WO2013136368A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2013136368A1
WO2013136368A1 PCT/JP2012/001810 JP2012001810W WO2013136368A1 WO 2013136368 A1 WO2013136368 A1 WO 2013136368A1 JP 2012001810 W JP2012001810 W JP 2012001810W WO 2013136368 A1 WO2013136368 A1 WO 2013136368A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
cooling
water supply
operation mode
indoor
Prior art date
Application number
PCT/JP2012/001810
Other languages
English (en)
French (fr)
Inventor
章吾 玉木
齊藤 信
亮 大矢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/381,033 priority Critical patent/US9644876B2/en
Priority to JP2014504462A priority patent/JP5865482B2/ja
Priority to CN201280072396.XA priority patent/CN104246395B/zh
Priority to EP12871423.5A priority patent/EP2829823B1/en
Priority to PCT/JP2012/001810 priority patent/WO2013136368A1/ja
Publication of WO2013136368A1 publication Critical patent/WO2013136368A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Definitions

  • the present invention relates to a vapor compression refrigeration cycle apparatus, and more particularly to control of a refrigeration cycle apparatus capable of performing exhaust heat recovery operation by simultaneous operation of cooling and hot water supply.
  • the refrigeration apparatus described in Patent Document 1 is a system capable of recovering exhaust heat using the amount of heat absorbed by a cooling heat exchanger such as a showcase as heating heat of an air conditioning heat exchanger.
  • the refrigeration apparatus disclosed in Patent Document 2 has a configuration that can realize a cooling / heating-free operation that satisfies the cooling and heating requirements of each room at the same time, and realizes exhaust heat recovery through the simultaneous use of cooling and heating heat. It is a system that can.
  • the refrigeration cycle apparatus described in the above document is a system that outputs cooling heat and heating heat corresponding to a cooling load and a heating load.
  • a refrigeration cycle apparatus that performs cooling and hot water supply at the same time, unlike hot air supply, the amount of hot water increases as the amount of hot water supplied increases, so heat corresponding to the load is increased. There is no concept of output. Therefore, conventional control of exhaust heat recovery cannot be applied as it is. Therefore, in the simultaneous operation of cooling and hot water supply, it is necessary to construct an operation method according to the cooling load and an operation method according to the hot water supply request.
  • the operation according to the hot water supply does not output heat according to the load, so the output method of the hot water supply heat can be set freely. Therefore, as a control method, a method of increasing operating efficiency while ensuring hot water resistance is desirable, but since the amount of heat output is fixed by the load in the simultaneous operation of cooling and heating so far, There has never been a control method based on the idea.
  • the present invention has been made in order to solve the above-described problems, and can at least individually perform cooling operation and hot water supply operation, and can perform cooling exhaust heat recovery operation that recovers cooling exhaust heat as hot water supply heat.
  • the equipment control mode that matches the cooling load and the hot water supply request is established, and the control mode of the equipment control is determined according to the relationship between the cooling load and the hot water supply request, thereby impairing indoor comfort.
  • An object of the present invention is to obtain a refrigeration cycle apparatus that realizes a state with high hot water resistance and high operating efficiency.
  • the refrigeration cycle apparatus of the present invention is One or more heat source units having a compressor capable of operating frequency control, a heat source side heat exchanger, a heat source blower for supplying outside air to the heat source side heat exchanger, and a heat source decompression mechanism, A branch unit having an indoor decompression mechanism; One or more indoor units having an indoor heat exchanger for cooling or heating indoor air; At least one water-side circuit having a hot water storage tank, a water pump, a water heat exchanger for heating the water in the hot water storage tank, the hot water storage tank, the water pump, and the water heat exchanger; Hot water supply unit, A refrigeration cycle circuit piped in the order of the compressor, the water heat exchanger, the indoor pressure reducing mechanism, and the indoor heat exchanger; Branching between the water heat exchanger and the indoor pressure reducing mechanism, connecting the pipes in the order of the heat source pressure reducing mechanism and the heat source side heat exchanger, and connecting between the indoor heat exchanger and the compressor.
  • a thermal circuit Provided with a control device having an operation control unit for controlling the operation of each unit,
  • the operation controller is A cooling operation mode in which the refrigerant from the compressor flows to the indoor heat exchanger of the indoor unit having a cooling load, and the refrigerant from the compressor is supplied to the water heat exchanger of the hot water supply unit having a hot water supply request.
  • a cooling and hot water simultaneous operation mode for simultaneously carrying out flowing hot water operation,
  • As the control mode of the cooling and hot water simultaneous operation mode there are cooling priority for controlling the operating frequency of the compressor according to the cooling load and hot water priority for controlling the operating frequency of the compressor according to the hot water supply request.
  • the said operation control part makes the said cooling mode or the said hot water supply priority the said control mode of the said heating / cooling hot water simultaneous operation mode by the relationship between the said cooling load and the said hot water supply load.
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration cycle apparatus 100 according to Embodiment 1.
  • FIG. 2 is a block diagram of a control device of refrigeration cycle apparatus 100 in Embodiment 1.
  • FIG. It is the figure which showed the switching state of the cooling priority with respect to the load balance of the refrigerating-cycle apparatus 100 in Embodiment 1, and hot water supply priority. It is the figure which showed the control method of each apparatus in the case of cooling priority and hot water supply priority of the refrigeration cycle apparatus 100 in Embodiment 1. It is the figure which showed the change of the driving
  • 6 is a flowchart for selecting an operation mode when there is a cooling load in the refrigeration cycle apparatus 100 according to Embodiment 1, there is no hot water supply request, and the amount of heat stored in the hot water storage tank 19 is not maximum.
  • 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 according to Embodiment 2.
  • Embodiment 1 ⁇ Equipment configuration> The structure of the air conditioning apparatus of Embodiment 1 of this invention is demonstrated based on drawing. In this specification, when a unit is shown for a symbol in a sentence, it is shown in []. In the case of dimensionless (no unit), it is expressed as [-]. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus 100 according to Embodiment 1. FIG. The refrigeration cycle apparatus 100 is installed in a general house, office building, or the like, and performs a vapor compression refrigeration cycle operation to select a cooling command (cooling ON / OFF) or a heating command selected by the indoor units 303a and 303b.
  • the heat source unit 301 and the indoor units 303a and 303b are connected via the branch unit 302, the number of pipes connected to the heat source unit 301 does not increase even when the number of indoor units increases.
  • the heat source unit 301 and the branch unit 302 are connected by an indoor side liquid extension main pipe 7 that is a refrigerant pipe and an indoor side gas extension main pipe 12 that is a refrigerant pipe.
  • the branch unit 302 and the indoor units 303a and 303b are connected by indoor side liquid extension branch pipes 9a and 9b, which are refrigerant pipes, and indoor side gas extension branch pipes 11a and 11b.
  • the heat source unit 301 and the hot water supply unit 304 are connected by a water side gas extension main pipe 15 that is a refrigerant pipe and a water side liquid extension main pipe 20 that is a refrigerant pipe.
  • the refrigerant used for the air conditioner is not particularly limited.
  • R410A, R32, HFO-1234yf, natural refrigerants such as hydrocarbons, and the like can be used.
  • the heat source unit 301 includes the compressor 1, the oil separator 2, the four-way valves 3 and 13, the heat source side heat exchanger 4, the heat source blower 5, the heat source decompression mechanism 6, the hot water supply decompression mechanism 21, and the accumulator 14. And a solenoid valve 22 and a capillary tube 23.
  • the compressor 1 sucks and compresses refrigerant to bring it into a high-temperature and high-pressure state.
  • the compressor 1 is of a type whose rotational speed is controlled by an inverter.
  • the oil separator 2 is connected to separate the oil flowing out from the compressor 1 and return it to the compressor 1, and the separated oil is connected between the compressor 1 and the accumulator 14 via the capillary tube 23.
  • the heat source side heat exchanger 4 is, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and performs heat exchange between the outside air and the refrigerant to exhaust heat.
  • the heat source blower 5 includes a fan capable of changing the flow rate of air supplied to the heat source side heat exchanger 4, and is, for example, a propeller driven by a motor (not shown) made of a DC fan motor. Fan etc.
  • the heat source decompression mechanism 6 and the hot water supply decompression mechanism 21 control the flow rate of the refrigerant, and the opening degree can be variably set. Moreover, the flow direction of a refrigerant
  • coolant can be set by controlling the heat source pressure-reduction mechanism 6, the hot water supply pressure-reduction mechanism 21, the electromagnetic valve 22, and the four-way valves 3 and 13.
