WO2013141331A1 - マイクロサテライト領域を有するdnaの検出方法 - Google Patents

マイクロサテライト領域を有するdnaの検出方法 Download PDF

Info

Publication number
WO2013141331A1
WO2013141331A1 PCT/JP2013/058211 JP2013058211W WO2013141331A1 WO 2013141331 A1 WO2013141331 A1 WO 2013141331A1 JP 2013058211 W JP2013058211 W JP 2013058211W WO 2013141331 A1 WO2013141331 A1 WO 2013141331A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
base
microsatellite region
probe
microsatellite
Prior art date
Application number
PCT/JP2013/058211
Other languages
English (en)
French (fr)
Inventor
章一 松隈
友一 石川
竜雄 黒澤
Original Assignee
和光純薬工業株式会社
地方独立行政法人神奈川県立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社, 地方独立行政法人神奈川県立病院機構 filed Critical 和光純薬工業株式会社
Priority to EP13764078.5A priority Critical patent/EP2840136B1/en
Priority to US14/387,097 priority patent/US20150050649A1/en
Priority to AU2013236174A priority patent/AU2013236174A1/en
Priority to CN201380015175.3A priority patent/CN104204203A/zh
Publication of WO2013141331A1 publication Critical patent/WO2013141331A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for detecting DNA having a microsatellite region using a loop hybrid method and a hybrid obtained by the loop hybrid method.
  • a repetitive sequence formed by repeating 1 to 6 bases as a unit is called a microsatellite region, and is present in many mammals such as human genome sequences, and is present in more than 3000 places in the human genome. It is also known.
  • This microsatellite region is known to be useful as a marker for various gene analyzes because it shows polymorphisms with different numbers of repetitions (repetition numbers). It is also known that when the microsatellite region is located in the protein coding region of a gene, the difference in the number of repeats is known to cause the disease. In order to investigate the correlation between the gene and the disease, various studies have been conducted on the microsatellite region. Has been made.
  • Such a method for analyzing a polymorphism of a DNA having a microsatellite region is usually performed by separating and analyzing the fragment by denaturing polyacrylamide gel electrophoresis or capillary electrophoresis after PCR amplification.
  • electrophoresis using a 30 cm capillary and electrophoresis using a 40 cm long denatured polyacrylamide gel are required. There were problems such as being required.
  • a method for detecting a mutant gene a single-stranded oligo DNA is added to the reaction solution after the PCR reaction of the DNA fragment and hybridized with the target DNA fragment, and electrophoresis is performed depending on the structure of the resulting hybrid.
  • a loop hybrid method (LH method) is known (PTL 1), in which a mutant gene is discriminated by (1).
  • PTL 1 A loop hybrid method
  • UGT1A1 mutant genes having a microsatellite region have been detected by applying the LH method (Non-patent Document 1).
  • Non-Patent Document 1 Patent Document 1
  • the present inventors have found that when the conventional LH method is used, a large number of non-specific reaction products other than the target hybrid are produced, which causes a problem that it is difficult to identify the target product.
  • the conventional LH method was intended to separate only wild-type DNA and mutant DNA, there was no problem if these migration bands or migration peaks were separated from those of non-specific reaction products. .
  • the present invention uses the LH method for forming a hybrid having a specific loop structure, and does not cause the above-mentioned problem of non-specific reaction products, and accurately detects DNA having a microsatellite region. It is an object to provide a method capable of detection.
  • the present inventors have found that all of the microsatellite regions fall within the loop structure when the probe hybridizes to the target DNA. Thus, by synthesizing the probe, it was found that almost no non-specific reaction product was produced, and the present invention was completed. That is, the present invention “(1) A loop including a microsatellite region by contacting a DNA having a microsatellite region with a probe that does not have a base sequence complementary to the microsatellite region and hybridizes with a base sequence on both sides of the microsatellite region.
  • DNA having a microsatellite region can be detected easily and accurately.
  • the main purpose is to detect the presence or absence of single-base substitution
  • the probe has been designed so that the substitution base exists at the rising portion of the loop structure. Therefore, when there is a mutation in the microsatellite region, the microsatellite region is at the rising portion of the loop structure, that is, a part of the microsatellite region is bonded to the probe and a part is formed as a loop structure.
  • the probe was designed. Therefore, by designing the probe so that the entire microsatellite region falls within the loop structure, it is expected that non-specific reaction products will be almost completely eliminated and mutant polymorphisms with different numbers of repeats can be detected by the difference in the number of repeats. It was an outside effect.
  • 9 shows the results of electrophoretic separation of LH reaction products obtained by the method of the present invention for the nine types of poly-T chain length polymorphisms of the TOMM40 gene.
  • 9 shows the results of electrophoretic separation of LH reaction products obtained by the conventional LH method for nine types of polymorphisms of the TOMM40 gene.
  • Results of separation of the LH reaction products obtained by the method of the present invention by electrophoresis for the three types of long poly-T polymorphisms of the TOMM40 gene (3-a) and the LH reaction obtained by the conventional LH method The results (3-b and 3-c) of separation of the products by electrophoresis are shown.
  • the microsatellite region according to the present invention represents a region consisting of a repetitive base sequence formed by repeating 1 to 6 bases, preferably 1 to 3 bases as a unit.
  • the number of repeats (the number of repeats) of one unit sequence (hereinafter abbreviated as a unit sequence) serving as a reference for repetition in a repetitive base sequence is usually 2 to 100, preferably 5 to 100, more preferably 5 to 50. However, when the unit sequence of the repetitive base sequence is 1 base, the number of repeats is at least 3 or more.
  • the loop structure in the hybrid of the present invention may be composed only of a microsatellite region, and therefore, the loop structure cannot be formed unless there are at least 3 bases.
  • the number of bases in the microsatellite region is usually 3 to 600 bases, preferably 5 to 600 bases, more preferably 5 to 300 bases.
  • Specific examples of the microsatellite region include PolyT and PolyA when the unit sequence of the repetitive base sequence is 1 base, and those composed of CA repeats when the base sequence is 2 bases. In the case of a base, those consisting of CAG, CTG, CGG repeats and the like can be mentioned.
  • the DNA having a microsatellite region according to the present invention is one having the microsatellite region and usually before and after the microsatellite region. Any single-stranded DNA having a known base sequence of 5 to 1000 bases, preferably 5 to 500 bases, more preferably 5 to 100 bases may be used. Among them, the microsatellite region is more preferably a DNA (polymorphic DNA) having a different number of repeats of the unit sequence of the microsatellite region.
  • the DNA include genomic DNA fragments isolated from organisms such as animals, microorganisms, bacteria, and plants, DNA fragments that can be isolated from viruses, and cDNA fragments synthesized using mRNA as a template. Oncogenes derived from human cells are preferred.
  • the chain length of the DNA is usually 13 to 2000 bases, preferably 13 to 1000 bases, more preferably 13 to 200 bases.
  • the DNA according to the present invention contains one or more microsatellite regions (the first ones) other than the microsatellite region to be detected.
  • the second microsatellite area may be different from the unit array of the microsatellite area to be detected as the second microsatellite area.
  • the above DNA is preferably purified as much as possible and from which extra components other than DNA fragments are removed.
  • the Boom method using a silica support (Boom et al. J. Clin. Microbiol. 28: 495-503 (1990)), a method using a sodium iodide solution (Proc. Natl. Acad. Sci .USA ⁇ 76-2, p615-619 (1979)), etc.
  • a polymerase chain reaction known per se, for example, a target DNA amplified by the method described in Nucleic® Acids® Research, 1991, Vol. 19, 3749, BioTechniques, 1994, Vol. 16, 1134-1137 May be used.
  • the double-stranded DNA is obtained by heat treatment (90 to 100 ° C.) or alkali treatment (treatment with sodium hydroxide or the like) usually performed in this field.
  • the DNA according to the present invention may be obtained by making it into a single strand.
  • the probe according to the present invention hybridizes with the DNA according to the present invention to form a hybrid having a loop structure, and does not have a base sequence complementary to the microsatellite region to be detected. is there. That is, it is a base sequence that binds to the base sequences on both sides of the microsatellite region without binding to the microsatellite region to be detected.
  • the complementary strand of the sequence excluding the microsatellite region from the DNA according to the present invention the complementary strand of the sequence excluding the microsatellite region and 1 to 10 bases before and after the microsatellite region according to the present invention, etc. Can be mentioned.
  • the probe according to the present invention starts from the base adjacent to 1 to 11 bases from the 3 ′ end of the microsatellite region to the 3 ′ end of the DNA having the microsatellite region, usually 5 to 1000 bases, preferably Begins with a base next to 1 to 11 bases in the direction from the 5 'end of the microsatellite region to the 5' end of the DNA having the microsatellite region and the complementary strand of the base sequence of 5 to 200 bases, more preferably 5 to 100 bases
  • a complementary strand of a base sequence of 5 to 1000 bases, preferably 5 to 200 bases, more preferably 5 to 100 bases, and a complementary base of a base adjacent to 1 to 11 bases from the 3 ′ end of the microsatellite region and a microsatellite Examples include sequences that are bound so that a complementary base of 1 to 11 bases adjacent to the 5 ′ end of the region is bound.
  • Such a probe forms a hybrid having a loop structure when hybridized with the DNA of the present invention.
  • the loop structure according to the present invention is composed only of the microsatellite region, or composed of the microsatellite region and 1 to 10 bases on both sides or one side thereof.
  • the probe according to the present invention starts from the base adjacent to one base in the direction of the 3 ′ end of DNA having a microsatellite region from the 3 ′ end of the microsatellite region, usually 5 to 1000 bases, preferably 5 to 200 bases, more preferably Starts with a base complementary to a base sequence of 5 to 100 bases and a base adjacent to the 5 'end of DNA having a microsatellite region from the 5' end of the microsatellite region, usually 5 to 1000 bases, preferably 5 A complementary strand of a base sequence of ⁇ 200 bases, more preferably 5-100 bases, a base complementary to the base next to the 3 ′ end of the microsatellite region and a base adjacent to the base from the 5 ′ end of the microsatellite region A sequence that is bound so that the complementary base of is bound.
  • the loop structure according to the present invention is configured only by the microsatellite region.
  • the probe according to the present invention is preferably subjected to a blunt end treatment when the hybrid has a protruding end, so that the microsatellite is derived from the base sequence of the DNA according to the present invention. It is not necessary to bind to the entire base sequence except the region or microsatellite region and the 1 to 20 bases adjacent to the region or microsatellite region.
  • the chain length of the probe according to the present invention is usually 10 to 2000 bases, preferably 10 to 1000 bases, more preferably 10 to 200 bases.
  • the microsatellite region, or the microsatellite region and its 3 ′ end or / and 5 ′ end are formed on the DNA according to the present invention.
  • a hybrid having a loop structure composed of a base sequence of 1 to 10 bases on one side or both sides adjacent to can be formed.
  • the probe according to the present invention may form a double strand with the second microsatellite region at the time of hybrid formation,
  • the second microsatellite region may have a loop structure.
  • the probe according to the present invention is one in which the second microsatellite region has a loop structure. preferable. This is because it is possible to avoid the possibility that multiple non-specific reaction products are produced due to cross-linking that occurs, such as binding to a repetitive sequence different from the set repetitive sequence. is there.
  • the loop structure formed by the second microsatellite region preferably includes all of the second microsatellite region, but the probe has a complementary strand (complementary base) having the same unit sequence as the microsatellite region to be detected. If it does not exist, it may include only a part of the microsatellite region. When such a probe is used, the obtained hybrid body forms a plurality of loop structures.
  • hybrid body of the present invention The hybrid of the present invention is obtained by binding (hybridizing) the probe of the present invention to the DNA of the present invention, forming a loop structure on the DNA of the present invention as described above, and The loop structure includes the entire microsatellite region. That is, the hybrid is composed of two double-stranded base moieties and a loop structure of a single-stranded base moiety sandwiched between them (present between them).
  • this hybrid body may have a protrusion terminal, since there is a possibility of affecting the separation, one having no protrusion terminal is preferable.
  • the base chain opposite to the base chain having a loop structure may have a single-stranded base of 1 to 2 bases.
  • the hybrid body may have another loop structure on the opposite side of the base sequence having the loop structure, and have the loop structure on both sides of the hybrid body.
  • the DNA according to the present invention has a second microsatellite region, and at least one unit sequence thereof is the same as that of the microsatellite region to be detected, the second microsatellite region It is preferable to further form a loop structure formed of all or a part of the DNA on the DNA of the present invention.
  • the above loop structure is composed of a single-stranded base chain that is made on genomic DNA and does not hybridize with the probe (does not form base pairs), and forms a loop-like secondary structure (steric structure) in the hybrid.
