WO2013140674A1 - 流量センサおよびその製造方法 - Google Patents

流量センサおよびその製造方法 Download PDF

Info

Publication number
WO2013140674A1
WO2013140674A1 PCT/JP2012/081340 JP2012081340W WO2013140674A1 WO 2013140674 A1 WO2013140674 A1 WO 2013140674A1 JP 2012081340 W JP2012081340 W JP 2012081340W WO 2013140674 A1 WO2013140674 A1 WO 2013140674A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
flow rate
frame
rate detection
detection unit
Prior art date
Application number
PCT/JP2012/081340
Other languages
English (en)
French (fr)
Inventor
河野 務
半沢 恵二
徳安 昇
忍 田代
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201280065517.8A priority Critical patent/CN104024807B/zh
Priority to DE112012006049.0T priority patent/DE112012006049T5/de
Publication of WO2013140674A1 publication Critical patent/WO2013140674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a flow sensor and a manufacturing technique thereof, and particularly to a technique effective when applied to the structure of the flow sensor.
  • Patent Document 1 discloses a semiconductor package manufacturing method in which a component is clamped by a mold provided with a release film sheet and a resin is poured.
  • Patent Document 2 uses an insert piece or an elastic film supported by a mold with a spring for a flow rate sensor in which a flow rate detection part of a gas (air) flow is partially exposed. A method for manufacturing a flow sensor is described.
  • an internal combustion engine such as an automobile is provided with an electronically controlled fuel injection device.
  • This electronically controlled fuel injection device has the role of operating the internal combustion engine efficiently by appropriately adjusting the amount of gas (air) and fuel flowing into the internal combustion engine. For this reason, in the electronically controlled fuel injection device, it is necessary to accurately grasp the gas (air) flowing into the internal combustion engine. For this reason, the electronic control fuel injection device is provided with a flow rate sensor (air flow sensor) for measuring the flow rate of gas (air).
  • a flow sensor manufactured by a semiconductor micromachining technology is particularly attracting attention because it can reduce cost and can be driven with low power.
  • a flow sensor has, for example, a diaphragm (thin plate portion) formed by anisotropic etching on the back surface of a semiconductor substrate made of silicon, and a heating resistor and a temperature measuring device on the surface of the semiconductor substrate opposite to the diaphragm.
  • the flow rate detection part which consists of a resistor is formed.
  • the actual flow sensor has, for example, a second semiconductor chip formed with a control circuit unit for controlling the flow rate detection unit in addition to the first semiconductor chip formed with the diaphragm and the flow rate detection unit.
  • the first semiconductor chip and the second semiconductor chip described above are mounted on a substrate, for example, and are electrically connected to wiring (terminals) formed on the substrate.
  • the first semiconductor chip is connected to a wiring formed on the substrate by a wire made of a gold wire
  • the second semiconductor chip uses a bump electrode formed on the second semiconductor chip. , Connected to the wiring formed on the substrate. In this way, the first semiconductor chip and the second semiconductor chip mounted on the substrate are electrically connected via the wiring formed on the substrate.
  • the flow rate detection unit formed in the first semiconductor chip can be controlled by the control circuit unit formed in the second semiconductor chip, and a flow rate sensor is configured.
  • the gold wire (wire) connecting the first semiconductor chip and the substrate is usually fixed by potting resin in order to prevent contact due to deformation. That is, the gold wire (wire) is covered and fixed by the potting resin, and the gold wire (wire) is protected by the potting resin.
  • the first semiconductor chip and the second semiconductor chip constituting the flow sensor are usually not sealed with potting resin.
  • a normal flow sensor has a structure in which only a gold wire (wire) is covered with a potting resin.
  • the fixing of the gold wire (wire) with the potting resin is not performed in a state in which the first semiconductor chip is fixed with a mold or the like. Therefore, the contraction of the potting resin causes the first semiconductor chip to deviate from the mounting position. There's a problem. Furthermore, since the potting resin is formed by dropping, there is a problem that the dimensional accuracy of the potting resin is low. As a result, the mounting position of the first semiconductor chip on which the flow rate detection unit is formed varies for each individual flow sensor, and the formation position of the potting resin is slightly different. Variations will occur.
  • An object of the present invention is to provide a technology capable of improving performance by suppressing performance variation for each flow sensor (including the case of improving performance by improving reliability).
  • a flow rate sensor includes: (a) a first chip mounting portion; and (b) a first semiconductor chip disposed on the first chip mounting portion, wherein the first semiconductor chip is (B1) A flow rate detection unit formed on the main surface of the first semiconductor substrate, and (b2) a region facing the flow rate detection unit among the back surface of the first semiconductor substrate opposite to the main surface. And a diaphragm formed on the substrate.
  • the frame is mounted on the first semiconductor chip and has an opening that exposes at least the flow rate detection unit, and is made of a material having an elastic coefficient smaller than that of the first semiconductor chip. including. Then, a part of the first semiconductor chip is sealed with a sealing body containing a resin in a state where the flow rate detection part formed in the first semiconductor chip is exposed from the opening of the frame body. It is what.
  • the manufacturing method of the flow sensor in the representative embodiment is a manufacturing method of the flow sensor having the above-described structure. And (a) preparing a base material having the first chip mounting portion; (b) preparing a first semiconductor chip; and (c) the first semiconductor on the first chip mounting portion. And a step of mounting a chip. Thereafter, (d) after the step (c), the step of disposing the frame body on the first semiconductor chip so that the flow rate detection unit is included in the opening formed in the frame body; (E) After the step (d), the step of sealing a part of the first semiconductor chip with the sealing body while exposing the flow rate detection part formed in the first semiconductor chip; Is provided.
  • the step (e) includes (e1) a step of preparing an upper die and a lower die, and (e2) after the step (e1), the bottom surface of the upper die is brought into close contact with the frame body. Accordingly, the step of sandwiching the base material on which the first semiconductor chip is mounted via the second space between the upper mold and the lower mold while forming the first space surrounding the flow rate detection unit. And (e3) a step of pouring the resin into the second space after the step (e2).
  • ⁇ Performance can be improved by suppressing performance variation for each flow sensor.
  • FIG. 3 is a circuit block diagram showing a circuit configuration of the flow sensor in the first embodiment.
  • FIG. 3 is a plan view showing a layout configuration of a semiconductor chip that constitutes a part of the flow sensor in the first embodiment. It is a figure which shows the mounting structure of the flow sensor in Embodiment 1, and is a figure which shows the structure before sealing with resin.
  • (a) is a plan view showing the mounting configuration of the flow sensor in the first embodiment
  • (b) is a cross-sectional view taken along line AA in (a)
  • (c) is It is a top view which shows the back surface of a semiconductor chip.
  • FIG. 1 is a plan view showing the structure of the frame
  • (b) is a cross-sectional view taken along line AA in (a)
  • (c) is a line BB in (a). It is sectional drawing cut
  • (a) is a plan view showing the mounting configuration of the flow sensor in the first embodiment
  • (b) is a cross-sectional view taken along the line AA in (a)
  • (c) is ( It is sectional drawing cut
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the flow sensor in the first embodiment.
  • FIG. 8 is a cross-sectional view showing the flow sensor manufacturing process following FIG. 7. It is sectional drawing which shows the manufacturing process of the flow sensor following FIG.
  • FIG. 10 is a cross-sectional view showing a flow sensor manufacturing process following FIG. 9.
  • FIG. 11 is a cross-sectional view showing a manufacturing process of the flow sensor following FIG. 10.
  • FIG. 12 is a cross-sectional view showing a manufacturing process of the flow sensor following FIG. 11. It is sectional drawing which shows the example which presses an upper metal mold
  • FIG. 1 is a plan view showing a flow rate sensor in Modification 1
  • (b) is a cross-sectional view taken along line AA in (a)
  • (c) is a cross-sectional view taken along line B-- in (a).
  • FIG. 2 It is a figure which shows the mounting structure of the flow sensor in Embodiment 2, and is a figure which shows the structure before sealing with resin.
  • (a) is a plan view showing the mounting configuration of the flow sensor according to the second embodiment
  • (b) is a cross-sectional view taken along line AA in (a)
  • (c) is It is sectional drawing cut
  • (d) is a top view which shows the back surface of a semiconductor chip.
  • FIG. 2 shows the mounting structure of the flow sensor in Embodiment 2 and is a figure which shows the structure after sealing with resin.
  • FIG. 10 is a cross-sectional view showing a manufacturing process of the flow sensor in the second embodiment.
  • FIG. 24 is a cross-sectional view showing the flow rate sensor manufacturing process following FIG. 23.
  • FIG. 25 is a cross-sectional view showing the flow rate sensor manufacturing process following FIG. 24.
  • FIG. 26 is a cross-sectional view showing the flow rate sensor manufacturing process following FIG. 25.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • FIG. 1 is a circuit block diagram showing a circuit configuration of the flow sensor according to the first embodiment.
  • the flow sensor in the first embodiment has a CPU (Central Processing Unit) 1 for controlling the flow sensor, and an input circuit 2 for inputting an input signal to the CPU 1. And it has the output circuit 3 for outputting the output signal from CPU1.
  • the flow rate sensor is provided with a memory 4 for storing data, and the CPU 1 can access the memory 4 and refer to the data stored in the memory 4.
  • the CPU 1 is connected to the base electrode of the transistor Tr through the output circuit 3.
  • the collector electrode of the transistor Tr is connected to the power source PS, and the emitter electrode of the transistor Tr is connected to the ground (GND) via the heating resistor HR. Therefore, the transistor Tr is controlled by the CPU 1. That is, since the base electrode of the transistor Tr is connected to the CPU 1 via the output circuit 3, an output signal from the CPU 1 is input to the base electrode of the transistor Tr.
  • the current flowing through the transistor Tr is controlled by the output signal (control signal) from the CPU 1.
  • the current flowing through the transistor Tr is increased by the output signal from the CPU 1, the current supplied from the power source PS to the heating resistor HR is increased, and the heating amount of the heating resistor HR is increased.
  • the flow rate sensor according to the first embodiment is configured such that the amount of current flowing through the heating resistor HR is controlled by the CPU 1 and the amount of heat generated from the heating resistor HR is thereby controlled by the CPU 1. I understand that.
  • a heater control bridge HCB is provided in order to control the current flowing through the heating resistor HR by the CPU 1.
  • the heater control bridge HCB is configured to detect the amount of heat released from the heating resistor HR and output the detection result to the input circuit 2.
  • the CPU 1 can input the detection result from the heater control bridge HCB, and controls the current flowing through the transistor Tr based on this.
  • the heater control bridge HCB includes resistors R1 to R4 that form a bridge between the reference voltage Vref1 and the ground (GND).
  • the heater control bridge HCB configured as described above, when the gas heated by the heating resistor HR is higher than the intake air temperature by a certain temperature ( ⁇ T, for example, 100 ° C.), the potential of the node A and the node B
  • ⁇ T the temperature
  • the resistance values of the resistors R1 to R4 are set so that the potential difference between the potentials of the resistors R1 to R4 is 0V.
  • the resistors R1 to R4 constituting the heater control bridge HCB are referred to as a component in which the resistor R1 and the resistor R3 are connected in series and a component in which the resistor R2 and the resistor R4 are connected in series.
  • the bridge is configured so as to be connected in parallel between the voltage Vref1 and the ground (GND).
  • a connection point between the resistor R1 and the resistor R3 is a node A
  • a connection point between the resistor R2 and the resistor R4 is a node B.
  • the resistance value of the resistor R1 constituting the heater control bridge HCB mainly changes depending on the amount of heat generated from the heating resistor HR.
  • the resistance value of the resistor R1 changes in this way, the potential difference between the node A and the node B changes. Since the potential difference between the node A and the node B is input to the CPU 1 via the input circuit 2, the CPU 1 controls the current flowing through the transistor Tr based on the potential difference between the node A and the node B.
  • the CPU 1 controls the amount of heat generated from the heating resistor HR by controlling the current flowing through the transistor Tr so that the potential difference between the node A and the node B becomes 0V. That is, in the flow rate sensor according to the first embodiment, the CPU 1 causes the gas heated by the heating resistor HR to be only a certain temperature ( ⁇ T, for example, 100 ° C.) higher than the intake air temperature based on the output of the heater control bridge HCB. It can be seen that the feedback control is performed so as to maintain a high constant value.
  • ⁇ T for example, 100 ° C.
  • the flow sensor in the first embodiment has a temperature sensor bridge TSB for detecting the gas flow rate.
  • the temperature sensor bridge TSB is composed of four temperature measuring resistors that form a bridge between the reference voltage Vref2 and the ground (GND).
  • the four resistance temperature detectors are composed of two upstream resistance temperature detectors UR1 and UR2, and two downstream resistance temperature detectors BR1 and BR2.
  • the direction of the arrow in FIG. 1 indicates the direction in which the gas flows.
  • the upstream resistance thermometers UR1 and UR2 are provided on the upstream side of the gas flow direction, and the downstream resistance thermometers BR1 and BR2 is provided.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are arranged so that the distance to the heating resistor HR is the same.
  • an upstream resistance temperature detector UR1 and a downstream resistance temperature detector BR1 are connected in series between the reference voltage Vref2 and the ground (GND), and the upstream resistance temperature detector UR1 and the downstream resistance temperature detector.
  • the connection point of BR1 is node C.
  • an upstream resistance temperature detector UR2 and a downstream resistance temperature detector BR2 are connected in series between the ground (GND) and the reference voltage Vref2, and a connection point between the upstream resistance temperature detector UR2 and the downstream resistance temperature detector BR2. Is node D. Then, the potential of the node C and the potential of the node D are configured to be input to the CPU 1 via the input circuit 2.
  • the upstream resistance thermometers UR1 and UR2 and the downstream temperature sensor are set so that the potential difference between the potential of the node C and the potential of the node D becomes 0V when the flow rate of the gas flowing in the arrow direction is zero.
  • Each resistance value of the resistors BR1 and BR2 is set.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are configured to have the same distance from the heating resistor HR and the same resistance value. For this reason, it can be seen that the temperature sensor bridge TSB is configured such that the potential difference between the node C and the node D is 0 V in the absence of wind regardless of the amount of heat generated by the heating resistor HR.
  • the flow sensor in the first embodiment is configured as described above, and the operation thereof will be described below with reference to FIG.
  • the CPU 1 outputs an output signal (control signal) to the base electrode of the transistor Tr via the output circuit 3, thereby causing a current to flow through the transistor Tr.
  • a current flows from the power source PS connected to the collector electrode of the transistor Tr to the heating resistor HR connected to the emitter electrode of the transistor Tr.
  • the heating resistor HR generates heat.
  • the gas warmed by the heat generated from the heat generating resistor HR heats the resistor R1 constituting the heater control bridge HCB.
  • the resistor is set so that the potential difference between the node A and the node B of the heater control bridge HCB becomes 0V.
  • Each resistance value of R1 to R4 is set. For this reason, for example, when the gas heated by the heating resistor HR is increased by a certain temperature (for example, 100 ° C.), the potential difference between the node A and the node B of the heater control bridge HCB becomes 0V, This difference potential (0 V) is input to the CPU 1 via the input circuit 2. Then, the CPU 1 recognizing that the difference potential from the heater control bridge HCB is 0 V outputs an output signal (control signal) for maintaining the current amount of current to the base electrode of the transistor Tr via the output circuit 3. Output.
  • the CPU 1 controls the control signal so that the current flowing through the transistor Tr decreases. (Output signal) is output to the base electrode of the transistor Tr.
  • a potential difference in a direction in which the gas heated by the heating resistor HR becomes higher than a certain temperature (for example, 100 ° C.) is generated, the CPU 1 increases the current flowing through the transistor Tr.
  • a control signal is output to the base electrode of the transistor Tr.
  • the CPU 1 performs feedback control based on the output signal from the heater control bridge HCB so that the potential difference between the node A and the node B of the heater control bridge HCB is 0 V (equilibrium state). To do. From this, it can be seen that in the flow rate sensor according to the first embodiment, the gas heated by the heating resistor HR is controlled to have a constant temperature.
  • the upstream resistance temperature detectors UR1 and UR2 are set so that the potential difference between the node C potential and the node D potential of the temperature sensor bridge TSB becomes 0V.
  • Each resistance value of the downstream resistance thermometers BR1 and BR2 is set.
  • the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 are configured to have the same distance from the heating resistor HR and the same resistance value. Therefore, in the temperature sensor bridge TSB, regardless of the amount of heat generated by the heating resistor HR, if there is no wind, the difference potential between the node C and the node D becomes 0V, and this difference potential (0V) is passed through the input circuit 2. Are input to the CPU 1. Then, the CPU 1 recognizing that the potential difference from the temperature sensor bridge TSB is 0 V recognizes that the flow rate of the gas flowing in the direction of the arrow is zero, and the gas flow rate Q is zero via the output circuit 3. Is output from the flow sensor in the first embodiment.
  • This difference potential is input to the CPU 1 via the input circuit 2. Then, the CPU 1 recognizing that the potential difference from the temperature sensor bridge TSB is not zero recognizes that the flow rate of the gas flowing in the arrow direction is not zero. Thereafter, the CPU 1 accesses the memory 4. Since the memory 4 stores a comparison table (table) in which the difference potential and the gas flow rate are associated with each other, the CPU 1 accessing the memory 4 calculates the gas flow rate Q from the comparison table stored in the memory 4. . In this way, the gas flow rate Q calculated by the CPU 1 is output from the flow rate sensor in the first embodiment via the output circuit 3. As described above, according to the flow rate sensor of the first embodiment, it can be seen that the flow rate of gas can be obtained.
  • the layout configuration of the flow sensor according to the first embodiment will be described.
  • the flow sensor in the first embodiment shown in FIG. 1 is formed on two semiconductor chips.
  • the heating resistor HR, the heater control bridge HCB, and the temperature sensor bridge TSB are formed on one semiconductor chip, and the CPU 1, the input circuit 2, the output circuit 3, the memory 4, and the like are formed on another semiconductor chip.
  • a layout configuration of a semiconductor chip on which the heating resistor HR, the heater control bridge HCB, and the temperature sensor bridge TSB are formed will be described.
  • FIG. 2 is a plan view showing a layout configuration of the semiconductor chip CHP1 that constitutes a part of the flow sensor according to the first embodiment.
  • the semiconductor chip CHP1 has a rectangular shape, and gas flows from the left side to the right side (arrow direction) of the semiconductor chip CHP1.
  • a rectangular diaphragm DF is formed on the back surface side of the rectangular semiconductor chip CHP1.
  • the diaphragm DF indicates a thin plate region where the thickness of the semiconductor chip CHP1 is reduced. That is, the thickness of the region where the diaphragm DF is formed is thinner than the thickness of the other semiconductor chip CHP1.
  • a flow rate detection unit FDU is formed in the surface region of the semiconductor chip CHP1 opposite to the back surface region where the diaphragm DF is thus formed.
  • a heating resistor HR is formed at the center of the flow rate detection unit FDU, and a resistor R1 that forms a heater control bridge is formed around the heating resistor HR.
  • Resistors R2 to R4 constituting the heater control bridge are formed outside the flow rate detection unit FDU.
  • a heater control bridge is constituted by the resistors R1 to R4 formed in this way.
  • the resistor R1 constituting the heater control bridge is formed in the vicinity of the heating resistor HR, the temperature of the gas heated by the heat generated from the heating resistor HR is accurately reflected in the resistor R1. Can do.
  • the resistors R2 to R4 constituting the heater control bridge are arranged apart from the heating resistor HR, they can be hardly affected by the heat generated by the heating resistor HR.
  • the resistor R1 can be configured to react sensitively to the temperature of the gas heated by the heating resistor HR, and the resistors R2 to R4 are not easily affected by the heating resistor HR and have a constant resistance value. The value can be easily maintained. For this reason, the detection accuracy of the heater control bridge can be increased.
  • upstream resistance thermometers UR1 and UR2 and downstream resistance thermometers BR1 and BR2 are arranged so as to sandwich the heating resistor HR formed in the flow rate detection unit FDU. Specifically, upstream resistance thermometers UR1 and UR2 are formed on the upstream side in the arrow direction in which gas flows, and downstream resistance thermometers BR1 and BR2 are formed in the downstream in the arrow direction in which gas flows.
  • the temperature of the upstream resistance thermometers UR1 and UR2 can be lowered and the temperature of the downstream resistance thermometers BR1 and BR2 can be increased.
  • the temperature sensor bridge is formed by the upstream resistance thermometers UR1 and UR2 and the downstream resistance thermometers BR1 and BR2 arranged in the flow rate detection unit FDU.
  • the heating resistor HR, the upstream resistance thermometers UR1 and UR2, and the downstream resistance thermometers BR1 and BR2 are formed by sputtering a metal film such as platinum or a semiconductor thin film such as polysilicon (polycrystalline silicon), for example. It can be formed by patterning by a method such as ion etching after forming by a method such as the CVD method or the CVD (Chemical Vapor Deposition) method.
  • the heating resistor HR configured as described above, the resistors R1 to R4 constituting the heater control bridge, and the upstream temperature sensing resistors UR1 and UR2 and the downstream temperature sensing resistors BR1 and BR2 constituting the temperature sensor bridge are These are connected to the wiring WL1 and drawn out to the pads PD1 arranged along the lower side of the semiconductor chip CHP1.
  • the semiconductor chip CHP1 constituting a part of the flow sensor according to the first embodiment is laid out.
  • the actual flow rate sensor includes one semiconductor chip on which the heating resistor HR, the heater control bridge HCB and the temperature sensor bridge TSB are formed, and another one on which the CPU 1, the input circuit 2, the output circuit 3, the memory 4, and the like are formed.
  • the semiconductor chip has a structure in which these semiconductor chips are mounted on a substrate.
  • FIG. 3 is a diagram showing a mounting configuration of the flow sensor FS1 in the first embodiment, and is a diagram showing a configuration before sealing with resin.
  • FIG. 3A is a plan view showing a mounting configuration of the flow sensor FS1 in the first embodiment.
  • 3B is a cross-sectional view taken along the line AA in FIG. 3A, and
  • FIG. 3C is a plan view showing the back surface of the semiconductor chip CHP1.
  • the flow sensor FS1 has a lead frame LF made of, for example, a copper material.
  • the lead frame LF includes a chip mounting portion TAB1 and a chip mounting portion TAB2 inside the dam bar DM constituting the outer frame body.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1, and the semiconductor chip CHP2 is mounted on the chip mounting portion TAB2.
  • the semiconductor chip CHP1 has a rectangular shape, and a flow rate detection unit FDU is formed substantially at the center.
  • a wiring WL1 connected to the flow rate detection unit FDU is formed on the semiconductor chip CHP1, and the wiring WL1 is connected to a plurality of pads PD1 formed along one side of the semiconductor chip CHP1. That is, the flow rate detection unit FDU and the plurality of pads PD1 are connected by the wiring WL1.
  • These pads PD1 are connected to a lead LD1 formed on the lead frame LF via a wire W1 made of, for example, a gold wire.
  • the lead LD1 formed on the lead frame LF is further connected to a pad PD2 formed on the semiconductor chip CHP2 via a wire W2 made of, for example, a gold wire.
  • an integrated circuit made of semiconductor elements such as MISFET (Metal Insulator Semiconductor Semiconductor Field Field Effect Transistor) and wiring is formed on the semiconductor chip CHP2.
  • MISFET Metal Insulator Semiconductor Semiconductor Field Field Effect Transistor
  • an integrated circuit constituting the CPU 1, the input circuit 2, the output circuit 3 or the memory 4 shown in FIG. 1 is formed.
  • These integrated circuits are connected to the pads PD2 and PD3 that function as external connection terminals.
  • the pad PD3 formed on the semiconductor chip CHP2 is connected to the lead LD2 formed on the lead frame LF via a wire W3 made of, for example, a gold wire.
  • the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed and the semiconductor chip CHP2 in which the control circuit is formed are connected via the leads LD1 formed in the lead frame LF. Recognize. Although not shown in FIG. 3, a polyimide film is formed on the outermost surface of the semiconductor chip CHP1 for the purpose of stress buffering with the resin to be bonded, surface protection, insulation, etc., as will be described later. May be.
  • a chip mounting portion TAB1 is formed on the lead frame LF, and the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is bonded to the chip mounting portion TAB1 with an adhesive ADH1.
  • a diaphragm DF thin plate portion
  • a flow rate detection unit FDU is formed on the surface of the semiconductor chip CHP1 facing the diaphragm DF.
  • an opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF.
  • the opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF, but the technical idea in the first embodiment is not limited to this.
  • a lead frame LF in which the opening OP1 is not formed can also be used.
  • a pad PD1 connected to the flow rate detection unit FDU is formed, and this pad PD1 Is connected to a lead LD1 formed on the lead frame LF via a wire W1.
  • the semiconductor chip CHP2 is also mounted on the lead frame LF, and the semiconductor chip CHP2 is bonded to the chip mounting portion TAB2 with an adhesive ADH2.