  • the accumulator 14 has a function of storing excessive refrigerant during operation and a function of preventing a large amount of liquid refrigerant from flowing into the compressor 1 by retaining liquid refrigerant that is temporarily generated when the operation state changes. is doing.
  • the electronic board for example, when the current increases due to an increase in the compressor frequency, for example, an electronic board for driving the compressor generates heat, and the temperature of the electronic board rises. If the temperature becomes too high, the electronic board may be damaged. Therefore, the electronic board is usually provided with a heat radiating plate 31 for radiating the generated heat.
  • the heat radiating plate 31 is located in the air path of the heat source blower 5 and can radiate the electronic board in the heat source unit 301 by blowing air from the heat source blower 5.
  • the heat source unit 301 is provided with a pressure sensor 201 on the discharge side of the compressor 1 to measure the refrigerant pressure at the installation location.
  • the temperature sensor 202 is provided on the discharge side of the compressor 1
  • the temperature sensor 203 is provided on the gas side of the heat source side heat exchanger 4
  • the temperature sensor 205 is provided on the liquid side of the heat source side heat exchanger 4, thereby measuring the refrigerant temperature at the installation location.
  • the temperature sensor 204 is provided in the air suction inlet, and measures the air temperature of an installation place.
  • the temperature sensor 212 is provided in the heat sink 31 and measures the heat sink temperature.
  • the branch unit 302 includes indoor pressure reducing mechanisms 8a and 8b.
  • the indoor decompression mechanisms 8a and 8b control the flow rate of the refrigerant, and the opening degree can be set variably.
  • coolant can be set by controlling the indoor pressure reduction mechanism 8a, 8b.
  • Indoor unit 303a, 303b is comprised including indoor side heat exchanger 10a, 10b.
  • the indoor side heat exchangers 10a and 10b are, for example, cross fin type fin-and-tube heat exchangers configured by heat transfer tubes and a large number of fins, and perform heat exchange between indoor air and refrigerant.
  • the indoor units 303a and 303b are provided with temperature sensors 206a and 206b on the liquid side of the indoor heat exchangers 10a and 10b, and temperature sensors 208a and 208b on the gas side of the indoor heat exchangers 10a and 10b. Detect the refrigerant temperature.
  • temperature sensors 207a and 207b are provided at the air suction port, and measure the air temperature at the installation location.
  • the hot water supply unit 304 includes the water heat exchanger 16, the water side circuit 18, the water pump 17, the hot water storage tank 19, and the heat transfer coil 25.
  • the water side circuit 17 connects between the water heat exchanger 16 and the hot water storage tank 19, and the heat medium circulates through the water side circuit 17 as intermediate water. Examples of the heat medium include water, naive brine, and ethylene glycol.
  • the water heat exchanger 16 is configured by, for example, a plate heat exchanger, and heats the heat medium by exchanging heat between the heat medium and the refrigerant.
  • the water pump 17 has a function of circulating the heat medium in the water side circuit 18 and may be configured with a variable flow rate of the heat medium supplied to the water heat exchanger 16 or a constant speed. It may be configured.
  • the hot water storage tank 19 has a function of storing heated hot water.
  • the hot water storage tank 19 is of a full-water type, and hot water is discharged from the upper part of the tank in response to a load-side hot water request, and low-temperature city water is supplied from the lower part of the tank for the amount of hot water in the hot water storage tank 19 at the time of hot water.
  • the heat medium fed by the water pump 17 is heated by the refrigerant in the water heat exchanger 16 to rise in temperature, and then passes through the connection point 24 and flows into the hot water storage tank 19.
  • the heat medium is not mixed with the water in the hot water storage tank 19, and heat is exchanged with the water in the heat transfer coil 25 to lower the temperature.
  • the hot water storage tank 19 flows out from the connection point 26, flows into the water pump 17, is fed again, and flows into the water heat exchanger 16. Hot water is boiled in the hot water storage tank 19 by such a process.
  • the heat transfer coil 25 is located below the hot water storage tank 19, and the connection point 24 and the connection point 26 are located below the hot water storage tank 19. Hot water flows out from the upper part of the tank, and low-temperature city water is supplied from the lower part of the tank, so there is low-temperature water at the lower part of the tank.
  • the operation is an operation of gradually raising the temperature of the low-temperature water in the hot water storage tank 19, and the heat transfer coil 25 performs heat exchange a plurality of times, whereby the water in the hot water storage tank 19 rises and hot water is produced.
  • circulation heating This boiling system is called circulation heating.
  • the heat transfer coil 25 raises the temperature of the water by, for example, 5 ° C. to raise the tank water temperature of the hot water storage tank 19. Therefore, the heat medium of the heat transfer coil 25 is also raised by 5 ° C., and as a result, the inlet temperature of the water heat exchanger 16 is increased to 25 ° C. and 30 ° C., and the outlet temperature is also increased to 30 ° C. and 35 ° C. accordingly. To increase.
  • a temperature sensor 209 is installed on the liquid side of the refrigerant side circuit of the water heat exchanger 12, and detects the refrigerant temperature at the installation location. Further, a temperature sensor 210 is installed downstream of the water heat exchanger 16 in the water side circuit 17, and temperature sensors 211 a to 211 d are installed on the tank wall surface of the hot water storage tank 19 to detect the water temperature at the installation location. The temperature sensors 211a to 211d are installed in order of the temperature sensor 211a, the temperature sensor 211b, the temperature sensor 211b, and the temperature sensor 211d from the upper part to the lower part of the hot water storage tank 19.
  • FIG. 2 is a block diagram showing the configuration of the control apparatus 101 according to Embodiment 1 of the present invention.
  • Various amounts detected by the various temperature sensors and pressure sensors are input to the measuring unit 102, and the compressor 1, the electromagnetic valve 22, the four-way valves 3 and 13 are operated by the operation control unit 103 based on the input information.
  • the heat source blower 5, the heat source decompression mechanism 6, the indoor decompression mechanisms 8a and 8b, the water pump 17, and the like are controlled.
  • the communication unit 104 is also capable of inputting communication data information from a communication means such as a telephone line, a LAN line, and wireless, and outputting the information to the outside.
  • the communication unit 104 receives a hot water supply command (hot water supply ON / hot water supply OFF), a set hot water temperature, and the like output from the hot water remote controller 107 and inputs them to the control device 101.
  • a cooling command (cooling ON / OFF) or a heating command (heating ON / OFF) output from the air conditioning remote controls 108 a and 108 b is received and input to the control device 101.
  • the hot water supply request is a specification that is automatically input to the control device 101 when the hot water storage amount of the hot water storage tank 19 is a predetermined value or less, for example, the hot water storage amount is 50% or less. It has become.
  • the control device 101 further includes a hot water storage amount calculation unit 105 that calculates the hot water storage amount of the hot water storage tank 19. Further, it has an additional exhaust heat recovery determination unit 106 that determines whether or not simultaneous operation of cooling and hot water supply is performed when there is a cooling load, that is, when the cooling is on and there is no hot water supply request.
  • the hot water remote controller 107 includes a display unit 109 that displays an operating state and an input unit 110 that inputs an instruction of the refrigeration cycle apparatus 100 from a user.
  • the hot water storage amount calculation unit 105 obtains the hot water storage amount as follows, for example. First, the hot water storage tank 19 is divided in the height direction for each installation position of the temperature sensors 211a to 211d provided in the height direction of the hot water storage tank 19. And based on the measurement data of the temperature sensor 211 of the upper end and lower end in each division area measured by the measurement part 102, the hot water storage amount calculation part 105 calculates an average temperature for every division area. The uppermost section uses the temperature sensor 211 at the lower end, and the lowermost section uses the temperature of the temperature sensor 211 at the upper end as the average temperature.
  • the amount of hot water in each divided section and the specific heat of water are multiplied by the value obtained by subtracting the city water temperature from the average temperature, and the amount of stored hot water in each divided section is estimated.
  • the estimated amount of hot water stored in each divided section is integrated, and the integrated amount of heat is used as the amount of stored hot water in the hot water storage tank 19.
  • the amount of hot water in each divided section is obtained by dividing the internal volume of the hot water storage tank 19 by the number of installed temperature sensors 211 + 1.
  • the city water is fixed at 15 ° C., for example.
  • the hot water storage amount is 100%
  • the hot water storage amount obtained from the measured temperature sensors 211a to 211d is the hot water storage amount when the hot water storage amount is 100%. Find the amount.
