 0.01 wt% or more, 0.6 wt% or less, the content of carbon in the NdFeB-based sintered magnet after the grain boundary diffusion treatment
  • the amount can be adjusted between 500ppm and 3000ppm ( Figure 5).
  • the NdFeB sintered magnet of sample T1 was measured for carbon, oxygen, and nitrogen.
  • the carbon content was 950 ppm
  • the oxygen content was 820 ppm
  • the nitrogen content was 170 ppm.
  • the optical microscope photograph of this sample was taken, the coarse grain did not generate
  • produce (FIG. 6).
  • the average particle size of the main phase particles of this sample was calculated to be 2.8 ⁇ m.
  • the grain boundary diffusion method generally, as the thickness of the base material increases, the difference in the concentration of RH in the vicinity of the adhesion surface and in the center increases, and the squareness ratio decreases, but in the manufacturing method of this example, When the thickness was 1 mm or more and 10 mm or less, an NdFeB-based sintered magnet having a squareness ratio of 95% or more could be produced by the grain boundary diffusion method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明は、高温環境下での不可逆減磁や発熱が生じにくいNdFeB系焼結磁石を提供することを目的とする。本発明に係るNdFeB系焼結磁石は、NdFeB系合金の粉末を磁界中で配向し、焼結することにより製造した基材の表面に付着させたDy及び/又はTbを、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、角型比が95%以上であることを特徴とする。このようなNdFeB系焼結磁石は、希土類リッチ相のラメラが所定の間隔でほぼ均等に分散したNdFeB系合金を出発合金として用いると共に、該合金に水素を吸蔵させた後、焼結工程に至るまで、吸蔵させた水素を脱離させるための加熱を行わないまま、NdFeB系焼結磁石の基材を作製し、それを粒界拡散処理することにより製造することができる。

Description

NdFeB系焼結磁石
 本発明は、NdFeB系焼結磁石に関する。ここで「NdFeB系」は、Nd, Fe及びBのみを含有するものには限られず、Nd以外の希土類元素や、Co, Ni, Cu, Al等の他の元素を含有するものも含まれる。
 NdFeB系焼結磁石は、1982年に佐川(本発明者)らによって見出されたものであるが、それまでの永久磁石をはるかに凌駕する高い磁気特性を有し、Nd(希土類の一種)、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。そのため、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。
 NdFeB系焼結磁石の製造方法として、焼結法、鋳造・熱間加工・時効処理の方法、急冷合金をダイ・アップセット加工する方法の3つの方法が知られている。このうち磁気特性および生産性において優れ、且つ工業的に確立している製造方法は焼結法である。焼結法では永久磁石に必要とされる緻密で均一な微細組織を得ることができる。
 また、焼結法により製造したNdFeB系焼結磁石を基材として、その表面に塗布や蒸着等によりDy及び/又はTb (以下、「Dy及び/又はTb」を「RH」とする)を付着させ、加熱することにより、基材表面から粒界を通じて基材の内部にRHを拡散させる方法(粒界拡散法)がある(特許文献1)。この粒界拡散法により、NdFeB系焼結磁石の保磁力をさらに高めることができる。
国際公開WO2011/004894号公報 特開2005-320628号公報
 NdFeB系焼結磁石は、その高い磁気特性から、ハイブリッド自動車や電気自動車のモータ用の永久磁石など、今後ますます需要が拡大することが予想されている。しかしながら、自動車は過酷な負荷の下での使用を想定しなければならず、そのモータについても高い温度環境(例えば180℃)下での動作を保証しなければならない。ところが、NdFeB系焼結磁石をそのような高温で使用すると磁力(磁化)が減少し、しかも、温度を低下させても元に戻らないという現象(不可逆減磁)が生じるという問題がある。また、電機子からの磁界により磁石が発熱し、その熱によっても上記のような磁化の減少や不可逆減磁が生じることがある。
