WO2013136844A1 - フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法 - Google Patents

フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法 Download PDF

Info

Publication number
WO2013136844A1
WO2013136844A1 PCT/JP2013/051202 JP2013051202W WO2013136844A1 WO 2013136844 A1 WO2013136844 A1 WO 2013136844A1 JP 2013051202 W JP2013051202 W JP 2013051202W WO 2013136844 A1 WO2013136844 A1 WO 2013136844A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
roll
mold
concavo
Prior art date
Application number
PCT/JP2013/051202
Other languages
English (en)
French (fr)
Inventor
鳥山 重隆
涼 西村
直人 小笹
吉弘 熊谷
麻登香 福島
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201380014677.4A priority Critical patent/CN104245608B/zh
Priority to KR1020147019631A priority patent/KR101652781B1/ko
Priority to IN7538DEN2014 priority patent/IN2014DN07538A/en
Priority to CA2865604A priority patent/CA2865604C/en
Priority to EP13760290.0A priority patent/EP2826754A4/en
Priority to AU2013233704A priority patent/AU2013233704C1/en
Publication of WO2013136844A1 publication Critical patent/WO2013136844A1/ja
Priority to US14/464,465 priority patent/US20140357012A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/109Sols, gels, sol-gel materials

Definitions

  • the present invention relates to a manufacturing method for manufacturing an optical substrate having a fine concavo-convex pattern for light scattering and diffraction using a long film mold, an apparatus for carrying out the manufacturing method, and the manufacturing thereof.
  • the present invention relates to a method for manufacturing a device having an optical substrate manufactured by the method.
  • Lithography is known as a method for forming a fine pattern such as a semiconductor integrated circuit.
  • the resolution of the pattern formed by the lithography method depends on the wavelength of the light source and the numerical aperture of the optical system.
  • a light source having a shorter wavelength is desired.
  • short wavelength light sources are expensive, and their development is not easy, and development of optical materials that transmit such short wavelength light is also necessary.
  • manufacturing a large-area pattern by a conventional lithography method requires a large optical element, and is difficult both technically and economically. Therefore, a new method for forming a desired pattern having a large area has been studied.
  • a nanoimprint method is known as a method for forming a fine pattern without using a conventional lithography apparatus.
  • the nanoimprint method is a technique capable of transferring a nanometer order pattern by sandwiching a resin between a mold and a substrate, and thermal nanoimprint method, optical nanoimprint method, and the like have been studied depending on the material used.
  • the optical nanoimprint method comprises four steps of i) application of a resin layer, ii) press with a mold, iii) photocuring, and iv) release, and can realize nano-size processing by such a simple process. Excellent in terms.
  • the resin layer uses a photocurable resin that is cured by light irradiation, the time required for the pattern transfer process is short, and high throughput can be expected. For this reason, practical application is expected not only in semiconductor devices but also in many fields such as optical members such as organic EL elements and LEDs, MEMS, and biochips.
  • an organic EL element organic light-emitting diode
  • holes that have entered from a hole injection layer and electrons that have entered from an electron injection layer are respectively carried to the light-emitting layer, and they are formed on organic molecules in the light-emitting layer. Recombine to excite organic molecules, thereby emitting light. Therefore, in order to use the organic EL element as a display device or a lighting device, it is necessary to efficiently extract light from the light emitting layer from the surface of the element. For this reason, the diffraction grating substrate is used as the light extraction surface of the organic EL element. It is known from Japanese Patent Application Laid-Open No. H10-228707.
  • Patent Document 2 the present applicant applied a solution in which a block copolymer satisfying a predetermined condition in a solvent is applied on a base material in order to produce a concavo-convex pattern of a diffraction grating substrate for an organic EL element.
  • a mixture of a silicone polymer and a curing agent is dropped onto the matrix and cured to obtain a transfer pattern as a mold, and then a glass substrate coated with a curable resin is pressed against the transfer pattern and cured with ultraviolet rays.
  • By curing the functional resin a diffraction grating in which the transfer pattern is duplicated is produced.
  • An organic EL element is obtained by laminating a transparent electrode, an organic layer, and a metal electrode on the diffraction grat
  • the photocurable resin as described above generally has low heat resistance, and decomposes or yellows at high temperatures. Therefore, if there is a high-temperature treatment in the subsequent process, the film having a fine pattern may be destroyed.
  • the photo-curing resin has low adhesion to the glass substrate, and further, when the pattern-transferred resin layer is used for an element such as an organic EL element, impurities are eluted from the resin layer and the element is adversely affected. There is a fear.
  • an object of the present invention is to mass-produce an optical substrate having a fine concavo-convex pattern having high adhesion to the substrate and having heat resistance and weather resistance, and a device including the optical substrate with high throughput. It is to provide a novel manufacturing method and manufacturing apparatus.
  • a method of manufacturing an optical substrate having a concavo-convex pattern Preparing a long film-shaped mold having an uneven pattern surface; Forming a sol-gel material coating on the substrate; A step of making the concavo-convex pattern surface of the film-shaped mold and the coating film face each other, pressing a pressing roll against a surface opposite to the concavo-convex pattern surface of the film-shaped mold, and transferring the concavo-convex pattern surface to the coating film; , Peeling the film mold from the coating film; And a step of curing the coating film having the concavo-convex pattern transferred thereon.
  • a method for producing an optical substrate is provided.
  • the step of curing the coating film may include curing by baking the coating film.
  • the step of preparing the long film mold includes: Applying a concavo-convex forming material to a long film-like substrate;
  • the concavo-convex pattern is roll-transferred to the concavo-convex forming material by pressing the transfer roll having a concavo-convex pattern on the applied concavo-convex forming material while rotating the roll. It may include obtaining the long film-shaped mold in a roll form by curing the concavo-convex forming material on which the concavo-convex pattern is roll-transferred.
  • corrugated formation material may be wound up with a film winding roll, and / or using the film winding roll which rolls out the said film-shaped base material, and the film winding roll which winds up
  • the concavo-convex pattern of the transfer roll may be transferred while the film-like substrate is conveyed.
  • the long film-shaped mold in the form of a roll wound up by the film winding roll can be fed out and moved with respect to the pressing roll.
  • the peeled long film-shaped mold may be wound up by a mold winding roll.
  • the pressing roll can be pressed against the surface opposite to the uneven pattern surface while heating the uneven forming material.
  • temporary baking of sol-gel material is also performed simultaneously, and formation of a concavo-convex pattern can be ensured and peeling from a paint film of a concavo-convex pattern surface after pressing can be made easy.
  • the pressed unevenness forming material can be heated between the transfer step and the peeling step or in the peeling step to further facilitate peeling from the coating film on the pattern surface after pressing.
  • the long film-shaped mold is continuously fed below the pressing roll, and a plurality of substrates are conveyed to the pressing roll while forming a sol-gel coating film at predetermined time intervals.
  • corrugated pattern surface of the said film-like mold may be sequentially pressed with the press roll on the coating film of the said several board
  • the length of the film-shaped mold can be adjusted to a length sufficient to produce one lot of optical substrates, for example, hundreds to thousands of optical substrates, for example, hundreds to thousands of meters. .
  • the concavo-convex pattern of the film mold used in the method for producing the optical substrate is, for example, an irregular concavo-convex pattern
  • the average pitch of the concavo-convex is in the range of 100 to 1500 nm
  • the average of the depth distribution of the concavo-convex The value (average height) can be in the range of 20 to 200 nm.
  • an apparatus for producing an optical substrate A coating film forming section for forming a sol-gel material coating film on the substrate; A substrate transport unit for transporting the substrate on which the coating film is formed to a predetermined position; A mold feeding roll for feeding out a long film-shaped mold having a concavo-convex pattern surface; and a mold winding roll for winding up the long film-shaped mold, and continuously from the mold feeding roll to the predetermined position.
  • a mold transport unit that unwinds the film mold and winds the film mold with the mold winding roll to transport the film mold to the predetermined position;
  • a part of the concavo-convex pattern surface of the elongated film-shaped mold that is rotatably installed at the predetermined position and is fed out to the predetermined position by the mold conveyance unit is conveyed to the predetermined position by the substrate conveyance unit.
  • an optical substrate manufacturing apparatus comprising a pressing roll for pressing the coated film on the substrate.
  • the optical substrate manufacturing apparatus may further include a peeling roll for peeling a part of the concavo-convex pattern surface of the long film mold pressed by the pressing roll from the coating film of the substrate.
  • the optical substrate manufacturing apparatus may further include a heating unit that heats the coating film on the substrate against which a part of the concavo-convex pattern surface of the film mold is pressed, and the heating unit is provided in the pressing roll. May be.
  • the apparatus for manufacturing an optical substrate may further include a heating unit that heats the coating film when the film mold is peeled from the coating film.
  • the optical substrate manufacturing apparatus may further include a support roll provided at a position facing the pressing roll and supporting the substrate from below, and the coating film forming unit moves the substrate while holding the substrate.
  • a stage may be provided.
  • the concavo-convex pattern of the film mold used in the optical substrate manufacturing apparatus is, for example, an irregular concavo-convex pattern used for light diffraction or scattering, and the average pitch of the concavo-convex is in the range of 100 to 1500 nm.
  • the average value (average height) of the uneven depth distribution may be in the range of 20 to 200 nm.
  • the optical substrate manufacturing apparatus may further include a roll process device for forming the elongated film-shaped mold, and the roll process device includes a transport system for transporting the substrate film, and a substrate film being transported. It can have an applicator for applying the unevenness forming material, a transfer roll that is located downstream of the applicator and transfers the pattern, and an irradiation light source for irradiating the substrate film with light.
  • the transport system includes a film feeding roll for feeding out the substrate film, a nip roll for biasing the substrate film to the transfer roll, a peeling roll for promoting the peeling of the substrate film from the transfer roll, and the pattern being transferred. And a film take-up roll for taking up the substrate film. In this case, the film take-up roll obtained by taking up the substrate film can be used as a mold feeding roll for feeding out the film-like mold.
  • a device manufacturing method comprising an optical substrate having a concavo-convex pattern, A substrate forming step of forming a substrate on which a concavo-convex pattern is formed by applying a sol-gel material on a substrate and transferring a predetermined concavo-convex pattern to the applied sol-gel material; A cleaning step of cleaning the substrate on which the uneven pattern is formed; A first electrode forming step of forming a first electrode by patterning on the cleaned substrate; An annealing step of annealing the substrate on which the first electrode is formed; A thin film forming step of forming a thin film on the first electrode; A device manufacturing method including a second electrode forming step of forming a second electrode on the thin film is provided.
  • the sol-gel material as the material to be transferred with the uneven pattern has higher strength and corrosion resistance than the resin material, ultrasonic cleaning, brush cleaning, and / or UV is performed in the cleaning step. / O 3 cleaning may be performed.
  • the patterning is performed using an acid or an alkali solvent, and the patterning is performed by forming a first electrode layer, applying a resist, exposing and developing, a first electrode layer. Etching and resist stripping may be included. Sol-gel materials are also corrosion resistant to the solvents used in their processing.
  • the annealing temperature may be set to 160 ° C. to 360 ° C.
  • the device manufacturing method of the present invention is suitable for manufacturing an organic EL element as the device.
  • the first electrode is a transparent electrode
  • the thin film layer includes an organic layer
  • the second electrode is a metal electrode.
  • the device manufacturing method of the present invention is suitable for manufacturing a solar cell as the device.
  • the first electrode is a transparent electrode
  • the thin film layer includes a semiconductor layer
  • the second electrode is a metal electrode. Can be.
  • the concavo-convex pattern used in the device manufacturing method of the present invention is an irregular concavo-convex pattern used for light diffraction or scattering, and the average pitch of the concavo-convex is in the range of 100 to 1500 nm.
  • the average value of the thickness distribution may be in the range of 20 to 200 nm.
  • the substrate may be a glass substrate, and the sol-gel material may contain a silica precursor.
  • the device manufacturing method of the present invention may include applying the sol-gel material on a substrate, transferring a predetermined uneven pattern to the applied sol-gel material, and baking the sol-gel material at 300 ° C. or higher.
  • the substrate forming step includes Preparing a long film-shaped mold having an uneven pattern surface; Forming a sol-gel material coating on the substrate; A step of making the concavo-convex pattern surface of the film-shaped mold and the coating film face each other, pressing a pressing roll against a surface opposite to the concavo-convex pattern surface of the film-shaped mold, and transferring the concavo-convex pattern surface to the coating film; , Peeling the film mold from the coating film; And baking the coating film onto which the uneven pattern has been transferred.
  • a sol-gel material is used as a concavo-convex pattern forming material, and a pattern transfer is performed by using a roll process with a long film-shaped mold for forming a concavo-convex pattern using such a sol-gel material. It is possible to manufacture an optical substrate with high throughput while accurately and reliably performing the above. Since the uneven pattern of the optical substrate manufactured by the method for manufacturing an optical substrate of the present invention is formed from a sol-gel material, it has excellent heat resistance, weather resistance (concept including light resistance) and corrosion resistance, and an element incorporating the optical substrate The manufacturing process is also resistant, and the lifetime of these elements can be extended.
  • Hard molds made of metal, quartz, etc. can be cleaned and repaired (defect repaired) when defects are found in the concavo-convex pattern. Defects caused by being transferred can be prevented. However, in the case of a film mold, such cleaning and repair is not easy.
  • a mold made of metal, quartz or the like is in a roll shape, and when a defect occurs due to clogging or the like, the transfer device must be stopped immediately to replace the mold.
  • a step of making a film mold from a metal mold and a step of transferring to a sol-gel material layer using this, and by selecting a material suitable for each step, a desired material is selected.
  • a desired material can be used for the substrate, and not only necessary characteristics but also pattern transfer can be performed with no pattern defect and good releasability.
  • the concave / convex pattern of the optical substrate is formed from a sol-gel material, in the cleaning process for cleaning the substrate on which the concave / convex pattern is formed, the brush cleaning and UV / O 3 cleaning are performed. It has resistance, and also has corrosion resistance to the acid or alkali solvent used in the first electrode formation step, and also has heat resistance at high temperatures in the subsequent annealing step. Therefore, it is possible to manufacture a device without hindering the optical characteristics of the optical substrate having the concavo-convex pattern and the adhesion with the thin film as the operation layer formed on the optical substrate. Moreover, it contributes to the heat resistance, weather resistance, and corrosion resistance of the device itself produced by the device production method of the present invention. Therefore, the device manufacturing method of the present invention is extremely useful in manufacturing various devices such as organic EL elements and solar cells with high throughput.
  • FIGS. 5A to 5F are conceptual diagrams illustrating a process for manufacturing an ITO transparent electrode. It is a figure which shows the cross-section of an organic EL element. It is a conceptual diagram of the optical board
  • FIG. 12A is a photograph showing an image from the surface of the substrate observed in Example 1
  • FIG. 12B is a graph showing pixel positions and pixel values on the straight line L1 in the photograph of FIG. It is a graph which shows a profile.
  • a method for manufacturing a device including an optical substrate having an uneven pattern includes a substrate forming step P1 for forming a substrate on which an uneven pattern is formed, and a substrate on which the uneven pattern is formed.
  • a cleaning process P2 for cleaning, a first electrode forming process P3 for forming a first electrode on the cleaned substrate by patterning using an acid or alkaline solvent, and a substrate on which the patterned first electrode is formed are predetermined.
  • An annealing process P4 for annealing at a temperature, a thin film forming process P5 for forming a thin film on the annealed substrate, and a second electrode forming process P6 for forming a second electrode on the thin film are mainly included.
  • the substrate forming step P1 for forming the substrate on which the concavo-convex pattern is formed includes the method for manufacturing an optical substrate having the concavo-convex pattern of the present invention.
  • a step S0 for preparing a film mold a solution preparation step S1 for preparing a sol-gel material, an application step S2 for applying the prepared sol-gel material to a substrate, and a drying for drying a coating film of the sol-gel material applied to the substrate
  • a transfer step S4 for pressing the film-shaped mold on which the transfer pattern is formed on the dried coating film with a pressing roll a peeling step S5 for peeling the mold from the coating film
  • the manufacturing method of the optical substrate of the present invention and the manufacturing method of the device having the optical substrate manufactured by the manufacturing method will be described as a device having a sol-gel material layer 42 having a concavo-convex pattern as shown in FIG.
  • the manufacturing process of the organic EL element 200 having a laminated structure on the substrate 40 will be described as an example.
  • the film-like mold used for the production of the optical member of the present invention is a long and flexible film or sheet-like mold having a concavo-convex transfer pattern on the surface.
  • silicone resin polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene (PS), polyimide (PI), polyarylate Formed of an organic material.
  • corrugated pattern may be directly formed in the said material, and may be formed in the uneven
  • a photo-curing resin, a thermosetting resin, or a thermoplastic resin can be used as the unevenness forming material.
  • the film mold is, for example, a long mold having a length of 10 m or more, and the width can be 50 to 3000 mm and the thickness can be 1 to 500 ⁇ m.
  • the dimensions, particularly the length, of the film-shaped mold can be appropriately set according to the dimensions of the optical substrate to be mass-produced and the number of optical substrates (number of lots) continuously manufactured in one manufacturing process.
  • a surface treatment or an easy adhesion treatment may be performed between the base material and the coating material in order to improve the adhesion.
  • the concavo-convex pattern can be formed in an arbitrary shape by an arbitrary method.
  • the concavo-convex pattern of the film-shaped mold varies depending on the use of the optical substrate finally obtained, but may be an irregular concavo-convex pattern in which the concavo-convex pitch is not uniform and the concavo-convex direction has no directivity.
  • the average pitch of the irregularities may be in the range of 100 to 1500 nm, and more preferably in the range of 200 to 1500 nm. If the average pitch of the unevenness is less than the lower limit, the pitch becomes too small with respect to the wavelength of visible light, so that light diffraction due to the unevenness tends to be insufficient.
  • the average value (average height) of the uneven depth distribution is preferably in the range of 20 to 200 nm, and more preferably in the range of 50 to 150 nm.
  • the light scattered and / or diffracted from such a concavo-convex pattern has a relatively broad wavelength band, not light of a single or narrow band wavelength, and the scattered light and / or diffracted light is directed. There is no sex and heads in all directions.
  • the “irregular irregularity pattern” the Fourier transform image obtained by performing the two-dimensional fast Fourier transform processing on the irregularity analysis image obtained by analyzing the shape of the irregularity on the surface shows a circular or annular pattern. In other words, it includes such a quasi-periodic structure in which the distribution of the pitch of the projections and depressions has no directivity in the direction of the projections and depressions.
  • the transparent conductive material of a diffraction substrate or solar cell used in a surface light emitting device such as an organic EL device is used.
  • a suitable substrate is preferable.
  • a roll process apparatus (first unit) 70 shown in FIG. 3 is an apparatus for producing a film-shaped mold by forming a concavo-convex pattern on a film coated with a long substrate film.
  • Base material 80 conveying system 86, die coater 82 for applying an unevenness forming material to substrate film 80 being conveyed, transfer roll (metal mold) 90 for transferring a pattern located downstream of die coater 82, and substrate
  • An irradiation light source 85 is provided mainly for irradiating the substrate film 80 with UV light.
  • the irradiation light source 85 is provided to face the transfer roll 90 with the film 80 interposed therebetween.
  • the transport system 86 for the substrate film 80 includes a film feeding roll 72 for feeding the substrate film 80, a nip roll 74 disposed so as to face the transfer roll 90 across the substrate film 80, and peeling of the substrate film 80 from the transfer roll 90.
  • a peeling roll 76 for promoting the film a film winding roll 87 for winding the substrate film 80a (film-shaped mold) to which the pattern is transferred, and a plurality of conveying rolls 78 for conveying the substrate film 80 while maintaining the tension of the substrate film 80. And have.
  • the film mold is manufactured by the following manufacturing process.
  • the substrate film 80 that has been wound around the film feeding roll 72 in advance is fed downstream by the rotation of the film feeding roll 72 and the film winding roll 87.
  • the unevenness forming material 84 is applied to one surface of the substrate film 80 by the die coater 82, and a coating film having a predetermined thickness is formed.
  • the coating film of the substrate film 80 is pressed against the outer peripheral surface of the transfer roll 90 by the nip roll 74, and the pattern on the outer peripheral surface of the transfer roll 90 is transferred to the coating film.
  • the coating film is irradiated with UV light from the irradiation light source 85 and the unevenness forming material 84 is cured.
  • the wavelength of the UV light varies depending on the unevenness forming material 84, it is generally 200 to 450 nm, and the irradiation amount can be 10 mJ / cm 2 to 5 J / cm 2 .
  • the substrate film 80 with the unevenness forming material having a cured pattern is separated from the transfer roll 90 by the peeling roll 76 and then taken up by the film take-up roll 87. Thus, a long film mold 80a is obtained.
  • Such a long film-shaped mold 80a is obtained in a form wound in a roll shape, it is suitable for a mass production process of an optical substrate using a press roll described later, and the optical substrate using this press roll This shape is also suitable for conveyance to an apparatus for performing a mass production process. Moreover, storage and an aging process can be performed by producing a film-shaped mold and winding it once in a roll shape.
  • the substrate film 80 is made of, for example, a base material made of an inorganic material such as glass; silicone resin, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), Examples thereof include a substrate made of an organic material such as polymethyl methacrylate (PMMA), polystyrene (PS), polyimide (PI), polyarylate.
  • the thickness of the substrate film can be, for example, in the range of 1 to 500 ⁇ m.
  • the unevenness forming material 84 for example, epoxy, acrylic, methacrylic, vinyl ether, oxetane, urethane, melamine, urea, polyester, phenol, cross-linked liquid crystal, fluorine, silicone, etc.
  • Curable resins such as various UV curable resins.
  • the thickness of the curable resin is preferably in the range of 0.5 to 500 ⁇ m. If the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
  • a die coat method using a die coater was used to apply the unevenness forming material 84, but instead, a spin coat method, a spray coat method, a dip coat method, a dropping method, a gravure printing method, a screen printing.
  • Various coating methods such as a printing method, a relief printing method, a curtain coating method, an ink jet method, and a sputtering method can be employed.
  • conditions for curing the unevenness forming material 84 such as a curable resin vary depending on the type of resin used, but, for example, the curing temperature is in the range of room temperature to 250 ° C., and the irradiation dose is 10 mJ / cm 2 to The range is preferably 5 J / cm 2 . Moreover, it may be cured by irradiating energy rays such as an electron beam instead of UV light.
  • the transfer roll 90 used in the above manufacturing process may be, for example, one in which a pattern is directly formed on the surface of a roll such as a metal roll, or one in which a substrate such as a metal substrate having a pattern is wound and fixed on the roll. Also, a cylindrical substrate having a pattern may be produced, and this may be fixed by being inserted into a roll.
  • the transfer roll 90 may be formed of a hard material other than metal.
  • the concavo-convex pattern is obtained by, for example, a method using self-organization (microphase separation) of a block copolymer described in Japanese Patent Application No. 2011-006487 by the present applicants (hereinafter referred to as “BCP (Block Copolymer) method” as appropriate). And a method of forming irregularities due to wrinkles on the polymer surface by heating and cooling the polymer film on the deposited film disclosed in WO2011 / 007878A1 by the present applicants (hereinafter referred to as “BKL (Buckling) method” as appropriate). Is preferably used.
  • a photolithography method may be used.
  • any material can be used for forming the pattern.
  • a styrenic polymer such as polystyrene, a polyalkyl methacrylate such as polymethyl methacrylate, polyethylene oxide, polybutadiene, A block copolymer consisting of two combinations selected from the group consisting of isoprene, polyvinyl pyridine, and polylactic acid is preferred.
  • the pitch and height of the unevenness of the pattern are arbitrary.
  • the average pitch of the unevenness is in the range of 100 to 1500 nm.
  • the thickness is preferably in the range of 200 to 1500 nm. If the average pitch of the irregularities is less than the lower limit, the pitch becomes too small with respect to the wavelength of visible light, so that there is a tendency that light diffraction due to the irregularities does not occur.
  • the function as an optical element such as a grating tends to be lost.
  • the average value of the uneven depth distribution is preferably in the range of 20 to 200 nm, and more preferably in the range of 50 to 150 nm.
  • the average value of the uneven depth distribution is less than the lower limit, the required diffraction tends not to occur because the height is too low with respect to the wavelength of visible light.
  • the upper limit is exceeded, the diffracted light intensity is uneven.
  • this concavo-convex pattern is used as an optical element for extracting light from an organic EL element, the electric field distribution inside the EL layer becomes non-uniform and the electric field concentrates on a specific location. Leakage tends to occur and the lifetime tends to be shortened.
  • a mold on which the pattern is further transferred can be formed by an electroforming method or the like as follows.
  • a seed layer that becomes a conductive layer for electroforming can be formed on a matrix having a pattern formed by electroless plating, sputtering, vapor deposition, or the like.
  • the seed layer is preferably 10 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant.
  • seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
  • a metal layer is deposited on the seed layer by electroforming (electroplating).
  • the thickness of the metal layer can be, for example, 10 to 3000 ⁇ m in total including the thickness of the seed layer.
  • any of the above metal species that can be used as a seed layer can be used as a material for the metal layer deposited by electroforming. From the viewpoints of wear resistance as a mold of the metal substrate, releasability and the like, nickel is preferable. In this case, it is preferable to use nickel also for the seed layer.
