WO2013140745A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2013140745A1
WO2013140745A1 PCT/JP2013/001591 JP2013001591W WO2013140745A1 WO 2013140745 A1 WO2013140745 A1 WO 2013140745A1 JP 2013001591 W JP2013001591 W JP 2013001591W WO 2013140745 A1 WO2013140745 A1 WO 2013140745A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper wire
electrode pad
copper
semiconductor device
semiconductor element
Prior art date
Application number
PCT/JP2013/001591
Other languages
English (en)
French (fr)
Inventor
慎吾 伊藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020147029011A priority Critical patent/KR102078986B1/ko
Priority to JP2014506003A priority patent/JP6330658B2/ja
Priority to US14/373,994 priority patent/US9230892B2/en
Priority to SG11201403958YA priority patent/SG11201403958YA/en
Priority to CN201380015809.5A priority patent/CN104205314B/zh
Publication of WO2013140745A1 publication Critical patent/WO2013140745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • Patent Document 1 describes a semiconductor device in which a copper-aluminum-based intermetallic compound is formed at a bonding interface between a wire and an electrode in a semiconductor device in which an electrode and a lead of a semiconductor element are connected and led out with a copper bonding wire.
  • a copper-aluminum-based intermetallic compound is formed at a bonding interface between a wire and an electrode in a semiconductor device in which an electrode and a lead of a semiconductor element are connected and led out with a copper bonding wire.
  • the CuAl 2 layer is formed at the interface between the copper ball and the aluminum electrode, the copper ball and the electrode are brought into close contact with each other, so that the reliability is improved in terms of corrosion resistance and the like. It is said that.
  • the present invention has been made in view of the above circumstances, and by suppressing the diffusion of copper from the copper wire toward the joint between the copper wire and the electrode pad, an alloy layer having a higher Cu composition ratio than CuAl 2 is obtained. It suppresses growth and improves connection reliability in a high temperature and high humidity environment.
  • a semiconductor device in which a barrier layer containing a metal selected from palladium and platinum is formed at a junction between the copper wire and the electrode pad when heated at 200 ° C. in the atmosphere for 16 hours. .
  • the copper wire includes a metal selected from palladium and platinum; The content of palladium and platinum in the joint between the copper wire and the electrode pad is 1 with respect to the content of palladium and platinum in the copper wire in a portion other than the joint between the copper wire and the electrode pad.
  • a larger semiconductor device is provided.
  • a semiconductor in which a barrier layer containing a metal selected from palladium and platinum is formed when a joint between a copper wire and an electrode pad is exposed to a high-temperature and high-humidity environment.
  • the copper wire contains a metal selected from palladium and platinum, and the content of palladium and platinum in the copper wire in a portion other than the joint between the copper wire and the electrode pad.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device according to an embodiment. It is the figure which expanded the junction part of a copper wire and an electrode pad about the semiconductor device which concerns on embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device 10 according to the present embodiment.
  • the semiconductor device 10 includes a lead frame 3 having a die pad portion 3a and an inner lead portion 3b as a substrate, the semiconductor element 1 mounted on the die pad portion 3a, and aluminum (Al) as a main component. 1, a connection terminal (inner lead portion 3 b) provided on the substrate and the electrode pad 6, a copper wire 4 mainly composed of copper (Cu), the semiconductor element 1, and And a sealing resin 5 for sealing the copper wire 4.
  • this semiconductor device 10 is heated in the atmosphere at 200 ° C. for 16 hours, as shown in FIG.
  • a barrier layer 7b containing a metal selected from either palladium (Pd) or platinum (Pt) is formed therebetween.
  • the copper wire includes a metal selected from palladium and platinum, and the copper wire and the electrode pad with respect to the content of palladium and platinum in the copper wire in a portion other than the joint portion between the copper wire and the electrode pad.
  • the content of palladium and platinum in the joint part with is greater than 1.
  • the semiconductor element 1 is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, and a solid-state imaging element.
  • the lead frame 3 is not particularly limited, and a circuit board may be used instead of the lead frame 3.
  • a circuit board may be used instead of the lead frame 3.
  • DIP Dual Inline Package
  • PLCC Plastic Leaded Chip Carrier
  • QFP Quad Flat Package
  • LQFP Low Profile Quad Flat Package
  • SOJ Small Outline ⁇ J lead package
  • TSOP thin small outline package
  • TQFP tape carrier package
  • BGA ball grid array
  • CSP Chip size ⁇ Package
  • QFN Quad Flat Non-Leaded Package
  • SON Small Outline Non-Leaded Package
  • LF-BGA Mold Array Package It can be used a lead frame or a circuit board used in the conventional semiconductor device, such as a BGA (MAP-BGA) of Jitaipu.
  • the semiconductor element 1 may be a stack of a plurality of semiconductor elements.
  • the first-stage semiconductor element is bonded to the die pad portion 3a via a die bond material cured body 2 such as a film adhesive or a thermosetting adhesive.
  • the semiconductor elements in the second and subsequent stages can be sequentially laminated with an insulating film adhesive or the like.
  • the electrode pad 6 is previously formed in the pre-process in the appropriate place of each layer.
  • the content of Al in the electrode pad 6 is preferably 98% by mass or more with respect to the entire electrode pad 6.
  • components other than Al contained in the electrode pad 6 include copper (Cu) and silicon (Si).
  • a general titanium-based barrier layer is formed on the surface of the underlying copper circuit terminal, and a general method for forming an electrode pad of a semiconductor element, such as vapor deposition, sputtering, or electroless plating, is applied. Can be produced.
  • the copper wire 4 is used to electrically connect the lead frame 3 and the semiconductor element 1 mounted on the die pad portion 3 a of the lead frame 3.
  • An oxide film is naturally or unavoidably formed on the surface of the copper wire 4 in the process.
  • the copper wire 4 includes those having an oxide film formed on the surface of the wire in this way.
  • the wire diameter of the copper wire 4 is 30 ⁇ m or less, more preferably 25 ⁇ m or less, and preferably 15 ⁇ m or more. If it is this range, the ball
  • the copper content in the copper wire 4 is preferably 98 to 99.9% by mass, more preferably 98.5 to 99.7% by mass, more preferably 98.99% by mass. More preferably, it is 7 to 99.3% by mass.
  • the copper wire 4 it is preferable to use a copper wire containing a metal selected from Pd and Pt whose diffusion rate to the electrode pad is slow, and a copper doped with a metal selected from either Pd or Pt More preferably, a wire is used. Due to Pd and Pt having a low diffusion rate to the electrode pad, Cu of the copper wire 4 can be prevented from diffusing into the electrode pad 6, and good connection reliability can be obtained.
  • the total content of Pd and Pt in the copper wire 4 is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, 0.5 mass% or more is still more preferable.
  • the content is preferably 2% by mass or less, more preferably 1.5% by mass or less, and further preferably 1% by mass or less.
  • the range of the total amount of Pd and Pt in the copper wire 4 is preferably 0.1 to 2% by mass, more preferably 0.3 to 1.5% by mass, based on the entire copper wire 4. 5 to 1% by mass is more preferable.
  • Either one of Pd or Pt may be contained in the copper wire 4, and in this case, the content of Pd in the copper wire 4 is 0.5 to 1 mass% with respect to the entire copper wire 4.
  • the content of Pt in the copper wire 4 is preferably 0.5 to 1% by mass with respect to the entire copper wire 4.
  • the copper wire 4 can further improve the bonding strength by doping 0.001% by mass to 0.003% by mass of Ba, Ca, Sr, Be, Al or rare earth metal into copper as the core wire.
  • the copper wire 4 is prepared by casting a copper alloy doped with a metal selected from Pd and Pt in a melting furnace, rolling the ingot, and further performing wire drawing using a die. What was obtained by performing heat treatment after heating while sweeping the wire can be used.
  • a copper ball 4 a is formed at the tip of the copper wire 4 at the joint 7 between the copper wire 4 and the electrode pad 6.
  • a CuAl alloy layer 7 a containing Cu and Al may be formed at the joint 7 between the copper wire 4 and the electrode pad 6, and when heated in the atmosphere at 200 ° C. for 16 hours, the CuAl alloy layer 7a may be formed.
  • the CuAl alloy layer 7a contains various contents of Cu and Al, Cu is a main component included in the copper wire 4, and Al is a main component included in the electrode pad 6. It is.
  • the CuAl alloy layer 7a is a region produced by diffusion of Al in the electrode pad 6 and Cu in the copper ball 4a by heating at the time of bonding or heat treatment after sealing, and mainly contains Cu and Al.
  • mainly containing Cu and Al means that the total of the Cu content and the Al content is larger than 50 mass%, preferably 80 mass% or more, with respect to the entire CuAl alloy layer 7a. More preferably, it is 90% by mass or more, and more preferably 95% by mass or more.
  • the CuAl alloy layer 7a includes a CuAl 2 layer and a layer having a higher Cu content than the CuAl 2 layer.
  • the CuAl 2 layer preferably has a higher proportion in the CuAl alloy layer 7a than the layer having a high Cu content.
  • the thickness of the CuAl alloy layer 7a can be set to 0.2 to 5 ⁇ m, for example.
  • the barrier layer 7b is a layer containing a metal selected from either Pd or Pt, and may further contain Cu.