  • the loop structure is usually composed of 3 to 600 bases, preferably 5 to 600 bases, more preferably 5 to 300 bases.
  • the above two double-stranded base moieties are each independently composed of usually 5 to 1000 base pairs, preferably 5 to 500 base pairs, more preferably 5 to 100 base pairs.
  • the double-stranded base may have a protruding end depending on the type of probe and the specifications of the LH method described later.
  • the hybrid body of the present invention includes the entire microsatellite region in the loop structure, when detecting a DNA polymorphism having a different microsatellite region, the hybrid is formed using the same probe.
  • the shape, size, charge, etc. of the loop structure to be made are different. Therefore, by separating hybrids containing DNAs having different microsatellite regions due to differences in molecular weight, molecular structure or / and charge, these can be separated and identified with high accuracy.
  • the hybrid structure in the conventional LH method also formed a loop structure, but not all of the microsatellite region was included in the loop structure, so a hybrid body other than the target hybrid body (non-specific reaction product) These non-specific reaction products were produced and inhibited the detection of the target hybrid.
  • the hybrid contains a sequence complementary to a part of the microsatellite region so that the probe binds to a part of the microsatellite region. It is considered that the complementary sequence of the probe binds to a plurality of repetitive sequences present in the microsatellite region, and as a result, various hybrids (non-specific reaction products) having different loop structures are formed. . That is, it is presumed that various non-specific reaction products are produced by binding the complementary sequence of the repetitive sequence in the probe to a repetitive sequence different from the set repetitive sequence.
  • a schematic diagram of the hybrid body of the present invention when a hybrid body is formed using the probe according to the present invention is shown below. That is, in this case, a probe is designed by binding base sequences (A and B) complementary to base sequences (A 'and B') on both sides of the satellite region of the DNA according to the present invention.
  • the microsatellite region has a loop structure, and a hybrid having a loop structure including all the microsatellite regions is formed.
  • the method for detecting DNA according to the present invention comprises (1) contacting the DNA according to the present invention with the probe according to the present invention to form the hybrid according to the present invention, and (2) separating the obtained hybrid. (3) It is made by detecting DNA having a microsatellite region by detecting the hybrid.
  • the reaction may be abbreviated as LH reaction
  • the DNA according to the present invention and the probe according to the present invention are brought into contact with each other and subjected to a DNA molecule association reaction.
  • a hybrid body may be formed.
  • the double strand is usually obtained by heat treatment (90 to 100 ° C.) or alkali treatment (treatment with sodium hydroxide or the like) usually performed in this field.
  • the DNA may be single-stranded to obtain the DNA according to the present invention, and the DNA may be brought into contact with the probe according to the present invention to be subjected to the LH reaction.
  • the protruding end is preferably subjected to a blunt end treatment.
  • a blunt end treatment include a DNA extension reaction using an enzyme having a polymerase activity usually used in this field, a degradation reaction of a terminal single-stranded DNA using an enzyme having an exonuclease activity, and the like.
  • the longer the double-stranded base portion in the hybrid the more stable the hybrid of the present invention, and thus DNA extension reaction is preferred.
  • the probe according to the present invention is added to water or a buffer solution containing the DNA according to the present invention so that the concentration in the solution is 20 nM to 2 ⁇ M, preferably 100 nM to 500 nM.
  • the reaction is usually carried out at 30 to 55 ° C. for 1 to 600 seconds, preferably 1 to 30 seconds.
  • the water containing the DNA according to the present invention is preferably deionized sterilized water, and the buffer is not particularly limited as long as it is a buffer known per se used in this field.
  • Tris buffer, phosphate buffer , Veronal buffer, borate buffer, Good's buffer, etc. and the pH is not particularly limited, but is usually in the range of 5-9.
  • the terminal blunting reaction may be carried out according to a smoothing reaction known per se.
  • a smoothing reaction known per se.
  • 1 ng to 1 ⁇ g of a hybrid is added to 20 to 40 ⁇ L of water or a buffer, and four kinds of deoxyribonucleotide triphosphates are further added.
  • Each acid (dNTPs) is usually added 0.01 to 50 nmol, preferably 0.1 to 20 nmol, and 1 to 5 U of an enzyme having exonuclease activity, and usually 30 to 70 ° C., preferably 35 to 60 ° C., usually 10 to 120 minutes.
  • the reaction may be performed preferably for 30 to 60 minutes.
  • the water or the buffer in the reaction include the same as those described in the above-mentioned molecular association reaction.
  • the enzyme having exonuclease activity include T4 DNA polymerase, KOD DNA polymerase, pfu DNA polymerase, and the like.
  • dNTPs deoxyribonucleotide triphosphates
  • the deoxyribonucleotide triphosphates are usually added together with 0.01 to 50 nmol, preferably 0.1 to 20 nmol, and usually 30 to 80 ° C., preferably 65 to 75 ° C., usually 10 seconds to 10 minutes, preferably This is done by reacting in 1 to 4 minutes.
  • water or the buffer in the reaction include the same as those described in the above-mentioned molecular association reaction.
  • Examples of the enzyme having polymerase activity include T4 DNA polymerase, KOD DNA polymerase, pfu DNA polymerase, Taq DNA polymerase, Klenow fragment, and the like, and heat-resistant DNA polymerases such as Taq DNA polymerase and KOD DNA polymerase are preferred. .
  • the DNA according to the present invention in the above reaction (1) may be amplified according to a known PCR reaction.
  • the PCR reaction product is a double-stranded DNA
  • the double-stranded DNA may be subjected to a treatment for making a single strand and then subjected to an LH reaction.
  • the reaction can proceed without adding dNTPs or an enzyme having polymerase activity. Is preferably used.
  • the LH reaction according to the present invention is preferably a cycle reaction by adding a single-stranded treatment of double-stranded DNA by heating before the molecular association reaction.
  • the probe according to the present invention is added to water or a buffer containing the DNA according to the present invention so that the concentration in the solution is 20 nM to 2 ⁇ M, preferably 100 nM to 500 nM.
  • Hybrids can be formed by performing 1 to 4 cycles of reaction at 90 to 100 ° C for 2 to 4 minutes (thermal denaturation) and 30 to 55 ° C for 1 to 30 seconds (DNA molecule association reaction). That's fine.
  • an extension reaction may be added to form a cycle reaction, in which case 90 to 100 ° C.
  • the reaction may be carried out by 1 to 4 cycles of 75 ° C. for 1 to 4 minutes (DNA molecule association, DNA elongation reaction).
  • the cycle reaction of heat denaturation, DNA molecule association reaction, and DNA extension reaction is specifically performed as follows. That is, first, for example, the concentration of the probe according to the present invention in a solution of 20 nM to 20 to 40 ⁇ L of, for example, 10 to 50 mM Tris buffer (pH 8.4 to 9.0) in which 100 ng of DNA having a microsatellite region is dissolved. It is added so as to be 2 ⁇ M, preferably 100 nM to 500 nM, more preferably 100 to 200 nM.
  • the hybrid is formed by repeating the reaction of 1 to 4 cycles.
  • the step (1) including the LH reaction is specifically performed as follows. That is, for example, 1 to 100 pg of DNA as a template is dissolved in a buffer solution such as 20 to 40 ⁇ L of Tris-HCl buffer, and each of the two primers (Forward, Reverse) for amplifying the target region is usually 1 to 100 pmol.
  • each of the four types of deoxyribonucleotide triphosphates is added to usually 0.01 to 50 nmol, preferably 0.1 to 20 nmol, and heat-resistant DNA such as Taq DNA polymerase, KOD DNA polymerase, etc.
  • heat-resistant DNA such as Taq DNA polymerase, KOD DNA polymerase, etc.
  • the probe according to the present invention is added in an amount of 0.1 to 10 times, for example, usually 0.1 to 500 pmol, preferably 0.1 to 50 pmol, as the template, and the LH reaction is performed in the same manner as described above. Is made by
  • an LH reaction can be performed simultaneously with the PCR reaction.
  • a probe according to the present invention a probe in which the 3 ′ end and the 5 ′ end are modified with a phosphate group or the like may be used, and the PCR reaction may be performed in the presence of the probe.
  • 1 to 100 pg of DNA as a template is dissolved in a buffer solution such as 20 to 40 ⁇ L of 10 to 50 mM Tris-HCl buffer (pH 8.4 to 9.0), and two kinds of primers (Forward and Reverse) are respectively used.
  • each of the four types of deoxyribonucleotide triphosphates is usually 0.01 to 50 nmol, preferably 0.1 to 20 nmol, preferably modified at the 3 ′ end and 5 ′ end.
  • a probe is usually added in an amount of 0.1 to 500 pmol, preferably 0.1 to 50 pmol, and a thermostable DNA polymerase coexists with 1 to 5 U, for example, (1) 93 to 98 ° C., 10 seconds to 10 minutes ⁇ (2) 50 to 60 °C, 10 seconds to 3 minutes ⁇ (3) It is made by repeating the reaction with 65 to 75 ° C and 1 to 5 minutes as one cycle for 30 to 40 cycles.
  • the method for separating the hybrid of the above (2) is not particularly limited as long as it is a method for separating DNA usually used in this field, particularly a method capable of separating double-stranded DNA.
  • a method of separation based on a difference in structure or / and charge or the like is preferable. That is, when the hybrid body of the present invention is formed using a plurality of DNA polymorphisms having different microsatellite regions, the resulting plurality of hybrid bodies have different sizes or / and charges of the loop structure. Furthermore, when forming a secondary structure such as forming a partially complementary base pair in the loop structure, the secondary structure may be different. Therefore, it is possible to separate the plurality of hybrid bodies with high accuracy by separating them based on the difference in molecular weight, molecular structure or / and charge.
  • the separation means separation of two or more DNA polymorphic hybrids having different microsatellite regions.
  • one kind of the hybrid of the present invention is applied to the separation method as described above. It includes cases where they are attached.
  • the separation method based on the difference in molecular weight, molecular structure or / and electric charge include, for example, a high performance liquid chromatography method (HPLC method), an electrophoresis method, a separation method using a filter, and the like. It is done. Among these, electrophoresis is more preferable.
  • examples of the electrophoresis include isoelectric focusing, SDS-polyacrylamide electrophoresis, agarose gel electrophoresis, acrylamide electrophoresis, capillary electrophoresis, capillary chip electrophoresis, Examples include electrophoresis such as dielectrophoresis. Among them, capillary electrophoresis and capillary chip electrophoresis are preferred because of their good cooling efficiency, high voltage, and efficient separation. Capillary chip electrophoresis suitable for trace sample analysis is preferred. Particularly preferred. The conditions for these separation methods may be carried out according to a method known per se.
  • capillary chip electrophoresis may be carried out according to the method described in WO2007 / 027495 and the like.
  • the length of the capillary electrophoresis or polyacrylamide gel used is usually 1 to 20 cm, preferably 1 to 10 cm.
  • the hybrid of the present invention may be detected based on the mobility and the movement time.
  • the hybrid of the present invention may be detected based on the passage time of the filter.
  • electrophoresis the hybrid of the present invention may be detected based on the migration time or migration distance (movement time or movement distance). More specifically, for example, two or more DNA polymorphisms having different microsatellite regions may be separated by electrophoresis, and the hybrid of the present invention may be detected based on the migration time or migration distance.
  • Any detection method in (3) above may be used as long as it is a publicly known method, but it may be detected by a device such as a differential refraction detector, a fluorescence detector, a UV detector, etc. Detector and a fluorescence detector are preferable, and detection by a fluorescence detector is more preferable.
  • the detection target substance When performing fluorescence detection, it is necessary to label the detection target substance with fluorescence, but it may be performed according to a method generally used in this field. Specifically, for example, a method of detecting fluorescence using a probe labeled in advance with fluorescence is used. When the hybrid is separated by electrophoresis, it may be performed by a method of labeling DNA with an intercalator after the separation.
  • Examples of the method for fluorescently labeling the probe include labeling with a cyanine dye.
  • the cyanine dye herein is a compound in which two heterocycles are bonded with a methine group or a polymethine group, and at least one of the heterocycles is a nitrogen-containing heterocycle. Is preferably a nitrogen-containing heterocyclic ring.
  • Examples of the substituent derived from the cyanine dye include those derived from Cy dyes described in US4,981,977, US 5,268,486, US5,486,616, etc., those derived from Dy dyes described in US6,083,485, etc., WO2006 / 047452 etc. Preferred are those derived from HiLyte dyes described in 1) and those derived from Alexa dyes.
  • those derived from commercially available products may be used.
  • a pigment derived from a Cy-based dye those derived from Cy3, Cy3.5, Cy5, Cy5.5, Cy7, etc.
  • Dy dyes such as DY-700, DY-701, DY-730, DY-731, DY-732, DY-734, DY-750, DY- 751, DY-752, DY-776, DY-780, DY-781, DY-782, etc.
  • those derived from HiLyte dyes include HiLyte Fluor 555, HiLyte Fluor 647, HiLyte Fluor 680, HiLyte Fluor Those derived from 750 etc.
  • Alexa-Fluor-Dye-532 Alexa-Fluor-Dye-546, Alexa-Fluor-Dye-555, Alexa-Fluor-Dye-568, Alexa Fluor Dye 594, Alexa Fluor Dye 633, Alexa Fluor Dye 647, Alexa Fluor Dye 660, Alexa Fluor Dye 680, Alexa Fluor Dye 700, Alexa Fluor Dye 750, etc.
  • those derived from Cy dyes are preferred, and those derived from Cy5 are preferred.