  • the formed metal layer desirably has an appropriate hardness and thickness from the viewpoint of ease of processing such as pressing, peeling and cleaning of the resin layer for forming a subsequent mold.
  • the metal layer including the seed layer obtained as described above is peeled off from the matrix having the concavo-convex structure to obtain a metal substrate.
  • an annealing treatment by heating the matrix of the pattern before electroforming.
  • the peeling method may be physically peeled off, or the material forming the pattern may be removed by dissolving it using an organic solvent that dissolves them, for example, toluene, tetrahydrofuran (THF), chloroform or the like.
  • THF tetrahydrofuran
  • chloroform chloroform or the like.
  • the remaining material components can be removed by washing.
  • a cleaning method wet cleaning using a surfactant or the like, or dry cleaning using ultraviolet rays or plasma can be used.
  • remaining material components may be adhered and removed using an adhesive or an adhesive.
  • a transfer roll 90 having a concavo-convex pattern is obtained by winding the metal substrate thus obtained around the surface of the roll body.
  • a film mold can be formed by the manufacturing process as described above.
  • the long film-shaped mold does not need to be manufactured by itself, and may be one produced by a manufacturer such as a film maker.
  • the process which prepares a film-shaped mold should just be before transfer process S4 mentioned later, and does not need to be performed before sol-gel material adjustment process S1.
  • a sol-gel material used for forming a coating film on which a pattern is transferred by a sol-gel method is prepared (step S1 in FIG. 2).
  • a sol-gel material of a metal alkoxide is prepared.
  • tetramethoxysilane MTES
  • tetraethoxysilane TEOS
  • tetra-i-propoxysilane tetra-n-propoxysilane
  • tetra-i-butoxysilane tetra-n-butoxysilane
  • tetra-n-butoxysilane tetra-n-butoxysilane
  • tetra- Tetraalkoxide monomers such as sec-butoxysilane and tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane Ethoxysilane, propyltriethoxysilane, isopropyltriethoxysilane
  • metal acetylacetonate metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto.
  • the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used.
  • the mixing ratio can be 1: 1, for example, in a molar ratio.
  • This sol-gel material produces amorphous silica by performing hydrolysis and polycondensation reactions.
  • an acid such as hydrochloric acid or an alkali such as ammonia is added.
  • the pH is preferably 4 or less or 10 or more.
  • the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
  • a material other than silica can be used as the sol-gel material.
  • a Ti-based material, an ITO (indium-tin-oxide) -based material, ZnO, ZrO 2 , Al 2 O 3, or the like can be used.
  • Solvents for the sol-gel material include, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, benzene, toluene, xylene, mesitylene, etc.
  • alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, benzene, toluene, xylene, mesitylene, etc.
  • Aromatic hydrocarbons such as diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, ethers such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol Alcohols, glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene Glycol ethers such as ethylene glycol monomethyl ether acetate, esters such as ethyl acetate, ethyl lactate and ⁇ -butyrolactone, phenols such as phenol and chlorophenol, N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples include amides such as methylpyrrolidone, halogen-based solvents such
  • Additives for sol-gel materials include polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamines such as triethanolamine, which are solution stabilizers, ⁇ -diketones such as acetylacetone, and ⁇ -ketoesters. , Formamide, dimethylformamide, dioxane and the like can be used.
  • the sol-gel material prepared as described above is applied onto the substrate (step S2 in FIG. 2). From the viewpoint of mass productivity, it is preferable to apply the sol-gel material to the substrate at a predetermined position while continuously transporting the plurality of substrates.
  • a coating method any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used, but the sol-gel material is uniformly applied to a relatively large area substrate.
  • the die coating method, the bar coating method, and the spin coating method are preferable because the coating can be completed quickly before the sol-gel material is gelled.
  • Substrates made of inorganic materials such as glass, quartz and silicon substrates, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene Resin substrates such as (PS), polyimide (PI), and polyarylate can be used.
  • the substrate may be transparent or opaque, but it is relatively hard if the sol-gel material layer is formed on this substrate, and further the functional layer is further formed on the optical substrate when it is incorporated into the device.
  • a substrate is preferred.
  • substrate provided with heat resistance, weather resistance with respect to UV light etc. is desirable.
  • a substrate made of an inorganic material such as glass, quartz, or silicon substrate is more preferable, and the substrate made of these inorganic materials can be divided into a substrate and a sol-gel material if the applied sol-gel material is an inorganic material. It is also preferable in that the difference in refractive index between the layers is small and unintended refraction and reflection in the optical substrate can be prevented.
  • a surface treatment or an easy-adhesion layer may be provided on the substrate, or a gas barrier layer may be provided for the purpose of preventing the ingress of gases such as moisture and oxygen.
  • a gas barrier layer may be provided for the purpose of preventing the ingress of gases such as moisture and oxygen.
  • the substrate is held in the atmosphere or under reduced pressure to dry the solvent in the coating film (hereinafter also referred to as “sol-gel material layer” as appropriate) (step S3 in FIG. 2). If this holding time is short, the viscosity of the coating film is too low to transfer the pattern in the subsequent transfer step, and if the holding time is too long, the polymerization reaction of the precursor proceeds so much that transfer cannot be performed in the transfer step. In the case of mass production of an optical substrate, this holding time can be managed by the transport time of the substrate from the application of the sol-gel material to the subsequent transfer process using a film mold.
  • the substrate holding temperature in this drying step is preferably a constant temperature in the range of 10 to 100 ° C., and more preferably in the range of 10 to 30 ° C.
  • the holding temperature is higher than this range, the gelation reaction of the coating film proceeds rapidly before the transfer process, which is not preferable.
  • the holding temperature is lower than this range, the gelation reaction of the coating film before the transfer process is slow. This is not preferable because productivity decreases.
  • the evaporation of the solvent proceeds and the polymerization reaction of the precursor also proceeds, and the physical properties such as the viscosity of the sol-gel material change in a short time.
  • the amount of evaporation of the solvent also depends on the amount of solvent (concentration of the sol-gel material) used when preparing the sol-gel material.
  • solvent concentration of the sol-gel material
  • the sol-gel material is a silica precursor
  • a hydrolysis / condensation polymerization reaction of the silica precursor occurs as a gelation reaction
  • alcohol is generated in the sol-gel material through a dealcoholization reaction.
  • a volatile solvent such as alcohol is used as a solvent in the sol-gel material. That is, the sol-gel material contains alcohol generated in the hydrolysis process and alcohol present as a solvent, and the sol-gel reaction proceeds by removing them in the drying step. Therefore, it is desirable to adjust the holding time and holding temperature in consideration of the gelation reaction and the solvent used.
  • the drying process since the solvent in the sol-gel material evaporates simply by holding the substrate as it is, it is not always necessary to perform an aggressive drying operation such as heating or blowing, and the substrate on which the coating film has been formed is left as it is for a predetermined time. It can be left alone or transported for a predetermined time for a subsequent process. That is, the drying process is not essential in the substrate forming process.
  • Step S4 in FIG. 2 the film-shaped mold 80 a is fed between the pressing roll 22 and the substrate 40 transported immediately below it, so that the concavo-convex pattern of the film-shaped mold 80 a is coated on the substrate 40 (sol-gel material). ) 42 can be transferred.
  • the film-shaped mold 80 a and the substrate 40 are synchronously conveyed and the film-shaped mold 80 a is coated on the surface of the coating film 42 of the substrate 40.
  • the film-shaped mold 80a and the substrate 40 are in close contact with each other by rotating while pressing the pressing roll 22 against the back surface of the film-shaped mold 80a (the surface opposite to the surface on which the concavo-convex pattern is formed).
  • the film-shaped roll 80 (see FIG. 3) on which the long film-shaped mold 80a is wound in step S0 is used as it is. It is advantageous to extend and use the mold 80a.
  • the roll process using such a press roll has the following advantages compared to the press type. i) Since the time for contact between the mold and the coating film is short, it is possible to prevent the pattern from being damaged due to the difference in thermal expansion coefficient between the mold, the substrate and the stage on which the substrate is installed. ii) Since it is a roll process, the productivity is improved, and the productivity can be further improved by using a long film mold. iii) It is possible to prevent gas bubbles from being generated in the pattern or gas marks from remaining due to bumping of the solvent in the gel solution. iv) Since it is in line contact with the substrate (coating film), the transfer pressure and the peeling force can be reduced, and it is easy to cope with an increase in area.
  • the film mold may be pressed against the coating film while heating the coating film.
  • the heating may be performed through a pressing roll, or the coating film may be heated directly or from the substrate side.
  • a heating means may be provided inside the pressure roll (transfer roll), and any heating means can be used.
  • a heater provided with a heater inside the pressing roll is suitable, but a heater separate from the pressing roll may be provided. In any case, any pressing roll may be used as long as pressing is possible while heating the coating film.
  • the pressing roll is preferably a roll having a coating of a resin material such as ethylene-propylene-diene rubber (EPDM), silicone rubber, nitrile rubber, fluororubber, acrylic rubber, chloroprene rubber, etc. having heat resistance on the surface.
  • a supporting roll may be provided so as to sandwich the substrate facing the pressing roll, or a supporting table for supporting the substrate may be installed.
  • the heating temperature of the coating film during pressing can be 40 ° C. to 150 ° C.
  • the heating temperature of the pressing roll can be similarly set to 40 ° C. to 150 ° C. it can.
  • the heating temperature of the pressing roll can be similarly set to 40 ° C. to 150 ° C. it can.
  • the heating temperature of the coating film or the pressure roll is less than 40 ° C, the mold cannot be promptly peeled off from the coating film.
  • the heating temperature exceeds 150 ° C, the solvent used evaporates rapidly and the uneven pattern transfer is insufficient. There is a risk of becoming.
  • the effect similar to the temporary baking of the sol-gel material layer mentioned later can be anticipated by pressing a coating film, heating.
  • the coating film After pressing the mold against the coating film (sol-gel material layer), the coating film may be temporarily fired. In the case where the coating is pressed without heating, it is preferable to perform temporary baking. Pre-baking promotes gelation of the coating film, solidifies the pattern, and makes it difficult to collapse during peeling. That is, the pre-baking has two roles of reliable pattern formation and mold releasability improvement. When pre-baking is performed, it is preferably heated in the atmosphere at a temperature of 40 to 150 ° C.
  • ⁇ Peeling process> The mold is peeled off from the coating film (sol-gel material layer) after the transfer process or the temporary baking process (process S5). Since the roll process is used as described above, the peeling force may be smaller than that of the plate mold used in the press method, and the mold can be easily peeled off from the coating film without remaining in the mold. In particular, since the coating is pressed while being heated, the reaction easily proceeds, and the mold is easily peeled off from the coating immediately after pressing. Furthermore, you may use a peeling roll for the improvement of the peelability of a mold. As shown in FIG.
  • the peeling roll 23 is provided on the downstream side of the pressing roll 22, and the film-like mold 80 a is applied to the coating film by rotating and supporting the film-like mold 80 a against the coating film 42 by the peeling roll 23.
  • the attached state can be maintained only for the distance between the pressing roll 22 and the peeling roll 23 (a fixed time).
  • the film-shaped mold 80 a is peeled off from the coating film 42 by changing the course of the film-shaped mold 80 a so that the film-shaped mold 80 a is pulled up above the peeling roll 23 on the downstream side of the peeling roll 23.
  • the coating film can be further easily peeled off by peeling while heating at 40 to 150 ° C., for example.
  • the coating film is baked (step S6 in FIG. 2).
  • the main baking the hydroxyl group contained in the sol-gel material layer such as silica constituting the coating film is detached and the coating film becomes stronger.
  • the main baking is preferably performed at a temperature of 200 to 1200 ° C. for about 5 minutes to 6 hours.
  • the coating film is cured to obtain a substrate having an uneven pattern film corresponding to the uneven pattern of the mold, that is, a substrate in which a sol-gel material layer having an uneven pattern is directly formed on a flat substrate.
  • the sol-gel material layer is silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time.
  • the substrate 40 (light extraction substrate) on which the sol-gel material layer 42 on which the concavo-convex pattern is formed through the roll process is formed is cleaned. Cleaning is performed to remove foreign substances adhering to the substrate. For example, polypropylene or vinyl chloride processed into a linear or strip shape in pure water is planted around the rotating shaft. The substrate is mechanically cleaned using a brush such as a roll brush, and then organic substances and the like are removed with an alkaline cleaner and an organic solvent.
  • alkaline detergent for example, an alkaline organic compound solution, ethylamine, diethylamine, ethanolamine, 2-hydroxyethyltrimethylammonium hydroxide (choline), which is commercially available under the trade name of Semicoclean can be used.
  • organic solvent for example, acetone, isopropyl alcohol (IPA) or the like can be used.
  • ultrasonic cleaning may be performed.
  • the ultrasonic cleaning can be performed for several minutes to several tens of minutes by immersing the substrate in alcohols such as isopropyl alcohol or an alkaline organic compound solution known by a trade name such as acetone or semicoclean.
  • UV / O 3 treatment may be performed.
  • the concavo-convex pattern of the optical substrate is formed from a sol-gel material, it is relatively hard and resistant to mechanical cleaning with a brush, and has corrosion resistance to an alkaline cleaner and an organic solvent. Further, the sol-gel material layer 42 is less affected by the uneven pattern even by ultrasonic cleaning or UV / O 3 treatment as compared with the curable resin.
  • the transparent electrode 92 as the first electrode is maintained so that the uneven structure formed on the surface of the sol-gel material layer 42 as shown in FIG. 6 is maintained.
  • first electrode formation step P2 in FIG. 1 The formation process of the transparent electrode 92 will be described with reference to FIG.
  • an electrode material layer 32 for forming the transparent electrode 92 is formed on the substrate 40.
  • a film forming method a known method such as an evaporation method, a sputtering method, a CVD method, or a spray method can be appropriately employed. Among these methods, the sputtering method is preferable from the viewpoint of improving adhesion.
  • the electrode material for example, indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) that is a composite thereof, gold, platinum, silver, and copper are used. Among these, ITO is preferable from the viewpoints of transparency and conductivity.
  • the thickness of the electrode material layer 32 (and thus the transparent electrode 92) is preferably in the range of 20 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to be insufficient, and if it exceeds the upper limit, the transparency may be insufficient and the emitted EL light may not be sufficiently extracted to the outside.
  • the electrode material layer 32 is formed on the electrode material layer 32 in order to form a desired electrode pattern by using a photolithography process (photoetching method).
  • a photoresist 34 is applied to the substrate.
  • FIG. 5C exposure is performed with UV light or the like through a mask 44 on which an electrode pattern is formed.
  • FIG. 5D the photoresist 34 is etched with a developing solution to remove a part of the photoresist 34 and expose a part 32 a of the electrode material layer 32.
  • FIG. 5B After forming the electrode material layer 32 by sputtering or the like, as shown in FIG. 5B, the electrode material layer 32 is formed on the electrode material layer 32 in order to form a desired electrode pattern by using a photolithography process (photoetching method).
  • a photoresist 34 is applied to the substrate.
  • FIG. 5C exposure is performed with UV light or the like through a mask 44 on which an electrode pattern is formed.
  • FIG. 5D the photoresist 34 is etched with a developing
  • a part of the exposed electrode material layer 32 is removed by wet etching using an etchant such as hydrochloric acid to obtain a patterned electrode material layer 32b.
  • an etchant such as hydrochloric acid
  • a patterned transparent electrode 92 as shown in FIG. 5E is obtained. Note that the substrate is exposed to a high temperature of about 300 ° C. during sputtering. It is desirable to wash the obtained transparent electrode with a brush and remove organic substances and the like with an alkaline detergent and an organic solvent, and then perform UV / O 3 treatment.
  • the electrode material layer 32 is formed after the photoresist development step shown in FIG. 5D, and then the patterned transparent electrode 92 is formed by removing the photoresist layer by lift-off. It may be obtained (lift-off method).
  • the composition constituting the photoresist contains an organic substance such as ethyl lactate or propylene glycol monomethyl ether acetate (PGMEA) as a solvent.
  • an aqueous solution mainly containing an organic base such as tetramethylammonium hydroxide aqueous solution (TMAH) or trimethyl (2-hydroxyethyl) ammonium hydroxide is used.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • An acid solution such as hydrochloric acid or oxalic acid is used for wet etching of the electrode material.
  • the optical substrate on which the concave / convex pattern is formed is exposed to an organic solvent such as a developer and an etching solution, and an acid solvent. Therefore, the concave / convex pattern formed on the optical substrate is Must have corrosion resistance to them.
  • the concavo-convex pattern is formed from a sol-gel material, even when these organic solvents or acid solvents are used in the electrode forming process, they are not corroded and do not fade.
  • the first electrode is not limited to the transparent electrode, and may be an electrode that does not transmit visible light or the like, such as a metal electrode, depending on the type and application of the device.
  • the patterned transparent electrode is annealed for the purpose of increasing the crystallinity and decreasing the resistance value and improving the transmittance (annealing step P4 in FIG. 1).
  • Annealing is generally performed for about 10 minutes to 3 hours in a heating furnace, and the annealing temperature is usually 160 to 360 ° C., for example, 250 ° C.
  • the optical substrate is exposed to an annealing process at a high temperature of about 250 ° C.
  • the sol-gel material layer 42 is generally formed of an inorganic material and has heat resistance, it is not affected by the annealing process.
  • the annealed substrate is cleaned. For cleaning, the same cleaning method as that for the previous optical substrate is used. For example, brush cleaning and UV / O 3 treatment may be used.
  • an organic layer 94 as shown in FIG. 6 is laminated on the transparent electrode 92 (thin film forming step P5 in FIG. 1).
  • Such an organic layer 94 is not particularly limited as long as it can be used for the organic layer of the organic EL element, and a known organic layer can be appropriately used.
  • Such an organic layer 94 may be a laminate of various organic thin films. For example, a laminate comprising a hole transport layer 95, a light emitting layer 96, and an electron transport layer 97 as shown in FIG. It may be.
  • phthalocyanine derivatives As a material of the hole transport layer 95, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′- Aromatic diamine compounds such as diamine (TPD) and 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene Derivatives, pyrazoline derivatives, tetrahydroimidazole, polyarylalkanes, butadiene, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), It is not limited to these.
  • TPD diamine
  • ⁇ -NPD
  • the light emitting layer 96 is provided to recombine the holes injected from the transparent electrode 92 and the electrons injected from the metal electrode 98 to emit light.
  • Materials that can be used for the light emitting layer 96 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, aluminum Organometallic complexes such as quinolinol complex (Alq3), tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivatives, pyran, quinacridone, rubrene, distyryl Benzene derivatives, distyrylarylene derivatives,
  • a material system that emits light from a spin multiplet for example, a phosphorescent material that emits phosphorescence, and a compound that includes a part thereof in a part of the molecule can be preferably used.
  • the phosphorescent material preferably contains a heavy metal such as iridium. Even if the above-mentioned light emitting material is doped as a guest material in a host material having high carrier mobility, light can be emitted by utilizing dipole-dipole interaction (Felster mechanism) and electron exchange interaction (Dexter mechanism). good.
  • the material for the electron transport layer 97 includes nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane. And organometallic complexes such as anthrone derivatives, oxadiazole derivatives, aluminum quinolinol complexes (Alq3), and the like.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the hole transport layer 95 or the electron transport layer 97 may also serve as the light emitting layer 96.
  • the organic layer between the transparent electrode 92 and the metal electrode 98 is two layers.
  • a metal fluoride such as lithium fluoride (LiF) or Li 2 O 3 or a metal oxide is used as an electron injection layer between the organic layer 94 and the metal electrode 98.
  • a layer made of a highly active alkaline earth metal such as Ca, Ba, or Cs, an organic insulating material, or the like may be provided.
  • a triazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative as a hole injection layer between the organic layer 94 and the transparent electrode 92, Pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, or conductive polymer oligomers
  • a layer made of a thiophene oligomer or the like may be provided.
  • the organic layer 94 is a stacked body including the hole transport layer 95, the light emitting layer 96, and the electron transport layer 97
  • the thickness of the hole transport layer 95, the light emitting layer 96, and the electron transport layer 97 is 1 respectively.
  • a range of ⁇ 200 nm, a range of 5 to 100 nm, and a range of 5 to 200 nm are preferable.
  • a method for laminating the organic layer 94 a known method such as an evaporation method, a sputtering method, a spin coating method, or a die coating method can be appropriately employed.
  • a metal electrode 98 as a second electrode is laminated on the organic layer 94 as shown in FIG. 6 (second electrode forming step P6 in FIG. 1).
  • a material of the metal electrode 98 a substance having a small work function can be used as appropriate, and is not particularly limited, and examples thereof include aluminum, MgAg, MgIn, and AlLi.
  • the thickness of the metal electrode 98 is preferably in the range of 50 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to decrease, and if the thickness exceeds the upper limit, it may be difficult to repair when a short circuit occurs between the electrodes.
  • the metal electrode 98 can be laminated by employing a known method such as vapor deposition or sputtering. In this way, an organic EL element 200 having a structure as shown in FIG. 6 is obtained.
  • a step of attaching a polarizing plate may be performed as a measure for specular reflection of the metal electrode.
  • the manufacture of the organic EL element has been described as an example, but the present invention can be applied to a method of manufacturing another device such as a solar cell.
  • a method of manufacturing another device such as a solar cell.
  • the substrate forming step P1 to the annealing step P4 almost the same steps as the above-described organic EL manufacturing process can be adopted.
  • a thin film such as a thin film silicon using polycrystalline silicon or a compound semiconductor, an organic semiconductor, or a dye-sensitized structure having an electrolyte layer on a semiconductor is formed.
  • a transparent electrode or a metal electrode is formed in the second electrode formation step P6 a transparent electrode or a metal electrode is formed.
  • a sol-gel material that is cured by heating is used, but a photo-curable sol-gel material may be used instead.
  • a photoacid generator such as phosphorus hexafluoride aromatic sulfonium salt that generates an acid by light
  • a ⁇ -diketone typified by acetylacetone
  • the coating film (sol-gel material layer)
  • gelation is performed by irradiating light instead of pre-baking the coating film ( Curing) may proceed.
  • the coating film can be cured by irradiating with light instead of main baking the coating film.
  • the device manufacturing method of the present invention can be applied to any device as long as it is manufactured through the substrate forming process P1 to the second electrode forming process P6 in addition to the manufacturing of organic EL and solar cells.
  • a touch panel is mentioned.
  • an optical substrate manufacturing apparatus (second unit) 100 for manufacturing an optical substrate as shown in FIG. 7 can be used.
  • the optical substrate manufacturing apparatus 100 mainly includes an application unit (coating film forming unit) 120 that applies a sol-gel material onto the substrate 40, a substrate transfer unit 130 that transfers the substrate, and a mold transfer unit that transfers the film-shaped mold 80a.
  • the mold transport unit 140 includes a pressing unit 150 that presses and transfers the film mold 80a to the substrate 40, and a peeling unit 160 that peels the film mold 80a from the substrate 40.
  • the application unit 120 includes a substrate stage 34 that is movable while holding the substrate 40, and a die coater 30 that is positioned above the substrate stage and applies the sol-gel material 41 to the substrate 40.
  • the substrate transport unit 130 includes a plurality of rotary rolls 36 arranged along the transport direction (from the left to the right in the drawing), and transports the substrate 40 placed thereon in the transport direction by the rotational drive of the rotary roll. Further, the substrate transport unit 130 includes a heating unit 27 for drying the substrate 40 to which the sol-gel material being transported is applied.
  • the mold transport unit 140 is mainly provided at a predetermined position on the transport path of the substrate, and a coating film (not shown) of the substrate 40 on which the coating film (not shown) is formed.
  • the pressure roll 22 that presses the film-shaped mold 80a from the side, and the film-shaped mold 80a that is provided downstream of the pressure roll 22 and is kept pressed against the coating film of the substrate 40 after a predetermined distance is peeled off
  • a peeling roll 23 that is provided, a mold take-up roll 24 that is provided downstream of the peeling roll and winds up the film mold, and a conveyance roll 29 for conveying the film mold 80a in the traveling direction.
  • the mold feeding roll 21 and the mold take-up roll 24 are rotatably attached to a support base (not shown) that enables them to be attached and detached.
  • the mold supply roll 21 uses the film winding roll 87 (refer FIG. 3) by which the film-shaped mold 80a manufactured previously with the roll process apparatus 70 was wound up suitably to this apparatus 100, and uses it as it is. Is advantageous.
  • the pressing unit 150 is provided with a support roll 26 facing the pressing roll 22, and the support roll 26 sandwiches the film mold 80 a and the substrate 40 together with the pressing roll 22 to press the substrate 40 from the lower side of the substrate and rotationally drive it. Then, the substrate 40 is sent out downstream in the substrate transport direction.
  • a heater 22 a is provided inside the pressing roll 22.
  • the support roll 26 may also be provided with a heater.
  • the peeling unit 160 is provided with a peeling roll 23 on the conveyance path of the film-shaped mold 80a, and the film-shaped mold 80a is lifted upward by the conveyance roll 29 on the downstream side, thereby peeling the film-shaped mold 80a from the substrate 40.
  • a heating furnace (heater) 28 is provided between the pressing unit 150 and the peeling unit 160.
  • the optical substrate manufacturing apparatus 100 further includes charge removers 142 and 144 for discharging the film mold 80a fed from the mold feed roll 21 and the film mold 80a before being taken up by the mold take-up roll 24, respectively.
  • a static eliminator 146 is provided for neutralizing the substrate 40 from which the film mold 80a has been peeled off.
  • the optical substrate manufacturing apparatus 100 includes a mold transport unit 140 including a coating unit 120, a pressing unit 150, and a peeling unit 160, and a control unit (not shown) that summarizes the operations of the substrate transport unit 130 and the entire apparatus.
  • the control unit includes the substrate transport unit 130 so that the substrate 40 transported by the substrate transport unit 130 and the film mold 80a transported by the mold transport unit 140 are transported in synchronization by the pressing unit 150.