  • the pad PD2 formed on the semiconductor chip CHP2 and the lead LD1 formed on the lead frame LF are connected via a wire W2.
  • the pad PD3 formed on the semiconductor chip CHP2 and the lead LD2 formed on the lead frame LF are electrically connected through a wire W3.
  • the adhesive ADH1 that bonds the semiconductor chip CHP1 and the chip mounting portion TAB1 and the adhesive ADH2 that bonds the semiconductor chip CHP2 and the chip mounting portion TAB2 are, for example, thermosetting such as epoxy resin or polyurethane resin.
  • An adhesive having a resin as a component and an adhesive having a thermoplastic resin such as a polyimide resin, an acrylic resin, or a fluororesin as a component can be used.
  • FIG. 3C is a plan view showing the back surface of the semiconductor chip CHP1.
  • a diaphragm DF is formed on the back surface of the semiconductor chip CHP1, and an adhesive ADH1 is applied so as to surround the diaphragm DF.
  • FIG. 3C shows an example in which the adhesive ADH1 is applied so as to surround the diaphragm DF in a square shape.
  • the present invention is not limited to this.
  • the diaphragm DF is surrounded by an arbitrary shape such as an elliptical shape.
  • the adhesive ADH1 may be applied.
  • a frame FB is formed on a part of the semiconductor chip CHP1.
  • the frame body FB has, for example, a rectangular shape, and has an opening OP (FB) formed therein.
  • the frame body FB is arranged so that the flow rate detection unit FDU formed on the main surface of the semiconductor chip CHP1 is exposed from the opening OP (FB), and the semiconductor chip CHP1 is disposed outside the frame body FB.
  • the plurality of formed pads PD1 are arranged so as to be exposed.
  • FIG. 4 is a diagram illustrating a configuration of the frame FB.
  • 4A is a plan view showing the configuration of the frame FB
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A
  • FIG. 4C is a cross-sectional view taken along the line BB in FIG.
  • the frame body FB has a rectangular shape, and it can be seen that an opening OP (FB) is formed inside the frame portion FP.
  • the frame FB is formed with a wall portion WP parallel to the side surface of the semiconductor chip CHP1.
  • the frame FB can be disposed on the semiconductor chip CHP1 in a state of being aligned with the semiconductor chip CHP1 by bringing the wall portion WP into close contact with the semiconductor chip CHP1. .
  • the frame FB may be bonded to the semiconductor chip CHP1, or may not be bonded to the semiconductor chip CHP1.
  • the wall portion WP formed in the frame body FB may be provided corresponding to at least one side surface of the semiconductor chip CHP1.
  • the feature of the frame body FB in the first embodiment is that the elastic coefficient of the material constituting the frame body FB is smaller than the elastic coefficient of the material constituting the semiconductor chip CHP1.
  • the elastic modulus means the elastic modulus of the frame FB and the semiconductor chip CHP1.
  • the elastic modulus is a proportional constant when the Hooke's law that stress and strain in an elastic body are proportional to each other is expressed in the form of “stress is proportional to strain”.
  • the frame FB can be made of a material having a smaller elastic coefficient at room temperature than the silicon single crystal.
  • the comparison of the elastic coefficients of the frame FB and the semiconductor chip CHP1 has been described, but the basic idea is that the frame FB is softer than the semiconductor chip CHP1.
  • the hardness referred to here can be compared by, for example, any of Vickers hardness at room temperature, micro Vickers hardness, Brinell hardness, or Rockwell hardness.
  • the frame FB which is softer than the semiconductor chip CHP1
  • the frame FB is made of a thermoplastic resin, an epoxy resin, a phenol resin, or the like containing PBT resin, ABS resin, PC resin, nylon resin, PS resin, fluorine resin, or the like as a component. It is possible to use a thermosetting resin containing as a component, a rubber material containing Teflon (registered trademark), urethane, fluorine or the like as a component, or a polymer material such as an elastomer.
  • the frame body FB can be formed by filling a mold with a resin by injection molding or transfer molding and molding, or a film product or a sheet-shaped product formed from the above-described materials can be used. .
  • the frame FB formed from a polymer material such as a thermosetting resin, a thermoplastic resin, a rubber material, or an elastomer can also be used as an adhesive having the adhesiveness of the frame FB itself.
  • An inorganic filler such as glass, silica, mica and talc, and an organic filler such as carbon can also be filled.
  • the frame body FB can also be configured by forming a metal material having a smaller elastic coefficient than silicon, such as brass, aluminum alloy, or copper alloy, by pressing, rolling, or casting.
  • a metal material having a smaller elastic coefficient than silicon such as brass, aluminum alloy, or copper alloy
  • the mounting configuration of the flow sensor FS1 before sealing with resin is configured as described above, and the mounting configuration of the flow sensor FS1 after sealing with resin is described below. Will be described.
  • FIG. 5 is a diagram showing a mounting configuration of the flow sensor FS1 in the first embodiment, and is a diagram showing a configuration after sealing with resin.
  • FIG. 5A is a plan view showing the mounting configuration of the flow sensor FS1 in the first embodiment.
  • 5B is a cross-sectional view taken along the line AA in FIG. 5A
  • FIG. 5C is a cross-sectional view taken along the line BB in FIG. 5A.
  • the flow rate detection unit FDU formed in the semiconductor chip CHP1 is exposed from the opening OP (FB) formed in the frame body FB.
  • FB opening OP
  • a part of the semiconductor chip CHP1 and the entire semiconductor chip CHP2 are covered with the resin MR (first feature point). That is, in the first embodiment, the region of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 except the region where the flow rate detection unit FDU is formed and the region where the frame body FB is mounted are collectively made of resin MR. It is sealed.
  • thermosetting resin such as an epoxy resin or a phenol resin
  • thermoplastic resin such as polycarbonate or polyethylene terephthalate
  • filler such as glass or mica is mixed in the resin. You can also.
  • the sealing with the resin MR can be performed in a state in which the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed is fixed by a mold, and therefore, the semiconductor chip CHP1 can be prevented from being displaced,
  • the part and the semiconductor chip CHP2 can be sealed with the resin MR.
  • a part of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 can be sealed with the resin MR while suppressing the displacement of each flow sensor FS1. This means that variation in the position of the flow rate detection unit FDU formed in the semiconductor chip CHP1 can be suppressed.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor FS1, so that there is performance variation in detecting the gas flow rate in each flow rate sensor FS1.
  • the remarkable effect which can be suppressed can be acquired.
  • the height of the stop body is higher than the height of the surface of the semiconductor chip CHP1 including the flow rate detection unit FDU (second feature point). That is, the exposed flow rate detection unit FDU is surrounded by the frame FB, and the height of the frame FB surrounding the flow rate detection unit FDU is higher than the height of the flow rate detection unit FDU.
  • the height of the frame FB surrounding the flow rate detection unit FDU is higher than the height of the exposed flow rate detection unit FDU.
  • the frame FB is disposed on a part of the semiconductor chip CHP1, and the elastic coefficient of the frame FB is smaller than the elastic coefficient of the semiconductor chip CHP1.
  • the frame FB is made of a softer material than the semiconductor chip CHP1. Therefore, when the component comes into contact with the frame FB, the shock can be absorbed by the deformation of the relatively soft frame FB. Therefore, the impact is applied to the semiconductor chip CHP1 disposed under the frame FB. It is possible to suppress the transmission, and thereby it is possible to effectively prevent the semiconductor chip CHP1 from being damaged.
  • the height of the frame body FB and the resin MR (sealing body) need only be higher than the height of the surface of the semiconductor chip CHP1 including the flow rate detection unit FDU, and the height of the frame body FB is the resin MR (sealing body). It may be higher or lower than the height of the body, or may be flush.
  • the adhesive ADH1 is applied so as to surround the diaphragm DF formed on the back surface of the semiconductor chip CHP1. It is premised on taking the composition to do. Then, as shown in FIGS. 5B and 5C, an opening OP1 is formed at the bottom of the chip mounting portion TAB1 below the diaphragm DF formed on the back surface of the semiconductor chip CHP1, and further, the chip An opening OP2 is provided in the resin MR that covers the back surface of the mounting portion TAB1.
  • the internal space of the diaphragm DF flows through the opening OP1 formed in the bottom of the chip mounting portion TAB1 and the opening OP2 formed in the resin MR. It communicates with the external space of the sensor FS1.
  • the pressure in the inner space of the diaphragm DF and the pressure in the outer space of the flow rate sensor FS1 can be made equal, and it is possible to suppress the stress from being applied to the diaphragm DF.
  • FIG. 6 is a plan view showing a mounting configuration of the flow sensor FS1 after the dam bar DM is removed. As shown in FIG. 6, it can be seen that by cutting the dam bar DM, a plurality of electrical signals can be taken out independently from the plurality of leads LD2.
  • the flow sensor FS1 in the first embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to FIGS. 7 to 14 show a manufacturing process in a cross section taken along line AA in FIG.
  • a lead frame LF made of a copper material is prepared.
  • a chip mounting portion TAB1, a chip mounting portion TAB2, a lead LD1, and a lead LD2 are integrally formed, and an opening OP1 is formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1, and the semiconductor chip CHP2 is mounted on the chip mounting portion TAB2.
  • the semiconductor chip CHP1 is connected to the chip mounting portion TAB1 formed on the lead frame LF with an adhesive ADH1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 so that the diaphragm DF formed on the semiconductor chip CHP1 communicates with the opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is formed with a flow rate detection unit FDU, wiring (not shown), and a pad PD1 by a normal semiconductor manufacturing process.
  • the diaphragm DF is formed in the position of the back surface facing the flow volume detection part FDU formed in the surface of the semiconductor chip CHP1 by anisotropic etching, for example.
  • a semiconductor chip CHP2 is also mounted on the chip mounting portion TAB2 formed on the lead frame LF by an adhesive ADH2.
  • semiconductor elements such as MISFETs, wirings (not shown), pads PD2, and pads PD3 are formed in advance by a normal semiconductor manufacturing process.
  • the pad PD1 formed on the semiconductor chip CHP1 and the lead LD1 formed on the lead frame LF are connected by a wire W1 (wire bonding).
  • the pad PD2 formed on the semiconductor chip CHP2 is connected to the lead LD1 and the wire W2
  • the pad PD3 formed on the semiconductor chip CHP2 is connected to the lead LD2 and the wire W3.
  • the wires W1 to W3 are made of gold wires, for example.
  • a frame body FB is mounted on the semiconductor chip CHP1.
  • the frame FB includes a flow rate detection unit FDU formed in the semiconductor chip CHP1 in an opening OP (FB) formed therein, and the semiconductor chip CHP1 outside the frame FB.
  • a plurality of pads PD1 formed in the above are mounted so as to be arranged.
  • the frame body FB can be mounted on the semiconductor chip CHP1 while exposing the flow rate detection unit FDU and the plurality of pads PD1.
  • the frame body FB in the first embodiment has the wall portion WP
  • the frame body FB is disposed on the semiconductor chip CHP1 while the wall portion WP is in close contact with one side surface of the semiconductor chip CHP1. can do.
  • the positioning accuracy of the frame FB mounted on the semiconductor chip CHP1 can be improved, and the flow rate detection unit FDU can be reliably exposed from the opening OP (FB) formed in the frame FB.
  • the contact between the frame FB and the pad PD1 can be prevented.
  • the frame body FB and the semiconductor chip CHP1 may be bonded or may not be bonded. However, from the viewpoint of suppressing the displacement of the frame FB mounted on the semiconductor chip CHP1, it is desirable to bond the frame FB to the semiconductor chip CHP1.
  • the surface of the semiconductor chip CHP1, the wire W1, the lead LD1, the wire W2, the entire main surface of the semiconductor chip CHP2, the wire W3 and a part of the lead LD2 in the vicinity region where the pad PD1 is formed. Is sealed with resin MR (molding process).
  • the lead frame LF on which the semiconductor chip CHP1 and the semiconductor chip CHP2 on which the frame body FB is mounted is sandwiched between the upper mold UM and the lower mold BM through the second space.
  • the resin MR is poured into the second space under heating, whereby the surface of the semiconductor chip CHP1, the wires W1, the leads LD1, the wires W2, and the entire main surface of the semiconductor chip CHP2 in the vicinity region where the pad PD1 is formed.
  • the wire W3 and a part of the lead LD2 are sealed with the resin MR.
  • the inner space of the diaphragm DF is separated from the second space described above by the adhesive ADH1, and therefore, when the second space is filled with the resin MR, the diaphragm DF It is possible to prevent the resin MR from entering the internal space.
  • the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed can be performed in a state of being fixed by a mold through the frame body FB, the positional deviation of the semiconductor chip CHP1 is suppressed.
  • a part of the semiconductor chip CHP1 and the semiconductor chip CHP2 can be sealed with the resin MR. This is because, according to the manufacturing method of the flow sensor FS1 in the first embodiment, a part of the semiconductor chip CHP1 and the entire region of the semiconductor chip CHP2 are sealed with the resin MR while suppressing the displacement of each flow sensor. This means that it is possible to suppress variation in the position of the flow rate detection unit FDU formed in the semiconductor chip CHP1.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor, so that variation in performance of detecting the gas flow rate in each flow rate sensor can be suppressed. A remarkable effect can be obtained.
  • the manufacturing method of the flow rate sensor FS1 in the present first embodiment is characterized in that the upper mold is placed on the frame FB higher than the height of the flow rate detection unit FDU formed in the semiconductor chip CHP1 via the elastic film LAF.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the lower mold BM and the upper mold UM while pressing the UM.
  • the first space SP1 (sealed space) surrounding the flow rate detection unit FDU formed in the semiconductor chip CHP1 and the vicinity thereof is secured, for example, as a pad formation region.
  • the surface region of the semiconductor chip CHP1 can be sealed. That is, according to the first embodiment, the surface region of the semiconductor chip CHP1 typified by the pad formation region is sealed while exposing the flow rate detection unit FDU formed in the semiconductor chip CHP1 and the vicinity thereof. Can do.
  • the essential function of the frame FB is to secure the first space SP1 (sealed space) surrounding the flow rate detection unit FDU and its vicinity when the upper mold UM is pressed against the frame FB.
  • the structure in which the height of the frame body FB is higher than the height of the flow rate detection unit FDU is taken. is there. That is, the configuration in which the height of the frame body FB is higher than the height of the flow rate detection unit FDU is to secure the first space SP1 (sealed space) surrounding the flow rate detection unit FDU and its vicinity region from the viewpoint of the manufacturing method.
  • the flow rate detection exposed from the opening OP (FB) of the frame FB is provided on the semiconductor chip CHP1 by providing the frame FB having a height higher than that of the flow rate detection unit FDU. It can also be said that the portion FDU can be protected from the clamping force of the upper mold UM.
  • the configuration in which the height of the frame FB is higher than the height of the flow rate detection unit FDU is, from the viewpoint of the structure of the flow rate sensor FS1, the flow rate detection unit FDU in which the components are exposed at the time of mounting and assembly of the components.
  • This can also be regarded as a structure that can prevent the semiconductor chip CHP1 from colliding with the semiconductor chip CHP1.
  • This provides the advantage of preventing damage to the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed. That is, the configuration in which the height of the frame body FB is made higher than the height of the flow rate detection unit FDU can be said to have a remarkable effect from both the viewpoint of the manufacturing method and the viewpoint of the structure.
  • the frame body FB in the present first embodiment is made of a material whose hardness is softer than that of the semiconductor chip CHP1, and by this configuration, the frame body FB also has another function.
  • another function of the frame FB will be described.
  • a feature of the manufacturing method of the flow sensor FS1 in the first embodiment is that when the lead frame LF mounting the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM, the lead frame LF mounting the semiconductor chip CHP1 The frame FB and the elastic film LAF are interposed between the upper mold UM.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is connected to the upper mold UM.
  • the resin MR leaks out of the gap on the flow rate detection unit FDU.
  • the force applied to the semiconductor chip CHP1 increases when the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the upper mold UM and the lower mold BM.
  • the semiconductor chip CHP1 may be broken.
  • the lead on which the semiconductor chip CHP1 is mounted is provided.
  • a device is provided in which an elastic film LAF and a frame body FB are interposed between the frame LF and the upper mold UM.
  • the elastic film LAF and the frame body FB are used when the lead frame LF mounting the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM. Since it is softer than the semiconductor chip CHP1, the dimensions of the elastic film LAF and the frame body FB in the thickness direction change so as to absorb the thickness of the semiconductor chip CHP1. As a result, even if the thickness of the semiconductor chip CHP1 is larger than the average thickness, it is possible to prevent the semiconductor chip CHP1 from being subjected to an excessive force, and as a result, to prevent the semiconductor chip CHP1 from being broken. Can do.
  • the semiconductor chip CHP1 is pressed by the upper mold UM through the elastic film LAF and the frame FB. For this reason, it is possible to absorb the mounting variation of the components due to the thickness variation of the semiconductor chip CHP1, the adhesive material ADH1, and the lead frame LF by the thickness change of the elastic film LAF and the frame FB.
  • the mounting variation in the thickness direction (Z direction) of the component is large, and the mounting variation of the component due to the thickness variation of the semiconductor chip CHP1, the adhesive ADH1, and the lead frame LF is an elastic film. Even when it cannot be absorbed due to a change in the thickness of LAF, the clamping force applied to the semiconductor chip CHP1 is reduced by deformation in the thickness direction (Z direction) of the frame FB having a smaller elastic coefficient than that of the semiconductor chip CHP1. can do. As a result, according to the first embodiment, it is possible to prevent damage represented by cracks, chips, cracks, and the like of the semiconductor chip CHP1.
  • the elastic film LAF and the frame FB have an elastic coefficient smaller than that of the semiconductor chip CHP1 in order to absorb mounting variations of components. Thereby, even when there is a variation in the mounting of components, the clamping force from the upper mold UM applied to the semiconductor chip CHP1 is effectively reduced by the change in the thickness of the elastic film LAF and the deformation of the frame FB. Can do. That is, in the first embodiment, the elastic coefficient of the elastic film LAF and the frame FB only needs to be smaller than the elastic coefficient of the semiconductor chip CHP1, and the combination of the elastic coefficients of the elastic film LAF and the frame FB is free. is there.
  • the elastic coefficient of the frame FB may be larger or smaller than the elastic coefficient of the elastic film LAF, or may be the same.
  • the elastic film LAF for example, a polymer material such as Teflon (registered trademark) or a fluororesin can be used.
  • another function of the frame body FB in the first embodiment is a function of suppressing an increase in clamping force from the upper mold UM to the semiconductor chip CHP1 due to component mounting variation.
  • it is comprised so that the elastic coefficient of frame FB may become smaller than the elastic coefficient of semiconductor chip CHP1.
  • the resin MR also flows into the back side of the lead frame LF. Therefore, since the opening OP1 is formed at the bottom of the chip mounting portion TAB1, there is a concern that the resin MR flows into the inner space of the diaphragm DF from the opening OP1.
  • the shape of the lower mold BM that sandwiches the lead frame LF is devised.
  • a protruding insertion piece IP1 is formed in the lower mold BM, and is formed in the lower mold BM when the lead frame LF is sandwiched between the upper mold UM and the lower mold BM.
  • the protruding insertion piece IP1 is inserted into an opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • the insert piece IP1 is inserted into the opening OP1 without a gap, and therefore, the resin MR can be prevented from entering the inner space of the diaphragm DF from the opening OP1.
  • a protruding insertion piece IP1 is formed in the lower mold BM, and this insertion piece IP1 is inserted into the opening OP1 formed at the bottom of the chip mounting portion TAB1 during resin sealing. is doing.
  • the shape of the insert piece IP1 is devised.
  • the insert piece IP1 includes an insertion portion that is inserted into the opening OP1 and a pedestal portion that supports the insertion portion.
  • the cross-sectional area is large.
  • the insert piece IP1 has a structure in which a step portion is provided between the insertion portion and the pedestal portion, and the step portion is in close contact with the bottom surface of the chip mounting portion TAB1.
  • the insert piece IP1 in this way, the insertion portion is inserted into the opening portion OP1, so the diameter of the insertion portion of the insertion piece IP1 is slightly smaller than the diameter of the opening portion OP1. It has become. Therefore, when the insertion piece IP1 is configured only from the insertion portion, even if the insertion portion of the insertion piece IP1 is inserted into the opening OP1, there is a slight gap between the inserted insertion portion and the opening OP1. Conceivable. In this case, the resin MR may enter the inner space of the diaphragm DF from the gap.
  • the insertion part IP1 is configured to form the insertion part on the pedestal part having a larger cross-sectional area than the insertion part.
  • the insertion portion of the insertion piece IP1 is inserted into the opening OP1, and the pedestal portion of the insertion piece IP1 comes into close contact with the bottom surface of the chip mounting portion TAB1.
  • the pedestal is firmly pressed against the back surface of the chip mounting part TAB1, so that the resin MR enters the opening OP1. It can be prevented.
  • the insertion piece IP1 is configured to provide the insertion portion on the pedestal portion having a larger cross-sectional area than the insertion portion, and therefore the resin MR reaches the opening OP1 by the pedestal portion.
  • the combination of the fact that the step portion formed between the pedestal portion and the insertion portion is pressed against the chip mounting portion TAB1 makes the resin MR the internal space of the diaphragm DF through the opening OP1. It is possible to effectively prevent intrusion.
  • the lead frame LF on which the semiconductor chip CHP1 and the semiconductor chip CHP2 on which the frame body FB is mounted is connected to the upper mold UM and the lower mold BM via the second space. Sandwich. Thereafter, the resin MR is poured into the second space under heating, whereby the surface of the semiconductor chip CHP1, the wires W1, the leads LD1, the wires W2, and the entire main surface of the semiconductor chip CHP2 in the vicinity region where the pad PD1 is formed. The wire W3 and a part of the lead LD2 are sealed with the resin MR.
  • the lead frame LF on which the semiconductor chip CHP1 and the semiconductor chip CHP2 are mounted is removed from the upper mold UM and the lower mold BM. Thereby, the flow sensor FS1 in the first embodiment can be manufactured.
  • the heated upper mold UM and the lower mold BM Heat is transferred from the mold BM to the resin MR injected into the second space in a short time.
  • the heating / curing time of the resin MR can be shortened.
  • the potting resin when only fixing a gold wire (wire) with a potting resin, the potting resin does not promote curing by heating, so the potting resin The time until curing becomes long, and the problem that the throughput in the manufacturing process of the flow sensor is lowered becomes obvious.
  • the heated upper mold UM and the lower mold BM are used, the heated upper mold UM and the lower mold BM are used. Heat conduction from the mold BM to the resin MR can be performed in a short time, and the heating / curing time of the resin MR can be shortened. As a result, according to the first embodiment, the throughput in the manufacturing process of the flow sensor FS1 can be improved.
  • the lead frame LF mounting the semiconductor chip CHP1 when the lead frame LF mounting the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM, the lead frame LF mounting the semiconductor chip CHP1
  • the frame FB and the elastic film LAF are interposed between the upper mold UM.
  • the technical idea in the first embodiment is not limited to this.
  • the semiconductor chip CHP ⁇ b> 1 is formed by interposing only the frame FB without using the elastic film LAF.
  • the upper mold UM may be pressed against the mounted lead frame LF.
  • the frame body FB so that the elastic coefficient is smaller than the elastic coefficient of the semiconductor chip CHP1, even if there is a variation in the mounting of components, it is more elastic than the semiconductor chip CHP1.
  • the clamping force applied to the semiconductor chip CHP1 can be reduced by the deformation in the thickness direction (Z direction) of the frame body FB having a small coefficient.
  • FIG. 14 is a diagram showing an example of related technology for resin sealing without using the frame FB.
  • the upper mold UM in order to configure the flow rate detection unit FDU so as not to be resin-sealed, the upper mold UM is provided with a projecting seal portion SL. Then, by surrounding the flow rate detection unit FDU with the seal portion SL, the first space SP1 (sealed space) can be formed so as to surround the flow rate detection unit FDU. That is, in the related art, the flow rate detection unit FDU is not sealed with resin by surrounding the flow rate detection unit FDU with the seal portion SL provided in the upper mold UM.
  • the upper mold UM is provided with a projecting seal portion SL. That is, in order to manufacture the flow sensor that exposes the flow rate detection unit FDU, it is necessary to prepare a special upper mold UM specialized for manufacturing the flow sensor. Therefore, it is necessary to prepare a special upper mold UM having the seal portion SL.
  • a frame body FB is arranged on the semiconductor chip CHP1, and the upper mold UM is pressed so as to be in close contact with the frame body FB.
  • the structure in which the height of the frame body FB is higher than the height of the flow rate detection unit FDU is employed. That is, by making the height of the frame FB higher than the height of the flow rate detection unit FDU, the first space SP1 (sealed space) surrounding the flow rate detection unit FDU and its vicinity is necessarily secured. Therefore, according to the first embodiment, it is possible to seal the surface region of the semiconductor chip CHP1 typified by the pad formation region while exposing the flow rate detection unit FDU and its vicinity region.
  • the frame FB is arranged on the semiconductor chip CHP1 so that the flow rate detection unit FDU is included in the opening OP (FB) provided in the frame FB, and