 本発明が解決しようとする課題は、高温環境下での不可逆減磁が生じにくいNdFeB系焼結磁石を提供することである。
 上記課題を解決するために成された本発明に係るNdFeB系焼結磁石は、
 NdFeB系合金の粉末を磁界中で配向し、焼結することにより製造した基材の表面に、Dy及び/又はTbを付着させ、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、角型比が95%以上であることを特徴とする。
 なお、ここで言う角型比とは、図7に示すように、第1象限から第2象限を横切るJ-H(磁化-磁界)曲線において、磁界ゼロに対応する磁化の値が10%低下したときの磁界の絶対値Hkを保磁力HcJで除した値Hk/HcJによって定義される値である。
 モータ用永久磁石には、電流コイルから逆磁界が印加される。不可逆減磁は、磁石のJ-H曲線の第2象限に現れる変曲点Cに対応する磁界以上の逆磁界が、磁石に印加されることにより生じる。保磁力が高く、角型比が高いほど変曲点Cの磁界強度が大きくなる。従って、保磁力と角型比が高くなるほど不可逆減磁が生じにくくなる。
 また、磁石の温度が上昇するにつれて保磁力は低下していくものの、一般的に常温(室温)における保磁力と角型比が高いほど、高温での保磁力と角型比は高くなる。従って、常温における保磁力と角型比を共に高くすれば、磁石の温度が高くなっても不可逆減磁が生じにくくなる。
 粒界拡散法を用いることによってNdFeB系焼結磁石の保磁力が高くなることは、特許文献1等にも記載された通りである。しかしながら、従来の粒界拡散法によって製造されたNdFeB系焼結磁石では、高い角型比を得ることができなかった。例えば、特許文献1において、粒界拡散法によって製造されたNdFeB系焼結磁石の角型比は81.5-93.4%である。
 本発明に係るNdFeB系焼結磁石では、粒界拡散処理によって高い保磁力が得られると共に、95%以上という高い角型比を有するため、従来のNdFeB系磁石に比べて不可逆減磁が生じにくい。例えばRHの添加量を調整し、保磁力を20kOe以上にすれば、自動車等において想定される最高使用温度180℃にさらしても不可逆減磁が起こらない。そのため、モータ用の磁石としてNdFeB系焼結磁石の高い磁気特性を発揮することができる。
 本発明に係るNdFeB系焼結磁石は、例えば、粒界中のRHの濃度差を低く抑え、NdFeB系焼結磁石を構成する多数のNd2Fe14B系立方晶化合物の結晶粒(以下、これを「主相粒子」と呼ぶ)の周囲を、希土類リッチ相を主とする粒界相で均一にカバーされるように製造することにより、得ることができる。以下、その理由を説明する。
 粒界拡散法は、NdFeB系焼結磁石を構成する各主相粒子の境界(粒界)から、各主相粒子の内部の、粒界にごく近い領域においてのみRHを拡散させることにより、最大エネルギー積や残留磁束密度等の一部の磁気特性が低下することを抑制しつつ、各主相粒子の保磁力を向上させるというものである(例えば特許文献1を参照)。従来、粒界拡散法によって製造されたNdFeB系焼結磁石では、磁石表面から遠い(深い)位置にある粒界にはRHが十分に拡散せず、磁石表面に近い粒界と磁石表面から遠い粒界の間で粒界拡散処理後のRHの濃度に大きな差が生じていた。これにより、付着面に近い箇所にある主相粒子と付着面から遠い箇所にある主相粒子では、各主相粒子の保磁力に差が生じる。また、粒界中に炭素等の不純物が高濃度で存在すると、その部分でRHの拡散が堰き止められ、周辺のRHの濃度が局所的に高くなることがある。このようなことも各主相粒子の保磁力に差が生じる原因となる。
 NdFeB系焼結磁石全体のJ-H曲線における角型性を決定する要因はまだ明らかになっていないが、粒界組織の不均一性や粒界相中のRH元素濃度の相違が顕著であればあるほどNdFeB系焼結磁石全体のJ-H曲線がなだらかに変化する。特許文献1のNdFeB系焼結磁石の粒界拡散処理後の角型比が81.5-93.4%程度に留まっていたのは、この粒界組織の不均一性や粒界相中のRH元素濃度の相違が原因であると考えられる。
 これに対し、本発明に係るNdFeB系焼結磁石は、粒界中のRHの濃度差を低く抑え、粒界組織を均一化するように製造しているため、95%以上という高い角型比を得ることができる。加えて、粒界拡散処理によって高い保磁力をも得ることができるため、高温環境下での不可逆減磁が生じにくいNdFeB系焼結磁石を得ることができる。
 本発明に係るNdFeB系焼結磁石は、粒界拡散処理によって高い保磁力を有すると共に、95%以上という高い角型比を有するため、高温環境下での不可逆減磁が生じにくい。そのため、自動車のモータ等の高い磁気特性が要求される磁石として好適に用いることができる。
本発明に係るNdFeB系焼結磁石を製造するための方法の一実施例を示すフローチャート(a)、及び従来のNdFeB系焼結磁石の製造方法を示すフローチャート(b)。 希土類リッチ相のラメラを有する合金板(a)と、該合金板を微粉砕することにより得られる合金粉末粒子(b)を示す概略図。 ラメラ間隔が約3μmのストリップキャスト合金と、ラメラ間隔が約4μmのストリップキャスト合金を出発合金としてそれぞれ用いた場合の磁気特性の変化を示すグラフ。 粒界拡散処理を行った後に粗大粒が発生したNdFeB系焼結磁石の光学顕微鏡写真。 製造工程中に添加する潤滑剤の添加量に対するNdFeB系焼結磁石中の炭素含有量の変化を示すグラフ。 粗大粒が発生しないように作製した、粒界拡散処理後のNdFeB系焼結磁石の光学顕微鏡写真。 角型比と変曲点の関係を示すJ-H曲線のグラフ。