  • the drive speed of the mold conveyance unit 140 and the pressing roll 22 is controlled.
  • the optical substrate manufacturing apparatus 100 further includes an inspection apparatus for observing the thickness and state of the coating film formed by the application unit 120, an inspection apparatus for observing the uneven pattern of the coating film after the film-shaped mold 80a is peeled off, and the like. Can be provided.
  • the die coater 30 applies the sol-gel material 41 onto the substrate while the substrate stage 34 holding the substrate 40 moves in the transport direction, so that the sol-gel material is uniformly applied onto the substrate.
  • the substrate 40 on which the coating film of the sol-gel material is formed is transferred onto the rotating roll 36 on the upstream side of the mold conveying unit 140 and conveyed toward the pressing unit 150, particularly the pressing roll 22 provided at a predetermined position. The During this transport, the sol-gel material is dried.
  • the film-shaped mold 80 a is fed from the mold feeding roll 21, passed through a static eliminator 142 installed between the conveyance rolls 29, and then neutralized, and then pressed by the pressing unit 150 via the conveyance roll 29.
  • the pressing roll 22 heated to 40 ° C. to 150 ° C. presses the film-shaped mold 80 a conveyed below the substrate 40 on the substrate 40.
  • corrugated pattern of the film-shaped mold 80a is pressed against the coating film (sol-gel material) of the board
  • the gelation of the coating film proceeds by heating the pressing roll 22.
  • the substrate 40 having the concavo-convex pattern transferred thereon by the pressing roll 22 passes through the heating furnace 28 with the film mold 80a being pressed and is conveyed to the peeling unit 160.
  • the heating furnace 28 the substrate 40 is heated to 40 to 150 ° C. in order to promote peeling from the coating film of the film mold 80a.
  • the peeling unit 160 when the film-shaped mold 80 a passes through the peeling roll 23, the film-shaped mold 80 a is peeled off from the coating film 42 by being pulled up by the mold winding roll 24 via the transport roll 29. Thereafter, the film-shaped mold 80 a is neutralized by the static eliminator 144 and wound on the mold winding roll 24.
  • the substrate 40 from which the film mold 80a has been peeled is discharged by the charge eliminator 146 and exits the optical substrate manufacturing apparatus 100.
  • transferred to the coating film is obtained.
  • the substrate 40 on which the pattern is formed is baked in an oven or the like (not shown).
  • the main baking oven may be provided in the apparatus 100.
  • the peeling angle can be adjusted by appropriately adjusting the installation position of the peeling roll 23 and the position of the mold winding roll 24 that winds the mold through the peeling roll 23.
  • the support roll 26 other driving means such as a moving table that supports and moves the substrate can be used.
  • the peeling roll 23 was used in order to maintain the state with the uneven
  • other support members such as a plate-like member having a smooth surface and curved corners can be used.
  • the optical substrate manufacturing apparatus 100 as the second unit may include the roll process apparatus 70 as the first unit shown in FIG.
  • the roll process apparatus 70 as the first unit is integrated into the optical substrate manufacturing apparatus 100 as the second unit, and the film take-up roll 87 of the roll process apparatus 70 is used as the mold feeding roll 21 of the optical substrate manufacturing apparatus 100 as it is. It may be used.
  • the rotation mechanism that drives the film take-up roll 87 can be controlled by the control device of the optical substrate manufacturing apparatus 100 to switch the rotation direction.
  • the optical substrate manufacturing apparatus 100 as a 2nd unit may be equipped with the roll process apparatus 70 as a 1st unit as a different body.
  • the film take-up roll 87 on which the film mold 80a is taken up by the roll process device 70 is transported to the position where the mold feed roll 21 of the optical substrate manufacturing apparatus 100 is provided and used as the mold feed roll 21. can do. If necessary, the optical substrate manufacturing apparatus 100 and the roll process apparatus 70 can be separated and one or both can be used in place.
  • the peeling roll is provided in the optical substrate manufacturing apparatus 100 of the above embodiment, the peeling roll may be omitted as shown in FIG.
  • the film-shaped mold 80 a fed from the mold feed roll 21 (see FIG. 7) is pressed against the coating film 42 by the heating press roll 22, and then the mold is wound above the substrate 40. It is wound up by a roll 24 (see FIG. 7).
  • a roll 24 see FIG. 7
  • peeling from the coating film of the mold immediately after pressing is promoted and the coating film can be pre-baked.
  • the end portions of the film-shaped mold 80a are wound around the mold feeding roll 21 and the mold winding roll 24, respectively, but the film-shaped mold 80a is formed into an endless belt shape as shown in FIG. Also good. By doing so, it is not necessary to replace the mold feeding roll 121 and the mold winding roll 124 when the film-shaped mold 80a is completely unwound from the mold feeding roll 121 and all of the film-shaped mold 80a is wound up by the mold winding roll 124. .
  • the heater 22a is provided inside the pressing roll 22.
  • the heater 22 b can be provided not in the pressing roll 22 but in the heat zone 35 provided in the peripheral portion of the pressing roll 22 of the pressing portion 150. Since the heater is provided inside the heat zone 35, the inside of the heat zone is maintained at the heating temperature. In this case, the coating film 42 is temporarily baked inside the heat zone 35.
  • a heater may be provided inside the pressing roll 22 and the support roll 26.
  • the heater 22a may be provided inside the support roll 26 instead of being provided inside the pressing roll 22.
  • the coating film 42 is temporarily baked by the heat generated from the heater 22 a inside the support roll 26.
  • the heater 22a may be provided inside both the pressing roll 22 and the support roll 26.
  • the substrate on which the pattern composed of the sol-gel material layer is formed through the roll process as described above is, for example, a diffraction grating substrate for an organic EL element, a wire grid polarizer, an antireflection film, or a photoelectric conversion surface side of a solar cell. It can be used as an optical element for providing a light confinement effect inside the solar cell. Or you may transcribe
  • the sol-gel material is cured by heat, but curing by light irradiation may be performed using a photo-curable sol-gel material.
  • the heating roll 22a may not be used.
  • a light irradiator may be installed in place of the heating furnace 28.
  • a diffraction grating substrate is first manufactured, and then an organic EL element is manufactured using the diffraction grating substrate.
  • a mold having an uneven surface is produced using the BCP method.
  • a block copolymer manufactured by Polymer Source comprising the following polystyrene (hereinafter abbreviated as “PS” where appropriate) and polymethyl methacrylate (hereinafter abbreviated as “PMMA” where appropriate) was prepared.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • the volume ratio of the first and second polymer segments in the block copolymer is such that the density of polystyrene is 1.05 g / cm 3 and the density of polymethyl methacrylate is It was calculated as 1.19 g / cm 3 .
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer segment or polymer are gel permeation chromatography (manufactured by Tosoh Corporation, model number “GPC-8020”, TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 in series.
  • the glass transition point (Tg) of the polymer segment was determined by using a differential scanning calorimeter (manufactured by Perkin-Elmer, product name “DSC7”) at a temperature increase rate of 20 ° C./min in the temperature range of 0 to 200 ° C. Measurement was performed while raising the temperature.
  • the solubility parameters of polystyrene and polymethylmethacrylate are 9.0 and 9.3, respectively (see Chemical Handbook, Application, 2nd revised edition).
  • This solution was filtered through a membrane filter having a pore size of 0.5 ⁇ m to obtain a block copolymer solution.
  • the obtained block copolymer solution was applied to a film thickness of 200 to 250 nm by a spin coating method on a polyphenylene sulfide film (Torelina manufactured by Toray Industries, Inc.) as a base material.
  • the spin coating was performed at a rotational speed of 500 rpm for 10 seconds, and subsequently at 800 rpm for 30 seconds.
  • the thin film applied by spin coating was left to dry at room temperature for 10 minutes.
  • the base material on which the thin film was formed was heated in an oven at 170 ° C. for 5 hours (first annealing treatment). Unevenness was observed on the surface of the thin film after heating, and it was found that the block copolymer constituting the thin film was micro-layer separated.
  • the thin film heated as described above is etched as follows to selectively decompose and remove PMMA on the substrate.
  • the thin film was irradiated with ultraviolet rays at a dose of 30 J / cm 2 (wavelength 365 nm) using a high-pressure mercury lamp.
  • the thin film was immersed in acetone, washed with ion exchange water, and then dried.
  • a concavo-convex pattern clearly deeper than the concavo-convex that appeared on the surface of the thin film was formed on the substrate by the heat treatment.
  • the substrate was subjected to a heat treatment (second annealing process) for 1 hour in an oven at 140 ° C.
  • a thin nickel layer of about 10 nm was formed as a current seed layer by sputtering on the surface of the thin film subjected to the chevron treatment.
  • the substrate with the thin film was placed in a nickel sulfamate bath, and electrocasting (maximum current density 0.05 A / cm 2 ) was performed at a temperature of 50 ° C. to deposit nickel until the thickness reached 250 ⁇ m.
  • the substrate with a thin film was mechanically peeled from the nickel electroformed body thus obtained.
  • the nickel electroformed body was immersed in Chemisol 2303 manufactured by Nippon CB Chemical Co., Ltd. and washed with stirring at 50 ° C. for 2 hours. Thereafter, the acrylic UV curable resin was applied to the nickel electroformed body, cured, and peeled off three times to remove the polymer component partially attached to the surface of the electroformed body.
  • the nickel electroformed body was immersed in OPTOOL HD-2100TH manufactured by Daikin Industries, Ltd. for about 1 minute, dried, and allowed to stand overnight.
  • the nickel electroformed body was immersed in OPTOOL HD-TH manufactured by Daikin and subjected to ultrasonic treatment for about 1 minute.
  • a nickel mold (nickel substrate) subjected to the release treatment was obtained.
  • a fluorine-based UV curable resin is applied onto a PET substrate (Toyobo Co., Ltd., easy-adhesive PET film, Cosmo Shine A-4100), and irradiated with ultraviolet rays at 600 mJ / cm 2 while pressing a nickel mold.
  • the fluorinated UV curable resin was cured.
  • the nickel mold was peeled off from the cured resin.
  • a diffraction grating mold composed of a PET substrate with a resin film onto which the surface shape of the nickel mold was transferred was obtained.
  • ⁇ Production of diffraction grating substrate> To a solution obtained by mixing 24.3 g of ethanol, 2.16 g of water and 0.0094 g of concentrated hydrochloric acid, 2.5 g of tetraethoxysilane (TEOS) and 2.1 g of methyltriethoxysilane (MTES) were added dropwise, A sol-gel material was obtained by stirring for 2 hours at a humidity of 45%. This sol-gel material was bar-coated on a 15 ⁇ 15 ⁇ 0.11 cm soda-lime glass plate. A doctor blade (manufactured by YOSHIMITSU SEIKI) was used as a bar coater.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • This doctor blade was designed to have a coating film thickness of 5 ⁇ m, but an imide tape with a thickness of 35 ⁇ m was attached to the doctor blade so that the coating film thickness was adjusted to 40 ⁇ m.
  • the diffraction grating mold produced as described above on the coating film was rotated while being pressed against the coating film on the glass plate using a pressing roll heated to 80 ° C. After the pressing of the coating film was completed, the mold was manually peeled off, and then heated at 300 ° C. for 60 minutes using an oven to perform main baking. In this way, a diffraction grating substrate in which the pattern of the diffraction grating mold was transferred to the sol-gel material was obtained.
  • the pressing roll was a roll provided with a heater inside and coated with heat-resistant silicone having an outer periphery of 4 mm thick, and had a roll diameter ⁇ of 50 mm and an axial length of 350 mm.
  • an analysis image of the surface irregularity shape was obtained using an atomic force microscope (scanning probe microscope with an environmental control unit “Nonavi II station / E-sweep” manufactured by SII Nanotechnology).
  • the analysis conditions of the atomic force microscope are as follows.
  • Measurement mode Dynamic force mode Cantilever: SI-DF40 (material: Si, lever width: 40 ⁇ m, tip diameter: 10 nm)
  • Measurement atmosphere air Measurement temperature: 25 ° C
  • a measurement area of 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) was measured at an arbitrary position on the diffraction grating substrate, and an unevenness analysis image was obtained as described above.
  • this unevenness analysis image 100 or more distances in the depth direction with arbitrary concave portions and convex portions are measured, and the average is calculated to obtain the average value (average height) of the unevenness depth distribution. From the analysis image obtained in this example, the average value of the depth distribution of the concavo-convex pattern was 56 nm.
  • the unevenness analysis image was subjected to flat processing including primary inclination correction, and then subjected to two-dimensional fast Fourier transform processing to obtain a Fourier transform image.
  • the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
  • the circular pattern of the Fourier transform image is a pattern that is observed when bright spots are gathered in the Fourier transform image.
  • “Circular” as used herein means that the pattern of bright spots appears to be almost circular, and is a concept that includes a part of the outer shape that appears to be convex or concave. .
  • a pattern in which bright spots are gathered may appear to be almost circular, and this case is expressed as “annular”.
  • annular includes those in which the outer circle of the ring and the inner circle appear to be substantially circular, and the outer circle of the ring and a part of the outer shape of the inner circle are convex or concave. It is a concept including what appears to be.
  • the term “present in” means that 30% or more (more preferably 50% or more, even more preferably 80% or more, particularly preferably 90% or more) of luminescent spots constituting the Fourier transform image have wavenumbers. It means that the absolute value is within a range of 10 ⁇ m ⁇ 1 or less (more preferably 1.25 to 10 ⁇ m ⁇ 1 , more preferably 1.25 to 5 ⁇ m ⁇ 1 ).
  • the concavo-convex structure itself has neither pitch distribution nor directivity, the Fourier transform image also appears as a random pattern (no pattern), but the concavo-convex structure is isotropic in the XY direction as a whole, but the pitch distribution is In some cases, a circular or annular Fourier transform image appears. Further, when the concavo-convex structure has a single pitch, the ring appearing in the Fourier transform image tends to be sharp.
  • the two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
  • the wave number 2.38 ⁇ m ⁇ 1 was the strongest. That is, the average pitch was 420 nm.
  • the average pitch can be obtained as follows. For each point of the Fourier transform image, the distance (unit: ⁇ m ⁇ 1 ) and intensity from the origin of the Fourier transform image are obtained. Subsequently, for the points at the same distance, the average value of intensity is obtained. As described above, the relationship between the distance from the origin of the obtained Fourier transform image and the average value of the intensity is plotted, and fitting is performed using a spline function, and the wave number at which the intensity reaches the peak is expressed as the average wave number ( ⁇ m ⁇ 1 ). did.
  • the average pitch another method, for example, measuring an arbitrary 3 ⁇ m square (vertical 3 ⁇ m, horizontal 3 ⁇ m) measurement region of a diffraction grating to obtain an unevenness analysis image, and arbitrary adjacent convex portions in the unevenness analysis image Or you may calculate from the method of measuring the space
  • a photoresist manufactured by Tokyo Ohka Kogyo Co., Ltd .: TFR-H
  • TFR-H a photoresist
  • the exposed portion of the photoresist was etched away using a 2.5% strength TMAH aqueous solution as a developing solution to expose a part of the ITO.
  • the exposed ITO region was removed using 18% hydrochloric acid as an etchant.
  • the remaining photoresist was removed using a 1: 1 mixed solution of DMSO and NMP as a stripping solution.
  • a transparent electrode having a predetermined pattern was obtained.
  • the obtained substrate with a transparent electrode was washed with a brush, and organic substances adhering to the substrate were removed by ultrasonic washing using an organic solvent (IPA), followed by UV / O 3 treatment and 250 ° C. in advance.
  • the substrate was placed in the heating furnace and annealed for 20 minutes in an air atmosphere.
  • the directivity of light emission of the organic EL element obtained in this example was evaluated by the following method.
  • the emitted organic EL element was visually observed from all directions (direction of 360 degrees around the entire circumference).
  • a particularly bright place or a particularly dark place is not observed, and uniform brightness is exhibited in all directions. It was.
  • the organic EL element of the present invention has sufficiently low directivity of light emission.
  • Example 1 the temperature during film formation of the transparent electrode (ITO) of the organic EL element was set to 300 ° C.
  • the temperature during film formation of the transparent electrode may be lower than 300 ° C.
  • the transparent electrode is desired to have a low resistivity, and film formation at a high temperature is preferable in order to improve crystallinity.
  • the temperature during film formation is as low as about 100 ° C.
  • the ITO film formed on the substrate is relatively amorphous, the specific resistance is inferior, and the adhesion between the substrate and the ITO thin film is poor.
  • the uneven pattern formed with a normal UV curable resin or the like was difficult to withstand the high temperature film formation process, but can be applied to the high temperature film formation process by using a sol-gel material which is a kind of ceramic.
  • the cured resin as described above may deteriorate when left for a long period of time due to heat generated during light emission, and may cause yellowing or generation of gas. Although it is difficult to use, deterioration is suppressed in an organic EL element including a substrate manufactured using a sol-gel material.
  • Example 2 A diffraction grating substrate was produced in the same manner as in Example 1 except that a pressing roll heated to 150 ° C. was used. As a result, it was confirmed that pattern transfer was possible in the same manner as in Example 1, the average value of the depth distribution of the concave / convex pattern of the diffraction grating substrate was 56 nm, and the average pitch was 420 nm.
  • a diffraction grating substrate (hereinafter referred to as a “sol-gel pattern substrate”) in which a concavo-convex pattern is formed of a sol-gel material and a diffraction grating substrate (hereinafter referred to as a “resin pattern substrate”) in which the same concavo-convex pattern is formed of a resin.
  • a fluorine-based UV curable resin is applied on a 15 ⁇ 15 ⁇ 0.11 cm soda-lime glass substrate, and ultraviolet rays are irradiated at 600 mJ / cm 2 while pressing the diffraction grating mold prepared in Example 1.
  • the system UV curable resin was cured. After the resin was cured, the diffraction grating mold was peeled off from the cured resin. Thus, a resin pattern substrate to which the surface shape of the diffraction grating mold was transferred was obtained.
  • the processing assuming the cleaning step, the photolithography step, the ITO etching step, the photoresist stripping step and the annealing step before the thin film formation step of the manufacturing process of the organic EL element is performed. Then, the uneven pattern of the substrate before and after the treatment was observed.
  • a transparent electrode layer or the like is deposited on the substrate.
  • the layer is not formed on the substrate. The substrate was exposed to various environments without being deposited.
  • the sol-gel pattern substrate and the resin pattern substrate were cleaned using a small sheet style brush cleaning machine (manufactured by Imai Seisakusho Co., Ltd.).
  • a roll brush in which nylon having a diameter of 100 ⁇ m was implanted on the roll surface was used. Brush cleaning was performed under the conditions of a roll brush rotation speed of 500 rpm, a roll brush pressure to the substrate of 0.2 MPa, and a substrate transfer speed of 1 m / min. Pure water was used as the washing water, and two roll brushes were used.
  • UV / O 3 cleaning The sol-gel pattern substrate and the resin pattern substrate are accommodated in a UV / O 3 cleaning machine (PL16-110: Sen Special Light Source Co., Ltd.), and ozone is generated by UV light (wavelength 184.9 nm, 253.7 nm) from a low-pressure mercury lamp. Irradiated at / cm 2 for 10 minutes.
  • Annealing Step In order to examine the resistance of the substrate in the annealing step performed after the patterning of the transparent electrode, the sol-gel pattern substrate and the resin pattern substrate were each placed in a heating furnace at 250 ° C. for 20 minutes in the air atmosphere.
  • the inspection apparatus 300 shown in FIG. 11 is installed in a dark room, and the substrate 101 (sol-gel pattern substrate and resin pattern substrate) before and after the above five processes is attached to the inspection apparatus 300, and the substrate is scattered under the following conditions. The light intensity distribution was observed.
  • the inspection apparatus 300 photographs the reflected light from the substrate, a stage device 104 on which the substrate 101 is arranged, a highly directional LED bar illumination (LDL2-119 ⁇ 16BL manufactured by CCS Corporation) 122 that irradiates the substrate 101 with light.
  • a digital camera 125 and an image processing device 126 that processes and analyzes the captured image are provided.
  • the substrate 101 having a thickness of 30 mm ⁇ 30 mm ⁇ 0.7 mm was disposed so as to straddle the pair of black rectangular parallelepiped blocks 102 of the stage device 104.
  • the block height was 40 mm and the distance between the black blocks was 27 mm.
  • the LED bar illumination 122 has a light emission center wavelength of 470 nm and a light emitting part area of 119 mm ⁇ 160 mm, and the LED bar illumination 122 is installed at a height of 160 mm from the floor surface in a state inclined by 10 ° from the horizontal toward the floor surface.
  • the distance between the two LED bar lights 122 was 307 mm.
  • the digital camera 125 was installed at a distance of 770 mm from the substrate surface.
  • the blue pixel value was extracted from the obtained image from the digital camera, and the pixel value was displayed in gray gradation. Further, as shown in FIG. 12A, only pixel values on the straight line L1 extending in the X direction at the approximate center position in the Y direction of the image are extracted, and a profile of pixel values with respect to the pixel position in the X direction is obtained. Output. In addition, only the part (within the wavy frame in FIG. 12A) that is made into an organic EL element was output as the cross-sectional profile. An example of the profile of the pixel value with respect to the pixel position in the X direction obtained from the sol-gel pattern substrate is shown in FIG. In the example shown in FIG. 12B, the average pixel value was 113.
  • Example 1 scanning probe microscope with an environmental control unit “Nonavi II station / E-sweep” manufactured by SII Nanotechnology Inc.
  • the analysis conditions of the atomic force microscope are the same as in Example 1.
  • a measurement area of 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) was measured at an arbitrary position on the substrate, and an unevenness analysis image was obtained as described above.
  • the average pixel value exceeds 20% in the unevenness observation, and the average value of the depth distribution of the unevenness decreases in the SPM observation above 20%. It was observed that This is considered to be because the uneven pattern of the resin was eroded by the UV / O 3 cleaning.
  • the sol-gel pattern substrate no significant difference was observed in the observation results before and after UV / O 3 cleaning.
  • the ITO etching process it was observed that there were abnormal protrusions on the uneven surface by SPM observation of the resin pattern substrate. This is probably because the ITO etching treatment caused the resin to react with hydrochloric acid to generate abnormal precipitates.
  • the sol-gel pattern substrate there was no significant difference in the observation results before and after the ITO etching process. Further, in the annealed resin pattern substrate, the average pixel value exceeds 20% in the unevenness observation, and the average surface depth of the unevenness is lower than 20% in the SPM observation. It was observed. This is considered to be because the uneven pattern of the resin was partially melted by the high temperature of the annealing treatment. On the other hand, in the sol-gel pattern substrate, there was no significant difference in the observation results before and after the annealing treatment.
  • Example 1 An organic EL element was produced in the same manner as in Example 1 using the resin pattern substrate produced in Example 3 as a diffraction grating substrate.
  • the organic EL element of Example 1 exhibited a current efficiency of 111.1 cd / A at a luminance of 1000 cd / m 2 . Moreover, the organic EL element of Example 1 showed power efficiency of 97.7 lm / W at a luminance of 1000 cd / m 2 .
  • the organic EL device of Comparative Example 1 could not be evaluated as a device because the resin pattern collapsed due to mechanical damage during brush cleaning, damage during UV / O 3 cleaning, and thermal damage during ITO film formation.
  • an organic EL device prepared on a glass substrate having no pattern was prepared, and when the current efficiency and power efficiency were measured, it showed a current efficiency of 74.5 cd / A at a luminance of 1000 cd / m 2 . It showed a power efficiency of 58.4 lm / W at 1000 cd / m 2 .
  • the concave / convex pattern of the optical substrate used in the device manufacturing method of the present invention is formed from a sol-gel material
  • the concave / convex pattern is formed from a curable resin at various points as described below. This is an advantage over existing substrates. Since the sol-gel material is excellent in mechanical strength, scratches, adhesion of foreign matter, protrusions on the transparent electrode, etc. are unlikely to occur even if the concavo-convex pattern surface is washed after forming the substrate and the transparent electrode in the manufacturing process of the organic EL element. , Device defects caused by them can be suppressed. Therefore, the organic EL element as a device obtained by the method of the present invention is superior to the case of using a curable resin substrate in terms of the mechanical strength of the substrate having an uneven pattern.
  • the substrate formed from the sol-gel material manufactured according to the method of the present invention is excellent in chemical resistance. Therefore, it is relatively corrosion resistant to the alkaline liquid and organic solvent used in the cleaning process of the substrate and the transparent electrode, and various cleaning liquids can be used.
  • an alkaline developer or an acidic etchant may be used during patterning of the transparent substrate, and the developer and etchant are also resistant to corrosion. This is advantageous compared to a curable resin substrate having a relatively low resistance to an alkaline solution or an acid solution.
  • the substrate formed from the sol-gel material manufactured according to the method of the present invention is excellent in heat resistance. For this reason, it can endure the high temperature atmosphere of the sputtering process in the transparent electrode manufacturing process of an organic EL element. Furthermore, the substrate formed from the sol-gel material manufactured according to the method of the present invention is excellent in UV resistance and weather resistance as compared with the curable resin substrate. For this reason, it has tolerance also to the UV / O 3 washing
  • the organic EL element as a device manufactured by the method of the present invention When used outdoors, deterioration due to sunlight can be suppressed as compared with the case where a curable resin substrate is used. Further, the cured resin as described above may deteriorate when left for a long period of time due to heat generated during light emission, and may cause yellowing or generation of gas. Although it is difficult to use, deterioration is suppressed in an organic EL element including a substrate manufactured using a sol-gel material.
  • the optical substrate manufacturing method and manufacturing apparatus and the device manufacturing method according to the present invention are not limited to the above-described embodiments, and are within the scope of the technical idea described in the claims. Can be modified as appropriate.
  • the diffraction grating substrate is manufactured manually using a bar coater and an oven, but may be manufactured using an optical substrate manufacturing apparatus as shown in FIG.
  • cured by heating was used, you may use a photocurable sol-gel material instead.
  • the coating film (sol-gel material) can be cured by light irradiation instead of firing the coating film.
  • the method and apparatus for producing an optical substrate of the present invention can produce an optical substrate with high throughput while accurately and reliably transferring a fine pattern.
  • the method of manufacturing the device of the present invention uses an optical substrate with a fine uneven pattern that is excellent in heat resistance, weather resistance and corrosion resistance manufactured by the manufacturing method and manufacturing apparatus of the present invention.
  • the device manufacturing process is also resistant, and the lifetime of these devices can be extended. Therefore, according to the device manufacturing method of the present invention, various devices such as an organic EL element and a solar cell excellent in heat resistance, weather resistance and corrosion resistance can be manufactured with high throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Electroluminescent Light Sources (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