  • the mass ratio of Pd and Pt in the barrier layer 7b is preferably 1.1 to 2 times the mass ratio of Pd and Pt in the copper wire 4, and 1.2 to 1.8 times. It is more preferable that
  • the barrier layer 7b is formed in the following manner at the joint 7 between the copper wire 4 and the electrode pad 6.
  • Cu having a high diffusion rate in the copper wire 4 diffuses into the electrode pad 6.
  • the metal selected from either Pd or Pt having a low diffusion rate in the copper wire 4 stays on the CuAl alloy layer 7a, and is gradually concentrated, and then becomes the barrier layer 7b. Thereby, it is possible to suppress Cu in the copper wire 4 from diffusing into the electrode pad 6. Further, since it inhibited from further diffusing into CuAl alloy layer 7a, the CuAl alloy layer 7a, thereby reducing the often Cu content than CuAl 2 layer layer from growing. Furthermore, it is possible to reduce disconnection caused by corrosion of the layer having a higher Cu content than the CuAl 2 layer by the halogen generated from the sealing resin 5.
  • the barrier layer 7b only needs to be formed between the CuAl alloy layer 7a and the copper wire 4 when the semiconductor device 10 is heated in the atmosphere at 200 ° C. for 16 hours, and the barrier layer 7b is formed on the semiconductor device 10 in advance. It may be.
  • the barrier layer 7b is formed by increasing the concentration of Pd and Pt having a slow diffusion rate in the copper wire 4, the amount of Pd and Pt remaining in the vicinity of the joint 7 after the copper wire 4 and the electrode pad 6 are joined can be increased. It becomes easy to form, or the elastic modulus at 175 ° C. of the sealing resin 5 is 500 MPa or more and 15000 MPa or less, so that it is given to the interface between the copper wire 4 and the electrode pad 6 during and after sealing. Since the movement of the copper wire 4 can be restrained moderately while reducing the stress, it is considered that the barrier layer is more easily formed by preventing breakage due to the stress of the joint portion, or a combination of both. It is done.
  • the thickness of the barrier layer 7b is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the bottom surface of the bonding portion 7 is flat at the interface with the electrode pad 6.
  • the contents of Pd and Pt in the joint portion 7 are higher than the contents of Pd and Pt in portions other than the joint portion 7 of the copper wire 4.
  • the content of is preferably larger than 1, and more preferably 1.3 or more from the viewpoint of high-temperature storage characteristics.
  • the “content of Pd and Pt in the joint 7” may be any region of the joint 7, but more preferably contains Pd and Pt in the vicinity of the interface between the copper wire 4 and the electrode pad 6. Amount.
  • the copper wire 4 having a high concentration of Pd and Pt is used.
  • examples include a method using a sealing resin having an elastic modulus at 175 ° C. of 500 MPa to 15000 MPa.
  • the sealing resin 5 having the elastic modulus
  • the movement of the copper wire 4 is appropriately restrained while reducing the stress applied to the interface between the copper wire 4 and the electrode pad 6 during and after sealing. Therefore, it is considered that the content of Pd and Pt can be increased by preventing breakage due to stress at the joint.
  • the sealing resin 5 is a cured body of a curable resin, and more specifically, it is more preferable that the epoxy resin composition containing (A) an epoxy resin and (B) a curing agent is cured.
  • the elastic modulus at 175 ° C. of the sealing resin 5 is preferably 500 MPa or more and 15000 MPa or less, and more preferably 800 or more and 5000 or less.
  • the epoxy resin includes monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • biphenyl type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, stilbene type epoxy resin; novolak type epoxy resin such as phenol novolak type epoxy resin and cresol novolak type epoxy resin; Polyfunctional epoxy resins such as methane type epoxy resins and alkyl-modified triphenol methane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton, phenol aralkyl types having a biphenylene skeleton Aralkyl-type epoxy resins such as poxy resins; Dihydroxynaphthalene-type epoxy resins, naphthol-type epoxy resins such as epoxy resins obtained by glycidyl etherification of dihydroxynaphthal
  • Triazine nucleus-containing epoxy resins such as dicyclopentadiene-modified phenolic epoxy resins, and the like. These may be used alone or in combination of two or more.
  • the biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, and stilbene type epoxy resin preferably have crystallinity.
  • the epoxy resin (A) is composed of an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), and an epoxy resin represented by the following formula (3). What contains at least 1 sort (s) selected from can be used.
  • Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the ⁇ -position or the ⁇ -position
  • Ar 2 represents a phenylene group Represents one of a biphenylene group and a naphthylene group
  • R 5 and R 6 each independently represent a hydrocarbon group having 1 to 10 carbon atoms
  • g is an integer of 0 to 5
  • h is It is an integer from 0 to 8
  • n 3 represents the degree of polymerization, and the average value is from 1 to 3.
  • a plurality of R 9 s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 5 represents a degree of polymerization, and an average value thereof is 0 to 4.
  • a plurality of R 10 and R 11 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 6 represents a degree of polymerization, and an average value thereof is 0 to 4. is there. ]
  • the content of the epoxy resin is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 8% by mass or more with respect to the entire epoxy resin composition. By doing so, the possibility of causing wire breakage due to an increase in viscosity can be reduced. Moreover, it is preferable that it is 18 mass% or less with respect to the whole epoxy resin composition, as for content of an epoxy resin (A), it is more preferable that it is 13 mass% or less, and 11 mass% or less is further more preferable. By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.
  • the curing agent can be roughly classified into three types, for example, a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
  • polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA).
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylene diamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, and the like; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA), etc .; novolac phenolic resins, polyvinylidene Phenolic resin curing agent such as phenol; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.
  • DDS diaminodiphenylsul
  • catalyst-type curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complexes.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24)
  • Lewis acids such as BF 3 complexes.
  • condensation type curing agent examples include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.
  • a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like.
  • the phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • phenol novolak resin cresol novolak Resin, novolak type resin such as bisphenol novolac; polyfunctional phenol resin such as triphenolmethane type phenol resin; modified phenol resin such as terpene modified phenol resin and dicyclopentadiene modified phenol resin; from either phenylene skeleton or biphenylene skeleton
  • Aralkyl-type resins such as phenol aralkyl resins having a selected skeleton and naphthol aralkyl resins having a skeleton selected from any of phenylene and biphenylene skeletons; bisphenol A, bisphenol F, etc.
  • Bisphenol compounds and the like which may be used in combination of two or more be used one kind alone.
  • (B) at least one curing agent selected from the group consisting of compounds represented by the following formula (4) can be used as the curing agent.
  • Ar 3 represents a phenylene group or a naphthylene group, and when Ar 3 is a naphthylene group, the hydroxyl group may be bonded to either the ⁇ -position or the ⁇ -position, and Ar 4 represents a phenylene group or biphenylene.
  • R 7 and R 8 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, i is an integer of 0 to 5, and j is 0 to N is an integer of 8, n 4 represents the degree of polymerization, and the average value thereof is 1 to 3.
  • the content of the curing agent in the epoxy resin composition is preferably 2% by mass or more, more preferably 3% by mass or more, and further preferably 6% by mass or more. By doing so, sufficient fluidity can be obtained.
  • the content of the (B) curing agent in the epoxy resin composition is preferably 15% by mass or less, more preferably 11% by mass or less, and further preferably 8% by mass or less. . By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.
  • the blending ratio of the epoxy resin and the phenol resin curing agent is the number of epoxy groups (EP) of all epoxy resins and the phenol of all phenol resin curing agents.
  • the equivalent ratio (EP) / (OH) to the number of functional hydroxyl groups (OH) is preferably 0.8 to 1.3. When the equivalent ratio is within this range, there is little possibility of causing a decrease in the curability of the epoxy resin composition or a decrease in the physical properties of the resin cured product.
  • the epoxy resin composition forming the sealing resin 5 may contain (C) a filler, and (D) a neutralizing agent or (E) a curing accelerator as necessary.
  • filler those used in general epoxy resin compositions for semiconductor encapsulation can be used. Examples thereof include inorganic fillers such as fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, and silicon nitride, and organic fillers such as organosilicone powder and polyethylene powder. preferable. These fillers may be used alone or in combination of two or more.
  • the shape of the filler (C) is as spherical as possible and the particle size distribution is broad in order to suppress an increase in the melt viscosity of the epoxy resin composition and further increase the filler content. Is preferred.
  • the filler may be surface-treated with a coupling agent.
  • the filler may be pre-treated with an epoxy resin or a phenol resin, and the treatment method includes a method of removing the solvent after mixing with a solvent, or a direct addition to the filler. In addition, there is a method of mixing using a mixer.
  • the content of the filler is preferably 65% by mass or more, and 75% by mass or more with respect to the entire epoxy resin composition, from the viewpoint of the filling property of the epoxy resin composition and the reliability of the semiconductor device. More preferably, it is more preferably 80% by mass or more. By doing so, low moisture absorption and low thermal expansion can be obtained, so that the risk of insufficient moisture resistance reliability can be reduced.
  • the content of the (C) filler is preferably 93% by mass or less, more preferably 91% by mass or less, and 86% by mass with respect to the entire epoxy resin composition in consideration of moldability. % Or less is more preferable. By doing so, it is possible to reduce the possibility that fluidity is lowered and poor filling or the like occurs during molding, or inconvenience such as wire flow in the semiconductor device due to high viscosity.