 本発明に係るNdFeB系焼結磁石を製造するための方法を、各図を参照して説明する。
 比較のために、まず、従来の粒界拡散法を用いたNdFeB系焼結磁石の製造方法について、図1(b)のフローチャートを用いて説明する。従来の粒界拡散法を用いたNdFeB系焼結磁石の製造方法は、大別して、水素吸蔵工程、脱水素工程、微粉砕工程、充填工程、配向工程、焼結工程、粒界拡散工程の7つに分かれている。
 水素吸蔵工程では、ストリップキャスト法等により予め作製されたNdFeB系合金(出発合金)の薄板(以下、「NdFeB系合金板」とする)に水素を吸蔵させる(ステップB1)。脱水素工程では、水素を吸蔵させたNdFeB系合金板を500℃程度に加熱することにより、NdFeB系合金板から水素を脱離させる(ステップB2)。この過程によって、NdFeB系合金板は最大数mm程度の幅の金属片に解砕される。微粉砕工程では、このようにして得られた金属片に潤滑剤を添加し、ジェットミル法等によりこれを目標の粒径にまで微粉砕する(ステップB3)。
 充填工程では、微粉砕工程によって得られた微粉末(以下、これを「合金粉末」と呼ぶ)に、カプリル酸メチルやミリスチン酸メチル等のカルボン酸アルキルを主成分とする潤滑剤を添加し、合金粉末の流動性を高めたうえで、狙い寸法を得るために必要な形状を有する充填容器に合金粉末を充填する(ステップB4)。配向工程では、充填容器ごと合金粉末に磁界を印加し、合金粉末の各粒子を同じ方向に配向させる(ステップB5)。焼結工程では、充填容器ごと合金粉末を950-1050℃程度に加熱する(ステップB6)。これによって、RHを拡散させる前のNdFeB系焼結磁石のブロックが作製される。粒界拡散工程では、このブロックを基材として、その所定の面に蒸着や塗布等によりRHを付着させ、900℃程度に加熱する(ステップB7)。
 なお、焼結工程の後や粒界拡散工程の後に時効処理を行うこともある。時効処理は複数回に分けて行うこともある。
 これに対し、本実施例のNdFeB系焼結磁石の製造方法は、第一に、水素吸蔵工程に用いるNdFeB系合金板として、図2(a)に示すような、主相11内に板状(ラメラ(lamella)という)の希土類リッチ相12が所定の間隔でほぼ均等に分散した合金板10を用いることを特徴とする。このような合金板10は、特許文献2に記載のように、ストリップキャスト法により作製することができる。また、ラメラ間の平均間隔(以下、「平均ラメラ間隔」と呼ぶ)Lは、ストリップキャスト法で用いる冷却ローラの回転速度や、該冷却ローラにNdFeB系合金の溶湯を供給する速度を調整することにより制御することができる。
 本実施例のNdFeB系焼結磁石の製造方法は、第二に、脱水素工程を行わないことを特徴とする(図1(a))。すなわち、本実施例のNdFeB系焼結磁石の製造方法では、水素吸蔵工程によって水素を吸蔵させた後、加熱による脱水素工程を経ずに焼結工程までを行う。合金粉末に吸蔵されている水素は、焼結工程の際の加熱によって脱離する。以下、脱水素工程を行わずにNdFeB系焼結磁石の基材を製造する方法のことを、「脱水素無し基材製造方法」と呼ぶ。これに対し、加熱による脱水素工程を行ってNdFeB系焼結磁石の基材を製造する従来の方法のことを、「脱水素有り基材製造方法」と呼ぶ。
 水素吸蔵工程において、希土類リッチ相のラメラが所定の間隔でほぼ均等に分散した合金板を用いる理由は、以下の通りである。
 上記の通り、水素吸蔵工程では、NdFeB系合金に水素を吸蔵させる。これによりNdFeB系合金が脆化するが、主相よりも希土類リッチ相の方が水素をより多く吸蔵するため、特に希土類リッチ相ラメラの部分において脆化が進む。そのため、次の微粉砕工程では、希土類リッチ相ラメラの間隔とほぼ同じ大きさで微粉砕される。その結果、粒径のほぼ揃った合金粉末が得られると共に、図2(b)に示すように、合金粉末の各粒子13の表面には希土類リッチ相ラメラの一部14が付着することとなる。
 粒径のほぼ揃った合金粉末が得られることで、焼結工程後に得られる基材中の主相粒子の大きさも均一になる。これにより磁区の大きさが均一となり、焼結後の基材の磁気特性が向上する。また、合金粉末の各粒子の表面に希土類リッチ相が付着していることにより、希土類リッチ相が基材中の粒界に均一に分散する。希土類リッチ相は、粒界拡散工程においてRHを拡散させる際の主要な通路となるため、希土類リッチ相が基材中の粒界に均一に分散することにより、粒界拡散工程においてRHが付着面から十分深くまで拡散し、深さ方向に対するRHの濃度差が生じにくくなる。
 微粉砕工程では、作製する合金粉末の粒径の目標値を、NdFeB系合金の平均ラメラ間隔以下になるように設定する。これは、合金粉末の粒径をNdFeB系合金の平均ラメラ間隔より大きく設定すると、希土類リッチ相を内部に含む合金粉末粒子が多くなり、焼結後の基材において相対的に粒界に分散する希土類リッチ相が少なくなることから、上記の効果が十分に得られなくなるためである。
 また、上記の効果を得るためには、合金板10の平均ラメラ間隔を合金粉末の粒径(数μm)と同等程度にすることが望ましい。合金板10の厚さと平均ラメラ間隔には相関関係があるため、合金板10の平均ラメラ間隔を数μm程度にするには、合金板10の厚みが平均で350μm以下になるように調整する。
 また、脱水素無し基材製造方法を用いる理由は、以下の通りである。