  • the refrigeration cycle apparatus 100 includes a heat source unit 301, a branch unit 302, indoor units 303a and 303b, a hot water supply unit according to the air conditioning loads required for the indoor units 303a and 303b and the hot water supply request required for the hot water supply unit 304.
  • Each device mounted in 304 is controlled to execute a cooling operation mode A, a heating operation mode B, a hot water supply operation mode C, and a cooling hot water supply simultaneous operation mode D.
  • movement in each operation mode is demonstrated.
  • the cooling operation mode A First, the cooling operation mode A will be described.
  • the four-way valve 3 connects the discharge side of the compressor 1 to the gas side of the heat source side heat exchanger 4 and connects the suction side to the water heat exchanger 16.
  • the four-way valve 13 connects the suction side of the compressor 1 to the gas side of the indoor heat exchangers 10a and 10b.
  • the electromagnetic valve 22 is closed.
  • the heat source decompression mechanism 6 has a maximum opening (fully opened), and the hot water supply decompression mechanism 21 has a minimum opening (fully closed).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 4 via the oil separator 2 and the four-way valve 3, and exchanges heat with outdoor air to become high-pressure liquid refrigerant. Then, it flows out from the heat source side heat exchanger 4 and flows through the heat source decompression mechanism 6. Thereafter, it flows out from the heat source unit 301 and flows into the branch unit 302 via the indoor liquid extension main pipe 7 and is decompressed by the indoor decompression mechanisms 8a and 8b to become a low-pressure two-phase refrigerant and flows out from the branch unit 302.
  • indoor unit 303a, 303b via indoor liquid extension branch piping 9a, 9b, cools indoor air in the indoor side heat exchanger 8, and becomes a low-pressure gas refrigerant.
  • it flows out of the indoor units 303a and 303b flows into the outdoor unit 301 via the indoor gas extension branch pipes 11a and 11b, the branch unit 302, and the indoor gas extension main pipe 12, and passes through the four-way valve 13 to accumulate.
  • the air is sucked into the compressor 1 again.
  • the hot water supply unit 304 since the hot water supply unit 304 is stopped, the refrigerant does not flow from the hot water supply decompression mechanism 21 to the four-way valve 3, and is filled with the gas phase refrigerant.
  • the indoor decompression mechanisms 8a and 8b are controlled in total opening so that the degree of supercooling of the heat source side heat exchanger 4 becomes a predetermined value.
  • the degree of supercooling of the heat source side heat exchanger 4 is a value obtained by subtracting the temperature of the temperature sensor 205 from the saturated liquid temperature of the pressure detected by the pressure sensor 201.
  • the operating frequency of the compressor 1 is controlled so that the evaporation temperature becomes a predetermined value.
  • the evaporation temperature is a temperature detected by the temperature sensors 206a and 206b.
  • the heat source blower 5 is controlled so that the condensation temperature becomes a predetermined value.
  • the condensation temperature is the saturated gas temperature of the pressure detected by the pressure sensor 201.
  • the heating operation mode B Next, the heating operation mode B will be described.
  • the four-way valve 3 connects the discharge side of the compressor 1 to the gas side of the water heat exchanger 16 and connects the suction side to the gas side of the heat source side heat exchanger 4.
  • the four-way valve 13 connects the discharge side of the compressor 1 to the gas side of the indoor heat exchangers 10a and 10b.
  • the electromagnetic valve 22 is closed. Further, the outdoor decompression mechanism 6 is fixed at a maximum opening degree (fully opened), and the hot water supply decompression mechanism 21 is fixed at an opening degree so that the refrigerant does not stay between the hot water supply gas extension main pipe 15 and the hot water supply liquid extension main pipe 20.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out from the heat source unit 301 via the oil separator 2 and the four-way valve 13, and the indoor gas extension main pipe 12, the branch unit 302, the indoor gas extension branch pipe 11 a, It flows to indoor unit 303a, 303b via 11b. Thereafter, the air flows into the indoor heat exchangers 10a and 10b, heats the indoor air to become a high-pressure liquid refrigerant, and flows out of the indoor heat exchangers 10a and 10b.
  • the opening degree of the indoor decompression mechanisms 8a and 8b is controlled so that the degree of supercooling of the indoor heat exchangers 10a and 10b becomes a predetermined value.
  • the degree of supercooling of the indoor heat exchangers 10 a and 10 b is a value obtained by subtracting the temperature of the temperature sensors 206 a and 206 b from the saturated liquid temperature detected by the pressure sensor 201.
  • the operating frequency of the compressor 1 is controlled so that the condensation temperature becomes a predetermined value.
  • the condensation temperature is the saturated gas temperature of the pressure detected by the pressure sensor 201.
  • the heat source blower 5 is controlled so that the evaporation temperature becomes a predetermined value.
  • the evaporation temperature is a temperature detected by the temperature sensor 205.
  • the hot water supply operation mode C Next, the hot water supply operation mode C will be described.
  • the four-way valve 3 connects the discharge side of the compressor 1 to the gas side of the water heat exchanger 16 and the suction side to the gas side of the heat source side heat exchanger 4.
  • the four-way valve 13 connects the suction side of the compressor 1 to the gas side of the indoor heat exchangers 10a and 10b.
  • the electromagnetic valve 22 is closed. Further, the indoor decompression mechanisms 8a and 8b have a minimum opening (fully closed), and the hot water supply decompression mechanism 21 has a maximum opening (fully open).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out from the heat source unit 301 via the oil separator 2 and the four-way valve 3. After that, it flows into the hot water supply unit 304 via the hot water supply gas extension main pipe 15, flows into the water heat exchanger 16, heats the water supplied by the water pump 17, and becomes high-pressure liquid refrigerant. Then, after flowing out of the water heat exchanger 16 and the hot water supply unit 304, it flows into the heat source unit 301 via the hot water supply liquid extension main pipe 20. Then, it passes through the hot water supply decompression mechanism 21 and is decompressed by the heat source decompression mechanism 6 to become a low-pressure two-phase refrigerant.
  • the refrigerant that has passed through the heat source decompression mechanism 6 then flows into the heat source side heat exchanger 4 to cool outdoor air and become low-pressure gas refrigerant. After flowing out of the outdoor heat exchanger 4, it passes through the accumulator 14 via the four-way valve 3 and is again sucked into the compressor 1. Since the indoor units 303a and 303b are stopped, the refrigerant does not flow from the indoor liquid extension main pipe 7 to the four-way valve 13, and is filled with a gas-phase refrigerant.
  • the opening degree of the heat source decompression mechanism 6 is controlled so that the degree of supercooling of the water heat exchanger 16 becomes a predetermined value.
  • the degree of supercooling of the water heat exchanger 16 is a value obtained by subtracting the detected temperature of the temperature sensor 209 from the saturated liquid temperature of the pressure detected by the pressure sensor 201.
  • the pressure sensor 201 and the temperature sensor 209 function as a degree of supercooling detection for the water heat exchanger 16.
  • the frequency of the compressor 1 is controlled to the maximum frequency.
  • the condensation temperature is the saturated gas temperature of the pressure detected by the pressure sensor 201.
  • the heat source blower 5 is controlled so that the evaporation temperature becomes a predetermined value.
  • the evaporation temperature is a temperature detected by the temperature sensor 205.
  • the refrigeration cycle apparatus 100 can individually perform indoor cooling, heating, and hot water supply. Specifically, the cooling operation (cooling ON / OFF) or heating command (heating ON / OFF) selected by the indoor units 303a and 303b, and the hot water supply command (hot water ON / OFF) in the hot water supply unit 304 are used. Mode A, heating operation mode B, and hot water supply operation mode C can be implemented. Furthermore, the refrigeration cycle apparatus 100 can simultaneously perform the cooling ON of the indoor units 303a and 303b and the hot water ON of the hot water supply unit 304.
  • the cooling hot water supply simultaneous operation mode D [Cooling and hot water simultaneous operation mode (first cooling and hot water simultaneous operation mode) D] Next, the cooling hot water supply simultaneous operation mode D will be described.
  • the four-way valve 3 connects the discharge side of the compressor 1 to the gas side of the water heat exchanger 16 and connects the suction side to the gas side of the heat source side heat exchanger 4.
  • the four-way valve 13 connects the suction side of the compressor 1 to the gas side of the indoor heat exchangers 10a and 10b.
  • the solenoid valve 22 is closed, and the hot water supply pressure reducing mechanism 21 has a maximum opening (fully open).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the oil separator 2 and the four-way valve 3, then flows out of the heat source unit 301, and flows into the hot water supply unit 304 via the hot water supply gas extension main pipe 15.