  • the intercalator used in the fluorescence detection may be any intercalator that emits strong fluorescence by binding to a nucleic acid chain.
  • an acridine dye such as acridine orange, for example, ethidium bromide, ethidium homodimer Ethidium compounds such as 1 (EthD-1), ethidium homodimer 2 (EthD-2), ethidium bromide monoazide (EMA), and dihydroethidium
  • iodine compounds such as propidium iodide and hexidium iodide, such as 7-aminoactino Mycin D (7-AAD), such as POPO-1, BOBO-1, YOYO-1, TOTO-1, JOJO-1, POPO-3, LOLO-1, BOBO-3, YOYO-3, TOTO-3, etc.
  • Cyanine dimer dyes (both trade names of molecular probes) such as PO-PRO-1, BO-PRO-1, YO-PRO-1, TO-PRO-1, JO-PRO-1, PO-PRO-3 , LO-PRO-1, BO-PRO-3, YO-PRO-3, TO-PRO-3, TO-PRO-5, etc.
  • Cyanine monomer dyes (all trade names of molecular probes), such as SYBR Gold, SYBR Green I and SYBR Green II, SYTOX Green, SYTOX Blue, SYTOX Orange, etc. Can be mentioned.
  • acridine dyes such as 9-amino-6-chloro-2-methoxyacridine (ACMA) and bis- (6-chloro-2-methoxy-9-acridinyl) spermine (acridine homodimer) such as hydroxystilbamidine
  • ACMA 9-amino-6-chloro-2-methoxyacridine
  • ACMA bis- (6-chloro-2-methoxy-9-acridinyl) spermine
  • acridine homodimer such as hydroxystilbamidine
  • the method of the present invention is specifically performed as follows, for example.
  • a PCR reaction is performed using human genomic DNA extracted and purified by a commercially available kit or the like as a sample.
  • Samples for PCR reaction include, for example, primers (Forward and Reverse) for amplifying DNA to be detected, usually 100 to 1000 nM, 4 types of deoxyribonucleotide triphosphates (dNTPs), usually 0.1 to 500 nM, Taq It can be prepared by adding 1 ng to 100 ng of human genomic DNA after dissolving in 20 ⁇ L of a buffer solution such as Tris-HCl buffer so that the DNA polymerase becomes 1 to 5 units.
  • primers Forward and Reverse
  • dNTPs deoxyribonucleotide triphosphates
  • Taq it can be prepared by adding 1 ng to 100 ng of human genomic DNA after dissolving in 20 ⁇ L of a buffer solution such as Tris-HCl buffer so that the DNA polymerase becomes 1 to 5 units.
  • the probe of the present invention is added in an amount of 0.1 to 10 times the target DNA, and the LH reaction is performed. That is, for example, a probe according to the present invention is added to a PCR reaction solution so that the final concentration is 100 to 500 nM, and it is added at 90 to 100 ° C. for 2 to 4 minutes, at 30 to 55 ° C.
  • a hybrid of DNA for detection can be obtained by performing 1 to 4 cycles of a reaction of 1 to 4 minutes at 65 to 75 ° C.
  • the obtained solution is electrophoresed, for example, by capillary chip electrophoresis, and the mutant DNA can be detected by detecting, for example, a fluorescence detector.
  • the nucleotide synthesis was performed using a contracted synthesis service of Sigma Genosys.
  • the oligonucleotide synthesis of primers and probes, the labeling of fluorescent dyes, and the like similarly used the commissioned synthesis service of Sigma Genosys.
  • each of the 12 kinds of sample DNAs was used as a direct template DNA, and an overlap extension chain reaction with the Fx sequence was performed.
  • 1.0 ⁇ L of 2 ⁇ M Fx sequence (final concentration 200 nM) is added to 1.0 ⁇ L of each 5 ⁇ M sample DNA (final concentration 500 nM), and then 0.04 ⁇ L of AccuPrime Taq polymerase High Fidelity (Invitrogen)
  • 1.0 ⁇ L of 10 ⁇ buffer attached to the product was added, and deionized sterilized water (ddH 2 O) was further added to prepare a reaction solution of 10 ⁇ L.
  • 10 ⁇ L of the solution was subjected to steps (1 cycle) from annealing to extension chain reaction under the following reaction conditions with a DNA thermal cycler (DNA Engine PTC200, MJ Research).
  • each 10 ⁇ M primer (Forward: gacctcaagctgtcctcttgcc [SEQ ID NO: 14] and Reverse: taggcattcgaagccagcccg [SEQ ID NO: 15]) 1.0 ⁇ L and PCR reaction buffer 2.0 ⁇ L attached to the kit, AccuPrime Taq enzyme 0.5 ⁇ L and ddH 2 O 16.5 ⁇ L were used to prepare a PCR reaction solution 20.0 ⁇ L. Using this PCR reaction solution, a 20-cycle PCR reaction was carried out under the following reaction conditions using a DNA thermal cycler (DNA Engine PTC200) manufactured by MJ Research.
  • DNA thermal cycler DNA Engine PTC200
  • Example 1 Detection and detection of poly-T chain length polymorphism of TOMM40 gene by the method of the present invention
  • LH probe loop hybrid reaction probe
  • the LH probe was designed to bind to both sides. That is, a sequence in which the 19-base complementary strand from the 5 'end of the microsatellite region of the complementary sequence of single-stranded DNA in Table 2 above is connected to the 71-base complementary strand from the 3' end side.
  • LH probe was used. Specifically, the following sequence (cy5delT0) was used.
  • LH probe ID.
  • Tris-glycine buffer (37.5 mM Tris, 288 mM Glycine) is used as the electrophoresis buffer for small electrophoresis devices (Ato, AE -7300 Compact PAGE) at room temperature. After electrophoresis, it was stained with Cyber Green I (Takara Bio, F0513) for 10 minutes, washed with water, and detected with a laser imaging scanner (Amersham, STORM 860) with an excitation wavelength of 450 nm and a detection filter of 520LP. The obtained results are shown in FIG.
  • lane 10 shows the result of electrophoresis of Fx / Q10A LH reaction product
  • lane 15 shows the result of migration of Fx / Q15A LH reaction product
  • lane 16 shows the result of migration of Fx / Q16A LH reaction product.
  • Lane 18 shows the result of electrophoresis of the LH reaction product of Fx / Q18A
  • Lane 19 shows the result of migration of the LH reaction product of Fx / Q19A
  • Lane 20 shows the LH reaction product of Fx / Q20A.
  • Lane 21 shows the result of electrophoresis of the LH reaction product of Fx / Q21A
  • Lane 22 shows the result of migration of the LH reaction product of Fx / Q22A
  • Lane 25 shows the LH reaction product of Fx / Q25A Represents the results of electrophoresis.
  • the LH reaction was performed using a probe designed so that the loop includes the entire microsatellite region, and the resulting LH reaction product was separated and detected by acrylamide gel electrophoresis.
  • the band derived from the target reaction product was hardly seen, and it was shown that discrimination detection was sufficiently possible even with the TOMM40 gene having poly-T sequences with different chain lengths.
  • Comparative Example 1 Identification and detection of polymorphism of poly-T chain length polymorphism of TOMM40 gene using LH probe including a part of microsatellite region (1) Preparation of LH probe The probe was designed to bind to a part of the microsatellite region in the detection target DNA and not to the remaining part. That is, the 55 base complementary strand from the 5 ′ end of the microsatellite region in the single-stranded DNA in Table 2 above, the 10 base PolyA and the 20 base complementary strand from the 3 ′ end side are connected. This was used as an LH probe. Specifically, the following sequence (cy5Q10A) was used.
  • Fx / Q10A, Fx / Q15A, Fx / Q16A, Fx / Q18A are the same as in Example 1 (2) and (3) except that the above probe is used.
  • Fx / Q19A, Fx / Q20A, Fx / Q21A, Fx / Q22A and Fx / Q25A were identified and detected for poly-T chain length polymorphism. The result is shown in FIG.
  • lane 10 shows the result of electrophoresis of Fx / Q10A LH reaction product
  • lane 15 shows the result of migration of Fx / Q15A LH reaction product
  • lane 16 shows the result of migration of Fx / Q16A LH reaction product.
  • Lane 18 shows the result of electrophoresis of the LH reaction product of Fx / Q18A
  • Lane 19 shows the result of migration of the LH reaction product of Fx / Q19A
  • Lane 20 shows the LH reaction product of Fx / Q20A.
  • Lane 21 shows the result of electrophoresis of the LH reaction product of Fx / Q21A
  • Lane 22 shows the result of migration of the LH reaction product of Fx / Q22A
  • Lane 25 shows the LH reaction product of Fx / Q25A Represents the results of electrophoresis.
  • the LH probe in the conventional LH method when used, many signal bands of non-specific reaction products are observed.
  • the number of repetitive sequences in the poly-T region was 15 or 16, a band of a non-specific reaction product was detected strongly (indicated by an arrow in the figure). Therefore, it was found that it was difficult to specify the LH reaction product by this method.
  • the probe contains a sequence complementary to a part of the microsatellite region so that the probe binds to a part of the microsatellite region. It was speculated that multiple non-specific reaction products were produced due to cross-linking that occurred, such as the complementary strand of the repetitive sequence bound to a repetitive sequence different from the set repetitive sequence. .
  • Example 2 Fx / Q28A, Fx / Q29A, or Fx / Q30A is used as a sample for distinguishing and detecting the poly-T chain length polymorphism of the TOMM40 gene according to the method of the present invention, which targets long poly-T polymorphism .
  • the poly-T chain length polymorphism in the TOMM40 gene sequence was discriminated and detected by the same method as in Example 1 (2) and (3) except that. The result is shown in FIG.
  • Lane 28 is the result of electrophoresis of the LH reaction product of Fx / Q28A
  • Lane 29 is the result of electrophoresis of the LH reaction product of Fx / Q29A
  • Lane 30 is the migration of the LH reaction product of Fx / Q30A. Represents the results.
  • Example 3 Identification and detection of CAG repeat polymorphism in androgen receptor (AR) gene sequence
  • Preparation of human blood-derived human genomic DNA and cloning sample A plurality of samples derived from human blood were prepared and QIAamp DNA Blood Midi Kit According to (Qiagen), 2 ml of the whole blood was treated with proteinase K at 70 ° C. for 10 minutes, and then ethanol was added. Further, the supernatant after centrifugation was applied to a QIAmp Midi column to extract human genomic DNA. From 30 ⁇ L of each DNA extract obtained here, 1 ⁇ L was used as a template, and PCR reaction was performed using AccuPrime Taq polymerase system (PCR reaction kit, manufactured by Invitrogen).
  • each 10 ⁇ M primer (Forward: agcgtgcgcgaagtgatcca [SEQ ID NO: 32] and Reverse: atgggcttggggagaaccat [SEQ ID NO: 33]) 1.0 ⁇ L and PCR reaction buffer 2.0 ⁇ L attached to the kit, AccuPrime Taq enzyme 0.5 ⁇ L and ddH 2 O 16.5 ⁇ L were used to prepare a PCR reaction solution 20.0 ⁇ L.
  • a DNA thermal cycler DNA Engine PTC200, MJ Research
  • each PCR product obtained from a plurality of starting materials was inserted into the plasmid vector pGEM-T easy by the TA cloning method using the pGEM-T Vector System (Promega). Specifically, 1.0 ⁇ L of pGEM-T Easy Vector (manufactured by Promega), 5.0 ⁇ L of Rapid Ligation Buffer of DNA Ligation Kit (manufactured by Promega) and 1.0 ⁇ L of T4 ligase are added to each 3.0 ⁇ L of PCR amplification product, and the total amount is 10.0 ⁇ L. As a result, incubation was performed at room temperature for 60 minutes to obtain recombinant DNA. Thereafter, E.
  • E. coli JM109 Competent Cells (manufactured by Toyobo Co., Ltd.) were used, and according to the product protocol, E. coli JM109 Competent Cells were transformed with the recombinant DNA obtained above at 42 ° C for 45 seconds. . The resulting transformant was then plated on LB-agar medium containing 100 ⁇ g / ml ampicillin, 0.2 mM isopropyl- ⁇ -thiogalactopyranoside (IPTG), 40 ⁇ g / ml X-Gal for 16 hours at 37 ° C. Cultured.
  • sample DNA containing the six types of gene polymorphic sequences shown in Table 3 below could be prepared on the AR gene exon 1. That is, it was confirmed that six sample DNAs having different microsatellite region lengths were prepared. These were designated as Sample M6, Sample M18, Sample M7, Sample M25, and Sample M2, respectively.
  • LH probe was designed so that it might couple
  • An LH probe was designed by connecting a strand and a complementary strand of a base sequence of 29 bases from a group adjacent to 14 bases therefrom. Specifically, the 5 ′ end of the following base sequence (Cy5ARdelCTG0-20R) was fluorescently modified with Cy5 as a probe.
  • PCR reaction was performed using AccuPrime Taq polymerase system (PCR reaction kit, manufactured by Invitrogen). It was. First, according to the product protocol attached to the kit, each 10 ⁇ M primer (Forward: agcgtgcgcgaagtgatcca [SEQ ID NO: 32] and Reverse: atgggcttggggagaaccat [SEQ ID NO: 33]) 1.0 ⁇ L and PCR reaction buffer 2.0 ⁇ L attached to the kit, AccuPrime Taq enzyme 0.5 ⁇ L and ddH 2 O 16.5 ⁇ L were used to prepare a PCR reaction solution 20.0 ⁇ L.
  • AccuPrime Taq enzyme 0.5 ⁇ L and ddH 2 O 16.5 ⁇ L were used to prepare a PCR reaction solution 20.0 ⁇ L.
  • PCR reaction sample 2 pg was suspended in 20 ⁇ L of a PCR reaction solution to obtain a PCR reaction sample.
  • a 30-cycle PCR reaction was performed under the following reaction conditions using a DNA thermal cycler (DNA Engine PTC200) manufactured by MJ Research.
  • lane 26 represents the migration result of the LH reaction product of sample M6
  • lane 24 represents the migration result of the LH reaction product of sample M18
  • lane 23 represents the migration result of the LH reaction product of sample M7
  • Lane 22 represents the migration result of the LH reaction product of sample M25
  • lane 21 represents the migration result of the LH reaction product of sample M2.
  • the 19-base complementary strand and the CAG repeat 36 bases adjacent to the 5 ′ end of the single-stranded DNA microsatellite region in Table 3 above and the 3 ′ end of the single-stranded DNA microsatellite region in Table 3 above.
  • An LH probe was designed by connecting a complementary strand of 20 bases from the adjacent base and a complementary strand of a base sequence of 29 bases from the adjacent base from 14 bases in that order. Specifically, the 5 ′ end of the following sequence (Cy5ARdelCTG12-20R) was fluorescently modified with Cy5 and synthesized as a probe.
  • lane 28 represents the migration result of the LH reaction product of sample M34
  • lane 27 represents the migration result of the LH reaction product of sample M15
  • lane 26 represents the migration result of the LH reaction product of sample M6
  • lane 25 represents the migration result of the LH reaction product of sample U7
  • lane 24 represents the migration result of the LH reaction product of sample M18
  • lane 23 represents the migration result of the LH reaction product of sample M7
  • lane 22 represents the migration result of sample M25.
  • the migration result of the LH reaction product is represented
  • Lane 21 represents the migration result of the LH reaction product of sample M2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、非特異的反応産物の問題が生じず、マイクロサテライト領域を有するDNAを精度よく検出できる方法の提供を課題とする。 本発明は、「(1)マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体を形成させ、(2)得られたハイブリッド体を分離し、(3)該ハイブリッド体を検出することにより、マイクロサテライト領域を有するDNAを検出する方法」及び「マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体」に関する。