 上記のように、微粉砕工程と充填工程では潤滑剤を添加する。潤滑剤は一般的に有機物であり、炭素が多く含まれる。従来の脱水素有り基材製造方法では、この炭素の一部が基材の内部に残留し、基材の磁気特性の低下をもたらす。また、基材の内部に残留した炭素は、粒界中に炭素濃度の高い炭素リッチ相を形成する。この炭素リッチ相は、粒界を通してRHを拡散させる際の堰のような役割を果たし、RHの拡散を妨げる。これにより、RHが付着面から十分深くまで到達しにくくなる。また、炭素リッチ相によって堰き止められることで、炭素リッチ相の近傍においてRHの濃度が局所的に高くなり、RHの濃度が不均一になる。
 基材中に炭素が残留することを避けるには、潤滑剤の使用量を減らすことが考えられるが、潤滑剤は、粉末の流動性を高めるためにある程度混入する必要がある。
 これに対し、脱水素無し基材製造方法では、脱水素工程を行わないため合金粉末が水素化合物になっている。この水素化物中の水素が焼結工程の際の加熱によって、潤滑剤に含まれる炭素と反応し、炭化水素化合物となって排出される。その結果、基材中に残留する炭素の濃度が低下し、基材の磁気特性が向上する。また、粒界中に炭素リッチ相が形成されにくくなるため、粒界拡散処理によってRHが均一に拡散し、粒界拡散処理後のNdFeB系焼結磁石中の主相粒子の保磁力が略等しくなる。なお、不純物として酸素や窒素が混入することもあるが、これらも水素と反応して、H2Oや窒化水素化合物などのガスとなって排出される。
 本実施例のNdFeB系焼結磁石の製造方法では、以上の2つの特徴を有すること(希土類リッチ相ラメラ合金、及び、脱水素無し基材製造方法)により、粒界拡散工程の際にRHを付着させた面から、十分深くにまで均一にRHを拡散させることが可能となる。それによって、本実施例の製造方法で製造されたNdFeB系焼結磁石は、後述の通り、95%以上の角型比を得ることができる。
 以下、本実施例のNdFeB系焼結磁石の製造方法について、図1(a)を参照しつつ、具体例を挙げて説明する。
 本実施例では、平均ラメラ間隔が3.7μmのNdFeB系合金(以下、「3μmラメラ合金」と呼ぶ)を用い、水素吸蔵工程(ステップA1)と微粉砕工程(ステップA3)により、レーザ回折法で測定した粒度分布の中央値D50が3μmとなるNdFeB系合金粉末を作製した。また、ラメラ間隔が4.5μmのNdFeB系合金(以下、「4μmラメラ合金」と呼ぶ)に対し、レーザ回折法で測定した粒度分布の中央値D50が3μmとなるNdFeB系合金粉末を作製した。なお、平均ラメラ間隔の評価は特許第2665590号公報に記載の方法で行った。また、3μmラメラ合金と4μmラメラ合金の合金組成は、それぞれ以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 水素吸蔵工程及び微粉砕工程の具体的な手順は以下の通りである。表1の合金を水素吸蔵により脆化させた後(ステップA1)、脱水素加熱を行わないまま(ステップA2)、得られた金属片にカルボン酸アルキルを0.05wt%混合し、ホソカワミクロン製100AFG型ジェットミル装置を用いて窒素ガス気流中で金属片を微粉砕する(ステップA3)。その際、微粉砕後の粉末の粒径が、レーザ式粒度分布測定装置(Sympatec社製HELOS&RODOS)で測定した粒度分布の中央値D50で3μmになるように調整する。
 微粉砕工程の後は、作製した合金粉末にカルボン酸アルキルを0.07wt%混合し、この合金粉末を充填容器に充填する(ステップA4)。そして、充填容器に微粉末を充填したまま磁界中で粉末を配向させ(ステップA5)、それから充填容器ごと真空中で950-1000℃で4時間加熱することにより焼結する(ステップA6)。更に、焼結後の時効処理として、不活性ガス雰囲気中において800℃で0.5時間加熱した後に急冷し、更に480-580℃で1.5時間加熱して急冷する。
 以上の工程により、磁極面が7mm角、厚みが3mmの基材を、3μmラメラ合金と4μmラメラ合金に対してそれぞれ8個ずつ作製し、それらの磁気特性を調べた。その結果を以下の表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表中の基材S1~S8は、3μmラメラ合金から作製した基材であり、基材C1~C8は、4μmラメラ合金から作製した基材である。また、表中のBrは残留磁束密度(J-H曲線又はB-H曲線の磁場Hが0のときの磁化J又は磁束密度Bの大きさ)、Jsは飽和磁化(磁化Jの最大値)、HcBはB-H曲線によって定義される保磁力、HcJはJ-H曲線によって定義される保磁力、(BH)Max、は最大エネルギー積(B-H曲線における磁束密度Bと磁場Hの積の極大値)、Br/Jsは配向度、Hkは磁化Jが残留磁束密度Brの90%のときの磁界Hの値、SQは角型比(Hk/HcJ)を示している。これらの数値が大きいほど、良い磁石特性が得られていることを意味する。
 表2及び表3の磁気特性の測定は、パルス磁化測定装置により行った。パルス磁化測定装置は日本電磁測器株式会社製(商品名:パルスBHカーブトレーサBHP-1000)で、最大印加磁界は10T、測定精度は±1%である。パルス磁化測定装置は本発明で対象とする、高HcJ磁石の評価に適している。ただし、パルス磁化測定装置は通常の直流磁界印加による磁化測定装置(直流B-Hトレーサーとも呼ばれる。)に比べて、J-H曲線の角型比SQが低く出る傾向にあることが知られている。例えば直流磁化測定装置で測定した角型比SQが95%というのは、パルス磁化測定装置では90%程度となる。
 これらの基材はいずれも、角型比が95%以上という高い数値で得られている。また、図3は表2の各基材の磁気特性をグラフ化したものであるが、この図に示すように、基材S1~S8では残留磁束密度Brが比較的高く得られ、基材C1~C8では保磁力HcJが比較的高く得られていることが分かる。
