WO2013136463A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013136463A1
WO2013136463A1 PCT/JP2012/056546 JP2012056546W WO2013136463A1 WO 2013136463 A1 WO2013136463 A1 WO 2013136463A1 JP 2012056546 W JP2012056546 W JP 2012056546W WO 2013136463 A1 WO2013136463 A1 WO 2013136463A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
temperature
catalyst
amount
reduction
Prior art date
Application number
PCT/JP2012/056546
Other languages
English (en)
French (fr)
Inventor
伊津也 栗阪
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12870973.0A priority Critical patent/EP2826970B1/en
Priority to JP2014504552A priority patent/JP5825424B2/ja
Priority to PCT/JP2012/056546 priority patent/WO2013136463A1/ja
Publication of WO2013136463A1 publication Critical patent/WO2013136463A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine represented by an automobile engine or the like.
  • the present invention relates to an improvement in the control of an internal combustion engine provided with an NOx storage reduction catalyst in an exhaust system.
  • the EGR system includes a high-pressure EGR mechanism (hereinafter referred to as “HPL-EGR mechanism”) and a low-pressure EGR mechanism (hereinafter referred to as “LPL-EGR mechanism”).
  • HPL-EGR mechanism high-pressure EGR mechanism
  • LPL-EGR mechanism low-pressure EGR mechanism
  • MPL (Middle Pressure Loop) -EGR system” is known.
  • the HPL (High Pressure Loop) -EGR mechanism recirculates the exhaust gas from the exhaust passage upstream of the turbocharger turbine (for example, the exhaust manifold) to the intake passage downstream of the turbocharger compressor. ing.
  • An LPL (Low Pressure Loop) -EGR mechanism recirculates exhaust gas from the exhaust passage downstream of the turbocharger turbine to the intake passage upstream of the turbocharger compressor.
  • the exhaust system of this type of engine is provided with a NOx occlusion reduction type catalyst that occludes (absorbs) NOx contained in the exhaust gas, and the NOx occlusion reduction type catalyst is used to purify the exhaust gas.
  • a NOx occlusion reduction type catalyst that occludes (absorbs) NOx contained in the exhaust gas
  • the NOx occlusion reduction type catalyst is used to purify the exhaust gas.
  • NOx occlusion reduction type catalyst for example, an NSR (NOx Storage Reduction) catalyst, a DPNR (Diesel Particulate-NOx Reduction system) catalyst, or the like is used.
  • NSR NOx Storage Reduction
  • DPNR Diesel Particulate-NOx Reduction system
  • This NOx occlusion reduction type catalyst occludes NOx in the exhaust when the exhaust air-fuel ratio (exhaust A / F) is lean, that is, when the atmosphere of the exhaust system is in a high oxygen concentration state.
  • the exhaust air-fuel ratio becomes rich, specifically, the atmosphere of the exhaust system becomes a low oxygen concentration state, and the exhaust gas contains hydrocarbon (HC), carbon monoxide (CO), and the like.
  • the NOx storage reduction catalyst reduces and releases the stored NOx (execution of NOx reduction process).
  • the exhaust air-fuel ratio is made rich by supplying fuel to the exhaust system (fuel supply by post injection or fuel addition). Reduce oxygen concentration.
  • NOx stored in the NOx storage reduction catalyst is reduced and purified by reaction with the unburned fuel component contained in the exhaust.
  • the NOx storage capacity of the NOx storage reduction catalyst is recovered.
  • the NOx occlusion reduction type catalyst has a noble metal such as platinum Pt as a catalyst component and a NOx occlusion component (hereinafter referred to as “NOx occlusion material”) on the surface of a base material made of an oxide such as alumina Al 2 O 3.
  • NOx occlusion material a NOx occlusion component
  • the NOx storage material is selected from, for example, alkali metals such as potassium K, sodium Na, and lithium Li, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, yttrium Y, and cerium Ce.
  • the NOx storage material a material that has a high NOx storage performance (a large amount of NOx can be stored) is obtained in a situation where the catalyst temperature (catalyst bed temperature) is relatively low.
  • low-temperature type NOx storage material and a material (hereinafter referred to as “high-temperature type NOx storage material”) having high NOx storage performance under a relatively high catalyst temperature.
  • An example of the low-temperature NOx storage material is cerium Ce.
  • An example of the high-temperature NOx storage material is barium Ba.
  • the NOx occlusion performance of the low-temperature NOx occlusion material is mainly exerted and NOx is occluded, while the high load of the engine
  • the NOx occlusion performance of the high-temperature NOx occlusion material is mainly exhibited and NOx is occluded.
  • FIG. 16 shows the relationship between the catalyst temperature and the NOx storable amount.
  • the alternate long and short dash line in the figure shows the relationship between the catalyst temperature and the NOx occlusion amount in the low temperature type NOx occlusion material
  • the alternate long and two short dashes line in the figure shows the relationship between the catalyst temperature and the NOx occlusion amount in the high temperature type NOx occlusion material.
  • the solid line in the figure shows the relationship between the catalyst temperature and the NOx storable amount as a whole of the NOx occlusion reduction catalyst obtained by the characteristics of each NOx occlusion material.
  • the NOx occlusion amount of the low temperature type NOx occlusion material is large in the temperature range where the catalyst temperature is relatively low, and the high temperature type NOx occlusion material is in the temperature range where the catalyst temperature is relatively high.
  • the amount of NOx occlusion is increasing.
  • the catalyst temperature when the catalyst temperature is relatively low, a relatively large amount of NOx is occluded in the low-temperature NOx occlusion material, so that the catalyst temperature rapidly increases due to an increase in engine load or the like. Can be mentioned.
  • the low-temperature NOx occlusion material has a reduced NOx occlusion amount, so that the NOx occlusion state cannot be maintained, and this NOx is released.
  • the NOx emission amount from the NOx occlusion reduction catalyst at this time fluctuates according to the increase amount (temperature gradient) of the catalyst temperature per unit time.
  • the reason is as follows.
  • the amount of increase in the catalyst temperature per unit time is relatively small, the amount of NOx released per unit time from the low-temperature type NOx storage material is relatively small. Therefore, the released NOx is reduced by the high-temperature type NOx storage material. It is possible to occlude.
  • the amount of increase in the catalyst temperature per unit time is relatively large, the amount of NOx released per unit time from the low-temperature NOx storage material becomes large, so that most of the released NOx has a high temperature.
  • the NOx occlusion material is not occluded (because there is a limit to the amount of NOx occluded by the high-temperature type NOx occlusion material per unit time), and is exhausted from the NOx occlusion reduction catalyst.
  • the phenomenon in which NOx is exhausted from the NOx occlusion reduction catalyst as described above is the case where the catalyst temperature rapidly rises from the state where NOx is occluded in the low temperature NOx occlusion material in the situation where the catalyst temperature is relatively low as described above.
  • the present invention is not limited to this, and may occur even when the catalyst temperature rapidly drops from a state where NOx is occluded in the high-temperature NOx occlusion material in a situation where the catalyst temperature is relatively high.
  • the discharged NOx is provided in the LPL-EGR mechanism.
  • An acid liquid may be generated by being dissolved in dew condensation water (condensation water resulting from cooling by the cooler) in an intercooler provided in the EGR cooler or the intake passage.
  • dew condensation water condensation water resulting from cooling by the cooler
  • intercooler provided in the EGR cooler or the intake passage.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a control device for an internal combustion engine that can reduce the NOx emission amount from the NOx occlusion reduction type catalyst accompanying a temperature change. There is.
  • the solution principle of the present invention taken in order to achieve the above object is to determine whether or not NOx is released according to changes in the catalyst temperature for each of the plurality of NOx storage materials constituting the NOx storage reduction catalyst. Assuming that this released NOx is exhausted from the NOx storage reduction catalyst, NOx reduction processing is executed to reduce the NOx emission from the NOx storage reduction catalyst.
  • an exhaust system is provided with a NOx occlusion reduction type catalyst having a plurality of NOx occlusion materials having different NOx occlusion characteristics according to temperature.
  • the NOx occlusion reduction type catalyst reduces NOx occluded by the NOx occlusion reduction type catalyst.
  • An internal combustion engine control device capable of performing NOx reduction processing is presupposed.
  • a high-temperature NOx storage material in which the catalyst temperature range where the NOx storage performance is highest is higher than other NOx storage materials, and the NOx storage performance
  • the catalyst temperature range in which the temperature becomes the highest includes at least a low-temperature NOx storage material that is on a lower temperature side than the other NOx storage materials.
  • the description “when the catalyst temperature exceeds a predetermined temperature and the temperature increase gradient exceeds a predetermined value” is described as “the catalyst temperature is estimated to exceed the predetermined temperature and the temperature increase gradient exceeds the predetermined value. It is a concept that includes “when it is estimated”.
  • the catalyst temperature falls below a predetermined temperature and the temperature decrease gradient exceeds a predetermined value. The NOx reduction process is executed.
  • the description “when the catalyst temperature is lower than the predetermined temperature and the temperature decrease gradient exceeds the predetermined value” is similar to the above description, “the catalyst temperature is estimated to be lower than the predetermined temperature and the temperature decrease gradient. It is a concept including “when it is estimated that the value exceeds a predetermined value”.
  • predetermined temperature of the catalyst temperature and the “predetermined value of the temperature rise gradient” at which the NOx reduction process is performed depend on the characteristics of the NOx storage material and the amount of NOx stored in the NOx storage material. It is preset by experiment or simulation.
  • NOx is released from the NOx occlusion material in accordance with the temperature change of the NOx occlusion reduction catalyst, and the released NOx is hardly occluded by other NOx occlusion materials. In this case, the NOx reduction process is executed.
  • the low temperature type NOx is stored. Even if NOx is not released from the occlusion material, or NOx is released, the NOx reduction treatment is not performed because most of the NOx is occluded by the high-temperature NOx occlusion material.
  • NOx is absorbed from the low temperature type NOx occlusion material. The NOx reduction process is executed assuming that most of the released NOx cannot be stored by the high-temperature NOx storage material and is discharged from the NOx storage reduction catalyst.
  • the high temperature type NOx is not released from the NOx storage material, or even if NOx is released, most of the NOx is not stored because it can be stored by the low-temperature NOx storage material.
  • NOx is absorbed from the high temperature type NOx occlusion material. The NOx reduction process is executed assuming that most of the released NOx cannot be stored by the low-temperature NOx storage material and is discharged from the NOx storage reduction catalyst.
  • the NOx reduction process is performed in a situation where NOx is discharged from the NOx storage reduction catalyst, the NOx reduction process is performed despite the situation where NOx is not discharged from the NOx storage reduction catalyst. Is not executed, and wasteful NOx reduction processing can be prevented, and the fuel consumption rate can be improved.
  • the internal combustion engine is provided with an EGR mechanism that recirculates part of the exhaust gas that has passed through the NOx storage reduction catalyst to the intake system, whereas NOx is stored in the low temperature NOx storage material.
  • the NOx reduction process cannot be performed when the catalyst temperature exceeds a predetermined temperature and the temperature increase gradient exceeds a predetermined value In this case, the exhaust gas recirculation by the EGR mechanism is not performed on condition that the NOx emission amount from the NOx occlusion reduction type catalyst exceeds a predetermined amount.
  • the catalyst temperature falls below a predetermined temperature.
  • the condition is that the amount of NOx discharged from the NOx storage reduction catalyst exceeds a predetermined amount. As described above, exhaust gas recirculation by the EGR mechanism is not performed.
  • the amount of NOx discharged from the NOx occlusion reduction catalyst that does not perform exhaust gas recirculation is appropriately set. For example, it is set to a value that can avoid adverse effects on the EGR mechanism and the components of the intake system (EGR cooler and intercooler).
  • the exhaust gas recirculation by the EGR mechanism when the exhaust gas recirculation by the EGR mechanism is not performed, specifically, as a subsequent control operation, when the amount of NOx occluded in the low temperature type NOx occlusion material reaches a predetermined threshold value
  • the NOx discharged from the exhaust system when the exhaust gas recirculation by the EGR mechanism is not performed is more than a predetermined amount.
  • the threshold value is changed to a smaller side.
  • the amount of NOx discharged from the exhaust system by canceling the exhaust gas recirculation by the EGR mechanism and the amount of NOx discharged by changing the threshold value to the smaller side can be offset. , Adverse effects on the environment can be suppressed.
  • the reduction amount of the NOx emission amount from the NOx occlusion reduction type catalyst resulting from the change of the threshold value to the smaller side is the exhaust gas resulting from the non-execution of the exhaust gas recirculation by the EGR mechanism.
  • the above threshold value is restored to the original value when it substantially coincides with the NOx emission amount from the system.
  • the period during which the execution frequency of the NOx reduction process becomes high due to the change of the threshold value to the smaller side can be set to the minimum necessary, and the NOx reduction process is performed as necessary. Can be avoided, and the fuel consumption rate can be improved.
  • the present invention it is possible to avoid that the NOx emission amount increases due to the temperature change of the NOx occlusion reduction type catalyst.
  • FIG. 1 It is a figure showing a schematic structure of an engine concerning an embodiment. It is a block diagram which shows the structure of control systems, such as ECU. It is a figure which shows the map which sets the mode of an MPL-EGR system at the time of engine warm. It is a figure which shows the map which sets the mode of an MPL-EGR system at the time of engine cold. It is a figure which shows the relationship between the catalyst temperature in a low temperature type NOx occlusion material, and NOx occlusion amount. It is a figure which shows the relationship between the catalyst temperature and NOx occlusion amount in a high temperature type NOx occlusion material.
  • FIG. 7A shows the relationship between the NOx occlusion rate and NOx occlusion rate in each NOx occlusion material in the catalyst low temperature range
  • FIG. 7B shows the NOx occlusion rate in each NOx occlusion material in the catalyst intermediate temperature range.
  • FIG. 7C is a diagram showing the relationship between the NOx storage rate and the NOx storage rate in each NOx storage material in the catalyst high temperature range. It is a flowchart figure which shows a part of procedure of NOx discharge
  • FIG. 1 is a diagram showing a schematic configuration of an engine (internal combustion engine) 1 according to the present embodiment.
  • the engine 1 shown in FIG. 1 is a diesel engine having four cylinders 11, 11,..., And each cylinder 11 has an injector (fuel injection valve) 2 capable of directly injecting fuel into the cylinder 11.
  • injectors 2 are constituted by piezoelectric injectors (piezo elements) inside, for example, piezo injectors that are appropriately opened to inject and supply fuel into the cylinder 11. Further, the fuel boosted by the high-pressure fuel pump P is supplied to the injector 2 through the common rail 21.
  • Each cylinder 11 is connected to an intake passage 3 constituting an intake system.
  • An air cleaner 31 is provided at the upstream end of the intake passage 3.
  • a compressor 41, an intercooler 32, and an intake throttle valve (diesel throttle) 33 of a turbocharger (centrifugal supercharger) 4 are provided in order along the intake air flow direction along the intake passage 3.
  • the intake air introduced into the intake passage 3 is purified by the air cleaner 31, then supercharged by the compressor 41 and cooled by the intercooler 32. Thereafter, the intake air passes through the intake throttle valve 33 and is introduced into each cylinder 11.
  • the intake air introduced into each cylinder 11 is compressed in the compression stroke, and fuel is burned by being injected into the cylinder 11 from the injector 2.
  • a piston (not shown) reciprocates in the cylinder, and an engine output is obtained by rotating the crankshaft via the connecting rod.
  • the intake throttle valve 33 is fully open during normal operation. For example, when the vehicle is decelerating or the like, it is necessary (for example, when it is necessary to prevent the temperature drop of the NSR catalyst 51 described below). ) Closed to a predetermined opening.
  • Each cylinder 11 is connected to an exhaust passage 5 constituting an exhaust system.
  • a turbine 42 of the turbocharger 4 is provided in the middle of the exhaust passage 5.
  • the turbocharger 4 in the present embodiment is a variable nozzle type turbocharger, and a variable nozzle vane mechanism 43 is provided on the turbine 42 side, and a nozzle vane (not shown) provided in the variable nozzle vane mechanism 43 is opened.
  • the supercharging pressure of the engine 1 can be adjusted. Specifically, the supercharging pressure at the compressor 41 is increased by decreasing the opening degree of the nozzle vane, and conversely, the supercharging pressure at the compressor 41 is decreased by increasing the opening degree of the nozzle vane. Since the configuration of the variable nozzle vane mechanism 43 is well known (see, for example, Japanese Patent Application Laid-Open No. 2011-127561, Japanese Patent Application Laid-Open No. 2012-7544, etc.), description thereof is omitted here.
  • an NSR catalyst 51 as a NOx occlusion reduction catalyst, a particulate filter (DPF; exhaust purification filter) 52, an exhaust throttle valve 53, and a muffler 54 are arranged along the exhaust flow direction.
  • DPF particulate filter
  • the exhaust gas (burned gas) generated by the combustion in each cylinder 11 is discharged to the exhaust passage 5.
  • the exhaust gas discharged to the exhaust passage 5 passes through a turbine 42 provided in the middle of the exhaust passage 5 and is then purified by the NSR catalyst 51 and the DPF 52. Thereafter, the exhaust gas passes through the exhaust throttle valve 53 and the muffler 54 to the atmosphere. It is released inside.
  • the NSR catalyst 51 occludes NOx in a state where a large amount of oxygen is present in the exhaust gas, has a low oxygen concentration in the exhaust gas, and has a reducing component (for example, fuel).
  • a state where a large amount of unburned component (HC)) is present NOx is reduced to NO 2 or NO and released. NOx released as NO 2 or NO is further reduced to N 2 by reacting quickly with HC and CO in the exhaust.
  • HC and CO are oxidized to H 2 O and CO 2 by reducing NO 2 and NO. That is, HC, CO, and NOx in the exhaust can be purified by appropriately adjusting the oxygen concentration and HC component in the exhaust introduced into the NSR catalyst 51.
  • the oxygen concentration and HC component in the exhaust gas are adjusted by the fuel injection operation (post injection) from the injector 2 and the opening degree control of the intake throttle valve 33.
  • the NSR catalyst 51 is configured such that a noble metal such as platinum Pt as a catalyst component and a NOx occlusion material are supported on the surface of a base material made of an oxide such as alumina Al 2 O 3 .
  • the NOx storage material is selected from a plurality selected from alkali metals such as potassium K, sodium Na and lithium Li, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, yttrium Y and cerium Ce. Become.
  • the NOx occlusion performance becomes the highest (the NOx occlusion amount increases; the NOx occlusion performance increases) when the catalyst temperature (catalyst bed temperature) is relatively low (for example, 200 ° C.).
  • the highest temperature range of the catalyst is lower temperature than other NOx storage materials (high temperature type NOx storage materials described later), and NOx in a situation where the catalyst temperature is relatively high (for example, 400 ° C.).
  • a high-temperature NOx storage material that has the highest storage performance the catalyst temperature range where the NOx storage performance is highest is higher than other NOx storage materials (the above low-temperature NOx storage materials)) .
  • cerium Ce is applied as the low-temperature NOx storage material
  • barium Ba is applied as the high-temperature NOx storage material.