  • the height of the frame FB is set to be higher than the height of the flow rate detection unit FDU.
  • the upper mold UM having a special structure, and a general upper mold UM (general-purpose product) for sealing the entire inside of the cavity with resin.
  • the flow rate sensor FS1 exposing the flow rate detection unit FDU can be manufactured using a general upper mold UM that is a general-purpose product. Therefore, according to the first embodiment, there is no need to prepare a special upper die UM for the flow rate sensor, and a flow rate detection can be performed with a general-purpose upper die UM that is widely used. A flow rate sensor in which the part FDU is exposed can be manufactured.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is overcoated.
  • the clamping force applied to the semiconductor chip CHP1 from the seal portion SL increases, and the semiconductor chip CHP1 may be broken.
  • the upper mold UM is not directly pressed against the semiconductor chip CHP1, but the frame body FB is interposed between the upper mold UM and the semiconductor chip CHP1.
  • a material whose elastic coefficient of the frame FB is smaller than that of the semiconductor chip CHP1 is used. Accordingly, since the frame FB is softer than the semiconductor chip CHP1, when the upper mold UM is pressed against the frame FB, the thickness dimension of the frame FB is absorbed so as to absorb the thickness variation of the semiconductor chip CHP1. Changes. Thereby, even if the thickness of the semiconductor chip CHP1 is larger than the average thickness, it is possible to prevent the clamping force from being applied to the semiconductor chip CHP1 more than necessary. As a result, according to the first embodiment, breakage of the semiconductor chip CHP1 can be prevented.
  • the contact area between the seal portion SL formed on the upper mold UM and the semiconductor chip CHP1 is small. For this reason, the clamping force pressed from the upper mold UM concentrates on the contact area between the seal portion SL and the semiconductor chip CHP1. Therefore, the pressure applied to the contact portion between the seal portion SL and the semiconductor chip CHP1 is increased, and the semiconductor chip CHP1 is easily damaged.
  • the contact region between the seal portion SL and the semiconductor chip CHP1 is formed in a region that overlaps the diaphragm DF in a planar manner.
  • a contact region between the seal portion SL and the semiconductor chip CHP1 exists in a region where the thickness of the semiconductor chip CHP1 is thin. Since the region where the thickness of the semiconductor chip CHP1 is thin is easy to break, in the related technology shown in FIG. 14, the pressure concentration due to the small contact area between the seal portion SL and the semiconductor chip CHP1 and the contact region are the semiconductor chip CHP1.
  • the semiconductor chip CHP1 is likely to be damaged due to being disposed so as to overlap with the thin region in plan view.
  • the contact area between the frame FB and the semiconductor chip CHP1 is larger than the related technology shown in FIG. For this reason, the clamping force applied to the frame FB from the upper mold UM is dispersed because the contact area between the frame FB and the semiconductor chip CHP1 is large. Therefore, according to the first embodiment, the local concentration of the clamping force applied to the semiconductor chip CHP1 from the upper mold UM via the frame FB can be reduced, thereby suppressing the breakage of the semiconductor chip CHP1. can do. Furthermore, for example, as shown in FIG. 13, the contact area between the frame FB and the semiconductor chip CHP1 does not overlap with the diaphragm DF in plan view.
  • the contact region between the frame FB and the semiconductor chip CHP1 is not formed in the thin region of the semiconductor chip CHP1 in which the diaphragm DF is formed, but other semiconductor chips. It is formed in a thick region of CHP1.
  • the clamping force is dispersed due to the increase in the contact area between the frame body FB and the semiconductor chip CHP1, and the contact region has the thickness of the semiconductor chip CHP1.
  • the damage of the semiconductor chip CHP1 can be effectively suppressed by the synergistic effect of being formed in the thick region.
  • the contact area between the frame FB and the semiconductor chip CHP1 is large, so that the risk of leaking into the first space SP1 (sealed space) surrounding the flow rate detection unit FDU is reduced. be able to.
  • the frame body FB having a height higher than that of the flow rate detection unit FDU and having a smaller elastic coefficient than that of the semiconductor chip CHP1 is used as described above ( The usefulness shown in 1) to (4) can be obtained.
  • Modification 1 of the flow sensor FS1 in the first embodiment will be described.
  • the first embodiment for example, as illustrated in FIG. 4, the example in which the frame FB has the wall WP has been described.
  • the wall WP is provided in the frame FB. An example that is not described will be described.
  • FIG. 15A is a plan view showing the flow sensor FS1 in the first modification.
  • 15B is a cross-sectional view taken along the line AA in FIG. 15A
  • FIG. 15C is a cross-sectional view taken along the line BB in FIG. 15A. is there.
  • the wall portion is not formed on the frame body FB arranged on the semiconductor chip CHP1. Even when the frame FB having no wall portion is used as described above, the height of the frame FB is higher than the height of the flow rate detection unit FDU, and the elastic coefficient of the frame FB is a semiconductor chip. If it is smaller than CHP1, the same effect as the first embodiment can be obtained.
  • the frame in the first modification it is difficult to improve the positioning accuracy due to the wall portion, and therefore the frame in the first modification 1 from the viewpoint of securely fixing the frame FB on the semiconductor chip CHP1.
  • the FB is desirably bonded to the semiconductor chip CHP1.
  • an adhesive can be used, or the frame body FB may be made of a material having an adhesive action.
  • the outer dimension of the frame FB is larger than the outer dimension of the semiconductor chip CHP1, the position of the frame FB may be shifted due to the resin pressure in the resin sealing process (molding process). Therefore, for example, the outer dimension of the frame FB is desirably smaller than the outer dimension of the semiconductor chip CHP1. In other words, it can be said that the frame FB is desirably formed so as to be included in the semiconductor chip CHP1 in plan view. In other words, it can be said that the frame FB has a smaller outer dimension than the projection surface of the upper surface of the semiconductor chip CHP1. By comprising in this way, the position shift of the frame FB resulting from the resin pressure in a resin sealing process can be suppressed.
  • FIG. 16 is a view showing a section of the flow rate sensor in the first modification.
  • the frame FB is included in the semiconductor chip CHP1.
  • the frame body FB is the semiconductor chip CHP1 when the relationship of L1> L2 is established in every cross section. It can be said that it is included.
  • FIG. 17 is a plan view showing the structure of the flow sensor before resin sealing in the second modification.
  • 18 is a cross-sectional view taken along line AA in FIG. 17, and
  • FIG. 19 is a cross-sectional view taken along line BB in FIG.
  • a plate-like structure PLT is formed over the lower layer of the semiconductor chip CHP1 and the lower layer of the semiconductor chip CHP2.
  • This plate-like structure PLT has, for example, a rectangular shape, and has an external dimension that encloses the semiconductor chip CHP1 and the semiconductor chip CHP2 in plan view.
  • the plate-like structure PLT is disposed on the lead frame LF including the chip mounting portion TAB1 and the chip mounting portion TAB2.
  • the plate-like structure PLT is bonded to the lead frame LF using, for example, an adhesive ADH3, but can be bonded using a paste material.
  • a semiconductor chip CHP1 is mounted via an adhesive ADH1
  • a semiconductor chip CHP2 is mounted via an adhesive ADH2.
  • the plate-like structure PLT is formed of a metal material, it can be connected to the semiconductor chip CHP1 by the wire W1, and can also be connected to the semiconductor chip CHP2 by the wire W2.
  • components such as a capacitor and a thermistor can be mounted on the lead frame LF.
  • the plate-like structure PLT described above mainly functions as a cushioning material for improving the rigidity of the flow sensor FS1 and for shock from the outside. Further, when the plate-like structure PLT is made of a conductive material, it is electrically connected to the semiconductor chip CHP1 (pad PD1) or the semiconductor chip CHP2 (pad PD2) and used for supplying a ground potential (reference potential). It is also possible to stabilize the ground potential.
  • the plate-like structure PLT is, for example, a thermoplastic resin such as PBT resin, ABS resin, PC resin, nylon resin, PS resin, PP resin, or fluorine resin, or thermosetting resin such as epoxy resin, phenol resin, or urethane resin. It can consist of In this case, the plate-like structure PLT can mainly function as a buffer material that protects the semiconductor chip CHP1 and the semiconductor chip CHP2 from external impacts.
  • the plate-like structure PLT can be formed by pressing a metal material such as an iron alloy, an aluminum alloy, or a copper alloy, or can be formed from a glass material.
  • a metal material such as an iron alloy, an aluminum alloy, or a copper alloy
  • the rigidity of the flow sensor FS1 can be increased.
  • the plate-like structure PLT can be electrically connected to the semiconductor chip CHP1 and the semiconductor chip CHP2, and the plate-like structure PLT can be used for supplying the ground potential and stabilizing the ground potential.
  • a frame body FB is disposed on the semiconductor chip CHP1.
  • An opening OP (FB) is formed inside the frame FB, and the flow rate detection unit FDU formed in the semiconductor chip CHP1 is exposed from the opening OP (FB).
  • the height of the frame FB is made higher than the height of the flow rate detection unit FDU, and the elastic coefficient of the frame FB is made smaller than that of the semiconductor chip CHP1, so that Similar effects can be obtained.
  • the flow sensor FS1 having a two-chip structure including the semiconductor chip CHP1 and the semiconductor chip CHP2 has been described as an example.
  • the technical idea of the present invention is described.
  • the present invention is not limited to this, and can be applied to a flow sensor having a one-chip structure including one semiconductor chip in which a flow rate detection unit and a control unit (control circuit) are integrally formed.
  • a case where the technical idea of the present invention is applied to a flow sensor having a one-chip structure will be described as an example.
  • FIG. 20 is a diagram illustrating a mounting configuration of the flow rate sensor FS2 according to the second embodiment, and is a diagram illustrating a configuration before sealing with resin.
  • FIG. 20A is a plan view showing a mounting configuration of the flow rate sensor FS2 in the second embodiment.
  • 20B is a cross-sectional view taken along the line AA in FIG. 20A
  • FIG. 20C is a cross-sectional view taken along the line BB in FIG. 20A.
  • FIG. 20D is a plan view showing the back surface of the semiconductor chip CHP1.
  • the flow rate sensor FS2 in the second embodiment has a lead frame LF made of, for example, a copper material.
  • This lead frame LF has a chip mounting portion TAB1 inside surrounded by a dam bar DM constituting the outer frame body.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1.
  • the semiconductor chip CHP1 has a rectangular shape, and a flow rate detection unit FDU is formed substantially at the center.
  • a wiring WL1A connected to the flow rate detection unit FDU is formed on the semiconductor chip CHP1, and the wiring WL1A is connected to the control unit CU formed on the semiconductor chip CHP1.
  • the control unit CU an integrated circuit made of semiconductor elements such as MISFETs (Metal, Insulator, Semiconductor, Field, Effect, and Transistor) and wirings is formed. Specifically, an integrated circuit constituting the CPU 1, the input circuit 2, the output circuit 3 or the memory 4 shown in FIG. 1 is formed.
  • the control unit CU is connected to a plurality of pads PD1 and pads PD2 formed along the long side of the semiconductor chip CHP1 by a wiring WL1B. That is, the flow rate detection unit FDU and the control unit CU are connected by the wiring WL1A, and the control unit CU is connected to the pad PD1 and the pad PD2 by the wiring WL1B.
  • the pad PD1 is connected to a lead LD1 formed on the lead frame LF via, for example, a wire W1 made of a gold wire.
  • the pad PD2 is connected to a lead LD2 formed on the lead frame LF via, for example, a wire W2 made of a gold wire.
  • a polyimide film may be formed on the outermost surface (element formation surface) of the semiconductor chip CHP1 for the purpose of a stress buffer function with a resin to be bonded, a surface protection function, an insulation protection function, or the like. To do.
  • the lead LD1 and the lead LD2 are arranged so as to extend in the X direction orthogonal to the Y direction in which the gas flows, and have a function of performing input / output with an external circuit.
  • protruding leads PLD are formed along the Y direction of the lead frame LF.
  • the protruding lead PLD is connected to the chip mounting portion TAB1, but is not connected to the pads PD1 and PD2 formed on the semiconductor chip CHP1. That is, the protruding lead PLD is different from the leads LD1 and LD2 that function as the input / output terminals described above.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 so that the long side of the rectangular semiconductor chip CHP1 is parallel to the gas flow direction (arrow direction, Y direction). ing.
  • a plurality of pads PD1 and PD2 are arranged along the long side direction on the long side of the semiconductor chip CHP1.
  • Each of the plurality of pads PD1 and each of the plurality of leads LD1 are connected by a plurality of wires W1 arranged so as to straddle the long side of the semiconductor chip CHP1.
  • each of the plurality of pads PD2 and each of the plurality of leads LD2 are connected by a plurality of wires W2 arranged so as to straddle the long side of the semiconductor chip CHP1.
  • the semiconductor chip CHP1 is arranged along the long side of the rectangular semiconductor chip CHP1, compared to the case where the plurality of pads PD1 and PD2 are arranged in the short side direction of the semiconductor chip CHP1, Many pads PD1 and PD2 can be formed on the semiconductor chip CHP1.
  • the semiconductor chip CHP1 is arranged by arranging a large number of pads PD1 and PD2 in the long side direction. The upper area can be used effectively.
  • the frame body FB is formed on a part of the semiconductor chip CHP1.
  • the frame body FB has, for example, a rectangular shape, and has an opening OP (FB) formed therein.
  • the frame body FB is arranged so that the flow rate detection unit FDU formed on the main surface of the semiconductor chip CHP1 is exposed from the opening OP (FB), and the semiconductor chip CHP1 is disposed outside the frame body FB.
  • the plurality of formed pads PD1 are arranged so as to be exposed.
  • a chip mounting portion TAB1 is formed on the lead frame LF, and a semiconductor chip CHP1 is mounted on the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is bonded to the chip mounting portion TAB1 with an adhesive ADH1.
  • a diaphragm DF thin plate portion
  • a flow rate detection unit FDU is formed on the surface of the semiconductor chip CHP1 facing the diaphragm DF.
  • an opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF.
  • a pad PD1 and a pad PD2 are formed on the surface (upper surface) of the semiconductor chip CHP1, and the pad PD1 is formed in the lead frame LF. Is connected to the lead LD1 formed on the wire W1. Similarly, the pad PD2 is connected to a lead LD2 formed on the lead frame LF via a wire W2.
  • a frame FB is arranged on the semiconductor chip CHP1.
  • An opening OP (FB) is formed in the frame FB, and the flow rate detection unit FDU is exposed from the opening OP (FB).
  • the chip mounting portion TAB1 and the protruding lead PLD are formed on the lead frame LF, and the chip mounting portion TAB1 and the protruding lead PLD are integrally formed.
  • the semiconductor chip CHP1 is bonded by an adhesive ADH1.
  • a diaphragm DF thin plate portion
  • FDU flow rate detection unit
  • an opening OP1 is formed at the bottom of the chip mounting portion TAB1 existing below the diaphragm DF.
  • a control unit CU is formed on the surface of the semiconductor chip CHP1 so as to be aligned with the flow rate detection unit FDU.
  • the frame body FB is disposed on the semiconductor chip CHP1.
  • An opening OP (FB) is formed in the frame FB, and the flow rate detection unit FDU is exposed from the opening OP (FB).
  • thermosetting resin such as an epoxy resin or a polyurethane resin
  • thermoplastic resin such as a polyimide resin or an acrylic resin
  • FIG. 20D is a plan view showing the back surface of the semiconductor chip CHP1.
  • a diaphragm DF is formed on the back surface of the semiconductor chip CHP1, and an adhesive ADH1 is applied so as to surround the diaphragm DF.
  • FIG. 20C shows an example in which the adhesive ADH1 is applied so as to surround the diaphragm DF in a square shape.
  • the present invention is not limited to this.
  • the diaphragm DF is surrounded by an arbitrary shape such as an elliptical shape.
  • the adhesive ADH1 may be applied.
  • the mounting configuration of the flow rate sensor FS2 before sealing with resin is configured as described above, and the mounting configuration of the flow rate sensor FS2 after sealing with resin is described below. Will be described.
  • FIG. 21 is a diagram showing a mounting configuration of the flow sensor FS2 in the second embodiment, and is a diagram showing a configuration after sealing with resin.
  • FIG. 21A is a plan view showing a mounting configuration of the flow sensor FS2 in the second embodiment.
  • 21B is a cross-sectional view taken along the line AA in FIG. 21A, and
  • FIG. 21C is a cross-sectional view taken along the line BB in FIG. 21A.
  • the flow rate detection unit FDU formed in the semiconductor chip CHP1 is exposed from the opening OP (FB) formed in the frame body FB.
  • a part of the semiconductor chip CHP1 is covered with the resin MR. That is, in the second embodiment, the region of the semiconductor chip CHP1 excluding the region where the flow rate detection unit FDU is formed and the region where the frame body FB is mounted is collectively sealed with the resin MR.
  • the sealing with the resin MR can be performed in a state in which the semiconductor chip CHP1 in which the flow rate detection unit FDU is formed is fixed by a mold, and therefore, the semiconductor chip CHP1 can be prevented from being displaced,
  • the portion can be sealed with the resin MR.
  • a part of the semiconductor chip CHP1 can be sealed with the resin MR while suppressing the positional deviation of each flow rate sensor FS2, and the semiconductor chip CHP1 is attached to the semiconductor chip CHP1. It means that the variation in the position of the formed flow rate detection unit FDU can be suppressed.
  • the position of the flow rate detection unit FDU that detects the flow rate of gas can be matched by each flow rate sensor FS2, so that there is performance variation in detecting the gas flow rate in each flow rate sensor FS2.
  • the remarkable effect which can be suppressed can be acquired.
  • the height of the (stopper) is higher than the height of the surface of the semiconductor chip CHP1 including the flow rate detection unit FDU. That is, the exposed flow rate detection unit FDU is surrounded by the frame FB, and the height of the frame FB surrounding the flow rate detection unit FDU is higher than the height of the flow rate detection unit FDU.
  • the second embodiment configured as described above, it is possible to prevent the parts from being exposed to the flow rate detection unit FDU where the parts are exposed at the time of mounting and assembling the parts, so that the semiconductor chip in which the flow rate detection unit FDU is formed Damage to CHP1 can be prevented.
  • the height of the frame FB surrounding the flow rate detection unit FDU is higher than the height of the exposed flow rate detection unit FDU.
  • the frame FB is disposed on a part of the semiconductor chip CHP1, and the elastic coefficient of the frame FB is smaller than the elastic coefficient of the semiconductor chip CHP1.
  • the frame FB is made of a softer material than the semiconductor chip CHP1. Therefore, when the component comes into contact with the frame FB, the shock can be absorbed by the deformation of the relatively soft frame FB. Therefore, the impact is applied to the semiconductor chip CHP1 disposed under the frame FB. It is possible to suppress the transmission, and thereby it is possible to effectively prevent the semiconductor chip CHP1 from being damaged.
  • the adhesive ADH1 is applied so as to surround the diaphragm DF formed on the back surface of the semiconductor chip CHP1. It is premised on taking the composition to do. Then, as shown in FIGS. 21B and 21C, an opening OP1 is formed at the bottom of the chip mounting portion TAB1 below the diaphragm DF formed on the back surface of the semiconductor chip CHP1, and further, the chip An opening OP2 is provided in the resin MR that covers the back surface of the mounting portion TAB1.
  • the internal space of the diaphragm DF flows through the opening OP1 formed in the bottom of the chip mounting portion TAB1 and the opening OP2 formed in the resin MR. It communicates with the external space of the sensor FS2.
  • the pressure in the inner space of the diaphragm DF and the pressure in the outer space of the flow rate sensor FS2 can be made equal, and stress can be suppressed from being applied to the diaphragm DF.
  • the flow sensor FS2 As described above, the flow sensor FS2 according to the second embodiment is mounted and configured.
  • the dam bar DM that configures the outer frame of the lead frame LF after sealing with the resin MR. Is removed.
  • FIG. 22 is a plan view showing a mounting configuration of the flow rate sensor FS2 after the dam bar DM is removed. As shown in FIG. 22, it can be seen that by cutting the dam bar DM, a plurality of electric signals can be taken out independently from the plurality of leads LD1 and leads LD2.
  • the flow rate sensor FS2 in the second embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to FIGS. 23 to 26 show the manufacturing process in the cross section cut along the line BB in FIG.
  • a lead frame LF made of a copper material is prepared.
  • the lead frame LF is integrally formed with a chip mounting portion TAB1 and a protruding lead PLD, and an opening OP1 is formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1. Specifically, the semiconductor chip CHP1 is connected to the chip mounting portion TAB1 formed on the lead frame LF with an adhesive ADH1. At this time, the semiconductor chip CHP1 is mounted on the chip mounting portion TAB1 so that the diaphragm DF formed on the semiconductor chip CHP1 communicates with the opening OP1 formed at the bottom of the chip mounting portion TAB1.
  • the semiconductor chip CHP1 is formed with a flow rate detection unit FDU, a control unit CU, wiring (not shown), and pads (not shown) by a normal semiconductor manufacturing process. And the diaphragm DF is formed in the position of the back surface facing the flow volume detection part FDU formed in the surface of the semiconductor chip CHP1 by anisotropic etching, for example.
  • pads (not shown) formed on the semiconductor chip CHP1 and leads (not shown) formed on the lead frame LF are connected by wires (not shown) (wire bonding).
  • a wire (not shown) is formed from a gold wire, for example.
  • the frame body FB is mounted on the semiconductor chip CHP1.
  • the frame FB includes a flow rate detection unit FDU formed in the semiconductor chip CHP1 in an opening OP (FB) formed therein, and the semiconductor chip CHP1 outside the frame FB. It is mounted so that the control unit CU formed in is arranged. Accordingly, the frame body FB can be mounted on the semiconductor chip CHP1 while exposing the flow rate detection unit FDU and the control unit CU.
  • the second space (in the upper mold UM and the lower mold BM with the elastic film LAF interposed) Cavity) is formed and sandwiched.
  • the resin MR is poured into the second space under heating, whereby the surface of the semiconductor chip CHP1, the wire (not shown), and a part of the protruding lead PLD in the vicinity region where the control unit CU is formed are resinated. Seal with MR.
  • the elastic film is applied to the frame body FB higher than the height of the flow rate detection unit FDU formed in the semiconductor chip CHP1. While pressing the upper mold UM through the LAF, the lead frame LF on which the semiconductor chip CHP1 is mounted is sandwiched between the lower mold BM and the upper mold UM.
  • the first space SP1 (sealed space) surrounding the flow rate detection unit FDU formed in the semiconductor chip CHP1 and the vicinity thereof is secured, for example, as a control unit formation region.
  • the surface region of the semiconductor chip CHP1 to be manufactured can be sealed. That is, according to the second embodiment, the surface region of the semiconductor chip CHP1 typified by the control unit formation region is sealed while exposing the flow rate detection unit FDU formed in the semiconductor chip CHP1 and its neighboring region. be able to.
  • the lead frame LF mounted with the semiconductor chip CHP1 when the lead frame LF mounted with the semiconductor chip CHP1 is sandwiched between the upper mold UM and the lower mold BM, the lead frame LF mounted with the semiconductor chip CHP1.
  • a frame body FB and an elastic film LAF are interposed between the upper mold UM and the upper mold UM.
  • the clamping force applied to the semiconductor chip CHP1 is relaxed by deformation in the thickness direction (Z direction) of the frame FB having a smaller elastic coefficient than the semiconductor chip CHP1. be able to.
  • the second embodiment it is possible to prevent damage represented by cracks, chips, cracks, and the like of the semiconductor chip CHP1.
  • the lead frame LF on which the semiconductor chip CHP1 is mounted is removed from the upper mold UM and the lower mold BM.
  • the flow sensor FS2 in the second embodiment can be manufactured.
  • the flow sensor FS2 according to the second embodiment manufactured as described above can achieve the same effects as those of the first embodiment.
  • a polyimide film, a silicon nitride film, a polysilicon film, TEOS (Si (OC2H5) 4 is formed on a part of the surface (upper surface) of the semiconductor chip CHP1 on which the flow rate detection unit FDU is formed.
  • a film such as a silicon oxide film may be formed using as a raw material. Thereby, it is possible to improve the adhesive strength in a part of the surface of the semiconductor chip CHP1 that is in close contact with the resin.
  • the polyimide film can be formed, for example, by coating on the semiconductor chip CHP1 and patterned by applying a photolithography technique and an etching technique as necessary.
  • the silicon nitride film, polysilicon film, and silicon oxide film are formed by chemical vapor deposition, chemical vapor deposition, chemical vapor deposition, physical vapor deposition represented by plasma CVD, low pressure CVD, and atmospheric pressure CVD. It can be formed by the method or physical vapor deposition.
  • These films formed on the semiconductor chip CHP1 prevent an increase in the thickness of the silicon oxide film formed on the silicon (Si) constituting the semiconductor chip CHP1, thereby improving the adhesion between the resin MR and the semiconductor chip CHP1. Can be improved.
  • These films may be formed on at least a part of the semiconductor chip CHP1 covered with the resin MR.
  • the film thickness of a polyimide film, a silicon nitride film, a polysilicon film, a silicon oxide film using TEOS as a raw material is assumed to be about 1 ⁇ m to about 120 ⁇ m, but is not limited to this film thickness. It is only necessary that these films be formed in the region covered with the resin MR in the surface region of the semiconductor chip CHP1.
  • the flow sensor described in the above embodiment is a device that measures the flow rate of gas, but the specific type of gas is not limited, and air, LP gas, carbon dioxide gas (CO2 gas), and chlorofluorocarbon gas.
  • the present invention can be widely applied to devices for measuring the flow rate of any gas.
  • the flow sensor for measuring the flow rate of gas has been described.
  • the technical idea of the present invention is not limited to this, and a part of a semiconductor element such as a humidity sensor is exposed.
  • the present invention can be widely applied to semiconductor devices that are resin-sealed in such a state.
  • the present invention can be widely used in manufacturing industries for manufacturing semiconductor devices such as flow sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 流量センサごとの性能バラツキを抑制して性能向上を図る(信頼性を向上して性能向上を達成する場合も含む)ことができる技術を提供する。例えば、半導体チップCHP1を搭載したリードフレームLFを、上金型UMと下金型BMで挟み込む際、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に枠体FBと弾性体フィルムLAFを介在させる。このとき、枠体FBの高さは、流量検出部FDUの高さよりも高く、かつ、枠体FBの弾性係数は、半導体チップCHP1よりも小さくなっている。