  • the neutralizing agent an epoxy resin composition or one that neutralizes an acidic corrosive gas generated by heating the sealing resin 5 that is a cured product thereof can be used. Thereby, corrosion (oxidation degradation) of the joint portion 7 between the copper wire 4 and the electrode pad 6 of the semiconductor element 1 can be suppressed.
  • the neutralizing agent (D) at least one selected from the group consisting of basic metal salts, particularly compounds containing calcium elements, compounds containing aluminum elements, and compounds containing magnesium elements may be used. it can.
  • Examples of the compound containing calcium element include calcium carbonate, calcium borate, calcium metasilicate, etc.
  • calcium carbonate is preferable from the viewpoint of impurity content, water resistance and low water absorption, and synthesized by a carbon dioxide reaction method. More preferred is precipitated calcium carbonate.
  • Examples of the compound containing an aluminum element include aluminum hydroxide and boehmite.
  • aluminum hydroxide is preferable, and low aluminum soda hydroxide synthesized by a two-stage Bayer method is more preferable.
  • Examples of the compound containing magnesium element include hydrotalcite, magnesium oxide, and magnesium carbonate.
  • hydrotalcite represented by the following formula (5) is preferable from the viewpoint of impurity content and low water absorption.
  • M a Al b (OH) 2a + 3b-2c (CO 3 ) c ⁇ mH 2 O (5)
  • M represents a metal element containing at least Mg
  • a, b, and c are numbers satisfying 2 ⁇ a ⁇ 8, 1 ⁇ b ⁇ 3, and 0.5 ⁇ c ⁇ 2, respectively.
  • M is an integer of 0 or more.
  • hydrotalcites include Mg 6 Al 2 (OH) 16 (CO 3 ) ⁇ mH 2 O, Mg 3 ZnAl 2 (OH) 12 (CO 3 ) ⁇ mH 2 O, Mg 4.3 Al 2 ( OH) 12.6 (CO 3 ) ⁇ mH 2 O and the like.
  • the content of the neutralizing agent is preferably 0.01 to 10% by mass with respect to the entire epoxy resin composition.
  • the content of the neutralizing agent is preferably 0.01 to 10% by mass with respect to the entire epoxy resin composition.
  • content of a neutralizing agent 0.01 mass% or more, the addition effect of a neutralizing agent can fully be exhibited, and corrosion of the junction part 7 of the copper wire 4 and the electrode pad 6 is carried out. (Oxidation degradation) can be prevented more reliably, and the high-temperature storage characteristics of the semiconductor device can be improved.
  • the moisture absorption can be reduced by setting the content of the (D) neutralizing agent to 10% by mass or less, the solder crack resistance tends to be improved.
  • the content thereof is 0.05 to 2% by mass with respect to the entire epoxy resin composition from the same viewpoint as described above. preferable.
  • the curing accelerator is not limited as long as it promotes the crosslinking reaction between the epoxy group of the epoxy resin and the curing agent (for example, the phenolic hydroxyl group of the phenol resin-based curing agent). What is used for a composition can be used.
  • diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; imidazole compounds such as 2-methylimidazole; tetra Examples include tetra-substituted phosphonium and tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds, and these may be used alone or in combination of two or more. .
  • the content of the curing accelerator is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more with respect to the entire epoxy resin composition. By doing so, the possibility of causing a decrease in curability can be reduced. Moreover, it is preferable that it is 1 mass% or less with respect to the whole epoxy resin composition, and, as for content of (E) hardening accelerator, it is more preferable that it is 0.5 mass% or less. By doing so, the possibility of causing a decrease in fluidity can be reduced.
  • the epoxy resin composition for forming the sealing resin 5 may further include an aluminum corrosion inhibitor such as zirconium hydroxide; an inorganic ion exchanger such as bismuth oxide hydrate; and ⁇ -glycidoxypropyl.
  • Coupling agents such as trimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane; colorants such as carbon black and bengara; low stress components such as silicone rubber; natural waxes such as carnauba wax, synthesis Release agents such as waxes, higher fatty acids such as zinc stearate and their metal salts or paraffins; various additives such as flame retardants such as aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, antioxidants, etc. You may mix
  • the epoxy resin composition for forming the sealing resin 5 is obtained by mixing the above-described components at 15 ° C. to 28 ° C. using, for example, a mixer, and then kneading using a roll, a kneader, an extruder, etc.
  • liquidity, etc. suitably can be used as needed, such as what knead
  • an electrode pad 6 is formed by opening a part of the uppermost protective film 8 of the semiconductor element 1 by a known semiconductor manufacturing process.
  • the protective film 8 is formed from an insulating film such as SiN.
  • the semiconductor element 1 provided with the electrode pad 6 is placed on the die pad portion 3a on the lead frame 3 by a further known post-process, and the electrode pad 6 and the inner lead portion 3b are wire-bonded with the copper wire 4.
  • Bonding is performed by the following procedure, for example. First, a copper ball 4a having a predetermined diameter is formed at the tip of the copper wire 4 (however, FIG. 2 shows the shape after bonding). Next, the copper ball 4 a is lowered substantially perpendicularly to the upper surface of the electrode pad 6, and ultrasonic vibration is applied while the copper ball 4 a and the electrode pad 6 are in contact with each other.
  • the inner lead part 3b of the lead frame 3 and the semiconductor element 1 may be joined by a reverse bond of a wire.
  • a ball formed at the tip of the copper wire 4 is first bonded to the electrode pad 6 of the semiconductor element 1, and the copper wire 4 is cut to form a stitch bonding bump.
  • a ball formed at the tip of the wire is bonded to the metal-plated inner lead portion 3b of the lead frame 3, and stitch bonded to the bumps of the semiconductor element.
  • the height of the wire on the semiconductor element 1 can be made lower than that in the positive bonding, so that the bonding height of the semiconductor element 1 can be reduced.
  • a curable resin for example, the above-mentioned epoxy resin composition
  • a conventional molding method such as a transfer mold, a compression mold, or an injection mold
  • the semiconductor element 1, the copper wire 4, and the inner lead portion 3b Is sealed, and post-curing is performed at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 24 hours.
  • the post-curing is more preferably performed at 150 to 200 ° C. for 2 to 16 hours.
  • the semiconductor element 1 sealed with the sealing resin 5 can be mounted on an electronic device or the like.
  • the Pd and Pt contents in the joint portion 7 are larger than 1 with respect to the Pd and Pt contents in the copper wire 4. Further, when the semiconductor device 10 is heated at 200 ° C. for 16 hours in the air after the step of sealing with the sealing resin 5, the bonding portion 7 between the copper wire 4 and the electrode pad 6 is made of any one of Pd and Pt. A barrier layer 7b containing the selected metal is formed.
  • the manufacturing process and use causes Cu to diffuse preferentially from the copper ball 4a to the electrode pad 6 to form a CuAl alloy layer 7a in the joint 7 and Pt, Pd in the copper ball 4a or both of them. Does not diffuse into the electrode pad 6 and remains on the CuAl alloy layer 7a. Thereby, Cu in the copper wire 4 can be prevented from further diffusing toward the CuAl alloy layer 7a, and the growth of the CuAl alloy layer 7a can be suppressed. Therefore, according to the present invention, high connection reliability is maintained even when a high temperature and high temperature process is employed after bonding or when the usage environment is at a high temperature (for example, around an engine such as an automobile). Is possible.
  • the present invention relates to a semiconductor element mounted on a substrate, an electrode pad mainly formed of aluminum, provided on the semiconductor element, a connection terminal provided on the substrate, and the electrode pad.
  • a copper wire having a main component, and a sealing resin for sealing the semiconductor element and the copper wire, and the total amount of palladium and platinum in the copper wire is based on the entire copper wire,
  • the present invention relates to a semiconductor device of 0.1 wt% or more and 2 wt% or less.
  • Epoxy resin-OCN EOCN-1020-55, Nippon Kayaku Co., Ltd., epoxy equivalent 200 Br-epoxy: EPICLON 152-S, manufactured by Dainippon Ink and Chemicals, epoxy equivalent 359 Epoxy resin-2: NC3000P, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 276 Epoxy resin-3: YX4000K, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 185
  • Curing agent-PN PR-HF-3, manufactured by Sumitomo Bakelite Co., Ltd., hydroxyl equivalent 105
  • DHT-4A registered trademark
  • a hydrotalcite in which a is 4.3, b is 2, and c is 1 in the above formula (5) manufactured by Kyowa Chemical Industry Co., Ltd.
  • Triphenylphosphine TPP, manufactured by Hokuko Chemical Co., Ltd.
  • Coupling agent ⁇ -glycidoxypropyltrimethoxysilane Colorant: Carbon black Release agent: Carnauba wax
  • a test piece of 50 mm ⁇ ⁇ 3 mm was molded using a low pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 7.5 MPa, and a curing time of 2 minutes. After post-curing at 175 ° C. for 8 hours, finely pulverized, add 50 ml of distilled water to 5 g of pulverized product, put in a Teflon (registered trademark) -lined container, treat at 125 ° C. for 20 hours, and treat the supernatant The liquid was quantified by ion chromatographic analysis.