Description

マイクロサテライト領域を有するDNAの検出方法
 ループハイブリッド法を用いて、マイクロサテライト領域を有するDNAを検出する方法及びループハイブリッド法により得られるハイブリッド体に関する。
 1~6塩基が一単位となってそれが繰り返されて形成される反復配列はマイクロサテライト領域と呼ばれ、ヒトのゲノム配列など多くの哺乳類動物に多数存在し、ヒトゲノム中に3000箇所以上存在することも知られている。このマイクロサテライト領域はその反復回数(繰り返し数)が異なる多型を示すため、種々の遺伝子解析のマーカーとして有用であることが知られている。また、マイクロサテライト領域が遺伝子のタンパクコード領域にある場合、その繰り返し数の違いが疾患の原因となることも知られており、遺伝子と疾患の相関を調べるために、マイクロサテライト領域について種々の研究がなされている。
 このようなマイクロサテライト領域を有するDNAの多型の解析方法は、通常、PCR増幅後、そのフラグメントを、変性ポリアクリルアミド・ゲル電気泳動又はキャピラリー電気泳動により分離分析することによりなされる。しかしながら、マイクロサテライトDNAの多型の解析を行う場合、30cmのキャピラリーを用いる電気泳動や40cmの長さの変性ポリアクリルアミドゲルを用いる電気泳動が必要となるため、高価となる、専門的な技術が要求される等の問題があった。
 一方、変異遺伝子の検出方法として、DNA断片のPCR反応後の反応液に一本鎖オリゴDNAを添加して目的のDNA断片とハイブリダイゼーションさせ、得られたハイブリッド体の構造の違いにより電気泳動法で分離し、変異遺伝子を判別するループハイブリッド法(LH法)が知られている(特許文献1)。また、該LH法を応用して、マイクロサテライト領域を有するUGT1A1の変異遺伝子の検出もなされている(非特許文献1)。
特開2007-61080
Clinica Chimica Acta, 412, 1688-1672
 高価な機器や専門的な技術を要するという問題がないため、本発明者らは非特許文献1記載の方法(従来のLH法)について研究を進めてきた。しかしながら、該従来のLH法を用いた場合、目的のハイブリッド体以外の非特異的反応産物が多く産生されるため、目的物の特定が難しいという問題が生じることを本発明者らは見出した。即ち、従来のLH法では、野生型DNAと変異型DNAのみの分離を目的としていたため、これらの泳動バンド又は泳動ピークが非特異的反応産物のそれと離れていれば問題となることはなかった。しかしながら、マイクロサテライト領域の反復数の違いにより多型を分離する場合、非特異的反応産物が目的物の検出の妨げとなる場合があることが判った。このような状況から、本発明は、特定のループ構造を有するハイブリッド体を形成させるLH法を用い、上記のような非特異的反応産物の問題が生じず、マイクロサテライト領域を有するDNAを精度よく検出できる方法の提供を課題とする。
 即ち、本発明者らは、LH法を用いたマイクロサテライト領域を有するDNAの検出方法について鋭意研究した結果、プローブが目的のDNAにハイブリダイズした際に、マイクロサテライト領域が全てループ構造内に入るようにプローブを合成することにより、非特異的反応産物がほとんど産生されることがないことを見出し、本発明を完成するに至った。即ち、本発明は、
「(1)マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体を形成させ、
(2)得られたハイブリッド体を分離し、
(3)該ハイブリッド体を検出することにより、マイクロサテライト領域を有するDNAを検出する方法」及び
「マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体」に関する。
 本発明によれば、簡便で且つ精度よくマイクロサテライト領域を有するDNAを検出することができる。
 また、繰り返し数(反復数)の異なるマイクロサテライト領域を有するDNAであっても、繰り返し数(反復数)の長さに応じて分離することができ、且つ従来なされていたLH法では、多く産生されていた非特異的反応産物をほとんど産生することがないため、検出ミスがなく高い精度で目的のDNAの検出が可能となる。
 特に、本発明のようにマイクロサテライト領域が全てループ構造内に入るようにプローブを設計することにより、非特異的反応産物の生成がほぼ無くなり且つ反復数の違う変異多型をその反復数の違いにより検出できるようになることが分かったのは発明者にとって全く意外なことであった。
 即ち、従来は一塩基置換の有無の検出が主たる目的であり、ループ構造の立ち上がり部分に置換塩基が存在するようにプローブを設計していた。そのため、マイクロサテライト領域に変異がある場合には、マイクロサテライト領域がループ構造の立ち上がり部分にあるように、即ち、マイクロサテライト領域の一部がプローブと結合し、一部がループ構造を形成するように、プローブを設計していた。よって、マイクロサテライト領域全てがループ構造内に入るようにプローブを設計することにより、非特異的反応産物の生成がほぼ無くなり且つ反復数の違う変異多型をその反復数の違いにより検出できることは予想外の効果であった。
9種のTOMM40遺伝子のpoly-T鎖長多型について、本発明の方法により得られたLH反応産物を電気泳動で分離した結果を表す。 9種のTOMM40遺伝子のpoly-T鎖長多型について、従来のLH法により得られたLH反応産物を電気泳動で分離した結果を表す。 3種のTOMM40遺伝子の長鎖poly-T多型について、本発明の方法により得られたLH反応産物を電気泳動で分離した結果(3-a)、及び従来のLH法により得られたLH反応産物を電気泳動で分離した結果(3-b及び3-c)を表す。 5種のアンドロジェン受容体(AR)遺伝子配列中のCAGリピート多型について、本発明の方法により得られたLH反応産物を電気泳動で分離した結果を表す。 8種のアンドロジェン受容体(AR)遺伝子配列中のCAGリピート多型について、従来のLH法により得られたLH反応産物を電気泳動で分離した結果を表す。
[本発明に係るマイクロサテライト領域を有するDNA]
 本発明に係るマイクロサテライト領域は、通常1~6塩基、好ましくは1~3塩基が一単位となってそれが繰り返されて形成される反復塩基配列からなる領域を表す。反復塩基配列中の反復の基準となる一単位の配列(以下、ユニット配列と略記する)の繰り返し数(反復数)は、通常2~100であり、好ましくは5~100、より好ましくは5~50である。但し、反復塩基配列のユニット配列が1塩基の場合、その繰り返し数は少なくとも3以上である。これは、本発明のハイブリッド体におけるループ構造は、マイクロサテライト領域のみで構成される場合もあるため、少なくとも3塩基以上ないとループ構造を形成できないためである。該マイクロサテライト領域の塩基数としては、通常3~600塩基、好ましくは5~600塩基、より好ましくは5~300塩基である。上記マイクロサテライト領域の具体的な配列としては、反復塩基配列のユニット配列が1塩基の場合にはPolyTやPolyA等が挙げられ、2塩基の場合にはCAリピートからなるもの等が挙げられ、3塩基の場合にはCAG、CTG、CGGのリピートからなるもの等が挙げられる。
 本発明に係るマイクロサテライト領域を有するDNA(以下、単に本発明に係るDNAと略記する場合がある)としては、上記マイクロサテライト領域を有するものであって、且つそのマイクロサテライト領域の前後の、通常5~1000塩基、好ましくは5~500塩基、より好ましくは5~100塩基の塩基配列が既知である一本鎖DNAであれば何れでもよい。中でも、マイクロサテライト領域が、マイクロサテライト領域のユニット配列の反復数が異なるDNA(多型DNA)がより好ましい。具体的なDNAとしては、動物、微生物、細菌、植物等の生物から単離されるゲノムDNA断片、ウイルスから単離可能なDNA断片、およびmRNAを鋳型として合成されたcDNA断片等が挙げられ、中でも、ヒト細胞由来の癌遺伝子が好ましいものとして挙げられる。また、上記DNAの鎖長(検出の対象となる鎖長)は、通常13~2000塩基、好ましくは13~1000塩基、より好ましくは13~200塩基である。尚、後述のように本発明のプローブは、特定のマイクロサテライト領域を検出対象として作製されるため、本発明に係るDNAは、検出対象とするマイクロサテライト領域以外の1以上のマイクロサテライト領域(第二のマイクロサテライト領域)を有していても構わないが、第二のマイクロサテライト領域としては、そのユニット配列が検出対象とするマイクロサテライト領域のユニット配列とは異なるものが好ましい。
 上記DNAは、できる限り精製され、DNA断片以外の余分な成分が取り除かれているものが好ましい。具体的には、例えばシリカ担体を用いたBoom法(Boom et al. J. Clin. Microbiol. 28:495-503 (1990))、ヨウ化ナトリウム溶液を使用する方法(Proc. Natl. Acad. Sci.USA 76-2,p615-619 (1979))など、常法に準じて精製されたものが好ましい。また、自体公知のポリメラーゼ連鎖反応(PCR反応)、例えばNucleic Acids Research,1991,Vol.19,3749、BioTechniques, 1994, Vol.16, 1134-1137に記載の方法により目的のDNAを増幅させたものを用いてもよい。
 本発明に係るDNAが二本鎖を形成している場合には、通常この分野でなされる加熱処理(90~100℃)やアルカリ処理(水酸化ナトリウム等による処理)等により二本鎖DNAを一本鎖化して本発明に係るDNAを得ればよい。
[本発明に係るプローブ]
 本発明に係るプローブは、上記本発明に係るDNAとハイブリダイズしてループ構造を有するハイブリッド体を形成するものであって、検出対象とするマイクロサテライト領域と相補な塩基配列を有さないものである。即ち、検出対象とするマイクロサテライト領域とは結合せずに、マイクロサテライト領域の両側の塩基配列と結合する塩基配列である。例えば、本発明に係るDNAからマイクロサテライト領域を除いた配列の相補鎖や、本発明に係るマイクロサテライト領域を有するDNAからマイクロサテライト領域とその前後1~10塩基を除いた配列の相補鎖等が挙げられる。本発明に係るプローブは、より具体的には、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1~11塩基隣の塩基から始まる、通常5~1000塩基、好ましくは5~200塩基、より好ましくは5~100塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1~11塩基隣の塩基から始まる通常5~1000塩基、好ましくは5~200塩基、より好ましくは5~100塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1~11塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1~11塩基隣の塩基の相補塩基とが結合するように、結合させた配列が挙げられる。このようなプローブは、本発明に係るDNAとハイブリダイズした際、ループ構造を有するハイブリッド体を形成する。この場合、本発明に係るループ構造は、マイクロサテライト領域のみで構成されるか、或いは、マイクロサテライト領域とその両側又は片側の1~10塩基の塩基とで構成される。
 本発明に係るプローブは、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1塩基隣の塩基から始まる、通常5~1000塩基、好ましくは5~200塩基、より好ましくは5~100塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1塩基隣の塩基から始まる、通常5~1000塩基、好ましくは5~200塩基、より好ましくは5~100塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1塩基隣の塩基の相補塩基とが結合するように、結合させた配列が好ましい。この場合、本発明に係るループ構造は、マイクロサテライト領域のみで構成される。
 尚、本発明に係るプローブは、本発明の検出方法で後述するようにハイブリッド体が突出末端を有する場合には平滑末端化処理するのが好ましいため、本発明に係るDNAの塩基配列からマイクロサテライト領域又はマイクロサテライト領域とそれに隣接する1~20塩基の塩基を除いた塩基配列全てと結合する必要はない。
 本発明に係るプローブの鎖長は、通常10~2000塩基、好ましくは10~1000塩基、より好ましくは10~200塩基である。
 上記のようなプローブを用いて、上記本発明に係るDNAとハイブリダイズさせることにより、本発明に係るDNA上に、マイクロサテライト領域、或いは、マイクロサテライト領域とその3’末端又は/及び5’末端に隣接する片側又は両側の1~10塩基の塩基配列により構成されるループ構造を有するハイブリッド体を形成することができる。
 また、本発明に係るDNAが第二のマイクロサテライト領域を有する場合、本発明に係るプローブは、ハイブリッド体形成時に、該第二のマイクロサテライト領域と二本鎖を形成するものであっても、該第二のマイクロサテライト領域をループ構造とさせるものであってもよい。但し、該第二のマイクロサテライト領域の何れかのユニット配列が、検出対象とするマイクロサテライト領域のそれと同じ場合、本発明に係るプローブは、該第二のマイクロサテライト領域をループ構造とさせるものが好ましい。これは、プローブが設定された反復配列とは別の反復配列に結合してしまう等の結合の掛け違いが生じ、複数の非特異的反応産物が産生される可能性をさけることができるためである。該第二のマイクロサテライト領域により形成されるループ構造も第二のマイクロサテライト領域を全て含むものが好ましいが、プローブ中に検出対象とするマイクロサテライト領域と同じユニット配列の相補鎖(相補塩基)が存在しなければ、マイクロサテライト領域の一部のみを含むものであっても構わない。このようなプローブを用いた場合、得られるハイブリッド体は、複数のループ構造を形成することとなる。
[本発明のハイブリッド体]
 本発明のハイブリッド体は、本発明に係るDNAに本発明に係るプローブが結合(ハイブリダイズ)して得られるものであり、上述のように本発明に係るDNA上にループ構造を形成し、且つ該ループ構造がマイクロサテライト領域全てを含むものである。即ち、該ハイブリッド体は、2個所の二本鎖塩基部分と、これらに挟まれた(これらの間に存在する)一本鎖塩基部分のループ構造から構成される。なお、該ハイブリッド体は、突出末端を有していてもよいが、分離に影響を及ぼす可能性があるため、突出末端を有さないものが好ましい。2箇所の二本鎖塩基部分に挟まれる箇所においては、ループ構造を有する塩基鎖の反対側の塩基鎖が1~2塩基の一本鎖塩基を有していてもよい。また、該ハイブリッド体は、ループ構造を有する塩基配列の反対側に更に別のループ構造を形成して、ハイブリッド体の両側にループ構造を有するようにしてもよい。更にまた、本発明に係るDNAが第二のマイクロサテライト領域を有し、そのうちの少なくとも一つのユニット配列が、検出対象とするマイクロサテライト領域のそれと同じとなる場合には、第二のマイクロサテライト領域の全部又は一部で形成されるループ構造を本発明に係るDNA上に更に形成するのが好ましい。
 上記ループ構造は、ゲノムDNA上に作られる、プローブとハイブリダイズしない(塩基対を形成しない)一本鎖塩基鎖で構成され、ハイブリッド体中でループ状の二次構造(立体構造)を形成するものである。該ループ構造は、通常3~600塩基、好ましくは5~600塩基、より好ましくは5~300塩基で構成される。
 上記2箇所の二本鎖塩基部分は、それぞれ独立して、通常5~1000塩基対、好ましくは5~500塩基対、より好ましくは5~100塩基対で構成される。尚、該二本鎖塩基はプローブの種類や後述のLH法の仕様により、突出末端を有していてもよい。
 上述のように本発明のハイブリッド体は、マイクロサテライト領域全てをループ構造中に含むものであるため、マイクロサテライト領域が異なるDNA多型を検出する場合、同じプローブを用いてハイブリッド体を形成すれば、形成されるループ構造の形、大きさ、電荷等が異なる。従って、分子量の違い、分子構造の違い又は/及び電荷の違い等により、マイクロサテライト領域が異なるDNAを含むハイブリッド体を分離することにより、これらを精度よく分離識別することができる。従来のLH法におけるハイブリッド体も、ループ構造は形成していたが、マイクロサテライト領域の全てがループ構造内に含まれていなかったため、目的のハイブリッド体以外のハイブリッド体(非特異的反応産物)が産生され、これらの非特異的反応産物が目的のハイブリッド体の検出を阻害していた。この非特異的反応産物が産生される理由は定かではないが、プローブがマイクロサテライト領域の一部と結合するように、マイクロサテライト領域の一部に相補的な配列を含んでいるため、ハイブリッド体を形成する際、マイクロサテライト領域に複数存在する反復配列に当該プローブの相補配列が結合し、その結果、異なるループ構造を有する種々のハイブリッド体(非特異的反応産物)が形成されると考えられる。即ち、プローブ中の反復配列の相補配列が、設定された反復配列とは別の反復配列に結合することにより、種々の非特異的反応産物が産生されると推測される。
 本発明に係るプローブを用いてハイブリッド体を形成させた場合の本発明のハイブリッド体の模式図を以下に示す。即ち、該ケースにおいては、本発明に係るDNAのサテライト領域の両側の塩基配列(A’及びB’)に対して相補な塩基配列(A及びB)を結合させてプローブを設計している。該プローブを用いて本発明に係るDNAとハイブリダイズさせると、マイクロサテライト領域がループ構造となり、マイクロサテライト領域を全て含むループ構造を有するハイブリッド体が形成される。