 また、表1に示す基材はいずれも、95%前後の高い配向度Br/Jsが得られている。これは、脱水素加熱を行わなかったことにより、合金粉末の各粒子の磁気異方性が低下し、各粒子の保磁力が低下したためである。各粒子の保磁力が低いと、合金粉末を配向させた後、印加磁界の減少と共に各粒子内に逆磁区が発生し、多磁区化する。これにより各粒子の磁化が減少するため、隣接粒子間の磁気的相互作用による配向度の劣化が緩和され、高い配向度が得られる。
 以上の基材S1~S8及びC1~C8に対し、それぞれ粒界拡散処理を行う(ステップA7)。粒界拡散処理の具体的な条件は、以下の通りである。
 まず、Tb(RH):92wt%、Ni:4.3wt%、Al:3.7wt%のTbNiAl合金粉末とシリコーングリースを重量比で80:20の割合で混合した混合物10gにシリコーンオイルを0.07g添加したペーストを基材の両磁極面(7mm角の面)にそれぞれ10mgずつ塗布する。
 次に、上記ペーストを塗布した直方体基材を、複数の尖形状の支持部が設けられたモリブデン製のトレイに載せ、直方体基材を該支持部によって支持しつつ、10-4Paの真空中で加熱する。加熱温度は800-950℃、加熱温度は4時間である。その後室温付近まで急冷して、次に480-560℃で1.5時間加熱して、再度室温まで急冷する。
 以上の粒界拡散処理により、T1~T8とD1~D8の計16種類の試料を作製した。T1~T8は、基材S1~S8にそれぞれ対応する試料であり、D1~D8は、基材C1~C8にそれぞれ対応する試料である。これらの試料についてパルス磁化測定装置により測定した結果を以下の表4及び表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、試料T1~T8では、96.8-98.5%という極めて角型比の高い結果が得られている。それに対し、表5に示す試料D1~D8の角型比は90.4-94.4%の間で、表3に示す基材の時点での角型比よりも低下している。
 試料D1~D8の角型比が低下した理由として、平均ラメラ間隔が4.5μmのストリップキャスト合金(出発合金)に対し、粒径(の中央値D50)が3μmの合金粉末に微粉砕したことが挙げられる。微粉砕後の合金粉末の粒径がストリップキャスト合金の平均ラメラ間隔に対して小さすぎる場合、合金粉末から希土類リッチ相ラメラが剥離してしまう。希土類リッチ相ラメラが剥離した合金粉末を用いて基材を作製すると、希土類リッチ相を基材中の粒界に均一に分散させるという前述の効果が得られなくなり、その結果、粒界拡散処理においてRHが均一に拡散しなくなる。
 従って、本実施例のNdFeB系焼結磁石の製造方法では、ストリップキャスト合金の平均ラメラ間隔に対して、微粉砕後の合金粉末粒子の粒径が小さくなりすぎないように注意する必要がある。
 以上のようにして、本実施例のNdFeB系焼結磁石の製造方法では、粒界拡散処理によって保磁力を向上させつつ、95%以上という高い角型比を得ることができる。なお、本実施例では、脱水素無し基材製造方法によって基材を作製しているが、この方法を用いる際、注意することがある。
 上記の通り、脱水素無し基材製造方法によって、炭素等の不純物を減らすことができる。しかしながら、不純物の量を減らしすぎると、粒界拡散処理の加熱によって主相粒子が成長し、図4に示すように、粗大粒が発生することがある(図4の顕微鏡写真では約100μm)。このように粗大粒が発生すると角型比が低下する。粒界拡散処理の際に主相粒子が成長することを抑制するためには、基材中に不純物がある程度混入していることが望ましい。
 粗大粒が発生しないようにしつつ高い磁石特性を得るためには、粒界拡散処理後のNdFeB系焼結磁石において、炭素が500ppm以上、酸素が500ppm以上、窒素が150ppm以上、これらの総計が1150ppm以上、3000ppm以下の範囲内にあるようにすれば良い。これらの含有量を調整する方法として、NdFeB系合金を微粉砕した後に合金粉末に添加する潤滑剤の量を調整する方法がある。例えば本実施例で用いたカルボン酸アルキルの潤滑剤の場合、その添加量を0.01wt%以上、0.6wt%以下とすることにより、粒界拡散処理後のNdFeB系焼結磁石中の炭素の含有量を500ppmから3000ppmの間で調整することができる(図5)。
 なお、試料T1のNdFeB系焼結磁石について、炭素と酸素と窒素の含有量をそれぞれ測定したところ、炭素含有量は950ppm、酸素含有量は820ppm、窒素含有量は170ppmであった。また、この試料の光学顕微鏡写真を撮ったところ、粗大粒は発生していなかった(図6)。また、この試料の主相粒子の平均粒径を算出したところ、2.8μmであった。
 また、粒界拡散法では一般的に、基材の厚みが増すにつれて付着面近傍と中心部のRHの濃度差が大きくなり、角型比が低下するが、本実施例の製造方法では、厚みが1mm以上、10mm以下であれば、角型比95%以上のNdFeB系焼結磁石を粒界拡散法によって製造することができた。
10…合金板
11…主相
12…希土類リッチ相ラメラ
13…合金粉末粒子
14…希土類リッチ相ラメラの一部

Claims (15)

  1.  NdFeB系合金の粉末を磁界中で配向し、焼結することにより製造した基材の表面に、Dy及び/又はTbを付着させ、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、角型比が95%以上であることを特徴とするNdFeB系焼結磁石。
  2.  前記角型比が96%以上であることを特徴とする請求項1に記載のNdFeB系焼結磁石。