  • TEG (TEST ELEMENT GROUP) chip (3.5 mm ⁇ 3.5 mm) equipped with an aluminum electrode pad (aluminum pad with Al purity of 99.9% by mass and 1 ⁇ m thickness) is a 352-pin BGA (the substrate has a thickness of 0.56 mm, Adhesive to the die pad part of bismaleimide / triazine resin / glass cloth substrate (package size is 30mm x 30mm, thickness 1.17mm) so that aluminum electrode pad of TEG chip and electrode pad of substrate are daisy chain connected Then, wire bonding was performed using a copper wire shown in Tables 2 and 3 at a wire pitch of 80 ⁇ m.
  • Pd dope 1 copper wire having a copper purity of 99.99% by mass and a Pd content of 1% by mass (diameter: 25 ⁇ m)
  • Pd dope 2 Copper wire (diameter 25 ⁇ m) having a copper purity of 99.49% by mass and a Pd content of 0.5% by mass
  • Pt dope copper wire with a copper purity of 99.99% by mass and a Pt content of 1% by mass (diameter: 25 ⁇ m) Bear: copper wire with a copper purity of 99.99% by mass and containing neither Pd nor Pt (diameter 25 ⁇ m)
  • Pd coating Copper wire (diameter 25 ⁇ m) with a surface of copper purity 99.99 mass% coated with 50 nm of Pd
  • a barrier layer could not be confirmed between the copper wire and the aluminum pad, but when analyzed by elemental analysis with a transmission electron microscope (TEM), In Examples 1 to 11, the mass ratio of Pd and Pt between the copper wire and the CuAl alloy layer is 1.02 to 1.08 times higher than the mass ratio of Pd and Pt in the copper wire. I confirmed. Further, the semiconductor devices of Examples 1 to 11 and Comparative Examples 1 to 6 were heated in the atmosphere at 200 ° C. for 16 hours, and the structure of the junction between the copper wire and the electrode pad was analyzed by TEM.
  • TEM transmission electron microscope
  • a barrier layer made of Cu / Pd having a thickness of 0.05 to 0.2 ⁇ m was formed between the CuAl 2 layer having a thickness of 0.3 ⁇ m and the copper wire. It was confirmed by TEM elemental analysis that the Pd mass ratio in the barrier layer increased 1.2 to 1.3 times the Pd mass ratio in the copper wire.
  • a barrier layer made of Cu / Pt having a thickness of 0.1 to 0.2 ⁇ m is formed between the CuAl 2 layer having a thickness of 0.3 ⁇ m and the copper wire. It was confirmed. Elemental analysis by TEM confirmed that the Pt mass ratio in the barrier layer increased 1.2 to 1.4 times the Pt mass ratio in the copper wire.
  • HAST unsaturated moisture resistance test
  • HTSL high temperature storage test
  • the semiconductor devices of Examples 1 to 11 and Comparative Examples 1 to 6 were subjected to HAST (unsaturated moisture resistance test) and HTSL (high temperature storage test) of the semiconductor devices.
  • the results are shown in Tables 2 and 3.
  • the units in Tables 2 and 3 are hours.
  • HAST was performed in accordance with IEC68-2-66.
  • the test conditions were such that the temperature was 130 ° C. and 140 ° C., the treatment was performed at 85% RH and an applied voltage of 20 V, and the time during which defects occurred was examined.
  • HTSL was processed at 175 ° C., and the time during which defects occurred was examined.
  • determination of a defect in HAST and HTSL was evaluated using ten manufactured packages, and a time when a package having a resistance value after processing with respect to an initial resistance exceeding 1.2 times was defined as a defect time.
  • the doping amount of Pd or Pt is preferably 0.1 to 2% by mass, more preferably 0.3 to 1%.
  • a copper wire that is 0.5% by mass or more and 0.5% by mass or more and 1% by mass or less, which is a more preferable range, stable without being influenced by the halogen amount of the epoxy resin composition forming the sealing resin It was shown that both reliability and bonding workability can be achieved.

Abstract

 半導体装置は、基板に搭載された半導体素子と、アルミニウムを主成分とし、半導体素子に設けられた電極パッドと、基板に設けられた接続端子と電極パッドとを接続し、銅を主成分する銅ワイヤと、半導体素子及び銅ワイヤを封止する封止樹脂と、を有する。この半導体装置は、大気中200℃で16時間加熱したとき、銅ワイヤと電極パッドとの接合部に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成される。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関する。
 近年、金ワイヤに代わるボンディングワイヤとして、銅ワイヤが提案されている。
 特許文献1には、半導体素子の電極とリードとを銅のボンディングワイヤで接続導出した半導体装置において、ワイヤと電極との接合界面に銅-アルミニウム系金属間化合物が形成されている半導体装置が記載されている。特許文献1の記載によれば、銅のボールとアルミニウム電極との界面にCuAl層を形成させることで、銅ボールと電極とが密着した状態になるため、耐食性等の点から信頼性が向上するとされている。
特開昭62-265729号公報
 しかしながら、銅ワイヤとアルミニウムパッドとの接合部をさらに熱処理することで、銅ワイヤからCuAl層にCuが拡散し、CuAlよりCu組成比の高い合金層が形成される。本発明者の知見によれば、CuAlよりCu組成比の高い合金層は、ハロゲンによる腐食を受け易く、断線しやすいことが明らかとなった。
 本発明は上記事情に鑑みてなされたものであり、銅ワイヤと電極パッドとの接合部に向かって銅ワイヤから銅が拡散するのを抑制することによりCuAlよりCu組成比の高い合金層の成長を抑制し、高温高湿環境下における接続信頼性を向上させるものである。
 本発明によれば、
 基板に搭載された半導体素子と、
 アルミニウムを主成分とし、前記半導体素子に設けられた電極パッドと、
 前記基板に設けられた接続端子と前記電極パッドとを接続し、銅を主成分とする銅ワイヤと、
 前記半導体素子及び前記銅ワイヤを封止する封止樹脂と、
を有し、
 大気中200℃で16時間加熱したとき、前記銅ワイヤと前記電極パッドとの接合部に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成される、半導体装置が提供される。
 また、本発明によれば、
 基板に搭載された半導体素子と、
 アルミニウムを主成分とし、前記半導体素子に設けられた電極パッドと、
 前記基板に設けられた接続端子と前記電極パッドとを接続し、銅を主成分とする銅ワイヤと、
 前記半導体素子及び前記銅ワイヤを封止する封止樹脂と、
を有し、
 前記銅ワイヤが、パラジウム及び白金のいずれかから選択される金属を含み、
 前記銅ワイヤと前記電極パッドとの接合部以外の部分における前記銅ワイヤ中のパラジウム及び白金の含有量に対する、前記銅ワイヤと前記電極パッドとの前記接合部におけるパラジウム及び白金の含有量が、1より大きい、半導体装置が提供される。
 また、本発明によれば、アルミニウムを主成分とする電極パッドが設けられた半導体素子を、接続端子が設けられた基板に搭載する工程と、
 銅を主成分とする銅ワイヤで前記接続端子と前記電極パッドとを接続する工程と、
 前記半導体素子及び前記銅ワイヤを封止樹脂で封止する工程と、