  • the combination of the low temperature type NOx storage material and the high temperature type NOx storage material is not limited to this and is appropriately selected.
  • the NOx occlusion of the high temperature type NOx occlusion material is mainly performed in a situation where the catalyst temperature is relatively high, such as during high load operation of the engine 1. NOx is occluded depending on performance. Thereby, the NOx occlusion ability of the NSR catalyst 51 can be obtained in a wide temperature range.
  • FIG. 5 shows the relationship between the catalyst temperature and the NOx storable amount in the low temperature type NOx storage material.
  • the one-dot chain line in the figure shows the relationship between the catalyst temperature and the NOx occlusion capacity in the low temperature type NOx occlusion material
  • the solid line in the figure shows the catalyst temperature and NOx occlusion of the NSR catalyst 51 as a whole obtained by the characteristics of each NOx occlusion material. The relationship with the possible amount is shown.
  • the broken line in a figure has shown the reduction
  • This reduction control required value is the NOx occlusion amount for determining that it is necessary to start NOx reduction control (hereinafter also referred to as “NOx reduction treatment”) when NOx is occluded in the low temperature type NOx occlusion material.
  • NOx reduction treatment the NOx reduction control
  • the current NOx occlusion amount becomes the reduction control requirement value (low temperature type NOx occlusion) at the changed catalyst temperature as the catalyst temperature rises. If the material reduction control value) is exceeded, NOx reduction control is started on the condition that NOx released from the low-temperature NOx storage material is discharged from the NSR catalyst 51, and the low-temperature NOx storage is started. NOx occluded in the material is reduced. Details will be described later.
  • FIG. 6 shows the relationship between the catalyst temperature and the NOx storable amount in the high temperature type NOx storage material.
  • the two-dot chain line in the figure shows the relationship between the catalyst temperature and the NOx storable amount in the high-temperature NOx storage material
  • the solid line in the figure shows the catalyst temperature and NOx of the NSR catalyst 51 as a whole obtained by the characteristics of each NOx storage material. The relationship with the storable amount is shown.
  • the broken line in a figure has shown the reduction control request value in this high temperature type NOx storage material.
  • This reduction control requirement value is the threshold value of the NOx occlusion amount that determines that it is necessary to start the NOx reduction control when NOx is occluded in the high-temperature NOx occlusion material, as described above. That is, NOx is occluded in the high-temperature NOx occlusion material, and when the NOx occlusion amount reaches this reduction control requirement value, NOx reduction control is started to reduce NOx occluded in the high-temperature NOx occlusion material. And release.
  • the current NOx occlusion amount becomes the reduction control requirement value (high temperature type NOx occlusion) at the changed catalyst temperature as the catalyst temperature decreases.
  • NOx reduction control is started on the condition that NOx released from the high-temperature NOx storage material is discharged from the NSR catalyst 51, and the high-temperature NOx storage is started. NOx occluded in the material is reduced. This will also be described in detail later.
  • the low-temperature NOx storage material and the high-temperature NOx storage material change in the NOx storage speed according to their respective NOx storage rates.
  • the NOx storage rate is the ratio of the actual NOx storage amount to the maximum NOx storage amount for each NOx storage material (actual NOx storage amount / NOx maximum storage amount).
  • the NOx occlusion speed is the amount of NOx that can be occluded per unit time in each NOx occlusion material.
  • FIG. 7 (a) shows the relationship between the NOx occlusion rate and the NOx occlusion speed in each NOx occlusion material in the catalyst low temperature region (for example, the catalyst bed temperature is 200 ° C.).
  • the low temperature type NOx storage material indicated by the alternate long and short dash line in the figure
  • the high temperature type NOx storage material indicated by the double dotted line in the figure. Since the NOx occlusion performance is higher, the NOx occlusion speed is higher for the low temperature type NOx occlusion material even if the NOx occlusion rate is the same. In any NOx occlusion material, the lower the NOx occlusion rate, the higher the NOx occlusion speed.
  • FIG. 7 (b) shows the relationship between the NOx occlusion rate and the NOx occlusion speed in each NOx occlusion material in the middle temperature range of the catalyst (for example, the catalyst bed temperature is 300 ° C.).
  • the NOx occlusion performance of each NOx occlusion material is substantially the same, so the NOx occlusion speed is also substantially the same.
  • the lower the NOx occlusion rate the higher the NOx occlusion speed.
  • FIG. 7C shows the relationship between the NOx occlusion rate and the NOx occlusion speed in each NOx occlusion material in the catalyst high temperature range (for example, the catalyst bed temperature is 400 ° C.).
  • the NOx occlusion performance of the high temperature type NOx occlusion material is higher than that of the low temperature type NOx occlusion material.
  • the high-temperature NOx storage material has a higher NOx storage rate. In any NOx occlusion material, the lower the NOx occlusion rate, the higher the NOx occlusion speed.
  • the DPF 52 disposed on the downstream side of the NSR catalyst 51 is made of, for example, a porous ceramic structure, and when exhaust gas passes through the porous wall, PM ( It collects particulate matter (particulate matter).
  • the DPF 52 carries a catalyst (for example, an oxidation catalyst mainly composed of a noble metal such as platinum) that oxidizes and burns the collected PM during the DPF regeneration process.
  • the engine 1 according to the present embodiment is provided with an MPL-EGR system including an HPL-EGR mechanism (high pressure EGR mechanism) 6 and an LPL-EGR mechanism (low pressure EGR mechanism) 7.
  • HPL-EGR mechanism high pressure EGR mechanism
  • LPL-EGR mechanism low pressure EGR mechanism
  • the HPL-EGR mechanism 6 sends exhaust gas from the exhaust passage 5 (for example, the exhaust manifold) upstream of the turbine 42 of the turbocharger 4 to the intake passage 3 downstream of the compressor 41 (downstream of the intake throttle valve 33).
  • a high-pressure EGR passage 61 that leads a part (high-pressure EGR gas) and a high-pressure EGR valve 62 that can change the flow passage area of the high-pressure EGR passage 61 are provided.
  • the amount of high-pressure EGR gas recirculated (recirculated) by the HPL-EGR mechanism 6 is adjusted by the opening degree of the high-pressure EGR valve 62. Further, if necessary, the opening degree of the intake throttle valve 33 is decreased (the degree of closing is increased), and thereby the recirculation amount of the high-pressure EGR gas may be increased.
  • the LPL-EGR mechanism 7 transfers a part of the exhaust gas (low pressure EGR gas) from the exhaust passage 5 downstream of the DPF 52 and upstream of the exhaust throttle valve 53 to the intake passage 3 upstream of the compressor 41.
  • a low pressure EGR passage 71 for guiding, a low pressure EGR valve 72 capable of changing a flow area of the low pressure EGR passage 71, and a low pressure EGR cooler 73 for cooling the low pressure EGR gas flowing through the low pressure EGR passage 71 are provided.
  • the amount of low-pressure EGR gas recirculated (recirculated) by the LPL-EGR mechanism 7 is adjusted by the opening degree of the low-pressure EGR valve 72. Further, the opening degree of the exhaust throttle valve 53 is reduced as necessary, and thereby the recirculation amount of the low pressure EGR gas may be increased.
  • the injector 2 the intake throttle valve 33, the variable nozzle vane mechanism 43, the exhaust throttle valve 53, the high pressure EGR valve 62, and the low pressure EGR valve 72 are electrically connected to the ECU (Electronic Control Unit) 10. ing.
  • ECU Electronic Control Unit
  • the ECU 10 includes an A / F sensor 80, an air flow meter 81, an intake air temperature sensor 82, a supercharging pressure sensor 83, a plurality of exhaust gas temperature sensors 84a to 84d, a water temperature sensor 85, a crank position sensor 86, an accelerator opening sensor 87, an intake air throttle. It is electrically connected to various sensors such as a valve opening sensor 88, an LPL differential pressure sensor 89a, a DPF differential pressure sensor 89b, a compressor outlet temperature sensor 8A, a high pressure EGR valve opening sensor 8H, and a low pressure EGR valve opening sensor 8L. Yes.
  • the A / F sensor 80 is a sensor that detects the oxygen concentration in the exhaust gas upstream of the NSR catalyst 51 and downstream of the turbine 42, and outputs a detection signal that continuously changes in accordance with the oxygen concentration.
  • the air flow meter 81 is a sensor that measures the amount of air (fresh air amount) that flows into the intake passage 3 from the atmosphere.
  • the intake air temperature sensor 82 is a sensor that detects the temperature of the air flowing through the intake passage 3 (specifically, the temperature downstream of the intercooler 32 and upstream of the intake throttle valve 33).
  • the supercharging pressure sensor 83 is a sensor that detects the pressure on the downstream side of the intake throttle valve 33 (the pressure of the intake air supercharged by the turbocharger 4).
  • the exhaust temperature sensors 84a to 84d are connected to the upstream side of the NSR catalyst 51, the downstream side of the NSR catalyst 51, the downstream side of the DPF 52, the downstream side of the low pressure EGR cooler 73 in the low pressure EGR passage 71 (the upstream side of the low pressure EGR valve 72). ) To detect the temperature of the exhaust gas at each location.
  • the water temperature sensor 85 is a sensor that detects the temperature of the cooling water circulating inside the engine 1.
  • the crank position sensor 86 is a sensor that detects the rotational position of the crankshaft of the engine 1.
  • the accelerator opening sensor 87 is a sensor that detects an operation amount (accelerator opening) of the accelerator pedal by the driver.
  • the intake throttle valve opening sensor 88 is a sensor that detects the opening of the intake throttle valve 33.
  • the LPL differential pressure sensor 89 a is a sensor that measures the differential pressure between the upstream pressure and the downstream pressure of the low pressure EGR cooler 73 in the LPL-EGR mechanism 7.
  • the DPF differential pressure sensor 89b is a sensor that measures the differential pressure between the upstream pressure and the downstream pressure of the DPF 52, and is used to estimate the amount of PM accumulated in the DPF 52.
  • the compressor outlet temperature sensor 8A is a sensor that detects the temperature of the intake air flowing out of the compressor 41 (the mixture of supercharged fresh air and low-pressure EGR gas).
  • the high pressure EGR valve opening sensor 8H is a sensor that detects the opening of the high pressure EGR valve 62.
  • the low pressure EGR valve opening sensor 8L is a sensor that detects the opening of the low pressure EGR valve 72.
  • the ECU 10 controls the injector 2, the intake throttle valve 33, the variable nozzle vane mechanism 43, the exhaust throttle valve 53, the high-pressure EGR valve 62, and the like based on the detected values and measured values of the various sensors 80 to 89a, 89b, 8A, 8H, and 8L.
  • the low pressure EGR valve 72 is controlled.
  • the ECU 10 controls the HPL-EGR mechanism 6 and the LPL-EGR mechanism 7 in accordance with the operating state (engine load or the like) of the engine 1.
  • the EGR mechanisms 6 and 7 to be used are selected according to the map of FIG. That is, when the engine 1 is in the low load operation state, the ECU 10 recirculates the exhaust gas using the HPL-EGR mechanism 6 (recirculation operation in the high pressure EGR region). When the engine 1 is in a high load operation state, the ECU 10 recirculates the exhaust gas by the LPL-EGR mechanism 7 (reflux operation in the low pressure EGR region).
  • the ECU 10 When the engine 1 is in the medium load operation state, the ECU 10 performs exhaust gas recirculation by using both the HPL-EGR mechanism 6 and the LPL-EGR mechanism 7 (reflux operation in the MPL region). These specific controls will be described later.
  • 3 is an operation region where both the high pressure EGR valve 62 of the HPL-EGR mechanism 6 and the low pressure EGR valve 72 of the LPL-EGR mechanism 7 are closed, that is, an operation region where EGR gas is not recirculated. It is. This is an operation region when the amount of smoke in the exhaust gas increases or when system reliability such as EGR gas temperature restriction is required.
  • the usage mode of the HPL-EGR mechanism 6 and the LPL-EGR mechanism 7 is switched according to the operating state of the engine 1, or when the EGR mechanisms 6 and 7 are used together, Therefore, an appropriate amount of EGR gas can be recirculated in a proper operation region, and the NOx concentration in the exhaust gas can be suitably reduced.
  • the ECU 10 uses the HPL-EGR mechanism 6 to recirculate the exhaust gas in the operation region other than the region X, as shown in the map of FIG. I do. This is because the HPL-EGR mechanism 6 that does not include an EGR cooler is used to recirculate the exhaust gas at a relatively high temperature, thereby prematurely warming up the engine 1 and activating the NSR catalyst 51 early. Because.
  • control of the EGR gas amount in the HPL-EGR mechanism 6 and the control of the EGR gas amount in the LPL-EGR mechanism 7 will be described.
  • the control of the EGR gas amount in the HPL-EGR mechanism 6 and the control of the EGR gas amount in the LPL-EGR mechanism 7 are independent controls.
  • the target EGR gas recirculation amount (hereinafter referred to as “target high-pressure EGR gas return”).
  • the flow rate ”) and the estimated EGR gas recirculation amount (hereinafter referred to as“ estimated high pressure EGR gas recirculation amount ”), and the high pressure EGR gas recirculation amount approaches the target high pressure EGR gas recirculation amount.
  • the opening degree of the EGR valve 62 and the opening degree of the intake throttle valve 33 are feedback controlled (hereinafter referred to as “EGR feedback control”).
  • the target high-pressure EGR gas recirculation amount in this case is set according to the operating state of the engine 1 (particularly the engine load).
  • the estimated high pressure EGR gas recirculation amount is detected by the opening of the high pressure EGR valve 62 detected by the high pressure EGR valve opening sensor 8H, the temperature of the intake air detected by the intake air temperature sensor 82, and the supercharging pressure sensor 83. It is obtained from a predetermined arithmetic expression or map stored in advance in a ROM (Read Only Memory) of the ECU 10 with the differential pressure between the intake pressure and the pressure in the exhaust manifold as a parameter.
  • the pressure in the exhaust manifold is obtained from a predetermined arithmetic expression or map stored in advance in the ROM of the ECU 10 with the intake pressure, the operating state amount of the engine 1 and the like as parameters.
  • the target EGR gas recirculation amount (hereinafter referred to as “target low pressure EGR”).
  • Gas recirculation amount) and the estimated EGR gas recirculation amount (hereinafter referred to as “estimated low pressure EGR gas recirculation amount"), and the estimated low pressure EGR gas recirculation amount approaches the target low pressure EGR gas recirculation amount.
  • the opening degree of the low pressure EGR valve 72 and the opening degree of the exhaust throttle valve 53 are feedback controlled (EGR feedback control).
  • the target low-pressure EGR gas recirculation amount in this case is set according to the operating state of the engine 1 (particularly the engine load).
  • the estimated low-pressure EGR gas recirculation amount is the opening of the low-pressure EGR valve 72 detected by the low-pressure EGR valve opening sensor 8L, the exhaust temperature detected by the exhaust temperature sensors 84a to 84d, and the LPL differential pressure sensor. Using the differential pressure between the upstream side pressure and the downstream side pressure of the low pressure EGR cooler 73 detected by 89a as a parameter, it is obtained from a predetermined arithmetic expression or map stored in the ROM of the ECU 10 in advance.
  • the EGR feedback control in the HPL region is performed so that the intake air amount detected by the air flow meter 81 matches the target intake air amount set according to the engine load, the engine speed (engine speed), and the like.
  • a target high-pressure EGR gas recirculation amount is set, and as described above, the opening degree of the high-pressure EGR valve 62 is feedback-controlled so that the estimated high-pressure EGR gas recirculation amount matches the target high-pressure EGR gas recirculation amount.
  • the low pressure EGR valve 72 is maintained fully closed.
  • the intake air amount obtained by the air flow meter 81 is smaller than the target value and the actual EGR rate is higher than the target EGR rate (EGR rate determined according to the operating state of the engine 1 or the like)
  • the opening degree of the high pressure EGR valve 62 is increased so as to increase the amount of EGR gas. If the estimated high pressure EGR gas recirculation amount does not reach the target high pressure EGR gas recirculation amount even if the opening amount of the high pressure EGR valve 62 is increased in this way, the opening amount of the intake throttle valve 33 is decreased ( The amount of EGR gas recirculated through the high pressure EGR passage 61 is increased by decreasing the pressure on the downstream side of the intake throttle valve 33. This brings the actual EGR rate closer to the target EGR rate.
  • the target low-pressure EGR gas return is performed so that the intake air amount detected by the air flow meter 81 matches the target intake air amount set in accordance with the engine load, the engine speed, and the like.
  • the flow rate is set, and as described above, the opening degree of the low pressure EGR valve 72 is feedback-controlled so that the estimated low pressure EGR gas recirculation amount matches the target low pressure EGR gas recirculation amount.
  • the high pressure EGR valve 62 is kept fully closed (unless the amount of EGR gas is insufficient).
  • the opening degree of the low pressure EGR valve 72 is reduced so as to reduce the amount of EGR gas.
  • the opening degree of the low pressure EGR valve 72 is increased so as to increase the amount of EGR gas.
  • the opening amount of the low pressure EGR valve 72 is increased in this way, the opening amount of the high pressure EGR valve 62 is increased, Alternatively, the opening amount of the exhaust throttle valve 53 is decreased (the degree of closeness is increased), and the amount of EGR gas recirculated through the low pressure EGR passage 71 is increased. This brings the actual EGR rate closer to the target EGR rate.
  • the opening degree of the high pressure EGR valve 62 is controlled so that the estimated high pressure EGR gas recirculation amount reaches the target high pressure EGR gas recirculation amount.
  • the opening degree control for the high pressure EGR valve 62 is the same as that in the low load operation described above.
  • the opening degree of the low pressure EGR valve 72 is controlled so that the estimated low pressure EGR gas recirculation amount reaches the target low pressure EGR gas recirculation amount.
  • the opening degree control for the low-pressure EGR valve 72 is the same as in the above-described high-load operation.
  • the oxygen concentration of the mixture of fuel and air used for combustion in the combustion chamber is in a high concentration state in most operating regions.
  • the oxygen concentration of the air-fuel mixture supplied for combustion is usually reflected in the oxygen concentration in the exhaust gas as it is after subtracting the oxygen supplied for combustion, and the oxygen concentration in the air-fuel mixture (air-fuel ratio: combustion A / If F) is high, the oxygen concentration in the exhaust gas (air-fuel ratio: exhaust A / F) basically becomes similarly high.
  • the NSR catalyst 51 has a characteristic of storing NOx when the oxygen concentration in the exhaust gas is high, and reducing NOx to NO 2 or NO and releasing it when the oxygen concentration is low.
  • NOx As long as is in a high concentration state, NOx is occluded. However, there is a limit amount in the NOx occlusion amount of the NSR catalyst 51. When the NSR catalyst 51 occludes the limit amount of NOx, NOx in the exhaust gas is not occluded in the NSR catalyst 51 and passes through the catalyst casing. It becomes.
  • the ECU 10 performs post injection by the injector 2, thereby temporarily reducing the oxygen concentration in the exhaust gas and reducing components.
  • the amount of (HC, etc.) is increased.
  • the NSR catalyst 51 reduces and releases the stored NOx, and recovers (regenerates) its own NOx storage capability. Details of the conditions under which this NOx reduction process is executed will be described later.