  3.  前記NdFeB系合金が、ストリップキャスト法により、希土類リッチ相のラメラが所定の間隔で並ぶように作製されたことを特徴とする請求項1又は2に記載のNdFeB系焼結磁石。
  4.  前記間隔の平均値が3.7μm以下であることを特徴とする請求項3に記載のNdFeB系焼結磁石。
  5.  前記粉末の、レーザ回折法で測定される粒度分布の中央値D50が前記間隔以下であることを特徴とする請求項3又は4に記載のNdFeB系焼結磁石。
  6.  前記NdFeB系合金に水素を吸蔵させて該NdFeB系合金を粗解砕すると共に、前記焼結に至るまで該吸蔵させた水素を脱離させるための加熱を行わないまま、前記基材が製造されたことを特徴とする請求項1~5のいずれかに記載のNdFeB系焼結磁石。
  7.  前記NdFeB系焼結磁石中の酸素と炭素と窒素の含有量の総計が1150ppm以上、3000ppm以下であることを特徴とする請求項1~6のいずれかに記載のNdFeB系焼結磁石。
  8.  前記炭素の含有量が500ppm以上であることを特徴とする請求項7に記載のNdFeB系焼結磁石。
  9.  前記酸素の含有量が500ppm以上であることを特徴とする請求項7又は8に記載のNdFeB系焼結磁石。
  10.  前記窒素の含有量が150ppm以上であることを特徴とする請求項7~9のいずれかに記載のNdFeB系焼結磁石。
  11.  前記粉末が作製された後に添加する潤滑剤の量が0.01wt%以上、0.6wt%以下であることを特徴とする請求項1~10のいずれかに記載のNdFeB系焼結磁石。
  12.  前記NdFeB系焼結磁石の配向度が95%以上であることを特徴とする請求項1~11のいずれかに記載のNdFeB系焼結磁石。
  13.  前記NdFeB系合金の厚みの平均値が350μm以下であることを特徴とする請求項1~12のいずれかに記載のNdFeB系焼結磁石。
  14.  前記NdFeB系焼結磁石中の主相となる粒子の平均粒径が4.5μm以下であることを特徴とする請求項1~13のいずれかに記載のNdFeB系焼結磁石。
  15.  前記NdFeB系焼結磁石の厚みが1mm以上、10mm以下であることを特徴とする請求項1~14のいずれかに記載のNdFeB系焼結磁石。
PCT/JP2013/058777 2012-03-30 2013-03-26 NdFeB系焼結磁石 WO2013146781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13769202.6A EP2833376A4 (en) 2012-03-30 2013-03-26 SINTERED MAGNET BASED ON NdFeB
US14/389,519 US20150059525A1 (en) 2012-03-30 2013-03-26 NdFeB SYSTEM SINTERED MAGNET
KR1020147027684A KR20150002638A (ko) 2012-03-30 2013-03-26 NdFeB계 소결 자석
JP2014507915A JP6305916B2 (ja) 2012-03-30 2013-03-26 NdFeB系焼結磁石
CN201380018248.4A CN104221100B (zh) 2012-03-30 2013-03-26 NdFeB系烧结磁体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-082357 2012-03-30
JP2012082357 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146781A1 true WO2013146781A1 (ja) 2013-10-03

Family

ID=49260032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058777 WO2013146781A1 (ja) 2012-03-30 2013-03-26 NdFeB系焼結磁石

Country Status (6)

Country Link
US (1) US20150059525A1 (ja)
EP (1) EP2833376A4 (ja)
JP (1) JP6305916B2 (ja)
KR (1) KR20150002638A (ja)
CN (1) CN104221100B (ja)
WO (1) WO2013146781A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034650A1 (ja) * 2012-08-27 2014-03-06 インターメタリックス株式会社 NdFeB系焼結磁石
US20150086710A1 (en) * 2013-09-24 2015-03-26 Daido Steel Co., Ltd. METHOD FOR PRODUCING RFeB-BASED MAGNET
US10340064B2 (en) 2013-12-27 2019-07-02 Byd Company Limited Rare earth permanent magnetic material and method of preparing the same
JP7574736B2 (ja) 2021-05-12 2024-10-29 信越化学工業株式会社 希土類焼結磁石及び希土類焼結磁石の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866023B1 (ko) * 2016-05-23 2018-06-08 현대자동차주식회사 자기특성이 우수한 희토류 영구자석 제조방법