  • the refrigerant flowing into the hot water supply unit 304 flows into the water heat exchanger 16, heats the water supplied by the water pump 17, becomes a high-pressure liquid refrigerant, and flows out from the water heat exchanger 16. Thereafter, the refrigerant flows out of the hot water supply unit 304, flows into the heat source unit 301 via the hot water supply liquid extension main pipe 20, passes through the hot water supply decompression mechanism 21, and then flows out of the heat source unit 301 to the indoor liquid extension main pipe 7.
  • the refrigerant is distributed to the flowing refrigerant and the refrigerant flowing to the heat source decompression mechanism 6.
  • the refrigerant that has flowed into the indoor liquid extension main pipe 7 flows into the branch unit 302, is decompressed by the indoor decompression mechanisms 8 a and 8 b, becomes a low-pressure two-phase refrigerant, and flows out of the branch unit 302. Thereafter, the refrigerant flows into the indoor units 303a and 303b via the indoor liquid extension branch pipes 9a and 9b, and then flows into the indoor heat exchangers 10a and 10b to cool the indoor air to become a low-pressure gas refrigerant.
  • the refrigerant that has flowed through the indoor heat exchangers 10a and 10b then flows out of the indoor units 303a and 303b, and passes through the indoor gas extension branch pipes 11a and 11b, the branch unit 302, and the indoor gas extension main pipe 12, and thereby the four-way valve 13. , And merges with the refrigerant that has flowed through the heat source decompression mechanism 6.
  • the refrigerant flowing through the heat source decompression mechanism 6 is decompressed to become a low-pressure two-phase refrigerant, and then flows into the heat source-side heat exchanger 4 to cool outdoor air to become a low-pressure gas refrigerant. Thereafter, the refrigerant merges with the refrigerant flowing into the indoor liquid extension main pipe 7 via the four-way valve 3.
  • the merged refrigerant passes through the accumulator 14 and is sucked into the compressor 1 again.
  • cooling and hot water simultaneous operation mode D there is a cooling load and a hot water supply request at the same time. Therefore, whether the control method of each device is cooling priority to control the operation according to the cooling load or hot water priority to operate according to the hot water supply request. Distinguished by. That is, as the control mode of the cooling and hot water simultaneous operation mode D, there are cooling priority (cooling priority mode) and hot water priority (hot water priority mode).
  • the cooling priority is the operation according to the cooling load, and since the exhaust heat is zero, the energy saving performance is higher than the hot water priority.
  • Prioritizing hot water supply is an operation that meets the demand for hot water supply, and since hot water supply is completed in a short time, the hot water burnout resistance is high.
  • the basics are to prioritize cooling and aim for high energy-saving performance.
  • the hot water supply operation is continuously performed for a predetermined time or more, that is, when the operation time of the hot water supply operation mode C and the cooling and hot water simultaneous operation mode D is continuously performed for a predetermined time or more, for example, 2 hours or more, priority is given to hot water supply Drive at.
  • FIG. 3 is a diagram showing a selection state of cooling priority and hot water supply priority with respect to the load balance between cooling and hot water supply.
  • the operation with cooling priority is selected.
  • the amount of stored hot water is small and the amount of hot water supply is greater than the amount of cooling heat
  • the operation with priority to hot water supply is selected. That is, the cooling priority and hot water supply priority of the control mode are selected according to the relationship between the cooling load and the hot water supply load.
  • FIG. 4 is a diagram showing a control method of each device with priority on cooling and hot water supply. Next, a method for controlling each device in each state will be described.
  • the indoor decompression mechanisms 8a and 8b are controlled so that the degree of supercooling of the water heat exchanger 16 becomes a predetermined value.
  • the compressor 1 is controlled by the operation control unit 103 so that the evaporation temperature becomes the evaporation temperature target value.
  • the evaporation temperature is a temperature detected by temperature sensors 206a and 206b (acting as an evaporation temperature detecting means). Further, the evaporation temperature target value varies depending on the indoor maximum temperature difference.
  • the indoor maximum temperature difference is the maximum value of the temperature difference between the indoor units 303a and 303b.
  • the temperature difference between the indoor units 303a and 303b is a value obtained by subtracting the indoor set temperature from the temperature detected by the temperature sensors 207a and 207b (acting as an indoor temperature measuring means). As the indoor maximum temperature difference is larger, it is determined that the cooling capacity is larger, and the evaporation temperature target value is lowered.
  • the heat source decompression mechanism 6 is controlled by the operation control unit 103 so as to have a minimum opening (fully closed). This is because the compressor 1 is operated in accordance with the cooling load, and it is not necessary to exhaust the heat by flowing the refrigerant through the heat source side heat exchanger 4.
  • the heat source blower 5 controls the number of rotations by the operation control unit 103 so that the temperature of the heat sink becomes a target value.
  • the heat sink temperature is a temperature detected by a temperature sensor 212 (acting as a heat sink temperature detecting means).
  • the target value of the heat sink temperature is set to the maximum temperature at which there is no abnormality in the electronic board for driving the compressor. By doing so, the air volume of the heat source blower 5 can be reduced to a necessary minimum, and the operation efficiency is increased as the electric input of the motor is reduced.
  • the indoor decompression mechanisms 8a and 8b are controlled in the same manner as cooling priority.
  • the compressor 1 is controlled by the operation control unit 103 so as to have a fixed frequency, for example, a maximum frequency or 75% of the maximum frequency. Since the compressor 1 is controlled to a fixed frequency regardless of the cooling load, there is a possibility that the cooling capacity will be excessive and the room will be overcooled and comfort may be impaired. Therefore, it is necessary to divert the refrigerant flowing through the indoor heat exchangers 10a and 10b and the refrigerant flowing through the heat source side heat exchanger 4 by adjusting the opening of the heat source decompression mechanism 6. That is, it is necessary to exhaust the excess cooling capacity in the heat source side heat exchanger 4.
  • the opening degree of the heat source decompression mechanism 6 is controlled by the operation control unit 103 so that the evaporation temperature becomes the evaporation temperature target value. This is because the compressor 1 is operated in accordance with the hot water supply request, so that the operation of exhausting the excess cooling heat by flowing the refrigerant through the heat source side heat exchanger 4 is aimed at.
  • the indoor heat exchangers 10a and 10b ensure a predetermined cooling capacity.
  • the evaporating temperature target value varies depending on the indoor maximum differential temperature, and it is determined that the cooling capacity is larger as the indoor maximum differential temperature is larger, and the evaporating temperature target value is decreased.
  • the heat source decompression mechanism 6 is opened, the ratio of the cooling capacity to be processed by the heat source side heat exchanger 4 increases, so that the evaporation temperature rises, and when it is throttled, the evaporation temperature falls.
  • the cooling capacity supplied to the indoor heat exchangers 10a and 10b can be adjusted. Therefore, even if the operating frequency of the compressor 1 is increased in order to avoid running out of hot water, it is possible to prevent the room from being overcooled and not to impair indoor comfort.
  • the rotation speed of the heat source blower 5 is controlled by the operation control unit 103 such that the heat sink temperature becomes a target value. Moreover, when the superheat degree of the heat source side heat exchanger 4 is not more than a predetermined value, for example, 2 ° C. or less, the rotation speed of the heat source blower 5 is increased to increase the air volume so that the superheat degree is not less than the predetermined value.
  • the degree of superheat of the heat source side heat exchanger 4 is a value obtained by subtracting the temperature detected by the temperature sensor 205 from the temperature detected by the temperature sensor 203 (the temperature sensor 203 and the temperature sensor 205 act as a heat source side superheat degree detecting means).
  • the degree of superheat of the heat source side heat exchanger 4 is not secured above a predetermined value, the ratio of the refrigerant two-phase part with high heat transfer performance is large, and the excess cooling capacity is not exhausted efficiently. is there. Therefore, by increasing the air volume of the heat source blower 5, the refrigerant is heated until it becomes a gas phase, so that a necessary amount of exhaust heat can be secured.
  • the degree of superheat of the heat source side heat exchanger 4 is set to a predetermined value or more by reducing the opening degree of the heat source decompression mechanism 6 and decreasing the refrigerant flow rate of the heat source side heat exchanger 4.
  • the heat source is set so that the degree of superheat of the heat source side heat exchanger 4 becomes a predetermined value.
  • the opening degree of the decompression mechanism 6 is controlled by the operation control unit 103.