  • the operation of estimating the NOx amount stored in the NSR catalyst 51 is performed by recognizing the total NOx generation amount based on the history information of the engine speed and the fuel injection amount into each cylinder.
  • the estimated NOx amount exceeds a predetermined value set in advance (appropriate value before the NOx storage capacity of the NSR catalyst 51 is saturated: the above-described reduction control requirement value)
  • the post injection is executed.
  • the NOx reduction process is performed to recover (regenerate) the NOx storage capacity of the NSR catalyst 51 as described above.
  • NOx release amount control which is control characteristic in the present embodiment, will be described.
  • the NSR catalyst 51 supporting a plurality of NOx occlusion materials having different temperature characteristics
  • the low temperature type NOx occlusion material or the high temperature type NOx occlusion material is obtained.
  • the NOx stored in the catalyst may be released, and this NOx may be discharged from the NSR catalyst 51.
  • the catalyst temperature in a situation where the catalyst temperature is relatively low, there is a case where the catalyst temperature rises rapidly due to a high engine load or the like from a state where a relatively large amount of NOx is occluded in the low-temperature type NOx occlusion material.
  • the low-temperature NOx occlusion material has a reduced NOx occlusion amount, so that the NOx occlusion state cannot be maintained, and this NOx is released.
  • FIG. 10 shows changes in the vehicle speed (one-dot chain line), the inlet gas temperature of the NSR catalyst 51 (broken line), and the temperature of the NSR catalyst 51 (solid line) when the operating state of the engine shifts to high load operation.
  • the inlet gas temperature of the NSR catalyst 51 increases as the amount of heat generated in the combustion chamber increases, and a slight increase from the increase in the inlet gas temperature of the NSR catalyst 51 occurs.
  • the temperature of the NSR catalyst 51 will also rise with a time delay. This time delay is caused by the heat capacity of the NSR catalyst 51 and the like.
  • the NOx emission amount from the NSR catalyst 51 varies according to the increase amount (temperature gradient) of the catalyst temperature per unit time. This is because when the amount of increase in the catalyst temperature per unit time is relatively small, the amount of NOx released per unit time from the low-temperature NOx storage material is relatively small. This is because the occlusion material occludes. However, when the amount of increase in the catalyst temperature per unit time is relatively large, the amount of NOx released per unit time from the low-temperature NOx storage material becomes large, so that most of the released NOx has a high temperature. It is not stored in the NOx storage material and is discharged from the NSR catalyst 51.
  • the rate of increase in the catalyst temperature is relatively high (in the case of the present invention, “when the temperature of the NOx storage reduction catalyst increases, the catalyst temperature exceeds a predetermined temperature and the temperature increase gradient is a predetermined value).
  • the NOx storage material is discharged from the NSR catalyst 51 without being stored in the high-temperature NOx storage material. It will be.
  • the catalyst temperature rapidly decreases from a state where a relatively large amount of NOx is stored in the high-temperature NOx storage material in a situation where the catalyst temperature is relatively high, the catalyst temperature rapidly increases. Accordingly, the high-temperature type NOx occlusion material has a reduced NOx occlusion amount, so that the NOx occlusion state cannot be maintained, and this NOx is released.
  • the NOx emission amount from the NSR catalyst 51 varies in accordance with the amount of decrease (temperature gradient) per unit time of the catalyst temperature. This is because when the amount of decrease in the catalyst temperature per unit time is relatively small, the amount of NOx released per unit time from the high-temperature NOx storage material is relatively small. This is because the occlusion material occludes. However, when the amount of decrease in the catalyst temperature per unit time is relatively large, the amount of NOx released per unit time from the high-temperature NOx storage material becomes large, so that most of the released NOx is low in temperature. It is not stored in the NOx storage material and is discharged from the NSR catalyst 51.
  • the rate of decrease in the catalyst temperature is relatively high (in the present invention, “when the temperature of the NOx storage reduction catalyst decreases, the catalyst temperature falls below a predetermined temperature, and the temperature decrease gradient reaches a predetermined value).
  • the NOx storage material is discharged from the NSR catalyst 51 without being stored in the low-temperature NOx storage material. It will be.
  • NOx is released from the low-temperature NOx storage material or the high-temperature NOx storage material, and the NOx is discharged from the NSR catalyst 51.
  • NOx is predicted (when NOx is predicted to be discharged from the NSR catalyst 51)
  • NOx is reduced on the NSR catalyst 51 by executing the above-described NOx reduction process, and thereby NSR The amount of NOx released from the catalyst 51 is reduced.
  • the amount of change per unit time of the catalyst temperature is relatively small, even if NOx is released from one NOx storage material (for example, a low-temperature NOx storage material), the amount per unit time Therefore, the NOx occlusion amount is occluded by the other NOx occlusion material (for example, the high temperature type NOx occlusion material), and the NOx emission amount from the NSR catalyst 51 is slight. For this reason, it is determined that it is not necessary to execute the NOx reduction process.
  • the amount of change in the catalyst temperature per unit time is relatively large, if NOx is released from one NOx storage material (for example, a low-temperature NOx storage material), the amount released per unit time.
  • the other NOx occlusion material (for example, the high temperature type NOx occlusion material) cannot be entirely occluded, and the NOx emission amount from the NSR catalyst 51 increases. For this reason, when this situation is caused, NOx reduction processing is performed to reduce NOx on the NSR catalyst 51, thereby reducing the amount of NOx released from the NSR catalyst 51.
  • FIGS. 8 and 9 The flowcharts shown in FIG. 8 and FIG. 9 are executed every predetermined time after an unillustrated ignition switch (start switch) is turned on and the engine 1 is started.
  • start switch unillustrated ignition switch
  • step ST1 the amount of NOx discharged from the engine 1 in this routine (the amount of engine exhausted NOx) is estimated.
  • This engine exhaust NOx amount is estimated based on the engine operation state amount such as the engine rotation speed and the fuel injection amount into each cylinder 11, 11,. Further, the heat generation rate in each cylinder 11, 11,... Is estimated from the estimated value or actual measurement value (sensing value when the in-cylinder pressure sensor is provided) of the in-cylinder pressure, and the change in the heat generation rate or fuel injection is estimated.
  • the engine exhaust NOx amount may be estimated from the engine operation state amount such as the amount, or the engine operation state amount such as the maximum value (peak value) of the heat generation rate and the fuel injection amount.
  • step ST2 After estimating the engine exhaust NOx amount, the process proceeds to step ST2, and the NOx occlusion accumulated values of the low temperature type NOx occlusion material and the high temperature type NOx occlusion material accumulated up to the previous routine are obtained from a RAM (Random Access Memory) of the ECU 10. Read.
  • This NOx occlusion integrated value is reset when the NOx reduction process is executed (when the NOx reduction process is executed in step ST9 described later). Therefore, the NOx occlusion integrated values read in step ST2 are the NOx occlusion accumulated values of the low temperature type NOx occlusion material and the high temperature type NOx occlusion material accumulated up to the previous routine after the previous NOx reduction process is completed. It is.
  • the process proceeds to step ST3 and the temperature of the NSR catalyst 51 is estimated.
  • the temperature of the NSR catalyst 51 is estimated based on the temperature of the exhaust detected by the exhaust temperature sensors 84a and 84b. Further, from the exhaust temperature detected by the exhaust temperature sensors 84a and 84b, the fuel injection amount from the injector 2, the fuel injection timing, and the like as parameters, a predetermined arithmetic expression or map stored in advance in the ROM of the ECU 10 is used. The temperature of the NSR catalyst 51 may be estimated.
  • step ST4 the NOx occlusion speed of each NOx occlusion material is calculated.
  • This NOx occlusion speed is obtained by mapping a map for obtaining the NOx occlusion speed in accordance with the temperature of the NSR catalyst 51 (NSR catalyst temperature estimated in step ST3; catalyst bed temperature) and the NOx occlusion rate as shown in FIG. It is calculated by storing the temperature of the NSR catalyst 51 and the NOx occlusion rate in this map.
  • a NOx occlusion speed calculation formula obtained in advance by experiments or simulations may be stored in the ROM of the ECU 10, and the NOx occlusion speed of each NOx occlusion material may be calculated by this NOx occlusion speed calculation formula.
  • the NOx occlusion rate is obtained for each NOx occlusion material by dividing the NOx occlusion integrated value of the NOx occlusion material read in step ST2 by the NOx occlusion amount of the NOx occlusion material.
  • step ST5 the NOx occlusion amount (instantaneous NOx occlusion amount) newly occluded by each NOx occlusion material in the current routine is calculated.
  • NOx occlusion of each NOx occlusion material uses the engine exhaust NOx amount estimated in step ST1 and the NOx occlusion speed of each NOx occlusion material.
  • NOx occlusion of each NOx occlusion material uses the engine exhaust NOx amount estimated in step ST1 and the NOx occlusion speed of each NOx occlusion material.
  • the amount is calculated.
  • Instantaneous NOx occlusion amount of low temperature type NOx occlusion material engine exhaust NOx amount x NOx occlusion speed of low temperature type NOx occlusion material (1)
  • Instantaneous NOx occlusion amount of high temperature type NOx occlusion material engine exhaust NOx amount x NOx occlusion speed of high temperature type NOx occlusion material (2)
  • the process proceeds to step ST6, where the instantaneous NOx occlusion amount (the NOx occlusion amount calculated in step ST5) is added to the NOx occlusion integrated value read in step ST2, thereby each NOx occlusion material.
  • a NOx occlusion integrated value is calculated. Thereby, the latest NOx occlusion integrated value in each of the low temperature type NOx occlusion material and the high temperature type NOx occlusion material is obtained.
  • step ST7 After calculating the NOx occlusion integrated value of each NOx occlusion material as described above, the process proceeds to step ST7 to determine whether or not the NOx reduction condition is satisfied.
  • NOx reduction condition the temperature of the NSR catalyst 51 is not changed, and the NOx occlusion integrated value of at least one of the low temperature type NOx occlusion material and the high temperature type NOx occlusion material exceeds the above reduction control requirement value.
  • NOx reduction conditions NOx reduction execution conditions resulting from NOx occlusion amount
  • NOx reduction conditions NOx reduction execution conditions caused by catalyst temperature change
  • the NOx reduction execution condition caused by the NOx occlusion amount is, for example, when the catalyst temperature is in a relatively low temperature range, the NOx occlusion amount of the low-temperature NOx occlusion material increases from TA to TB in FIG. This is established when the value reaches the reduction control requirement value of the low temperature type NOx storage material. Further, when the catalyst temperature is in a relatively high temperature range, the NOx occlusion amount of the high temperature type NOx occlusion material increases from TC to TD in FIG. 6, and the NOx occlusion integrated value is the reduction control requirement value of the high temperature type NOx occlusion material. This is also true when the value is reached.
  • the NOx reduction execution condition due to the catalyst temperature change is, for example, when the catalyst temperature is in a relatively low temperature range, from a state where a relatively large amount of NOx is occluded in the low-temperature NOx occlusion material. This is established when it is estimated that the catalyst temperature rapidly rises due to, for example, an increase in the temperature (as described above, when the catalyst temperature is estimated to rise rapidly from Ta to Tb in FIG. 5). That is, in this case, the low-temperature NOx storage material cannot maintain the NOx storage state, and releases this NOx (the amount of Nc (FIG. 5)).
  • step ST7 the NOx reduction execution condition resulting from the catalyst temperature change is satisfied.
  • an engine calculated based on the change amount of the accelerator opening detected by the accelerator opening sensor 87 and the output signal from the crank position sensor 86 is used as an operation for estimating whether or not the catalyst temperature rises rapidly. Estimated changes in catalyst temperature (changes taking into account time delay of catalyst temperature rise) based on engine load calculated from rotational speed, fuel injection amount from injector 2, heat capacity of NSR catalyst 51, etc. Is done.
  • the NOx emission amount from the NSR catalyst 51 is the amount of NOx occluded in the low-temperature NOx occlusion material so far and the catalyst after the increase. Varies with temperature. That is, as the amount of NOx stored in the low-temperature NOx storage material increases, the amount of NOx discharged from the NSR catalyst 51 increases. Further, the higher the catalyst temperature after the increase, the larger the NOx emission amount from the NSR catalyst 51. Therefore, the NOx reduction condition is established according to the amount of NOx stored in the low-temperature NOx storage material, the catalyst temperature after the increase, and the amount of increase in the catalyst temperature per unit time.
  • the NOx reduction execution condition resulting from the catalyst temperature change is that when the temperature of the NSR catalyst 51 rises while NOx is occluded in the low-temperature type NOx occlusion material, the catalyst temperature exceeds the predetermined temperature and This is established when the temperature rise gradient exceeds a predetermined value (when it is estimated that it will exceed).
  • the NOx reduction execution condition resulting from the catalyst temperature change is that, for example, when the catalyst temperature is in a relatively high temperature range, a relatively large amount of NOx is stored in the high-temperature NOx storage material. This is established when it is estimated that the catalyst temperature rapidly decreases due to a decrease in load or the like (when the catalyst temperature is estimated to rapidly decrease from Td to Te in FIG. 6 as described above). That is, in this case, the high-temperature NOx storage material cannot maintain the NOx storage state, and releases this NOx (amount of Nf). In addition, since the catalyst temperature has dropped rapidly, most of the NOx released from the high-temperature NOx storage material is not stored in the low-temperature NOx storage material, but is discharged from the NSR catalyst 51.
  • the NOx reduction execution condition resulting from the catalyst temperature change is satisfied (YES is determined in step ST7).
  • the estimation operation as to whether or not the catalyst temperature rapidly decreases is also calculated based on the amount of change in the accelerator opening detected by the accelerator opening sensor 87 and the output signal from the crank position sensor 86.
  • the catalyst temperature a change taking into account the time delay of the decrease in the catalyst temperature
  • the engine load calculated from the engine rotation speed
  • the fuel injection amount from the injector 2 the heat capacity of the NSR catalyst 51, etc. This is done by estimating the transition.
  • the amount of NOx discharged from the NSR catalyst 51 is the amount of NOx stored in the high-temperature NOx storage material so far, Varies with temperature. That is, as the amount of NOx stored in the high-temperature NOx storage material increases, the amount of NOx discharged from the NSR catalyst 51 increases. Further, the lower the catalyst temperature after lowering, the larger the NOx emission amount from the NSR catalyst 51. Therefore, the NOx reduction condition is satisfied according to the amount of NOx stored in the high-temperature NOx storage material, the catalyst temperature after the decrease, and the amount of decrease in the catalyst temperature per unit time.
  • the NOx reduction execution condition resulting from the change in the catalyst temperature is that when the temperature of the NSR catalyst 51 falls while NOx is occluded in the high-temperature NOx occlusion material, the catalyst temperature falls below a predetermined temperature and This is established when the temperature descending gradient exceeds a predetermined value.
  • step ST7 If the NOx reduction condition is not satisfied and NO is determined in step ST7, it is returned that the NOx emission from the NSR catalyst 51 is small or almost none and the NOx reduction process is not performed.
  • step ST7 the process proceeds to step ST8, where the current operating state of the engine 1 is in a state where the NOx reduction process is possible (the air-fuel ratio of the post-injection execution). It is determined whether or not the operation state is such that further richness can be permitted. For example, when the engine load obtained based on the accelerator opening, the engine speed, etc. is smaller than a predetermined load, it is determined that the NOx reduction process is possible.
  • step ST8 NOx reduction process is possible, and if YES is determined in step ST8, the process proceeds to step ST9, and the NOx reduction process is executed by performing the post injection from the injector 2 described above.
  • the NSR catalyst 51 By performing the NOx reduction process in this way, the oxygen concentration in the exhaust gas is reduced and the amount of reducing components (HC, etc.) is increased. As a result, the NSR catalyst 51 reduces and releases the stored NOx on the catalyst, and recovers (regenerates) its own NOx storage capability. That is, it is possible to avoid a situation in which NOx is discharged from the NSR catalyst 51 with the temperature change.
  • step ST10 it is determined whether or not the NOx reduction process termination condition is satisfied.
  • the NOx reduction process termination condition when the NOx reduction process is executed due to the establishment of the NOx reduction execution condition due to the NOx storage amount, the NOx currently stored in the NSR catalyst 51 is stored. When the total amount or almost the entire amount is discharged, the NOx reduction process termination condition is satisfied.
  • the NSR catalyst 51 is discharged due to the rapid change in the catalyst temperature.
  • the amount of NOx (the above amounts Nc and Nf) to be estimated is estimated, and when the fuel supply (reduction of the reducing agent) that enables reduction of the estimated amount of NOx is performed, the NOx reduction process termination condition is satisfied. It will be established.
  • the amount of fuel supply that satisfies this NOx reduction process termination condition is set in advance based on experiments or simulations.
  • the NOx reduction process is continued until the NOx reduction process termination condition is satisfied (until YES is determined in step ST10), and the process returns when the NOx reduction process termination condition is satisfied.
  • step ST7 if the NOx reduction condition is satisfied (YES is determined in step ST7), but the current operating state of the engine 1 is not in a state where NOx reduction processing is possible and NO is determined in step ST8, step ST11 is performed. Move to (FIG. 9).
  • the temperature reached by the NSR catalyst 51 (the temperature finally reached in the current engine operation state due to the change in the catalyst temperature) is estimated.
  • the estimation of the temperature reached by the NSR catalyst 51 is stored in advance in the ROM of the ECU 10 using the exhaust temperature detected by the exhaust temperature sensors 84a and 84b, the fuel injection amount from the injector 2, the fuel injection timing, and the like as parameters. It is estimated from a predetermined arithmetic expression or a map.
  • the process proceeds to step ST12, and the NOx emission amount from the NSR catalyst 51 is estimated based on the estimated temperature reached by the NSR catalyst 51.
  • the NOx emission amount from the NSR catalyst 51 depends on the NOx occlusion amount in the NOx occlusion material, the changed catalyst temperature (the reached temperature of the NSR catalyst 51), and the change amount of the catalyst temperature per unit time. Change. Therefore, the NOx emission amount from the NSR catalyst 51 is estimated from these parameters.
  • the predetermined amount ⁇ is a threshold value for determining whether or not the concentration of the acidic liquid generated when the discharged NOx flows into the low pressure EGR passage 71 and the intake passage 3 of the LPL-EGR mechanism 7 exceeds a predetermined value. For example, it is set to 70 mg. This value is not limited to this. In other words, when the NOx emission amount exceeds the predetermined amount ⁇ , the concentration of the acidic liquid exceeds the predetermined value, which may adversely affect the low pressure EGR cooler 73 and the intercooler 32. .
  • FIG. 11 is a diagram showing the relationship between the NOx concentration and the pH of the condensed water.
  • the higher the NOx concentration the lower the pH of the condensed water and the higher the concentration of the acidic liquid.
  • the pH of the condensed water becomes equal to or less than a value X that adversely affects the low pressure EGR cooler 73 and the intercooler 32.
  • the predetermined amount ⁇ is set based on experiments or simulations in advance as a value at which the pH of the condensed water reaches the value X.