DE102017222060A1 (de) * 2016-12-06 2018-06-07 Tdk Corporation Permanentmagnet auf R-T-B-Basis
CN109161819B (zh) * 2018-09-20 2020-07-07 京磁材料科技股份有限公司 低碳含量的烧结钕铁硼磁体的制备方法
CN110444385A (zh) * 2019-08-09 2019-11-12 浙江英洛华磁业有限公司 一种提升Nd-Fe-B磁体矫顽力的工艺
CN111968813B (zh) * 2020-07-10 2023-11-07 瑞声科技(南京)有限公司 NdFeB系磁粉、NdFeB系烧结磁体及制备方法
EP4451295A1 (en) * 2023-04-20 2024-10-23 Shin-Etsu Chemical Co., Ltd. Sintered rare-earth magnet and method of manufacture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665590B2 (ja) 1987-06-19 1997-10-22 住友特殊金属株式会社 希土類―鉄―ボロン系磁気異方性焼結永久磁石原料用合金薄板並びに磁気異方性焼結永久磁石原料用合金粉末,及び磁気異方性焼結永久磁石
JP2002246253A (ja) * 2001-02-14 2002-08-30 Tdk Corp 焼結磁石の製造方法
JP2005320628A (ja) 2004-04-07 2005-11-17 Showa Denko Kk R−t−b系焼結磁石用合金塊、その製造法および磁石
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
JP2010129665A (ja) * 2008-11-26 2010-06-10 Ulvac Japan Ltd 永久磁石の製造方法
WO2011004894A1 (ja) 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
WO2011122667A1 (ja) * 2010-03-30 2011-10-06 Tdk株式会社 希土類焼結磁石、その製造方法、モーター、及び自動車
JP2011211056A (ja) * 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石、モーター及び自動車

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US371A (en) * 1837-08-31 waeneb
EP1014392B9 (en) * 1998-12-15 2004-11-24 Shin-Etsu Chemical Co., Ltd. Rare earth/iron/boron-based permanent magnet alloy composition
US7199690B2 (en) * 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP3683260B2 (ja) * 2003-06-27 2005-08-17 Tdk株式会社 希土類永久磁石
JP2005159053A (ja) * 2003-11-26 2005-06-16 Tdk Corp R−t−b系永久磁石の製造方法
JP2006100434A (ja) * 2004-09-28 2006-04-13 Tdk Corp R−t−b系希土類永久磁石の製造方法
JP4821128B2 (ja) * 2005-02-10 2011-11-24 Tdk株式会社 R−Fe−B系希土類永久磁石
US7988795B2 (en) * 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
US20120176212A1 (en) * 2009-08-28 2012-07-12 Intermetallics Co., Ltd. METHOD AND SYSTEM FOR PRODUCING SINTERED NdFeB MAGNET, AND SINTERED NdFeB MAGNET PRODUCED BY THE PRODUCTION METHOD
JP5743458B2 (ja) * 2010-09-03 2015-07-01 昭和電工株式会社 R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP5462230B2 (ja) * 2011-10-12 2014-04-02 インターメタリックス株式会社 NdFeB系焼結磁石の製造方法
WO2013100011A1 (ja) * 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665590B2 (ja) 1987-06-19 1997-10-22 住友特殊金属株式会社 希土類―鉄―ボロン系磁気異方性焼結永久磁石原料用合金薄板並びに磁気異方性焼結永久磁石原料用合金粉末,及び磁気異方性焼結永久磁石
JP2002246253A (ja) * 2001-02-14 2002-08-30 Tdk Corp 焼結磁石の製造方法
JP2005320628A (ja) 2004-04-07 2005-11-17 Showa Denko Kk R−t−b系焼結磁石用合金塊、その製造法および磁石