を含み、
 封止樹脂で封止する前記工程の後に、大気中200℃で16時間加熱したとき、前記銅ワイヤと前記電極パッドとの接合部に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成される、半導体装置の製造方法が提供される。
 本発明によれば、銅ワイヤと電極パッドとの接合部が高温高湿の環境にさらされた場合に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成されるような半導体装置とすることで、銅ワイヤと電極パッドとの接合部におけるCuAlよりCu組成比の高い合金層の成長を抑制して、高温高湿環境下における接続信頼性を向上させることができる。
 また、本発明によれば、銅ワイヤが、パラジウム及び白金のいずれかから選択される金属を含み、銅ワイヤと電極パッドとの接合部以外の部分における銅ワイヤ中のパラジウム及び白金の含有量に対する、銅ワイヤと電極パッドとの接合部におけるパラジウム及び白金の含有量が、1より大きいものとすることで、銅ワイヤと電極パッドとの接合部におけるCuAlよりCu組成比の高い合金層の成長を抑制して、高温高湿環境下における接続信頼性を向上させることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施の形態に係る半導体装置を模式的に示した断面図である。 実施の形態に係る半導体装置について、銅ワイヤと電極パッドとの接合部を拡大した図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、本実施の形態に係る半導体装置10を模式的に示す断面図である。この半導体装置10は、基板として、ダイパッド部3aと、インナーリード部3bとを有するリードフレーム3を備え、ダイパッド部3aに搭載された半導体素子1と、アルミニウム(Al)を主成分とし、半導体素子1に設けられた電極パッド6と、基板に設けられた接続端子(インナーリード部3b)と電極パッド6とを接続し、銅(Cu)を主成分とする銅ワイヤ4と、半導体素子1及び銅ワイヤ4を封止する封止樹脂5と、を有する。この半導体装置10は、大気中200℃で16時間加熱したとき、図2に示すように銅ワイヤ4と電極パッド6との接合部7、より詳細には銅ワイヤ4とCuAl合金層7aとの間に、パラジウム(Pd)及び白金(Pt)のいずれかから選択される金属を含むバリア層7bが形成される。また、銅ワイヤが、パラジウム及び白金のいずれかから選択される金属を含み、銅ワイヤと電極パッドとの接合部以外の部分における銅ワイヤ中のパラジウム及び白金の含有量に対する、銅ワイヤと電極パッドとの接合部におけるパラジウム及び白金の含有量が、1より大きくなっている。
 半導体素子1としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、固体撮像素子等が挙げられる。
 リードフレーム3としては特に制限はなく、リードフレーム3に代えて回路基板を用いてもよい。具体的には、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリア(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF-BGA)、モールド・アレイ・パッケージタイプのBGA(MAP-BGA)などの従来公知の半導体装置に用いられるリードフレーム又は回路基板を用いることができる。
 半導体素子1は、複数の半導体素子が積層されたものであってもよい。この場合、1段目の半導体素子はフィルム接着剤、熱硬化性接着剤等のダイボンド材硬化体2を介してダイパッド部3aに接着される。2段目以降の半導体素子は絶縁性のフィルム接着剤等により順次積層させることができる。そして、各層の適切な場所に、予め前工程で電極パッド6が形成されている。
 電極パッド6中のAlの含有量は、電極パッド6全体に対して98質量%以上が好ましい。電極パッド6中に含まれるAl以外の成分としては、銅(Cu)、シリコン(Si)等が挙げられる。電極パッド6は、下層の銅回路端子の表面に一般的なチタン系バリア層を形成し、さらにAlを蒸着、スパッタリング、無電解メッキなど、一般的な半導体素子の電極パッドの形成方法を適用することにより作製することができる。
 銅ワイヤ4は、リードフレーム3と、リードフレーム3のダイパッド部3aに搭載された半導体素子1とを電気的に接続するために使用される。銅ワイヤ4の表面には、自然に又はプロセス上不可避的に酸化膜が形成されている。本発明において、銅ワイヤ4とは、このようにワイヤ表面に形成された酸化膜を具備するものも含まれる。
 銅ワイヤ4のワイヤ径は、30μm以下、さらに好ましくは25μm以下でありかつ15μm以上であることが好ましい。この範囲であれば銅ワイヤ先端のボール形状が安定し、接合部分の接続信頼性を向上させることができる。また、銅ワイヤ自身の硬さによりワイヤ流れを低減することが可能となる。
 銅ワイヤ4中の銅の含有量は、銅ワイヤ4全体に対して、98~99.9質量%であることが好ましく、98.5~99.7質量%であることがより好ましく、98.7~99.3質量%であると更に好ましい。銅ワイヤ4として、電極パッドへの拡散速度が遅いPd及びPtのいずれかから選択される金属を含む銅ワイヤを用いることが好ましく、Pd及びPtのいずれかから選択される金属がドープされた銅ワイヤを用いることがより好ましい。電極パッドへの拡散速度が遅いPd及びPtにより、銅ワイヤ4のCuが電極パッド6に拡散するのを抑制でき、良好な接続信頼性が得られる。
 銅ワイヤ4中のPd及びPtの含有量の合計は、銅ワイヤ4全体に対し、良好な高温保管特性の観点から、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましい。一方、銅ワイヤ4の硬度の上昇を抑制し、ボンディング性の低下を押さえるため、2質量%以下が好ましく、1.5質量%以下がより好ましく、1質量%以下が更に好ましい。また、銅ワイヤ4中のPd及びPtの合計量の範囲は、銅ワイヤ4全体に対して、0.1~2質量%が好ましく、0.3~1.5質量%がより好ましく、0.5~1質量%が更に好ましい。
 銅ワイヤ4中にPd又はPtのいずれか一方が含まれていてもよく、この場合、銅ワイヤ4中のPdの含有量が、銅ワイヤ4全体に対して0.5~1質量%であるか、又は、銅ワイヤ4中のPtの含有量が、銅ワイヤ4全体に対して0.5~1質量%であることが好ましい。前記範囲とすることで優れた信頼性とボンディング作業性を両立することができる。
 なお、銅ワイヤ4にドープされたPd及びPtのいずれかから選択される金属は、Cu中に固溶した状態で存在していると推察される。
 銅ワイヤ4は、芯線である銅にBa、Ca、Sr、Be、Al又は希土類金属を0.001質量%~0.003質量%ドープすることで、さらに接合強度を改善することができる。
 銅ワイヤ4は、Pd及びPtのいずれかから選択される金属をドープした銅合金を溶解炉で鋳造し、その鋳塊をロール圧延し、さらにダイスを用いて伸線加工を行い、連続的にワイヤを掃引しながら加熱する後熱処理を施して得たものを用いることができる。
 銅ワイヤ4と電極パッド6との接合部7において、銅ワイヤ4の先端には、銅ボール4aが形成されている。
 半導体装置10は、銅ワイヤ4と電極パッド6との接合部7に、Cu及びAlを含むCuAl合金層7aが形成されていてもよいし、大気中200℃で16時間加熱したときCuAl合金層7aが形成されてもよい。CuAl合金層7aは、Cu及びAlの含有量が各種のものを含んでおり、Cuは、銅ワイヤ4に含まれる主成分のものであり、Alは、電極パッド6に含まれる主成分のものである。CuAl合金層7aは、接合時の加熱または封止後の熱処理により電極パッド6中のAlと銅ボール4a中のCuとが拡散して生じる領域であり、CuとAlとを主として含む。ここで、CuとAlとを主として含むとは、CuAl合金層7a全体に対してCuの含有量とAlとの含有量との合計が50質量%より大きいことをいい、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であることをいう。
 CuAl合金層7aは、具体的には、CuAl層と、CuAl層よりもCu含有量が多い層とを含む。CuAl合金層7aにおいて、CuAl層は、Cu含有量が多い層よりもCuAl合金層7a中に占める割合が高いことが好ましい。CuAl合金層7aの厚みは、例えば、0.2~5μmとすることができる。
 バリア層7bは、Pd及びPtのいずれかから選択される金属を含む層であり、さらに、Cuを含んでいてもよい。具体的には、バリア層7b中のPd及びPtの質量割合は、銅ワイヤ4中のPd及びPtの質量割合の1.1~2倍であることが好ましく、1.2~1.8倍であることがより好ましい。
 バリア層7bは、銅ワイヤ4と電極パッド6との接合部7において、以下のようにして形成される。
 銅ワイヤ4と電極パッド6との接合部7が熱処理されることにより、銅ワイヤ4中の拡散速度の速いCuが電極パッド6に拡散する。一方、銅ワイヤ4中の拡散速度の遅いPd及びPtのいずれかから選択される金属は、CuAl合金層7a上にとどまり、次第に濃縮され、その後バリア層7bとなる。
 これにより、銅ワイヤ4中のCuが電極パッド6に拡散するのを抑制できる。また、CuAl合金層7aに更に拡散するのを抑制できるため、CuAl合金層7aにおいて、CuAl層よりもCu含有量が多い層が成長するのを低減できる。更に、CuAl層よりもCu含有量が多い層が、封止樹脂5から発生するハロゲンにより腐食することによって生じる断線を、低減することが可能となる。
 バリア層7bは、半導体装置10を大気中200℃で16時間加熱したとき、CuAl合金層7aと銅ワイヤ4との間に形成されていればよく、半導体装置10にあらかじめバリア層7bが形成されていてもよい。
 バリア層7bが形成される理由の詳細は明らかではないが、次のように推測される。
 銅ワイヤ4中の拡散速度の遅いPd及びPtの濃度を高くすることにより、銅ワイヤ4と電極パッド6との接合後、接合部7付近にとどまるPd及びPtの量を増加できバリア層7bが形成されやすくなること、または、封止樹脂5の175℃の弾性率が500MPa以上15000MPa以下であることにより、封止の際及び封止後において、銅ワイヤ4と電極パッド6との界面に与えるストレスを低減しつつ銅ワイヤ4の動きを適度に拘束することができるため、接合部の応力による破壊を防止して一層バリア層が形成されやすくなること、または両者の組み合わせによる等の理由が考えられる。
 バリア層7bの厚みは、0.01~3μmであることが好ましく、0.05~2μmであることがより好ましい。
 接合部7は、電極パッド6との界面において、底面が平坦であることが好ましい。
 また、半導体装置10において、接合部7におけるPd及びPtの含有量は、銅ワイヤ4の接合部7以外の部分におけるPd及びPtの含有量よりも高くなっている。具体的には、銅ワイヤ4と電極パッド6との接合部7以外の部分における銅ワイヤ4中のPd及びPtの含有量に対する、銅ワイヤ4と電極パッド6との接合部7におけるPd及びPtの含有量が、1より大きいことが好ましく、高温保管特性の観点から、1.3以上であることがより好ましい。「接合部7におけるPd及びPtの含有量」とは、接合部7のいずれの領域であってもよいが、より好ましくは、銅ワイヤ4と電極パット6との界面近傍のPd及びPtの含有量である。
 接合部7におけるPd及びPtの含有量を、銅ワイヤ4の接合部7以外の部分におけるPd及びPtの含有量よりも高くする方法としては、例えば、Pd及びPtの濃度の高い銅ワイヤ4を用いる方法、175℃の弾性率が500MPa以上15000MPa以下の封止樹脂を用いる方法などが挙げられる。そのメカニズムの詳細は明らかではないが、Pd及びPtは電極パッド6への拡散速度が遅いため、銅ワイヤ4と電極パッド6との接合後、銅ワイヤ4から電極パッド6へ拡散するPd及びPtが接合部7にとどまり易くなると考えられる。また、上記弾性率の封止樹脂5により、封止の際及び封止後において、銅ワイヤ4と電極パッド6との界面に与えるストレスを低減しつつ銅ワイヤ4の動きを適度に拘束することできるため、接合部の応力による破壊を防止して、Pd及びPtの含有量が高くできると考えられる。