Figure JPOXMLDOC01-appb-I000001
[本発明に係るDNAの検出方法(本発明の方法)]
 本発明に係るDNAの検出方法は、(1)本発明に係るDNAに本発明に係るプローブを接触させて、本発明のハイブリッド体を形成させ、(2)得られたハイブリッド体を分離し、(3)該ハイブリッド体を検出することにより、マイクロサテライト領域を有するDNAを検出することによりなされる。
 上記(1)におけるハイブリッド体の形成方法(以下、該反応をLH反応と略記することがある)としては、本発明に係るDNAと本発明に係るプローブを接触させ、DNA分子会合反応に付してハイブリッド体を形成すればよい。尚、本発明に係るDNAが二本鎖を形成している場合には、通常この分野でなされる加熱処理(90~100℃)やアルカリ処理(水酸化ナトリウム等による処理)等により二本鎖DNAを一本鎖化して本発明に係るDNAとし、該DNAと本発明に係るプローブとを接触させてLH反応に付せばよい。また、該LH反応において得られたハイブリッド体が突出末端を有する場合には、該突出末端を平滑末端化処理するのが好ましい。これにより、ハイブリッド体の末端に一本鎖が存在しなくなるため、一本鎖があることによる予期しない非特異反応産物の産生を回避することができる。該平滑末端処理としては、通常この分野でなされるポリメラーゼ活性を有する酵素を用いたDNA伸長反応やエキソヌクレアーゼ活性を有する酵素を用いた末端一本鎖DNAの分解反応などが挙げられる。なかでも、ハイブリッド体における二本鎖塩基部分が長い方が本発明のハイブリッド体は安定であるため、DNA伸長反応が好ましい。
 上記DNA分子会合反応としては、本発明に係るDNAを含有する水又は緩衝液に、本発明に係るプローブを溶液中の濃度が20nM~2μM、好ましくは100nM~500nMとなるように添加し、通常30~55℃で通常1~600秒、好ましくは1~30秒反応させることによりなされる。本発明に係るDNAを含有する水としては脱イオン化滅菌水が好ましく、緩衝液としては、この分野で用いられる自体公知の緩衝液であれば特に限定されないが、例えばトリス緩衝液、リン酸緩衝液、ベロナール緩衝液、ホウ酸緩衝液、グッド緩衝液等が挙げられ、そのpHも特に限定されないが、通常5~9の範囲である。
 上記末端平滑化反応としては、自体公知の平滑化反応に準じてなされればよく、例えばハイブリッド体 1ng~1μgを20~40μLの水又は緩衝液に添加し、更に、4種類のデオキシリボヌクレオチド三リン酸(dNTPs)それぞれを通常0.01~50nmol、好ましくは、0.1~20nmol、及びエキソヌクレアーゼ活性を有する酵素1~5Uを添加して、通常30~70℃、好ましく35~60℃で通常10~120分、好ましくは30~60分反応させることによりなされればよい。該反応における水又は緩衝液は、上記分子会合反応の項で記載したものと同じものが挙げられる。上記エキソヌクレアーゼ活性を有する酵素としては、例えばT4 DNAポリメラーゼ、KOD DNAポリメラーゼ、pfu DNAポリメラーゼ等が挙げられる。
 上記DNA伸長反応としては、分子会合反応により得られたハイブリッド体 1ng~1μgを20~40μLの水又は緩衝液に添加し、更に、ポリメラーゼ活性を有する酵素 1~5Uを、要すれば、4種類のデオキシリボヌクレオチド三リン酸(dNTPs)それぞれを通常0.01~50nmol、好ましくは、0.1~20nmolと共に添加して、通常30~80℃、好ましくは65~75℃で、通常10秒~10分、好ましくは1~4分で反応させることによりなされる。該反応における水又は緩衝液は、上記分子会合反応の項で記載したものと同じものが挙げられる。また、ポリメラーゼ活性を有する酵素としては、例えばT4 DNAポリメラーゼ、KOD DNAポリメラーゼ、pfu DNAポリメラーゼ、Taq DNAポリメラーゼ、Klenow fragment等が挙げられるが、Taq DNAポリメラーゼ、KOD DNAポリメラーゼ等の耐熱性DNAポリメラーゼが好ましい。
 上記(1)の反応における本発明に係るDNAは、公知のPCR反応に従って増幅させたものを用いてもよい。その場合、PCR反応産物は、二本鎖DNAであるので、上記の二本鎖DNAを一本鎖化する処理をした後、LH反応に付せばよい。また、PCR反応産物を含むPCR反応液を用いて、LH反応に付し、そのままDNA伸長反応に付す場合、dNTPsやポリメラーゼ活性を有する酵素を添加することなく反応を進めることができるので、該方法を用いるのが好ましい。
 本発明に係るLH反応は、分子会合反応の前に加熱による二本鎖DNAの一本鎖化処理を加えてサイクル反応とするのが好ましい。具体的には、例えば本発明に係るDNAを含有する水又は緩衝液に、本発明に係るプローブを溶液中の濃度が20nM~2μM、好ましくは100nM~500nMとなるように添加し、その後、例えば、90~100℃で2~4分(熱変性)、30~55℃で1~30秒(DNA分子会合反応)を1サイクルとする反応を1~4サイクルさせることにより、ハイブリッド体を形成すればよい。また、更に伸長反応を加えてサイクル反応としてもよく、その場合には、90~100℃で2~4分(熱変性)、30~55℃で1~30秒(DNA分子会合反応)、65~75℃で1~4分(DNA伸長反応)を1サイクルとする反応を1~4サイクルさせることにより、ハイブリッド体を形成させればよい。尚、伸長反応を行う場合、DNA分子会合反応は、DNA伸長反応時の条件であっても反応が進行するため、LH反応を、90~100℃で2~4分(熱変性)、65~75℃1~4分(DNA分子会合、DNA伸長反応)を1サイクルとする反応を1~4サイクルさせることにより行ってもよい。
 熱変性、DNA分子会合反応、DNA伸長反応のサイクル反応としては、具体的には、以下の如くなされる。即ち、先ず、例えばマイクロサテライト領域を有するDNA100ngを溶解した例えば10~50mMトリス緩衝液(pH8.4~9.0)等の緩衝溶液20~40μLに、本発明に係るプローブを溶液中の濃度が20nM~2μM、好ましくは100nM~500nMとなるように、より好ましくは100~200nMとなるように添加する。その後、例えば、90~100℃で2~4分(熱変性)、30~55℃で1~30秒(DNA分子会合反応)、65~75℃1~4分(DNA伸長反応)を1サイクルとする反応を1~4サイクルさせることによりハイブリッド体は形成される。
 前述のように、PCR反応によって本発明に係るDNAを増幅させ、続いてLH反応に付す場合は、LH反応を含む(1)のステップは、具体的には以下の如くなされる。即ち、例えば、鋳型となるDNA1~100pgを20~40μLのトリス塩酸緩衝液等の緩衝液に溶解し、目的の領域を増幅させるための2種のプライマー(Forward, Reverse)それぞれを通常1~100pmol、好ましくは1~50pmol、4種類のデオキシリボヌクレオチド三リン酸(dNTPs)それぞれを通常0.01~50nmol、好ましくは、0.1~20nmolとなるように添加し、Taq DNAポリメラーゼ、KOD DNAポリメラーゼ等の耐熱性DNAポリメラーゼを1~5U共存させて、例えば(1)93~98℃、10秒~10分→(2)50~60℃、10秒~3分→65~75℃、1~5分間を1サイクルとする反応を30~40サイクル繰り返すことによりなされる。その後、得られた反応溶液に、本発明に係るプローブを鋳型となるDNAの0.1~10倍量、例えば通常0.1~500pmol、好ましくは0.1~50pmol添加し、上記と同様に、LH反応を行うことによりなされる。
 また、PCR反応により一本鎖DNAを増幅させる場合、該PCR反応と同時にLH反応を行うこともできる。その場合、本発明に係るプローブとしては、3'末端及び5'末端をリン酸基等で修飾したものを用い、該プローブの存在下、上記PCR反応を行えばよい。具体的には、例えば、鋳型となるDNA1~100pgを20~40μLの10~50mMトリス塩酸緩衝液(pH8.4~9.0)等の緩衝液に溶解し、2種のプライマー(Forward, Reverse)それぞれを通常1~100pmol、好ましくは1~50pmol、4種類のデオキシリボヌクレオチド三リン酸(dNTPs)それぞれを通常0.01~50nmol、好ましくは0.1~20nmol、3'末端及び5'末端が修飾された本発明に係るプローブを通常0.1~500pmol、好ましくは0.1~50pmol添加し、耐熱性DNAポリメラーゼを例えば1~5U共存させて、例えば(1)93~98℃、10秒~10分→(2)50~60℃、10秒~3分→(3)65~75℃、1~5分間を1サイクルとする反応を30~40サイクル繰り返すことによりなされる。
 上記(2)のハイブリッド体を分離する方法としては、通常この分野で用いられているDNAを分離する方法、特に二本鎖DNAを分離し得る方法であれば特に限定はされないが、分子量、分子構造又は/及び電荷の違い等に基づいて分離する方法が好ましい。即ち、マイクロサテライト領域が異なる複数のDNA多型を用いて、本発明のハイブリッド体を形成した場合、得られる複数のハイブリッド体は、そのループ構造の大きさ又は/及び電荷が異なるものとなる。更に、ループ構造内で部分的に相補な塩基対を形成する等二次構造を形成する場合には、その二次構造が異なるものとなる場合もある。従って、上記複数のハイブリッド体を、分子量、分子構造又は/及び電荷の違い等に基づいて分離することにより精度よく分離することが可能となる。
 尚、ここでいう分離とは、具体的には、マイクロサテライト領域が異なる2以上のDNA多型のハイブリッド体の分離を意味するが、本発明のハイブリッド体1種を上記のような分離方法に付す場合も含まれる。
 上記分子量、分子構造又は/及び電荷の違い等に基づいて分離する方法としては、具体的には例えば、高速液体クロマトグラフィー法(HPLC法)、電気泳動法、フィルターを用いた分離方法等が挙げられる。中でも、電気泳動法がより好ましい。
 HPLC法を用いる場合、例えば、Anal.Chem. 65, 5,613-616(1993)、WO03/014398、WO03/031580、US5585236、US5772889、US5972222等に記載の方法(Ion-pair reverse-phase high pressure liquid chromatography、Matched ion polynucleotide chromatography等)に準じて行えばよい。また、フィルターを用いた分離方法を用いる場合、例えばPanasonic Technical Journal Vol.57 No.3 Oct.2011や、特開2009-125009に記載の方法等に準じて行えばよい。
 電気泳動法としては、より具体的には、例えば等電点電気泳動法、SDS-ポリアクリルアミド電気泳動法、アガロースゲル電気泳動法、アクリルアミド電気泳動法、キャピラリー電気泳動法、キャピラリーチップ電気泳動法、誘電泳動法等の電気泳動法が挙げられる。中でも、冷却効率がよく、高電圧をかけることができ、効率よく分離できる等の理由から、キャピラリー電気泳動法、キャピラリーチップ電気泳動法が好ましく、微量サンプル分析に適しているキャピラリーチップ電気泳動法が特に好ましい。尚、これら分離方法の条件は、自体公知の方法に準じて行えばよく、例えばキャピラリーチップ電気泳動はWO2007/027495等に記載の方法に準じて行えばよい。尚、この場合に用いられるキャピラリー電気泳動又はポリアクリルアミドゲルの長さは通常1~20cm、好ましくは1~10cmで十分である。
 上記(3)におけるハイブリッド体を検出する方法としては、上記(2)のハイブリッド体を分離する方法に基づいて検出されればよい。には例えば、HPLC法を用いる場合、移動度や移動時間に基づいて、本発明のハイブリッド体を検出すればよい。例えばフィルターを用いる方法による場合、フィルターの通過時間に基づいて、本発明のハイブリッド体を検出すればよい。電気泳動を用いる場合、泳動時間又は泳動距離(移動時間又は移動距離)に基づいて、本発明のハイブリッド体を検出すればよい。より具体的には、例えばマイクロサテライト領域が異なる2以上のDNA多型を電気泳動で分離し、その泳動時間又は泳動距離に基づいて、本発明のハイブリッド体を検出すればよい。
 上記(3)における検出方法は、自体公知の方法であれば何れでも用いることができるが、示差屈折検出器、蛍光検出器、UV検出器等の機器により検出されればよく、中でも、UV検出器、蛍光検出器による検出が好ましく、蛍光検出器による検出がより好ましい。
 蛍光検出を行う場合、検出対象物質を蛍光標識する必要があるが、通常この分野で用いられている方法に準じて行えばよい。具体的には例えば、予め蛍光標識したプローブを用いて蛍光検出をする方法等が挙げられる。電気泳動によりハイブリッド体を分離する場合にあっては、分離後にDNAをインターカレーター等で標識する方法等により行ってもよい。
 プローブを蛍光標識する方法としては、例えばシアニン色素による標識が挙げられる。ここでいうシアニン色素とは、2個の複素環をメチン基又はポリメチン基で結合し、且つ該複素環の少なくとも1個が含窒素複素環である化合物であり、前記2個の複素環の両者が含窒素複素環であるものが好ましい。上記シアニン色素由来の置換基としては、例えばUS4,981,977、US 5,268,486、US5,486,616等に記載のCy系色素由来のもの、US6,083,485等に記載のDy系色素由来のもの、WO2006/047452等に記載のHiLyte系色素由来のもの、Alexa系色素由来のもの等が好ましい。また、市販のものに由来するものを用いてもよく、例えばCy系色素由来のものを用いる場合としては、Cy3、Cy3.5、Cy5、Cy5.5、Cy7等由来のもの〔何れもアマシャムバイオサイエンス社(Amersham Biosciences)商品名〕が、Dy系色素由来のものとしては、DY-700、DY-701、DY-730、DY-731、DY-732、DY-734、DY-750、DY-751、DY-752、DY-776、DY-780、DY-781、DY-782等由来のものが、HiLyte系色素由来のものとしては、HiLyte Fluor 555、HiLyte Fluor 647、HiLyte Fluor 680、HiLyte Fluor 750等由来のもの〔何れもアナスペック社(AnaSpec製)商品名〕が、Alexa系色素由来のものとしては、Alexa Fluor Dye 532、Alexa Fluor Dye 546、Alexa Fluor Dye 555、Alexa Fluor Dye 568、Alexa Fluor Dye 594、Alexa Fluor Dye 633、Alexa Fluor Dye 647、Alexa Fluor Dye 660、Alexa Fluor Dye 680、Alexa Fluor Dye 700、Alexa Fluor Dye 750等由来のもの〔何れもモレキュラープローブス社(Molecular Probes)商品名〕が好ましいものとして挙げられる。中でもCy系色素由来のものが好ましく、その中でもCy5由来のものが好ましい。
 また、上記蛍光検出で用いられるインターカレーターとしては、核酸鎖に結合することによって強い蛍光を発するものであればよく、具体的には、例えばアクリジンオレンジ等のアクリジン色素、例えば臭化エチジウム,エチジウムホモダイマー1(EthD-1),エチジウムホモダイマー2(EthD-2),臭化エチジウムモノアジド(EMA),ジヒドロエチジウム等のエチジウム化合物、例えばヨウ素化プロピジウム,ヨウ素化ヘキシジウム等のヨウ素化合物、例えば7-アミノアクチノマイシンD(7-AAD)、例えばPOPO-1, BOBO-1, YOYO-1, TOTO-1, JOJO-1, POPO-3, LOLO-1, BOBO-3, YOYO-3, TOTO-3等のシアニンダイマー系色素(何れもモレキュラープローブ社商品名)、例えばPO-PRO-1, BO-PRO-1, YO-PRO-1, TO-PRO-1, JO-PRO-1, PO-PRO-3, LO-PRO-1, BO-PRO-3, YO-PRO-3, TO-PRO-3, TO-PRO-5等のシアニンモノマー系色素(何れもモレキュラープローブ社商品名)、例えばSYBR Gold, SYBR Green I and SYBR Green II, SYTOX Green, SYTOX Blue, SYTOX Orange等のSYTOX系色素(何れもモレキュラープローブ社商品名)等が挙げられる。また、DNA二重らせんのマイナーグルーブに結合するもの〔例えば4',6-ジアミジノ-2-フェニルインドール(DAPI:モレキュラープローブ社商品名),ペンタハイドレ-ト(ビス-ベンズイミド)(Hoechst 33258:モレキュラープローブ社商品名),トリヒドロクロライド(Hoechst 33342:モレキュラープローブ社商品名),ビスベンズイミド色素(Hoechst 34580:モレキュラープローブ社商品名)等〕、アデニン-チミン(A-T)配列に特異的に結合するもの〔例えば9-アミノ-6-クロロ-2-メトキシアクリジン(ACMA),ビス-(6-クロロ-2-メトキシ-9-アクリジニル)スペルミン(アクリジンホモダイマー)等のアクリジン色素、例えばヒドロキシスチルバミジン等〕等もインターカレーターと同様にして用いることができる。
 本発明の方法は、具体的には例えば以下のようになされる。
 即ち、例えばがん患者由来のヒトゲノムDNAについて変異DNAを検出する場合、市販のキット等により抽出・精製したヒトゲノムDNAを試料として、PCR反応を行う。PCR反応用試料は、例えば、検出対象とするDNAを増幅させるためのプライマー(ForwardとReverse)それぞれを通常100~1000nM、4種類のデオキシリボヌクレオチド三リン酸(dNTPs)がそれぞれ通常0.1~500nM、Taq DNAポリメラーゼが1~5unitとなるように、トリス塩酸緩衝液等の緩衝液20μL中に溶解した後、ヒトゲノムDNA 1ng~100ngを添加して調製すればよく、PCR反応は、例えば(1) 93~98℃、10~30秒、(2)50~60℃、10~30秒、(3)68~72℃、1~3分間を1サイクルとする反応を35~40サイクル行うことにより、対象の一本鎖DNAを増幅することができる。PCR反応の後、対象のDNAの0.1~10倍量の本発明に係るプローブを添加し、LH反応を行う。即ち、例えばPCR反応溶液に、最終濃度が100~500nMとなるように本発明に係るプローブを添加し、それを、90~100℃で2~4分、30~55℃で1~30秒、65~75℃1~4分を1サイクルとする反応を1~4サイクルさせることにより、検出目的のDNAのハイブリッド体が得られる。得られた溶液を、例えばキャピラリーチップ電気泳動法等で泳動し、例えば蛍光検出器等により検出することにより、変異型DNAを検出することができる。
 以下に合成例、実施例、比較例等により本発明を更に詳細に説明するが、本発明はこれら実施例等により何等限定されるものではない。
合成例1 TOMM40遺伝子配列中のpoly-T鎖長多型の配列を持つサンプルDNAの調製
(1)TOMM40遺伝子のrs10524523マーカー配列における様々なpoly-T鎖長多型を持つサンプルDNAの調製
 TOMM40遺伝子のrs10524523マーカー配列の鎖長が異なるpoly-T配列として12種類の合成オリゴヌクレオチドを設計し、その相補鎖を合成し、これらをサンプルDNAとした。該合成オリゴヌクレオチドの配列を下記表1に表す。
 上記ヌクレオチドの合成は、シグマジェノシス社の受託合成サービスを利用した。また、以下の本発明の合成例及び実施例における、プライマー及びプローブのオリゴヌクレオチド合成や蛍光色素の標識等も、同様に、シグマジェノシス社の受託合成サービスを利用した。
Figure JPOXMLDOC01-appb-T000002
(2)サンプルDNAの伸長および二本鎖化
 さらに、以下の実験操作により、上記12種類の一本鎖DNAを鋳型とし、それぞれの配列の3’末端側を51塩基伸長させた2本鎖DNAを合成した。
 即ち、まず、TOMM40遺伝子上の配列であって、これら12種類の配列の3’末端からpoly-T配列の直前までの20塩基の相補鎖(下記配列中の下線部)を含んでなる71塩基の下記配列(Fx配列)[配列番号13]を合成した。
gacctcaagctgtcctcttgccccagccctccaaagcattgggattactggcatgagccattgcatctggc
次いで、上記12種のサンプルDNAそれぞれを直接の鋳型DNAとして使用し、Fx 配列とのオーバーラップ伸長鎖反応を行った。即ち、5μMの各サンプルDNA 1.0μL(終濃度500nM)に対して、2μMのFx 配列 1.0μL(終濃度200nM)を添加した後、アキュプライムTaqポリメラーゼ・High Fidelity(インヴィトロジェン社製)0.04μL、及び製品付属の10x bufferを1.0μLを添加し、更に脱イオン化滅菌水(ddH2O)を添加して10μLにした反応溶液を調製した。次いで、該溶液10μLを用いて、DNAサーマルサイクラーで(DNA Engine PTC200、MJ Research社)、下記の反応条件にてアニーリング及び伸長鎖反応までの工程(1サイクル)を行った。
(アニーリング・伸長鎖反応の条件)
  105℃    hot lid
  94℃       2 分
  55℃       15 秒
  68℃       4 分
 このようにして、上記各12種類のサンプルDNAを伸長して二本鎖化し、二本鎖DNAサンプルを得た。尚、該反応の模式図を以下に示す。
Figure JPOXMLDOC01-appb-I000003
(3)サンプルDNAの増幅
 次いで、上記の二本鎖DNAサンプルそれぞれを1000倍希釈した後、その1μLをPCR増幅の鋳型として、アキュプライムTaqポリメラーゼ・システム(PCR反応用キット、インヴィトロジェン社製)を用いてPCR反応を行った。即ち、まず、キットに添付の製品プロトコールに従い、各10μMのプライマー(Forward: gacctcaagctgtcctcttgcc [配列番号14] とReverse: taggcattcgaagccagcccg [配列番号15])1.0μLおよびキットに添付のPCR反応バッファー2.0μL、アキュプライムTaq酵素0.5μL、ddH2O 16.5μLを使用し、PCR用反応液20.0μLを調製した。このPCR用反応液を用い、MJ Research社のDNAサーマルサイクラー(DNA Engine PTC200)を使用して、下記の反応条件で20サイクル のPCR反応を行った。
*PCR反応条件
  熱変性    : 95℃、15 秒
  アニーリング : 55℃、15 秒
  重合反応     : 68℃、47 秒
このようにして調製された二本鎖DNAを、それぞれ、Q10Aから合成したものをFx/Q10A、Q15Aから合成したものをFx/Q15A、Q16Aから合成したものをFx/Q16A、Q18Aから合成したものをFx/Q18A、Q19Aから合成したものをFx/Q19A、Q20Aから合成したものをFx/Q20A、Q21Aから合成したものをFx/Q21A、Q22Aから合成したものをFx/Q22A、Q25Aから合成したものをFx/Q25A、Q28Aから合成したものをFx/Q28A、Q29Aから合成したものをFx/Q29A、Q30Aから合成したものをFx/Q30Aとした。これら二本鎖DNAの片側の一本鎖DNA配列を表2に示す。
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-I000005
実施例1 本発明の方法によるTOMM40遺伝子のpoly-T鎖長多型の識別検出
(1)ループハイブリッド反応用プローブ(LHプローブ)の作製
 表2に記載のDNA中のマイクロサテライト領域とは結合せずにその両側と結合するように、LHプローブを設計した。即ち、上記表2中の一本鎖DNAの相補配列のマイクロサテライト領域の5’末端の隣から19塩基の相補鎖と3’末端側の隣からの71塩基の相補鎖とをつなげたものをLHプローブとした。具体的には、下記配列のもの(cy5delT0)を使用した。
(cy5delT0;90mer, T0=deleted poly T [配列番号28])
gacctcaagc tgtcctcttg ccccagccct ccaaagcatt gggattactg gcatgagcca ttgcatctgg c(T0)gagatgggg tctcaccatg
 上記LHプローブが標的DNAとハイブリッド体を形成した時、該ハイブリッド体は、LHプローブ配列とミスハイブリダイズした領域でループ構造を形成する。即ち、標的DNA上のマイクロサテライト領域がループ構造を形成する。具体的には、下記のようなループ構造が標的となるDNA配列上に形成されると考えられる。