光学基板を製造する方法は、長尺状のフィルム状モールド(80a)を準備する工程S0と、ゾル溶液を調整する工程S1と、基板上にゾル溶液の塗膜(42)を形成する工程S2と、前記塗膜を乾燥する工程S3と、前記フィルム状モールドを押圧ロール(22)に送りこみながら、押圧ロールより前記乾燥した塗膜にフィルム状モールドのパターン面を押圧する工程S4と、前記フィルム状モールドを塗膜から剥離する工程S5と、前記凹凸パターンが転写された塗膜を焼成する工程S6とを有する。

Description

フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法
 本発明は、長尺のフィルム状モールドを用いて光の散乱や回折のための微細な凹凸パターンを有する光学基板を製造するための製造方法及びその製造方法を実施するための装置、並びにその製造方法で製造した光学基板を有するデバイスの製造方法に関する。
 半導体集積回路のような微細パターンを形成する方法として、リソグラフィ法が知られている。リソグラフィ法で形成されるパターンの解像度は、光源の波長や光学系の開口数に依存しており、近年の微細化デバイスの需要に応えるために、より短波長の光源が要望されている。しかしながら、短波長光源は高価であり、その開発は容易ではなく、そのような短波長光を透過する光学材料の開発も必要である。また、従来のリソグラフィ法で大面積のパターンを製造することは、大型の光学素子を必要とし、技術的にも経済的な面でも困難を伴う。それゆえ、大面積を有する所望のパターンを形成する新規な方法が検討されていた。
 従来のリソグラフィ装置を使わずに、微細パターンを形成する方法としてナノインプリント法が知られている。ナノインプリント法は、樹脂をモールド(型)と基板で挟み込むことでナノメートルオーダーのパターンを転写することができる技術であり、使用材料によって、熱ナノインプリント法、光ナノインプリント法などが検討されている。このうち、光ナノインプリント法は、i)樹脂層の塗布、ii)モールドによるプレス、iii)光硬化及びiv)離型の四工程からなり、このような単純なプロセスでナノサイズの加工を実現できる点で優れている。特に、樹脂層は、光照射により硬化する光硬化性樹脂を用いるためにパターン転写工程にかかる時間が短く、高スループットが期待できる。このため、半導体デバイスのみならず、有機EL素子やLEDなどの光学部材、MEMS、バイオチップなど多くの分野で実用化が期待されている。
 例えば、有機EL素子(有機発光ダイオード)では、正孔注入層から入った正孔と、電子注入層から入った電子が、それぞれ、発光層へ運ばれて、発光層内の有機分子上でそれらが再結合して有機分子を励起して、それにより光が放出される。それゆえ、有機EL素子を表示装置や照明装置として使用するには、発光層からの光を素子表面から効率よく取り出す必要があり、このために、回折格子基板を有機EL素子の光取り出し面に設けることが特許文献1で知られている。
特開2006-236748 WO2011/007878A1
 また、本出願人は、特許文献2において、有機EL素子用の回折格子基板の凹凸パターンを製造するために、所定の条件を満たすブロック共重合体を溶媒に溶解した溶液を基材上に塗布し、ブロック共重合体の自己組織化する現象を用いてブロック共重合体のミクロ相分離構造を形成することにより、微細で不規則な凹凸パターンが形成された母型(金属基板)を得る方法を開示している。得られた母型にシリコーン系ポリマーと硬化剤の混合液を滴下して硬化させてモールドとしての転写パターンを得た後、この転写パターンに硬化性樹脂を塗布したガラス基板を押しつけて紫外線により硬化性樹脂を硬化させることで、転写パターンが複製された回折格子が作製される。この回折格子上に、透明電極、有機層及び金属電極を積層することで有機EL素子が得られる。
 しかし、上記のような有機EL素子用の回折格子を量産するには、モールドとしての転写パターンを用いて硬化性樹脂などの材料に効率良く転写を行う必要がある。
 それゆえ、ナノインプリント法を用いて有機EL素子等に用いられる回折格子基板等の光学基板を高いスループットで量産することができる新しい転写プロセス及び転写装置が要望されていた。
 ところで、上記のような光硬化性樹脂は一般に耐熱性が低く、高温で分解や黄変が発生する。したがって、後続する工程に高温処理があると微細パターンを有する膜が破壊してしまう恐れがある。また、光硬化性樹脂はガラス基板への密着性が低く、さらには、パターン転写された樹脂層を有機EL素子などの素子に用いた場合、樹脂層から不純物が溶出して素子に悪影響を与える恐れがある。従って、ナノインプリント法を用いて有機EL素子用の回折格子基板などの光学基板を高いスループットで量産するために、ガラス基板上に凹凸パターンを形成するための材料やモールド材料を最適化する必要もある。
 そこで、本発明の目的は、基板に対して高い密着性を有すると共に耐熱性及び耐候性を有する微細凹凸パターンを有する光学基板、及びその光学基板を備えたデバイスを高いスループットで量産することができる新規な製造方法及び製造装置を提供することにある。
 本発明の第1の態様に従えば、凹凸パターンを有する光学基板を製造する方法であって、
 凹凸パターン面を有する長尺のフィルム状モールドを用意する工程と、
 基板上にゾルゲル材料の塗膜を形成する工程と、
 前記フィルム状モールドの前記凹凸パターン面と前記塗膜を対向させて、押圧ロールをフィルム状モールドの前記凹凸パターン面と反対側の面に押し付けて前記凹凸パターン面を前記塗膜に転写する工程と、
 前記フィルム状モールドを塗膜から剥離する工程と、
 前記凹凸パターンが転写された塗膜を硬化する工程とを備えることを特徴とする光学基板を製造する方法が提供される。
 前記光学基板を製造する方法において、前記塗膜を硬化する工程は、塗膜を焼成することにより硬化することを含んでもよい。
 前記光学基板を製造する方法において、前記長尺のフィルム状モールドを用意する工程は、
 長尺のフィルム状基材に凹凸形成材料を塗布することと、
 前記塗布された凹凸形成材料に、凹凸パターンを有する転写ロールを回転しながら押し付けて凹凸形成材料に前記凹凸パターンをロール転写することと、
 前記凹凸パターンがロール転写された凹凸形成材料を硬化することによりロール形態の前記長尺のフィルム状モールドを得ることを含んでいてもよい。また、前記硬化した凹凸形成材料を有するフィルム状基材をフィルム巻き取りロールにより巻き取ってもよく、及び/または、前記フィルム状基材を繰り出すフィルム繰り出しロールと巻き取るフィルム巻き取りロールを用いて、前記フィルム状基材を搬送させながら、前記転写ロールの凹凸パターンを転写してもよい。いずれの場合においても、前記フィルム巻き取りロールに巻き取られたロール形態の前記長尺のフィルム状モールドが前記押圧ロールに対して繰り出されて移動し得る。さらに、前記剥離された前記長尺のフィルム状モールドをモールド巻き取りロールで巻き取ってもよい。
 前記光学基板を製造する方法において、前記凹凸形成材料を加熱しながら、前記押圧ロールを前記凹凸パターン面と反対側の面に押しつけ得る。こうすることで、ゾルゲル材料の仮焼成も同時に行われ、凹凸パターンの形成を確実にすると共に押圧後の凹凸パターン面の塗膜からの剥離を容易にすることができる。また、前記転写工程と前記剥離工程の間または前記剥離工程において、前記押圧された凹凸形成材料を加熱して押圧後のパターン面の塗膜からの剥離を一層容易にすることができる。
 前記光学基板を製造する方法において、前記長尺のフィルム状モールドを連続的に押圧ロールの下方に送り込むとともに、複数の基板を所定時間間隔でゾルゲル材料の塗膜を形成しながら前記押圧ロールに搬送し、前記複数の基板の塗膜に順次前記フィルム状モールドの凹凸パターン面を押圧ロールで押し付けてもよい。長尺のフィルム状モールドを用いているので、このような基板の連続処理が可能となり、基板製造のスループットを向上することができる。フィルム状モールドの長さは、1ロット分の光学基板、例えば、数百枚~数千枚の光学基板を製造するのに足りる長さ、例えば数百メートルから数千メートルに調整することができる。
 前記光学基板を製造する方法に用いる前記フィルム状モールドの前記凹凸パターンは、例えば、不規則な凹凸パターンであり、凹凸の平均ピッチが、100~1500nmの範囲であり、凹凸の深さ分布の平均値(平均高さ)が20~200nmの範囲にすることができる。
 本発明の第2の態様に従えば、光学基板を製造する装置であって、
 基板上にゾルゲル材料の塗膜を形成する塗膜形成部と、
 前記塗膜が形成された基板を所定位置に搬送する基板搬送部と、
 凹凸パターン面を有する長尺状のフィルム状モールドを繰り出すモールド繰り出しロールと前記長尺状のフィルム状モールドを巻き取るモールド巻き取りロールとを備え、前記モールド繰り出しロールから前記所定位置に連続的に前記フィルム状モールドを繰り出すと共に前記フィルム状モールドを前記モールド巻き取りロールで巻き取ることで前記フィルム状モールドを前記所定位置に対して搬送するモールド搬送部と、
 前記所定位置に回転可能に設置され、前記モールド搬送部で前記所定位置に繰り出された前記長尺状の前記フィルム状モールドの凹凸パターン面の一部を、前記基板搬送部により前記所定位置に搬送された前記基板の塗膜に押し付けるための押圧ロールとを備えることを特徴とする光学基板の製造装置が提供される。
 前記光学基板の製造装置は、さらに、前記押圧ロールにより押し付けられた前記長尺状のフィルム状モールドの凹凸パターン面の一部を前記基板の塗膜から剥離するための剥離ロールを備え得る。
 前記光学基板の製造装置は、さらに、前記フィルム状モールドの凹凸パターン面の一部が押し付けられる前記基板の塗膜を加熱する加熱手段を備えてよく、この前記加熱手段は前記押圧ロール内に設けてもよい。前記光学基板の製造装置は、さらに、前記フィルム状モールドが前記塗膜から剥離されるときに前記塗膜を加熱する加熱手段を備えてもよい。
 前記光学基板の製造装置は、さらに、前記押圧ロールと対向する位置に設けられて基板を下側から支持する支持ロールを備えてよく、前記塗膜形成部が、基板を保持しながら移動させる基板ステージを備えてよい。
 前記光学基板の製造装置に用いる前記フィルム状モールドの前記凹凸パターンは、例えば、光の回折または散乱のために用いられる不規則な凹凸パターンであり、凹凸の平均ピッチが、100~1500nmの範囲であり、凹凸の深さ分布の平均値(平均高さ)が20~200nmの範囲であり得る。
 前記光学基板の製造装置は、さらに、前記長尺状のフィルム状モールドを形成するロールプロセス装置を備えてよく、このロールプロセス装置は、基板フィルムを搬送する搬送系と、搬送中の基板フィルムに凹凸形成材料を塗布する塗布機と、塗布機の下流側に位置してパターンを転写する転写ロールと、前記基板フィルムに光を照射するための照射光源とを有することができる。前記搬送系は、前記基板フィルムを繰り出すフィルム繰り出しロールと、前記基板フィルムを前記転写ロールに付勢するニップロールと、前記基板フィルムの転写ロールからの剥離を促進する剥離ロールと、前記パターンが転写された基板フィルムを巻き取るフィルム巻き取りロールとを有し得る。この場合、前記基板フィルムを巻き取ったフィルム巻き取りロールが、前記フィルム状モールドを繰り出すモールド繰り出しロールとして使用されることができる。
 本発明の第3の態様に従えば、凹凸パターンを有する光学基板を備えたデバイスの製造方法であって、
 ゾルゲル材料を基板上に塗布し、塗布されたゾルゲル材料に所定の凹凸パターンを転写することで凹凸パターンが形成された基板を形成する基板形成工程と、
 前記凹凸パターンが形成された基板を洗浄する洗浄工程と、
 洗浄された基板上に第1電極をパターニングにより形成する第1電極形成工程と、
 第1電極が形成された基板をアニールするアニール工程と、
 第1電極上に薄膜を形成する薄膜形成工程と、
 前記薄膜上に第2電極を形成する第2電極形成工程とを含むデバイスの製造方法が提供される。
 本発明のデバイス製造方法においては、凹凸パターンの被転写材料としてのゾルゲル材料が樹脂材料に比べて高強度であり耐食性を有するので、前記洗浄工程において、超音波洗浄、ブラシ洗浄、及び/またはUV/O洗浄を行ってもよい。
 また、本発明のデバイス製造方法においては、前記パターニングが、酸またはアルカリ溶剤を用いて行うものであって、前記パターニングが、第1電極層の形成、レジスト塗布、露光及び現像、第1電極層のエッチング及びレジストの剥離を含んでもよい。ゾルゲル材料はそれらの処理に使用される溶剤に対しても耐食性を有する。
 また、本発明のデバイス製造方法においては、凹凸パターンの被転写材料としてのゾルゲル材料が耐熱性を有するので、前記アニール処理の温度を160℃~360℃にしてもよい。
 本発明のデバイスの製造方法は、前記デバイスとして有機EL素子の製造に好適であり、この場合、第1電極は透明電極であり、薄膜層は有機層を含み、第2電極は金属電極になり得る。また、本発明のデバイスの製造方法は、前記デバイスとして太陽電池の製造に好適であり、この場合、第1電極は透明電極であり、薄膜層は半導体層を含み、第2電極は金属電極になり得る。
 本発明のデバイスの製造方法に使用される前記凹凸パターンは、光の回折または散乱のために用いられる不規則な凹凸パターンであり、凹凸の平均ピッチが100~1500nmの範囲であり、凹凸の深さ分布の平均値が20~200nmの範囲であってもよい。また、前記基板がガラス基板であり、前記ゾルゲル材料がシリカ前駆体を含んでもよい。本発明のデバイスの製造方法において、前記ゾルゲル材料を基板上に塗布し、塗布されたゾルゲル材料に所定の凹凸パターンを転写した後に、前記ゾルゲル材料を300℃以上で焼成することを含んでもよい。
 本発明のデバイス製造方法において、前記基板形成工程が、
凹凸パターン面を有する長尺のフィルム状モールドを用意する工程と、
 基板上にゾルゲル材料の塗膜を形成する工程と、
 前記フィルム状モールドの前記凹凸パターン面と前記塗膜を対向させて、押圧ロールをフィルム状モールドの前記凹凸パターン面と反対側の面に押し付けて前記凹凸パターン面を前記塗膜に転写する工程と、
 前記フィルム状モールドを塗膜から剥離する工程と、
 前記凹凸パターンが転写された塗膜を焼成する工程とを含んでもよい。
 本発明の光学基板を製造する方法においては、凹凸パターン形成材料としてゾルゲル材料を用い、このようなゾルゲル材料による凹凸パターン形成のために長尺のフィルム状モールドによるロールプロセスを用いることで、パターン転写を正確に且つ確実に行いつつも高いスループットで光学基板を製造することができる。本発明の光学基板の製造方法により製造された光学基板の凹凸パターンはゾルゲル材料から形成されているので耐熱性、耐候性(耐光性を含む概念)及び耐食性に優れ、その光学基板を組み込んだ素子の製造プロセスにも耐性があり、また、それらの素子を長寿命化することができる。
 また、本発明では長尺のフィルム状モールドを用いているので次のような利点がある。金属や石英などから形成された硬質のモールドは、その凹凸パターンに欠陥が見つかった場合に、その欠陥部の洗浄やリペア(欠陥補修)が可能であり、それにより、欠陥部がゾルゲル材料層へ転写されることによる不良を防ぐことができる。しかし、フィルム状モールドの場合は、そのような洗浄・リペアが容易ではない。一方で、金属や石英などのモールドはロール状であり、モールドが目詰まりなどで欠陥が生じた際、直ぐに転写装置を止めてモールドの交換を行わなければならない。これに対して、フィルム状モールドでは枚葉でガラス基板に対応させながら転写するので、目詰まりなどの不良がある箇所は検査段階でマークしておき、その不良箇所がガラス基板を通過するまでガラス基板側の搬送を待機させることができる。このため、全体的に見ると不良品の発生を低減でき、それによりスループットを向上させることができる。さらに、金属や石英などの硬質モールドから直接ゾルゲル材料層へ凹凸パターンを転写しようとすると、次に示すように種々の制限が生じ、所望の性能を十分に引き出せないことがある。例えば、ゾルゲル材料層が形成される基板にガラスなどの硬質の基板を用いる場合、硬質同士のためモールドの押し圧を強めると基板が割れるなどのダメージが入り、逆に弱めると凹凸パターン転写が浅くなるなど押し圧の調整が難しい。そのため、基板に柔軟な材料を用いるか、モールドに柔軟な材料を用いることを強いられる。仮にフィルム状モールド(ソフトモールド)を用いた場合でも、フィルム状モールドに対しては離型しやすく、基板側には密着性が良く、かつ凹凸のパターン転写性も良好な材料が要求されるため、限定された材料を選定することになる。このため、金属モールドから一旦、フィルム状モールドを作製する工程と、これを用いてゾルゲル材料層へ転写するという工程の二工程に分け、それぞれの工程に適した材料を選定することで、所望の基板に、所望の材料を使用することができ、必要特性のみならず、パターン欠陥がなく離形性が良好な転写が行える。
 本発明のデバイスを製造する方法においては、光学基板の凹凸パターンがゾルゲル材料から形成されているので、凹凸パターンが形成された基板を洗浄する洗浄工程においてブラシ洗浄やUV/O洗浄に対して耐性を有し、また、第1電極形成工程において使用される酸またはアルカリ溶剤に対しても耐食性を有し、さらに後続のアニール工程における高温にも耐熱性を有する。それゆえ、凹凸パターンを有する光学基板の光学特性や光学基板上に形成される動作層としての薄膜との密着性を阻害することなくデバイスを製造することが可能となる。また、本発明のデバイスの製造方法により製造されたデバイスそのものの耐熱性、耐候性及び耐食性にも貢献する。それゆえ、本発明のデバイスの製造方法は、有機EL素子や太陽電池のなどの各種デバイスを高いスループットで製造する上で極めて有用となる。
本発明のデバイスの製造方法を示すフローチャートである。 本発明のデバイスの製造方法に用いる光学基板の製造工程を示すフローチャートである。 光学基板の製造に用いるフィルム状モールドを製造するためのロールプロセス装置の概念図である。 フィルム状モールドを用いたロールプロセスを説明するための概念図である。 図5(a)~(f)はITO透明電極を製造するプロセスを説明する概念図である。 有機EL素子の断面構造を示す図である。 本発明の光学基板の製造方法を実施するための光学基板製造装置の概念図である。 剥離ロールを使用しない光学基板の製造装置の変形形態を示す概念図である。 フィルム状モールドを無端ベルトとして用いる光学基板製造装置の変形形態を示す概念図である。 ゾルゲル材料層の加熱手段としてヒートゾーンを押圧部に設けた光学基板製造装置の変形形態を示す概念図である。 回折格子基板のムラを検査する装置の概念図である。 図12(a)は、実施例1で観測された基板表面から像を示す写真であり、図12(b)は、図12(a)の写真の直線L1上の画素位置とそのピクセル値のプロファイルを示すグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。本発明の凹凸パターンを有する光学基板を備えたデバイスの製造方法は、図1に示すように、凹凸パターンが形成された基板を形成する基板形成工程P1と、前記凹凸パターンが形成された基板を洗浄する洗浄工程P2と、洗浄された基板上に第1電極を、酸またはアルカリ溶剤を用いたパターニングにより形成する第1電極形成工程P3と、パターニングされた第1電極が形成された基板を所定温度でアニールするアニール工程P4と、アニールされた基板上に薄膜を形成する薄膜形成工程P5と、薄膜上に第2電極を形成する第2電極形成工程P6を主に含む。凹凸パターンが形成された基板を形成する基板形成工程P1は、本発明の凹凸パターンを有する光学基板の製造方法を含み、その凹凸パターンを有する光学基板の製造方法は、図2に示すように、主に、フィルム状モールドを用意する工程S0、ゾルゲル材料を調製する溶液調製工程S1、調製されたゾルゲル材料を基板に塗布する塗布工程S2、基板に塗布されたゾルゲル材料の塗膜を乾燥する乾燥工程S3、乾燥した塗膜に、転写パターンが形成されたフィルム状モールドを押圧ロールにより押し付ける転写工程S4、モールドを塗膜から剥離する剥離工程S5、及び塗膜を本焼成する本焼成工程S6を有する。
 以下、本発明の光学基板の製造方法及びその製造方法で製造した光学基板を有するデバイスの製造方法を、デバイスとして図6に示すように凹凸パターンを形成したゾルゲル材料層42を有する基板(回折格子基板)40上に積層構造を有する有機EL素子200の製造プロセスを例に挙げて説明する。
[基板形成工程]
 最初に、本発明の光学基板の製造方法により、凹凸パターンを形成したゾルゲル材料層42を有する基板40を製造する方法について説明する。
<フィルム状モールドを用意する工程>
 本発明の光学部材の製造に用いるフィルム状モールドは、長尺で可撓性のあるフィルムまたはシート状であり、表面に凹凸の転写パターンを有するモールドである。例えば、シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレートのような有機材料などで形成される。また、凹凸パターンは、上記材料に直接形成されていてもよいし、上記材料を基材(基板シート)として、その上に被覆された凹凸形成材料に形成してもよい。凹凸形成材料としては、光硬化性樹脂や、熱硬化性樹脂、熱可塑性樹脂が使用できる。
 フィルム状モールドは、例えば、長さ10m以上の長尺なモールドであり、幅は、50~3000mm、厚み1~500μmにし得る。フィルム状モールドの寸法、特に長さは量産する光学基板の寸法や、1回の製造プロセスで連続的に製造する光学基板の数(ロット数)によって適宜設定することができる。基材と被覆材料の間には、密着性を高めるために表面処理や易接着処理を施してもよい。また、必要に応じて、それらの凹凸パターン面上に離型処理を施してもよい。凹凸パターンは、任意の形状を任意の方法で形成し得る。
 フィルム状モールドの凹凸パターンは、最終的に得られる光学基板の用途により異なるが、例えば、凹凸のピッチが均一ではなく、凹凸の向きに指向性がないような不規則な凹凸パターンにしてよい。凹凸の平均ピッチとしては、例えば、光学基板を可視光の回折や散乱の用途に用いる場合には、100~1500nmの範囲にすることができ、200~1500nmの範囲であることがより好ましい。凹凸の平均ピッチが前記下限未満では、可視光の波長に対してピッチが小さくなりすぎるため、凹凸による光の回折が不十分になる傾向にあり、他方、上限を超えると、回折角が小さくなり、回折格子のような光学素子としての機能が失われてしまう傾向にある。同様な用途においては、凹凸の深さ分布の平均値(平均高さ)は、20~200nmの範囲であることが好ましく、50~150nmの範囲であることがより好ましい。
 このような凹凸パターンから散乱及び/または回折される光は、単一のまたは狭い帯域の波長の光ではなく、比較的広域の波長帯を有し、散乱光及び/または回折される光は指向性がなく、あらゆる方向に向かう。但し、「不規則な凹凸パターン」には、表面の凹凸の形状を解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像が円もしくは円環状の模様を示すような、すなわち、上記凹凸の向きの指向性はないものの凹凸のピッチの分布は有するような疑似周期構造を含む。それゆえ、このような疑似周期構造を有する基板においては、その凹凸ピッチの分布が可視光線を回折する限り、有機EL素子のような面発光素子などに使用される回折基板や太陽電池の透明導電性基板など好適である。
 本発明に用いる長尺状のフィルム状モールドの製造方法の一例について、図3を参照しながら説明する。図3に示したロールプロセス装置(第1ユニット)70は、長尺の基板フィルムに被覆された被膜上に凹凸パターンを形成することによりフィルム状モールドを製造するための装置であり、基板フィルム(基材)80の搬送系86と、搬送中の基板フィルム80に凹凸形成材料を塗布するダイコータ82と、ダイコータ82の下流側に位置してパターンを転写する転写ロール(金属モールド)90と、基板フィルム80を挟んで転写ロール90と対向して設けられ、基板フィルム80にUV光を照射するための照射光源85とを主に備える。基板フィルム80の搬送系86は、基板フィルム80を繰り出すフィルム繰り出しロール72と、基板フィルム80を挟んで転写ロール90に対向して配置されるニップロール74と、転写ロール90からの基板フィルム80の剥離を促す剥離ロール76と、パターンが転写された基板フィルム80a(フィルム状モールド)を巻き取るフィルム巻き取りロール87と、基板フィルム80の張力を維持しながら基板フィルム80を搬送する複数の搬送ロール78とを有する。