  • the NOx discharged is relatively small, and even if the NOx flows into the low pressure EGR passage 71 and the intake passage 3 of the LPL-EGR mechanism 7, the low pressure EGR Assuming that there is almost no adverse effect on the cooler 73 and the intercooler 32, the opening of the low pressure EGR valve 72 is maintained (without limiting the opening of the low pressure EGR valve 72), and the EPL gas is recirculated by the LPL-EGR mechanism 7. to approve.
  • step ST13 if the estimated NOx emission amount exceeds the predetermined amount ⁇ , YES is determined in step ST13, and there is a possibility that the low pressure EGR cooler 73 and the intercooler 32 may be adversely affected.
  • the low-pressure EGR valve 72 is set to be fully closed, and the recirculation of EGR gas by the LPL-EGR mechanism 7 is prohibited.
  • FIG. 12 is a diagram showing the relationship between the amount of gas passing through the NSR catalyst 51 and the NOx concentration. Even if the amount of NOx discharged is a predetermined amount, the NOx concentration is low when the amount of gas passing through the NSR catalyst 51 is large. That is, even if the NOx emission amount is the same, when the passing gas amount of the NSR catalyst 51 is GA (NOx concentration is NA), the passing gas amount is GB (NOx concentration is NB). The NOx concentration is lowered. For this reason, when the NOx concentration is less than the predetermined value based on the NOx emission amount and the passing gas amount of the NSR catalyst 51, the opening degree of the low pressure EGR valve 72 is not limited, and the NOx concentration exceeds the predetermined value.
  • the low pressure EGR valve 72 is set to be fully closed, and the recirculation of EGR gas by the LPL-EGR mechanism 7 is prohibited.
  • the amount of gas passing through the NSR catalyst 51 includes the amount of air detected by the air flow meter 81, the amount of EGR gas recirculation in each of the EGR mechanisms 6 and 7 (the aforementioned estimated high pressure EGR gas recirculation amount and estimated low pressure EGR gas return). Flow rate) and the like as parameters.
  • step ST15 in a state where the recirculation of the EGR gas is prohibited, and the NOx occlusion integrated value of each NOx occlusion material is calculated in the same manner as in step ST6, and the process returns to step ST11.
  • step ST11 to step ST15 are repeated until the estimated NOx release amount becomes equal to or less than the predetermined amount ⁇ , that is, until the low pressure EGR valve 72 can be permitted to be opened.
  • the low pressure EGR valve 72 is permitted to be opened and the process returns. The above operation is repeated.
  • NOx is released from the low-temperature NOx storage material or the high-temperature NOx storage material, and the NOx is discharged from the NSR catalyst 51.
  • NOx reduction processing is performed to reduce NOx on the NSR catalyst 51. Therefore, it is possible to reduce the NOx emission amount from the NSR catalyst 51 due to the temperature change, prevent the generation of the acidic liquid, and avoid the adverse effects on the low pressure EGR cooler 73 and the intercooler 32.
  • the NOx reduction process is executed only in a situation where NOx is discharged from the NSR catalyst 51, the wasteful NOx reduction process can be prevented, the fuel consumption rate can be improved, and the fuel can be improved.
  • the oil dilution due to (the dilution of engine oil due to the injection fuel adhering to the cylinder inner wall surface) can be suppressed.
  • the reduction control request value is set to a low value to increase the frequency of NOx reduction processing, and before the reduction control request value is changed (reduction control request value).
  • the amount of NOx emissions into the atmosphere is reduced compared to the case where the
  • the NOx emission amount to the atmosphere when the recirculation of EGR gas by the LPL-EGR mechanism 7 is prohibited is calculated, and the reduction control request is calculated until the NOx amount corresponding to the amount can be reduced.
  • the value is set low to increase the frequency of NOx reduction treatment.
  • FIG. 13 shows the relationship between the temperature of the NSR catalyst and the NOx occlusion amount when the reduction control requirement value in the low temperature type NOx occlusion material is changed.
  • the reduction control request value becomes a relatively high value as shown by the broken line in the figure. Is set.
  • the reduction control request value is a relatively low value as shown by the solid line in the figure. This increases the frequency of the NOx reduction process.
  • FIG. 14 shows the relationship between the temperature of the NSR catalyst and the NOx occlusion amount when the reduction control requirement value in the high temperature type NOx occlusion material is changed.
  • the reduction control request value is set to a relatively high value as shown by the broken line in the figure.
  • the reduction control request value is a relatively low value as shown by the solid line in the figure. This increases the frequency of the NOx reduction process.
  • the reduction control request value is returned to the original value (the value indicated by the broken line in FIGS. 13 and 14). Return.
  • both the reduction control requirement value in the low temperature type NOx occlusion material and the reduction control requirement value in the high temperature type NOx occlusion material may be changed, or one of them depending on the catalyst temperature. Only the reduction control request value may be changed. That is, when the catalyst temperature is relatively low (for example, less than 300 ° C.) and the performance of the low-temperature NOx storage material is high, only the reduction control request value in the low-temperature NOx storage material is changed, When the catalyst temperature is relatively high (for example, 300 ° C. or higher) and the performance of the high-temperature NOx storage material is high, only the reduction control requirement value in the high-temperature NOx storage material is changed.
  • FIG. 15 shows the NOx emission amount to the atmosphere per unit travel distance and the reduction control request value before correcting the reduction control request value (when the reduction control request value indicated by the broken line in FIGS. 13 and 14). Is the amount of NOx discharged into the atmosphere per unit travel distance (when the reduction control requirement value indicated by the solid line in FIGS. 13 and 14 is used). Thus, the NOx emission amount into the atmosphere is reduced by correcting the reduction control request value (the reduction amount per unit travel distance is indicated by Y in the figure). In other words, the reduction amount Y per unit travel distance is integrated, and when the total reduction amount coincides with the NOx amount discharged into the atmosphere due to the prohibition of the recirculation of the EGR gas, the reduction control is performed. The request value is restored to the original value.
  • the amount of NOx discharged into the atmosphere accompanying the prohibition of the recirculation of the EGR gas is Z (g)
  • the reduction amount per unit travel distance by correcting the reduction control request value is When Y (g / km) is set, the reduction control request value is returned to the original value when the vehicle travels Z / Y (km).
  • the present invention is applied to the engine 1 including the two EGR mechanisms 6 and 7 .
  • the present invention is not limited to this, and can also be applied to an engine having one EGR mechanism (only an LPL-EGR mechanism) or an engine having three or more EGR mechanisms.
  • the present invention can also be applied when three or more types of NOx storage materials having different temperature characteristics are supported on the NSR catalyst 51. In this case, the NOx release amount corresponding to the change in the catalyst temperature is calculated for each NOx storage material.
  • the NSR catalyst 51 is applied as the NOx occlusion reduction catalyst.
  • the present invention is not limited to this, and a DPNR catalyst may be applied.
  • the post-injection from the injector 2 is executed as the NOx reduction process.
  • the exhaust system is provided with a fuel addition valve, and NOx reduction is performed by adding fuel from the fuel addition valve. Processing may be executed.
  • the present invention is applicable to control of a diesel engine equipped with an LPL-EGR mechanism that recirculates EGR gas from the downstream side of the NSR catalyst to the intake system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 排気系のNSR触媒下流側からEGRクーラを経て吸気系に低圧EGRガスを還流させるLPL-EGR機構を備えたエンジンに対し、NSR触媒に担持されている低温型NOx吸蔵材料および高温型NOx吸蔵材料それぞれのNOx吸蔵量を算出する(ステップST6)。NSR触媒の温度が急上昇した場合に、低温型NOx吸蔵材料から放出されるNOxの大部分が高温型NOx吸蔵材料で吸蔵されず、NSR触媒から排出されてしまう状況を推定してNOx還元処理を実行する(ステップST9)。これにより、NOxがLPL-EGR機構へ流れ込む量を削減でき、NOxに起因する酸性水溶液の発生を抑制してEGRクーラの腐食を防止する。

Description

内燃機関の制御装置
 本発明は、自動車用エンジン等に代表される内燃機関の制御装置に係る。特に、本発明は、排気系にNOx吸蔵還元型触媒を備えた内燃機関の制御の改良に関する。
 従来より、ディーゼルエンジン等のように希薄燃焼を行うエンジンでは、窒素酸化物(以下、NOxという)が比較的多く排出されることが懸念される。その対策として、排気ガスの一部を吸気通路に還流させる排気還流(EGR:Exhaust Gas Recirculation)システムを備えさせることが知られている(例えば下記の特許文献1を参照)。
 また、EGRシステムとして、特許文献2に開示されているように、高圧EGR機構(以下、「HPL-EGR機構」という)と低圧EGR機構(以下、「LPL-EGR機構」という)とを備えた「MPL(Middle Pressure Loop)-EGRシステム」が知られている。
 上記HPL(High Pressure Loop)-EGR機構は、ターボチャージャのタービンよりも上流側の排気通路(例えばエキゾーストマニホールド)から、ターボチャージャのコンプレッサよりも下流側の吸気通路へ排気ガスを還流するようになっている。また、LPL(Low Pressure Loop)-EGR機構は、ターボチャージャのタービンよりも下流側の排気通路から、ターボチャージャのコンプレッサよりも上流側の吸気通路へ排気ガスを還流するようになっている。
 また、このMPL-EGRシステムの使用形態としては、エンジンの低負荷運転領域では、HPL-EGR機構のみを使用する。これにより、比較的高温度の排気ガスを還流させて燃焼の安定化を図り、HCやCOの排出を抑制する。また、エンジンの高負荷運転領域では、LPL-EGR機構のみを使用する。これにより、比較的低温度の排気ガスを還流させ、吸気の高温化にともなって発生するスモークを抑制する。このため、比較的低温度の排気ガスを還流させることを目的としている上記LPL-EGR機構にはEGRクーラが設けられている。
 一方、この種のエンジンの排気系には、排気中に含まれるNOxを吸蔵(吸収)するNOx吸蔵還元型触媒が配設されており、このNOx吸蔵還元型触媒によって排気を浄化するようにしている(例えば、下記の特許文献3を参照)。
 NOx吸蔵還元型触媒としては、例えばNSR(NOx Storage Reduction)触媒や、DPNR(Diesel Particulate-NOx Reduction system)触媒などが用いられている。
 このNOx吸蔵還元型触媒は、排気空燃比(排気A/F)がリーンである場合、つまり、排気系の雰囲気が高酸素濃度状態である場合には排気中のNOxを吸蔵する。一方、排気空燃比がリッチになった場合、詳しくは、排気系の雰囲気が低酸素濃度状態となって、排気中に炭化水素(HC)や一酸化炭素(CO)などが含まれる状態になった場合に、NOx吸蔵還元型触媒は、吸蔵しているNOxを還元および放出する(NOx還元処理の実行)。このNOx還元処理として具体的には、特許文献3に開示されているように、排気系に燃料を供給すること(ポスト噴射や燃料添加による燃料供給)によって排気空燃比をリッチにして排気系の酸素濃度を低下させる。これにより、NOx吸蔵還元型触媒に吸蔵されているNOxが、排気に含まれる未燃燃料成分との反応によって還元浄化される。その結果、NOx吸蔵還元型触媒のNOx吸蔵能力が回復する。