Description

流量センサおよびその製造方法
 本発明は、流量センサおよびその製造技術に関し、特に、流量センサの構造に適用して有効な技術に関するものである。
 特開2004-74713号公報(特許文献1)には、半導体パッケージの製造方法として、離型フィルムシートを設置した金型によって部品をクランプして、樹脂を流し込む方法が開示されている。
 また、特開2011-122984号公報(特許文献2)には、気体(空気)流れの流量検出部を部分露出した流量センサについて、金型にバネで支持した入れ駒や弾性体フィルムを用いた流量センサの製造方法が記載されている。
特開2004-74713号公報 特開2011-122984号公報
 例えば、現在、自動車などの内燃機関には、電子制御燃料噴射装置が設けられている。この電子制御燃料噴射装置は、内燃機関に流入する気体(空気)と燃料の量を適切に調整することにより、内燃機関を効率よく稼動させる役割を有している。このため、電子制御燃料噴射装置においては、内燃機関に流入する気体(空気)を正確に把握する必要がある。このことから、電子制御燃料噴射装置には、気体(空気)の流量を測定する流量センサ(エアフローセンサ)が設けられている。
 流量センサの中でも、特に、半導体マイクロマシンニング技術により製造された流量センサは、コストを削減でき、かつ、低電力で駆動できることから、注目されている。このような流量センサは、例えば、シリコンからなる半導体基板の裏面に異方性エッチングにより形成したダイヤフラム(薄板部)を形成し、このダイヤフラムと相対する半導体基板の表面に、発熱抵抗体と測温抵抗体とからなる流量検出部を形成した構成をしている。
 実際の流量センサでは、例えば、ダイヤフラムおよび流量検出部を形成した第1半導体チップの他に、流量検出部を制御する制御回路部を形成した第2半導体チップも有している。上述した第1半導体チップおよび第2半導体チップは、例えば、基板上に搭載され、基板上に形成されている配線(端子)と電気的に接続されている。具体的には、例えば、第1半導体チップは金線からなるワイヤによって基板に形成されている配線と接続され、第2半導体チップは、第2半導体チップに形成されているバンプ電極を使用して、基板に形成されている配線と接続されている。このようにして、基板上に搭載されている第1半導体チップと第2半導体チップは、基板に形成されている配線を介して電気的に接続される。この結果、第1半導体チップに形成されている流量検出部を、第2半導体チップに形成されている制御回路部で制御することが可能となり、流量センサが構成されることになる。
 このとき、第1半導体チップと基板とを接続する金線(ワイヤ)は、変形による接触などを防止するため、通常、ポッティング樹脂によって固定されている。つまり、金線(ワイヤ)は、ポッティング樹脂によって覆われて固定されており、このポッティング樹脂により、金線(ワイヤ)は保護されている。一方、流量センサを構成する第1半導体チップおよび第2半導体チップは通常、ポッティング樹脂で封止されていない。すなわち、通常の流量センサにおいては、金線(ワイヤ)だけがポッティング樹脂で覆われた構造をしている。
 ここで、金線(ワイヤ)のポッティング樹脂による固定は、第1半導体チップを金型などで固定した状態で行われないため、ポッティング樹脂の収縮により、第1半導体チップが搭載位置からずれてしまう問題がある。さらに、ポッティング樹脂は滴下することにより形成されるので、ポッティング樹脂の寸法精度が低い問題がある。この結果、個々の流量センサごとに、流量検出部が形成されている第1半導体チップの搭載位置にずれが生じるとともに、ポッティング樹脂の形成位置も微妙に異なることとなり、各流量センサの検出性能にバラツキが生じることになる。このため、各流量センサの性能バラツキを抑制するため、流量センサごとに検出性能の補正を行なう必要があり、流量センサの製造工程における性能補正工程を追加する必要性が生じる。特に、性能補正工程が長くなると、流量センサの製造工程におけるスループットが低下し、流量センサのコストが上昇してしまう問題点も存在する。さらに、ポッティング樹脂は、加熱による硬化の促進を行っていないので、ポッティング樹脂が硬化するまでの時間が長くなり、流量センサの製造工程におけるスループットが低下してしまう。
 本発明の目的は、流量センサごとの性能バラツキを抑制して性能向上を図る(信頼性を向上して性能向上を達成する場合も含む)ことができる技術を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 代表的な実施の形態における流量センサは、(a)第1チップ搭載部と、(b)前記第1チップ搭載部上に配置された第1半導体チップと、を備え、前記第1半導体チップは、(b1)第1半導体基板の主面上に形成された流量検出部と、(b2)前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有する。ここで、前記第1半導体チップ上に搭載され、かつ、少なくとも前記流量検出部を露出する開口部を有する枠体であって、前記第1半導体チップよりも弾性係数が小さい材質からなる前記枠体を含む。そして、前記第1半導体チップに形成されている前記流量検出部を前記枠体の前記開口部から露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されているものである。
 また、代表的な実施の形態における流量センサの製造方法は、上述した構造を有する流量センサの製造方法である。そして、(a)前記第1チップ搭載部を有する基材を用意する工程と、(b)前記第1半導体チップを用意する工程と、(c)前記第1チップ搭載部上に前記第1半導体チップを搭載する工程と、を備える。その後、(d)前記(c)工程後、前記枠体に形成されている前記開口部に前記流量検出部が内包されるように、前記第1半導体チップ上に前記枠体を配置する工程と、(e)前記(d)工程後、前記第1半導体チップに形成されている前記流量検出部を露出させつつ、前記第1半導体チップの一部を前記封止体で封止する工程と、を備える。ここで、前記(e)工程は、(e1)上金型と下金型とを用意する工程と、(e2)前記(e1)工程後、前記上金型の底面を前記枠体に密着させることにより、前記流量検出部を囲む第1空間を形成しながら、前記上金型と前記下金型とで、前記第1半導体チップを搭載した前記基材を、第2空間を介して挟み込む工程と、(e3)前記(e2)工程後、前記第2空間に前記樹脂を流し込む工程と、を備えるものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 流量センサごとの性能バラツキを抑制して性能向上を図ることができる。
実施の形態1における流量センサの回路構成を示す回路ブロック図である。 実施の形態1における流量センサの一部を構成した半導体チップのレイアウト構成を示す平面図である。 実施の形態1における流量センサの実装構成を示す図であり、樹脂で封止する前の構成を示す図である。特に、(a)は、実施の形態1における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、半導体チップの裏面を示す平面図である。 (a)は、枠体の構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図である。 実施の形態1における流量センサの実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、(a)は、実施の形態1における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は(a)のB-B線で切断した断面図である。 ダムバーを除去した後の流量センサの実装構成を示す平面図である。 実施の形態1における流量センサの製造工程を示す断面図である。 図7に続く流量センサの製造工程を示す断面図である。 図8に続く流量センサの製造工程を示す断面図である。 図9に続く流量センサの製造工程を示す断面図である。 図10に続く流量センサの製造工程を示す断面図である。 図11に続く流量センサの製造工程を示す断面図である。 弾性体フィルムを使用せずに、枠体だけを介在させて、半導体チップを搭載したリードフレームに上金型を押し付ける例を示す断面図である。 枠体を使用しないで樹脂封止する関連技術の一例を示す図である。 (a)は、変形例1における流量センサを示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図である。 変形例1における流量センサの一断面を示す図である。 変形例2において、樹脂封止前の流量センサの構造を示す平面図である。 図17のA-A線で切断した断面図である。 図17のB-B線で切断した断面図である。 実施の形態2における流量センサの実装構成を示す図であり、樹脂で封止する前の構成を示す図である。特に、(a)は、実施の形態2における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は、(a)のB-B線で切断した断面図であり、(d)は半導体チップの裏面を示す平面図である。 実施の形態2における流量センサの実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、(a)は、実施の形態2における流量センサの実装構成を示す平面図であり、(b)は、(a)のA-A線で切断した断面図であり、(c)は(a)のB-B線で切断した断面図である。 ダムバーを除去した後の流量センサの実装構成を示す平面図である。 実施の形態2における流量センサの製造工程を示す断面図である。 図23に続く流量センサの製造工程を示す断面図である。 図24に続く流量センサの製造工程を示す断面図である。 図25に続く流量センサの製造工程を示す断面図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 (実施の形態1)
 <流量センサの回路構成>
 まず、流量センサの回路構成を説明する。図1は、本実施の形態1における流量センサの回路構成を示す回路ブロック図である。図1において、本実施の形態1における流量センサは、まず、流量センサを制御するためのCPU(Central Processing Unit)1を有し、さらに、このCPU1に入力信号を入力するための入力回路2、および、CPU1からの出力信号を出力するための出力回路3を有している。そして、流量センサにはデータを記憶するメモリ4が設けられており、CPU1は、メモリ4にアクセスして、メモリ4に記憶されているデータを参照できるようになっている。
 次に、CPU1は、出力回路3を介して、トランジスタTrのベース電極と接続されている。そして、このトランジスタTrのコレクタ電極は電源PSに接続され、トランジスタTrのエミッタ電極は発熱抵抗体HRを介してグランド(GND)に接続されている。したがって、トランジスタTrは、CPU1によって制御されるようになっている。すなわち、トランジスタTrのベース電極は、出力回路3を介してCPU1に接続されているので、CPU1からの出力信号がトランジスタTrのベース電極に入力される。
 この結果、CPU1からの出力信号(制御信号)によって、トランジスタTrを流れる電流が制御されるように構成されている。CPU1からの出力信号によってトランジスタTrを流れる電流が大きくなると、電源PSから発熱抵抗体HRに供給される電流が大きくなり、発熱抵抗体HRの加熱量が大きくなる。
 一方、CPU1からの出力信号によってトランジスタTrを流れる電流が少なくなると、発熱抵抗体HRへ供給される電流が少なくなり、発熱抵抗体HRの加熱量は減少する。
 このように本実施の形態1における流量センサでは、CPU1によって発熱抵抗体HRを流れる電流量が制御され、これによって、発熱抵抗体HRからの発熱量がCPU1によって制御されるように構成されていることがわかる。
 続いて、本実施の形態1における流量センサでは、CPU1によって発熱抵抗体HRを流れる電流を制御するため、ヒータ制御ブリッジHCBが設けられている。このヒータ制御ブリッジHCBは、発熱抵抗体HRから放散される発熱量を検知し、この検知結果を入力回路2へ出力するように構成されている。この結果、CPU1は、ヒータ制御ブリッジHCBからの検知結果を入力することができ、これに基づいて、トランジスタTrを流れる電流を制御する。
 具体的に、ヒータ制御ブリッジHCBは、図1に示すように、参照電圧Vref1とグランド(GND)との間にブリッジを構成する抵抗体R1~抵抗体R4を有している。このように構成されているヒータ制御ブリッジHCBでは、発熱抵抗体HRで加熱された気体が吸気温度よりもある一定温度(ΔT、例えば、100℃)だけ高い場合に、ノードAの電位とノードBの電位の電位差が0Vとなるように、抵抗体R1~抵抗体R4の抵抗値が設定されている。つまり、ヒータ制御ブリッジHCBを構成する抵抗体R1~抵抗体R4は、抵抗体R1と抵抗体R3を直列接続した構成要素と、抵抗体R2と抵抗体R4を直列接続した構成要素とが、参照電圧Vref1とグランド(GND)との間に並列接続されるようにしてブリッジが構成されている。そして、抵抗体R1と抵抗体R3の接続点がノードAとなっており、抵抗体R2と抵抗体R4の接続点がノードBとなっている。
 このとき、発熱抵抗体HRで加熱された気体は、ヒータ制御ブリッジHCBを構成する抵抗体R1に接触するようになっている。したがって、発熱抵抗体HRからの発熱量によって、ヒータ制御ブリッジHCBを構成する抵抗体R1の抵抗値が主に変化することになる。このように抵抗体R1の抵抗値が変化すると、ノードAとノードBとの間の電位差が変化する。このノードAとノードBとの電位差は、入力回路2を介してCPU1に入力されるので、CPU1は、ノードAとノードBとの電位差に基づいて、トランジスタTrを流れる電流を制御する。
 具体的に、CPU1は、ノードAとノードBとの電位差が0VとなるようにトランジスタTrを流れる電流を制御して、発熱抵抗体HRからの発熱量を制御するようになっている。すなわち、本実施の形態1における流量センサでは、CPU1がヒータ制御ブリッジHCBの出力に基づいて、発熱抵抗体HRで加熱された気体が吸気温度よりもある一定温度(ΔT、例えば、100℃)だけ高い一定値に保持するようにフィードバック制御するように構成されていることがわかる。
 続いて、本実施の形態1における流量センサは、気体の流量を検知するための温度センサブリッジTSBを有している。この温度センサブリッジTSBは、参照電圧Vref2とグランド(GND)との間にブリッジを構成する4つの測温抵抗体から構成されている。この4つの測温抵抗体は、2つの上流測温抵抗体UR1、UR2と、2つの下流測温抵抗体BR1、BR2から構成されている。
 つまり、図1の矢印の方向は、気体が流れる方向を示しており、この気体が流れる方向の上流側に上流測温抵抗体UR1、UR2が設けられ、下流側に下流測温抵抗体BR1、BR2が設けられている。これらの上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2は、発熱抵抗体HRまでの距離が同じになるように配置されている。
 温度センサブリッジTSBでは、参照電圧Vref2とグランド(GND)の間に上流測温抵抗体UR1と下流測温抵抗体BR1が直列接続されており、この上流測温抵抗体UR1と下流測温抵抗体BR1の接続点がノードCとなっている。
 一方、グランド(GND)と参照電圧Vref2の間に上流測温抵抗体UR2と下流測温抵抗体BR2が直列接続されており、この上流測温抵抗体UR2と下流測温抵抗体BR2の接続点がノードDとなっている。そして、ノードCの電位とノードDの電位は、入力回路2を介してCPU1に入力されるように構成されている。そして、矢印方向に流れる気体の流量が零である無風状態のとき、ノードCの電位とノードDの電位との差電位が0Vとなるように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2の各抵抗値が設定されている。
 具体的に、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、発熱抵抗体HRからの距離が等しく、かつ、抵抗値も等しくなるように構成されている。このため、温度センサブリッジTSBでは、発熱抵抗体HRの発熱量にかかわらず、無風状態であれば、ノードCとノードDの差電位は0Vとなるように構成されていることがわかる。
 <流量センサの動作>
 本実施の形態1における流量センサは上記のように構成されており、以下に、その動作について図1を参照しながら説明する。まず、CPU1は、出力回路3を介してトランジスタTrのベース電極に出力信号(制御信号)を出力することにより、トランジスタTrに電流を流す。すると、トランジスタTrのコレクタ電極に接続されている電源PSから、トランジスタTrのエミッタ電極に接続されている発熱抵抗体HRに電流が流れる。このため、発熱抵抗体HRは発熱する。そして、発熱抵抗体HRからの発熱で暖められた気体がヒータ制御ブリッジHCBを構成する抵抗体R1を加熱する。
 このとき、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)だけ高くなっている場合、ヒータ制御ブリッジHCBのノードAとノードBの差電位が0Vとなるように、抵抗体R1~R4の各抵抗値が設定されている。このため、例えば、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)だけ高くなっている場合、ヒータ制御ブリッジHCBのノードAとノードBとの間の差電位は0Vとなり、この差電位(0V)が入力回路2を介してCPU1に入力される。そして、ヒータ制御ブリッジHCBからの差電位が0Vであることを認識したCPU1は、出力回路3を介してトランジスタTrのベース電極に、現状の電流量を維持するための出力信号(制御信号)を出力する。
 一方、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)からずれている場合、ヒータ制御ブリッジHCBのノードAとノードBとの間に0Vではない差電位が発生し、この差電位が入力回路2を介してCPU1に入力される。そして、ヒータ制御ブリッジHCBからの差電位が発生していることを認識したCPU1は、出力回路3を介してトランジスタTrのベース電極に、差電位が0Vになるような出力信号(制御信号)を出力する。
 例えば、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)よりも高くなる方向の差電位が発生している場合、CPU1は、トランジスタTrを流れる電流が減少するような制御信号(出力信号)を、トランジスタTrのベース電極へ出力する。これに対し、発熱抵抗体HRで暖められた気体が一定温度(例えば、100℃)よりも低くなる方向の差電位が発生している場合、CPU1は、トランジスタTrを流れる電流が増加するような制御信号(出力信号)を、トランジスタTrのベース電極へ出力する。
 以上のようにして、CPU1は、ヒータ制御ブリッジHCBのノードAとノードBとの間の差電位が0V(平衡状態)になるように、ヒータ制御ブリッジHCBからの出力信号に基づいて、フィードバック制御する。このことから、本実施の形態1における流量センサでは、発熱抵抗体HRで暖められた気体が一定温度となるように制御されることがわかる。
 次に、本実施の形態1における流量センサでの気体の流量を測定する動作について説明する。まず、無風状態の場合について説明する。矢印方向に流れる気体の流量が零である無風状態のとき、温度センサブリッジTSBのノードCの電位とノードDの電位との差電位が0Vとなるように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2の各抵抗値が設定されている。
 具体的に、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、発熱抵抗体HRからの距離が等しく、かつ、抵抗値も等しくなるように構成されている。このため、温度センサブリッジTSBでは、発熱抵抗体HRの発熱量にかかわらず、無風状態であれば、ノードCとノードDの差電位は0Vとなり、この差電位(0V)が入力回路2を介してCPU1に入力される。そして、温度センサブリッジTSBからの差電位が0Vであることを認識したCPU1は、矢印方向に流れる気体の流量が零であると認識し、出力回路3を介して気体流量Qが零であることを示す出力信号が本実施の形態1における流量センサから出力される。
 続いて、図1の矢印方向に気体が流れている場合を考える。この場合、図1に示すように、気体の流れる方向の上流側に配置されている上流測温抵抗体UR1、UR2は、矢印方向に流れる気体によって冷却される。このため、上流測温抵抗体UR1、UR2の温度は低下する。これに対し、気体の流れる方向の下流側に配置されている下流測温抵抗体BR1、BR2は、発熱抵抗体HRで暖められた気体が下流測温抵抗体BR1、BR2に流れてくるので温度が上昇する。この結果、温度センサブリッジTSBのバランスが崩れ、温度センサブリッジTSBのノードCとノードDとの間に零ではない差電位が発生する。
 この差電位が入力回路2を介してCPU1に入力される。そして、温度センサブリッジTSBからの差電位が零ではないことを認識したCPU1は、矢印方向に流れる気体の流量が零ではないことを認識する。その後、CPU1はメモリ4にアクセスする。メモリ4には、差電位と気体流量を対応づけた対比表(テーブル)が記憶されているので、メモリ4にアクセスしたCPU1は、メモリ4に記憶されている対比表から気体流量Qを算出する。このようにして、CPU1で算出された気体流量Qは出力回路3を介して、本実施の形態1における流量センサから出力される。以上のようにして、本実施の形態1における流量センサによれば、気体の流量を求めることができることがわかる。
 <流量センサのレイアウト構成>
 次に、本実施の形態1における流量センサのレイアウト構成について説明する。例えば、図1に示す本実施の形態1における流量センサは、2つの半導体チップに形成される。具体的には、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが1つの半導体チップに形成され、CPU1、入力回路2、出力回路3およびメモリ4などが別の半導体チップに形成される。以下では、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが形成されている半導体チップのレイアウト構成について説明する。
 図2は、本実施の形態1における流量センサの一部を構成した半導体チップCHP1のレイアウト構成を示す平面図である。まず、図2に示すように、半導体チップCHP1が矩形形状をしており、この半導体チップCHP1の左側から右側に向って(矢印方向)、気体が流れるようになっている。そして、図2に示すように、矩形形状をした半導体チップCHP1の裏面側に矩形形状のダイヤフラムDFが形成されている。ダイヤフラムDFとは、半導体チップCHP1の厚さを薄くした薄板領域のことを示している。つまり、ダイヤフラムDFが形成されている領域の厚さは、その他の半導体チップCHP1の領域の厚さよりも薄くなっている。
 このようにダイヤフラムDFが形成されている裏面領域に相対する半導体チップCHP1の表面領域には、図2に示すように、流量検出部FDUが形成されている。具体的に、この流量検出部FDUの中央部には、発熱抵抗体HRが形成されており、この発熱抵抗体HRの周囲にヒータ制御ブリッジを構成する抵抗体R1が形成されている。そして、流量検出部FDUの外側にヒータ制御ブリッジを構成する抵抗体R2~R4が形成されている。このように形成された抵抗体R1~R4によってヒータ制御ブリッジが構成される。
 特に、ヒータ制御ブリッジを構成する抵抗体R1は、発熱抵抗体HRの近傍に形成されているので、発熱抵抗体HRからの発熱で暖められた気体の温度を抵抗体R1に精度良く反映させることができる。
 一方、ヒータ制御ブリッジを構成する抵抗体R2~R4は、発熱抵抗体HRから離れて配置されているので、発熱抵抗体HRからの発熱の影響を受けにくくすることができる。