 封止樹脂5は、硬化性樹脂の硬化体であり、具体的には、(A)エポキシ樹脂及び(B)硬化剤を含むエポキシ樹脂組成物を硬化させたものであることがより好ましい。
 封止樹脂5の175℃の弾性率が500MPa以上15000MPa以下が好ましく、800以上5000以下であることがより好ましい。これにより、銅ワイヤ4と電極パッド6との界面に与えるストレスを低減しつつ銅ワイヤ4の動きを適度に拘束することできるため、一層バリア層が形成されやすくなり、高温保管特性を向上できる。
 (A)エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 なお、前記ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂は結晶性を有するものが好ましい。
 好ましくは、エポキシ樹脂(A)として、下記式(1)で表されるエポキシ樹脂、下記式(2)で表されるエポキシ樹脂、及び、下記式(3)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることができる。
Figure JPOXMLDOC01-appb-C000001
〔式(1)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1~10の炭化水素基を表し、gは0~5の整数であり、hは0~8の整数であり、nは重合度を表し、その平均値は1~3である。〕
Figure JPOXMLDOC01-appb-C000002
〔式(2)中、複数存在するRはそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表し、nは重合度を表し、その平均値は0~4である。〕
Figure JPOXMLDOC01-appb-C000003
〔式(3)中、複数存在するR10及びR11はそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表し、nは重合度を表し、その平均値は0~4である。〕
 (A)エポキシ樹脂の含有量は、エポキシ樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、8質量%以上がさらに好ましい。こうすることで、粘度上昇によるワイヤ切れを引き起こす恐れを少なくすることができる。また、エポキシ樹脂(A)の含有量は、エポキシ樹脂組成物全体に対して、18質量%以下であることが好ましく、13質量%以下であることがより好ましく、11質量%以下がさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。
 (B)硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別することができる。
 重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノールなどのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸などが挙げられる。
 縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及びビフェニレン骨格のいずれかから選択される骨格を有するフェノールアラルキル樹脂、フェニレン及びビフェニレン骨格のいずれかから選択される骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 好ましくは、(B)硬化剤として、下記式(4)で表される化合物からなる群から選択される少なくとも1種の硬化剤を用いることができる。
Figure JPOXMLDOC01-appb-C000004
〔式(4)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、水酸基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1~10の炭化水素基を表し、iは0~5の整数であり、jは0~8の整数であり、nは重合度を表し、その平均値は1~3である。〕
 (B)硬化剤の含有量は、エポキシ樹脂組成物中に、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、6質量%以上であることがさらに好ましい。こうすることで、充分な流動性を得ることができる。また、(B)硬化剤の含有量は、エポキシ樹脂組成物中に、15質量%以下であることが好ましく、11質量%以下であることがより好ましく、8質量%以下であることがさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。
 また、(B)硬化剤としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8~1.3であることが好ましい。当量比がこの範囲であると、エポキシ樹脂組成物の硬化性の低下、又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。
 また、封止樹脂5を形成するエポキシ樹脂組成物には、(C)充填材、及び必要に応じて(D)中和剤や(E)硬化促進剤を含んでいてもよい。
 (C)充填材としては、一般の半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等の無機充填材、オルガノシリコーンパウダー、ポリエチレンパウダー等の有機充填材が挙げられ、中でも、溶融球状シリカが特に好ましい。これらの充填材は、1種を単独で用いても2種以上を併用しても差し支えない。また、(C)充填材の形状としては、エポキシ樹脂組成物の溶融粘度の上昇を抑え、更に充填材の含有量を高めるためには、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。また、充填材がカップリング剤により表面処理されていてもかまわない。さらに、必要に応じて充填材をエポキシ樹脂又はフェノール樹脂等で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接充填材に添加し、混合機を用いて混合処理する方法等がある。
 (C)充填材の含有量は、エポキシ樹脂組成物の充填性、半導体装置の信頼性の観点から、エポキシ樹脂組成物全体に対して、65質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上がさらに好ましい。こうすることで、低吸湿性、低熱膨張性が得られるため耐湿信頼性が不十分となる恐れを少なくすることができる。また、(C)充填材の含有量は、成形性を考慮すると、エポキシ樹脂組成物全体に対して、93質量%以下であることが好ましく、91質量%以下であることがより好ましく、86質量%以下がさらに好ましい。こうすることで、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れを少なくすることができる。
 (D)中和剤は、エポキシ樹脂組成物、又は、その硬化体である封止樹脂5の加熱により発生する酸性の腐食性ガスを中和するものを用いることができる。これにより、銅ワイヤ4と半導体素子1の電極パッド6との接合部7の腐食(酸化劣化)を抑制することができる。具体的には、(D)中和剤として、塩基性金属塩、特にカルシウム元素を含む化合物、アルミニウム元素を含む化合物及びマグネシウム元素を含む化合物からなる群から選択される少なくとも1種を用いることができる。
 上記カルシウム元素を含む化合物としては、炭酸カルシウム、硼酸カルシウム、メタケイ酸カルシウムなどが挙げられ、中でも、不純物の含有量、耐水性及び低吸水率の観点から炭酸カルシウムが好ましく、炭酸ガス反応法により合成された沈降性炭酸カルシウムがより好ましい。
 上記アルミニウム元素を含む化合物としては水酸化アルミニウム、ベーマイト等が挙げられる。中でも、水酸化アルミニウムが好ましく、水酸化アルミニウムでは、2段階バイヤー法で合成された低ソーダ水酸化アルミニウムがより好ましい。
 上記マグネシウム元素を含む化合物としては、ハイドロタルサイト、酸化マグネシウム、炭酸マグネシウムなどが挙げられ、中でも、不純物の含有量及び低吸水率の観点から、下記式(5)で表されるハイドロタルサイトが好ましい。
   MAl(OH)2a+3b-2c(CO・mHO     (5)
〔式(5)中、Mは少なくともMgを含む金属元素を表し、a、b、cは、それぞれ2≦a≦8、1≦b≦3、0.5≦c≦2を満たす数であり、mは0以上の整数である。〕
 具体的なハイドロタルサイトとしては、MgAl(OH)16(CO)・mHO、MgZnAl(OH)12(CO)・mHO、Mg4.3Al(OH)12.6(CO)・mHOなどが挙げられる。
 (D)中和剤の含有量としては、エポキシ樹脂組成物全体に対して0.01~10質量%が好ましい。(D)中和剤の含有量を0.01質量%以上とすることで、中和剤の添加効果を十分に発揮させることができ、銅ワイヤ4と電極パッド6との接合部7の腐食(酸化劣化)をより確実に防止し、半導体装置の高温保管特性を向上させることができる。また、(D)中和剤の含有量を10質量%以下とすることで、吸湿率を低下させることができるため、耐半田クラック性が向上する傾向にある。特に、腐食防止剤として炭酸カルシウムやハイドロタルサイトを用いた場合には、上記と同様の観点から、その含有量は、エポキシ樹脂組成物全体に対して0.05~2質量%であることが好ましい。
 (E)硬化促進剤は、エポキシ樹脂のエポキシ基と硬化剤(たとえば、フェノール樹脂系硬化剤のフェノール性水酸基)との架橋反応を促進させるものであればよく、一般の半導体封止用エポキシ樹脂組成物に使用するものを用いることができる。例えば、1、8-ジアザビシクロ(5、4、0)ウンデセン-7等のジアザビシクロアルケン及びその誘導体;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;2-メチルイミダゾール等のイミダゾール化合物;テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ホスフィン化合物とキノン化合物との付加物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。
 (E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。こうすることで、硬化性の低下を引き起こす恐れを少なくすることができる。また、(E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。こうすることで、流動性の低下を引き起こす恐れを少なくすることができる。
 封止樹脂5を形成するためのエポキシ樹脂組成物には、さらに必要に応じて、水酸化ジルコニウム等のアルミニウム腐食防止剤;酸化ビスマス水和物等の無機イオン交換体;γ-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等の難燃剤、酸化防止剤等の各種添加剤を適宜配合してもよい。
 封止樹脂5を形成するためのエポキシ樹脂組成物は、前述の各成分を、例えば、ミキサー等を用いて15℃~28℃で混合したもの、さらにその後、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。
 つづいて、本実施の形態に係る半導体装置10の製造方法の一例について説明する。
 まず、公知の半導体製造プロセスによって半導体素子1の最上層の保護膜8の一部を開口して電極パッド6を形成する。保護膜8はSiN等の絶縁膜から形成される。次いで、更に公知の後工程プロセスにより電極パッド6を備えた半導体素子1をリードフレーム3上のダイパッド部3aに設置し、銅ワイヤ4により電極パッド6とインナーリード部3bとをワイヤボンディングする。