Figure JPOXMLDOC01-appb-I000006
(2)LH反応
 上記2のうち、Fx/Q10A、Fx/Q15A、Fx/Q16A、Fx/Q18A、Fx/Q19A、Fx/Q20A、Fx/Q21A、Fx/Q22AおよびFx/Q25Aをサンプルとして用い、LH反応を行った。即ち、上記合成例1(3)で得られた上記サンプルを含むPCR反応液 4.5μLそれぞれに、(1)で合成したLHプローブ(ID.= cy5delT0)を最終濃度200nMとなるように添加した後、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research社製)を使用して、下記の反応条件にて1サイクルLH反応を行い、LH反応産物を得た。
*LH反応条件
  サンプル溶液    4.5 μl
  LHプローブ   0.5μl(2μM)
  105℃      hot lid
  95℃        2 分
  55℃       30 秒
  68℃        4 分
  4℃        反応停止
(3)LH反応産物の分離検出
 上記(2)で得た9種のLH反応産物各1.5μlにゲル・ローディング・バッファー1.5μlをそれぞれ添加した後、非変性10% ポリアクリルアミド・ゲルで電気泳動した。分子量マーカーとしては、100 bp ladder for size marker(promega社製)1.5μlを使用して、同一ゲルにローディングし電気泳動を行った。ポリアクリルアミド・ゲルは7cm x 7cm のコンパクトゲル(コンパクトゲルC10L、アトー社製)を用い、トリス・グリシン緩衝液(37.5mM Tris , 288mM Glycine )を泳動緩衝液として小型電気泳動装置( アトー社、AE-7300 コンパクトPAGE )で室温で泳動した。
 泳動後、サイバー・グリーンI( タカラバイオ社、F0513)で10分間染色し、水洗後、レーザー・イメージング・スキャナー(アマシャム社、STORM 860)を用い励起波長450nm 、検出フィルター520LP で検出した。得られた結果を図1に示した。図中、レーン10は、Fx/Q10AのLH反応産物を泳動した結果を、レーン15は、Fx/Q15AのLH反応産物を泳動した結果を、レーン16は、Fx/Q16AのLH反応産物を泳動した結果を、レーン18は、Fx/Q18AのLH反応産物を泳動した結果を、レーン19は、Fx/Q19AのLH反応産物を泳動した結果を、レーン20は、Fx/Q20AのLH反応産物を泳動した結果を、レーン21は、Fx/Q21AのLH反応産物を泳動した結果を、レーン22は、Fx/Q22AのLH反応産物を泳動した結果を、レーン25は、Fx/Q25AのLH反応産物を泳動した結果をそれぞれ表す。
 図1の結果から明らかな如く、ループがマイクロサテライト領域全てを含むように設計したプローブを用いてLH反応を行い、得られたLH反応産物をアクリルアミドゲル電気泳動で分離・検出した結果、非特異的反応産物由来のバンドはほとんど見られず、異なる鎖長のpoly-T配列を有するTOMM40遺伝子であっても、識別検出が十分可能であることが示された。
比較例1 マイクロサテライト領域の一部を含むLHプローブによるTOMM40遺伝子のpoly-T鎖長多型の識別検出
(1)LHプローブの作製
 表2に記載のDNAと相補なDNAを検出対象とし、該検出対象DNA中のマイクロサテライト領域の一部と結合し、残り部分とは結合しないように、プローブを設計した。即ち、上記表2中の一本鎖DNA中のマイクロサテライト領域の5’末端の隣から55塩基の相補鎖と10塩基のPolyAと3’末端側の隣からの20塩基の相補鎖とをつなげたものをLHプローブとした。具体的には、下記配列のもの(cy5Q10A)を使用した。
(cy5Q10A;75mer [配列番号29])
taggcattcgaagccagcccgggcaacatggtgagaccccatctcaaaaaaaaaagccagatgcaatggctcatg
 尚、該プローブが標的DNAとハイブリッド体を形成したとき、標的DNAがプローブ配列とミスハイブリダイズした領域、即ち、標的DNA上のマイクロサテライト領域の一部とマイクロサテライト領域以外の塩基鎖とでループ構造を形成すると考えられる。
Figure JPOXMLDOC01-appb-I000007
(2)LH反応及びLH反応産物の分離検出
 上記プローブを用いた以外は、実施例1(2)および(3)と同じ方法により、Fx/Q10A、Fx/Q15A、Fx/Q16A、Fx/Q18A、Fx/Q19A、Fx/Q20A、Fx/Q21A、Fx/Q22AおよびFx/Q25Aについて、poly-T鎖長多型の識別検出を行った。
  その結果を図2に示す。図中、レーン10は、Fx/Q10AのLH反応産物を泳動した結果を、レーン15は、Fx/Q15AのLH反応産物を泳動した結果を、レーン16は、Fx/Q16AのLH反応産物を泳動した結果を、レーン18は、Fx/Q18AのLH反応産物を泳動した結果を、レーン19は、Fx/Q19AのLH反応産物を泳動した結果を、レーン20は、Fx/Q20AのLH反応産物を泳動した結果を、レーン21は、Fx/Q21AのLH反応産物を泳動した結果を、レーン22は、Fx/Q22AのLH反応産物を泳動した結果を、レーン25は、Fx/Q25AのLH反応産物を泳動した結果をそれぞれ表す。
 図2で示されるように、従来のLH法でのLHプローブを用いると、非特異的反応産物のシグナル・バンドが多数見られる。特に、poly-T領域の反復配列数が15および16を用いた場合には、非特異的反応産物のバンドが強く検出された(図中の矢印で明示)。よって、該方法でLH反応産物を特定するのは難しいことが判った。尚、非特異的反応産物が産生される原因は定かではないが、プローブがマイクロサテライト領域の一部と結合するように、マイクロサテライト領域の一部に相補的な配列を含んでいるため、プローブ中の反復配列の相補鎖が、設定された反復配列とは別の反復配列に結合してしまう等の結合の掛け違いが生じ、複数の非特異的反応産物が産生されたものと推測された。
 よって、図1及び2の結果から、従来のLHプローブを使用した場合(図2)では判定の難しいpoly-T鎖長多型の識別検出が、本発明によるマイクロサテライト領域欠失型LHプローブを用いた場合(図1)では明確に識別検出できることが判った。
 尚、図2において、poly-T領域の反復配列数が10の場合(レーン10)、反応産物のバンドが見られないが、これは、LHプローブが対象DNAと完全相補的にハイブリダイズし、ループ構造が形成されないことによるものである。
実施例2 長鎖poly-T多型を検出対象とする、本発明の方法によるTOMM40遺伝子のpoly-T鎖長多型の識別検出
 サンプルとしてFx/Q28A、Fx/Q29A、又はFx/Q30Aを用いた以外は、実施例1の(2)および(3)と同じ方法により、TOMM40遺伝子配列中のpoly-T鎖長多型の識別検出を行った。その結果を図3-aに示す。図中、レーン28は、Fx/Q28AのLH反応産物を泳動した結果を、レーン29は、Fx/Q29AのLH反応産物を泳動した結果を、レーン30は、Fx/Q30AのLH反応産物を泳動した結果をそれぞれ表す。
比較例2 長鎖poly-T多型を検出対象とした場合のマイクロサテライト領域の一部を含むLHプローブによるTOMM40遺伝子のpoly-T鎖長多型の識別検出
(1)LHプローブの作製
 比較例1で用いたLHプローブ(cy5Q10A)中の10塩基のpolyAを5塩基のPolyAにしたLHプローブ(cy5Q5A)および10塩基のpolyAを25塩基のPolyAにしたLHプローブ(cy5Q25A)をそれぞれ合成した。具体的には、下記配列のものを合成した。
(cy5Q5A;70mer [配列番号30])
taggcattcgaagccagcccgggcaacatggtgagaccccatctcaaaaagccagatgcaatggctcatg
(cy5Q25A;90mer [配列番号31])
taggcattcgaagccagcccgggcaacatggtgagaccccatctcaaaaaaaaaaaaaaaaaaaaaaaaagccagatgcaatggctcatg
 尚、これらプローブが標的DNAとハイブリッド体を形成したときも、比較例1と同様に、標的DNA上のマイクロサテライト領域の一部とマイクロサテライト領域以外の塩基鎖とでループ構造を形成すると考えられる。
(2)LH反応及びLH反応産物の分離検出
 サンプルとしてFx/Q28A、Fx/Q29A、又はFx/Q30Aを用い、プローブとして上記cy5Q5A又はcy5Q25Aを用いた以外は、実施例1の(2)および(3)と同じ方法により、TOMM40遺伝子配列中のpoly-T鎖長多型の識別検出を行った。cy5Q5Aをプローブとして使用した結果を図3-bに、cy5Q25Aをプローブとして使用した結果を図3-cにそれぞれ示す。
 図3-aで示されているように、本発明に係るLHプローブ(cy5delT0)を用いた場合、poly-Tを28塩基、29塩基、又は30塩基含んでなるサンプルについて明確に分離でき、且つ非特異的反応産物はほとんど見られないことが判った。一方、cy5Q5Aを使用した場合、検出結果の判定を妨げる複数のシグナル・バンドが多く検出され、配列多型サンプルの識別検出が容易でないことが示された。また、cy5Q25Aを使用した場合では、非特異的反応が非常に多く見られ、目的のLH反応産物を確認するのは非常に困難であった。
 これらの結果から明らかなように、従来のLH法では、非特異的反応産物が多く見られるため、目的とするLH反応産物の特定が難しいが、本発明の方法によれば、明確に識別検出できることが判った。
実施例3 アンドロジェン受容体(AR)遺伝子配列中のCAGリピート多型の識別検出
(1)ヒト血液由来ヒトゲノムDNA及びクローニングサンプルの調製
 ヒト血液に由来するサンプルを複数準備し、QIAamp DNA Blood Midi Kit(キアゲン社)に従い、その全血2mlをproteinaseKで70℃10分処理した後エタノールを添加した。更に、遠心分離した後の上清をQIAmp Midi カラムに付し、ヒトゲノムDNAを抽出した。ここで得られた各DNA抽出液30μLのうち、1μLを鋳型として使用し、アキュプライムTaqポリメラーゼ・システム(PCR反応用キット、インヴィトロジェン社製)を用いてPCR反応を行った。即ち、まず、キットに添付の製品プロトコールに従い、各10μMのプライマー(Forward: agcgtgcgcgaagtgatcca [配列番号32] とReverse: atgggcttggggagaaccat [配列番号33])1.0μLおよびキットに添付のPCR反応バッファー2.0μL、アキュプライムTaq酵素0.5μL、ddH2O 16.5μLを使用し、PCR用反応液20.0μLを調製した。このPCR用試料を用い、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research社)を使用して、下記の反応条件で30サイクル のPCR反応を行った。
*PCR反応条件
 熱変性    : 95℃、15 秒
 アニーリング : 55℃、15 秒
 重合反応     : 68℃、47 秒
これらの一連のPCR反応により、複数の出発材料から得られた各PCR産物をpGEM-T Vector System(Promega社) を用いてTAクロ-ニング法によりプラスミド・ベクターpGEM-T easyに挿入した。即ち、PCR増幅産物3.0μLそれぞれに、pGEM-T Easy Vector(Promega社製) 1.0μL及びDNA Ligation Kit(プロメガ(株)製)のRapid Ligation Buffer 5.0μLとT4リガーゼ1.0μLを加え、全量10.0μLとして室温で60分間インキュベートを行い、組換えDNAを得た。
 その後、E. coli JM109 Competent Cells(東洋紡(株)製)を用い、その製品プロトコールに従って、上記で得られた組み換えDNAを用いて42℃45秒でE. coli JM109 Competent Cellsの形質転換を行った。その後、100μg/mlのアンピシリン、0.2 mM イソプロピル-β-チオガラクトピラノシド(IPTG)、40μg/ml X-Galを含むLB-寒天培地に、得られた形質転換体を37℃で16時間プレート培養した。培養後、培地中の白色コロニーをピックアップし、目的のDNA断片を挿入した組み換えDNAが導入された、各クローンに対する形質転換体を得た。その後、QIAGEN社のプラスミド抽出キット(QIAprep Spin Miniprep)を用いて、DNAの抽出・精製までの工程を行った。即ち、5mlの100μg/mlのアンピシリン含有LB液体培地で一夜増殖させた各クローンに対する形質転換体を遠心により集菌し、アルカリ法で溶菌後、酢酸カリウム酸性液で中和し、それらの遠心後の上清液からキットに添付の精製カラムによりプラスミドDNAを精製した。
(2)AR遺伝子エクソン1上における多型配列DNAの確認
 次に、上記でクローニングされた、複数種類の遺伝子多型の配列を含むことが予想される候補クローンを用いて、Big Dye Terminatorキット(アプライドバイオシステムズ社製)により、製品プロトコールに従って以下の手順でシークエンス解析を行った。
 即ち、サンプルDNA(各クローン)2μL(100ng)、T7プロモータープライマー 1μL(5pmol)、及び、酵素、dNTPs、反応buffer、蛍光色素を含むpremix 8μLの混合物に、総量が20μLとなるようにddH2Oを加え、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research社製)を使用して、下記の反応条件で30サイクルのシークエンス反応を行った。
 96℃ 2分 →(96℃ 10秒→50℃ 5秒→60℃ 2分)×25 → 4℃
 得られたシークエンス反応産物をゲルろ過カラム(QIAGEN社製)で精製後、シークエンサー(3130 Genetic Analyzer、Applied Biosystems社製)を用いて機器付属の手順書に従い、候補配列すべてのシークエンス解読を完了した。
 その結果、AR遺伝子エクソン1上において、下記表3の6種類の遺伝子多型配列を含んでいるサンプルDNAが作製できたことを確認した。即ち、マイクロサテライト領域の長さが異なる6種のサンプルDNAを作製したことを確認した。これらをそれぞれサンプルM6、サンプルM18、サンプルM7、サンプルM25、サンプルM2とした。
Figure JPOXMLDOC01-appb-T000008
(3)LHプローブの作製
 表3に記載のDNA中のマイクロサテライト領域とは結合せずにその両側と結合するように、LHプローブを設計した。即ち、上記表3中の一本鎖DNA中のマイクロサテライト領域の5’末端の2塩基隣から17塩基の塩基配列の相補鎖と3’末端側の2塩基隣から18塩基の塩基配列の相補鎖とそこから更に14塩基隣の基から29塩基の塩基配列の相補鎖とをつなげたものをLHプローブとして設計した。具体的には、下記塩基配列(Cy5ARdelCTG0-20R)の5’末端にCy5で蛍光修飾したものをプローブとして合成した。
(Cy5ARdelCTG0-20R: 64mer [配列番号39])
atgggcttggggagaaccatcctcacccttgcctggggctagtctctgcagcagcaaactggcg
 上記プローブが標的DNAとハイブリッド体を形成した時、該プローブ配列とミスハイブリダイズした領域、即ち、DNA上のマイクロサテライト領域がループ構造を形成し、更に、表3中の一本鎖DNA中のマイクロサテライト領域から3’末端方向に19塩基下流のマイクロサテライト領域がループ構造を形成する。
(4)マイクロサテライト領域欠失型LHプローブ反応
 上記表3に記載の各サンプルDNAを試料として、アキュプライムTaqポリメラーゼ・システム(PCR反応用キット、インヴィトロジェン社製)を用いてPCR反応を行った。即ち、まず、キットに添付の製品プロトコールに従い、各10μMのプライマー(Forward: agcgtgcgcgaagtgatcca [配列番号32] とReverse: atgggcttggggagaaccat [配列番号33])1.0μLおよびキットに添付のPCR反応バッファー2.0μL、アキュプライムTaq酵素0.5μL、ddH2O 16.5μLを使用し、PCR用反応液20.0μLを調製した。その後、各サンプルDNA 2pgをPCR用反応液20μLに懸濁添加し、PCR反応用試料とした。このPCR反応用試料を用い、MJ Research社のDNAサーマルサイクラー(DNA Engine PTC200)を使用して、下記の反応条件で30サイクルのPCR反応を行った。
*PCR反応条件
 熱変性    : 95℃、15 秒
 アニーリング : 55℃、15 秒
 重合反応     : 68℃、47 秒
 反応終了後、PCR反応液に対してLHプローブ(ID.= Cy5ARdelCTG0-20R)を最終濃度200nMとなるように添加し、DNAサーマルサイクラー(DNA Engine PTC200、MJ Research社製)を使用して、下記の反応条件にて1サイクル反応を行った。
*LH反応条件
 PCR反応産物  4.5 μl
 LHプローブ   0.5μl(2μM)
 105℃      hot lid
 95℃        2分
 55℃       30 秒
 68℃        4 分
 4℃        反応停止
(5)マイクロサテライト領域欠失型LHプローブ反応産物の分離検出
 上記(4)で得られた反応産物5種各1.5μlにゲル・ローディング・バッファー1.5μlをそれぞれ添加し、非変性10% ポリアクリルアミド・ゲルで電気泳動した。また分子量マーカーとして100 bp ladder for size marker(promega社製)1.5μlを使用して、これを同一ゲルにローディングして電気泳動を行った。ポリアクリルアミド・ゲルは7cm x 7cm のコンパクトゲル(コンパクトゲルC10L、アトー社製)を用い、トリス・グリシン緩衝液(37.5mM Tris , 288mM Glycine )を泳動緩衝液として小型電気泳動装置( アトー社、AE-7300 コンパクトPAGE )で室温で泳動した。
 泳動後、レーザー・イメージング・スキャナー(アマシャム社、STORM 860)を用いて蛍光検出(励起波長635nm 、検出フィルター650LP)を行った。得られた結果を図4に示した。尚、図中、レーン26はサンプルM6のLH反応産物の泳動結果を表し、レーン24はサンプルM18のLH反応産物の泳動結果を表し、レーン23はサンプルM7のLH反応産物の泳動結果を表し、レーン22はサンプルM25のLH反応産物の泳動結果を表し、レーン21はサンプルM2のLH反応産物の泳動結果を表す。
 図4の結果から明らかな如く、上記のCy5ARdelCTG0-20Rプローブを用いて得たLH反応産物をアクリルアミド重合ゲル電気泳動で分離・検出した結果、非特異的反応産物はほとんど見られずに、CAGリピートの異なる各サンプルDNAを分離検出できることが示された。
比較例3 マイクロサテライト領域の一部を含むLHプローブによるAR遺伝子配列中のCAGリピート多型の識別検出
(1)LHプローブの作製
 表3に記載のDNA中のマイクロサテライト領域の一部とは結合せずに、残り部分と相補となるように、LHプローブを設計した。即ち、上記表3中の一本鎖DNAのマイクロサテライト領域の5’末端の隣から19塩基の相補鎖とCAGリピート36塩基と上記表3中の一本鎖DNAのマイクロサテライト領域の3’末端の隣から20塩基の相補鎖とそこから更に14塩基隣の基から29塩基の塩基配列の相補鎖をこの順序でつなげたものをLHプローブとして設計した。具体的には、下記配列(Cy5ARdelCTG12-20R)の5’末端をCy5で蛍光修飾したものをプローブとして合成した。
(Cy5ARdelCTG12-20R;104mer [配列番号40])
atgggcttggggagaaccatcctcacccttgcctggggctagtctcttgctgctgctgctgctgctgctgctgctgctgctgctgcagcagcagcaaactggcg
 尚、該プローブが標的DNAとハイブリッド体を形成したとき、該プローブ配列とミスハイブリダイズした領域、即ち、DNA上のマイクロサテライト領域の一部がループ構造を、標的DNA配列上の反復配列と非反復配列の境界領域に形成されると考えられる。