 したがって、抵抗体R1は発熱抵抗体HRで暖められた気体の温度に敏感に反応するように構成することができるとともに、抵抗体R2~R4は発熱抵抗体HRの影響を受けにくく抵抗値を一定値に維持しやすく構成することができる。このため、ヒータ制御ブリッジの検出精度を高めることができる。
 さらに、流量検出部FDUに形成されている発熱抵抗体HRを挟むように、上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2が配置されている。具体的に、気体が流れる矢印方向の上流側に上流測温抵抗体UR1、UR2が形成され、気体が流れる矢印方向の下流側に下流測温抵抗体BR1、BR2が形成されている。
 このように構成することにより、気体が矢印方向に流れる場合、上流測温抵抗体UR1、UR2の温度を低下させることができるとともに、下流測温抵抗体BR1、BR2の温度を上昇させることができる。このように流量検出部FDUに配置されている上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2により温度センサブリッジが形成される。
 上述した発熱抵抗体HR、上流測温抵抗体UR1、UR2および下流測温抵抗体BR1、BR2は、例えば、白金(プラチナ)などの金属膜やポリシリコン(多結晶シリコン)などの半導体薄膜をスパッタリング法やCVD(Chemical Vapor Deposition)法などの方法で形成した後、イオンエッチングなどの方法でパターニングすることにより形成することができる。
 このように構成されている発熱抵抗体HR、ヒータ制御ブリッジを構成する抵抗体R1~R4、および、温度センサブリッジを構成する上流測温抵抗体UR1、UR2と下流測温抵抗体BR1、BR2は、それぞれ、配線WL1と接続されて、半導体チップCHP1の下辺に沿って配置されているパッドPD1に引き出されている。
 以上のようにして、本実施の形態1における流量センサの一部を構成する半導体チップCHP1がレイアウト構成されている。実際の流量センサは、発熱抵抗体HR、ヒータ制御ブリッジHCBおよび温度センサブリッジTSBが形成された1つの半導体チップと、CPU1、入力回路2、出力回路3およびメモリ4などが形成されたもう1つの半導体チップとを有し、これらの半導体チップを基板上に実装した構造をしている。
 以下では、このように実装構成された本実施の形態1における流量センサについて説明する。
 <実施の形態1における流量センサの実装構成>
 図3は、本実施の形態1における流量センサFS1の実装構成を示す図であり、樹脂で封止する前の構成を示す図である。特に、図3(a)は、本実施の形態1における流量センサFS1の実装構成を示す平面図である。図3(b)は、図3(a)のA-A線で切断した断面図であり、図3(c)は半導体チップCHP1の裏面を示す平面図である。
 まず、図3(a)に示すように、本実施の形態1における流量センサFS1は、例えば、銅材からなるリードフレームLFを有している。このリードフレームLFは、外枠体を構成するダムバーDMで囲まれた内部にチップ搭載部TAB1とチップ搭載部TAB2を有している。そして、チップ搭載部TAB1上に半導体チップCHP1が搭載され、チップ搭載部TAB2上に半導体チップCHP2が搭載されている。
 半導体チップCHP1は、矩形形状をしており、ほぼ中央部に流量検出部FDUが形成されている。そして、流量検出部FDUと接続する配線WL1が半導体チップCHP1上に形成されており、この配線WL1は、半導体チップCHP1の一辺に沿って形成された複数のパッドPD1と接続されている。すなわち、流量検出部FDUと複数のパッドPD1とは配線WL1で接続されていることになる。これらのパッドPD1は、リードフレームLFに形成されているリードLD1と、例えば、金線からなるワイヤW1を介して接続されている。リードフレームLFに形成されているリードLD1は、さらに、半導体チップCHP2に形成されているパッドPD2と、例えば、金線からなるワイヤW2を介して接続されている。
 半導体チップCHP2には、MISFET(Metal Insulator Semiconductor Field Effect Transistor)などの半導体素子や配線からなる集積回路が形成されている。具体的には、図1に示すCPU1、入力回路2、出力回路3、あるいは、メモリ4などを構成する集積回路が形成されている。これらの集積回路は、外部接続端子として機能するパッドPD2やパッドPD3と接続されている。そして、半導体チップCHP2に形成されているパッドPD3は、リードフレームLFに形成されているリードLD2と、例えば、金線からなるワイヤW3を介して接続されている。このようにして、流量検出部FDUが形成されている半導体チップCHP1と、制御回路が形成されている半導体チップCHP2は、リードフレームLFに形成されているリードLD1を介して接続されていることがわかる。なお、図3には図示していないが、半導体チップCHP1の最外表面には、後述するように、接着する樹脂との応力緩衝、表面保護、絶縁などを目的として、ポリイミド膜が形成されていてもよい。
 続いて、図3(b)に示すように、リードフレームLFにはチップ搭載部TAB1が形成されており、このチップ搭載部TAB1上に半導体チップCHP1が搭載されている。この半導体チップCHP1は、接着材ADH1によってチップ搭載部TAB1と接着している。半導体チップCHP1の裏面には、ダイヤフラムDF(薄板部)が形成されており、ダイヤフラムDFと相対する半導体チップCHP1の表面には、流量検出部FDUが形成されている。一方、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部には開口部OP1が形成されている。ここでは、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部に開口部OP1が形成されている例を示したが、本実施の形態1における技術的思想は、これに限定されるものではなく、開口部OP1が形成されていないリードフレームLFを使用することもできる。
 さらに、図3(b)に示すように、半導体チップCHP1の表面(上面)には、流量検出部FDUの他に、流量検出部FDUと接続されたパッドPD1が形成されており、このパッドPD1は、リードフレームLFに形成されたリードLD1とワイヤW1を介して接続されている。そして、リードフレームLFには、半導体チップCHP1の他に半導体チップCHP2も搭載されており、半導体チップCHP2は、接着材ADH2によってチップ搭載部TAB2に接着している。さらに、半導体チップCHP2に形成されているパッドPD2と、リードフレームLFに形成されているリードLD1がワイヤW2を介して接続されている。また、半導体チップCHP2に形成されているパッドPD3と、リードフレームLFに形成されているリードLD2は、ワイヤW3を介して電気的に接続されている。
 半導体チップCHP1とチップ搭載部TAB1とを接着している接着材ADH1や、半導体チップCHP2とチップ搭載部TAB2とを接着している接着材ADH2は、例えば、エポキシ樹脂やポリウレタン樹脂などの熱硬化性樹脂を成分とした接着材、ポリイミド樹脂やアクリル樹脂やフッ素樹脂などの熱可塑性樹脂を成分とした接着材を使用することができる。
 例えば、半導体チップCHP1とチップ搭載部TAB1の接着は、図3(c)に示すように接着材ADH1や銀ペーストなどを塗布することや、シート状の接着材により行うことができる。図3(c)は、半導体チップCHP1の裏面を示す平面図である。図3(c)に示すように、半導体チップCHP1の裏面には、ダイヤフラムDFが形成されており、このダイヤフラムDFを囲むように接着材ADH1が塗布されている。なお、図3(c)では、ダイヤフラムDFを四角形形状に囲むように接着材ADH1を塗布する例を示しているが、これに限らず、例えば、ダイヤフラムDFを楕円形状などの任意の形状で囲むように接着材ADH1を塗布してもよい。
 さらに、本実施の形態1では、図3(a)および図3(b)に示すように、半導体チップCHP1の一部上に枠体FBが形成されている。この枠体FBは、例えば、矩形形状をしており、内部に開口部OP(FB)が形成されている。この枠体FBは、開口部OP(FB)から半導体チップCHP1の主面上に形成された流量検出部FDUが露出するように配置されており、かつ、枠体FBの外側に半導体チップCHP1に形成されている複数のパッドPD1が露出するように配置されている。
 以下に、この枠体FBの構成について説明する。図4は、枠体FBの構成を示す図である。図4(a)は、枠体FBの構成を示す平面図であり、図4(b)は、図4(a)のA-A線で切断した断面図である。また、図4(c)は、図4(a)のB-B線で切断した断面図である。
 図4(a)に示すように、枠体FBは、矩形形状をしており、枠部FPの内部に開口部OP(FB)が形成されていることがわかる。そして、図4(b)や図4(c)に示すように、枠体FBには、半導体チップCHP1の側面に並行する壁部WPが形成されている。そして、図3(b)に示すように、この壁部WPを半導体チップCHP1に密着させることにより、半導体チップCHP1に位置合わせされた状態で枠体FBを半導体チップCHP1上に配置することができる。このとき、枠体FBは、半導体チップCHP1と接着していてもよいし、あるいは、半導体チップCHP1と接着されていなくてもよい。特に、枠体FBが半導体チップCHP1と接着されている場合には、枠体FBの位置ずれを防止できる効果を得ることができる。なお、枠体FBに形成されている壁部WPは、半導体チップCHP1の少なくとも1つの側面に対応して設けられていればよい。
 ここで、本実施の形態1における枠体FBの特徴は、枠体FBを構成する材質の弾性係数が、半導体チップCHP1を構成する材質の弾性係数よりも小さい点にある。このとき、弾性係数とは、枠体FBおよび半導体チップCHP1の弾性率をいうものとする。弾性率とは、弾性体内の応力とひずみが互いに比例するというフックの法則を、「応力がひずみに比例する」という形に表したときの比例定数をいう。
 例えば、枠体FBの弾性係数と、半導体チップCHP1の弾性係数の比較は、温度25℃(室温)で比較することが望ましい。また、弾性係数の比較は、枠体FBの弾性係数と、半導体チップCHP1を構成する基材の弾性係数の間で行なうことができる。例えば、半導体チップCHP1を構成する基材がシリコン単結晶から形成されている場合には、シリコン単結晶よりも室温で弾性係数が小さい材質から枠体FBを構成することができる。
 以上では、枠体FBと半導体チップCHP1の弾性係数の比較について説明したが、その基本理念は、半導体チップCHP1よりも硬さが柔らかい枠体FBを使用する点にある。ここでいう硬さは、例えば、室温でのビッカース硬さ、マイクロビッカース硬さ、ブリネル硬さ、あるいは、ロックウェル硬さのいずれかで比較することができる。
 具体的に、半導体チップCHP1よりも硬さが柔らかい枠体FBは、PBT樹脂、ABS樹脂、PC樹脂、ナイロン樹脂、PS樹脂、フッ素樹脂などを成分とした熱可塑性樹脂、エポキシ樹脂、フェノール樹脂などを成分とした熱硬化性樹脂、テフロン(登録商標)、ウレタン、フッ素などを成分としたゴム材料、エラストマーなどの高分子材料を使用することができる。
 枠体FBとしては、射出成形やトランスファ成形法で金型内に樹脂を充填してモールド成形することにより形成したり、上述した材料から形成されるフィルム品やシート形状品を使用することができる。
 また、熱硬化性樹脂、熱可塑性樹脂、ゴム材料、エラストマーなどの高分子材料から形成される枠体FBは、枠体FB自体が接着性を有する接着材としても用いることができ、さらには、ガラス、シリカ、マイカ、タルクなどの無機フィラーやカーボンなどの有機フィラーを充填することもできる。
 なお、真鍮、アルミニウム合金、銅合金などのシリコンよりも弾性係数が小さい金属材料をプレス加工、ロール加工、あるいは、鋳造で成形することにより、枠体FBを構成することもできる。
 本実施の形態1における流量センサFS1において、樹脂で封止する前の流量センサFS1の実装構成は上記のように構成されており、以下に、樹脂で封止した後の流量センサFS1の実装構成について説明する。
 図5は、本実施の形態1における流量センサFS1の実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、図5(a)は、本実施の形態1における流量センサFS1の実装構成を示す平面図である。図5(b)は、図5(a)のA-A線で切断した断面図であり、図5(c)は図5(a)のB-B線で切断した断面図である。
 本実施の形態1における流量センサFS1では、図5(a)に示すように、半導体チップCHP1に形成されている流量検出部FDUを枠体FBに形成されている開口部OP(FB)から露出した状態で、半導体チップCHP1の一部および半導体チップCHP2の全体が樹脂MRで覆われた構造をしている(第1特徴点)。つまり、本実施の形態1では、流量検出部FDUが形成されている領域および枠体FBが搭載されている領域を除く半導体チップCHP1の領域および半導体チップCHP2の全領域を一括して樹脂MRで封止している。
 上述した樹脂MRは、例えば、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂、ポリカーボネート、ポリエチレンテレフタレートなどの熱可塑性樹脂を使用することができるとともに、樹脂中にガラスやマイカなどの充填材を混入させることもできる。
 この樹脂MRによる封止は、流量検出部FDUが形成されている半導体チップCHP1を金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2を樹脂MRで封止することができるのである。このことは、本実施の形態1における流量センサFS1によれば、各流量センサFS1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2の全領域を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。
 この結果、本実施の形態1によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサFS1で一致させることができるため、各流量センサFS1において気体流量を検出する性能バラツキを抑制できる顕著な効果を得ることができる。
 続いて、本実施の形態1における流量センサFS1では、図5(b)に示すように、露出している流量検出部FDUを囲んだ両側における枠体FBの高さ、あるいは、樹脂MR(封止体)の高さが、流量検出部FDUを含む半導体チップCHP1の表面の高さよりも高くなっている(第2特徴点)。つまり、露出している流量検出部FDUは、周囲を枠体FBで囲まれ、かつ、流量検出部FDUを囲む枠体FBの高さが流量検出部FDUの高さよりも高くなっている。このような本実施の形態1における第2特徴点によれば、部品の取り付け組み立て時などに部品が露出している流量検出部FDUにぶつかることを防止できるので、流量検出部FDUを形成した半導体チップCHP1の破損を防止できる。すなわち、露出している流量検出部FDUの高さよりも流量検出部FDUを囲んでいる枠体FBの高さが高くなっている。このため、部品が接触する際、まず、高さの高い枠体FBに接触するので、高さの低い流量検出部FDUを含む半導体チップCHP1の露出面(XY面)が部品に接触して、半導体チップCHP1が破損することを防止できる。
 特に、本実施の形態1では、半導体チップCHP1の一部上に枠体FBが配置されており、この枠体FBの弾性係数が半導体チップCHP1の弾性係数よりも小さくなっている。言い換えれば、枠体FBは、半導体チップCHP1よりも硬さの柔らかい材料から構成されている。したがって、部品が枠体FBに接触した場合、比較的硬さの柔らかな枠体FBの変形で衝撃を吸収することができるため、枠体FBの下に配置されている半導体チップCHP1に衝撃が伝達されることを抑制することができ、これによって、半導体チップCHP1の破損を効果的に防止することができる。
 なお、枠体FBおよび樹脂MR(封止体)の高さは、流量検出部FDUを含む半導体チップCHP1の表面の高さよりも高ければよく、枠体FBの高さは、樹脂MR(封止体)の高さよりも高くても低くてもよいし、面一であってもよい。
 また、本実施の形態1では、樹脂MRがダイヤフラムDFの内部空間へ侵入することを防止するために、例えば、半導体チップCHP1の裏面に形成されているダイヤフラムDFを囲むように接着材ADH1を塗布する構成を取ることを前提としている。そして、図5(b)および図5(c)に示すように、半導体チップCHP1の裏面に形成されたダイヤフラムDFの下方にあるチップ搭載部TAB1の底部に開口部OP1を形成し、さらに、チップ搭載部TAB1の裏面を覆う樹脂MRに開口部OP2を設けている。
 これにより、本実施の形態1による流量センサFS1によれば、ダイヤフラムDFの内部空間は、チップ搭載部TAB1の底部に形成された開口部OP1および樹脂MRに形成された開口部OP2を介して流量センサFS1の外部空間と連通することになる。この結果、ダイヤフラムDFの内部空間の圧力と、流量センサFS1の外部空間の圧力とを等しくすることができ、ダイヤフラムDF上に応力が加わることを抑制できる。
 以上のようにして、本実施の形態1における流量センサFS1が実装構成されているが、実際の流量センサFS1では、樹脂MRで封止した後、リードフレームLFの外枠体を構成するダムバーDMが除去される。図6は、ダムバーDMを除去した後の流量センサFS1の実装構成を示す平面図である。図6に示すように、ダムバーDMを切断することにより、複数の電気信号を複数のリードLD2から独立して取り出すことができることがわかる。
 <本実施の形態1における流量センサの製造方法>
 本実施の形態1における流量センサFS1は上記のように構成されており、以下に、その製造方法について、図7~図14を参照しながら説明する。図7~図14は、図5(a)のA-A線で切断した断面における製造工程を示している。
 まず、図7に示すように、例えば、銅材からなるリードフレームLFを用意する。このリードフレームLFには、チップ搭載部TAB1、チップ搭載部TAB2、リードLD1およびリードLD2が一体的に形成されており、チップ搭載部TAB1の底部に開口部OP1が形成されている。
 続いて、図8に示すように、チップ搭載部TAB1上に半導体チップCHP1を搭載し、チップ搭載部TAB2上に半導体チップCHP2を搭載する。具体的には、リードフレームLFに形成されたチップ搭載部TAB1上に半導体チップCHP1を接着材ADH1で接続する。このとき、半導体チップCHP1に形成されているダイヤフラムDFがチップ搭載部TAB1の底部に形成されている開口部OP1と連通するように、半導体チップCHP1がチップ搭載部TAB1上に搭載される。なお、半導体チップCHP1には、通常の半導体製造プロセスによって流量検出部FDU、配線(図示せず)およびパッドPD1が形成される。そして、例えば、異方性エッチングにより、半導体チップCHP1の表面に形成された流量検出部FDUと相対する裏面の位置にダイヤフラムDFが形成されている。また、リードフレームLFに形成されているチップ搭載部TAB2上に、接着材ADH2によって半導体チップCHP2も搭載されている。この半導体チップCHP2には、予め、通常の半導体製造プロセスによって、MISFETなどの半導体素子(図示せず)や配線(図示せず)、パッドPD2、パッドPD3が形成されている。
 次に、図9に示すように、半導体チップCHP1に形成されているパッドPD1と、リードフレームLFに形成されているリードLD1とをワイヤW1で接続する(ワイヤボンディング)。同様に、半導体チップCHP2に形成されているパッドPD2をリードLD1とワイヤW2で接続し、半導体チップCHP2に形成されているパッドPD3をリードLD2とワイヤW3で接続する。ワイヤW1~W3は、例えば、金線から形成される。
 その後、図10に示すように、半導体チップCHP1上に枠体FBを搭載する。具体的に、枠体FBは、内部に形成された開口部OP(FB)内に、半導体チップCHP1に形成されている流量検出部FDUが内包され、かつ、枠体FBの外側に半導体チップCHP1に形成されている複数のパッドPD1が配置されるように搭載される。これにより、流量検出部FDUおよび複数のパッドPD1を露出させながら、枠体FBを半導体チップCHP1上に搭載することができる。
 このとき、本実施の形態1における枠体FBは、壁部WPを有しているため、この壁部WPを半導体チップCHP1の一側面に密着させながら、枠体FBを半導体チップCHP1上に配置することができる。これにより、半導体チップCHP1上に搭載される枠体FBの位置決め精度を向上させることができ、確実に枠体FBに形成されている開口部OP(FB)から流量検出部FDUを露出させることができるとともに、枠体FBとパッドPD1との接触を防止することができる。
 ここで、枠体FBと半導体チップCHP1とは接着してもよいし、接着しなくてもよい。ただし、半導体チップCHP1上に搭載された枠体FBの位置ずれを抑制する観点からは、枠体FBを半導体チップCHP1に接着させることが望ましい。
 その後、図11に示すように、パッドPD1が形成されている近傍領域における半導体チップCHP1の表面、ワイヤW1、リードLD1、ワイヤW2、半導体チップCHP2の主面全面、ワイヤW3およびリードLD2の一部を樹脂MRで封止する(モールド工程)。具体的には、図11に示すように、枠体FBを搭載した半導体チップCHP1および半導体チップCHP2を搭載したリードフレームLFを上金型UMと下金型BMで第2空間を介して挟み込む。その後、加熱下において、この第2空間に樹脂MRを流し込むことにより、パッドPD1が形成されている近傍領域における半導体チップCHP1の表面、ワイヤW1、リードLD1、ワイヤW2、半導体チップCHP2の主面全面、ワイヤW3およびリードLD2の一部を樹脂MRで封止する。このとき、図11に示すように、ダイヤフラムDFの内部空間は、接着材ADH1によって、上述した第2空間と隔離されているので、第2空間を樹脂MRで充填する際にも、ダイヤフラムDFの内部空間へ樹脂MRが侵入することを防止できる。
 さらに、本実施の形態1では、流量検出部FDUが形成されている半導体チップCHP1を、枠体FBを介して金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2を樹脂MRで封止することができる。このことは、本実施の形態1における流量センサFS1の製造方法によれば、各流量センサの位置ずれを抑制しながら、半導体チップCHP1の一部および半導体チップCHP2の全領域を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。この結果、本実施の形態1によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサで一致させることができるため、各流量センサにおいて気体流量を検出する性能バラツキを抑制できる顕著な効果を得ることができる。
 ここで、本実施の形態1における流量センサFS1の製造方法の特徴は、半導体チップCHP1に形成されている流量検出部FDUの高さよりも高い枠体FBに弾性体フィルムLAFを介して上金型UMを押し当てながら、半導体チップCHP1を搭載したリードフレームLFを下金型BMと上金型UMで挟み込むことにある。
 これにより、本実施の形態1によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)を確保しながら、例えばパッド形成領域に代表される半導体チップCHP1の表面領域を封止することができる。すなわち、本実施の形態1によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を露出させつつ、パッド形成領域に代表される半導体チップCHP1の表面領域を封止することができる。