  • the refrigerant that has flowed through the indoor heat exchangers 10a and 10b and the refrigerant that has flowed through the heat source side heat exchanger 4 join together before entering the accumulator.
  • the degree of superheat is 0 at the accumulator inlet in a steady state. Therefore, if the heat source side heat exchanger 4 has a degree of superheat, the indoor heat exchangers 10a and 10b have no degree of superheat, and conversely, if the indoor heat exchangers 10a and 10b have a degree of superheat, It can be said that the exchanger 4 has no degree of superheat.
  • the presence or absence of the degree of superheat of the heat source side heat exchanger 4 can be determined without the temperature sensor 203. Specifically, when the degree of superheat in all the indoor heat exchangers 10a and 10b is equal to or higher than a predetermined value, for example, 2 ° C. or higher, it can be said that the degree of superheat in the heat source side heat exchanger 4 is 0.
  • the operation control unit 103 controls the rotational speed of the heat source blower 5 so that the superheat degree is 2 ° C. or less even in any one of the heat exchangers 10a and 10b.
  • the degree of superheat of the indoor heat exchangers 10a and 10b is a value obtained by subtracting the detected temperature of the temperature sensors 206a and 206b from the detected temperature of the temperature sensors 208a and 208b. Therefore, the temperature sensors 208a, 208b, 206a, 206b function as indoor superheat degree detection means. In addition, when the rotation speed of the heat source blower 5 is increased, the degree of superheat of the indoor heat exchangers 10a and 10b is decreased, and when the rotation number of the heat source blower 5 is decreased, the degree of superheat of the indoor heat exchangers 10a and 10b is increased.
  • the degree of superheat of the heat source side heat exchanger 4 is set to a predetermined value or more.
  • the degree of superheat of the heat source side heat exchanger 4 becomes a predetermined value.
  • the opening degree of the heat source decompression mechanism 6 is controlled by the operation control unit 103.
  • FIG. 5 is a schematic diagram showing changes in the operating state with respect to the opening degree of the heat source decompression mechanism 6 when hot water supply is prioritized.
  • the refrigeration cycle apparatus 100 of about 6 HP is taken as an example, and for simplification, the specifications of the indoor units 303a and 303b are the same and the cooling loads are also the same. From FIG. 5, the cooling capacity decreases and the amount of exhaust heat increases as the opening degree of the heat source decompression mechanism 6 increases. Moreover, since the ratio of the calorie
  • the indoor decompression mechanisms 8a and 8b are at the lower limit opening degree, and the throttle cannot be tightened, so that the degree of supercooling of the water heat exchanger 16 is reduced. If the degree of supercooling of the water heat exchanger 16 decreases, the operating efficiency decreases, which is not a desirable state. Further, if the indoor pressure reducing mechanisms 8a and 8b cannot be fully throttled at the lower limit opening, the refrigerant flow rate in the indoor heat exchangers 10a and 10b cannot be reduced even if the opening degree of the heat source pressure reducing mechanism 6 is increased. Since distribution becomes impossible, the cooling capacity hardly changes.
  • the opening degree of the heat source decompression mechanism 6 is not increased so much that the degree of supercooling of the water heat exchanger 16 cannot be maintained at the target value.
  • the operation control unit 103 causes the heat source decompression mechanism 6 to set the subcooling degree of the water heat exchanger 16 to a target value. Control. By doing in this way, it becomes possible to carry out exhaust heat amount adjustment, without impairing operation efficiency excessively.
  • the heat source decompression mechanism 6 Since the heat source decompression mechanism 6 has the lowest opening degree in the air conditioning priority, when the control mode is switched from the air conditioning priority to the hot water supply priority, the appropriate initial opening degree is maintained so as not to impair the stability of the refrigeration cycle. Setting is required.
  • the amount of exhaust heat to be processed by the heat source side heat exchanger 4 is predicted from the total capacity of the indoor units 303a and 303b that are turned on and the capacity of the hot water supply unit 304 that is turned on. It is determined using the ratio between the amount of exhaust heat processed by the heat exchanger 4 and the total capacity of the indoor units 303a and 303b that are turned on and the total opening of the indoor decompression mechanisms 8a and 8b.
  • the capacity of the indoor units 303a and 303b that are turned on is 3.5 kW and 2.5 kW
  • the capacity of the hot water supply unit 304 is 18 kW
  • the total opening at this time is 160 pulses (decompression mechanism 8a , 8b one opening range of 32 pulses to 480 pulses)
  • the total Cv value at that time is 0.034
  • the opening degree of the heat source decompression mechanism 6 can be obtained from the Cv value of this calculation result.
  • the operation frequency of the compressor 1 is fixedly controlled.
  • the value of the fixed control is set to a value slightly lower than the maximum frequency, such as 75% of the maximum frequency, for the purpose of increasing the driving efficiency.
  • the control mode is air conditioning priority
  • the hot water supply ON time has passed for a predetermined time and the control mode is switched to hot water priority
  • the current compressor frequency is higher than the compressor frequency set with hot water priority
  • air conditioning priority Continue.
  • the hot water supply priority is given to the control mode when a predetermined time elapses and the current compressor frequency becomes lower than the compressor frequency set in the hot water priority.
  • the control mode is hot water supply priority
  • the heat source pressure reducing mechanism 6 is at the lower limit opening degree, and the evaporation frequency is equal to or higher than the evaporation temperature target value even though there is almost no exhaust heat, the operating frequency of the compressor 1 Is increased so that the evaporation temperature becomes the evaporation temperature target value.
  • the control mode is set according to the magnitude of the load. Since switching and control of the compressor frequency are performed, it is possible to prevent the room from becoming uncooled.
  • the lower limit of the opening degree of the heat source decompression mechanism 6 here refers to the minimum value of the opening degree specified by the normal operation control.
  • the cooling thermo when the indoor air temperature is lower than the set temperature by a predetermined value or more, for example, 1.5 ° C. or more, the cooling thermo is turned off and the indoor decompression mechanisms 8a and 8b are set to the lowest.
  • the indoor decompression mechanisms 8a and 8b are opened, and the refrigerant is sent to the indoor heat exchangers 10a and 10b.
  • the temperature at which the cooling thermo-OFF is set lower by 1 ° C. or more than the cooling operation mode A, and the temperature at which the cooling thermo-ON is set at 1 ° C.
  • Control is performed by the operation control unit 103 of the control device 101 so as to increase the value.
  • the cooling hot water supply simultaneous operation mode D when the indoor air temperature becomes lower than the set temperature by 2.5 ° C. or more, the cooling thermo is turned off, and then the indoor air temperature becomes higher than the set temperature by 1.5 ° C. or more. Is the cooling thermo-ON.
  • the selection of air conditioning priority and hot water supply priority which is the control mode of the simultaneous cooling and hot water supply operation mode D, may be used as an indicator of only the time of 2 hours, but the operation control unit 103 changes according to the amount of hot water stored. It is good as a method.
  • FIG. 6 is a diagram showing a case where air conditioning priority and hot water supply priority are selected according to the amount of stored hot water. Since the amount of hot water is large between 100% and 50% of the hot water storage, the control mode is operated with priority on air conditioning because there is little risk of running out of hot water. On the other hand, since the amount of hot water is small when the hot water storage amount is between 50% and 0%, the hot water supply priority is given to the control mode because there is a risk of running out of hot water. Since the amount of hot water is used as an indicator, it is possible to accurately evaluate the danger of running out of hot water, and to properly understand areas where there is no possibility of hot water running out and to prioritize air conditioning to increase operating efficiency. Can save energy.
  • the compressor In hot water supply priority, the compressor is operated at a fixed frequency. As the operation frequency fixed at this time is higher, the amount of hot water is boiled in a shorter time, but the operation efficiency is lowered. In order to increase the operating efficiency as much as possible even with priority on hot water supply, it is preferable to operate with the operating frequency as low as possible.
  • the amount of hot water stored can be used as an index for the judgment. When the amount of hot water stored is between 50% and 25%, it is determined that there is some margin before hot water runs out, and the compressor capacity is fixed at 75% for operation. If the amount of hot water stored is between 25% and 0%, there is a high risk of hot water running, and the compressor is operated at a capacity of 100%.
  • the thresholds for air conditioning priority and hot water supply priority depending on the amount of hot water storage shown in FIG. 6 may be freely variable by the user.
  • the hot water storage amount with priority to air conditioning may be set to 60% to 100%, and the hot water storage amount with priority to hot water supply may be set to 0% to 60%.