Figure JPOXMLDOC01-appb-I000009



(2)LH反応及びLH反応産物の分離検出
 上記プローブを用いた以外は、実施例3と同じ方法により、AR遺伝子エクソン1上におけるCAGリピート多型の識別検出を行った。その結果を図5に示す。サンプルDNAには、上記表3で示した5種のサンプルと、表4で示したCAGリピート配列数の異なる3種のサンプル(サンプルM34、サンプルM15、及びサンプルU7)とを用いた。尚、これら3種のサンプルは、実施例3(1)と同じ方法により調製した。
Figure JPOXMLDOC01-appb-T000010
 図5において、レーン28はサンプルM34のLH反応産物の泳動結果を表し、レーン27はサンプルM15のLH反応産物の泳動結果を表し、レーン26はサンプルM6のLH反応産物の泳動結果を表し、レーン25はサンプルU7のLH反応産物の泳動結果を表し、レーン24はサンプルM18のLH反応産物の泳動結果を表し、レーン23はサンプルM7のLH反応産物の泳動結果を表し、レーン22はサンプルM25のLH反応産物の泳動結果を表し、レーン21はサンプルM2のLH反応産物の泳動結果をそれぞれ表す。
 図5の結果から明らかなように、従来のLHプローブを用いた方法では、複数の非特異的反応産物のシグナル・バンドが多く検出された。また、検出されたLH反応産物のバンドが不均一になる傾向も認められ、CAGリピートの異なるAR遺伝子の特定は難しく、判定精度は著しく悪かった。
 一方、本発明の方法におけるプローブを用いた場合は、図4で示されているように、非特異的反応産物はほとんど見られず、CAGリピートの異なるAR遺伝子を明確に分離検出できることが判った。