 ボンディングは、たとえば以下の手順で行う。まず、銅ワイヤ4の先端に所定の径の銅ボール4a(ただし図2はボンディング後の形状で図示している)を形成する。ついで、銅ボール4aを電極パッド6上面に対して実質的に垂直に降下させ、銅ボール4aと電極パッド6とを接触させながら、超音波振動を与える。
 これにより、銅ボール4aの底部が電極パッド6に接触して接合面が形成される。
 なお、リードフレーム3のインナーリード部3bと半導体素子1とは、ワイヤのリバースボンドで接合されていてもよい。リバースボンドでは、まず半導体素子1の電極パッド6に銅ワイヤ4の先端に形成されたボールを接合し、銅ワイヤ4を切断してステッチ接合用のバンプを形成する。次にリードフレーム3の金属メッキされたインナーリード部3bに対してワイヤの先端に形成されたボールを接合し、半導体素子のバンプにステッチ接合する。リバースボンドでは正ボンディングより半導体素子1上のワイヤ高さを低くすることができるため、半導体素子1の接合高さを低くすることができる。
 次いで、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で、硬化性樹脂(例えば、上述のエポキシ樹脂組成物)を硬化成形して、半導体素子1、銅ワイヤ4及びインナーリード部3bを封止し、80℃~200℃程度の温度で、10分~24時間程度の時間をかけて後硬化を行う。後硬化は、150℃~200℃で2~16時間行うことがより好ましい。その後、封止樹脂5により封止された半導体素子1は、電子機器等に搭載することができる。
 このように製造された半導体装置10は、銅ワイヤ4中のPd及びPtの含有量に対する、接合部7におけるPd及びPtの含有量が、1より大きくなっている。また、半導体装置10は、封止樹脂5で封止する工程の後に大気中200℃で16時間加熱したとき、銅ワイヤ4と電極パッド6との接合部7に、Pd及びPtのいずれかから選択される金属を含むバリア層7bが形成される。すなわち、銅ワイヤ4中のPd及びPtの含有量に対する、接合部7におけるPd及びPtの含有量が、1より大きく、またバリア層7bが形成されるような半導体装置10では、製造プロセスや使用時に接合部7の熱によって、銅ボール4aからCuが優先的に電極パッド6に拡散して接合部7にCuAl合金層7aが形成されるとともに、銅ボール4a中のPt、Pd又はこれらの両方は電極パッド6に拡散せずCuAl合金層7a上に残留する。これにより、銅ワイヤ4中のCuがCuAl合金層7aに向かって更に拡散するのを防ぐことができ、CuAl合金層7aの成長を抑制することができる。したがって、本発明によれば、ボンディング後に高温高熱プロセスを採用する場合や、使用環境が高温下である場合(例えば、自動車などのエンジン周辺に設置される場合)においても、高い接続信頼性を維持することが可能である。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、本発明は、基板に搭載された半導体素子と、アルミニウムを主成分とし、前記半導体素子に設けられた電極パッドと、前記基板に設けられた接続端子と前記電極パッドとを接続し、銅を主成分とする銅ワイヤと、前記半導体素子及び前記銅ワイヤを封止する封止樹脂と、を有し、前記銅ワイヤ中のパラジウム及び白金の合計量が、前記銅ワイヤ全体に対して、0.1重量%以上2重量%以下である半導体装置に関する。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
製造例1~5
 表1に示す各成分をミキサーを用いて15~28℃で混合し、次いで70℃~100℃でロール混練した。冷却後、粉砕してエポキシ樹脂組成物を得た。なお、表1中、各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
<(A)エポキシ樹脂>
エポキシ樹脂-OCN:EOCN-1020-55、日本化薬株式会社製、エポキシ当量200
Br化エポキシ:EPICLON 152-S、大日本インキ化学工業株式会社製、エポキシ当量359
エポキシ樹脂-2:NC3000P、日本化薬株式会社製、エポキシ当量276
エポキシ樹脂-3:YX4000K、三菱化学株式会社製、エポキシ当量185
<(B)硬化剤>
硬化剤-PN:PR-HF-3、住友ベークライト株式会社製、水酸基当量105
<(C)充填材>
溶融球状シリカ:FB-820、電気化学工業株式会社製、平均粒径26.5μm、105μm以上の粒子1%以下
<(D)中和剤>
ハイドロタルサイト:DHT-4A(登録商標)(上記式(5)において、aが4.3であり、bが2であり、cが1であるハイドロタルサイト)、協和化学工業株式会社製
<(E)硬化促進剤>
トリフェニルホスフィン:TPP、北興化学工業株式会社製
<その他の成分>
カップリング剤:γ-グリシドキプロピルトリメトキシシラン
着色剤:カーボンブラック
離型剤:カルナバワックス
Figure JPOXMLDOC01-appb-T000001
 製造例1~5で得られたエポキシ樹脂組成物の物性を以下の方法により測定した。その結果を表1に示す。
<スパイラルフロー(SF)>
 低圧トランスファー成形機(コータキ精機株式会社製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、製造例1~4のエポキシ樹脂組成物をそれぞれ注入し、流動長(単位:cm)を測定した。
<ゲルタイム(GT)>
 175℃に加熱した熱板上で製造例1~4のエポキシ樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(秒)を測定した。
<不純物量の測定>
 金型温度175℃、注入圧力7.5MPa、硬化時間2分で低圧トランスファー成型機(コータキ精機株式会社製「KTS-15」)を用いて50mmφ×3mmの試験片を成形した。175℃、8時間の後硬化の後に微粉砕し、5gの粉砕品に50mlの蒸留水を加え、テフロン(登録商標)ライニングした容器に入れ、125℃20時間の処理を行い、処理後の上澄み液をイオンクロマトグラフ分析により定量を行った。
実施例1~11、比較例1~6
 アルミニウム製電極パッド(Al純度99.9質量%、厚み1μmのアルミニウムパッド)を備えるTEG(TEST ELEMENT GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30mm×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウム製電極パッドと基板の電極パッドとをデイジーチェーン接続となるように、表2、3に示す銅ワイヤを用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製「Yシリーズ」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件で、表2、3に示すように製造例1~5のいずれかのエポキシ樹脂組成物を用いて封止成形して、352ピンBGAパッケージを作製した。このパッケージを175℃、4時間の条件で後硬化した後、半導体装置を得た。
 なお、表2、3中、銅ワイヤの詳細は下記のとおりである。
Pdドープ1:銅純度98.99質量%、Pd含有量1質量%の銅ワイヤ(径25μm)
Pdドープ2:銅純度99.49質量%、Pd含有量0.5質量%の銅ワイヤ(径25μm)
Ptドープ:銅純度98.99質量%、Pt含有量1質量%の銅ワイヤ(径25μm)
ベア:銅純度99.99質量%、Pd及びPtのいずれも含まない銅ワイヤ(径25μm)
Pd被覆:銅純度99.99質量%の表面にPdを50nm被覆した銅ワイヤ(径25μm)
<TEM分析>
 実施例1~11及び比較例1~6の半導体装置について、銅ワイヤと電極パッドとの接合部の構造を透過型電子顕微鏡(TEM)で解析した。
 実施例1~11、比較例1~6の半導体装置では、銅ワイヤとアルミニウムパッドとの間に、厚み0.3μmのCuAl層のみからなるCuAl合金層が形成されていることを確認した。
 実施例1~11、比較例1~6の半導体装置では、銅ワイヤとアルミニウムパッドとの間に、バリア層は確認できなかったが、透過型電子顕微鏡(TEM)の元素分析で解析したところ、実施例1~11では、銅ワイヤ中のPd、Ptの質量割合に対し、銅ワイヤとCuAl合金層との間のPd、Ptの質量割合が、1.02~1.08倍に高くなっていることを確認した。
 また、実施例1~11及び比較例1~6の半導体装置を200℃16時間大気中で加熱し、銅ワイヤと電極パッドとの接合部の構造をTEMで解析したところ、実施例1~6、11の半導体装置では、厚み0.3μmのCuAl層と銅ワイヤとの間に、厚み0.05~0.2μmのCu/Pdからなるバリア層が形成されていることを確認した。なお、TEMの元素分析で、該バリア層中のPd質量割合が銅ワイヤ中のPd質量割合に対し、1.2~1.3倍に増加していることを確認した。
 また、実施例7~10の半導体装置では、厚み0.3μmのCuAl層と銅ワイヤとの間に、厚み0.1~0.2μmのCu/Ptからなるバリア層が形成されていることを確認した。TEMの元素分析で、該バリア層中のPt質量割合が銅ワイヤ中のPt質量割合に対し、1.2~1.4倍に増加していることを確認した。
 また、比較例1~6の半導体装置では、銅ワイヤとアルミニウムパッドとの間に形成されたCuAl層の厚みが0.4μmとなり、CuAl層と銅ワイヤとの間に、更に厚み0.1μmのCuAl層が形成されていることを確認した。銅ワイヤにドープせず、表面に被覆しただけでは、大気中200℃で16時間加熱したときバリア層が形成されないことがわかった。
<耐湿性および高温保管特性>
 実施例1~11、比較例1~6の半導体装置について半導体装置のHAST(不飽和耐湿性試験)及びHTSL(高温保管試験)を行った。その結果を表2、3に示す。表2、3中単位は、時間(hour)である。
 具体的には、HASTは、IEC68-2-66に準拠して実施した。試験条件は、温度を130℃、および140℃とし、85%RH、印加電圧20Vで処理し、不良が発生する時間を調べた。
 また、HTSLは、175℃で処理し、不良が発生する時間を調べた。
 なお、HAST及びHTSLにおいて不良の判定は、作製したパッケージ10個を用いて評価し、初期抵抗に対する処理後の抵抗値が1.2倍を超えたパッケージが発生した時間を不良時間とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例の半導体装置では、優れた高温耐湿特性および高温保管特性がみられ、特にPd又はPtのドープ量が好ましい範囲である0.1~2質量%、より好ましい範囲である0.3~1.5質量%、さらに好ましい範囲である0.5質量%以上1質量%以下である銅ワイヤを用いることで、封止樹脂を形成するエポキシ樹脂組成物のハロゲン量に影響されずに、安定した信頼性とボンディング作業性を両立することができることが示された。
 この出願は、2012年3月22日に出願された日本特許出願特願2012-066161を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  基板に搭載された半導体素子と、
     アルミニウムを主成分とし、前記半導体素子に設けられた電極パッドと、
     前記基板に設けられた接続端子と前記電極パッドとを接続し、銅を主成分とする銅ワイヤと、
     前記半導体素子及び前記銅ワイヤを封止する封止樹脂と、
    を有し、
     大気中200℃で16時間加熱したとき、前記銅ワイヤと前記電極パッドとの接合部に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成される、半導体装置。
  2.  大気中200℃で16時間加熱したとき形成される前記バリア層の厚みが0.01~3μmである、請求項1に記載の半導体装置。