  • the hot water storage priority for air conditioning should be 0% to 100%.
  • the hot water storage priority for hot water supply should be 0% to 100%. May be.
  • the compressor operating capacity (related amount of hot water supply priority operation switching) at the time of hot water supply priority may be set by the user using the hot water remote controller 107. For example, if the hot water storage priority for hot water supply is 0% to 60%, O% to 40% is operated with a compressor capacity of 90% and 40% to 60% with a compressor capacity of 70%. May be. By doing in this way, according to a user's use state of hot water, for example, the hot water supply in a state with high operation efficiency can be realized, so that the energy saving performance is further improved.
  • the index of the threshold for hot water supply priority and air conditioning priority may be rapid hot water supply, normal hot water supply, or mild hot water supply (priority threshold switching relation amount).
  • the hot water storage amount is, for example, 0 to 75% for hot water supply for rapid hot water, 75% to 100% for air conditioning, 0 to 50% for hot water for normal hot water, 50% to 100% for air conditioning, and 0 for hot water for mild hot water. -25%, air conditioning priority 25% -100%.
  • the index of the compressor capacity at the time of hot water supply priority may be large capacity, normal, or energy saving (related quantity of hot water supply priority operation switching).
  • the compressor capacity may be 100% for a large capacity
  • the compressor capacity 60% for energy saving may be 100% for a large capacity
  • the hot water supply priority threshold for selecting and switching the compressor capacity may be set in the middle of the hot water supply priority range, and the compressor capacity may be designated for each, or the same compressor capacity in the entire hot water supply priority range. May be specified. Note that the priority threshold switching relationship amount and the hot water supply priority operation switching relationship amount are displayed on the display unit 109 of the hot water supply remote controller 107 so that the user can input them on the input unit 110.
  • both the cooling operation mode A and the second cooling hot water supply simultaneous operation mode E can be performed.
  • the cooling and hot water simultaneous operation mode D and the second cooling and hot water simultaneous operation mode E have the same device control method and the same refrigerant flow direction.
  • the control mode has air conditioning priority and hot water supply priority
  • the second cooling and hot water simultaneous operation mode E only the control mode is air conditioning priority.
  • the air conditioning priority control method is the same for the cooling and hot water supply simultaneous operation mode D and the second cooling and hot water supply simultaneous operation mode E.
  • the second cooling and hot water supply simultaneous operation mode E operation using two simultaneous cooling and hot water supply operation modes becomes possible.
  • the amount of stored hot water is not 100%, for example, about 70%
  • a cooling load is generated.
  • the air conditioning remote controllers 108a and 108b are used to turn on the cooling, the second cooling and hot water supply simultaneous operation mode E is performed.
  • the control mode is given priority to air conditioning.
  • the cooling is turned on in a state where there is a hot water supply request, cooling and hot water supply are simultaneously performed as the cooling hot water supply simultaneous operation mode D, and the hot water supply priority is given to the control mode.
  • hot water is supplied with high operating efficiency.
  • priority is given to hot water supply. Since the operation is performed with priority on the proof stress, energy saving can be realized without worrying about running out of hot water.
  • a mode in which the compressor capacity at the time of hot water supply priority is changed according to the amount of stored hot water may also be added in this case. By doing so, operation efficiency can be increased even when hot water supply is prioritized, and energy saving is achieved.
  • FIG. 7 is a diagram showing a change in operation efficiency with respect to the condensation temperature in the cooling operation mode A and the second cooling hot water supply simultaneous operation mode E (the control mode is air conditioning priority). Since the second cooling hot water supply simultaneous operation mode E recovers the hot water supply waste heat, the operation efficiency is basically high. However, when the condensation temperature increases to 50 ° C.
  • the condensation temperature 25 ° C. in the cooling operation mode A Operation efficiency is lower than in the case of 30 ° C.
  • the condensation temperature is 25 ° C. and 30 ° C. because the outside air temperature is low or the cooling load is small.
  • the cooling operation mode A becomes higher in operating efficiency than the second cooling hot water supply simultaneous operation mode E.
  • FIG. 8 is a diagram illustrating a Mollier diagram in the cooling operation mode A and the second cooling hot water supply simultaneous operation mode E.
  • the cooling load Qe [kW] the compressor input in the cooling operation mode A is W1 [kW]
  • the compressor input in the second cooling hot water supply simultaneous operation mode E is W2 [kW]
  • the compressor input is proportional to the compression ratio (high pressure / low pressure)
  • the high pressure in the cooling operation mode A is Pd1 [MPa]
  • the high pressure in the second cooling hot water supply simultaneous operation mode E is Pd2 [MPa]
  • the cooling operation is performed.
  • mode A and the second cooling hot water supply simultaneous operation mode E both the indoor heat exchangers 10a and 10b serve as evaporators, and the room temperature does not change. Therefore, both the low pressure and the Ps [MPa] do not change before and after switching. Then, the following equation can be derived.
  • the right side When the right side is calculated with respect to COPc, when COPc is 5 or more, the right side is 2.5 or less.
  • the operating efficiency of the cooling operation mode A is higher than the operation efficiency of the second cooling hot water supply simultaneous operation mode E when the outside air temperature is low or the cooling load is small, and it is assumed that the COPc is almost 5 or more.
  • a switching determination can be made based on whether the compression ratio is 2.5 times or more. Further, since the low pressure does not change before and after the switching, it is possible to select the operation and determine the switching only by the change of the high pressures Pd1 and Pd2. That is, it is possible to determine whether to change the operation mode based on the ratio of the high pressure in the second cooling hot water supply simultaneous operation mode E to the high pressure in the cooling operation mode A.
  • FIG. 9 is a flowchart for selecting and switching the operation mode when there is a cooling load and there is no hot water supply request. 9 is performed by the additional exhaust heat recovery determination unit 106 of the control device 101. The switching of the operation mode when there is no hot water supply request will be described with reference to FIG. First, the current operating state is determined in step S11. In the case of the cooling operation mode A, the high pressure P1 is acquired in step S12. The high pressure P ⁇ b> 1 is the high pressure in the cooling operation mode A that is currently being operated, and is the pressure detected by the pressure sensor 201. Next, the high pressure P2 is predicted in step S13. The high pressure P2 in the second cooling hot water supply simultaneous operation mode E is predicted as follows.
  • the heating method of the hot water storage tank 19 is circulation heating, and the heat medium flowing into the water heat exchanger 16 circulates in the water side circuit 18 while increasing by a predetermined temperature. That is, the outlet water temperature of the water heat exchanger 16 is the inlet water temperature + predetermined temperature, for example, the inlet water temperature + 5 ° C.
  • the condensation temperature of the high pressure Pd2 is normally approximately equal to the heat medium temperature at the outlet of the water heat exchanger, so the condensation temperature of the high pressure Pd2 is set to the inlet water temperature of the water heat exchanger 16 +5. It may be °C.
  • the inlet water temperature of the water heat exchanger 16 is, for example, the lowest temperature of the temperature sensor that detects the water temperature of the hot water storage tank 19, that is, the temperature detected by the temperature sensor 211d in the first embodiment. If the temperature sensors 211a to 211d are not provided, a general water temperature value, for example, 15 ° C. may be fixed. Further, a temperature sensor may be provided between the water pump 17 and the water heat exchanger 16 to obtain the detected temperature.
  • the high pressure P2 is calculated from the determined condensation temperature.
  • the additional exhaust heat recovery determination unit 106 includes second cooling hot water supply high pressure prediction means for calculating the high pressure P2 in this way.
  • step S14 it is determined whether Pd2 / Pd1 is equal to or lower than the high pressure determination threshold value M [-]. If M is equal to or lower than M and the hot water storage amount is less than the hot water storage amount determination threshold N, the second cooling hot water supply simultaneous operation is performed in step S15. Switch to mode E. M is set to 2.5 from the result of the previous examination. N is a threshold value that allows the second cooling hot water supply simultaneous operation mode E when there is no hot water supply request, and is set to 70, for example. When Pd2 / Pd1 is equal to or greater than M or the amount of stored hot water is greater than N, the operation mode is set to the cooling operation mode A as it is.
  • step S11 If it is determined in step S11 that the current operation state is the second cooling hot water supply simultaneous operation mode E, the process proceeds to step S16. In addition, after switching to the 2nd cooling hot-water supply simultaneous operation mode E by step S15, it will be in this state if judgment of step S11 is carried out.
  • step S16 the high pressure P2 is acquired.