特開2001-207916号公報 特開2011-89470号公報 特開2009-85018号公報 特開2006-150258号公報
 ところで、上記NOx吸蔵還元型触媒は、アルミナAl23等の酸化物からなる基材表面に、触媒成分としての白金Pt等の貴金属と、NOx吸蔵成分(以下、「NOx吸蔵材料」という場合もある)とが担持されて構成されている。NOx吸蔵材料は、例えばカリウムK、ナトリウムNa,リチウムLiのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムY、セリウムCeのような希土類から選ばれる。
 一般に、特許文献4にも開示されているように、上記NOx吸蔵材料としては、触媒温度(触媒床温)が比較的低い状況でNOx吸蔵性能が高くなる(NOx吸蔵可能量が多くなる)材料(以下、「低温型NOx吸蔵材料」という)と、触媒温度が比較的高い状況でNOx吸蔵性能が高くなる材料(以下、「高温型NOx吸蔵材料」という)とが組み合わされる。低温型NOx吸蔵材料としては例えばセリウムCeが挙げられる。また、高温型NOx吸蔵材料としては例えばバリウムBaが挙げられる。
 つまり、エンジンの低負荷運転時等のように触媒温度が比較的低い状況にあっては、主に低温型NOx吸蔵材料のNOx吸蔵性能が発揮されてNOxが吸蔵される一方、エンジンの高負荷運転時等のように触媒温度が比較的高い状況にあっては、主に高温型NOx吸蔵材料のNOx吸蔵性能が発揮されてNOxが吸蔵されることになる。これにより、広い温度範囲で、NOx吸蔵還元型触媒のNOx吸蔵能力が得られるようにしている。
 図16は、触媒温度とNOx吸蔵可能量との関係を示している。図中の一点鎖線は低温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示し、図中の二点鎖線は高温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示している。そして、図中の実線は、各NOx吸蔵材料の特性によって得られるNOx吸蔵還元型触媒全体としての触媒温度とNOx吸蔵可能量との関係を示している。このように、触媒温度が比較的低い温度域にあっては低温型NOx吸蔵材料のNOx吸蔵可能量が多くなっており、触媒温度が比較的高い温度域にあっては高温型NOx吸蔵材料のNOx吸蔵可能量が多くなっている。
 ところで、このように温度特性の異なる複数のNOx吸蔵材料を担持したNOx吸蔵還元型触媒にNOxが吸蔵されている状態で、触媒温度が急速に変化する状況になると、NOx吸蔵還元型触媒からNOxが排出されてしまうことがある。
 具体的には、例えば触媒温度が比較的低い状況において低温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が高くなるなどして触媒温度が急速に上昇した場合が挙げられる。この場合、触媒温度の急速な上昇にともなって、上記低温型NOx吸蔵材料は、NOx吸蔵可能量が少なくなることからNOx吸蔵状態が維持できなくなり、このNOxを放出することになる。この際のNOx吸蔵還元型触媒からのNOx排出量は、触媒温度の単位時間当たりの上昇量(温度勾配)に応じて変動する。
 その理由は次のとおりである。触媒温度の単位時間当たりの上昇量が比較的小さい場合には、低温型NOx吸蔵材料からの単位時間当たりのNOx放出量が比較的少ないため、この放出されたNOxを、高温型NOx吸蔵材料によって吸蔵することが可能である。ところが、触媒温度の単位時間当たりの上昇量が比較的大きい場合には、低温型NOx吸蔵材料からの単位時間当たりのNOx放出量が大量になるため、この放出されたNOxの大部分は、高温型NOx吸蔵材料に吸蔵されず(高温型NOx吸蔵材料が単位時間当たりに吸蔵可能なNOx量には限界があるため)、NOx吸蔵還元型触媒から排出されることになってしまう。例えば、図16において、触媒温度がTaの状態でのNOx吸蔵量がNaとなっている状態から、触媒温度がTbまで急速に上昇すると、この触媒温度TbでのNOx吸蔵可能量Nbと上記NOx吸蔵量Naとの差である図中のNcだけNOxが低温型NOx吸蔵材料から放出され、その大部分がNOx吸蔵還元型触媒から排出されることになる。
 このようにNOx吸蔵還元型触媒からNOxが排出される現象は、上述した如く触媒温度が比較的低い状況において低温型NOx吸蔵材料にNOxが吸蔵されている状態から触媒温度が急速に上昇した場合に限らず、触媒温度が比較的高い状況において高温型NOx吸蔵材料にNOxが吸蔵されている状態から触媒温度が急速に下降した場合においても生じる可能性がある。
 このように、NOx吸蔵還元型触媒からNOxが排出される状況において、上記LPL-EGR機構によってEGRガスの還流が行われていると、この排出されたNOxが、LPL-EGR機構に備えられた上記EGRクーラや吸気通路に備えられたインタクーラでの結露水(クーラで冷却されることに起因する結露水)に溶解されることにより、酸性液体が発生することがある。特に、NO2は高い可溶性を有しているため、NOx吸蔵還元型触媒からNO2が多量に排出される状況では高濃度の酸性液体が発生してしまうことになる。
 このようにして酸性液体が発生する状況では、EGRクーラやインタクーラへの悪影響が懸念されることになる。このため、これらEGRクーラやインタクーラを耐食性の高い材料で構成しておかねばならなくなってしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、温度変化にともなうNOx吸蔵還元型触媒からのNOx排出量を削減することができる内燃機関の制御装置を提供することにある。
 -発明の解決原理-
 上記の目的を達成するために講じられた本発明の解決原理は、NOx吸蔵還元型触媒を構成している複数のNOx吸蔵材料それぞれに対し、触媒温度の変化に応じてNOxの放出の有無を推定し、この放出されるNOxがNOx吸蔵還元型触媒から排出される場合には、NOx還元処理を実行して、NOx吸蔵還元型触媒からのNOx排出量を削減するようにしている。
 -解決手段-
 具体的に、本発明は、温度に応じたNOx吸蔵特性が互いに異なる複数のNOx吸蔵材料を有するNOx吸蔵還元型触媒が排気系に備えられ、このNOx吸蔵還元型触媒が吸蔵したNOxを還元するためのNOx還元処理が可能な内燃機関の制御装置を前提とする。この内燃機関の制御装置に対し、上記複数のNOx吸蔵材料として、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも高温側である高温型NOx吸蔵材料と、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも低温側である低温型NOx吸蔵材料とを少なくとも備えさせる。そして、上記低温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が上昇する際、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合に、上記NOx還元処理を実行する構成としている。
 ここでいう、「触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合」の記載は、「触媒温度が所定温度を超えることが推定され且つその温度上昇勾配が所定値を超えることが推定された場合」を含む概念である。
 また、上記高温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が下降する際、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合に、上記NOx還元処理を実行する構成としている。
 ここでいう、「触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合」の記載は、上記と同様に、「触媒温度が所定温度を下回ることが推定され且つその温度下降勾配が所定値を超えることが推定された場合」を含む概念である。
 なお、上記NOx還元処理が実行される「触媒温度の所定温度」および「温度上昇勾配の所定値」は、NOx吸蔵材料の特性や、そのNOx吸蔵材料に吸蔵されているNOx量に応じて、実験やシミュレーションによって予め設定されている。
 これら特定事項により、NOx吸蔵還元型触媒の温度変化にともなってNOx吸蔵材料からNOxが放出される状況であって、且つ、この放出されるNOxが他のNOx吸蔵材料で殆ど吸蔵できない状況である場合には、NOx還元処理が実行されることになる。
 つまり、低温型NOx吸蔵材料にNOxが吸蔵されている状態で、上記触媒温度が所定温度を超えていない場合や、触媒温度の上昇勾配が所定値を超えていない場合には、この低温型NOx吸蔵材料からはNOxが放出されないか、または、NOxが放出されたとしても、その大部分は高温型NOx吸蔵材料によって吸蔵可能であるとしてNOx還元処理を実行しない。これに対し、低温型NOx吸蔵材料にNOxが吸蔵されている状態で、上記触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合には、この低温型NOx吸蔵材料からNOxが放出され、その放出されるNOxの大部分は高温型NOx吸蔵材料によって吸蔵できずNOx吸蔵還元型触媒から排出されるとして、NOx還元処理を実行する。
 同様に、高温型NOx吸蔵材料にNOxが吸蔵されている状態で、上記触媒温度が所定温度を下回っていない場合や、触媒温度の下降勾配が所定値を超えていない場合には、この高温型NOx吸蔵材料からはNOxが放出されないか、または、NOxが放出されたとしても、その大部分は低温型NOx吸蔵材料によって吸蔵可能であるとしてNOx還元処理を実行しない。これに対し、高温型NOx吸蔵材料にNOxが吸蔵されている状態で、上記触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合には、この高温型NOx吸蔵材料からNOxが放出され、その放出されるNOxの大部分は低温型NOx吸蔵材料によって吸蔵できずNOx吸蔵還元型触媒から排出されるとして、NOx還元処理を実行することになる。
 これにより、温度変化にともなうNOx吸蔵還元型触媒からのNOx排出量を削減することができる。また、NOx吸蔵還元型触媒からNOxが排出されてしまう状況で、上記NOx還元処理を実行するようにしているので、NOx吸蔵還元型触媒からNOxが排出されない状況であるにも拘わらずNOx還元処理が実行されてしまうといったことはなく、無駄なNOx還元処理を防止することができて燃料消費率の改善を図ることもできる。
 特に、NOx吸蔵還元型触媒を通過した排気ガスを吸気系に還流させるEGR機構を備えた内燃機関に適用した場合には、NOx排出に起因する酸性液体の発生を防止することができ、EGR機構や吸気系の構成部材(EGRクーラやインタクーラ)への悪影響が回避できる。
 より具体的には、上記内燃機関に、NOx吸蔵還元型触媒を通過した排気ガスの一部を吸気系に還流させるEGR機構が設けられたものに対し、上記低温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が上昇する際、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合において、上記NOx還元処理が実行できない内燃機関運転状態である場合には、NOx吸蔵還元型触媒からのNOx排出量が所定量を超えていることを条件として上記EGR機構による排気ガスの還流を非実施とするようにしている。
 同様に、上記EGR機構が設けられたものに対し、上記高温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が下降する際、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合において、上記NOx還元処理が実行できない内燃機関運転状態である場合には、NOx吸蔵還元型触媒からのNOx排出量が所定量を超えていることを条件として上記EGR機構による排気ガスの還流を非実施とするようにしている。
 なお、排気ガスの還流を非実施とするNOx吸蔵還元型触媒からのNOx排出量(上記所定量)は適宜設定される。例えば、EGR機構や吸気系の構成部材(EGRクーラやインタクーラ)への悪影響が回避できる値に設定される。
 このようにEGR機構に比較的多量のNOxが流れ込む可能性がある状況では排気ガスの還流を非実施とすることで、EGR機構や吸気系での酸性液体の発生を防止することができ、これらEGR機構や吸気系の構成部材への悪影響が確実に回避できる。
 上述した如くEGR機構による排気ガスの還流を非実施とした場合に、その後の制御動作として具体的には、上記低温型NOx吸蔵材料に吸蔵されているNOxの量が所定の閾値に達した際に上記NOx還元処理を実行するようにしたものに対し、上記EGR機構による排気ガスの還流を非実施とした場合に排気系から排出されるNOxの量が所定量以上であった場合に、上記閾値を小さい側に変更するようにする。
 これによれば、EGR機構による排気ガスの還流を非実施としたことで排気系から排出されたNOxの量と、上記閾値を小さい側に変更したことによるNOx排出量とを相殺することができ、環境への悪影響を抑制することができる。
 また、この場合、上記閾値を小さい側に変更したことに起因するNOx吸蔵還元型触媒からのNOx排出量の削減量が、上記EGR機構による排気ガスの還流を非実施としたことに起因する排気系からのNOx排出量に略一致した時点で、上記閾値を元の値に復帰させる構成としている。
 これによれば、上記閾値を小さい側に変更したことに起因してNOx還元処理の実行頻度が高くなる期間を必要最小限に設定することができ、必要上にNOx還元処理が実施されることが回避できて、燃料消費率の改善を図ることができる。
 本発明では、NOx吸蔵還元型触媒の温度変化に起因してNOx排出量が増大してしまうといったことを回避できる。
実施形態に係るエンジンの概略構成を示す図である。 ECU等の制御系の構成を示すブロック図である。 エンジンの温間時においてMPL-EGRシステムのモードを設定するマップを示す図である。 エンジンの冷間時においてMPL-EGRシステムのモードを設定するマップを示す図である。 低温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示す図である。 高温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示す図である。 図7(a)は触媒低温度域での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係を、図7(b)は触媒中温度域での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係を、図7(c)は触媒高温度域での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係をそれぞれ示す図である。 NOx放出量制御の手順の一部を示すフローチャート図である。 NOx放出量制御の手順の他の一部を示すフローチャート図である。 車両加速時におけるNSR触媒入り口ガス温度およびNSR触媒温度の変化の一例を示す図である。 NOx濃度と凝縮水のpHとの関係を示す図である。 NSR触媒の通過ガス量とNOx濃度との関係を示す図である。 変形例において低温型NOx吸蔵材料のNOx還元要求値の変更動作を説明するための図である。 変形例において高温型NOx吸蔵材料のNOx還元要求値の変更動作を説明するための図である。 変形例において通常時およびNOx排出後それぞれにおけるNOx排出量の一例を示す図である。 NSR触媒の温度とNOx吸蔵可能量との関係を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車に搭載されたコモンレール式筒内直噴型多気筒(例えば直列4気筒)ディーゼルエンジン(圧縮自着火式内燃機関)に本発明を適用した場合について説明する。また、EGRシステムとして、高圧EGR機構および低圧EGR機構を備えたMPL-EGRシステムを搭載したディーゼルエンジンに本発明を適用した場合について説明する。
 -エンジンの構成-
 図1は、本実施形態に係るエンジン(内燃機関)1の概略構成を示す図である。この図1に示すエンジン1は、4つの気筒11,11,…を有するディーゼルエンジンであって、各気筒11には、その気筒11内へ燃料を直接噴射可能なインジェクタ(燃料噴射弁)2がそれぞれ設けられている。これらインジェクタ2は、例えば内部に圧電素子(ピエゾ素子)を備え、適宜開弁して気筒11内に燃料を噴射供給するピエゾインジェクタにより構成されている。また、このインジェクタ2には、高圧燃料ポンプPによって昇圧された燃料がコモンレール21を介して供給されている。
 各気筒11には吸気系を構成する吸気通路3が接続されている。この吸気通路3の上流端にはエアクリーナ31が設けられている。また、この吸気通路3の途中には、吸気の流れ方向に沿って、ターボチャージャ(遠心過給装置)4のコンプレッサ41、インタクーラ32および吸気絞り弁(ディーゼルスロットル)33が順に設けられている。吸気通路3に導入された吸気は、エアクリーナ31によって浄化された後、コンプレッサ41によって過給され、インタクーラ32によって冷却される。その後、吸気は、吸気絞り弁33を通過して各気筒11内へ導入される。各気筒11内へ導かれた吸気は圧縮行程において圧縮され、この気筒11内にインジェクタ2から燃料が噴射されることにより燃料の燃焼が行われる。この燃料の燃焼にともない各気筒11において図示しないピストンがシリンダ内で往復運動し、コネクティングロッドを介してクランクシャフトを回転させることでエンジン出力が得られるようになっている。
 なお、上記吸気絞り弁33は、通常運転時には全開とされており、例えば車両の減速時等において必要に応じて(例えば、下記のNSR触媒51の温度低下を防止する必要が生じた場合等において)所定開度まで閉鎖される。
 各気筒11には排気系を構成する排気通路5が接続されている。この排気通路5の途中には、ターボチャージャ4のタービン42が設けられている。
 なお、本実施形態におけるターボチャージャ4は、可変ノズル式ターボチャージャであって、タービン42側に可変ノズルベーン機構43が設けられており、この可変ノズルベーン機構43に備えられたノズルベーン(図示省略)の開度を調整することにより、エンジン1の過給圧を調整することができるようになっている。具体的には、ノズルベーンの開度を小さくすることでコンプレッサ41での過給圧が高くなり、逆に、ノズルベーンの開度を大きくすることでコンプレッサ41での過給圧が低くなる。なお、この可変ノズルベーン機構43の構成については周知であるため(例えば、特開2011-127561号公報や特開2012-7544号公報等を参照)、ここでの説明は省略する。
 上記タービン42より下流の排気通路5には、排気の流れ方向に沿って、NOx吸蔵還元型触媒としてのNSR触媒51、パティキュレートフィルタ(DPF;排気浄化フィルタ)52、排気絞り弁53、マフラ54が順に設けられている。
 各気筒11内での燃焼により発生した排気ガス(既燃ガス)は、排気通路5へ排出される。この排気通路5へ排出された排気ガスは、排気通路5の途中に設けられたタービン42を経た後、NSR触媒51およびDPF52によって浄化され、その後、排気絞り弁53およびマフラ54を経由して大気中へ放出される。
 具体的な排気浄化のための手法として、上記NSR触媒51は、排気中に多量の酸素が存在している状態においてはNOxを吸蔵し、排気中の酸素濃度が低く、かつ還元成分(例えば燃料の未燃成分(HC))が多量に存在している状態においてはNOxをNO2若しくはNOに還元して放出する。NO2やNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによって更に還元されてN2となる。また、HCやCOは、NO2やNOを還元することで、自身は酸化されてH2OやCO2となる。即ち、NSR触媒51に導入される排気中の酸素濃度やHC成分を適宜調整することにより、排気中のHC、CO、NOxを浄化することができるようになっている。本実施形態のものでは、この排気中の酸素濃度やHC成分の調整を上記インジェクタ2からの燃料噴射動作(ポスト噴射)や吸気絞り弁33の開度制御によって行うようになっている。
 ここで、上記NSR触媒51の構成について説明する。このNSR触媒51は、アルミナAl23等の酸化物からなる基材表面に、触媒成分としての白金Pt等の貴金属と、NOx吸蔵材料とが担持されて構成されている。NOx吸蔵材料は、例えばカリウムK、ナトリウムNa,リチウムLiのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムY、セリウムCeのような希土類から選ばれた複数から成る。また、上記担持されるNOx吸蔵材料としては、触媒温度(触媒床温)が比較的低い状況(例えば200℃)でNOx吸蔵性能が最も高くなる(NOx吸蔵可能量が多くなる;NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料(後述する高温型NOx吸蔵材料)よりも低温側である)低温型NOx吸蔵材料と、触媒温度が比較的高い状況(例えば400℃)でNOx吸蔵性能が最も高くなる(NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料(上記低温型NOx吸蔵材料)よりも高温側である)高温型NOx吸蔵材料とが組み合わされている。本実施形態に係るNSR触媒51では、低温型NOx吸蔵材料として例えばセリウムCeが適用され、高温型NOx吸蔵材料として例えばバリウムBaが適用されている。なお、この低温型NOx吸蔵材料と高温型NOx吸蔵材料との組み合わせはこれに限定されるものではなく適宜選択される。
 このように温度に応じたNOx吸蔵特性が互いに異なる複数のNOx吸蔵材料を備えていることにより、エンジン1の低負荷運転時等のように触媒温度が比較的低い状況にあっては、主に低温型NOx吸蔵材料のNOx吸蔵性能によってNOxが吸蔵される一方、エンジン1の高負荷運転時等のように触媒温度が比較的高い状況にあっては、主に高温型NOx吸蔵材料のNOx吸蔵性能によってNOxが吸蔵されることになる。これにより、広い温度範囲で、NSR触媒51のNOx吸蔵能力が得られるようになっている。