 ロールプロセス装置70を用いて、以下のような製造プロセスによってフィルム状モールドが製造される。予めフィルム繰り出しロール72に巻き付けられている基板フィルム80は、フィルム繰り出しロール72及びフィルム巻き取りロール87などの回転により下流側に繰り出される。基板フィルム80がダイコータ82を通過するときに、ダイコータ82により凹凸形成材料84が基板フィルム80の一面に塗布されて所定の厚みの塗膜が形成される。次いで、基板フィルム80の塗膜がニップロール74にて転写ロール90の外周面に押し付けられて、転写ロール90の外周面のパターンが塗膜に転写される。それと同時またはその直後に照射光源85からのUV光が塗膜に照射されて凹凸形成材料84が硬化する。UV光の波長は、凹凸形成材料84により異なるが、一般に200~450nmであり、照射量は10mJ/cm~5J/cmにし得る。硬化したパターンを有する凹凸形成材料付き基板フィルム80は剥離ロール76で転写ロール90から引き離された後、フィルム巻き取りロール87により巻き取られる。こうして、長尺のフィルム状モールド80aが得られる。このような長尺のフィルム状モールド80aは、ロール状に巻き取られた形態で得られるため、後述する押圧ロールを用いた光学基板の量産プロセスに好適であり、この押圧ロールを用いた光学基板の量産プロセスを行う装置への搬送にも好適な形状である。また、フィルム状モールドを作製して一旦ロール状に巻取ることで、保管、エージング処理ができる。
 上記製造プロセスにおいて、基板フィルム80は、例えば、ガラス等の無機材料からなる基材;シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の有機材料からなる基材が挙げられる。基板フィルムの厚みは、例えば、1~500μmの範囲にし得る。
 凹凸形成材料84としては、例えば、エポキシ系、アクリル系、メタクリル系、ビニルエーテル系、オキセタン系、ウレタン系、メラミン系、ウレア系、ポリエステル系、フェノール系、架橋型液晶系、フッ素系、シリコーン系等の各種UV硬化性樹脂のような硬化性樹脂が挙げられる。硬化性樹脂の厚みは0.5~500μmの範囲であることが好ましい。厚みが前記下限未満では、硬化樹脂層の表面に形成される凹凸の高さが不十分となり易く、前記上限を超えると、硬化時に生じる樹脂の体積変化の影響が大きくなり凹凸形状が良好に形成できなくなる可能性がある。
 上記製造プロセスにおいては、凹凸形成材料84を塗布するためにダイコータによるダイコート法を用いたが、これに代えて、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。さらに、硬化性樹脂のような凹凸形成材料84を硬化させる条件としては、使用する樹脂の種類により異なるが、例えば、硬化温度が室温~250℃の範囲であり、照射量は10mJ/cm~5J/cmの範囲であることが好ましい。また、UV光に代えて電子線のようなエネルギー線を照射することで硬化させてもよい。
 上記製造プロセスで用いた転写ロール90は、例えば、金属ロールなどのロール表面に直接パターンが形成されたものでも良いし、パターンを有する金属基板などの基板をロール上に巻き付け固定したものでも良いし、また、パターンを有する円筒状の基板を作製し、これをロールにはめ込んで固定したもの等でも良い。なお、転写ロール90は金属以外の硬質材料から形成されていてもよい。
 ここで、転写ロール90の表面に設けられる凹凸パターンの形成方法について説明する。凹凸パターンは、例えば、本出願人らによる特願2011-006487号に記載されたブロック共重合体の自己組織化(ミクロ相分離)を利用する方法(以下、適宜「BCP(Block Copolymer)法」という)や、本出願人らによるWO2011/007878A1に開示された蒸着膜上のポリマー膜を加熱・冷却することにポリマー表面の皺による凹凸を形成する方法(以下、適宜「BKL(Buckling)法」という)を用いて形成することが好適である。BCP法及びBKL法に代えて、フォトリソグラフィ法で形成してもよい。BCP法でパターンを形成する場合、パターンを形成する材料は任意の材料を使用することができるが、ポリスチレンのようなスチレン系ポリマー、ポリメチルメタクリレートのようなポリアルキルメタクリレート、ポリエチレンオキシド、ポリブタジエン、ポリイソプレン、ポリビニルピリジン、及びポリ乳酸からなる群から選択される2種の組合せからなるブロック共重合体が好適である。
 パターンの凹凸のピッチ及び高さは、任意であるが、例えば、パターンを可視領域の光を散乱または回折する回折格子の用途に用いる場合には、凹凸の平均ピッチとしては、100~1500nmの範囲にあることが好ましく、200~1500nmの範囲であることがより好ましい。凹凸の平均ピッチが前記下限未満では、可視光の波長に対してピッチが小さくなりすぎるため、凹凸による光の回折が生じなくなる傾向にあり、他方、上限を超えると、回折角が小さくなり、回折格子のような光学素子としての機能が失われてしまう傾向にある。凹凸の深さ分布の平均値は、20~200nmの範囲であることが好ましく、50~150nmの範囲であることがより好ましい。凹凸の深さ分布の平均値が前記下限未満では、可視光の波長に対して高さが低すぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、回折光強度にむらが生じ、この結果、例えば、この凹凸パターンを有機EL素子の光取り出し用の光学素子として利用した場合に、EL層内部の電界分布が不均一となって特定の箇所に電界が集中することによってリークが生じ易くなったり、寿命が短くなる傾向にある。
 パターンの母型をBCP法やBKL法により形成した後、以下のようにして電鋳法などにより、パターンをさらに転写したモールドを形成することができる。最初に、電鋳処理のための導電層となるシード層を、無電解めっき、スパッタまたは蒸着等により形成するパターンを有する母型上に形成することができる。シード層は、後続の電鋳工程における電流密度を均一にして後続の電鋳工程により堆積される金属層の厚みを一定にするために10nm以上が好ましい。シード層の材料として、例えば、ニッケル、銅、金、銀、白金、チタン、コバルト、錫、亜鉛、クロム、金・コバルト合金、金・ニッケル合金、ホウ素・ニッケル合金、はんだ、銅・ニッケル・クロム合金、錫ニッケル合金、ニッケル・パラジウム合金、ニッケル・コバルト・リン合金、またはそれらの合金などを用いることができる。次に、シード層上に電鋳(電界めっき)により金属層を堆積させる。金属層の厚みは、例えば、シード層の厚みを含めて全体で10~3000μmの厚さにすることができる。電鋳により堆積させる金属層の材料として、シード層として用いることができる上記金属種のいずれかを用いることができる。金属基板のモールドとしての耐摩耗性や、剥離性などの観点からは、ニッケルが好ましく、この場合、シード層についてもニッケルを用いることが好ましい。形成した金属層は、後続のモールドの形成のための樹脂層の押し付け、剥離及び洗浄などの処理の容易性からすれば、適度な硬度及び厚みを有することが望ましい。
 上記のようにして得られたシード層を含む金属層を、凹凸構造を有する母型から剥離して金属基板を得る。この剥離を容易に且つ確実にするために、電鋳を行う前にパターンの母型を加熱することによりアニール処理を施しておくことが好ましい。剥離方法は物理的に剥がしても構わないし、パターンを形成する材料を、それらを溶解する有機溶媒、例えば、トルエン、テトラヒドロフラン(THF)、クロロホルムなどを用いて溶解して除去してもよい。金属基板を母型から剥離するときに、残留している材料成分を洗浄にて除去することができる。洗浄方法としては、界面活性剤などを用いた湿式洗浄や紫外線やプラズマを使用した乾式洗浄を用いることができる。また、例えば、粘着剤や接着剤を用いて残留している材料成分を付着除去するなどしてもよい。こうして母型からパターンが転写された金属基板が得られる。こうして得られた金属基板をロール体の表面に巻きつけることで凹凸パターンを有する転写ロール90が得られる。この転写ロール90を用いて前述のような製造プロセスでフィルム状モールドを形成することができる。なお、長尺状のフィルム状モールドは、自ら製造する必要がなく、フィルムメーカなどの製造業者に作製させたものを使用してもよいことは言うまでもない。また、フィルム状モールドを用意する工程は、後述する転写工程S4の前であればよく、ゾルゲル材料調整工程S1の前に行う必要はない。
 <ゾルゲル材料調製工程>
 本発明の光学基板の製造方法において、ゾルゲル法によりパターンを転写する塗膜を形成するために用いるゾルゲル材料を調製する(図2の工程S1)。例えば、基板上に、シリカをゾルゲル法で合成する場合は、金属アルコキシド(シリカ前駆体)のゾルゲル材料を調製する。シリカの前駆体として、テトラメトキシシラン(MTES)、テトラエトキシシラン(TEOS)、テトラ-i-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-i-ブトキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシドモノマーや、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン、プロピルトリプロポキシシラン、イソプロピルトリプロポキシシラン、フェニルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリイソプロポキシシラン、フェニルトリイソプロポキシシラン等のトリアルコキシドモノマーや、これらモノマーを少量重合したポリマー、前記材料の一部に官能基やポリマーを導入したことを特徴とする複合材料などの金属アルコキシドが挙げられる。さらに、金属アセチルアセトネート、金属カルボキシレート、オキシ塩化物、塩化物や、それらの混合物などが挙げられるが、これらに限定されない。また、金属種としては、Si以外にTi、Sn、Al、Zn、Zr、Inなどや、これらの混合物などが挙げられるが、これらに限定されない。上記酸化金属の前駆体を適宜混合したものを用いることもできる。
 TEOSとMTESの混合物を用いる場合には、それらの混合比は、例えばモル比で1:1にすることができる。このゾルゲル材料は、加水分解及び重縮合反応を行わせることによって非晶質シリカを生成する。合成条件として溶液のpHを調整するために、塩酸等の酸またはアンモニア等のアルカリを添加する。pHは4以下もしくは10以上が好ましい。また、加水分解を行うために水を加えてもよい。加える水の量は、金属アルコキシド種に対してモル比で1.5倍以上にすることができる。ゾルゲル材料としてシリカ以外の材料を用いることができ、例えばTi系の材料やITO(インジウム・スズ・オキサイド)系の材料、ZnO、ZrO、Al等を使用し得る。
 ゾルゲル材料の溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類、酢酸エチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、2硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。特に、エタノールおよびイソプロピルアルコールが好ましく、またそれらに水を混合したものも好ましい。
 ゾルゲル材料の添加物としては、粘度調整のためのポリエチレングリコール、ポリエチレンオキシド、ヒドロキシプロピルセルロース、ポリビニルアルコールや、溶液安定剤であるトリエタノールアミンなどのアルカノールアミン、アセチルアセトンなどのβ―ジケトン、β―ケトエステル、ホルムアミド、ジメチルホルムアミド、ジオキサンなどを用いることが出来る。
 <塗布工程>
 上記のように調製したゾルゲル材料を基板上に塗布する(図2の工程S2)。量産性の観点から、複数の基板を連続的に搬送させながら所定位置でゾルゲル材料を基板に塗布することが好ましい。塗布方法として、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大面積の基板にゾルゲル材料を均一に塗布可能であること、ゾルゲル材料がゲル化する前に素早く塗布を完了させることができることからすれば、ダイコート法、バーコート法及びスピンコート法が好ましい。
 基板として、ガラスや石英、シリコン基板等の無機材料からなる基板やポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の樹脂基板を用い得る。基板は透明でも不透明でもよいが、この基板上にゾルゲル材料層が形成され、さらには光学基板がデバイスに組み込まれるときにさらにその上に機能層が形成されることからすれば、比較的硬質の基板が好ましい。また、この基板から得られた凹凸パターン基板を後述する有機EL素子の製造に用いるのであれば、基板は耐熱性、UV光等に対する耐候性を備える基板が望ましい。これらの点で、ガラスや石英、シリコン基板等の無機材料からなる基板がより好ましく、これらの無機材料からなる基板は、塗布されるゾルゲル材料が無機材料であることからすれば、基板とゾルゲル材料層との間で屈折率の差が少なく、光学基板内での意図しない屈折や反射を防止することができる点からも好ましい。基板上には密着性を向上させるために、表面処理や易接着層を設けるなどをしてもよいし、水分や酸素等の気体の浸入を防ぐ目的で、ガスバリア層を設けるなどしてもよい。なお、後の工程でゾルゲル材料層による所望の凹凸パターンが形成されるため基板表面(表面処理や易接着層がある場合にはそれらも含めて)は平坦でよく、この基板自体は所望の凹凸パターンを有さない。ゾルゲル材料が塗布された各基板はそのまま後続の乾燥工程および転写工程のためにそのまま搬送されることが好ましい。
 <乾燥工程>
 塗布工程後、塗膜(以下、適宜、「ゾルゲル材料層」とも言う)中の溶媒を蒸発させるために基板を大気中もしくは減圧下で保持して乾燥する(図2の工程S3)。この保持時間が短いと塗膜の粘度が低すぎて後続の転写工程にてパターン転写ができず、保持時間が長すぎると前駆体の重合反応が進みすぎて転写工程にて転写ができなくなる。光学基板を量産する場合には、この保持時間は、ゾルゲル材料の塗布から後続のフィルム状モールドによる転写工程に付されるまでの基板の搬送時間で管理することができる。この乾燥工程における基板の保持温度として、10~100℃の範囲で一定温度が望ましく、10~30℃の範囲で一定温度がより望ましい。保持温度がこの範囲より高いと、転写工程前に塗膜のゲル化反応が急速に進行するために好ましくなく、保持温度がこの範囲より低いと、転写工程前の塗膜のゲル化反応が遅く、生産性が低下し好ましくない。ゾルゲル材料を塗布後、溶媒の蒸発が進むとともに前駆体の重合反応も進行し、ゾルゲル材料の粘度などの物性も短時間で変化する。溶媒の蒸発量は、ゾルゲル材料調製時に使用する溶媒量(ゾルゲル材料の濃度)にも依存する。例えば、ゾルゲル材料がシリカ前駆体である場合には、ゲル化反応としてシリカ前駆体の加水分解・縮重合反応が起こり、脱アルコール反応を通じてゾルゲル材料中にアルコールが生成する。一方、ゾルゲル材料中には溶媒としてアルコールのような揮発性溶媒が使用されている。つまり、ゾルゲル材料中には、加水分解過程に生成したアルコールと、溶媒として存在したアルコールが含まれ、それらを乾燥工程で除去することでゾルゲル反応が進行する。それゆえ、ゲル化反応と用いる溶媒も考慮して保持時間や保持温度を調整することが望ましい。なお、乾燥工程では、基板をそのまま保持するだけでゾルゲル材料中の溶媒が蒸発するので、必ずしも加熱や送風などの積極的な乾燥操作を行う必要がなく、塗膜を形成した基板をそのまま所定時間だけ放置したり、後続の工程のために所定時間の間に搬送したりするだけでも足りる。すなわち、基板形成工程において乾燥工程は必須ではない。
 <転写工程>
 上記のようにして設定された経過時間後に、前述の工程S0で用意したフィルム状モールドを押圧ロール(ラミネートロール)により塗膜に押し付けることでフィルム状モールドの凹凸パターンを基板上の塗膜に転写する(図2の工程S4)。例えば、図4に示すように押圧ロール22とその直下に搬送されている基板40との間にフィルム状モールド80aを送り込むことでフィルム状モールド80aの凹凸パターンを基板40上の塗膜(ゾルゲル材料)42に転写することができる。すなわち、フィルム状モールド80aを押圧ロール22により塗膜42に押し付ける際に、フィルム状モールド80aと基板40を同期して搬送しながらフィルム状モールド80aを基板40の塗膜42の表面に被覆する。この際、押圧ロール22をフィルム状モールド80aの裏面(凹凸パターンが形成された面と反対側の面)に押しつけながら回転させることで、フィルム状モールド80aと基板40が進行しながら密着する。なお、長尺のフィルム状モールド80aを押圧ロール22に向かって送り込むには、工程S0にて長尺のフィルム状モールド80aが巻き取られたフィルム巻き取りロール87(図3参照)からそのままフィルム状モールド80aを繰り出して用いるのが有利である。
 このような押圧ロールを用いたロールプロセスでは、プレス式と比較して以下のような利点がある。i)モールドと塗膜とが接する時間が短いため、モールドや基板及び基板を設置するステージなどの熱膨張係数の差によるパターンくずれを防ぐことができる。ii)ロールプロセスであるため生産性が向上し、さらに長尺のフィルム状モールドを用いることで生産性を一層向上することができる。iii)ゲル溶液中の溶媒の突沸によってパターン中にガスの気泡が発生したり、ガス痕が残ったりすることを防止することができる。iv)基板(塗膜)と線接触するため、転写圧力及び剥離力を小さくでき、大面積化に対応し易い。v)押圧時に気泡をかみ込むことがない。さらに、本発明の製造方法では、モールドとして可撓性のあるフィルム状モールドを用いているので、比較的硬質な基板40の上に形成されたゾルゲル材料層42にモールドの凹凸パターンを転写するときに、モールドのパターンを基板全面に渡ってゾルゲル材料層に均一に押圧することができる。これにより、ゾルゲル材料層に忠実にモールドの凹凸パターンが転写され、転写漏れや欠陥の発生を抑制することができる。
 この転写工程において、塗膜を加熱しながらフィルム状モールドを塗膜に押し付けてもよい。塗膜を加熱する方法として、例えば、加熱を押圧ロールを通じて行ってもよく、或いは、塗膜の加熱を直接あるいは基板側から行ってもよい。加熱を押圧ロールを通じて行う場合には、押圧ロール(転写ロール)の内部に加熱手段を設けてもよく、任意の加熱手段を使用することができる。押圧ロールの内部に加熱ヒータを備えるものが好適であるが、押圧ロールとは別体のヒータを備えていてもよい。いずれにしても塗膜を加熱しながら押圧が可能であれば、どのような押圧ロールを用いてもよい。押圧ロールは、表面に耐熱性のあるエチレン-プロピレン-ジエンゴム(EPDM)やシリコーンゴム、ニトリルゴム、フッ素ゴム、アクリルゴム、クロロプレンゴムなどの樹脂材料の被膜を有するロールが好ましい。また、押圧ロールで加えられた圧力に抗するために押圧ロールに対向して基板を挟むように支持ロールを設けてもよく、あるいは基板を支持する支持台を設置してもよい。
 押圧の際の塗膜の加熱温度は、40℃~150℃にすることができ、押圧ロールを用いて加熱する場合には押圧ロールの加熱温度は、同様に40℃~150℃にすることができる。このように押圧ロールを加熱することにより、モールドにより押圧が行われた塗膜からモールドをすぐに剥離することができ、生産性を向上することができる。塗膜または押圧ロールの加熱温度が40℃未満では、塗膜からのモールドの速やかな剥離が期待できず、150℃を超えると、使用する溶媒が急激に蒸発し、凹凸パターンの転写が不十分になる恐れがある。また、塗膜を加熱しながら押圧することにより、後述するゾルゲル材料層の仮焼成と同様な効果が期待できる。
 塗膜(ゾルゲル材料層)にモールドを押し付けた後、塗膜を仮焼成してもよい。塗膜を加熱しないで押圧する場合には、仮焼成を行うことが好ましい。仮焼成することにより塗膜のゲル化を進め、パターンを固化し、剥離の際に崩れにくくする。すなわち、仮焼成は、確実なパターン形成とモールドの剥離性の向上という二つの役割がある。仮焼成を行う場合には、大気中で40~150℃の温度で加熱することが好ましい。
 <剥離工程>
 転写工程または仮焼成工程後の塗膜(ゾルゲル材料層)からモールドを剥離する(工程S5)。前述のようにロールプロセスを使用するので、プレス式で用いるプレート状モールドに比べて剥離力は小さくてよく、塗膜がモールドに残留することなく容易にモールドを塗膜から剥離することができる。特に、塗膜を加熱しながら押圧するので反応が進行し易く、押圧直後にモールドは塗膜から剥離し易くなる。さらに、モールドの剥離性の向上のために、剥離ロールを使用してもよい。図4に示すように剥離ロール23を押圧ロール22の下流側に設け、剥離ロール23によりフィルム状モールド80aを塗膜42に付勢しながら回転支持することで、フィルム状モールド80aが塗膜に付着された状態を押圧ロール22と剥離ロール23の間の距離だけ(一定時間)維持することができる。そして、剥離ロール23の下流側でフィルム状モールド80aを剥離ロール23の上方に引き上げるようにフィルム状モールド80aの進路を変更することでフィルム状モールド80aが塗膜42から引き剥がされる。なお、フィルム状モールド80aが塗膜に付着されている期間に前述の塗膜の仮焼成や加熱を行ってもよい。なお、剥離ロール23を使用する場合には、例えば40~150℃に加熱しながら剥離することにより塗膜の剥離を一層容易にすることができる。
 <本焼成工程>
 基板40の塗膜(ゾルゲル材料層)42からモールドが剥離された後、塗膜を本焼成する(図2の工程S6)。本焼成により塗膜を構成するシリカのようなゾルゲル材料層中に含まれている水酸基などが脱離して塗膜がより強固となる。本焼成は、200~1200℃の温度で、5分~6時間程度行うのが良い。こうして塗膜は硬化してモールドの凹凸パターンに対応する凹凸パターン膜を有する基板、すなわち、平坦な基板上に凹凸パターンを有するゾルゲル材料層が直接形成された基板が得られる。この時、ゾルゲル材料層がシリカである場合は、焼成温度、焼成時間に応じて非晶質または結晶質、または非晶質と結晶質の混合状態となる。
[洗浄工程]
 上記のようにしてロールプロセスを経て凹凸パターンが形成されたゾルゲル材料層42が形成された基板40(光取り出し基板)を洗浄する。洗浄は、基板に付着している異物などを除去するために行うものであり、例えば、純水中で線状又は短冊状に加工されたポリプロピレンや塩化ビニールなどを回転シャフトの周囲に植えつけて構成されるロールブラシのようなブラシを用いて基板を機械的に洗浄し、次いで、アルカリ性洗浄剤および有機溶剤で有機物等を除去することが行われる。アルカリ洗浄剤として、例えば、セミコクリーンの商品名で市販されているアルカリ性有機化合物溶液、エチルアミン、ジエチルアミン、エタノールアミン、水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリン)などを用い得る。有機溶剤として、例えば、アセトン、イソプロピルアルコール(IPA)等を使用することができる。
 それらの洗浄方法に加えてまたはそれらの洗浄方法に代えて、超音波洗浄を行ってもよい。超音波洗浄は、基板をイソプロピルアルコール等のアルコール類や、アセトン、セミコクリーン等の商品名で知られるアルカリ性有機化合物溶液に浸漬して、例えば、数分から数十分行うことができる。上記洗浄方法に加えてまたはそれらの洗浄方法に代えてUV/O処理を行ってもよい。
 本発明において、光学基板の凹凸パターンはゾルゲル材料から形成されているので、比較的硬質でありブラシによる機械的洗浄に対する耐性を有し、また、アルカリ性洗浄剤および有機溶剤に対する耐食性を有する。さらに、ゾルゲル材料層42は、硬化性樹脂に比べて、超音波洗浄やUV/O処理によっても凹凸パターンが影響を受け難い。
 [第1電極形成工程]
 次いで、洗浄された基板40のゾルゲル材料層42上に、第1電極としての透明電極92を、図6に示すようにゾルゲル材料層42の表面に形成されている凹凸構造が維持されるようにして積層する(図1の第1電極形成工程P2)。この透明電極92の形成プロセスを、図5を参照しながら説明する。最初に、図5(a)に示すように、基板40上に、透明電極92を形成する電極材料層32を成膜する。成膜方法としては、蒸着法、スパッタ法、CVD法、スプレー法等の公知の方法を適宜採用することができる。これらの方法の中でも、密着性を上げるという観点から、スパッタ法が好ましい。電極材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、金、白金、銀、銅が用いられる。これらの中でも、透明性と導電性の観点から、ITOが好ましい。電極材料層32(ひいては透明電極92)の厚みは20~500nmの範囲であることが好ましい。厚みが前記下限未満では、導電性が不十分となり易く、前記上限を超えると、透明性が不十分となり発光したEL光を十分に外部に取り出せなくなる可能性がある。