  • the high pressure P ⁇ b> 2 is the high pressure in the second cooling hot water supply simultaneous operation mode E that is currently in operation, and is the pressure detected by the pressure sensor 201.
  • the high pressure P1 is predicted in step S17.
  • the high pressure P1 in the case of the cooling operation mode A is predicted as follows. That is, the condensation temperature in the cooling operation mode A is assumed to be the outside air temperature + the predetermined temperature.
  • the case of switching to the second cooling hot water supply simultaneous operation mode E in the process of step S12 to step S15 is considered to be mainly when the cooling load is low, and the predetermined temperature in that case is about 5 ° C. That is, the pressure when the condensation temperature is the outside air temperature + 5 ° C. is set as the high pressure P1.
  • the outside air temperature is a temperature detected by the temperature sensor 204. Note that when the outside air temperature is low, the condensation temperature becomes abnormally low. For example, when the outside air temperature + 5 ° C. is 25 ° C. or lower, the temperature is fixed at 25 ° C.
  • the high pressure P1 is calculated from the determined condensation temperature.
  • the additional exhaust heat recovery determination unit 106 includes a cooling high pressure prediction unit that calculates the high pressure P1 in this way.
  • step S18 it is determined whether Pd2 / Pd1 is equal to or higher than the high pressure determination threshold value M. If it is equal to or higher than M, the operation mode is switched to cooling operation mode A in step S19. The cooling and hot water simultaneous operation mode E is maintained. Further, when the hot water storage amount becomes 100, the hot water cannot be stored any more, so the operation mode is switched to the cooling operation mode A.
  • the flowchart of FIG. 9 is executed at predetermined time intervals, for example, every 5 minutes.
  • the high-pressure determination threshold value M is “2.5”, but is not limited thereto, and may be “2” or “3”.
  • the operation state of the cooling operation mode A before switching may be used to set the predicted value of the high pressure P1 in step S17. Specifically, if “YES” is determined in the step S14, the current predetermined temperature is stored as a temperature difference between the condensation temperature and the outside air temperature, and the predetermined temperature is applied to the predetermined temperature used for the calculation in the step S17.
  • the condensation temperature is the saturation temperature of the pressure detected by the high pressure sensor 201, and the outside air temperature is the temperature detected by the temperature sensor 204. Moreover, in order to prevent the hunting of the switching of the operation mode, when the operation mode is switched, that is, when Step S15 or Step S19 is performed, the flowchart of FIG. 9 may not be performed for 30 minutes.
  • the basic threshold value of the hot water storage tank 19 to which the flowchart of FIG. 9 is applied may be 70%, and the user may input, for example, 60% or 80% via the hot water remote controller 107.
  • the hot water storage threshold value to be applied hot water can be obtained with high operating efficiency, thus saving energy.
  • excessive boiling of hot water can be prevented by setting the hot water storage amount threshold value small.
  • the method of inputting the hot water storage amount threshold value of the user is not limited to the designation of%, but may be a designation method of more (80%), ordinary (60%), and less (40%) so that the user can easily understand.
  • Embodiment 1 since the heating method of the hot water supply unit 304 is circulation heating, when the flowchart of FIG. 9 is performed, it is predicted that the following operation is performed. There is low-temperature city water at the lower part of the hot water storage tank 19, and the high pressure P2 is determined as a pressure at which the condensing temperature of city water + 5 ° C. is determined in step S13. Even when the load is low, the second cooling hot water supply simultaneous operation mode E is almost certainly switched. Then, after the operation for a while, when the water temperature in the lower part of the tank is raised a plurality of times, the condensation temperature rises. Thereafter, when the outside air temperature is low or the cooling load is low, the cooling operation mode A is selected again in step S18, and the operation is continued by switching in step S19.
  • FIG. 10 shows a refrigerant circuit diagram of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention.
  • the refrigerant circuit configuration of the refrigeration cycle apparatus 200 will be described based on FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the difference from the first embodiment will be mainly described.
  • a hot water supply unit 304 b is connected instead of the hot water supply unit 304.
  • the hot water supply unit 304 b includes the plate water heat exchanger 16, the water side circuit 27, the water pump 17, and the hot water storage tank 19.
  • the water side circuit 27 connects between the water heat exchanger 16 and the hot water storage tank 19 so that the water in the hot water storage tank 19 circulates.
  • the water pump 17 has a function of circulating the water in the hot water storage tank 19 in the water side circuit 27, and is configured to be able to vary the flow rate of water supplied to the water heat exchanger 16.
  • the hot water storage tank 19 is a full-water type, hot water is discharged from the upper part of the tank in response to a load side hot water request, and low-temperature city water is supplied from the lower part of the tank for the decrease in the amount of hot water.
  • the water in the hot water storage tank 19 is fed from the connection point 28 at the bottom of the tank by the water pump 17 and heated by the refrigerant in the water heat exchanger 16 via the water pump 17, and then the temperature is increased. It passes through the point 29 and flows into the hot water storage tank 19. Hot water is boiled in the hot water storage tank 19 by such a process.
  • the hot water storage tank 19 hot water flows out from the upper part of the tank, and low-temperature city water is supplied from the lower part of the tank, so that low-temperature water exists in the lower part of the tank.
  • the hot water storage tank 19 and the water side circuit 27 flow out from a connection point 28 at the lower part of the tank, and water flows into a connection point 29 at the upper part of the tank.
  • the water temperature will drop. Therefore, unlike Embodiment 1, water must be set to the set hot water temperature by one heat exchange in the water heat exchanger 16. This boiling method is called overheating.
  • the flow rate of the water pump 17 is smaller in the second embodiment than in the first embodiment. For example, if the set hot water temperature is 55 ° C. and the water temperature at the lower part of the hot water storage tank 19 is 15 ° C., the water temperature at the inlet of the water heat exchanger 16 is 15 ° C. and the outlet water temperature is 55 ° C. in the water side circuit 27. .
  • the operation mode of the second embodiment includes a cooling operation mode A, a heating operation mode B, a hot water supply operation mode C, a cooling hot water supply simultaneous operation mode D, and a second cooling hot water supply simultaneous operation mode E.
  • the device control method in the operation mode is the same as that in the first embodiment except for the following points.
  • the second embodiment is different from the first embodiment in that the hot water supply unit 304b is heated by overheating, so that the operation method when the flowchart of FIG. 9 is performed is different.
  • the prediction method of the high pressure P2 in the second cooling hot water supply simultaneous operation mode E in step S13 is different. This will be described.
  • FIG. 9 is a flowchart of operation mode selection when there is a cooling load and there is no hot water supply request.
  • FIG. 9 is performed by the additional exhaust heat recovery determination unit 106 of the control device 101.
  • the current operating state is determined in step S11.
  • the high pressure P1 is acquired in step S12.
  • the high pressure P ⁇ b> 1 is the high pressure in the cooling operation mode A that is currently being operated, and is the pressure detected by the pressure sensor 201.
  • the high pressure P2 is predicted in step S13.
  • the high pressure P2 in the second cooling hot water supply simultaneous operation mode E is predicted as follows.
  • the boiling system of the hot water storage tank 19 is one-time overheating, and the water flowing into the water heat exchanger 16 becomes the hot water temperature at the outlet.
  • the water temperature at the outlet of the water heat exchanger 16 is also 55 ° C.
  • the condensation temperature of the high pressure Pd2 is normally substantially equal to the water temperature at the outlet of the water heat exchanger, so the condensation temperature of the high pressure Pd2 may be used as the tapping temperature.
  • the high pressure P2 is calculated from the determined condensation temperature.
  • the additional exhaust heat recovery determination unit 106 includes second cooling hot water supply high pressure prediction means for calculating such a high pressure P2.
  • step S14 it is determined whether Pd2 / Pd1 is equal to or lower than the high pressure determination threshold value M [ ⁇ ]. If M is equal to or lower than M and the hot water storage amount is less than the hot water storage amount determination threshold N, the second cooling hot water supply simultaneous operation mode is determined in step S15. Switch to E.
  • the high-pressure determination threshold M is set to 2.5 from the previous examination result.
  • the hot water storage amount determination threshold value N is a threshold value that permits the second cooling hot water supply simultaneous operation mode E when there is no hot water supply request, and is set to 70, for example.
  • Pd2 / Pd1 is equal to or greater than M or the amount of stored hot water is greater than N, the operation mode is set to the cooling operation mode A as it is.
  • step S11 If it is determined in step S11 that the operation mode is the second cooling hot water supply simultaneous operation mode E, the process proceeds to step S16.