 このように、枠体FBの本質的機能は、枠体FBに上金型UMを押し当てた際に、流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)を確保することにあり、この本質的機能を実現するために、半導体チップCHP1上に枠体FBを配置した場合、枠体FBの高さが流量検出部FDUの高さよりも高くする構成が取られているのである。つまり、枠体FBの高さを流量検出部FDUの高さよりも高くする構成は、製造方法の観点から、流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)を確保する目的で採用される構成であり、この構成により、流量検出部FDUおよびその近傍領域を露出させつつ、パッド形成領域に代表される半導体チップCHP1の表面領域を封止することができるのである。さらに言えば、本実施の形態1では、半導体チップCHP1上に、高さが流量検出部FDUよりも高い枠体FBを設けることにより、枠体FBの開口部OP(FB)から露出する流量検出部FDUを上金型UMのクランプ力から保護することができるとも言える。
 一方、枠体FBの高さを流量検出部FDUの高さよりも高くする構成は、流量センサFS1の構造の観点から見れば、部品の取り付け組み立て時などに部品が露出している流量検出部FDUにぶつかることを防止できる構造とも捉えることができ、これによって、流量検出部FDUを形成した半導体チップCHP1の破損を防止できる利点が得られる。すなわち、枠体FBの高さを流量検出部FDUの高さよりも高くするという構成は、製造方法の観点と構造の観点の両方から顕著な効果を奏する構成ということができるのである。
 さらに、本実施の形態1における枠体FBは、半導体チップCHP1よりも硬さが柔らかい材質から構成されており、この構成によって、枠体FBは、別の機能も有していることになる。以下では、この枠体FBの別の機能について説明する。
 本実施の形態1における流量センサFS1の製造方法の特徴は、半導体チップCHP1を搭載したリードフレームLFを、上金型UMと下金型BMで挟み込む際、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に枠体FBと弾性体フィルムLAFを介在させる点にある。
 例えば、個々の半導体チップCHP1の厚さには寸法バラツキが存在するため、半導体チップCHP1の厚さが平均的な厚さよりも薄い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、隙間が生じ、この隙間から流量検出部FDU上に樹脂MRがもれ出てしまう。
 一方、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、半導体チップCHP1に加わる力が大きくなり、半導体チップCHP1が破断するおそれがある。
 そこで、本実施の形態1では、上述した半導体チップCHP1の厚さバラツキに起因した流量検出部FDU上への樹脂漏れ、あるいは、半導体チップCHP1の破断を防止するため、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に弾性体フィルムLAFと枠体FBを介在させる工夫を施している。これにより、例えば、半導体チップCHP1の厚さが平均的な厚さよりも薄い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、隙間が生じるが、この隙間を弾性体フィルムLAFで充填できるため、半導体チップCHP1上への樹脂漏れを防止できる。
 一方、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、弾性体フィルムLAFおよび枠体FBは、半導体チップCHP1よりも柔らかいため、半導体チップCHP1の厚さを吸収するように弾性体フィルムLAFおよび枠体FBの厚さ方向の寸法が変化する。これにより、半導体チップCHP1の厚さが平均的な厚さよりも厚くても、必要以上に半導体チップCHP1へ力が加わることを防止することができ、この結果、半導体チップCHP1の破断を防止することができる。
 つまり、本実施の形態1における流量センサの製造方法によれば、弾性体フィルムLAFおよび枠体FBを介して半導体チップCHP1が上金型UMで押さえ付けられている。このため、半導体チップCHP1、接着材ADH1、リードフレームLFの厚さバラツキに起因する部品の実装バラツキを弾性体フィルムLAFおよび枠体FBの厚さ変化により吸収することができるのである。
 特に、本実施の形態1では、部品の厚さ方向(Z方向)の実装バラツキが大きく、半導体チップCHP1、接着材ADH1、リードフレームLFの厚さバラツキに起因する部品の実装バラツキを弾性体フィルムLAFの厚さ変化によって吸収することができない場合であっても、半導体チップCHP1よりも弾性係数の小さい枠体FBの厚さ方向(Z方向)の変形によって、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、本実施の形態1によれば、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができる。
 ここで、弾性体フィルムLAFおよび枠体FBは、部品の実装バラツキを吸収するために、半導体チップCHP1よりも弾性係数が小さいことが重要である。これにより、部品の実装バラツキがある場合であっても、半導体チップCHP1に加わる上金型UMからのクランプ力を弾性体フィルムLAFの厚さ変化と枠体FBの変形によって効果的に緩和することができる。すなわち、本実施の形態1において、弾性体フィルムLAFおよび枠体FBの弾性係数は、半導体チップCHP1の弾性係数よりも小さければよく、弾性体フィルムLAFと枠体FBの弾性係数の組合せは自由である。例えば、枠体FBの弾性係数は、弾性体フィルムLAFの弾性係数よりも大きくても小さくてもよく、あるいは、同じであってもよい。なお、弾性体フィルムLAFとしては、例えば、テフロン(登録商標)やフッ素樹脂などの高分子材料を使用することができる。
 以上のように本実施の形態1における枠体FBの別の機能は、部品の実装バラツキに起因する半導体チップCHP1への上金型UMからのクランプ力の増大を抑制する機能である。そして、この機能を実現するため、本実施の形態1では、枠体FBの弾性係数を半導体チップCHP1の弾性係数よりも小さくなるように構成している。これにより、部品の実装バラツキが存在する場合であっても、半導体チップCHP1よりも弾性係数の小さい枠体FBの厚さ方向(Z方向)の変形によって、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、本実施の形態1によれば、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができるのである。
 続いて、本実施の形態1のさらなる特徴について説明する。図11に示すように、本実施の形態1では、リードフレームLFの裏面側にも樹脂MRが流れ込む。したがって、チップ搭載部TAB1の底部に開口部OP1が形成されているため、この開口部OP1からダイヤフラムDFの内部空間へ樹脂MRが流れ込むことが懸念される。
 そこで、本実施の形態1では、リードフレームLFを挟み込む下金型BMの形状に工夫を施している。具体的には、図11に示すように、下金型BMに突起状の入れ駒IP1を形成し、上金型UMと下金型BMでリードフレームLFを挟み込む際、下金型BMに形成されている突起状の入れ駒IP1がチップ搭載部TAB1の底部に形成された開口部OP1に挿入されるように構成している。これにより、開口部OP1に入れ駒IP1が隙間無く挿入されるので、開口部OP1からダイヤフラムDFの内部空間への樹脂MRの侵入を防止することができる。つまり、本実施の形態1では、下金型BMに突起状の入れ駒IP1を形成し、樹脂封止の際、この入れ駒IP1をチップ搭載部TAB1の底部に形成された開口部OP1に挿入している。
 さらに、本実施の形態1では、入れ駒IP1の形状に工夫を施している。具体的に、本実施の形態1において、入れ駒IP1は、開口部OP1に挿入する挿入部と、この挿入部を支持する台座部から構成されており、挿入部の断面積よりも台座部の断面積が大きくなっている。これにより、入れ駒IP1は、挿入部と台座部の間に段差部が設けられる構造となり、この段差部がチップ搭載部TAB1の底面に密着することになる。
 このように入れ駒IP1を構成することにより、以下に示す効果が得られる。例えば、入れ駒IP1の形状を上述した挿入部だけから構成する場合、挿入部は開口部OP1に挿入されるため、入れ駒IP1の挿入部の径は、開口部OP1の径よりもわずかに小さくなっている。したがって、入れ駒IP1を挿入部だけから構成する場合、入れ駒IP1の挿入部を開口部OP1に挿入した場合であっても、挿入した挿入部と開口部OP1の間にわずかな隙間が存在すると考えられる。この場合、隙間から樹脂MRがダイヤフラムDFの内部空間へ侵入するおそれがある。
 そこで、本実施の形態1において、入れ駒IP1を挿入部よりも断面積の大きな台座部上に挿入部を形成する構成をとっている。この場合、図11に示すように、開口部OP1の内部に入れ駒IP1の挿入部が挿入されるとともに、入れ駒IP1の台座部がチップ搭載部TAB1の底面に密着するようになる。この結果、入れ駒IP1の挿入部と開口部OP1の間にわずかな隙間が生じても、台座部がチップ搭載部TAB1の裏面にしっかり押し付けられているので、樹脂MRが開口部OP1内へ侵入することを防止できるのである。つまり、本実施の形態1では、入れ駒IP1を挿入部よりも断面積の大きな台座部上に挿入部を設けるように構成しているので、台座部によって、樹脂MRが開口部OP1にまで達することはないという点と、台座部と挿入部との間に形成される段差部がチップ搭載部TAB1に押し付けられるという点との組み合わせにより、樹脂MRが開口部OP1を介してダイヤフラムDFの内部空間へ侵入することを効果的に防止することができるのである。
 以上のようにして、本実施の形態1では、枠体FBを搭載した半導体チップCHP1と半導体チップCHP2とを搭載したリードフレームLFを上金型UMと下金型BMで第2空間を介して挟み込む。その後、加熱下において、この第2空間に樹脂MRを流し込むことにより、パッドPD1が形成されている近傍領域における半導体チップCHP1の表面、ワイヤW1、リードLD1、ワイヤW2、半導体チップCHP2の主面全面、ワイヤW3およびリードLD2の一部を樹脂MRで封止する。
 その後、図12に示すように、樹脂MRが硬化した段階で、半導体チップCHP1および半導体チップCHP2を搭載したリードフレームLFを上金型UMと下金型BMから取り外す。これにより、本実施の形態1における流量センサFS1を製造することができる。
 なお、本実施の形態1における樹脂封止工程(モールド工程)では、80℃以上の高温度の上金型UMと下金型BMを使用しているため、加熱された上金型UMと下金型BMから第2空間に注入された樹脂MRに短時間で熱が伝わる。この結果、本実施の形態1における流量センサFS1の製造方法によれば、樹脂MRの加熱・硬化時間を短縮することができる。
 例えば、発明が解決しようとする課題の欄で説明したように、ポッティング樹脂による金線(ワイヤ)の固定だけを行なう場合、ポッティング樹脂は、加熱による硬化の促進を行っていないので、ポッティング樹脂が硬化するまでの時間が長くなり、流量センサの製造工程におけるスループットが低下してしまう問題点が顕在化する。
 これに対し、本実施の形態1における樹脂封止工程では、上述したように、加熱された上金型UMと下金型BMを使用しているため、加熱された上金型UMと下金型BMから樹脂MRへの短時間での熱伝導が可能となり、樹脂MRの加熱・硬化時間を短縮することができる。この結果、本実施の形態1によれば、流量センサFS1の製造工程におけるスループットを向上させることができる。
 本実施の形態1では、例えば、図11に示すように、半導体チップCHP1を搭載したリードフレームLFを、上金型UMと下金型BMで挟み込む際、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に枠体FBと弾性体フィルムLAFを介在させる例について説明した。ただし、本実施の形態1における技術的思想は、これに限らず、例えば、図13に示すように、弾性体フィルムLAFを使用せずに、枠体FBだけを介在させて、半導体チップCHP1を搭載したリードフレームLFに上金型UMを押し付けるように構成してもよい。
 この場合であっても、枠体FBの弾性係数を半導体チップCHP1の弾性係数よりも小さくなるように構成することにより、部品の実装バラツキが存在する場合であっても、半導体チップCHP1よりも弾性係数の小さい枠体FBの厚さ方向(Z方向)の変形によって、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、本実施の形態1によれば、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができる。
 <枠体の有用性>
 次に、本実施の形態1における流量センサFS1で採用している枠体FBの有用性についてさらに詳述する。
 (1)図14は、枠体FBを使用しないで樹脂封止する関連技術の一例を示す図である。図14に示すように、関連技術では、流量検出部FDUを樹脂封止しないように構成するため、上金型UMに突起形状をしたシール部SLが設けられている。そして、このシール部SLによって流量検出部FDUが囲まれることにより、流量検出部FDUを囲むように第1空間SP1(密閉空間)を形成することができる。すなわち、関連技術では、上金型UMに設けられたシール部SLによって流量検出部FDUを囲むことにより、流量検出部FDUを樹脂封止しないようになっている。
 このように構成されている関連技術では、上金型UMに突起形状をしたシール部SLを設けるという特別な工夫をする必要がある。つまり、流量検出部FDUを露出した流量センサを製造するために、流量センサの製造に特化した特別な上金型UMを用意する必要がある。このことから、シール部SLを有する特別な上金型UMを用意する必要があることになる。
 これに対し、本実施の形態1では、例えば、図13に示すように、半導体チップCHP1上に枠体FBを配置し、この枠体FBに密着するように上金型UMを押し付けている。このとき、本実施の形態1では、半導体チップCHP1上に枠体FBを配置した場合、枠体FBの高さが流量検出部FDUの高さよりも高くする構成が取られている。つまり、枠体FBの高さを流量検出部FDUの高さよりも高くすることにより、流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)が必然的に確保される。したがって、本実施の形態1によれば、流量検出部FDUおよびその近傍領域を露出させつつ、パッド形成領域に代表される半導体チップCHP1の表面領域を封止することができる。
 すなわち、本実施の形態1では、枠体FBに設けられている開口部OP(FB)内に流量検出部FDUが内包されるように、枠体FBを半導体チップCHP1上に配置し、かつ、枠体FBの高さを流量検出部FDUの高さよりも高くなるようにしている。この結果、キャビティ内にある上金型UMの表面を平坦にした状態でも、必然的に、流量検出部FDUを囲む第1空間SP1(密閉空間)を確保することができる。つまり、本実施の形態1によれば、例えば、関連技術のように上金型UMにシール部SLを設けるという特別な工夫をすることなく、流量検出部FDUを囲む第1空間SP1(密閉空間)を確保できるのである。
 このことは、本実施の形態1によれば、特別な構造の上金型UMを使用する必要がなく、キャビティ内の全体を樹脂封止するための一般的な上金型UM(汎用品)を使用することができることを意味し、汎用品である一般的な上金型UMを使用して流量検出部FDUを露出した流量センサFS1を製造することができることを意味している。したがって、本実施の形態1によれば、特別な工夫を施した流量センサ専用の上金型UMを用意する必要がなく、広く一般的に使用される汎用構造の上金型UMで、流量検出部FDUを露出した流量センサを製造することができる。
 (2)次に、図14に示す関連技術においては、半導体チップCHP1に直接上金型UMに形成されているシール部SLが接触している。したがって、上金型UMに形成されているシール部SLから半導体チップCHP1にクランプ力が伝達される。
 ここで、例えば、個々の半導体チップCHP1の厚さには寸法バラツキが存在するため、半導体チップCHP1の厚さが平均的な厚さよりも厚い場合、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMで挟み込む際、シール部SLから半導体チップCHP1に加わるクランプ力が大きくなり、半導体チップCHP1が破断するおそれがある。
 これに対し、本実施の形態1では、上金型UMを直接半導体チップCHP1に押し当てているのではなく、上金型UMと半導体チップCHP1の間に枠体FBを介在させている。そして、本実施の形態1では、枠体FBの弾性係数が半導体チップCHP1よりも小さくなる材質を使用している。このことから、枠体FBは、半導体チップCHP1よりも柔らかいため、上金型UMを枠体FBに押し付ける場合、半導体チップCHP1の厚さバラツキを吸収するように枠体FBの厚さ方向の寸法が変化する。これにより、半導体チップCHP1の厚さが平均的な厚さよりも厚くても、必要以上に半導体チップCHP1へクランプ力が加わることを防止することができる。この結果、本実施の形態1によれば、半導体チップCHP1の破断を防止することができるのである。
 (3)さらに、図14に示す関連技術においては、上金型UMに形成されているシール部SLと半導体チップCHP1との接触面積が小さい。このため、上金型UMから押し付けられるクランプ力は、シール部SLと半導体チップCHP1の接触領域に集中する。したがって、シール部SLと半導体チップCHP1との接触部分に加えられる圧力は大きくなり、これによって、半導体チップCHP1が破損しやすくなる。特に、図14に示す関連技術においては、シール部SLと半導体チップCHP1の接触領域がダイヤフラムDFと平面的に重なる領域に形成されている。このことは、半導体チップCHP1の厚さが薄い領域に、シール部SLと半導体チップCHP1の接触領域が存在することを意味する。半導体チップCHP1の厚さが薄い領域は割れやすいことから、図14に示す関連技術においては、シール部SLと半導体チップCHP1の接触面積が小さいことに起因した圧力集中と、接触領域が半導体チップCHP1の厚さの薄い領域に平面視において重なるように配置されていることに起因して、半導体チップCHP1が破損しやすくなる。
 これに対し、本実施の形態1では、例えば、図13に示すように、枠体FBと半導体チップCHP1の接触面積は、図14に示す関連技術よりも大きくなっている。このため、上金型UMから枠体FBに加えられるクランプ力は、枠体FBと半導体チップCHP1との接触面積が大きいことから分散される。したがって、本実施の形態1によれば、枠体FBを介して上金型UMから半導体チップCHP1に加えられるクランプ力の局所集中を緩和することができ、これによって、半導体チップCHP1の破損を抑制することができる。さらには、例えば、図13に示すように、枠体FBと半導体チップCHP1の接触領域は、平面視において、ダイヤフラムDFと重ならないようになっている。つまり、本実施の形態1においては、枠体FBと半導体チップCHP1の接触領域が、ダイヤフラムDFが形成された半導体チップCHP1の厚さの薄い領域に形成されているのではなく、その他の半導体チップCHP1の厚さの厚い領域に形成されている。以上のことから、本実施の形態1によれば、枠体FBと半導体チップCHP1との接触面積の増大に起因してクランプ力の分散される点と、接触領域が半導体チップCHP1の厚さの厚い領域に形成されている点の相乗効果により、半導体チップCHP1の破損を効果的に抑制することができる。
 (4)また、上述したように、図14に示す関連技術においては、シール部SLと半導体チップCHP1の接触領域が小さいことから、注入された樹脂が流量検出部FDUを囲む第1空間SP1(密閉空間)に漏れ込むおそれが高まる。
 これに対し、本実施の形態1では、枠体FBと半導体チップCHP1の接触面積が大きくなっていることから、流量検出部FDUを囲む第1空間SP1(密閉空間)に漏れ込むおそれを低減することができる。
 以上のように、本実施の形態1によれば、流量検出部FDUの高さよりも高さが高く、かつ、半導体チップCHP1よりも弾性係数が小さい枠体FBを使用することにより、上述した(1)~(4)に示す有用性を得ることができる。
 <変形例1>
 続いて、前記実施の形態1における流量センサFS1の変形例1について説明する。前記実施の形態1では、例えば、図4に示すように、枠体FBが壁部WPを有している例について説明したが、本変形例1では、枠体FBに壁部WPが設けられていない例について説明する。
 図15(a)は、本変形例1における流量センサFS1を示す平面図である。また、図15(b)は、図15(a)のA-A線で切断した断面図であり、図15(c)は、図15(a)のB-B線で切断した断面図である。
 図15(b)および図15(c)に示すように、半導体チップCHP1上に配置されている枠体FBには、壁部が形成されていない。このように壁部が形成されていない枠体FBを使用する場合であっても、枠体FBの高さが流量検出部FDUの高さよりも高く、かつ、枠体FBの弾性係数が半導体チップCHP1よりも小さければ、前記実施の形態1と同様の効果を得ることができる。
 ただし、本変形例1における枠体FBにおいては、壁部による位置決め精度の向上を図りにくくなることから、半導体チップCHP1上に枠体FBを確実に固定する観点から、本変形例1における枠体FBは、半導体チップCHP1と接着されていることが望ましい。このとき、枠体FBと半導体チップCHP1との接着は、例えば、接着材を使用することもできるし、接着作用を有する材料から枠体FBを構成するようにしてもよい。
 また、例えば、枠体FBの外形寸法が半導体チップCHP1の外形寸法よりも大きい場合には、樹脂封止工程(モールド工程)における樹脂圧力によって、枠体FBの位置がずれる場合がある。そこで、例えば、枠体FBの外形寸法は、半導体チップCHP1の外形寸法よりも小さいことが望ましい。言い換えれば、平面視において、枠体FBが半導体チップCHP1に内包されるように形成されていることが望ましいということができる。更に言い換えれば、枠体FBは、半導体チップCHP1の上面の投影面よりも外形寸法が小さいということもできる。このように構成することにより、樹脂封止工程における樹脂圧力に起因する枠体FBの位置ずれを抑制することができる。
 図16は、本変形例1における流量センサの一断面を示す図である。図16に示すように、枠体FBが半導体チップCHP1に内包されていることがわかる。具体的には、図16において、半導体チップCHP1の幅をL1、枠体の幅をL2とした場合、L1>L2の関係があらゆる断面において成立している場合に、枠体FBが半導体チップCHP1に内包されているということができる。
 <変形例2>
 次に、前記実施の形態1における流量センサFS1の変形例2について説明する。前記実施の形態1では、例えば、図5(b)や図5(c)に示すように、チップ搭載部TAB1上に接着材ADH1を介して搭載した半導体チップCHP1上に枠体FBを配置する例について説明した。本変形例2では、半導体チップCHP1とリードフレームLFの間に板状構造体PLTを挿入する例について説明する。
 図17は、本変形例2において、樹脂封止前の流量センサの構造を示す平面図である。図18は、図17のA-A線で切断した断面図であり、図19は、図17のB-B線で切断した断面図である。
 図17に示すように、本変形例2における流量センサFS1は、半導体チップCHP1の下層および半導体チップCHP2の下層にわたって板状構造体PLTが形成されていることがわかる。この板状構造体PLTは、例えば、矩形形状をしており、平面視において、半導体チップCHP1および半導体チップCHP2を内包するような外形寸法を有していることがわかる。