 図5は、低温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示している。図中の一点鎖線は低温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示し、図中の実線は各NOx吸蔵材料の特性によって得られるNSR触媒51全体としての触媒温度とNOx吸蔵可能量との関係を示している。また、図中の破線は、この低温型NOx吸蔵材料における還元制御要求値を示している。この還元制御要求値は、低温型NOx吸蔵材料にNOxが吸蔵されていく場合に、NOx還元制御(以下、「NOx還元処理」という場合もある)を開始する必要があると判断するNOx吸蔵量の閾値である。つまり、低温型NOx吸蔵材料にNOxが吸蔵されていき、そのNOx吸蔵量が、この還元制御要求値に達すると、NOx還元制御を開始して低温型NOx吸蔵材料に吸蔵されているNOxを還元して放出させる。また、本実施形態では、NOx吸蔵量が変化しない状況であっても、触媒温度の上昇にともなって、現在のNOx吸蔵量が、その変化後の触媒温度における還元制御要求値(低温型NOx吸蔵材料の還元制御要求値)を超える場合には、低温型NOx吸蔵材料から放出されるNOxがNSR触媒51から排出されてしまう状況であることを条件としてNOx還元制御を開始し、低温型NOx吸蔵材料に吸蔵されているNOxを還元するようにしている。詳しくは後述する。
 一方、図6は、高温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示している。図中の二点鎖線は高温型NOx吸蔵材料における触媒温度とNOx吸蔵可能量との関係を示し、図中の実線は各NOx吸蔵材料の特性によって得られるNSR触媒51全体としての触媒温度とNOx吸蔵可能量との関係を示している。また、図中の破線は、この高温型NOx吸蔵材料における還元制御要求値を示している。この還元制御要求値は、上述のものと同様に、高温型NOx吸蔵材料にNOxが吸蔵されていく場合に、NOx還元制御を開始する必要があると判断するNOx吸蔵量の閾値である。つまり、高温型NOx吸蔵材料にNOxが吸蔵されていき、そのNOx吸蔵量が、この還元制御要求値に達すると、NOx還元制御を開始して高温型NOx吸蔵材料に吸蔵されているNOxを還元して放出させる。また、本実施形態では、NOx吸蔵量が変化しない状況であっても、触媒温度の下降にともなって、現在のNOx吸蔵量が、その変化後の触媒温度における還元制御要求値(高温型NOx吸蔵材料の還元制御要求値)を超える場合には、高温型NOx吸蔵材料から放出されるNOxがNSR触媒51から排出されてしまう状況であることを条件としてNOx還元制御を開始し、高温型NOx吸蔵材料に吸蔵されているNOxを還元するようにしている。これについても詳しくは後述する。
 また、これら低温型NOx吸蔵材料および高温型NOx吸蔵材料は、それぞれのNOx吸蔵率に応じてNOx吸蔵速度が変化する。NOx吸蔵率は、各NOx吸蔵材料それぞれにおいてNOxの最大吸蔵量に対する実際のNOx吸蔵量の比(実際のNOx吸蔵量/NOx最大吸蔵量)である。NOx吸蔵速度は、各NOx吸蔵材料それぞれにおいて単位時間当たりに吸蔵可能なNOxの量である。
 図7(a)は触媒低温度域(例えば触媒床温が200℃)での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係を示している。この図7(a)に示すように、触媒低温度域にあっては、高温型NOx吸蔵材料(図中に二点鎖線で示す)に比べて低温型NOx吸蔵材料(図中に一点鎖線で示す)の方がNOx吸蔵性能が高いため、同一NOx吸蔵率であっても低温型NOx吸蔵材料の方がNOx吸蔵速度は高くなっている。また、何れのNOx吸蔵材料においてもNOx吸蔵率が低いほどNOx吸蔵速度は高くなっている。
 また、図7(b)は触媒中温度域(例えば触媒床温が300℃)での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係を示している。この図7(b)に示すように、触媒中温度域にあっては、各NOx吸蔵材料のNOx吸蔵性能は略同一であるため、NOx吸蔵速度も略同一となっている。また、何れのNOx吸蔵材料においてもNOx吸蔵率が低いほどNOx吸蔵速度は高くなっている。
 さらに、図7(c)は触媒高温度域(例えば触媒床温が400℃)での各NOx吸蔵材料におけるNOx吸蔵率とNOx吸蔵速度との関係を示している。この図7(c)に示すように、触媒高温度域にあっては、低温型NOx吸蔵材料に比べて高温型NOx吸蔵材料の方がNOx吸蔵性能が高いため、同一NOx吸蔵率であっても高温型NOx吸蔵材料の方がNOx吸蔵速度は高くなっている。また、何れのNOx吸蔵材料においてもNOx吸蔵率が低いほどNOx吸蔵速度は高くなっている。
 一方、上記NSR触媒51の下流側に配設されている上記DPF52は、例えば多孔質セラミック構造体で成り、排気ガスが多孔質の壁を通過する際に、この排気ガス中に含まれるPM(Paticulate Matter:粒子状物質)を捕集するようになっている。また、このDPF52には、DPF再生処理時に、上記捕集したPMを酸化・燃焼する触媒(例えば白金等の貴金属を主成分とする酸化触媒)が担持されている。
 -EGRシステム-
 本実施形態に係るエンジン1には、HPL-EGR機構(高圧EGR機構)6およびLPL-EGR機構(低圧EGR機構)7を備えたMPL-EGRシステムが設けられている。
 HPL-EGR機構6は、上記ターボチャージャ4のタービン42よりも上流の排気通路5(例えばエキゾーストマニホールド)から、コンプレッサ41よりも下流(吸気絞り弁33よりも下流)の吸気通路3へ排気ガスの一部(高圧EGRガス)を導く高圧EGR通路61と、この高圧EGR通路61の流路面積を変更可能とする高圧EGRバルブ62とを備えている。
 このHPL-EGR機構6により還流(再循環)される高圧EGRガスの量は、上記高圧EGRバルブ62の開度により調量される。また、必要に応じて吸気絞り弁33の開度が小さくされ(閉度が大きくされ)、これによって高圧EGRガスの還流量が増量されることもある。
 一方、LPL-EGR機構7は、上記DPF52よりも下流で且つ排気絞り弁53よりも上流の排気通路5から、コンプレッサ41よりも上流の吸気通路3へ排気ガスの一部(低圧EGRガス)を導く低圧EGR通路71と、この低圧EGR通路71の流路面積を変更可能とする低圧EGRバルブ72と、低圧EGR通路71を流れる低圧EGRガスを冷却する低圧EGRクーラ73とを備えている。
 このLPL-EGR機構7により還流(再循環)される低圧EGRガスの量は、上記低圧EGRバルブ72の開度により調量される。また、必要に応じて排気絞り弁53の開度が小さくされ、これによって低圧EGRガスの還流量が増量されることもある。
 -制御系-
 図2に示すように、上記インジェクタ2、吸気絞り弁33、可変ノズルベーン機構43、排気絞り弁53、高圧EGRバルブ62および低圧EGRバルブ72は、ECU(Electronic Control Unit)10と電気的に接続されている。
 ECU10は、A/Fセンサ80、エアフローメータ81、吸気温センサ82、過給圧センサ83、複数の排気温センサ84a~84d、水温センサ85、クランクポジションセンサ86、アクセル開度センサ87、吸気絞り弁開度センサ88、LPL差圧センサ89a、DPF差圧センサ89b、コンプレッサ出口温度センサ8A、高圧EGRバルブ開度センサ8H、低圧EGRバルブ開度センサ8L等の各種センサと電気的に接続されている。
 上記A/Fセンサ80は、上記NSR触媒51の上流側で且つタービン42の下流側において排気中の酸素濃度を検出するセンサであって、酸素濃度に応じて連続的に変化する検出信号を出力する。エアフローメータ81は、大気中から吸気通路3へ流入された空気量(新気量)を測定するセンサである。吸気温センサ82は、吸気通路3を流れる空気の温度(具体的には上記インタクーラ32の下流側で且つ吸気絞り弁33の上流側の温度)を検出するセンサである。過給圧センサ83は、吸気絞り弁33の下流側の圧力(ターボチャージャ4によって過給された吸気の圧力)を検出するセンサである。排気温センサ84a~84dは、上記NSR触媒51の上流側、NSR触媒51の下流側、上記DPF52の下流側、上記低圧EGR通路71における低圧EGRクーラ73の下流側(低圧EGRバルブ72の上流側)にそれぞれ配設され、各所における排気ガスの温度を検出する。水温センサ85は、エンジン1の内部を循環する冷却水の温度を検出するセンサである。クランクポジションセンサ86は、エンジン1のクランクシャフトの回転位置を検出するセンサである。アクセル開度センサ87は、運転者によるアクセルペダルの操作量(アクセル開度)を検出するセンサである。吸気絞り弁開度センサ88は、上記吸気絞り弁33の開度を検出するセンサである。LPL差圧センサ89aは、上記LPL-EGR機構7における低圧EGRクーラ73の上流側圧力と下流側圧力との差圧を測定するセンサである。DPF差圧センサ89bは、上記DPF52の上流側圧力と下流側圧力との差圧を測定するセンサであって、DPF52内部におけるPMの堆積量の推定に利用される。コンプレッサ出口温度センサ8Aは、コンプレッサ41から流出する吸気(過給された新気および低圧EGRガスの混合気)の温度を検出するセンサである。高圧EGRバルブ開度センサ8Hは、高圧EGRバルブ62の開度を検出するセンサである。低圧EGRバルブ開度センサ8Lは、低圧EGRバルブ72の開度を検出するセンサである。
 ECU10は、上記した各種センサ80~89a,89b,8A,8H,8Lの検出値や測定値に基づいてインジェクタ2、吸気絞り弁33、可変ノズルベーン機構43,排気絞り弁53、高圧EGRバルブ62および低圧EGRバルブ72を制御する。
 例えば、ECU10は、エンジン1の運転状態(エンジン負荷など)に応じてHPL-EGR機構6およびLPL-EGR機構7を制御する。
 具体的には、エンジン1の温間時(例えば冷却水温度が80℃以上の場合)には、図3のマップに従って、使用するEGR機構6,7が選択される。つまり、エンジン1が低負荷運転状態にある場合は、ECU10はHPL-EGR機構6を利用して排気ガスの還流を行う(高圧EGR領域での還流動作)。エンジン1が高負荷運転状態にある場合は、ECU10はLPL-EGR機構7により排気ガスの還流を行う(低圧EGR領域での還流動作)。エンジン1が中負荷運転状態にある場合は、ECU10はHPL-EGR機構6とLPL-EGR機構7とを併用して排気ガスの還流を行う(MPL領域での還流動作)。これらの具体的な制御については後述する。なお、図3における領域Xは、HPL-EGR機構6の高圧EGRバルブ62およびLPL-EGR機構7の低圧EGRバルブ72が共に閉鎖される運転領域、つまり、EGRガスの還流が行われない運転領域である。これは、排気ガス中のスモーク量が多くなる場合や、EGRガス温度制約等のシステム信頼性が要求される場合の運転領域である。
 このようにしてエンジン1の運転状態に応じて、HPL-EGR機構6とLPL-EGR機構7との使用形態が切り換えられ、或いは、各EGR機構6,7が併用されると、エンジン1の広範囲な運転領域において適量のEGRガスを還流させることが可能となり、排気中のNOx濃度を好適に減少させることが可能となる。
 一方、エンジン1の冷間時には、図4のマップに示すように、上記領域X以外の運転領域では、エンジン1の負荷に関わりなく、ECU10はHPL-EGR機構6を利用して排気ガスの還流を行う。これは、EGRクーラを備えていないHPL-EGR機構6を利用することで、比較的高温度の排気ガスを還流させることにより、エンジン1の早期暖機や、NSR触媒51の早期活性化を図るためである。
 -MPL-EGRシステムの基本制御-
 次に、上記MPL-EGRシステムの基本制御について説明する。
 まず、HPL-EGR機構6におけるEGRガス量の制御、および、LPL-EGR機構7におけるEGRガス量の制御について説明する。これらHPL-EGR機構6におけるEGRガス量の制御と、LPL-EGR機構7におけるEGRガス量の制御とは、それぞれ独立した制御となっている。
 HPL-EGR機構6を用いてEGRガスを還流させている場合(LPL-EGR機構7を併用している場合を含む)には、目標とするEGRガス還流量(以下、「目標高圧EGRガス還流量」という)と、推定されたEGRガス還流量(以下、「推定高圧EGRガス還流量」という)とを比較し、この推定高圧EGRガス還流量が目標高圧EGRガス還流量に近づくように高圧EGRバルブ62の開度や吸気絞り弁33の開度がフィードバック制御(以下、「EGRフィードバック制御」という)される。この場合の目標高圧EGRガス還流量は、エンジン1の運転状態(特にエンジン負荷)に応じて設定される。また、推定高圧EGRガス還流量は、上記高圧EGRバルブ開度センサ8Hによって検出された高圧EGRバルブ62の開度、上記吸気温センサ82によって検出された吸気の温度、過給圧センサ83によって検出された吸気圧力とエキゾーストマニホールド内の圧力との差圧をパラメータとして、予めECU10のROM(Read Only Memory)に記憶された所定の演算式またはマップから求められる。なお、エキゾーストマニホールド内の圧力は、吸気圧力やエンジン1の運転状態量等をパラメータとして予めECU10のROMに記憶された所定の演算式またはマップから求められる。
 一方、LPL-EGR機構7を用いてEGRガスを還流させている場合(HPL-EGR機構6を併用している場合を含む)には、目標とするEGRガス還流量(以下、「目標低圧EGRガス還流量」という)と、推定されたEGRガス還流量(以下、「推定低圧EGRガス還流量」という)とを比較し、この推定低圧EGRガス還流量が目標低圧EGRガス還流量に近づくように低圧EGRバルブ72の開度や排気絞り弁53の開度がフィードバック制御(EGRフィードバック制御)される。この場合の目標低圧EGRガス還流量は、エンジン1の運転状態(特にエンジン負荷)に応じて設定される。また、推定低圧EGRガス還流量は、上記低圧EGRバルブ開度センサ8Lによって検出された低圧EGRバルブ72の開度、上記排気温センサ84a~84dによって検出された排気の温度、上記LPL差圧センサ89aによって検出された低圧EGRクーラ73の上流側圧力と下流側圧力との差圧をパラメータとして、予めECU10のROMに記憶された所定の演算式またはマップから求められる。
 以下、エンジン1の負荷に応じたMPL-EGRシステムの基本動作(HPL-EGR機構6およびLPL-EGR機構7の基本動作)について説明する。
 (低負荷運転時)
 上述した如く、エンジン負荷が比較的低いとき(低負荷領域)には、HPL-EGR機構6のみを用いてEGRガスが還流される。この運転領域をHPL領域という。なお、冷却水温度が低いときにもHPL-EGR機構6のみを用いてEGRガスが還流される。
 このHPL領域でのEGRフィードバック制御は、エアフローメータ81によって検出される吸入空気量が、エンジン負荷やエンジン回転速度(エンジン回転数)等に応じて設定される目標吸入空気量に一致するように上記目標高圧EGRガス還流量が設定され、上述した如く、上記推定高圧EGRガス還流量が、この目標高圧EGRガス還流量に一致するように高圧EGRバルブ62の開度がフィードバック制御される。このとき、低圧EGRバルブ72は全閉のまま維持される。
 例えば、エアフローメータ81により得られる吸入空気量が目標値よりも少なく、実EGR率が目標EGR率(エンジン1の運転状態等に応じて決定されるEGR率)よりも高い場合には、推定高圧EGRガス還流量が目標高圧EGRガス還流量よりも多くなっているので、EGRガス量を減少させるように高圧EGRバルブ62の開度を小さくする。
 また、エアフローメータ81により得られる吸入空気量が目標値よりも多く、実EGR率が目標EGR率よりも低い場合には、推定高圧EGRガス還流量が目標高圧EGRガス還流量よりも少なくなっているので、EGRガス量を増加させるように高圧EGRバルブ62の開度を大きくする。そして、このように高圧EGRバルブ62の開度を大きくしても、推定高圧EGRガス還流量が目標高圧EGRガス還流量に達しない場合には、上記吸気絞り弁33の開度を小さくし(閉度を大きくし)、この吸気絞り弁33の下流側の圧力を低下させることによって、高圧EGR通路61を経て還流されるEGRガスの量を増加させるようにする。これにより、実EGR率を目標EGR率に近付ける。
 (高負荷運転時)
 上述した如く、エンジン負荷が比較的高いとき(高負荷領域)には、LPL-EGR機構7のみを用いてEGRガスが還流される。この運転領域をLPL領域という。
 このLPL領域でのEGRフィードバック制御は、エアフローメータ81によって検出される吸入空気量が、エンジン負荷やエンジン回転速度等に応じて設定される目標吸入空気量に一致するように上記目標低圧EGRガス還流量が設定され、上述した如く、上記推定低圧EGRガス還流量が、この目標低圧EGRガス還流量に一致するように低圧EGRバルブ72の開度がフィードバック制御される。このときに、基本的には(EGRガス量が不足しない限りは)、高圧EGRバルブ62は全閉のまま維持される。
 例えば、エアフローメータ81により得られる吸入空気量が目標値よりも少なく、実EGR率が目標EGR率よりも高い場合には、推定低圧EGRガス還流量が目標低圧EGRガス還流量よりも多くなっているので、EGRガス量を減少させるように低圧EGRバルブ72の開度を小さくする。
 また、エアフローメータ81により得られる吸入空気量が目標値よりも多く、実EGR率が目標EGR率よりも低い場合には、推定低圧EGRガス還流量が目標低圧EGRガス還流量よりも少なくなっているので、EGRガス量を増加させるように低圧EGRバルブ72の開度を大きくする。そして、このように低圧EGRバルブ72の開度を大きくしても、推定低圧EGRガス還流量が目標低圧EGRガス還流量に達しない場合には、高圧EGRバルブ62の開度を大きくしたり、または、上記排気絞り弁53の開度を小さくして(閉度を大きくして)、低圧EGR通路71を経て還流されるEGRガスの量を増加させるようにする。これにより、実EGR率を目標EGR率に近付ける。
 (中負荷運転時)
 上述した如く、エンジンが中負荷運転であるとき(中負荷領域)には、HPL-EGR機構6とLPL-EGR機構7とを併用してEGRガスが還流される。このHPL領域とLPL領域との間の領域をMPL領域という。
 このMPL領域でのEGRフィードバック制御は、エンジン負荷やエンジン回転速度等に応じて目標吸入空気量および目標EGR率(=高圧EGRガス還流量+低圧EGRガス還流量/高圧EGRガス還流量+低圧EGRガス還流量+吸入空気量)が決定され、これら値からEGRガス量の総量が設定される。また、エンジン負荷等に応じてEGR分配率(HPL-EGR機構6により還流される高圧EGRガスの量とLPL-EGR機構7により還流される低圧EGRガスの量との比率)が決定される。そして、高圧EGRガスの分配率(=高圧EGRガス還流量/高圧EGRガス還流量+低圧EGRガス還流量)および低圧EGRガスの分配率(=低圧EGRガス還流量/高圧EGRガス還流量+低圧EGRガス還流量)を上記EGRガス量の総量にそれぞれ乗算することで、目標とする高圧EGRガスの量(目標高圧EGRガス還流量)と目標とする低圧EGRガスの量(目標低圧EGRガス還流量)とを求める。
 そして、HPL-EGR機構6の制御としては、推定高圧EGRガス還流量が上記目標高圧EGRガス還流量に達するように高圧EGRバルブ62の開度を制御する。この高圧EGRバルブ62に対する開度制御は上述した低負荷運転時の場合と同様である。
 一方、LPL-EGR機構7の制御としては、推定低圧EGRガス還流量が上記目標低圧EGRガス還流量に達するように低圧EGRバルブ72の開度を制御する。この低圧EGRバルブ72に対する開度制御は上述した高負荷運転時の場合と同様である。
 -NOx還元処理-
 次に、上記NOx還元処理について説明する。
 一般に、ディーゼルエンジン1では、燃焼室内で燃焼に供される燃料と空気との混合気の酸素濃度が、殆どの運転領域で高濃度状態にある。燃焼に供される混合気の酸素濃度は、燃焼に供された酸素を差し引いてそのまま排気中の酸素濃度に反映されるのが通常であり、混合気中の酸素濃度(空燃比:燃焼A/F)が高ければ、排気中の酸素濃度(空燃比:排気A/F)も基本的には同様に高くなる。一方、上述したように、NSR触媒51は排気中の酸素濃度が高ければNOxを吸蔵し、酸素濃度が低ければNOxをNO2若しくはNOに還元して放出する特性を有するため、排気中の酸素が高濃度状態にある限りNOxを吸蔵することとなる。ただし、NSR触媒51のNOx吸蔵量には限界量が存在し、このNSR触媒51が限界量のNOxを吸蔵した状態では、排気中のNOxがNSR触媒51に吸蔵されず触媒ケーシングを素通りすることとなる。
 そこで、上記ECU10は、NSR触媒51のNOx吸蔵量が所定値に達した場合には、インジェクタ2によるポスト噴射を実行し、これにより、一時的に排気中の酸素濃度を低減し、かつ還元成分(HC等)の量を増大させるようにしている。これによりNSR触媒51は、吸蔵していたNOxを還元して放出し、自身のNOx吸蔵能力を回復(再生)するようになる。なお、このNOx還元処理が実行される条件の詳細については後述する。
 なお、NSR触媒51の内部に吸蔵されているNOx量の推定動作としては、エンジン回転速度や各気筒内への燃料噴射量の履歴情報に基づいて総NOx生成量を認識することにより行われる。そして、その推定NOx量が、予め設定しておいた所定値(NSR触媒51のNOx吸蔵能力が飽和する前の適宜値:上述した還元制御要求値)を越えたときに、上記ポスト噴射の実行によるNOx還元処理を行って上述した如くNSR触媒51のNOx吸蔵能力を回復(再生)させる。
 -NOx放出量制御-
 次に、本実施形態において特徴とする制御であるNOx放出量制御について説明する。
 上述した如く温度特性の異なる複数のNOx吸蔵材料を担持したNSR触媒51にNOxが吸蔵されている状態で、触媒温度が急速に変化する状況になると、低温型NOx吸蔵材料または高温型NOx吸蔵材料に吸蔵されていたNOxが放出され、このNOxがNSR触媒51から排出されてしまうといった状況を招くことがある。
 例えば触媒温度が比較的低い状況において低温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が高くなるなどして触媒温度が急速に上昇する場合が挙げられる。この場合、触媒温度の急速な上昇にともなって、上記低温型NOx吸蔵材料は、NOx吸蔵可能量が少なくなることからNOx吸蔵状態が維持できなくなり、このNOxを放出することになる。
 図10は、エンジンの運転状態が高負荷運転に移行する際における車速(一点鎖線)、NSR触媒51の入り口ガス温度(破線)、NSR触媒51の温度(実線)の変化を示している。この図10に示すように、高負荷運転に移行すると、燃焼室内での発生熱量の増大にともなってNSR触媒51の入り口ガス温度が上昇し、このNSR触媒51の入り口ガス温度の上昇から僅かな時間遅れをもってNSR触媒51の温度も上昇していくことになる。この時間遅れは、NSR触媒51の熱容量等に起因する。
 そして、NSR触媒51からのNOxの排出量は、触媒温度の単位時間当たりの上昇量(温度勾配)に応じて変動する。これは、触媒温度の単位時間当たりの上昇量が比較的小さい場合には、低温型NOx吸蔵材料からの単位時間当たりのNOx放出量が比較的少ないため、この放出されたNOxを、高温型NOx吸蔵材料が吸蔵することになるからである。ところが、触媒温度の単位時間当たりの上昇量が比較的大きい場合には、低温型NOx吸蔵材料からの単位時間当たりのNOx放出量が大量になるため、この放出されたNOxの大部分は、高温型NOx吸蔵材料に吸蔵されず、NSR触媒51から排出されることになってしまう。