Claims (10)

  1. (1)マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体を形成させ、
    (2)得られたハイブリッド体を分離し、
    (3)該ハイブリッド体を検出することにより、マイクロサテライト領域を有するDNAを検出する方法。
  2. プローブが、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1~11塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1~11塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1~11塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1~11塩基隣の塩基の相補塩基とが結合するように、結合させた配列である、請求項1記載の方法。
  3. プローブが、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1塩基隣の塩基の相補塩基とが結合するように、結合させた配列である、請求項1記載の方法。
  4. マイクロサテライト領域における、反復の基準となる一単位の繰り返し数が2~100である、請求項1記載の方法。
  5. マイクロサテライト領域における、反復の基準となる一単位の繰り返し数が5~100である、請求項1記載の方法。
  6. ハイブリッド体を分離する方法が、分子量、分子構造及び電荷の少なくとも1種に基づいて分離する方法である、請求項1記載の方法。
  7. ハイブリッド体を分離する方法が電気泳動法である、請求項1記載の方法。
  8. マイクロサテライト領域を有するDNAに、該マイクロサテライト領域と相補な塩基配列を有さず該マイクロサテライト領域の両側の塩基配列とハイブリダイズするプローブを接触させて、マイクロサテライト領域を含むループ構造を有する、前記DNAと前記プローブのハイブリッド体。
  9. プローブが、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1~11塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1~11塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1~11塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1~11塩基隣の塩基の相補塩基とが結合するように、結合させた配列である、請求項8記載のハイブリッド体。
  10. プローブが、マイクロサテライト領域の3’末端からマイクロサテライト領域を有するDNAの3’末端方向に1塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖と、マイクロサテライト領域の5’末端からマイクロサテライト領域を有するDNAの5’末端方向に1塩基隣の塩基から始まる5~1000塩基の塩基配列の相補鎖とを、マイクロサテライト領域の3’末端から1塩基隣の塩基の相補塩基とマイクロサテライト領域の5’末端から1塩基隣の塩基の相補塩基とが結合するように、結合させた配列である、請求項8記載のハイブリッド体。
PCT/JP2013/058211 2012-03-22 2013-03-22 マイクロサテライト領域を有するdnaの検出方法 WO2013141331A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13764078.5A EP2840136B1 (en) 2012-03-22 2013-03-22 Method for detecting dna having microsatellite region
US14/387,097 US20150050649A1 (en) 2012-03-22 2013-03-22 Method for detecting dna having microsatellite region
AU2013236174A AU2013236174A1 (en) 2012-03-22 2013-03-22 Method for detecting DNA having microsatellite region
CN201380015175.3A CN104204203A (zh) 2012-03-22 2013-03-22 具有微卫星区域的dna的检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065232 2012-03-22
JP2012-065232 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141331A1 true WO2013141331A1 (ja) 2013-09-26

Family

ID=49222783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058211 WO2013141331A1 (ja) 2012-03-22 2013-03-22 マイクロサテライト領域を有するdnaの検出方法

Country Status (6)

Country Link
US (1) US20150050649A1 (ja)
EP (1) EP2840136B1 (ja)
JP (1) JPWO2013141331A1 (ja)
CN (1) CN104204203A (ja)
AU (1) AU2013236174A1 (ja)
WO (1) WO2013141331A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412002B (zh) * 2019-08-08 2022-01-11 中山大学孙逸仙纪念医院 一种鉴别人源细胞和小鼠源细胞的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981977A (en) 1989-06-09 1991-01-01 Carnegie-Mellon University Intermediate for and fluorescent cyanine dyes containing carboxylic acid groups
US5268486A (en) 1986-04-18 1993-12-07 Carnegie-Mellon Unversity Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5585236A (en) 1992-11-18 1996-12-17 Sarasep, Inc. Nucleic acid separation on alkylated nonporous polymer beads
US5772889A (en) 1995-11-13 1998-06-30 Transgenomic, Inc. System and method for performing nucleic acid separations using liquid chromatography
JPH11206374A (ja) * 1998-01-21 1999-08-03 Mitsui Chem Inc トランスポゾン様dnaおよびその利用方法
US5972222A (en) 1996-11-13 1999-10-26 Transgenomic, Inc. Process for performing polynucleotide separations
US6083485A (en) 1994-12-07 2000-07-04 Institut Fur Diagnostikforschung Gmbh Near infrared radiation in-vivo diagnostic methods and dyes
WO2003014398A2 (en) 2001-01-03 2003-02-20 Transgenomic, Inc. Methods and compositions for mutation detection by liquid chromatography
WO2003031580A2 (en) 2001-10-05 2003-04-17 Transgenomic, Inc. Methods and compositions for mutation analysis by liquid chromatography
WO2006047452A2 (en) 2004-10-25 2006-05-04 Anaspec, Inc. Reactive 1,3’-crosslinked carbocyanines and their bioconjugates
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
JP2007061080A (ja) 2005-09-01 2007-03-15 Shoichi Matsukuma 電気泳動によるデオキシリボ核酸特定部位の1塩基変異検出法
JP2007190016A (ja) * 2005-12-22 2007-08-02 Mitsubishi Chemical Medience Corp マイクロサテライトマーカーを用いるラッカセイ品種識別方法
JP2009125009A (ja) 2007-11-26 2009-06-11 Panasonic Corp 遺伝子解析方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843649A (en) * 1995-03-01 1998-12-01 University Of Colorado Method of identifying clonal cell samples using heteroduplex generators
US5753439A (en) * 1995-05-19 1998-05-19 Trustees Of Boston University Nucleic acid detection methods
AU782726B2 (en) * 1999-07-28 2005-08-25 Commissariat A L'energie Atomique Integration of biochemical protocols in a continuous flow microfluidic device
US7718356B2 (en) * 2000-09-26 2010-05-18 Health Research Inc. Heteroduplex tracking assay
US6902894B2 (en) * 2001-09-07 2005-06-07 Genetel Pharmaceuticals Ltd. Mutation detection on RNA polmerase beta subunit gene having rifampin resistance
EP1820336A4 (en) * 2004-12-06 2010-04-28 Thomson Licensing MULTIPLE SUBTITLE FLOWS AND CUSTOMER ACCESS IN DIGITAL NETWORKS
NZ607326A (en) * 2010-08-27 2015-01-30 Universitaetsklinikum Muenster Means and methods for the detection of a predisposition of a female subject to recurrent pregnancy loss (rpl), preeclampsia (pe) and/or fetal growth restriction (fgr)
CN102719527B (zh) * 2012-04-17 2014-05-14 中国科学院海洋研究所 一种适用于文蛤家系鉴定的微卫星标记方法
CN102851357B (zh) * 2012-04-17 2014-01-01 中国科学院海洋研究所 文蛤微卫星标记的检测方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268486A (en) 1986-04-18 1993-12-07 Carnegie-Mellon Unversity Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US5486616A (en) 1986-04-18 1996-01-23 Carnegie Mellon University Method for labeling and detecting materials employing arylsulfonate cyanine dyes
US4981977A (en) 1989-06-09 1991-01-01 Carnegie-Mellon University Intermediate for and fluorescent cyanine dyes containing carboxylic acid groups
US5585236A (en) 1992-11-18 1996-12-17 Sarasep, Inc. Nucleic acid separation on alkylated nonporous polymer beads
US6083485A (en) 1994-12-07 2000-07-04 Institut Fur Diagnostikforschung Gmbh Near infrared radiation in-vivo diagnostic methods and dyes
US5772889A (en) 1995-11-13 1998-06-30 Transgenomic, Inc. System and method for performing nucleic acid separations using liquid chromatography
US5972222A (en) 1996-11-13 1999-10-26 Transgenomic, Inc. Process for performing polynucleotide separations
JPH11206374A (ja) * 1998-01-21 1999-08-03 Mitsui Chem Inc トランスポゾン様dnaおよびその利用方法
WO2003014398A2 (en) 2001-01-03 2003-02-20 Transgenomic, Inc. Methods and compositions for mutation detection by liquid chromatography
WO2003031580A2 (en) 2001-10-05 2003-04-17 Transgenomic, Inc. Methods and compositions for mutation analysis by liquid chromatography
WO2006047452A2 (en) 2004-10-25 2006-05-04 Anaspec, Inc. Reactive 1,3’-crosslinked carbocyanines and their bioconjugates
JP2007061080A (ja) 2005-09-01 2007-03-15 Shoichi Matsukuma 電気泳動によるデオキシリボ核酸特定部位の1塩基変異検出法
WO2007027495A1 (en) 2005-09-02 2007-03-08 Wako Pure Chemical Industries, Ltd Complex formation method and separation method
JP2007190016A (ja) * 2005-12-22 2007-08-02 Mitsubishi Chemical Medience Corp マイクロサテライトマーカーを用いるラッカセイ品種識別方法
JP2009125009A (ja) 2007-11-26 2009-06-11 Panasonic Corp 遺伝子解析方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANAL. CHEM., vol. 65, no. 5, 1993, pages 613 - 616
BIO TECHNIQUES, vol. 16, 1994, pages 1134 - 1137
BOOM ET AL., J. CLIN. MICROBIOL., vol. 28, 1990, pages 495 - 503
CLINICA CHIMICA ACTA, vol. 412, pages 1688 - 1672
MATSUKUMA, S. ET AL.: "Rapid and simple detection of hot spot point mutations of epidermal growth factor receptor, BRAF, and NRAS in cancers using the loop-hybrid mobility shift assay.", J. MOL. DIAGN., vol. 8, no. 4, September 2006 (2006-09-01), pages 504 - 512, XP002718858 *
NUCLEIC ACIDS RESEARCH, vol. 19, 1991, pages 3749
PANASONIC TECHNICAL JOURNAL, vol. 57, no. 3, October 2011 (2011-10-01)
PROC. NATL. ACAD. SCI. USA, vol. 76-2, 1979, pages 615 - 619
SHOICHI MATSUKUMA: "Loop Hetero Duplex DNA no PAGE deno Kyodo Henka o Riyo shita Idenshi Hen'i Kenshutsu", SEIBUTSU BUTSURI KAGAKU, vol. 52, no. 3, 15 September 2008 (2008-09-15), pages 75, XP008174377 *
TOSHIHARU MAKI: "Apprication 2-5 Microsatellite Takei Kaiseki, Saibo Kogaku Bessatsu Tips Seriese revised edition PCR Tips", KANOSEI O HIROGERU KOTSU TO HINT, 10 December 1999 (1999-12-10), pages 130 - 135, XP008174664 *

Also Published As

Publication number Publication date
EP2840136A1 (en) 2015-02-25
AU2013236174A1 (en) 2014-10-16
US20150050649A1 (en) 2015-02-19
JPWO2013141331A1 (ja) 2015-08-03
EP2840136B1 (en) 2017-02-08
EP2840136A4 (en) 2015-12-30
CN104204203A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP4484431B2 (ja) シトシンメチル化の高感度での検出方法
EP1255871B1 (en) Multiplex ligatable probe amplification
AU2002360223B2 (en) Analysis and detection of multiple target sequences using circular probes
CN101124337B (zh) 使用内切核酸酶剪切/连接酶重新密封反应和毛细管电泳或微阵列检测核酸差异
EP1633888B1 (en) Means and method for the detection of target nucleotide sequences using ligation assays with improved oligonucleotide probe pairs
KR101958659B1 (ko) 유전자 변이 특이적 증폭 효율이 증가된 dna 중합효소
JP3844996B2 (ja) 反復性pcr産物の融解曲線解析方法
JP4617403B2 (ja) 配列の相違を検出する方法
KR101358416B1 (ko) 리가제 반응과 절단효소 증폭반응을 이용한 표적 유전자 또는 이의 돌연변이 검출방법
JP2003530893A (ja) ポリメラーゼのプルーフリーディング活性によるヌクレオチド配列変異の検出
WO2013141331A1 (ja) マイクロサテライト領域を有するdnaの検出方法
JP6082730B2 (ja) インターカレーターを用いた変異遺伝子の識別検出方法
KR20200087726A (ko) Tert 돌연변이 검출을 위한 dna 중합효소 및 이를 포함하는 키트
EP4317455A1 (en) Target nucleic acid amplification method using guide probe and clamping probe and composition for amplifying target nucleic acid comprising same
JP5798562B2 (ja) 変異型dnaの検出法
JP2000513202A (ja) 核酸の塩基配列決定または遺伝的置換の大量スクリーニング法
KR102180462B1 (ko) 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법
EP4253564A1 (en) Target nucleic acid amplification method with high specificity and target nucleic acid amplifying composition using same
EP1400597A1 (en) Oligonucleotides for amplification and detection of hemochromatosis gene
KR20190071950A (ko) 노인성 난청 관련 유전형 판별용 pna 프로브 및 이를 이용한 노인성난청 관련 유전형 판별방법
JP2008136436A (ja) 1本鎖dna結合蛋白質を用いた核酸の変異検出方法
Cross Rare SNP discovery with endonucleases.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14387097

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013764078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013764078

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013236174

Country of ref document: AU

Date of ref document: 20130322

Kind code of ref document: A