  3.  大気中200℃で16時間加熱したとき、前記バリア層と前記電極パッドとの間に、銅及びアルミニウムの合金層が形成されている、請求項1または2に記載の半導体装置。
  4.  基板に搭載された半導体素子と、
     アルミニウムを主成分とし、前記半導体素子に設けられた電極パッドと、
     前記基板に設けられた接続端子と前記電極パッドとを接続し、銅を主成分とする銅ワイヤと、
     前記半導体素子及び前記銅ワイヤを封止する封止樹脂と、
    を有し、
     前記銅ワイヤが、パラジウム及び白金のいずれかから選択される金属を含み、
     前記銅ワイヤ中のパラジウム及び白金の含有量に対する、前記銅ワイヤと前記電極パッドとの接合部におけるパラジウム及び白金の含有量が、1より大きい、半導体装置。
  5.  前記銅ワイヤ中の銅含有量が、前記銅ワイヤ全体に対して98~99.9質量%である、請求項1乃至4いずれか一項に記載の半導体装置。
  6.  前記基板が、リードフレーム又は回路基板である、請求項1乃至5いずれか一項に記載の半導体装置。
  7.  アルミニウムを主成分とする電極パッドが設けられた半導体素子を、接続端子が設けられた基板に搭載する工程と、
     銅を主成分とする銅ワイヤで前記接続端子と前記電極パッドとを接続する工程と、
     前記半導体素子及び前記銅ワイヤを封止樹脂で封止する工程と、
    を含み、
     封止樹脂で封止する前記工程の後に、大気中200℃で16時間加熱したとき、前記銅ワイヤと前記電極パッドとの接合部に、パラジウム及び白金のいずれかから選択される金属を含むバリア層が形成される、半導体装置の製造方法。
  8.  前記封止樹脂で封止する前記工程において、エポキシ樹脂組成物を用いて封止成形させた後、150℃~200℃で2~16時間、後硬化させる、請求項7に記載の半導体装置の製造方法。
PCT/JP2013/001591 2012-03-22 2013-03-12 半導体装置及びその製造方法 WO2013140745A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147029011A KR102078986B1 (ko) 2012-03-22 2013-03-12 반도체 장치 및 그 제조 방법
JP2014506003A JP6330658B2 (ja) 2012-03-22 2013-03-12 半導体装置
US14/373,994 US9230892B2 (en) 2012-03-22 2013-03-12 Semiconductor device and method of manufacturing the same
SG11201403958YA SG11201403958YA (en) 2012-03-22 2013-03-12 Semiconductor device and method of manufacturing the same
CN201380015809.5A CN104205314B (zh) 2012-03-22 2013-03-12 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066161 2012-03-22
JP2012-066161 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140745A1 true WO2013140745A1 (ja) 2013-09-26

Family

ID=49222227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001591 WO2013140745A1 (ja) 2012-03-22 2013-03-12 半導体装置及びその製造方法

Country Status (7)

Country Link
US (1) US9230892B2 (ja)
JP (1) JP6330658B2 (ja)
KR (1) KR102078986B1 (ja)
CN (1) CN104205314B (ja)
SG (1) SG11201403958YA (ja)
TW (1) TWI574362B (ja)
WO (1) WO2013140745A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182371A1 (ja) * 2014-05-28 2015-12-03 住友ベークライト株式会社 封止用樹脂組成物、および半導体装置
JP2017117832A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 銅線の接合方法
JP2018139293A (ja) * 2015-06-15 2018-09-06 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051368A (zh) * 2014-07-01 2014-09-17 苏州晶方半导体科技股份有限公司 指纹识别芯片封装结构和封装方法
JP6354467B2 (ja) * 2014-09-01 2018-07-11 株式会社デンソー 半導体装置
JP6641899B2 (ja) * 2015-11-04 2020-02-05 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器および移動体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005086A1 (ja) * 2008-07-11 2010-01-14 新日鉄マテリアルズ株式会社 ボンディングワイヤの接合構造
JP2010205974A (ja) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp 半導体装置
WO2010150814A1 (ja) * 2009-06-24 2010-12-29 新日鉄マテリアルズ株式会社 半導体用銅合金ボンディングワイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265729A (ja) 1986-05-14 1987-11-18 Hitachi Ltd 半導体装置
KR960006710B1 (ko) * 1987-02-25 1996-05-22 가부시기가이샤 히다찌세이사꾸쇼 면실장형 반도체집적회로장치 및 그 제조방법과 그 실장방법
KR20110066929A (ko) * 2008-10-10 2011-06-17 스미토모 베이클리트 컴퍼니 리미티드 반도체 장치
US8963344B2 (en) * 2009-12-07 2015-02-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device
JP5550369B2 (ja) * 2010-02-03 2014-07-16 新日鉄住金マテリアルズ株式会社 半導体用銅ボンディングワイヤとその接合構造
US20120001336A1 (en) * 2010-07-02 2012-01-05 Texas Instruments Incorporated Corrosion-resistant copper-to-aluminum bonds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005086A1 (ja) * 2008-07-11 2010-01-14 新日鉄マテリアルズ株式会社 ボンディングワイヤの接合構造
JP2010205974A (ja) * 2009-03-04 2010-09-16 Mitsubishi Electric Corp 半導体装置
WO2010150814A1 (ja) * 2009-06-24 2010-12-29 新日鉄マテリアルズ株式会社 半導体用銅合金ボンディングワイヤ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182371A1 (ja) * 2014-05-28 2015-12-03 住友ベークライト株式会社 封止用樹脂組成物、および半導体装置
JP2015224290A (ja) * 2014-05-28 2015-12-14 住友ベークライト株式会社 封止用樹脂組成物、および半導体装置
KR20170015305A (ko) * 2014-05-28 2017-02-08 스미토모 베이클리트 컴퍼니 리미티드 봉지용 수지 조성물, 및 반도체 장치
CN106459373A (zh) * 2014-05-28 2017-02-22 住友电木株式会社 密封用树脂组合物和半导体装置
KR102171661B1 (ko) 2014-05-28 2020-10-29 스미토모 베이클리트 컴퍼니 리미티드 봉지용 수지 조성물, 및 반도체 장치
JP2018139293A (ja) * 2015-06-15 2018-09-06 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP2017117832A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 銅線の接合方法

Also Published As

Publication number Publication date
TW201347114A (zh) 2013-11-16
US20150028465A1 (en) 2015-01-29
CN104205314A (zh) 2014-12-10
TWI574362B (zh) 2017-03-11
SG11201403958YA (en) 2014-10-30
JP6330658B2 (ja) 2018-05-30
KR102078986B1 (ko) 2020-02-19
CN104205314B (zh) 2017-02-22
US9230892B2 (en) 2016-01-05
KR20140138968A (ko) 2014-12-04
JPWO2013140745A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2011070739A1 (ja) 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
JP5532258B2 (ja) 半導体装置
JP6330658B2 (ja) 半導体装置
WO2011093038A1 (ja) 半導体装置
JP5393207B2 (ja) 半導体装置
WO2012070529A1 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP6094573B2 (ja) 半導体装置
JP2013209450A (ja) 半導体封止用エポキシ樹脂組成物
JP2008166314A (ja) 半導体装置及び封止用エポキシ樹脂組成物
JP6341203B2 (ja) 半導体装置
JP2015017165A (ja) 封止用エポキシ樹脂組成物、及び半導体装置
WO2011030516A1 (ja) 半導体装置
WO2013145609A1 (ja) 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506003

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373994

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147029011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763843

Country of ref document: EP

Kind code of ref document: A1