 例えば、図5において、触媒温度がTaの状態でのNOx吸蔵量がNaとなっている状態から、触媒温度がTbまで上昇すると、この触媒温度TbでのNOx吸蔵可能量Nbと上記NOx吸蔵量Naとの差である図中のNcだけNOxが低温型NOx吸蔵材料から放出されることになるが、触媒温度の上昇速度(単位時間当たりの上昇量)が比較的低い場合には、その放出されたNOxの大部分は高温型NOx吸蔵材料に吸蔵されることになる。これに対し、触媒温度の上昇速度が比較的高い場合には(本発明でいう「NOx吸蔵還元型触媒の温度が上昇する際、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合」に相当)、低温型NOx吸蔵材料から放出されたNOx(図中のNcの量のNOx)の大部分は高温型NOx吸蔵材料に吸蔵されることなくNSR触媒51から排出されることになる。
 同様に、触媒温度が比較的高い状況において高温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が低くなるなどして触媒温度が急速に下降すると、触媒温度の急速な下降にともなって、上記高温型NOx吸蔵材料は、NOx吸蔵可能量が少なくなることからNOx吸蔵状態が維持できなくなり、このNOxを放出することになる。
 そして、NSR触媒51からのNOxの排出量は、触媒温度の単位時間当たりの下降量(温度勾配)に応じて変動する。これは、触媒温度の単位時間当たりの下降量が比較的小さい場合には、高温型NOx吸蔵材料からの単位時間当たりのNOx放出量が比較的少ないため、この放出されたNOxを、低温型NOx吸蔵材料が吸蔵することになるからである。ところが、触媒温度の単位時間当たりの下降量が比較的大きい場合には、高温型NOx吸蔵材料からの単位時間当たりのNOx放出量が大量になるため、この放出されたNOxの大部分は、低温型NOx吸蔵材料に吸蔵されず、NSR触媒51から排出されることになってしまう。
 例えば、図6において、触媒温度がTdの状態でのNOx吸蔵量がNdとなっている状態から、触媒温度がTeまで下降すると、この触媒温度TeでのNOx吸蔵可能量Neと上記NOx吸蔵量Ndとの差である図中のNfだけNOxが高温型NOx吸蔵材料から放出されることになるが、触媒温度の下降速度(単位時間当たりの下降量)が比較的低い場合には、その放出されたNOxの大部分は低温型NOx吸蔵材料に吸蔵されることになる。これに対し、触媒温度の下降速度が比較的高い場合には(本発明でいう「NOx吸蔵還元型触媒の温度が下降する際、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合」に相当)、高温型NOx吸蔵材料から放出されたNOx(図中のNfの量のNOx)の大部分は低温型NOx吸蔵材料に吸蔵されることなくNSR触媒51から排出されることになる。
 このようにNSR触媒51からNOxが排出された場合において、上記LPL-EGR機構7によってEGRガスの還流が行われていると、この排出されたNOxがLPL-EGR機構7に備えられた低圧EGRクーラ73や吸気通路3に備えられたインタクーラ32での結露水に溶解されることで、酸性液体が発生し、低圧EGRクーラ73やインタクーラ32への悪影響が懸念されることになる。
 本実施形態では、この点に鑑み、触媒温度が急速に変化することにともなって低温型NOx吸蔵材料または高温型NOx吸蔵材料からNOxが放出され、そのNOxがNSR触媒51から排出されてしまう状況になった場合(NOxがNSR触媒51から排出されてしまうことが予測される場合)には、上述したNOx還元処理を実行することで、NSR触媒51上でNOxを還元し、これにより、NSR触媒51からのNOxの放出量を削減するようにしている。
 より具体的には、触媒温度の単位時間当たりの変化量が比較的小さい場合には、仮に一方のNOx吸蔵材料(例えば低温型NOx吸蔵材料)からNOxが放出されたとしても、その単位時間当たりの放出量は少ないため、他方のNOx吸蔵材料(例えば高温型NOx吸蔵材料)によって吸蔵され、NSR触媒51からのNOx排出量は僅かである。このため、NOx還元処理を実行する必要はないと判断する。これに対し、触媒温度の単位時間当たりの変化量が比較的大きい場合には、仮に一方のNOx吸蔵材料(例えば低温型NOx吸蔵材料)からNOxが放出された場合、その単位時間当たりの放出量が多いため、他方のNOx吸蔵材料(例えば高温型NOx吸蔵材料)で全てを吸蔵することはできず、NSR触媒51からのNOx排出量が多くなってしまう。このため、このような状況を招く場合には、NOx還元処理を実行することにより、NSR触媒51上でNOxを還元し、これにより、NSR触媒51からのNOxの放出量を削減する。
 さらに、本実施形態では、エンジン1の運転状態によってはNOx還元処理を実行することができない状況があることを考慮し、上述の如くNSR触媒51からのNOx排出量が多くなってしまう場合に、NOx還元処理を実行することができない状況である場合には、LPL-EGR機構7によるEGRガスの還流を禁止し、低圧EGR通路71にEGRガスが流れ込まないようにすることで、上記酸性液体の発生を抑制し、低圧EGRクーラ73やインタクーラ32に対する悪影響を回避するようにしている。
 以下、上記NOx放出量制御の具体的な手順について図8および図9のフローチャートに沿って説明する。この図8および図9に示すフローチャートは、図示しないイグニッションスイッチ(スタートスイッチ)がONされてエンジン1が始動した後、所定時間毎に実行される。
 まず、ステップST1において、今回のルーチンにおいてエンジン1から排出されたNOx量(エンジン排出NOx量)を推定する。このエンジン排出NOx量は、エンジン回転速度や各気筒11,11,…内への燃料噴射量等のエンジン運転状態量に基づいて推定される。また、筒内圧力変化の推定値または実測値(筒内圧センサを設けた場合のセンシング値)から各気筒11,11,…内の熱発生率を推定し、この熱発生率の変化や燃料噴射量等のエンジン運転状態量、または、熱発生率の最大値(ピーク値)や燃料噴射量等のエンジン運転状態量からエンジン排出NOx量を推定するようにしてもよい。
 このエンジン排出NOx量を推定した後、ステップST2に移り、前回ルーチンまでに積算された上記低温型NOx吸蔵材料および高温型NOx吸蔵材料それぞれのNOx吸蔵積算値をECU10のRAM(Random Access Memory)から読み込む。このNOx吸蔵積算値は、上記NOx還元処理が実行された場合(後述するステップST9でNOx還元処理が実行された場合)にリセットされる。このため、このステップST2で読み込まれるNOx吸蔵積算値は、前回のNOx還元処理が完了した後、前回ルーチンまでに積算された上記低温型NOx吸蔵材料および高温型NOx吸蔵材料それぞれのNOx吸蔵積算値である。
 上記NOx吸蔵積算値が読み込まれた後、ステップST3に移り、NSR触媒51の温度を推定する。このNSR触媒51の温度は、上記排気温センサ84a,84bによって検出された排気の温度に基づいて推定される。また、これら排気温センサ84a,84bによって検出された排気の温度、および、インジェクタ2からの燃料噴射量、燃料噴射タイミング等をパラメータとして、予めECU10のROMに記憶された所定の演算式またはマップからNSR触媒51の温度を推定するようにしてもよい。
 その後、ステップST4に移り、各NOx吸蔵材料それぞれのNOx吸蔵速度を算出する。このNOx吸蔵速度は、図7に示したような、NSR触媒51の温度(ステップST3で推定されたNSR触媒温度;触媒床温)およびNOx吸蔵率に応じてNOx吸蔵速度を求めるマップを上記ECU10のROMに記憶させておき、このマップにNSR触媒51の温度およびNOx吸蔵率を当て嵌めることによって求められる。また、予め実験やシミュレーションによって求められたNOx吸蔵速度演算式を上記ECU10のROMに記憶させておき、このNOx吸蔵速度演算式によって各NOx吸蔵材料のNOx吸蔵速度を算出するようにしてもよい。なお、上記NOx吸蔵率は、上記ステップST2で読み込まれたNOx吸蔵材料のNOx吸蔵積算値をNOx吸蔵材料のNOx最大吸蔵量で除算することにより各NOx吸蔵材料それぞれについて求められる。
 その後、ステップST5に移り、今回のルーチンにおいて新たに各NOx吸蔵材料が吸蔵したNOx吸蔵量(瞬時NOx吸蔵量)の算出を行う。
 具体的には、上記ステップST1において推定されたエンジン排出NOx量と、上記各NOx吸蔵材料のNOx吸蔵速度とを用い、以下の式(1),(2)によって各NOx吸蔵材料それぞれのNOx吸蔵量(瞬時NOx吸蔵量)が算出されることになる。
 低温型NOx吸蔵材料の瞬時NOx吸蔵量=エンジン排出NOx量×低温型NOx吸蔵材料のNOx吸蔵速度  …(1)
 高温型NOx吸蔵材料の瞬時NOx吸蔵量=エンジン排出NOx量×高温型NOx吸蔵材料のNOx吸蔵速度  …(2)
 次に、ステップST6に移り、上記ステップST2で読み込まれたNOx吸蔵積算値に、上記瞬時NOx吸蔵量(上記ステップST5で算出されたNOx吸蔵量)を加算することによって、各NOx吸蔵材料それぞれのNOx吸蔵積算値を算出する。これにより、低温型NOx吸蔵材料および高温型NOx吸蔵材料それぞれにおける最新のNOx吸蔵積算値が求められることになる。
 以上のようにして各NOx吸蔵材料それぞれのNOx吸蔵積算値を算出した後、ステップST7に移り、NOx還元条件が成立したか否かを判定する。
 このNOx還元条件としては、NSR触媒51の温度変化を伴うことなく、低温型NOx吸蔵材料および高温型NOx吸蔵材料のうちの少なくとも一方のNOx吸蔵積算値が上記還元制御要求値を超えた場合に成立するNOx還元条件(NOx吸蔵量に起因するNOx還元実行条件)と、NSR触媒51の温度変化に起因して成立するNOx還元条件(触媒温度変化に起因するNOx還元実行条件)とがある。以下、それぞれについて説明する。
 上記NOx吸蔵量に起因するNOx還元実行条件は、例えば触媒温度が比較的低い温度域である場合において、低温型NOx吸蔵材料のNOx吸蔵量が図5においてTAからTBまで増加し、NOx吸蔵積算値が低温型NOx吸蔵材料の還元制御要求値に達した場合に成立する。また、触媒温度が比較的高い温度域である場合において、高温型NOx吸蔵材料のNOx吸蔵量が図6においてTCからTDまで増加し、NOx吸蔵積算値が高温型NOx吸蔵材料の還元制御要求値に達した場合にも成立する。
 一方、上記触媒温度変化に起因するNOx還元実行条件は、例えば触媒温度が比較的低い温度域である場合において、低温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が高くなるなどして触媒温度が急速に上昇することが推定された場合(上述した如く、図5において触媒温度がTaからTbまで急速に上昇することが推定された場合)に成立する。つまり、この場合、低温型NOx吸蔵材料は、NOxの吸蔵状態が維持できなくなり、このNOx(Nc(図5)の量)を放出することになる。また、触媒温度が急速に上昇したことで、低温型NOx吸蔵材料から放出されたNOxの大部分は高温型NOx吸蔵材料に吸蔵されず、NSR触媒51から排出されることになる。このような状況が推定された場合に、触媒温度変化に起因するNOx還元実行条件が成立する(ステップST7でYES判定される)ことになる。上記触媒温度が急速に上昇するか否かの推定動作としては、上記アクセル開度センサ87によって検出されるアクセル開度の変化量および上記クランクポジションセンサ86からの出力信号に基づいて算出されるエンジン回転速度から算出されるエンジン負荷や、インジェクタ2からの燃料噴射量や、NSR触媒51の熱容量等に基づいて触媒温度の変化(触媒温度の上昇の時間遅れなどを考慮した変化)の推移を推定することにより行われる。
 一方、触媒温度が比較的低い温度域である場合において、低温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が高くなるなどして触媒温度が上昇したとしても、その触媒温度の単位時間当たりの上昇量が比較的小さい場合には、低温型NOx吸蔵材料から放出されたNOxを高温型NOx吸蔵材料によって吸蔵可能となり、NSR触媒51からのNOx排出量は僅かであるかまたは殆ど無い。このため、このような状況が推定された場合には、触媒温度変化に起因するNOx還元実行条件は成立しない(ステップST7でNO判定される)ことになる。
 また、触媒温度の単位時間当たりの上昇量が同じであっても、NSR触媒51からのNOx排出量は、それまでの低温型NOx吸蔵材料に吸蔵されているNOxの量や、上昇後の触媒温度に応じて変化する。つまり、低温型NOx吸蔵材料に吸蔵されているNOxの量が多いほど、NSR触媒51からのNOx排出量は多くなる。また、上昇後の触媒温度が高いほど、NSR触媒51からのNOx排出量は多くなる。このため、上記NOx還元条件としては、低温型NOx吸蔵材料に吸蔵されているNOxの量、上昇後の触媒温度、および、触媒温度の単位時間当たりの上昇量に応じて成立することになる。つまり、上記触媒温度変化に起因するNOx還元実行条件は、低温型NOx吸蔵材料にNOxが吸蔵されている状態でNSR触媒51の温度が上昇する際に、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合(超えることが推定される場合)に成立することになる。
 同様に、上記触媒温度変化に起因するNOx還元実行条件は、例えば触媒温度が比較的高い温度域である場合において、高温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が低くなるなどして触媒温度が急速に下降することが推定された場合(上述した如く、図6において触媒温度がTdからTeまで急速に下降することが推定された場合)に成立する。つまり、この場合、高温型NOx吸蔵材料は、NOxの吸蔵状態が維持できなくなり、このNOx(Nfの量)を放出することになる。また、触媒温度が急速に下降したことで、高温型NOx吸蔵材料から放出されたNOxの大部分は低温型NOx吸蔵材料に吸蔵されず、NSR触媒51から排出されることになる。このような状況が推定された場合に、触媒温度変化に起因するNOx還元実行条件が成立する(ステップST7でYES判定される)ことになる。この場合における上記触媒温度が急速に下降するか否かの推定動作としても、上記アクセル開度センサ87によって検出されるアクセル開度の変化量および上記クランクポジションセンサ86からの出力信号に基づいて算出されるエンジン回転速度から算出されるエンジン負荷や、インジェクタ2からの燃料噴射量や、NSR触媒51の熱容量等に基づいて触媒温度の変化(触媒温度の下降の時間遅れなどを考慮した変化)の推移を推定することにより行われる。
 一方、触媒温度が比較的高い温度域である場合において、高温型NOx吸蔵材料に比較的多量のNOxが吸蔵されている状態から、エンジン負荷が低くなるなどして触媒温度が下降したとしても、その触媒温度の単位時間当たりの下降量が比較的小さい場合には、高温型NOx吸蔵材料から放出されたNOxを低温型NOx吸蔵材料によって吸蔵可能となり、NSR触媒51からのNOx排出量は僅かであるかまたは殆ど無い。このため、このような状況が推定された場合には、触媒温度変化に起因するNOx還元実行条件は成立しない(ステップST7でNO判定される)ことになる。
 また、触媒温度の単位時間当たりの下降量が同じであっても、NSR触媒51からのNOx排出量は、それまでの高温型NOx吸蔵材料に吸蔵されているNOxの量や、下降後の触媒温度に応じて変化する。つまり、高温型NOx吸蔵材料に吸蔵されているNOxの量が多いほど、NSR触媒51からのNOx排出量は多くなる。また、下降後の触媒温度が低いほど、NSR触媒51からのNOx排出量は多くなる。このため、上記NOx還元条件としては、高温型NOx吸蔵材料に吸蔵されているNOxの量、下降後の触媒温度、および、触媒温度の単位時間当たりの下降量に応じて成立することになる。つまり、上記触媒温度変化に起因するNOx還元実行条件は、高温型NOx吸蔵材料にNOxが吸蔵されている状態でNSR触媒51の温度が下降する際に、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合に成立することになる。
 上記NOx還元条件が成立しておらず、ステップST7でNO判定された場合には、NSR触媒51からのNOx排出量は僅かであるかまたは殆ど無いとして、NOx還元処理を実施することなくリターンされる。
 一方、NOx還元条件が成立し、ステップST7でYES判定された場合には、ステップST8に移って、現在のエンジン1の運転状態がNOx還元処理が可能な状態(ポスト噴射の実行による空燃比の更なるリッチを許可できる運転状態)であるか否かを判定する。例えば、アクセル開度やエンジン回転速度等に基づいて求められるエンジン負荷が所定負荷よりも小さい場合にはNOx還元処理が可能であると判定する。
 NOx還元処理が可能であり、ステップST8でYES判定された場合には、ステップST9に移り、上述したインジェクタ2からのポスト噴射の実行によるNOx還元処理を実行する。
 このようにしてNOx還元処理が実行されることにより、排気中の酸素濃度が低減し、かつ還元成分(HC等)の量が増大される。これによりNSR触媒51は、吸蔵していたNOxを触媒上において還元して放出し、自身のNOx吸蔵能力を回復(再生)することになる。つまり、上記温度変化にともなってNSR触媒51からNOxが排出されてしまうといった状況を回避できる。
 ステップST10では、NOx還元処理終了条件が成立したか否かを判定する。このNOx還元処理終了条件としては、上記NOx吸蔵量に起因するNOx還元実行条件が成立したことに起因してNOx還元処理が実行された場合には、現在、NSR触媒51に吸蔵されているNOxの全量、または、略全量が排出された場合に、NOx還元処理終了条件が成立することになる。
 一方、上記触媒温度変化に起因するNOx還元実行条件が成立したことに起因してNOx還元処理が実行された場合には、この触媒温度が急速に変化したことに起因してNSR触媒51から排出されるNOxの量(上記量NcやNf)を推定し、その推定された量のNOxの還元を可能とする燃料の供給(還元剤の供給)が行われた時点でNOx還元処理終了条件が成立することになる。このNOx還元処理終了条件が成立する燃料の供給量は、予め実験またはシミュレーションに基づいて設定されている。
 そして、NOx還元処理終了条件が成立するまで(ステップST10でYES判定されるまで)、NOx還元処理が継続され、NOx還元処理終了条件が成立するとリターンされる。
 一方、NOx還元条件が成立した(ステップST7でYES判定された)ものの、現在のエンジン1の運転状態がNOx還元処理が可能な状態ではなく、ステップST8でNO判定された場合には、ステップST11(図9)に移る。
 このステップST11では、NSR触媒51の到達温度(触媒温度の変化により現在のエンジン運転状態において最終的に到達する温度)を推定する。このNSR触媒51の到達温度の推定は、排気温センサ84a,84bによって検出された排気の温度、および、インジェクタ2からの燃料噴射量、燃料噴射タイミング等をパラメータとして、予めECU10のROMに記憶された所定の演算式またはマップから推定される。
 その後、ステップST12に移り、上記推定されたNSR触媒51の到達温度に基づきNSR触媒51からのNOx排出量を推定する。上述した如く、NSR触媒51からのNOx排出量は、NOx吸蔵材料におけるNOx吸蔵量、変化後の触媒温度(NSR触媒51の到達温度)、および、触媒温度の単位時間当たりの変化量に応じて変化する。このため、これらパラメータにより、NSR触媒51からのNOx排出量を推定する。
 その後、ステップST13に移り、この推定されたNOx排出量が所定量αを超えているか否かを判定する。この所定量αは、排出されたNOxがLPL-EGR機構7の低圧EGR通路71や吸気通路3に流れ込んだ場合に発生する酸性液体の濃度が所定値を越えるか否かを判定する閾値であって、例えば70mgに設定される。この値はこれに限定されるものではない。つまり、NOx排出量が所定量αを超えた場合には、酸性液体の濃度が所定値を越えてしまい、低圧EGRクーラ73やインタクーラ32に対して悪影響を与えてしまう可能性のあるものである。図11は、NOx濃度と凝縮水のpHとの関係を示す図である。この図11からも解るように、NOx濃度が高いほど凝縮水のpHは低下し、酸性液体の濃度が高くなっていく。この場合、NOx濃度が図中のDaを超えると、凝縮水のpHは、低圧EGRクーラ73やインタクーラ32に対して悪影響を与える値X以下となる。上記所定量αは、この凝縮水のpHが、この値Xに達する値として予め実験またはシミュレーションに基づいて設定されている。
 上記推定されたNOx排出量が所定量α以下である場合には、排出されるNOxは比較的少なく、そのNOxがLPL-EGR機構7の低圧EGR通路71や吸気通路3に流れ込んでも、低圧EGRクーラ73やインタクーラ32に対して悪影響は殆ど無いとして、低圧EGRバルブ72の開度を維持して(低圧EGRバルブ72の開度を制限することなく)LPL-EGR機構7によるEGRガスの還流を許可する。
 一方、上記推定されたNOx排出量が所定量αを超える場合には、ステップST13でYES判定され、低圧EGRクーラ73やインタクーラ32に対して悪影響を与えてしまう可能性があるとして、ステップST14において、低圧EGRバルブ72を全閉に設定し、LPL-EGR機構7によるEGRガスの還流を禁止する。
 図12は、NSR触媒51の通過ガス量とNOx濃度との関係を示す図である。排出されるNOx量が所定量であったとしても、NSR触媒51を通過するガス量が多い場合にはNOx濃度は低くなる。つまり、同一NOx排出量であっても、NSR触媒51の通過ガス量がGAであった場合(NOx濃度はNA)には、通過ガス量がGBであった場合(NOx濃度はNB)よりもNOx濃度は低くなる。このため、NOx排出量とNSR触媒51の通過ガス量とに基づきNOx濃度が所定値以下である場合には低圧EGRバルブ72の開度の制限を行わず、NOx濃度が所定値を超える場合には低圧EGRバルブ72を全閉に設定して、LPL-EGR機構7によるEGRガスの還流を禁止するようにしている。なお、上記NSR触媒51を通過するガス量は、上記エアフローメータ81によって検出される空気量、各EGR機構6,7におけるEGRガス還流量(上述した推定高圧EGRガス還流量および推定低圧EGRガス還流量)等をパラメータとして算出される。
 このようにしてEGRガスの還流を禁止した状態でステップST15に移り、上記ステップST6の場合と同様に、各NOx吸蔵材料それぞれのNOx吸蔵積算値を算出し、ステップST11に戻る。これにより、上記推定されるNOx放出量が所定量α以下になるまで、つまり、低圧EGRバルブ72の開放が許可できる状態となるまで、ステップST11~ステップST15の動作を繰り返す。そして、上記推定されるNOx排出量が所定量α以下になり、ステップST13でNO判定された場合には、低圧EGRバルブ72の開放を許可してリターンされる。以上の動作が繰り返して実行される。
 以上の如く、本実施形態では、触媒温度が急速に変化することにともなって低温型NOx吸蔵材料または高温型NOx吸蔵材料からNOxが放出され、そのNOxがNSR触媒51から排出されてしまう状況が推定される場合には、NOx還元処理を実行することで、NSR触媒51上でNOxを還元するようにしている。このため、温度変化にともなうNSR触媒51からのNOx排出量を削減することができ、上記酸性液体の発生を防止して、低圧EGRクーラ73やインタクーラ32への悪影響を回避することができる。