 スパッタ法等で電極材料層32を成膜した後、フォトリソグラフィプロセス(フォトエッチング法)を用いて所望の電極パターンを形成するために、図5(b)に示すように、電極材料層32上にフォトレジスト34を塗布する。次いで、図5(c)に示すように、電極用パターンが形成されたマスク44を介してUV光などで露光する。次いで、図5(d)に示すように、フォトレジスト34を現像液によりエッチングしてフォトレジスト34の一部を除去して電極材料層32の一部32aを露出させる。次に、図5(f)に示すように、露出した電極材料層32の一部32aを、塩酸などのエッチング液を用いてウェットエッチングにより除去してパターン化された電極材料層32bを得る。次いで、レジスト剥離液により電極材料層32b上に残留するフォトレジストを除去することにより、図5(e)に示すようなパターン化された透明電極92が得られる。なお、スパッタ時には基板が300℃程度の高温に曝されることになる。得られた透明電極をブラシで洗浄し、アルカリ性洗浄剤および有機溶剤で有機物等を除去した後、UV/O処理することが望ましい。なお、電極材料層32を成膜する工程を、図5(d)に示したフォトレジストの現像工程の後に行い、その後、リフトオフによりフォトレジスト層を除去することによりパターン化された透明電極92を得てもよい(リフトオフ法)。
 上記のフォトリソグラフィプロセスを用いた透明電極形成工程において、フォトレジストを構成する組成物には、溶媒として乳酸エチルやプロピレングリコー ルモノメチルエーテルアセテート(PGMEA)などの有機物が含まれている。また、レジスト現像液として、例えば水酸化テトラメチルアンモニウム水溶液(TMAH)、トリメチル(2‐ヒドロキシエチル)アンモニウムヒドロキシドなどの有機塩基を主成分とする水溶液などが使用される。また、電極材料のウェットエッチングには塩酸、シュウ酸等の酸溶液が使用される。さらには、レジストの剥離剤には、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ジエチレングリコールモノブチルエーテル、モノエタノールアミン等が使用される。このように透明電極形成工程においては、凹凸パターンが形成された光学基板が、現像液、エッチング液などの有機溶剤や酸溶剤に対して曝されるために、光学基板に形成された凹凸パターンはそれらに対して耐食性を有していなければならない。本発明では、凹凸パターンはゾルゲル材料から形成されているために、それらの有機溶剤や酸溶剤を電極形成工程に用いても腐食されることがなく、また退色することもない。なお、本発明において第1電極は透明電極に限らず、デバイスの種類や用途に応じて金属電極など可視光等に透過性のない電極であっても構わない。
[アニール工程]
 上記のフォトリソグラフィプロセスの後、パターン化した透明電極は、結晶性を上げることで抵抗値を下げ、透過率を向上させる目的でアニールされる(図1のアニール工程P4)。アニールは一般に通常、加熱炉内で10分~3時間ほど行われ、アニール温度は、通常、160~360℃、例えば250℃である。アニール工程において、光学基板は250度ほどの高温のアニール処理に曝されるが、一般にゾルゲル材料層42は無機材料から形成されており耐熱性を有するので、アニール処理により影響を受けることはない。最後に、アニールされた基板を洗浄する。洗浄は、先の光学基板と同様の洗浄方法が用いられ、例えば、ブラシ洗浄とUV/O処理を用い得る。
 [薄膜形成工程]
 次に、透明電極92上に、図6に示すような有機層94を積層する(図1の薄膜形成工程P5)。このような有機層94は、有機EL素子の有機層に用いることが可能なものであれば特に制限されず、公知の有機層を適宜利用することができる。また、このような有機層94は、種々の有機薄膜の積層体であってもよく、例えば、図6に示すような正孔輸送層95、発光層96、及び電子輸送層97からなる積層体であってもよい。ここで、正孔輸送層95の材料としては、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)が挙げられるが、これらに限定されるものではない。
 また、発光層96は、透明電極92から注入された正孔と金属電極98から注入された電子とを再結合させて発光させるために設けられている。発光層96に使用できる材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、アルミニウムキノリノール錯体(Alq3)などの有機金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体及び各種蛍光色素等を用いることができる。またこれらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。なお、前記燐光発光材料はイリジウムなどの重金属を含むことが好ましい。上述した発光材料をキャリア移動度の高いホスト材料中にゲスト材料としてドーピングして、双極子-双極子相互作用(フェルスター機構)、電子交換相互作用(デクスター機構)を利用して発光させても良い。また、電子輸送層97の材料としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、アルミニウムキノリノール錯体(Alq3)などの有機金属錯体などが挙げられる。さらに上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。なお、正孔輸送層95もしくは電子輸送層97が発光層96の役割を兼ねていてもよい。この場合、透明電極92と金属電極98の間の有機層は2層となる。
 さらに、金属電極98からの電子注入を容易にするという観点から、有機層94と金属電極98の間に電子注入層としてフッ化リチウム(LiF)、Li等の金属フッ化物や金属酸化物、Ca、Ba、Cs等の活性の高いアルカリ土類金属、有機絶縁材料等からなる層を設けてもよい。また、透明電極92からの正孔注入を容易にするという観点から、有機層94と透明電極92の間に正孔注入層として、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、または導電性高分子オリゴマー、特にチオフェンオリゴマーなどからなる層を設けても良い。
 また、有機層94が正孔輸送層95、発光層96、及び電子輸送層97からなる積層体である場合、正孔輸送層95、発光層96、及び電子輸送層97の厚みは、それぞれ1~200nmの範囲、5~100nmの範囲、及び5~200nmの範囲であることが好ましい。有機層94を積層する方法としては、蒸着法、スパッタ法、スピンコート法、ダイコート法等の公知の方法を適宜採用することができる。
 [第2電極形成工程]
 有機EL素子形成工程においては、次いで、図6に示すように有機層94上に第2電極としての金属電極98を積層する(図1の第2電極形成工程P6)。金属電極98の材料としては、仕事関数の小さな物質を適宜用いることができ、特に限定されないが、例えば、アルミニウム、MgAg、MgIn、AlLiが挙げられる。また、金属電極98の厚みは50~500nmの範囲であることが好ましい。厚みが前記下限未満では、導電性が低下し易く、前記上限を超えると、電極間の短絡が発生した際に、修復が困難となる可能性がある。金属電極98は、蒸着法、スパッタ法等の公知の方法を採用して積層することができる。こうして、図6に示すような構造の有機EL素子200が得られる。
 第2電極工程の後に、有機EL素子200を水分や酸素による劣化を防止するために封止材料を用いて封止する工程、有機EL素子200のパネルを適宜切断する工程(スクライブ&ブレーク工程)、金属電極の鏡面反射対策として偏光板を張り付ける工程を行ってもよい。
 上記実施形態では、有機EL素子の製造を例に挙げて説明してきたが、太陽電池などの別のデバイスの製造方法に適用することができる。例えば、太陽電池を製造する場合には、基板形成工程P1~アニール工程P4までは、上記の有機ELの製造プロセスとほぼ同様の工程を採用することができるが、薄膜形成工程P5においては、太陽電池の種類に応じて多結晶シリコンや化合物半導体を用いた薄膜シリコン、有機半導体、半導体に電解質層を備えた色素増感構造などの薄膜が形成される。また、第2電極形成工程P6において、透明電極や金属電極が形成される。
 なお、上記実施形態の光学基板の製造方法では、加熱により硬化するゾルゲル材料を用いたが、代わりに光硬化性ゾルゲル材料を用いてもよい。この場合、例えば、光によって酸を発生する6フッ化リン系芳香族スルホニウム塩などの光酸発生剤を用いたり、アセチルアセトンに代表されるβジケトンをゾル液に添加することで、化学修飾(キレート化)させ、光照射によって化学修飾を外したりするなどの方法を用いることができる。ゾルゲル材料層に光硬化性ゾルゲル材料を使用した場合、転写工程において、塗膜(ゾルゲル材料層)にモールドを押し付けた後、塗膜の仮焼成を行う代わりに光照射を行うことでゲル化(硬化)を進めてもよい。また本焼成工程において、基板の塗膜からモールドが剥離された後、塗膜を本焼成する代わりに光照射を行うことで塗膜を硬化させることができる。
 本発明のデバイスの製造方法は、有機ELや太陽電池の製造以外に、基板形成工程P1~第2電極形成工程P6を通じて製造されるデバイスであれば任意のデバイスに適用でき、例えば、液晶ディスプレイやタッチパネルが挙げられる。
 [光学基板製造装置]
 本発明の光学基板の製造方法を実施するために、例えば、図7に示すような光学基板を製造する光学基板製造装置(第2ユニット)100を使用することができる。光学基板製造装置100は、主に、基板40上にゾルゲル材料を塗布する塗布部(塗膜形成部)120と、基板を搬送する基板搬送部130と、フィルム状モールド80aを搬送するモールド搬送部140とを備え、モールド搬送部140には、フィルム状モールド80aを基板40に押圧転写する押圧部150とフィルム状モールド80aを基板40から剥離する剥離部160とが含まれる。
 塗布部120は、基板40を保持しながら移動可能な基板ステージ34と、基板ステージの上方に位置してゾルゲル材料41を基板40に塗布するダイコータ30とを備える。基板搬送部130は、搬送方向(図面左から右側)に沿って配列された複数の回転ロール36を備え、回転ロールの回転駆動によりその上に載置された基板40を搬送方向に搬送する。また、基板搬送部130には、搬送中のゾルゲル材料が塗布された基板40を乾燥するための加熱部27を備える。
 モールド搬送部140は、主に、長尺のフィルム状モールド80aを繰り出すモールド繰り出しロール21と、基板の搬送路上の所定位置に設けられ、塗膜(不図示)が形成された基板40の塗膜側からフィルム状モールド80aを押し付ける押圧ロール22と、押圧ロール22の下流に設けられてフィルム状モールド80aが基板40の塗膜に押し付けられた状態を所定距離だけ維持した後にフィルム状モールド80aを剥離する剥離ロール23と、剥離ロールの下流に設けられてフィルム状モールドを巻き取るモールド巻き取りロール24と、フィルム状モールド80aの進行方向に搬送するための搬送ロール29を有する。モールド繰り出しロール21とモールド巻き取りロール24は、それらを着脱可能にする支持台(不図示)に回転可能に取り付けられている。なお、モールド繰り出しロール21は、ロールプロセス装置70によって先に製造したフィルム状モールド80aが巻き取られたフィルム巻き取りロール87(図3参照)を、この装置100に適宜搬送してそのまま使用することが有利である。
 押圧部150には、押圧ロール22に対向して支持ロール26が設けられ、支持ロール26は押圧ロール22とともにフィルム状モールド80a及び基板40を挟み込んで基板下側から基板40を押圧するとともに回転駆動して基板40を基板搬送方向の下流側に送り出す。押圧ロール22の内部には加熱ヒータ22aが設けられている。支持ロール26にも加熱ヒータを備えていてもよい。剥離部160には、フィルム状モールド80aの搬送路上に剥離ロール23が設けられ、その下流の搬送ロール29によりフィルム状モールド80aを上方に引き上げることにより、フィルム状モールド80aの基板40からの剥離を促進する。押圧部150と剥離部160との間には加熱炉(ヒータ)28が設けられている。加熱炉28には、例えば赤外線ヒータや熱風加熱、ホットプレートを使用することができる。光学基板製造装置100には、さらに、モールド繰り出しロール21から繰り出されたフィルム状モールド80a及びモールド巻き取りロール24に巻き取られる前のフィルム状モールド80aをそれぞれ除電するための除電器142,144と、フィルム状モールド80aが剥離された基板40を除電するための除電器146が設けられている。
 光学基板製造装置100は、塗布部120、押圧部150及び剥離部160を含むモールド搬送部140、並びに基板搬送部130の各動作と装置全体の動作と総括する制御部(不図示)を備える。この制御部は、特に、基板搬送部130により搬送される基板40と、モールド搬送部140により搬送されるフィルム状モールド80aとが押圧部150で同期されて搬送されるように、基板搬送部130、モールド搬送部140及び押圧ロール22の駆動速度を制御する。光学基板製造装置100は、さらに、塗布部120で形成された塗膜の厚さや状態を観察する検査装置や、フィルム状モールド80aが剥離された後の塗膜の凹凸パターンを観察する検査装置などを備えることができる。
 光学基板製造装置100により基板40を処理する動作を説明する。塗布部120において、基板40を保持した基板ステージ34が搬送方向に移動しながらダイコータ30がゾルゲル材料41を基板上に塗布することにより基板上に均一にゾルゲル材料が塗布される。次いで、ゾルゲル材料の塗膜が形成された基板40がモールド搬送部140の上流側の回転ロール36上に受け渡されて押圧部150、特に所定位置に設けられた押圧ロール22に向けて搬送される。この搬送の間に、ゾルゲル材料は乾燥する。一方、モールド搬送部140において、フィルム状モールド80aはモールド繰り出しロール21から送り出され、搬送ロール29間に設置された除電器142を通過して除電された後、搬送ロール29を介して押圧部150に至る。押圧部150では、40℃~150℃に加熱された押圧ロール22が、その下方に搬送されてきたフィルム状モールド80aを基板40に重ねて押圧する。これにより、フィルム状モールド80aの凹凸パターンが基板40の塗膜(ゾルゲル材料)に押し付けられて転写が行われる。また、押圧ロール22の加熱により塗膜のゲル化が進行する。次いで、押圧ロール22により凹凸パターンが転写された基板40は、フィルム状モールド80aが押し付けられたままの状態で加熱炉28内を通過して剥離部160に搬送される。加熱炉28内で基板40は、フィルム状モールド80aの塗膜からの剥離を促進するために、40~150℃に加熱される。剥離部160では、フィルム状モールド80aが剥離ロール23を通過するときに搬送ロール29を介してモールド巻き取りロール24によって上方に引き上げられ、フィルム状モールド80aは塗膜42から剥離する。この後、フィルム状モールド80aは除電器144により除電されてモールド巻き取りロール24に巻き取られる。フィルム状モールド80aが剥離された基板40は、除電器146により除電されて、光学基板製造装置100を出る。こうして、フィルム状モールド80aの凹凸パターンが塗膜に転写された基板40が得られる。この後、パターンが形成された基板40がオーブンなど(不図示)で本焼成される。本焼成用オーブンは、装置100内に設けてもよい。
 光学基板製造装置100において、剥離ロール23の設置位置や、剥離ロール23を介してモールドを巻き取るモールド巻き取りロール24の位置を適宜調節して剥離角度を調整することができる。なお、支持ロール26に代えて、基板を支持して移動する移動テーブルなどの他の駆動手段を用いることができる。また、押圧ロール22によりフィルム状モールド80aの凹凸パターンが塗膜42押し付けられたままの状態を維持するために剥離ロール23を用いたが、そのような状態を維持するために剥離ロール23に代えて、表面が滑らかで角部が曲面を有する板状部材などの他の支持部材を用い得る。なお、第2ユニットしての光学基板製造装置100は、図3に示した第1ユニットとしてのロールプロセス装置70を備えていてもよい。例えば、第2ユニットとしての光学基板製造装置100に第1ユニットとしてのロールプロセス装置70を一体として組み込み、ロールプロセス装置70のフィルム巻き取りロール87をそのまま光学基板製造装置100のモールド繰り出しロール21として用いてもよい。この場合、フィルム巻き取りロール87を駆動する回転機構を光学基板製造装置100の制御装置により制御して回転方向を切り替えるように構成することができる。あるいは、第2ユニットとしての光学基板製造装置100が第1ユニットとしてのロールプロセス装置70を別体として備えていてもよい。この場合には、ロールプロセス装置70でフィルム状モールド80aが巻き取られたフィルム巻き取りロール87を、光学基板製造装置100のモールド繰り出しロール21が設けられる位置に運搬してモールド繰り出しロール21として使用することができる。必要に応じて、光学基板製造装置100とロールプロセス装置70を切り離して、一方または両方を適所で使用することができる。
 以下に、上記実施形態の光学基板製造装置の変形形態を説明する。
<変形形態1>
 上記実施形態の光学基板製造装置100において剥離ロールを設けたが、図8に示すように剥離ロールを省略してもよい。図8に示した装置では、モールド繰り出しロール21(図7参照)から繰り出されたフィルム状モールド80aが加熱押圧ロール22で塗膜42に押圧された後に、基板40より上方に位置するモールド巻き取りロール24(図7参照)により巻き上げられる。押圧ロール22を加熱したり、他の加熱手段を用いたりすることで、押圧直後のモールドの塗膜からの剥離が促進するとともに塗膜の仮焼成を行うことができる。
<変形形態2>
 上記実施形態の光学基板製造装置100では、フィルム状モールド80aの端部をそれぞれモールド繰り出しロール21及びモールド巻き取りロール24に巻き付けたが、図9に示すようにフィルム状モールド80aを無端ベルト状としてもよい。こうすることで、フィルム状モールド80aがモールド繰り出しロール121から全て巻き出され、またモールド巻き取りロール124により全て巻き取られたときのモールド繰り出しロール121及びモールド巻き取りロール124の交換が不要となる。
<変形形態3>
 上記実施形態の光学基板製造装置100において、加熱ヒータ22aを押圧ロール22の内部に設けたが、押圧ロール22を加熱する加熱ヒータの設置について、図10に示すような構成を採用してもよい。図10に示すように加熱ヒータ22bを押圧ロール22の内部ではなく押圧部150の押圧ロール22の周辺部に設けたヒートゾーン35内に備えることができる。ヒートゾーン35の内部に加熱ヒータが設けられているので、ヒートゾーン内部が加熱温度に維持される。この場合には、ヒートゾーン35の内部において塗膜42が仮焼成される。なお、ヒートゾーン35に加えて押圧ロール22や支持ロール26の内部に加熱ヒータを設けてもよい。また、加熱ヒータの設置の別の変形形態として、加熱ヒータ22aを押圧ロール22の内部に設ける代わりに支持ロール26の内部に備えていてもよい。この場合には、支持ロール26内部の加熱ヒータ22aから発生する熱により塗膜42が仮焼成される。あるいは、加熱ヒータ22aを押圧ロール22と支持ロール26の両方の内部に設けてもよい。
 上記のようにしてロールプロセスを経てゾルゲル材料層からなるパターンが形成された基板は、例えば、有機EL素子用の回折格子基板、ワイヤグリッド偏光子、反射防止フィルム、あるいは太陽電池の光電変換面側に設置することにより太陽電池内部への光閉じ込め効果を付与するための光学素子として使用することができる。あるいは、上記パターンを有する基板をモールド(マザー)として用いて上記パターンをさらに別の樹脂に転写してもよい。この場合、転写された樹脂パターンは基板上のパターンの反転パターンであるために、転写された反転パターンをさらに別の樹脂に転写することで基板のレプリカとしてのモールドを作製してもよい。それらのモールドにNi等による電鋳処理を施して金属モールドを形成することもできる。それらのモールドを用いることにより、有機EL素子用の回折格子基板などの光学部品を一層効率よく量産することができる。なお上記実施形態の光学基板製造装置において、ゾルゲル材料を熱により硬化させたが、光硬化性のゾルゲル材料を用いて光照射による硬化を行ってもよい。この場合、加熱ロール22aは使用しなくてもよい。加熱炉28の代わりに光照射機を設置してもよい。
 以下、本発明のデバイスの製造方法を実施例により具体的に説明するが、本発明はそれらの実施例に限定されるものではない。
[実施例1]
 この実施例では、最初に回折格子基板を作製し、次いでこの回折格子基板を用いて有機EL素子を製造する。最初に回折格子基板を作製するために、BCP法を用いて凹凸表面を有するモールドを作製する。
<回折格子モールドの作製>
 下記のようなポリスチレン(以下、適宜「PS」と略する)とポリメチルメタクリレート(以下、適宜「PMMA」と略する)とからなるPolymer Source社製のブロック共重合体を用意した。
PSセグメントのMn=868,000
PMMAセグメントのMn=857,000
ブロック共重合体のMn=1,725,000
PSセグメントとPMMAセグメントの体積比(PS:PMMA)=53:47
分子量分布(Mw/Mn)=1.30、PSセグメントのTg=96℃
PMMAセグメントのTg=110℃
 ブロック共重合体における第1及び第2のポリマーセグメントの体積比(第1のポリマーセグメント:第2のポリマーセグメント)は、ポリスチレンの密度が1.05g/cmであり、ポリメチルメタクリレートの密度が1.19g/cmであるものとして算出した。ポリマーセグメント又はポリマーの数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(東ソー(株)製、型番「GPC-8020」、TSK-GEL SuperH1000、SuperH2000、SuperH3000及びSuperH4000を直列に接続したもの)を用いて測定した。ポリマーセグメントのガラス転移点(Tg)は、示差走査熱量計(Perkin-Elmer社製、製品名「DSC7」)を用いて、0~200℃の温度範囲について20℃/minの昇温速度にて昇温しつつ測定した。ポリスチレン及びポリメチルメタクリレートの溶解度パラメータはそれぞれ9.0及び9.3である(化学便覧 応用編 改定2版参照)。
 このブロック共重合体150mgとポリエチレンオキシドとして38mgの東京化成製ポリエチレングリコール4,000(Mw=3000、Mw/Mn=1.10)に、トルエンを、総量が10gになるように加えて溶解させた。この溶液を孔径0.5μmのメンブレンフィルターでろ過してブロック共重合体溶液を得た。得られたブロック共重合体溶液を、基材としてのポリフェニレンスルフィドフィルム(東レ(株)製トレリナ)上に、スピンコート法により200~250nmの膜厚で塗布した。スピンコートは、回転速度500rpmで10秒間行った後、引き続いて800rpmで30秒間行った。スピンコート法で塗布された薄膜を室温で10分間放置して乾燥した。
 次いで、薄膜が形成された基材を、170℃のオーブン中で5時間加熱した(第1アニール処理)。加熱後の薄膜の表面には、凹凸が観察されて、薄膜を構成するブロック共重合体がミクロ層分離していることが分かった。
 上記のように加熱された薄膜を、以下のようにしてエッチング処理して基材上のPMMAを選択的に分解除去する。薄膜に、高圧水銀灯を用いて30J/cmの照射量(波長365nm)で紫外線を照射した。次いで、薄膜をアセトン中に浸漬し、イオン交換水で洗浄した後、乾燥した。この結果、上記加熱処理により薄膜表面に現れた凹凸よりも明らかに深い凹凸パターンが基材上に形成された。
 次いで、エッチング処理により形成された凹凸パターンを山形構造に変形(山形化処理)するために、基材を140℃のオーブン中で1時間の加熱処理(第2アニール処理)を行った。
 上記山形化処理された薄膜の表面に、スパッタにより、電流シード層として10nm程度の薄いニッケル層を形成した。次いで、この薄膜付き基材をスルファミン酸ニッケル浴中に入れ、温度50℃で、電鋳(最大電流密度0.05A/cm)処理してニッケルを厚み250μmになるまで析出させた。こうして得られたニッケル電鋳体から薄膜付き基材を機械的に剥離した。次に、ニッケル電鋳体を日本シービーケミカル製ケミゾール2303中に浸漬し、50℃にて2時間攪拌しながら洗浄した。その後、ニッケル電鋳体に、アクリル系UV硬化樹脂を塗布して硬化し、剥離することを3回繰り返すことで、電鋳体の表面に一部付着していたポリマー成分を除去した。
 次いで、ニッケル電鋳体をダイキン工業(株)社製オプツールHD-2100THに約1分浸し、乾燥した後、一晩静置した。翌日、ニッケル電鋳体を、ダイキン社製オプツールHD-TH中に浸漬して約1分間超音波処理洗浄を行った。こうして離型処理されたニッケルモールド(ニッケル基板)を得た。
 次に、PET基板(東洋紡績(株)社製易接着PETフィルム、コスモシャインA-4100)上にフッ素系UV硬化性樹脂を塗布し、ニッケルモールドを押し付けながら、紫外線を600mJ/cmで照射することでフッ素系UV硬化性樹脂を硬化させた。樹脂が硬化後、ニッケルモールドを硬化した樹脂から剥離した。こうしてニッケルモールドの表面形状が転写された樹脂膜付きPET基板からなる回折格子モールドを得た。