 具体的に、図18や図19に示すように、チップ搭載部TAB1およびチップ搭載部TAB2を含むリードフレームLF上に板状構造体PLTが配置されている。この板状構造体PLTは、例えば、接着材ADH3を用いてリードフレームLFに接着されているが、ペースト材料を使用して接合することもできる。そして、この板状構造体PLT上には、接着材ADH1を介して半導体チップCHP1が搭載されているとともに、接着材ADH2を介して半導体チップCHP2が搭載されている。このとき、板状構造体PLTが金属材料から形成されている場合には、半導体チップCHP1とワイヤW1で接続することができるとともに、半導体チップCHP2とワイヤW2で接続することもできる。なお、リードフレームLF上には、上述した板状構造体PLTの他にコンデンサやサーミスタなどの部品を搭載することもできる。
 上述した板状構造体PLTは、主に、流量センサFS1の剛性向上や外部からの衝撃に対する緩衝材として機能する。さらに、板状構造体PLTが導電材料から構成される場合には、半導体チップCHP1(パッドPD1)や半導体チップCHP2(パッドPD2)と電気的に接続し、グランド電位(基準電位)の供給に使用することもできるし、グランド電位の安定化を図ることもできる。
 板状構造体PLTは、例えば、PBT樹脂、ABS樹脂、PC樹脂、ナイロン樹脂、PS樹脂、PP樹脂、フッ素樹脂などの熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂、ウレタン樹脂などの熱硬化性樹脂から構成することができる。この場合、板状構造体PLTは、主に、外部の衝撃から半導体チップCHP1や半導体チップCHP2を保護する緩衝材として機能させることができる。
 一方、板状構造体PLTは、鉄合金、アルミニウム合金、あるいは、銅合金などの金属材料をプレス加工することにより形成することもできるし、ガラス材料から形成することもできる。特に、板状構造体PLTを金属材料から形成する場合には、流量センサFS1の剛性を高めることができる。さらには、板状構造体PLTを半導体チップCHP1や半導体チップCHP2と電気的に接続し、板状構造体PLTをグランド電位の供給やグランド電位の安定化に利用することもできる。
 このように構成されている変形例2における流量センサFS1においても、例えば、図17~図19に示すように、半導体チップCHP1上に枠体FBが配置されている。そして、枠体FBの内部には、開口部OP(FB)が形成されており、この開口部OP(FB)から半導体チップCHP1に形成されている流量検出部FDUが露出している。本変形例2においても、枠体FBの高さを流量検出部FDUの高さよりも高くし、かつ、枠体FBの弾性係数を半導体チップCHP1よりも小さくすることにより、前記実施の形態1と同様の効果を得ることができる。
 (実施の形態2)
 前記実施の形態1では、例えば、図5(b)に示すように、半導体チップCHP1と半導体チップCHP2を備える2チップ構造の流量センサFS1を例に挙げて説明したが、本発明の技術的思想は、これに限らず、例えば、流量検出部と制御部(制御回路)を一体的に形成した1つの半導体チップを備える1チップ構造の流量センサにも適用することができる。本実施の形態2では、本発明の技術的思想を1チップ構造の流量センサに適用する場合を例に挙げて説明する。
 <実施の形態2における流量センサの実装構成>
 図20は、本実施の形態2における流量センサFS2の実装構成を示す図であり、樹脂で封止する前の構成を示す図である。特に、図20(a)は、本実施の形態2における流量センサFS2の実装構成を示す平面図である。図20(b)は、図20(a)のA-A線で切断した断面図であり、図20(c)は、図20(a)のB-B線で切断した断面図である。また、図20(d)は半導体チップCHP1の裏面を示す平面図である。
 まず、図20(a)に示すように、本実施の形態2における流量センサFS2は、例えば、銅材からなるリードフレームLFを有している。このリードフレームLFは、外枠体を構成するダムバーDMで囲まれた内部にチップ搭載部TAB1を有している。そして、チップ搭載部TAB1上に半導体チップCHP1が搭載されている。
 半導体チップCHP1は、長方形形状をしており、ほぼ中央部に流量検出部FDUが形成されている。そして、流量検出部FDUと接続する配線WL1Aが半導体チップCHP1上に形成されており、この配線WL1Aは、半導体チップCHP1に形成された制御部CUと接続されている。この制御部CUには、MISFET(Metal Insulator Semiconductor Field Effect Transistor)などの半導体素子や配線からなる集積回路が形成されている。具体的には、図1に示すCPU1、入力回路2、出力回路3、あるいは、メモリ4などを構成する集積回路が形成されている。そして、制御部CUは、半導体チップCHP1の長辺に沿って形成された複数のパッドPD1やパッドPD2と配線WL1Bで接続されている。すなわち、流量検出部FDUと制御部CUとは配線WL1Aで接続され、制御部CUは、配線WL1BによってパッドPD1、パッドPD2と接続されていることになる。パッドPD1は、リードフレームLFに形成されているリードLD1と、例えば、金線からなるワイヤW1を介して接続されている。一方、パッドPD2は、リードフレームLFに形成されているリードLD2と、例えば、金線からなるワイヤW2を介して接続されている。なお、半導体チップCHP1の最外表面(素子形成面)には、接着する樹脂との応力緩衝機能、表面保護機能、あるいは、絶縁保護機能などを目的としてポリイミド膜が形成されていても良いものとする。
 リードLD1およびリードLD2は、気体の流れるY方向と直交するX方向に延在するように配置されており、外部回路との入出力を行なう機能を有している。一方、リードフレームLFのY方向に沿って、突出リードPLDが形成されている。この突出リードPLDは、チップ搭載部TAB1と接続されているが、半導体チップCHP1に形成されているパッドPD1、PD2とは接続されていない。つまり、突出リードPLDは、上述した入出力端子として機能するリードLD1やリードLD2とは異なる。
 ここで、本実施の形態2においては、長方形形状した半導体チップCHP1の長辺が気体の流れる方向(矢印方向、Y方向)に並行するように、チップ搭載部TAB1上に半導体チップCHP1が搭載されている。そして、半導体チップCHP1の長辺には、長辺方向に沿って複数のパッドPD1、PD2が配置されている。これらの複数のパッドPD1のそれぞれと、複数のリードLD1のそれぞれが、半導体チップCHP1の長辺を跨ぐように配置された複数のワイヤW1で接続されている。同様に、複数のパッドPD2のそれぞれと、複数のリードLD2のそれぞれが、半導体チップCHP1の長辺を跨ぐように配置された複数のワイヤW2で接続されている。このように長方形形状の半導体チップCHP1の長辺に沿って複数のパッドPD1、PD2を配置しているので、半導体チップCHP1の短辺方向に複数のパッドPD1、PD2を配置する場合に比べて、多くのパッドPD1、PD2を半導体チップCHP1に形成することができる。特に、本実施の形態2では、半導体チップCHP1に制御部CUだけでなく流量検出部FDUも一緒に形成されているので、多数のパッドPD1、PD2を長辺方向に並べることにより、半導体チップCHP1上の領域を有効活用することができる。
 さらに、本実施の形態2においては、半導体チップCHP1の一部上に枠体FBが形成されている。この枠体FBは、例えば、矩形形状をしており、内部に開口部OP(FB)が形成されている。この枠体FBは、開口部OP(FB)から半導体チップCHP1の主面上に形成された流量検出部FDUが露出するように配置されており、かつ、枠体FBの外側に半導体チップCHP1に形成されている複数のパッドPD1が露出するように配置されている。
 続いて、図20(b)に示すように、リードフレームLFにはチップ搭載部TAB1が形成されており、このチップ搭載部TAB1上に半導体チップCHP1が搭載されている。この半導体チップCHP1は、接着材ADH1によってチップ搭載部TAB1と接着している。半導体チップCHP1の裏面には、ダイヤフラムDF(薄板部)が形成されており、ダイヤフラムDFと相対する半導体チップCHP1の表面には、流量検出部FDUが形成されている。一方、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部には開口部OP1が形成されている。
 さらに、図20(b)に示すように、半導体チップCHP1の表面(上面)には、流量検出部FDUの他に、パッドPD1やパッドPD2が形成されており、このパッドPD1は、リードフレームLFに形成されたリードLD1とワイヤW1を介して接続されている。同様に、パッドPD2は、リードフレームLFに形成されたリードLD2とワイヤW2を介して接続されている。そして、半導体チップCHP1上に枠体FBが配置されている。この枠体FBには、開口部OP(FB)が形成されており、この開口部OP(FB)から流量検出部FDUが露出している。
 また、図20(c)に示すように、リードフレームLFにはチップ搭載部TAB1と突出リードPLDが形成されており、チップ搭載部TAB1と突出リードPLDは一体的に形成されている。このチップ搭載部TAB1上には、接着材ADH1によって半導体チップCHP1が接着している。半導体チップCHP1の裏面には、ダイヤフラムDF(薄板部)が形成されており、ダイヤフラムDFと相対する半導体チップCHP1の表面には、流量検出部FDUが形成されている。一方、ダイヤフラムDFの下方に存在するチップ搭載部TAB1の底部には開口部OP1が形成されている。また、半導体チップCHP1の表面には、流量検出部FDUと並ぶように制御部CUが形成されている。同様に、半導体チップCHP1上に枠体FBが配置されている。この枠体FBには、開口部OP(FB)が形成されており、この開口部OP(FB)から流量検出部FDUが露出している。
 半導体チップCHP1とチップ搭載部TAB1とを接着している接着材ADH1は、例えば、エポキシ樹脂やポリウレタン樹脂などの熱硬化性樹脂、ポリイミド樹脂やアクリル樹脂などの熱可塑性樹脂を使用することができる。
 例えば、半導体チップCHP1とチップ搭載部TAB1の接着は、図20(d)に示すように接着材ADH1を塗布することにより行うことができる。図20(d)は、半導体チップCHP1の裏面を示す平面図である。図20(d)に示すように、半導体チップCHP1の裏面には、ダイヤフラムDFが形成されており、このダイヤフラムDFを囲むように接着材ADH1が塗布されている。なお、図20(c)では、ダイヤフラムDFを四角形形状に囲むように接着材ADH1を塗布する例を示しているが、これに限らず、例えば、ダイヤフラムDFを楕円形状などの任意の形状で囲むように接着材ADH1を塗布してもよい。
 本実施の形態2における流量センサFS2において、樹脂で封止する前の流量センサFS2の実装構成は上記のように構成されており、以下に、樹脂で封止した後の流量センサFS2の実装構成について説明する。
 図21は、本実施の形態2における流量センサFS2の実装構成を示す図であり、樹脂で封止した後の構成を示す図である。特に、図21(a)は、本実施の形態2における流量センサFS2の実装構成を示す平面図である。図21(b)は、図21(a)のA-A線で切断した断面図であり、図21(c)は、図21(a)のB-B線で切断した断面図である。
 本実施の形態2における流量センサFS2でも、図21(a)に示すように、半導体チップCHP1に形成されている流量検出部FDUを枠体FBに形成されている開口部OP(FB)から露出した状態で、半導体チップCHP1の一部が樹脂MRで覆われた構造をしている。つまり、本実施の形態2では、流量検出部FDUが形成されている領域および枠体FBが搭載されている領域を除く半導体チップCHP1の領域を一括して樹脂MRで封止している。
 この樹脂MRによる封止は、流量検出部FDUが形成されている半導体チップCHP1を金型で固定した状態で行なうことができるので、半導体チップCHP1の位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止することができるのである。このことは、本実施の形態2における流量センサFS2によれば、各流量センサFS2の位置ずれを抑制しながら、半導体チップCHP1の一部を樹脂MRで封止できることを意味し、半導体チップCHP1に形成されている流量検出部FDUの位置のバラツキを抑制できることを意味する。
 この結果、本実施の形態2によれば、気体の流量を検出する流量検出部FDUの位置を各流量センサFS2で一致させることができるため、各流量センサFS2において気体流量を検出する性能バラツキを抑制できる顕著な効果を得ることができる。
 続いて、本実施の形態2における流量センサFS2でも、図21(a)に示すように、露出している流量検出部FDUを囲んだ両側における枠体FBの高さ、あるいは、樹脂MR(封止体)の高さが、流量検出部FDUを含む半導体チップCHP1の表面の高さよりも高くなっている。つまり、露出している流量検出部FDUは、周囲を枠体FBで囲まれ、かつ、流量検出部FDUを囲む枠体FBの高さが流量検出部FDUの高さよりも高くなっている。このように構成されている本実施の形態2によれば、部品の取り付け組み立て時などに部品が露出している流量検出部FDUにぶつかることを防止できるので、流量検出部FDUを形成した半導体チップCHP1の破損を防止できる。すなわち、露出している流量検出部FDUの高さよりも流量検出部FDUを囲んでいる枠体FBの高さが高くなっている。このため、部品が接触する際、まず、高さの高い枠体FBに接触するので、高さの低い流量検出部FDUを含む半導体チップCHP1の露出面(XY面)が部品に接触して、半導体チップCHP1が破損することを防止できる。
 特に、本実施の形態2では、半導体チップCHP1の一部上に枠体FBが配置されており、この枠体FBの弾性係数が半導体チップCHP1の弾性係数よりも小さくなっている。言い換えれば、枠体FBは、半導体チップCHP1よりも硬さの柔らかい材料から構成されている。したがって、部品が枠体FBに接触した場合、比較的硬さの柔らかな枠体FBの変形で衝撃を吸収することができるため、枠体FBの下に配置されている半導体チップCHP1に衝撃が伝達されることを抑制することができ、これによって、半導体チップCHP1の破損を効果的に防止することができる。
 なお、本実施の形態2でも、樹脂MRがダイヤフラムDFの内部空間へ侵入することを防止するために、例えば、半導体チップCHP1の裏面に形成されているダイヤフラムDFを囲むように接着材ADH1を塗布する構成を取ることを前提としている。そして、図21(b)および図21(c)に示すように、半導体チップCHP1の裏面に形成されたダイヤフラムDFの下方にあるチップ搭載部TAB1の底部に開口部OP1を形成し、さらに、チップ搭載部TAB1の裏面を覆う樹脂MRに開口部OP2を設けている。
 これにより、本実施の形態2による流量センサFS2によれば、ダイヤフラムDFの内部空間は、チップ搭載部TAB1の底部に形成された開口部OP1および樹脂MRに形成された開口部OP2を介して流量センサFS2の外部空間と連通することになる。この結果、ダイヤフラムDFの内部空間の圧力と、流量センサFS2の外部空間の圧力とを等しくすることができ、ダイヤフラムDF上に応力が加わることを抑制できる。
 以上のようにして、本実施の形態2における流量センサFS2が実装構成されているが、実際の流量センサFS2では、樹脂MRで封止した後、リードフレームLFの外枠体を構成するダムバーDMが除去される。図22は、ダムバーDMを除去した後の流量センサFS2の実装構成を示す平面図である。図22に示すように、ダムバーDMを切断することにより、複数の電気信号を複数のリードLD1およびリードLD2から独立して取り出すことができることがわかる。
 <本実施の形態2における流量センサの製造方法>
 本実施の形態2における流量センサFS2は上記のように構成されており、以下に、その製造方法について、図23~図26を参照しながら説明する。図23~図26は、図21(a)のB-B線で切断した断面における製造工程を示している。
 まず、図23に示すように、例えば、銅材からなるリードフレームLFを用意する。このリードフレームLFには、チップ搭載部TAB1、突出リードPLDが一体的に形成されており、チップ搭載部TAB1の底部に開口部OP1が形成されている。
 続いて、図24に示すように、チップ搭載部TAB1上に半導体チップCHP1を搭載する。具体的には、リードフレームLFに形成されたチップ搭載部TAB1上に半導体チップCHP1を接着材ADH1で接続する。このとき、半導体チップCHP1に形成されているダイヤフラムDFがチップ搭載部TAB1の底部に形成されている開口部OP1と連通するように、半導体チップCHP1がチップ搭載部TAB1上に搭載される。なお、半導体チップCHP1には、通常の半導体製造プロセスによって流量検出部FDU、制御部CU、配線(図示せず)およびパッド(図示せず)が形成される。そして、例えば、異方性エッチングにより、半導体チップCHP1の表面に形成された流量検出部FDUと相対する裏面の位置にダイヤフラムDFが形成されている。
 次に、半導体チップCHP1に形成されているパッド(図示されず)と、リードフレームLFに形成されているリード(図示されず)とをワイヤ(図示されず)で接続する(ワイヤボンディング)。ワイヤ(図示されず)は、例えば、金線から形成される。
 その後、半導体チップCHP1上に枠体FBを搭載する。具体的に、枠体FBは、内部に形成された開口部OP(FB)内に、半導体チップCHP1に形成されている流量検出部FDUが内包され、かつ、枠体FBの外側に半導体チップCHP1に形成されている制御部CUが配置されるように搭載される。これにより、流量検出部FDUおよび制御部CUを露出させながら、枠体FBを半導体チップCHP1上に搭載することができる。
 次に、図25に示すように、枠体FBを搭載した半導体チップCHP1を搭載したリードフレームLFに対し、弾性体フィルムLAFを介在させながら上金型UMと下金型BMで第2空間(キャビティ)を形成して挟み込む。その後、加熱下において、この第2空間に樹脂MRを流し込むことにより、制御部CUが形成されている近傍領域における半導体チップCHP1の表面、ワイヤ(図示されず)、突出リードPLDの一部を樹脂MRで封止する。
 このような本実施の形態2における流量センサFS2の製造方法でも、例えば、図25に示すように、半導体チップCHP1に形成されている流量検出部FDUの高さよりも高い枠体FBに弾性体フィルムLAFを介して上金型UMを押し当てながら、半導体チップCHP1を搭載したリードフレームLFを下金型BMと上金型UMで挟み込んでいる。
 これにより、本実施の形態2によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を囲む第1空間SP1(密閉空間)を確保しながら、例えば制御部形成領域に代表される半導体チップCHP1の表面領域を封止することができる。すなわち、本実施の形態2によれば、半導体チップCHP1に形成されている流量検出部FDUおよびその近傍領域を露出させつつ、制御部形成領域に代表される半導体チップCHP1の表面領域を封止することができる。
 さらに、本実施の形態2における流量センサFS2の製造方法においても、半導体チップCHP1を搭載したリードフレームLFを、上金型UMと下金型BMで挟み込む際、半導体チップCHP1を搭載したリードフレームLFと上金型UMとの間に枠体FBと弾性体フィルムLAFを介在させている。
 これにより、部品の実装バラツキが存在する場合であっても、半導体チップCHP1よりも弾性係数の小さい枠体FBの厚さ方向(Z方向)の変形によって、半導体チップCHP1に加わるクランプ力を緩和することができる。この結果、本実施の形態2によれば、半導体チップCHP1の割れ、欠け、あるいは、ひび割れなどに代表される破損を防止することができる。
 その後、図26に示すように、樹脂MRが硬化した段階で、半導体チップCHP1を搭載したリードフレームLFを上金型UMと下金型BMから取り外す。これにより、本実施の形態2における流量センサFS2を製造することができる。このようにして製造された本実施の形態2における流量センサFS2においても、前記実施の形態1と同様の効果を得ることができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 なお、前記実施の形態で説明した流量センサは、流量検出部FDUを形成した半導体チップCHP1の表面(上面)の一部にポリイミド膜、窒化シリコン膜、ポリシリコン膜、TEOS(Si(OC2H5)4)を原料とした酸化シリコン膜などの膜を形成してもよい。これにより、樹脂と密着する半導体チップCHP1の表面の一部において、接着強度の向上を図ることができる。
 ポリイミド膜は、例えば、半導体チップCHP1への塗布によって形成し、必要に応じてフォトリソグラフィ技術およびエッチング技術を施すことによりパターニングすることができる。窒化シリコン膜、ポリシリコン膜、酸化シリコン膜は、プラズマCVD法、減圧CVD法、常圧CVD法などに代表される化学気相成長法、化学気相蒸着法、化学蒸着法、物理気相成長法、あるいは、物理蒸着法によって形成することができる。
 半導体チップCHP1上に形成されたこれらの膜は、半導体チップCHP1を構成するシリコン(Si)上に形成される酸化シリコン膜の膜厚増加を防止して、樹脂MRと半導体チップCHP1の接着性を向上させることができる。
 これらの膜は、樹脂MRで覆われる半導体チップCHP1の少なくとも一部に成膜されていればよい。
 また、ポリイミド膜、窒化シリコン膜、ポリシリコン膜、TEOSを原料とした酸化シリコン膜などの膜厚は、約1μm~約120μmを想定しているが、この膜厚に限定されるものではなく、半導体チップCHP1の表面領域のうち、樹脂MRで覆われる領域に、これらの膜が形成されていればよい。
 上述した実施の形態で説明した流量センサは、気体の流量を測定するデバイスであるが、具体的な気体の種類は限定されるものではなく、空気、LPガス、炭酸ガス(CO2ガス)、フロンガスなどの任意の気体の流量を測定するデバイスに幅広く適用することができる。
 また、上述した前記実施の形態では、気体の流量を測定する流量センサについて説明したが、本発明の技術的思想はこれに限定されるものではなく、湿度センサなどの半導体素子の一部を露出させた状態で樹脂封止する半導体装置にも幅広く適用することができる。
 本発明は、例えば、流量センサなどの半導体装置を製造する製造業に幅広く利用することができる。
 1 CPU
 2 入力回路
 3 出力回路
 4 メモリ
 ADH1 接着材
 ADH2 接着材
 ADH3 接着材
 BM 下金型
 BR1 下流測温抵抗体
 BR2 下流測温抵抗体
 CHP1 半導体チップ
 CHP2 半導体チップ
 CU 制御部
 DF ダイヤフラム
 DM ダムバー
 FB 枠体
 FDU 流量検出部
 FP 枠部
 FS1 流量センサ
 FS2 流量センサ
 HCB ヒータ制御ブリッジ
 HR 発熱抵抗体
 IP1 入れ駒
 LAF 弾性体フィルム
 LD1 リード
 LD2 リード
 LF リードフレーム
 MR 樹脂
 OP1 開口部
 OP2 開口部
 OP(FB) 開口部
 PD1 パッド
 PD2 パッド
 PD3 パッド
 PLD 突出リード
 PLT 板状構造体
 PS 電源
 Q 気体流量
 R1 抵抗体
 R2 抵抗体
 R3 抵抗体
 R4 抵抗体
 SL シール部
 SP1 第1空間
 TAB1 チップ搭載部
 TAB2 チップ搭載部
 Tr トランジスタ
 TSB 温度センサブリッジ
 UM 上金型
 UR1 上流測温抵抗体
 UR2 上流測温抵抗体
 Vref1 参照電圧
 Vref2 参照電圧
 W1 ワイヤ
 W2 ワイヤ
 W3 ワイヤ
 WL1 配線
 WL1A 配線
 WL1B 配線
 WP 壁部