 また、NSR触媒51からNOxが排出されてしまう状況においてのみ上記NOx還元処理を実行するようにしているので、無駄なNOx還元処理を防止することができ、燃料消費率の改善が図れ、且つ燃料によるオイル希釈(噴射燃料が筒内壁面に付着することによるエンジンオイルの希釈)を抑制することができる。
 また、NOx還元処理が実施できない状況では、LPL-EGR機構7による排気ガスの還流を非実施としている。これによっても、LPL-EGR機構7や吸気通路3での酸性液体の発生を防止することができ、低圧EGRクーラ73やインタクーラ32への悪影響を回避することができる。
 (変形例)
 次に、変形例について説明する。この変形例は、上述した実施形態において、LPL-EGR機構7によるEGRガスの還流を禁止(低圧EGRバルブ72を全閉)したことで、大気中へNOxが排出されてしまった場合の制御に関する。
 具体的に、大気中へNOxが排出されてしまった場合には、上記還元制御要求値を低く設定することでNOx還元処理の頻度を高くし、還元制御要求値の変更前(還元制御要求値が高い場合)に比べて大気中へのNOx排出量を少なくするようにしている。
 上記NSR触媒51におけるNOx吸蔵量が上記還元制御要求値に達するまでの期間中において、全てのNOxをNSR触媒51で吸蔵することはできず、僅かなNOx量が大気中に排出されている。そして、この大気中へのNOx排出量は、NOx還元処理の頻度が低いほど多くなる。つまり、NOx還元処理の頻度が高いほど大気中へのNOx排出量は少なくなる。
 このため、本変形例では、LPL-EGR機構7によるEGRガスの還流を禁止したことで、大気中へNOxが排出されてしまった場合には、還元制御要求値を低く設定することでNOx還元処理の頻度を高くし、これによって大気中へのNOx排出量を削減する(還元制御要求値が高く設定されていた場合に対して削減する)ようにしている。以下、具体的に説明する。
 上述した実施形態の如くLPL-EGR機構7によるEGRガスの還流を禁止した場合における大気中へのNOx排出量を算出しておき、その量に相当するNOx量が削減できるまで、上記還元制御要求値を低く設定してNOx還元処理の頻度を高くする。
 図13は、低温型NOx吸蔵材料における還元制御要求値を変更する場合におけるNSR触媒の温度とNOx吸蔵量との関係を示している。NSR触媒51からのNOxが大気中に排出されない状況(上記EGRガスの還流を禁止していない状況)にあっては、還元制御要求値は、図中の破線で示すように比較的高い値に設定される。これに対し、EGRガスの還流を禁止したことに伴ってNSR触媒51からのNOxが大気中に排出された場合には、還元制御要求値は、図中の実線で示すように比較的低い値に変更され、これによってNOx還元処理の頻度を高くする。
 同様に、図14は、高温型NOx吸蔵材料における還元制御要求値を変更する場合におけるNSR触媒の温度とNOx吸蔵量との関係を示している。NSR触媒51からのNOxが大気中に排出されない状況にあっては、還元制御要求値は、図中の破線で示すように比較的高い値に設定される。これに対し、EGRガスの還流を禁止したことに伴ってNSR触媒51からのNOxが大気中に排出された場合には、還元制御要求値は、図中の実線で示すように比較的低い値に変更され、これによってNOx還元処理の頻度を高くする。
 このようにしてNOx還元処理の頻度を高くすることにより、NOx還元処理の頻度が低い場合に比べて、NSR触媒51から大気中へのNOx排出量を削減し、その削減したNOx量の総量が、上記EGRガスの還流を禁止したことに伴って大気中に排出されたNOx量に相当する量に達すると、還元制御要求値を元の値(図13および図14において破線で示す値)に復帰させる。
 これにより、EGRガスの還流を禁止したことに伴う環境への悪影響は相殺されることになる。
 なお、本変形例にあっては、上記低温型NOx吸蔵材料における還元制御要求値および上記高温型NOx吸蔵材料における還元制御要求値をともに変更するようにしてもよいし、触媒温度に応じて一方の還元制御要求値のみを変更するようにしてもよい。つまり、触媒温度が比較的低く(例えば300℃未満である場合)低温型NOx吸蔵材料の性能が高い状況である場合には、この低温型NOx吸蔵材料における還元制御要求値のみを変更する一方、触媒温度が比較的高く(例えば300℃以上である場合)高温型NOx吸蔵材料の性能が高い状況である場合には、この高温型NOx吸蔵材料における還元制御要求値のみを変更するものである。
 図15は、還元制御要求値を補正する前(図13および図14において破線で示す還元制御要求値とした場合)の単位走行距離当たりにおける大気中へのNOx排出量、および、還元制御要求値を補正した後(図13および図14において実線で示す還元制御要求値とした場合)の単位走行距離当たりにおける大気中へのNOx排出量である。このように、還元制御要求値を補正することにより大気中へのNOx排出量が削減されることになる(単位走行距離当たりの削減量を図中のYで示す)。つまり、この単位走行距離当たりの削減量Yを積算していき、その削減総量が、上記EGRガスの還流を禁止したことに伴って大気中に排出されたNOx量に一致した時点で、還元制御要求値を元の値に復帰させるようにする。
 より具体的には、上記EGRガスの還流を禁止したことに伴って大気中に排出されたNOx量をZ(g)とし、還元制御要求値を補正したことによる単位走行距離当たりの削減量をY(g/km)とした場合、Z/Y(km)を走行した時点で、還元制御要求値を元の値に復帰させるようにする。
 -他の実施形態-
 以上説明した実施形態および変形例は、自動車に搭載される直列4気筒ディーゼルエンジンに本発明を適用した場合について説明した。本発明は、自動車用に限らず、その他の用途に使用されるエンジンにも適用可能である。また、気筒数やエンジン形式(直列型エンジン、V型エンジン、水平対向型エンジン等の別)についても特に限定されるものではない。
 また、上記実施形態および変形例では、2つのEGR機構6,7を備えたエンジン1に本発明を適用した場合について説明した。本発明はこれに限らず、1つのEGR機構(LPL-EGR機構のみ)を備えたエンジンや3つ以上のEGR機構を備えたエンジンに対しても適用が可能である。
 また、上記実施形態および変形例では、温度特性の異なる2種類のNOx吸蔵材料がNSR触媒51に担持された場合について説明した。本発明は、温度特性の異なる3種類以上のNOx吸蔵材料がNSR触媒51に担持された場合にも適用が可能である。この場合、それぞれのNOx吸蔵材料に対して、触媒温度の変化に応じたNOx放出量を算出することになる。
 また、上記実施形態および変形例では、NOx吸蔵還元型触媒としてNSR触媒51を適用したが、本発明はこれに限らず、DPNR触媒を適用してもよい。
 また、上記実施形態および変形例では、NOx還元処理として、インジェクタ2からのポスト噴射を実行するようにしたが、排気系に燃料添加弁を備えさせ、この燃料添加弁からの燃料添加によってNOx還元処理を実行するようにしてもよい。
 本発明は、NSR触媒下流側から吸気系にEGRガスを還流させるLPL-EGR機構を備えたディーゼルエンジンの制御に適用可能である。
1       エンジン(内燃機関)
2       インジェクタ
3       吸気通路(吸気系)
32      インタクーラ
5       排気通路(排気系)
51      NSR触媒(NOx吸蔵還元型触媒)
7       LPL-EGR機構
71      低圧EGR通路
72      低圧EGRバルブ
73      低圧EGRクーラ
10      ECU
84a,84b 排気温センサ

Claims (7)

  1.  温度に応じたNOx吸蔵特性が互いに異なる複数のNOx吸蔵材料を有するNOx吸蔵還元型触媒が排気系に備えられ、このNOx吸蔵還元型触媒が吸蔵したNOxを還元するためのNOx還元処理が可能な内燃機関の制御装置において、
     上記複数のNOx吸蔵材料として、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも高温側である高温型NOx吸蔵材料と、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも低温側である低温型NOx吸蔵材料とを少なくとも備えており、
     上記低温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が上昇する際、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合に、上記NOx還元処理を実行する構成となっていることを特徴とする内燃機関の制御装置。
  2.  温度に応じたNOx吸蔵特性が互いに異なる複数のNOx吸蔵材料を有するNOx吸蔵還元型触媒が排気系に備えられ、このNOx吸蔵還元型触媒が吸蔵したNOxを還元するためのNOx還元処理が可能な内燃機関の制御装置において、
     上記複数のNOx吸蔵材料として、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも高温側である高温型NOx吸蔵材料と、NOx吸蔵性能が最も高くなる触媒温度域が、他のNOx吸蔵材料よりも低温側である低温型NOx吸蔵材料とを少なくとも備えており、
     上記高温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が下降する際、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合に、上記NOx還元処理を実行する構成となっていることを特徴とする内燃機関の制御装置。
  3.  請求項1記載の内燃機関の制御装置において、
     上記内燃機関には、NOx吸蔵還元型触媒を通過した排気ガスの一部を吸気系に還流させるEGR機構が設けられており、
     上記低温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が上昇する際、その触媒温度が所定温度を超え且つその温度上昇勾配が所定値を超える場合において、上記NOx還元処理が実行できない内燃機関運転状態である場合には、NOx吸蔵還元型触媒からのNOx排出量が所定量を超えていることを条件として上記EGR機構による排気ガスの還流を非実施とする構成となっていることを特徴とする内燃機関の制御装置。
  4.  請求項2記載の内燃機関の制御装置において、
     上記内燃機関には、NOx吸蔵還元型触媒を通過した排気ガスの一部を吸気系に還流させるEGR機構が設けられており、
     上記高温型NOx吸蔵材料にNOxが吸蔵されている状態で上記NOx吸蔵還元型触媒の温度が下降する際、その触媒温度が所定温度を下回り且つその温度下降勾配が所定値を超える場合において、上記NOx還元処理が実行できない内燃機関運転状態である場合には、NOx吸蔵還元型触媒からのNOx排出量が所定量を超えていることを条件として上記EGR機構による排気ガスの還流を非実施とする構成となっていることを特徴とする内燃機関の制御装置。
  5.  請求項3記載の内燃機関の制御装置において、
     上記低温型NOx吸蔵材料に吸蔵されているNOxの量が所定の閾値に達した際に上記NOx還元処理を実行するようになっており、
     上記EGR機構による排気ガスの還流を非実施とした場合に排気系から排出されるNOxの量が所定量以上であった場合には、上記閾値を小さい側に変更する構成となっていることを特徴とする内燃機関の制御装置。
  6.  請求項4記載の内燃機関の制御装置において、
     上記高温型NOx吸蔵材料に吸蔵されているNOxの量が所定の閾値に達した際に上記NOx還元処理を実行するようになっており、
     上記EGR機構による排気ガスの還流を非実施とした場合に排気系から排出されるNOxの量が所定量以上であった場合には、上記閾値を小さい側に変更する構成となっていることを特徴とする内燃機関の制御装置。
  7.  請求項5または6記載の内燃機関の制御装置において、
     上記閾値を小さい側に変更したことに起因するNOx吸蔵還元型触媒からのNOx排出量の削減量が、上記EGR機構による排気ガスの還流を非実施としたことに起因する排気系からのNOx排出量に略一致した時点で、上記閾値を元の値に復帰させる構成となっていることを特徴とする内燃機関の制御装置。
PCT/JP2012/056546 2012-03-14 2012-03-14 内燃機関の制御装置 WO2013136463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12870973.0A EP2826970B1 (en) 2012-03-14 2012-03-14 Internal combustion engine with control unit
JP2014504552A JP5825424B2 (ja) 2012-03-14 2012-03-14 内燃機関の制御装置
PCT/JP2012/056546 WO2013136463A1 (ja) 2012-03-14 2012-03-14 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056546 WO2013136463A1 (ja) 2012-03-14 2012-03-14 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013136463A1 true WO2013136463A1 (ja) 2013-09-19

Family

ID=49160431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056546 WO2013136463A1 (ja) 2012-03-14 2012-03-14 内燃機関の制御装置

Country Status (3)

Country Link
EP (1) EP2826970B1 (ja)
JP (1) JP5825424B2 (ja)
WO (1) WO2013136463A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510945A (ja) * 2016-04-11 2019-04-18 パーキンズ エンジンズ カンパニー リミテッドPerkins Engines Company Limited 一体化センサ付きegrバルブ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455237B2 (ja) * 2015-03-04 2019-01-23 いすゞ自動車株式会社 排気浄化システム
IT201700062336A1 (it) * 2017-06-07 2018-12-07 Magneti Marelli Spa Metodo per controllare un motore a combustione interna

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207916A (ja) 2000-01-21 2001-08-03 Toyota Motor Corp 内燃機関の排気還流装置
JP2002303128A (ja) * 2001-04-03 2002-10-18 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003020930A (ja) * 2001-07-09 2003-01-24 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006150258A (ja) 2004-11-30 2006-06-15 Isuzu Motors Ltd NOx浄化システム
JP2007162501A (ja) * 2005-12-09 2007-06-28 Toyota Motor Corp 内燃機関の排気浄化システム
JP2007198277A (ja) * 2006-01-27 2007-08-09 Toyota Motor Corp 内燃機関の排気還流装置
JP2008298024A (ja) * 2007-06-01 2008-12-11 Mazda Motor Corp 排ガス浄化装置
JP2009085018A (ja) 2007-09-27 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009221913A (ja) * 2008-03-14 2009-10-01 Honda Motor Co Ltd 排ガス浄化装置
JP2011089470A (ja) 2009-10-22 2011-05-06 Toyota Motor Corp Egrシステムの故障診断装置
JP2011127561A (ja) 2009-12-21 2011-06-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP2012007544A (ja) 2010-06-25 2012-01-12 Toyota Motor Corp 可変容量型過給機の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632614B2 (ja) * 2001-05-11 2005-03-23 日産自動車株式会社 内燃機関の排気浄化装置
JP2003065095A (ja) * 2001-08-27 2003-03-05 Yanmar Co Ltd 内燃機関の運転制御方法
US6938412B2 (en) * 2003-08-07 2005-09-06 General Motors Corporation Removing nitrogen oxides during a lean-burn engine cold start
JP4390000B2 (ja) * 2008-01-09 2009-12-24 トヨタ自動車株式会社 NOx吸着装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207916A (ja) 2000-01-21 2001-08-03 Toyota Motor Corp 内燃機関の排気還流装置
JP2002303128A (ja) * 2001-04-03 2002-10-18 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003020930A (ja) * 2001-07-09 2003-01-24 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006150258A (ja) 2004-11-30 2006-06-15 Isuzu Motors Ltd NOx浄化システム
JP2007162501A (ja) * 2005-12-09 2007-06-28 Toyota Motor Corp 内燃機関の排気浄化システム
JP2007198277A (ja) * 2006-01-27 2007-08-09 Toyota Motor Corp 内燃機関の排気還流装置
JP2008298024A (ja) * 2007-06-01 2008-12-11 Mazda Motor Corp 排ガス浄化装置
JP2009085018A (ja) 2007-09-27 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009221913A (ja) * 2008-03-14 2009-10-01 Honda Motor Co Ltd 排ガス浄化装置
JP2011089470A (ja) 2009-10-22 2011-05-06 Toyota Motor Corp Egrシステムの故障診断装置
JP2011127561A (ja) 2009-12-21 2011-06-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP2012007544A (ja) 2010-06-25 2012-01-12 Toyota Motor Corp 可変容量型過給機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510945A (ja) * 2016-04-11 2019-04-18 パーキンズ エンジンズ カンパニー リミテッドPerkins Engines Company Limited 一体化センサ付きegrバルブ

Also Published As

Publication number Publication date
EP2826970B1 (en) 2018-09-05
JP5825424B2 (ja) 2015-12-02
JPWO2013136463A1 (ja) 2015-08-03
EP2826970A1 (en) 2015-01-21
EP2826970A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US10352225B2 (en) Method and system for diagnosing deterioration of exhaust emission control catalyst
US8037675B2 (en) Exhaust gas purification system for internal combustion engine and method for exhaust gas purification
JP5995031B2 (ja) 内燃機関の制御装置
JP5733267B2 (ja) 内燃機関の制御装置
WO2013132589A1 (ja) 内燃機関の制御装置
JP2015078698A (ja) 内燃機関の排気浄化装置
JP2009191659A (ja) 内燃機関の制御装置
JP5846300B2 (ja) 内燃機関の制御装置
EP2639420B1 (en) Exhaust-gas purifier for internal combustion engine
JP5332575B2 (ja) 内燃機関の排気浄化装置
JP5825424B2 (ja) 内燃機関の制御装置
JP5803622B2 (ja) Egrシステムの異常診断装置
JP2007040186A (ja) 内燃機関のNOx生成量推定装置及び内燃機関の制御装置
JP5699957B2 (ja) 内燃機関の排気浄化装置
JP6665523B2 (ja) 排気浄化装置
JP6287933B2 (ja) ディーゼルエンジンの制御装置
JP5050903B2 (ja) エンジンの過給装置
JP2013160106A (ja) 内燃機関の排気浄化装置
JP5862438B2 (ja) 内燃機関の制御装置
JP4473198B2 (ja) 内燃機関の排気空燃比制御装置
JP2004353502A (ja) エンジンの制御装置
JP2006274985A (ja) 排気後処理装置
JP4196887B2 (ja) 内燃機関の燃料噴射制御装置
JP7155566B2 (ja) エンジンの触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP4154589B2 (ja) 内燃機関の燃焼制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012870973

Country of ref document: EP