 <回折格子基板の作製>
 エタノール24.3g、水2.16g及び濃塩酸0.0094gを混合した液に、テトラエトキシシラン(TEOS)2.5gとメチルトリエトキシシラン(MTES)2.1gを滴下して加え、23℃、湿度45%で2時間攪拌してゾルゲル材料を得た。このゾルゲル材料を、15×15×0.11cmのソーダライム製ガラス板上にバーコートした。バーコーターとしてドクターブレード(YOSHIMITSU SEIKI社製)を用いた。このドクターブレードは塗膜の膜厚が5μmとなるような設計であったがドクターブレードに35μmの厚みのイミドテープを張り付けて塗膜の膜厚が40μmとなるように調整した。ゾルゲル材料の塗布60秒後に、塗膜に上記のようにして作製した回折格子モールドを、80℃に加熱した押圧ロールを用いてガラス板上の塗膜に押し付けながら回転移動した。塗膜の押圧が終了後、モールドを手作業で剥離し、次いでオーブンを用いて300℃で60分加熱して本焼成を行った。こうして回折格子モールドのパターンがゾルゲル材料に転写された回折格子基板を得た。なお、押圧ロールは、内部にヒータを備え、外周が4mm厚の耐熱シリコーンが被覆されたロールであり、ロール径φが50mm、軸方向長さが350mmのものを用いた。
 この回折格子基板について、表面の凹凸形状を原子間力顕微鏡(SIIナノテクノロジー社製の環境制御ユニット付走査型プローブ顕微鏡「NanonaviIIステーション/E-sweep」)を用いて解析画像を得た。原子間力顕微鏡の解析条件は、以下の通りである。
 測定モード:ダイナミックフォースモード
 カンチレバー:SI-DF40(材質:Si、レバー幅:40μm、チップ先端の直径:10nm)
 測定雰囲気:大気中
 測定温度:25℃
 回折格子基板の任意の位置に3μm角(縦3μm、横3μm)の測定領域を測定して、上記のようにして凹凸解析画像を求めた。かかる凹凸解析画像中における、任意の凹部及び凸部との深さ方向の距離を100点以上測定し、その平均を算出して凹凸の深さ分布の平均値(平均高さ)とする。この例で得られた解析画像より凹凸パターンの深さ分布の平均値は56nmであった。
 回折格子基板の任意の3μm角(縦3μm、横3μm)の測定領域を測定して上記のようにして凹凸解析画像を求める。得られた凹凸解析画像に対し、1次傾き補正を含むフラット処理を施した後に、2次元高速フーリエ変換処理を施すことによりフーリエ変換像を得た。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。
 なお、フーリエ変換像の円状の模様は、フーリエ変換像において輝点が集合することにより観測される模様である。ここにいう「円状」とは、輝点が集合した模様がほぼ円形の形状に見えることを意味し、外形の一部が凸状又は凹状となっているように見えるものも含む概念である。輝点が集合した模様がほぼ円環状に見えることもあり、この場合を「円環状」として表現する。なお、「円環状」は、環の外側の円や内側の円の形状がほぼ円形の形状に見えるものも含み且つかかる環の外側の円や内側の円の外形の一部が凸状又は凹状となっているように見えるものも含む概念である。また、「円状又は円環状の模様が波数の絶対値が10μm-1以下(より好ましくは1.25~10μm-1、更に好ましくは1.25~5μm-1)の範囲内となる領域内に存在する」とは、フーリエ変換像を構成する輝点のうちの30%以上(より好ましくは50%以上、更により好ましくは80%以上、特に好ましくは90%以上)の輝点が波数の絶対値が10μm-1以下(より好ましくは1.25~10μm-1、更に好ましくは1.25~5μm-1)の範囲内となる領域内に存在することをいう。なお、凹凸構造のパターンとフーリエ変換像との関係について、次のことが分かっている。凹凸構造自体にピッチの分布や指向性もない場合には、フーリエ変換像もランダムなパターン(模様がない)で現れるが、凹凸構造がXY方向に全体として等方的であるがピッチに分布がある場合には、円または円環状のフーリエ変換像が現れる。また、凹凸構造が単一のピッチを有する場合には、フーリエ変換像に現れる円環がシャープになる傾向がある。
 前記凹凸解析画像の2次元高速フーリエ変換処理は、2次元高速フーリエ変換処理ソフトウエアを備えたコンピュータを用いた電子的な画像処理によって容易に行うことができる。
 得られたフーリエ変換像を画像解析した結果、波数2.38μm-1が最も強かった。すなわち平均ピッチは420nmであった。平均ピッチは以下のようにして求めることができる。フーリエ変換像の各点について、フーリエ変換像の原点からの距離(単位:μm-1)と強度を求める。続いて、同じ距離にある点については強度の平均値を求める。以上のようにして、求められたフーリエ変換像の原点からの距離と強度の平均値の関係をプロットし、スプライン関数によりフィッティングをかけ、強度がピークとなる波数を平均波数(μm-1)とした。平均ピッチについては別の方法、たとえば、回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して凹凸解析画像を求め、かかる凹凸解析画像中における任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その平均を算出して凹凸の平均ピッチを求めるなどの方法から計算しても構わない。
 <有機EL素子の製造>
 上記のようにして得られた回折格子としてのゾルゲル材料層よりなるパターンが形成されたガラス基板について、付着している異物などを除去するために、純水中でブラシで洗浄した。次いで、アルカリ性洗浄剤としてのセミコクリーンおよび有機溶剤であるIPAを用いて超音波洗浄することでガラス基板に付着している有機物等を除去した。こうして洗浄した前記基板上に、透明電極を以下のようにしてパターニングにより形成した(図5参照)。まず、ITOをスパッタ法で300℃にて厚み120nmで成膜した。次いで、フォトレジスト(東京応化工業製:TFR-H)をスピンコート法で塗布して透明電極用マスクパターンを介して波長365nmの光で露光した。その後、現像液として2.5%濃度のTMAH水溶液を用いてフォトレジストの露光部をエッチング除去してITOの一部を露出した。次いで、エッチング液として18%濃度の塩酸を用いて露出したITOの領域を除去した。最後に剥離液としてDMSOとNMPの1:1混合溶液を用いて残留するフォトレジストを除去した。こうして所定のパターンの透明電極を得た。得られた透明電極付き基板をブラシで洗浄し、有機溶剤(IPA)を用いて超音波洗浄することで基板に付着している有機物等を除去した後、UV/O処理し、予め250℃にした加熱炉に基板を入れて大気雰囲気中で20分間アニール処理を行った。
 このように処理された透明電極上に、正孔輸送層(4,4’,4’ ’トリス(9-カルバゾール)トリフェニルアミン、厚み:35nm)、発光層(トリス(2-フェニルピリジナト)イリジウム(III) 錯体をドープした4,4’,4’ ’トリス(9-カルバゾール)トリフェニルアミン、厚み15nm、トリス(2-フェニルピリジナト)イリジウム(III) 錯体をドープした1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼン、厚み15nm)、電子輸送層(1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼン、厚み:65nm)、フッ化リチウム層(厚み:1.5nm)を蒸着法で積層した。さらに、最上層として金属電極(アルミニウム、厚み:50nm)を蒸着して図6に示すような有機EL素子を得た。
 この実施例で得られた有機EL素子の発光の指向性を以下の方法で評価した。発光させた有機EL素子を全ての方向(全周囲360°の方向)から目視により観察した。この実施例で得られた有機EL素子においては、全周囲360°のいずれの方向から観察しても、特に明るい場所、又は特に暗い場所は観察されず、全ての方向に均等な明るさを呈していた。このように、本発明の有機EL素子は、発光の指向性が十分に低いことが確認された。
 この実施例1では有機EL素子の透明電極(ITO)の成膜時の温度を300℃とした。透明電極の成膜時の温度は300℃よりも低い温度でも構わないが、透明電極は低抵抗率であることが望まれており、結晶性を高めるため高温での成膜が好ましい。なお、成膜時の温度が100℃程度と低い場合には、基板上に成膜されたITO膜は比較的非晶質で、比抵抗も劣り、基板とITO薄膜の密着性も乏しくなる。通常のUV硬化樹脂等で形成した凹凸パターンは高温成膜工程に耐えることが難しかったが、セラミックの一種であるゾルゲル材料を用いることで高温成膜工程にも適用できるため、本発明の方法は有機EL素子用の基板(回折格子)を作製する上でも好適である。さらに、上記のような硬化樹脂では発光時の発熱などで高温下に長期間置かれると劣化して黄変やガスの発生の可能性があり、樹脂基板を用いた有機EL素子の長期的な使用が難しいが、ゾルゲル材料を用いて作製された基板を備える有機EL素子では劣化が抑制される。
[実施例2]
 150℃に加熱した押圧ロールを用いた以外は実施例1と同様にして、回折格子基板を作製した。その結果、実施例1と同様にパターン転写でき、回折格子基板の凹凸パターンの深さ分布の平均値は56nm、平均ピッチは420nmであることを確認した。
[実施例3]
 この実施例では、凹凸パターンがゾルゲル材料で形成された回折格子基板(以下、「ゾルゲルパターン基板」と呼ぶ)と、同じ凹凸パターンが樹脂で形成された回折格子基板(以下、「樹脂パターン基板」という)をそれぞれ用意し、有機EL素子製造過程における回折格子基板の耐洗浄性、耐薬品性及び耐熱性について比較して検証した。「ゾルゲルパターン基板」として、実施例1において作製した回折格子基板を用いた。「樹脂パターン基板」は以下のようにして作製した。15×15×0.11cmのソーダライムガラス基板上にフッ素系UV硬化性樹脂を塗布し、実施例1にて作製した回折格子モールドを押し付けながら、紫外線を600mJ/cmで照射することでフッ素系UV硬化性樹脂を硬化させた。樹脂が硬化後、回折格子モールドを硬化した樹脂から剥離した。こうして回折格子モールドの表面形状が転写された樹脂パターン基板を得た。
 このようにして用意したゾルゲルパターン基板と樹脂パターン基板について、有機EL素子の製造プロセスの薄膜形成工程前の洗浄工程、フォトリソグラフィ工程、ITOエッチング工程、フォトレジスト剥離工程及びアニール工程を想定した処理を行い、処理前後の基板の凹凸パターンを観察した。なお、実際の有機EL素子の製造プロセスでは透明電極層などが基板上に堆積されるが、以下の処理では各処理における薬品や環境温度による基板の影響を調べるために、基板上には層は堆積することなく、種々の環境に基板を露呈した。
(1)洗浄工程
 薄膜形成工程前の洗浄工程における回折格子基板の耐性を評価するために、ゾルゲルパターン基板と樹脂パターン基板について、以下の3種類の洗浄実験を行った。
<超音波洗浄>
 超音波洗浄機(株式会社国際電気エレテック社製)にイソプロピルアルコール(IPA)を充填し、ゾルゲルパターン基板と樹脂パターン基板をそれぞれ浸漬して、出力200Wにて20分間、室温下で洗浄した。次に、洗浄液としてイソプロピルアルコールをアセトンに代えて、ゾルゲルパターン基板と樹脂パターン基板をイソプロピルアルコールの場合と同様の条件で超音波洗浄した。さらに、洗浄液としてイソプロピルアルコールをセミコクリーン56に代えて、ゾルゲルパターン基板と樹脂パターン基板をそれぞれ浸漬して、出力200Wにて10分間、室温下で超音波洗浄した。
<ブラシ洗浄>
 ゾルゲルパターン基板と樹脂パターン基板を、小型枚様式ブラシ洗浄機(株式会社今井製作所製)を用いて洗浄した。ブラシには100μm径のナイロンをロール表面に植え込んだロールブラシを用いた。ロールブラシの回転数500rpm、基板へのロールブラシの押圧0.2MPa、基板搬送速度1m/分の条件でブラシ洗浄した。洗浄水には純水を用い、ロールブラシは2本用いた。
<UV/O洗浄>
 ゾルゲルパターン基板と樹脂パターン基板をUV/O洗浄機(PL16-110:セン特殊光源株式会社)に収容し、低圧水銀灯によるUV光(波長184.9nm、253.7nm)によりオゾンを発生させ15mW/cmで10分間照射した。
(2)フォトリソグラフィ工程
 フォトリソグラフィ工程における耐性を調べるために、フォトレジストに含まれる乳酸エチルをビーカーに充填し、ゾルゲルパターン基板と樹脂パターン基板をそれぞれ乳酸エチルに室温にて20分間浸漬した。また、同様の実験を乳酸エチルに代えてPGMEAを用いて行った。また、フォトレジストの現像液に対する耐性を調べるために、現像液としての2.5%のTMAHにゾルゲルパターン基板と樹脂パターン基板をそれぞれ室温にて20分間浸漬した。
(3)ITOエッチング工程
 ITO電極材料をエッチングしてパターニングする工程における基板の耐性を調べるために、ゾルゲルパターン基板と樹脂パターン基板を、18%の塩酸に常温で20分間浸漬した。
(4)レジスト剥離工程
 リソグラフィ工程で残留したフォトレジストを剥離する工程に使用される剥離液に対する基板の耐性を調べるために、ゾルゲルパターン基板と樹脂パターン基板をそれぞれNMP中に常温で20分間浸漬した。同様の実験をNMPに代えてDMSOを用いて行った。
(5)アニール工程
 透明電極のパターニング後に行われるアニール工程における基板の耐性を調べるために、ゾルゲルパターン基板と樹脂パターン基板をそれぞれ大気雰囲気中で250℃の加熱炉内に20分間設置した。
<基板評価方法> 
 上記5つの工程の処理によるゾルゲルパターン基板と樹脂パターン基板の耐性を評価するために、それらの処理前後における基板についてムラ検査とSPM検査を行った。ムラ検査は、実験前後の基板表面の凹凸パターンの全体状態を観察するために以下のような方法を採用した。
 図11に示した検査装置300を暗室内に設置し、上記5つの工程の処理前後における基板101(ゾルゲルパターン基板と樹脂パターン基板)を検査装置300に取り付けて以下のような条件で基板の散乱光強度分布を観測した。検査装置300は、基板101を配置するステージ装置104と、基板101に光を照射する高指向性LEDバー照明(CCS株式会社製LDL2-119×16BL)122と、基板からの反射光を撮影するデジタルカメラ125と、撮影された像を画像処理して分析する画像処理装置126を備える。30mm×30mm×0.7mm厚の基板101を、ステージ装置104の一対の黒色の直方体状ブロック102を跨ぐように配置した。ブロック高さは40mmであり、黒色のブロックの距離は27mmであった。LEDバー照明122は、発光中心波長470nm、発光部面積119mm×160mmであり、LEDバー照明122は水平より床面に向け10°傾けた状態で床面からの高さ160mmの位置に設置した。2本のLEDバー照明122の距離は307mmであった。デジタルカメラ125は基板表面からの距離770mmの位置に設置した。LED照明を最大出力(各5.7W)で発光させて撮影した。デジタルカメラ125の型式及び撮像条件は以下の通りである。
カメラ:Canon EOS Kiss X3
レンズ:EF-S18-55mm F3.5-5.6 IS
シャッター速度:1/100秒
ISO感度:3200
絞り値:F5.6
ホワイトバランス:スタンダード
ピクチャースタイル:スタンダード
ピクセル値 0~255
 得られたデジタルカメラからの像について青のピクセル値を抽出し、そのピクセル値をグレー階調表示した。また、図12(a)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L1上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。なお、断面プロファイルは、有機EL素子として素子化される部分(図12(a)の波線枠内)のみを出力させた。ゾルゲルパターン基板から得られたX方向の画素位置に対するピクセル値のプロファイルの一例を図12(b)に示す。図12(b)に示す例では平均ピクセル値は113であった。上記耐性試験の前後において、平均ピクセル値が20%変化するとこの回折格子基板を有機EL素子に使用した場合に輝度ムラが著しくなることが予備試験により分かっている。それゆえ、耐性試験の前後で平均ピクセル値が20%未満である場合を○とし、20%以上変化した場合を×として評価した。結果を表1に示す。
 SPM検査は、走査型顕微鏡を用いて基板表面の凹凸パターンの表面状態や凹凸深さを検査した。SPM検査は、実施例1で用いた原子間力顕微鏡(SIIナノテクノロジー社製の環境制御ユニット付走査型プローブ顕微鏡「NanonaviIIステーション/E-sweep」)を用いた。原子間力顕微鏡の解析条件は、実施例1と同様である。基盤の任意の位置に3μm角(縦3μm、横3μm)の測定領域を測定して、上記のようにして凹凸解析画像を求めた。かかる凹凸解析画像中における、任意の凹部及び凸部との深さ方向の距離を100点以上測定し、その平均を算出して凹凸の深さ分布の平均値(平均高さ)とする。かかる凹凸の深さ分布の平均値が、耐性試験前のものと比較して20%以内であれば合格、20%を超えて変化が見られた場合を不合格とした。また、評価画像にて、耐性試験前には見られなかった異常突起や表面荒れが存在した場合も不合格とした。評価画像上に異常が見られなかった場合は合格とした。凹凸の深さ分布の平均値及び評価画像の両方で合格の場合を○とし、それ以外を×として評価し、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 洗浄工程におけるUV/O洗浄処理された樹脂パターン基板では、ムラ観察では平均ピクセル値が20%を超えており、またSPM観察では凹凸の深さ分布の平均値が20%を越えて低くなっていることが観察された。これは、UV/O洗浄により樹脂の凹凸パターンが浸食されたためであると考えられる。一方、ゾルゲルパターン基板ではUV/O洗浄の前後でそれらの観察結果に有意の差は見られなかった。ITOエッチング処理においても、樹脂パターン基板のSPM観察では凹凸表面に異常な突起があることが観察された。これは、ITOエッチング処理により樹脂が塩酸と反応し異常な析出物が発生したためであると考えられる。一方、ゾルゲルパターン基板ではITOエッチング処理の前後でそれらの観察結果に有意の差は見られなかった。また、アニール処理された樹脂パターン基板では、ムラ観察では平均ピクセル値が20%を超えており、またSPM観察では凹凸表面が凹凸の深さ分布の平均値が20%を越えて低くなっていることが観察された。これは、アニール処理の高温により樹脂の凹凸パターンが一部溶融したためであると考えられる。一方、ゾルゲルパターン基板ではアニール処理の前後でそれらの観察結果に有意の差は見られなかった。
[比較例1]
 実施例3で作製した樹脂パターン基板を、回折格子基板として用いて実施例1と同様にして有機EL素子を製造した。
 [有機EL素子の発光効率の評価]
 実施例1及び比較例1で得られた有機EL素子の発光効率を以下の方法で測定した。得られた有機EL素子に電圧を印加し、印加電圧V及び有機EL素子に流れる電流Iを印加測定器(株式会社エーディーシー社製、R6244)にて、また全光束量Lをスペクトラ・コープ社製の全光束測定装置にて測定した。このようにして得られた印加電圧V、電流I及び全光束量Lの測定値から輝度値L’を算出し、電流効率については、下記計算式(F1):
電流効率=(L’/I)×S・・・(F1)
電力効率については、下記計算式(F2):
電力効率=(L’/I/V)×S・・・(F2)
をそれぞれ用いて、有機EL素子の電流効率及び電力効率を算出した。上記式において、Sは素子の発光面積である。
なお、輝度L’の値は、有機EL素子の配光特性がランバート則にしたがうものと仮定し、下記計算式(F3):
L’=L/π/S・・・(F3)
で換算した。
 実施例1の有機EL素子は、輝度1000cd/mにおいて、111.1cd/Aの電流効率を示した。また、実施例1の有機EL素子は、輝度1000cd/mにおいて、97.7lm/Wの電力効率を示した。比較例1の有機EL素子は、ブラシ洗浄時の機械的なダメージ、UV/O洗浄時のダメージ、ITO成膜時の熱ダメージによって樹脂パターンが崩れ素子として評価できなかった。比較サンプルとして、パターンが無いガラス基板上に作製した有機EL素子を用意し、その電流効率と電力効率を測定したところ、輝度1000cd/mにおいて74.5cd/Aの電流効率を示し、同じく輝度1000cd/mにおいて58.4lm/Wの電力効率を示した。
 以上のことより、本発明のデバイスの製造方法で用いる光学基板の凹凸パターンはゾルゲル材料から形成されているために、以下に説明するように種々の点で硬化性樹脂から凹凸パターンが形成されている基板に比べて有利となる。ゾルゲル材料は、機械的強度に優れるため、有機EL素子の製造プロセスにおいて基板及び透明電極形成後に凹凸パターン面にブラシ洗浄を行っても傷、異物の付着、透明電極上の突起などが発生しにくく、それらに起因する素子不良を抑制できる。それゆえ、本発明の方法により得られたデバイスとしての有機EL素子は、凹凸パターンを有する基板の機械的強度という点で硬化性樹脂基板を用いる場合に比べて優れる。
 また、本発明の方法に従い製造したゾルゲル材料から形成された基板は、耐薬品性に優れる。それゆえ、基板及び透明電極の洗浄工程に用いるアルカリ液や有機溶媒に対しても比較的耐食性があり、種々の洗浄液を使用することができる。また、前述のように透明基板のパターニング時にアルカリ性の現像液や酸性のエッチング液を用いることがあり、このような現像液やエッチング液に対しても耐食性がある。この点でアルカリ液や酸溶液に対して耐性が比較的低い硬化性樹脂基板に比べて有利となる。
 本発明の方法に従い製造したゾルゲル材料から形成された基板は、耐熱性に優れる。このため、有機EL素子の透明電極製造プロセスにおけるスパッタ工程の高温雰囲気にも耐えることができる。さらに、本発明の方法に従い製造したゾルゲル材料から形成された基板は、硬化性樹脂基板に比べて、耐UV性、耐候性にも優れる。このため、透明電極形成後のUV/O洗浄処理に対しても耐性を有する。このため、ゾルゲル材料から形成された基板を用いれば、半導体や有機膜を形成するプロセスにおいて影響を受けることがない。
 本発明の方法により製造されたデバイスとしての有機EL素子を屋外で使用した場合には、硬化性樹脂基板を用いる場合に比べて太陽光による劣化が抑制できる。さらに、上記のような硬化樹脂では発光時の発熱などで高温下に長期間置かれると劣化して黄変やガスの発生の可能性があり、樹脂基板を用いた有機EL素子の長期的な使用が難しいが、ゾルゲル材料を用いて作製された基板を備える有機EL素子では劣化が抑制される。
 以上、本発明を実施例により説明してきたが、本発明の光学基板の製造方法及び製造装置、並びにデバイスの製造方法は上記実施形態に限定されず、特許請求の範囲に記載した技術思想の範囲内で適宜改変することができる。例えば、上記実施例では、バーコーター及びオーブン等を用いて手作業で回折格子基板を製造したが、図4に示すような光学基板製造装置を用いて製造してもよい。また上記実施例では、加熱により硬化するゾルゲル材料を用いたが、代わりに光硬化性ゾルゲル材料を用いてもよい。この場合、塗膜の焼成を行う代わりに光照射を行うことで塗膜(ゾルゲル材料)を硬化させることができる。
 本発明の光学基板を製造する方法及び装置は、微細パターン転写を正確に且つ確実に行いつつも高いスループットで光学基板を製造することができる。本発明のデバイスを製造する方法は、本発明の製造方法及び製造装置により製造された耐熱性、耐候性及び耐食性に優れる微細な凹凸パターン付き光学基板を用いているため、その光学基板を組み込んだ素子の製造プロセスにも耐性があり、また、それらの素子を長寿命化することができる。それゆえ、本発明のデバイスの製造方法により、耐熱性、耐候性及び耐食性に優れた有機EL素子や太陽電池などの各種デバイスを高いスループットで製造することができる。
 21 モールド繰り出しロール、22 押圧ロール、23 剥離ロール、
 24 モールド巻き取りロール、26 支持ロール、29 搬送ロール、
 30 ダイコータ、32 電極材料層、
 34 フォトレジスト、35 ヒートゾーン、40 基板、
 42 塗膜(ゾルゲル材料層)、
 44 マスク、70 ロールプロセス装置
 72 フィルム繰り出しロール、74 ニップロール、
 76 剥離ロール、78 搬送ロール、80 基板フィルム、
 80a フィルム状モールド、
 82 ダイコータ、85 UV照射光源、86 基板フィルム搬送系
 87 フィルム巻き取りロール、90 転写ロール、
 92 透明電極、94 有機層、95 正孔輸送層
 96 発光層、97 電子輸送層、98 金属電極
100 光学基板製造装置、101 回折格子基板、102 ブロック、
104 ステージ装置、120 塗布部
122 LEDバー照明、125 デジタルカメラ
126 画像処理装置、130 基板搬送部、140 モールド搬送部
142,144,146 除電器
150 押圧部、160 剥離部、200 有機EL素子、300 検査装置