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
JP2009135393A (ja) * 2007-10-31 2009-06-18 Ulvac Japan Ltd 永久磁石の製造方法
JP2010129665A (ja) * 2008-11-26 2010-06-10 Ulvac Japan Ltd 永久磁石の製造方法
WO2011004894A1 (ja) 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
WO2011122667A1 (ja) * 2010-03-30 2011-10-06 Tdk株式会社 希土類焼結磁石、その製造方法、モーター、及び自動車
JP2011211056A (ja) * 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石、モーター及び自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833376A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034650A1 (ja) * 2012-08-27 2014-03-06 インターメタリックス株式会社 NdFeB系焼結磁石
US10546673B2 (en) 2012-08-27 2020-01-28 Intermetallics Co., Ltd. NdFeB system sintered magnet
US20150086710A1 (en) * 2013-09-24 2015-03-26 Daido Steel Co., Ltd. METHOD FOR PRODUCING RFeB-BASED MAGNET
US9368277B2 (en) * 2013-09-24 2016-06-14 Daido Steel Co., Ltd. Method for producing RFeB-based magnet
US10340064B2 (en) 2013-12-27 2019-07-02 Byd Company Limited Rare earth permanent magnetic material and method of preparing the same
JP7574736B2 (ja) 2021-05-12 2024-10-29 信越化学工業株式会社 希土類焼結磁石及び希土類焼結磁石の製造方法

Also Published As

Publication number Publication date
US20150059525A1 (en) 2015-03-05
CN104221100A (zh) 2014-12-17
CN104221100B (zh) 2018-03-16
EP2833376A4 (en) 2015-06-03
JPWO2013146781A1 (ja) 2015-12-14
EP2833376A1 (en) 2015-02-04
JP6305916B2 (ja) 2018-04-04
KR20150002638A (ko) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6305916B2 (ja) NdFeB系焼結磁石
JP6005768B2 (ja) NdFeB焼結磁石及びその製造方法
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP5400255B1 (ja) NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法
CN108220732B (zh) 合金材料、粘结磁体以及稀土永磁粉的改性方法
JP2018504769A (ja) R−t−b永久磁石の製造方法
US10290408B2 (en) NdFeB system sintered magnet
US9972435B2 (en) Method for manufacturing R-T-B based sintered magnet
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
EP2800108B1 (en) Sintered neodymium magnet
JP6221233B2 (ja) R−t−b系焼結磁石およびその製造方法
CN109997203B (zh) R-Fe-B系烧结磁铁及其制造方法
JP2015057820A (ja) R−t−b系焼結磁石
JP7179799B2 (ja) R-Fe-B系焼結磁石
JP5400256B1 (ja) NdFeB系焼結磁石
US20130154424A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, method for producing r-t-b-based rare earth permanent magnet, and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507915

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027684

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013769202

Country of ref document: EP