Claims (17)

  1.  (a)第1チップ搭載部と、
     (b)前記第1チップ搭載部上に配置された第1半導体チップと、を備え、
     前記第1半導体チップは、
     (b1)第1半導体基板の主面上に形成された流量検出部と、
     (b2)前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有する流量センサであって、
     前記第1半導体チップ上に搭載され、かつ、少なくとも前記流量検出部を露出する開口部を有する枠体であって、前記第1半導体チップよりも弾性係数が小さい材質からなる前記枠体を含み、
     前記第1半導体チップに形成されている前記流量検出部を前記枠体の前記開口部から露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されている流量センサ。
  2.  請求項1に記載の流量センサであって、
     前記第1半導体チップは、さらに、前記流量検出部を制御する制御回路部を有している流量センサ。
  3.  請求項1に記載の流量センサであって、
     さらに、
    (c)第2チップ搭載部と、
    (d)前記第2チップ搭載部上に配置された第2半導体チップと、を備え、
     前記第2半導体チップは、第2半導体基板の主面上に形成された制御回路部であって、前記流量検出部を制御する前記制御回路部を有し、
     前記第2半導体チップは、前記封止体で封止されている流量センサ。
  4.  請求項1に記載の流量センサであって、
     前記開口部を有する前記枠体と前記第1半導体チップとは、接着されている流量センサ。
  5.  請求項1に記載の流量センサであって、
     前記開口部を有する前記枠体と前記第1半導体チップとは、接着されていない流量センサ。
  6.  請求項1に記載の流量センサであって、
     前記開口部を有する前記枠体は、前記第1半導体チップの少なくとも1つの側面に並行な壁部を有する流量センサ。
  7.  請求項1に記載の流量センサであって、
     前記開口部を有する前記枠体は、平面視において、前記第1半導体チップの前記主面に内包される流量センサ。
  8.  請求項1に記載の流量センサであって、
     前記第1半導体チップの前記主面の少なくとも一部には、ポリイミド膜、窒化シリコン膜、ポリシリコン膜、あるいは、酸化シリコン膜が形成されている流量センサ。
  9.  請求項1に記載の流量センサであって、
     露出されている前記流量検出部を含む任意断面において、前記枠体または前記封止体の高さが、前記流量検出部を含む前記第1半導体チップの前記主面の高さよりも高くなっている流量センサ。
  10.  請求項1に記載の流量センサであって、
     平面視において、前記枠体を構成する枠部と前記ダイヤフラムとは、重ならないように配置されている流量センサ。
  11.  請求項1に記載の流量センサであって、
     前記第1チップ搭載部と前記第1半導体チップの間に板状構造体が挿入されている流量センサ。
  12.  (a)第1チップ搭載部と、
     (b)前記第1チップ搭載部上に配置された第1半導体チップと、を備え、
     前記第1半導体チップは、
     (b1)第1半導体基板の主面上に形成された流量検出部と、
     (b2)前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有する流量センサであって、
     前記第1半導体チップ上に搭載され、かつ、少なくとも前記流量検出部を露出する開口部を有する枠体であって、前記第1半導体チップ上に搭載した場合、前記流量検出部の高さよりも高さが高くなる前記枠体を含み、
     前記第1半導体チップに形成されている前記流量検出部を前記枠体の前記開口部から露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されている流量センサ。
  13.  第1チップ搭載部と、
     前記第1チップ搭載部上に配置された第1半導体チップと、を備え、
     前記第1半導体チップは、
     第1半導体基板の主面上に形成された流量検出部と、
     前記第1半導体基板の前記主面とは反対側の裏面のうち、前記流量検出部と相対する領域に形成されたダイヤフラムとを有し、
     前記第1半導体チップ上に搭載され、かつ、少なくとも前記流量検出部を露出する開口部を有する枠体であって、前記第1半導体チップよりも弾性係数が小さい材質からなり、かつ、前記第1半導体チップ上に搭載した際に前記流量検出部よりも高さが高くなる前記枠体を含み、
     前記第1半導体チップに形成されている前記流量検出部を前記枠体の前記開口部から露出した状態で、前記第1半導体チップの一部が、樹脂を含む封止体で封止されている流量センサの製造方法であって、
     (a)前記第1チップ搭載部を有する基材を用意する工程と、
     (b)前記第1半導体チップを用意する工程と、
     (c)前記第1チップ搭載部上に前記第1半導体チップを搭載する工程と、
     (d)前記(c)工程後、前記枠体に形成されている前記開口部に前記流量検出部が内包されるように、前記第1半導体チップ上に前記枠体を配置する工程と、
     (e)前記(d)工程後、前記第1半導体チップに形成されている前記流量検出部を露出させつつ、前記第1半導体チップの一部を前記封止体で封止する工程と、を備え、
     前記(e)工程は、
     (e1)上金型と下金型とを用意する工程と、
     (e2)前記(e1)工程後、前記上金型の底面を前記枠体に密着させることにより、前記流量検出部を囲む第1空間を形成しながら、前記上金型と前記下金型とで、前記第1半導体チップを搭載した前記基材を、第2空間を介して挟み込む工程と、
     (e3)前記(e2)工程後、前記第2空間に前記樹脂を流し込む工程と、を備える流量センサの製造方法。
  14.  請求項13に記載の流量センサの製造方法であって、
     前記第1半導体チップは、さらに、前記流量検出部を制御する制御回路部を有している流量センサの製造方法。
  15.  請求項13に記載の流量センサの製造方法であって、さらに、
     (f)前記(c)工程前に、前記流量検出部を制御する制御回路部を有する第2半導体チップを用意する工程を備え、
     前記(a)工程で用意される前記基材は、第2チップ搭載部を有し、
     前記(c)工程は、前記第2チップ搭載部上に前記第2半導体チップを搭載し、
     前記(e)工程は、前記第2半導体チップを前記封止体で封止し、
     前記(e2)工程は、前記上金型の底面を前記枠体に密着させることにより、前記流量検出部を囲む第1空間を形成しながら、前記上金型と前記下金型とで、前記第1半導体チップおよび前記第2半導体チップを搭載した前記基材を、前記第2空間を介して挟み込む流量センサの製造方法。
  16.  請求項13に記載の流量センサの製造方法であって、
     前記枠体は、前記第1半導体チップの少なくとも1つの側面に並行な壁部を有し、
     前記(d)工程は、前記壁部を前記第1半導体チップの前記側面に密着させながら前記第1半導体チップ上に前記枠体を配置する流量センサの製造方法。
  17.  請求項13に記載の流量センサの製造方法であって、
     前記(e2)工程は、前記上金型を、弾性体フィルムを介して前記枠体に密着させる流量センサの製造方法。
PCT/JP2012/081340 2012-03-19 2012-12-04 流量センサおよびその製造方法 WO2013140674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280065517.8A CN104024807B (zh) 2012-03-19 2012-12-04 流量传感器及其制造方法
DE112012006049.0T DE112012006049T5 (de) 2012-03-19 2012-12-04 Strömungssensor mit Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-062577 2012-03-19
JP2012062577A JP5763575B2 (ja) 2012-03-19 2012-03-19 流量センサおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2013140674A1 true WO2013140674A1 (ja) 2013-09-26

Family

ID=49222161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081340 WO2013140674A1 (ja) 2012-03-19 2012-12-04 流量センサおよびその製造方法

Country Status (4)

Country Link
JP (1) JP5763575B2 (ja)
CN (2) CN106092233B (ja)
DE (1) DE112012006049T5 (ja)
WO (1) WO2013140674A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018903B2 (ja) 2012-12-17 2016-11-02 日立オートモティブシステムズ株式会社 物理量センサ
JP5916637B2 (ja) 2013-01-11 2016-05-11 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法
JP6507804B2 (ja) * 2015-04-03 2019-05-08 株式会社デンソー 空気流量測定装置
US10444175B2 (en) 2015-04-03 2019-10-15 Denso Corporation Measurement device
JP6553587B2 (ja) * 2016-12-20 2019-07-31 Nissha株式会社 ガスセンサモジュール及びその製造方法
JP6905962B2 (ja) * 2018-07-12 2021-07-21 日立Astemo株式会社 流量センサ
WO2022208931A1 (ja) * 2021-03-29 2022-10-06 日立Astemo株式会社 流量測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469958A (ja) * 1990-07-10 1992-03-05 Mitsubishi Electric Corp 半導体装置
JP2003161721A (ja) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd 半導体イオンセンサとその製造方法
JP2009058230A (ja) * 2007-08-29 2009-03-19 Denso Corp センサ装置の製造方法及びセンサ装置
JP2011122984A (ja) * 2009-12-11 2011-06-23 Hitachi Automotive Systems Ltd 流量センサとその製造方法、及び流量センサモジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040577C (zh) * 1990-08-01 1998-11-04 涂相征 一种集成硅膜热流量传感器及其制造方法
EP1365216B1 (en) * 2002-05-10 2018-01-17 Azbil Corporation Flow sensor and method of manufacturing the same
JP4609019B2 (ja) * 2004-09-24 2011-01-12 株式会社デンソー 熱式流量センサ及びその製造方法
JP4966526B2 (ja) * 2005-09-07 2012-07-04 日立オートモティブシステムズ株式会社 流量センサ
JP5168184B2 (ja) * 2009-02-23 2013-03-21 株式会社デンソー センサ装置およびその製造方法
JP5315304B2 (ja) * 2010-07-30 2013-10-16 日立オートモティブシステムズ株式会社 熱式流量計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469958A (ja) * 1990-07-10 1992-03-05 Mitsubishi Electric Corp 半導体装置
JP2003161721A (ja) * 2001-11-26 2003-06-06 Matsushita Electric Works Ltd 半導体イオンセンサとその製造方法
JP2009058230A (ja) * 2007-08-29 2009-03-19 Denso Corp センサ装置の製造方法及びセンサ装置
JP2011122984A (ja) * 2009-12-11 2011-06-23 Hitachi Automotive Systems Ltd 流量センサとその製造方法、及び流量センサモジュール

Also Published As

Publication number Publication date
CN106092233A (zh) 2016-11-09
CN104024807A (zh) 2014-09-03
JP5763575B2 (ja) 2015-08-12
CN104024807B (zh) 2016-07-06
JP2013195231A (ja) 2013-09-30
CN106092233B (zh) 2019-01-22
DE112012006049T5 (de) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6220914B2 (ja) センサモジュール
JP5763575B2 (ja) 流量センサおよびその製造方法
JP5965706B2 (ja) 流量センサの製造方法
JP5916637B2 (ja) 流量センサおよびその製造方法
CN106813736B (zh) 流量传感器
JP2010096614A (ja) センサ装置
JP2014048072A (ja) 圧力センサモジュール
JP5456815B2 (ja) 流量センサおよびその製造方法
JP5220955B2 (ja) 流量センサ
JP6045644B2 (ja) 流量センサおよびその製造方法
JP5820342B2 (ja) 流量センサおよびその製造方法
JP6012833B2 (ja) 半導体装置およびその製造方法並びに流量センサおよび湿度センサ
JP6129225B2 (ja) 流量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120060490

Country of ref document: DE

Ref document number: 112012006049

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871715

Country of ref document: EP

Kind code of ref document: A1