Claims (32)

  1.  凹凸パターンを有する光学基板を製造する方法であって、
     凹凸パターン面を有する長尺のフィルム状モールドを用意する工程と、
     基板上にゾルゲル材料の塗膜を形成する工程と、
     前記フィルム状モールドの前記凹凸パターン面と前記塗膜を対向させて、押圧ロールをフィルム状モールドの前記凹凸パターン面と反対側の面に押し付けて前記凹凸パターン面を前記塗膜に転写する工程と、
     前記フィルム状モールドを塗膜から剥離する工程と、
     前記凹凸パターンが転写された塗膜を硬化する工程とを備えることを特徴とする光学基板を製造する方法。
  2.  前記塗膜を硬化する工程は、塗膜を焼成することにより硬化することを特徴とする請求項1に記載の光学基板を製造する方法。
  3.  前記長尺のフィルム状モールドを用意する工程は、
     長尺のフィルム状基材に凹凸形成材料を塗布することと、
     前記塗布された凹凸形成材料に、凹凸パターンを有する転写ロールを回転しながら押し付けて凹凸形成材料に前記凹凸パターンをロール転写することと、
     前記凹凸パターンがロール転写された凹凸形成材料を硬化することによりロール形態の前記長尺のフィルム状モールドを得ることを含むことを特徴とする請求項1または2に記載の光学基板の製造方法。
  4.  前記硬化した凹凸形成材料を有するフィルム状基材をフィルム巻き取りロールにより巻き取ることを特徴とする請求項3に記載の光学基板の製造方法。
  5.  前記フィルム状基材を繰り出すフィルム繰り出しロールと巻き取るフィルム巻き取りロールを用いて、前記フィルム状基材を搬送させながら、前記転写ロールの凹凸パターンを転写することを特徴とする請求項3に記載の光学基板の製造方法。
  6.  前記フィルム巻き取りロールに巻き取られたロール形態の前記長尺のフィルム状モールドが前記押圧ロールに対して繰り出されて移動することを特徴とする請求項4または5に記載の光学基板の製造方法。
  7.  前記剥離された前記長尺のフィルム状モールドをモールド巻き取りロールで巻き取ることを特徴とする請求項1~6のいずれか一項に記載の光学基板の製造方法。
  8.  前記凹凸形成材料を加熱しながら、前記押圧ロールを前記凹凸パターン面と反対側の面に押しつけることを特徴とする請求項1~7のいずれか一項に記載の光学基板の製造方法。
  9.  前記転写工程と前記剥離工程の間または前記剥離工程において、前記押圧された凹凸形成材料を加熱することを特徴とする請求項1~8のいずれか一項に記載の光学基板の製造方法。
  10.  前記長尺のフィルム状モールドを連続的に押圧ロールの下方に送り込むとともに、複数の基板を所定時間間隔でゾルゲル材料の塗膜を形成しながら前記押圧ロールに搬送し、前記複数の基板の塗膜に順次前記フィルム状モールドの凹凸パターン面を押圧ロールで押し付けることを特徴とする請求項1~9のいずれか一項に記載の光学基板の製造方法。
  11.  前記フィルム状モールドの前記凹凸パターンが不規則な凹凸パターンであり、凹凸の平均ピッチが、100~1500nmの範囲であり、凹凸の深さ分布の平均値が20~200nmの範囲であることを特徴とする請求項1~10のいずれか一項に記載の光学基板の製造方法。
  12.  光学基板を製造する装置であって、
     基板上にゾルゲル材料の塗膜を形成する塗膜形成部と、
     前記塗膜が形成された基板を所定位置に搬送する基板搬送部と、
     凹凸パターン面を有する長尺状のフィルム状モールドを繰り出すモールド繰り出しロールと前記長尺状のフィルム状モールドを巻き取るモールド巻き取りロールとを備え、前記モールド繰り出しロールから前記所定位置に連続的に前記フィルム状モールドを繰り出すと共に前記フィルム状モールドを前記モールド巻き取りロールで巻き取ることで前記フィルム状モールドを前記所定位置に対して搬送するモールド搬送部と、
     前記所定位置に回転可能に設置され、前記モールド搬送部で前記所定位置に繰り出された前記長尺状の前記フィルム状モールドの凹凸パターン面の一部を、前記基板搬送部により前記所定位置に搬送された前記基板の塗膜に押し付けるための押圧ロールとを備えることを特徴とする光学基板の製造装置。
  13.  さらに、前記押圧ロールにより押し付けられた前記長尺状のフィルム状モールドの凹凸パターン面の一部を前記基板の塗膜から剥離するための剥離ロールを備えることを特徴とする請求項12に記載の光学基板の製造装置。
  14.  さらに、前記フィルム状モールドの凹凸パターン面の一部が押し付けられる前記基板の塗膜を加熱する加熱手段を備えること特徴とする請求項12または13に記載の光学基板の製造装置。
  15.  前記加熱手段が、前記押圧ロール内に設けられたヒータであること特徴とする請求項14に記載の光学基板の製造装置。
  16.  さらに、前記フィルム状モールドが前記塗膜から剥離されるときに前記塗膜を加熱する加熱手段を備えること特徴とする請求項12~15のいずれか一項に記載の光学基板の製造装置。
  17.  前記押圧ロールと対向する位置に設けられて基板を下側から支持する支持ロールを備えること特徴とする請求項12~16のいずれか一項に記載の光学基板の製造装置。
  18.  前記塗膜形成部が、基板を保持しながら移動させる基板ステージを備えること特徴とする請求項12~17のいずれか一項に記載の光学基板の製造装置。
  19.  前記フィルム状モールドの前記凹凸パターンが不規則な凹凸パターンであり、凹凸の平均ピッチが、100~1500nmの範囲であり、凹凸の深さ分布の平均値が20~200nmの範囲であることを特徴とする請求項12~18のいずれか一項に記載の光学基板の製造装置。
  20.  さらに、前記長尺状のフィルム状モールドを形成するロールプロセス装置を備え、当該ロールプロセス装置が、基板フィルムを搬送する搬送系と、搬送中の基板フィルムに凹凸形成材料を塗布する塗布機と、塗布機の下流側に位置してパターンを転写する転写ロールと、前記基板フィルムに光を照射するための照射光源とを有することを特徴とする請求項12~19のいずれか一項に記載の光学基板を製造する装置。
  21.  前記搬送系が、前記基板フィルムを繰り出すフィルム繰り出しロールと、前記基板フィルムを前記転写ロールに付勢するニップロールと、前記基板フィルムの転写ロールからの剥離を促進する剥離ロールと、前記パターンが転写された基板フィルムを巻き取るフィルム巻き取りロールとを有することを特徴とする請求項20に記載の光学基板の製造装置。
  22.  前記基板フィルムを巻き取ったフィルム巻き取りロールが、前記フィルム状モールドを繰り出すモールド繰り出しロールとして使用されることを特徴とする請求項21に記載の光学基板の製造装置。
  23.  凹凸パターンを有する光学基板を備えたデバイスの製造方法であって、
     ゾルゲル材料を基板上に塗布し、塗布されたゾルゲル材料に所定の凹凸パターンを転写することで凹凸パターンが形成された基板を形成する基板形成工程と、
     前記凹凸パターンが形成された基板を洗浄する洗浄工程と、
     前記洗浄された基板上に第1電極をパターニングにより形成する第1電極形成工程と、
     第1電極が形成された前記基板をアニールするアニール工程と、
     第1電極上に薄膜を形成する薄膜形成工程と、
     前記薄膜上に第2電極を形成する第2電極形成工程を含むデバイスの製造方法。
  24.  前記洗浄工程において、超音波洗浄、ブラシ洗浄及びUV/O洗浄の少なくとも一つを行うことを特徴とする請求項23に記載のデバイスの製造方法。
  25.  前記パターニングが、酸またはアルカリ溶剤を用いて行うものであって、第1電極層の形成、レジスト塗布、露光及び現像、第1電極層のエッチング及びレジストの剥離を含むことを特徴とする請求項23または24に記載のデバイスの製造方法。
  26.  前記アニールの温度が、160℃~360℃であることを特徴とする請求項23~25のいずれか一項に記載のデバイスの製造方法。
  27.  前記デバイスが有機EL素子であり、第1電極が透明電極であり、前記薄膜層が有機層を含み、第2電極が金属電極であることを特徴とする請求項23~26のいずれか一項に記載のデバイスの製造方法。
  28.  前記デバイスが太陽電池であり、第1電極が透明電極であり、前記薄膜層が半導体層を含み、第2電極が金属電極であることを特徴とする請求項23~27のいずれか一項に記載のデバイスの製造方法。
  29.  前記基板に形成された前記凹凸パターンが光の回折または散乱のために用いられる不規則な凹凸パターンであり凹凸の平均ピッチが100~1500nmの範囲であり、凹凸の深さ分布の平均値が20~200nmの範囲であることを特徴とする請求項23~28のいずれか一項に記載のデバイスの製造方法。
  30.  前記基板がガラス基板であり、前記ゾルゲル材料がシリカ前駆体を含むことを特徴とする請求項23~29のいずれか一項に記載のデバイスの製造方法。
  31.  前記ゾルゲル材料を基板上に塗布し、塗布されたゾルゲル材料に所定の凹凸パターンを転写した後に、前記ゾルゲル材料を300℃以上で焼成すること含むことを特徴とする請求項23~30のいずれか一項に記載のデバイスの製造方法。
  32.  前記基板形成工程が、凹凸パターン面を有する長尺のフィルム状モールドを用意する工程と、
     基板上にゾルゲル材料の塗膜を形成する工程と、
     前記フィルム状モールドの前記凹凸パターン面と前記塗膜を対向させて、押圧ロールをフィルム状モールドの前記凹凸パターン面と反対側の面に押し付けて前記凹凸パターン面を前記塗膜に転写する工程と、
     前記フィルム状モールドを塗膜から剥離する工程と、
     前記凹凸パターンが転写された塗膜を焼成する工程とを含むことを特徴とする請求項23~31のいずれか一項に記載のデバイスの製造方法。
     
PCT/JP2013/051202 2012-03-16 2013-01-22 フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法 WO2013136844A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380014677.4A CN104245608B (zh) 2012-03-16 2013-01-22 使用膜状模具的具有凹凸图案的光学基板的制造方法和制造装置、以及具备该光学基板的器件的制造方法
KR1020147019631A KR101652781B1 (ko) 2012-03-16 2013-01-22 필름형 몰드를 사용한 요철 패턴을 가지는 광학 기판의 제조 방법 및 제조 장치, 및 그 광학 기판을 구비한 디바이스의 제조 방법
IN7538DEN2014 IN2014DN07538A (ja) 2012-03-16 2013-01-22
CA2865604A CA2865604C (en) 2012-03-16 2013-01-22 Manufacturing method and manufacturing device for optical substrate having concavo-convex pattern using film-shaped mold, and manufacturing method for device provided with opticalsubstrate
EP13760290.0A EP2826754A4 (en) 2012-03-16 2013-01-22 METHOD OF PRODUCTION AND MANUFACTURING DEVICE FOR OPTICAL SUBSTRATE WITH CONCAVE-KONVEX PATTERN BASED ON A FILM-FORM AND PRODUCTION PROCESS FOR A DEVICE COMPRISING AN OPTICAL SUBSTRATE
AU2013233704A AU2013233704C1 (en) 2012-03-16 2013-01-22 Manufacturing method and manufacturing device for optical substrate having concavo-convex pattern using film-shaped mold, and manufacturing method for device provided with optical substrate
US14/464,465 US20140357012A1 (en) 2012-03-16 2014-08-20 Manufacturing method and manufacturing device for optical substrate having concavo-convex pattern using film-shaped mold, and manufacturing method for device provided with optical substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-060925 2012-03-16
JP2012060925 2012-03-16
JP2012064140 2012-03-21
JP2012-064140 2012-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/464,465 Continuation US20140357012A1 (en) 2012-03-16 2014-08-20 Manufacturing method and manufacturing device for optical substrate having concavo-convex pattern using film-shaped mold, and manufacturing method for device provided with optical substrate

Publications (1)

Publication Number Publication Date
WO2013136844A1 true WO2013136844A1 (ja) 2013-09-19

Family

ID=49160766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051202 WO2013136844A1 (ja) 2012-03-16 2013-01-22 フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法

Country Status (9)

Country Link
US (1) US20140357012A1 (ja)
EP (1) EP2826754A4 (ja)
KR (1) KR101652781B1 (ja)
CN (1) CN104245608B (ja)
AU (1) AU2013233704C1 (ja)
CA (1) CA2865604C (ja)
IN (1) IN2014DN07538A (ja)
TW (1) TWI596811B (ja)
WO (1) WO2013136844A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105850228A (zh) * 2013-12-27 2016-08-10 捷客斯能源株式会社 发光元件
JP2017188394A (ja) * 2016-04-08 2017-10-12 株式会社半導体エネルギー研究所 積層体の加工装置および加工方法
TWI844279B (zh) * 2023-02-22 2024-06-01 耀穎光電股份有限公司 光學薄膜之抗散射及抗干涉鍍膜圖形結構

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384011B2 (ja) * 2014-04-04 2018-09-05 エルジー・ケム・リミテッド 液晶素子
JP6382729B2 (ja) * 2015-01-14 2018-08-29 富士フイルム株式会社 筒型パターン膜の作製方法、パターンロールの作製方法および剥離装置
TW201641294A (zh) * 2015-03-17 2016-12-01 綜研化學股份有限公司 凹凸圖案形成體的製造方法及壓印裝置
CN104690955A (zh) * 2015-03-26 2015-06-10 何炎权 制造立体光栅的方法及装置
WO2016181831A1 (ja) * 2015-05-13 2016-11-17 凸版印刷株式会社 凹凸パターン形成体の製造方法、その製造装置、及びシール
JPWO2016194964A1 (ja) * 2015-06-04 2018-03-22 住友電気工業株式会社 プリント配線板用原板及びプリント配線板
JP6623058B2 (ja) * 2015-12-18 2019-12-18 デクセリアルズ株式会社 反射防止光学体の形成方法およびディスプレイパネル
US10549494B2 (en) 2016-04-20 2020-02-04 Himax Technologies Limited Imprinting apparatus and imprinting method
KR101951997B1 (ko) * 2016-11-09 2019-02-25 한국광기술원 대면적 마이크로 렌즈 어레이 제조방법
CN107650241B (zh) * 2017-09-20 2019-10-01 宁波伏尔肯科技股份有限公司 一种防弹陶瓷插板的制作方法
JP7481794B2 (ja) * 2017-10-18 2024-05-13 日東電工株式会社 ロール体
JP7156036B2 (ja) * 2017-12-15 2022-10-19 東レ株式会社 高分子薄膜の製造装置および製造方法
KR20190086884A (ko) * 2018-01-15 2019-07-24 주식회사 엘지화학 패턴 성형 장치
JP7146412B2 (ja) * 2018-02-22 2022-10-04 キヤノン株式会社 樹脂膜の貼着方法及び液体吐出ヘッドの製造方法
IT201800003096A1 (it) * 2018-02-27 2019-08-27 Coveme S P A Metodo per applicare uno strato di rivestimento superiore protettivo trasparente ad una struttura stratiforme riflettente
CN108819429B (zh) * 2018-08-03 2024-04-26 扬州智翔石油工程技术有限公司 光固化复合材料真空浸涂装置
CN109390426B (zh) * 2018-09-10 2024-05-28 广州市龙珠化工有限公司 一种太阳能光伏电池用的玻璃面板及其制备方法
CN113165376A (zh) * 2018-12-03 2021-07-23 J·F·巴伯兰拉托雷 用于在基底上获得凸起图案的方法和装置
JP7245973B2 (ja) * 2019-02-04 2023-03-27 パナソニックIpマネジメント株式会社 パターンの形成方法および装置
EP3950291A4 (en) * 2019-03-29 2022-05-25 Nitto Denko Corporation PROCESS FOR PRODUCTION OF GLASS-RESIN LAMINATED BODY
US11505454B2 (en) * 2019-09-25 2022-11-22 Taiwan Semiconductor Manufacturing Company Ltd. MEMS structure and manufacturing method thereof
US10991339B1 (en) * 2019-11-26 2021-04-27 Facebook Technologies, Llc System and method for increasing light uniformity for a display backlight
KR102147280B1 (ko) * 2020-02-25 2020-08-24 국방과학연구소 마이크로 렌즈 어레이 제조용 몰드의 제조 방법
TWI765314B (zh) * 2020-08-10 2022-05-21 光群雷射科技股份有限公司 轉印滾輪與其製造方法、及光學膜片與其製造方法
US20230327045A1 (en) * 2021-03-03 2023-10-12 Solaero Technologies Corp. Multijunction solar cells with light scattering layer
US11329181B1 (en) * 2021-03-03 2022-05-10 Solaero Technologies Corp. Multijunction solar cells
CN114578465B (zh) * 2022-04-08 2022-08-26 绍兴翔宇绿色包装有限公司 一种pet基扩散膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257661A (ja) * 2002-02-28 2003-09-12 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセンス素子、それを用いた画像形成装置、携帯端末、有機エレクトロルミネッセンス素子の製造方法
JP2006236748A (ja) 2005-02-24 2006-09-07 Konica Minolta Holdings Inc 有機電界発光装置
JP2008006639A (ja) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd インプリント用モールドおよびインプリント用モールド製造方法
JP2009517310A (ja) * 2005-11-23 2009-04-30 サン−ゴバン グラス フランス ガラス製品を表面構造化する方法、構造化された表面を有するガラス製品、及び使用
JP2010525968A (ja) * 2007-04-30 2010-07-29 エス・ディ・ウォレン・カンパニー 型押し表面を有する素材とその製造法
JP2011006487A (ja) 2001-06-22 2011-01-13 Cpex Pharmaceuticals Inc 医薬組成物
WO2011007878A1 (ja) 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411620U (ja) * 1990-05-21 1992-01-30
US5650251A (en) * 1993-07-07 1997-07-22 Canon Kabushiki Kaisha Process for producing color filter comprising an ultrasonic wave projected perpendicularly to the substrate
US6586077B1 (en) * 2000-02-07 2003-07-01 Guardian Industries Corp. Temperable patterned glass articles and methods of making same
US7033534B2 (en) * 2001-10-09 2006-04-25 3M Innovative Properties Company Method for forming microstructures on a substrate using a mold
US6833667B2 (en) * 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
JP4270806B2 (ja) * 2002-05-24 2009-06-03 大日本印刷株式会社 ゾルゲル法による反射防止物品の製造方法
TWI417564B (zh) * 2005-02-21 2013-12-01 Dainippon Printing Co Ltd Manufacturing method and manufacturing apparatus for optical laminate
JP4591555B2 (ja) * 2008-06-12 2010-12-01 株式会社日本自動車部品総合研究所 燃料噴射ノズルおよびそれを用いた燃料噴射制御装置
KR101065744B1 (ko) * 2009-02-27 2011-09-19 주식회사 티지솔라 요철구조가 형성된 기판을 이용한 태양전지의 제조방법
JP5322182B2 (ja) * 2010-05-14 2013-10-23 Jx日鉱日石エネルギー株式会社 有機el素子用のマイクロレンズ、それを用いた有機el素子、及びそれらの製造方法
JP2013037164A (ja) * 2011-08-08 2013-02-21 Sony Corp 拡散シート、バックライト、液晶表示装置および拡散シートの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006487A (ja) 2001-06-22 2011-01-13 Cpex Pharmaceuticals Inc 医薬組成物
JP2003257661A (ja) * 2002-02-28 2003-09-12 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセンス素子、それを用いた画像形成装置、携帯端末、有機エレクトロルミネッセンス素子の製造方法
JP2006236748A (ja) 2005-02-24 2006-09-07 Konica Minolta Holdings Inc 有機電界発光装置
JP2009517310A (ja) * 2005-11-23 2009-04-30 サン−ゴバン グラス フランス ガラス製品を表面構造化する方法、構造化された表面を有するガラス製品、及び使用
JP2008006639A (ja) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd インプリント用モールドおよびインプリント用モールド製造方法
JP2010525968A (ja) * 2007-04-30 2010-07-29 エス・ディ・ウォレン・カンパニー 型押し表面を有する素材とその製造法
WO2011007878A1 (ja) 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry, Applied Chemistry"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105850228A (zh) * 2013-12-27 2016-08-10 捷客斯能源株式会社 发光元件
JP2017188394A (ja) * 2016-04-08 2017-10-12 株式会社半導体エネルギー研究所 積層体の加工装置および加工方法
TWI844279B (zh) * 2023-02-22 2024-06-01 耀穎光電股份有限公司 光學薄膜之抗散射及抗干涉鍍膜圖形結構

Also Published As

Publication number Publication date
AU2013233704C1 (en) 2016-07-14
US20140357012A1 (en) 2014-12-04
CN104245608A (zh) 2014-12-24
CA2865604C (en) 2017-06-27
AU2013233704A1 (en) 2014-10-23
KR20140107457A (ko) 2014-09-04
TWI596811B (zh) 2017-08-21
EP2826754A1 (en) 2015-01-21
CA2865604A1 (en) 2013-09-19
EP2826754A4 (en) 2015-12-30
AU2013233704B2 (en) 2016-03-10
IN2014DN07538A (ja) 2015-04-24
TW201349612A (zh) 2013-12-01
KR101652781B1 (ko) 2016-08-31
CN104245608B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2013136844A1 (ja) フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法
JP6013945B2 (ja) 凹凸パターンを有する基板を備えたデバイスの製造方法
JP5695804B2 (ja) フィルム状モールドを用いた光学基板の製造方法、製造装置及び得られた光学基板
JP5695799B2 (ja) 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法
CA2886007C (en) Device for inspecting substrate having irregular rough surface and inspection method using same
KR101604664B1 (ko) 졸겔법을 이용한 요철 기판의 제조 방법, 이에 사용하는 졸 용액, 및 이를 사용한 유기 el 소자의 제조 방법과 이로부터 얻어진 유기 el 소자
JP2013219334A (ja) フィルム状モールドを用いた基板の製造方法及び製造装置
AU2014258629A1 (en) Substrate having rugged structure obtained from hydrophobic sol/gel material
JP5695608B2 (ja) ゾルゲル法を用いた凹凸基板の製造方法、それに用いるゾル溶液、及びそれを用いた有機el素子の製造方法並びにそれから得られた有機el素子
JP5695607B2 (ja) ゾルゲル法を用いた凹凸基板の製造方法、それに用いるゾル溶液、及びそれを用いた有機el素子の製造方法並びにそれから得られた有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019631

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2865604

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013760290

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013233704

Country of ref document: AU

Date of ref document: 20130122

Kind code of ref document: A