  • step S16 For example, if the flow of FIG. 9 is implemented after switching to the 2nd cooling hot-water supply simultaneous operation mode E in step S15, it will transfer to step S16.
  • the processing from step S16 to step S19 is the same as that in the first embodiment.
  • the processing method in step S13 varies depending on the boiling method, but still, the cooling operation mode A and the second cooling hot water supply are performed by using the high pressure in the current operation state and the high pressure predicted from the outside air temperature or the water temperature. It is possible to appropriately determine which operation efficiency is higher in the simultaneous operation mode E, and to perform operation with higher operation efficiency. Therefore, it becomes possible to cover the cooling heat and the hot water supply heat with high operation efficiency, and energy saving is achieved.
  • the heating method of the hot water supply unit 304b is one-time heating, when the flowchart of FIG. 9 is executed, it is predicted that the following operation is performed.
  • the high pressure P2 is determined as a pressure that has a condensing temperature equal to the tapping temperature. Therefore, when the outside air temperature is low or the cooling load is low, the second operation is performed when the condensing temperature in the cooling operation mode A is low. Do not select the cooling and hot water simultaneous operation mode E. On the other hand, when the outside air temperature is high or the cooling load is high, the second cooling hot water supply simultaneous operation mode E is selected, and the operation is continued until the hot water storage amount becomes 100%.
  • Piping 10a, 10b indoor heat exchanger, 11a, 11b indoor gas extension branch piping, 12 indoor gas extension main piping, 13 four-way valve, 14 accumulator, 15 hot water supply gas extension main piping, 16 water heat exchanger, 17 water pump, 18 water side circuit, 19 hot water storage tank, 20 water / liquid extension main piping, 21 hot water supply decompression mechanism, 22 solenoid valve, 23 capillary tube, 24 connection point, 25 heat transfer coil, 26 connection point, 27 water side circuit, 28 connection point , 29 connection point, 31 heat sink, 100, 200 refrigeration cycle device, 101 control device, 102 measurement unit, 103 operation control unit, 04 communication unit, 105 hot water storage amount calculation unit, 106 additional exhaust heat recovery determination unit, 107 hot water supply remote control, 108a, 108b air conditioning remote control, 109 display unit, 110 input unit, 201 pressure sensor, 202-212 temperature sensor, 301 heat source unit, 302 branch unit, 303a, 303b indoor unit, 304, 304b hot water supply unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

圧縮機1からの冷媒を、冷房負荷を有する室内ユニット303の室内熱交換器10に流す冷房運転モードと、圧縮機1からの冷媒を、給湯要求を有する給湯ユニット304の水熱交換器16に流す給湯運転とを同時に実施する冷房給湯同時運転モードとを有し、冷房給湯同時運転モードの制御モードとして、冷房負荷に応じて圧縮機1の運転周波数を制御する冷房優先と、給湯要求に応じて圧縮機1の運転周波数を制御する給湯優先を有し、運転制御部103は、冷暖給湯同時運転モードの制御モードを、冷房負荷と給湯負荷の関係によって、冷房優先又は給湯優先とする。

Description

冷凍サイクル装置
 本発明は、蒸気圧縮式の冷凍サイクル装置に関し、特に、冷房給湯同時運転により排熱回収運転が可能な冷凍サイクル装置の制御に関するものである。
 従来から、熱源ユニットと室内ユニットを配管接続することによって形成した冷媒回路において、冷房熱と暖房熱を同時に供給することができる冷凍サイクル装置がある(例えば、特許文献1,2参照)。これらのシステムは、冷房熱と暖房熱を同時に供給することによって排熱回収し、効率の高い運転を実現しようとするものである。
特開2007―232265号公報(図1) 特開2008―138954号公報(図1)
特許文献1に記載の冷凍装置ではショーケースなどの冷却熱交換器で吸収した熱量を空調熱交換器の暖房熱として排熱回収ができるシステムとなっている。また、特許文献2における冷凍装置においても、各室内の冷房要求と暖房要求を同時に満たす冷暖フリーの運転を実現できる構成となっており、冷房熱と暖房熱の同時利用により、排熱回収を実現できるシステムとなっている。
 上記文献に記載の冷凍サイクル装置は、冷房負荷と暖房負荷に対応した冷房熱及び暖房熱を出力するシステムである。これに対して、冷房と給湯を同時に実施する冷凍サイクル装置の場合、給湯は空調とは異なり、給湯熱を与えた分だけ積算にて湯量が増加する状態となるため、負荷に対応した熱を出力するという概念がない。そのため、従来の排熱回収の制御をそのまま適用することができない。したがって、冷房と給湯の同時運転において、冷房負荷に合わせた運転方法及び給湯要求に合わせた運転方法のそれぞれの構築が必要である。
また、従来は、冷房と給湯のいずれか一方を主体で運転しても排熱が必要となっていたが、給湯熱は与えた分だけ湯が増加していくため、過剰に給湯熱が発生しても排熱を必要としない。しかし、冷房では負荷にあった熱を出力しないとならないため、冷房熱が過剰の場合は排熱が必要となる。特に、冷房室内機が複数台接続されているマルチ機種の場合、冷房低負荷の状態で給湯に合わせて運転を実施すると、冷房熱が過剰となり、低圧が引いて運転が困難となるケースがある。この状態を防ぐために、冷房と給湯の同時運転に適切な排熱量制御が必要である。このように、冷房と給湯の同時運転では排熱量制御についても考え方が異なる。
また、給湯ではある瞬間において負荷に合わせた熱の出力をしなくてもよく、ユーザーが使う時までに湯が沸き上がっていれば良いので、給湯要求に合わせた運転の切換えタイミングというのはある程度自由に設定できる。ところが、給湯運転への切換えタイミングが早すぎると、トータルで運転効率の低い状態となってしまうし、逆に、遅すぎると、湯切れてしまう可能性がある。ユーザーによっては、冷房負荷に合わせた運転を実施しているだけで、湯が足りるケースもある。このように省エネを達成しつつ、湯切れを回避するためには、制御方法の選択と運転切換えのタイミングが非常に重要であり、そのタイミングはユーザーの湯の使用方法により大きくことなるため、適切な設定が必要である。
 また、給湯に合わせた運転では負荷に合わせて熱を出力するということがないため、給湯熱の出力方法も自由に設定できる。そのため、制御方法としては、湯切れ耐力を確保しつつ、運転効率を高める方法が望ましいが、これまでの冷房と暖房の同時運転では負荷によって、出力される熱量が固定されるため、そのような考え方による制御方法の構築がこれまでなかった。
以上により、冷房室内の快適性を損なわず、湯切れ耐力の高い状態とし、かつ、運転効率を高くするような運転動作を実現するためには、従来の制御方法では不適切であり、冷房と給湯の同時運転に対応した運転方法の構築が必要となる。
 本発明は上記のような課題を解決するためになされたものであり、少なくとも冷房運転と給湯運転の個別運転が可能で、かつ冷房排熱を給湯熱として回収する冷房排熱回収運転が可能な冷凍サイクル装置において、冷房負荷と給湯要求に合わせた機器制御モードを構築し、かつ、冷房負荷と給湯要求の関係に応じて、機器制御の制御モードを決定することで、室内の快適性を損なわず、湯切れ耐力の高い状態を実現し、かつ、運転効率の高い冷凍サイクル装置を得ることを目的とする。
本発明の冷凍サイクル装置は、
運転周波数の制御が可能な圧縮機と、熱源側熱交換器と、熱源側熱交換器に外気を供給する熱源送風機と、熱源減圧機構と、を有する1つ以上の熱源ユニットと、
室内減圧機構を有する分岐ユニットと、
室内の空気を冷却又は加熱する室内熱交換器を有する1つ以上の室内ユニットと、
貯湯タンクと、水ポンプと、前記貯湯タンクの水を加熱する水熱交換器と、前記貯湯タンクと、前記水ポンプと、前記水熱交換器とを配管接続した水側回路を有する1つ以上の給湯ユニットと、
前記圧縮機、前記水熱交換器、前記室内減圧機構、前記室内熱交換器の順に配管接続された冷凍サイクル回路と、
前記水熱交換器と前記室内減圧機構の間から分岐して、前記熱源減圧機構と、前記熱源側熱交換器の順に配管接続し、前記室内熱交換器と前記圧縮機の間に接続する排熱回路と、
各ユニットの動作を制御する運転制御部を有した制御装置を備え、
前記運転制御部は、
前記圧縮機からの冷媒を、冷房負荷を有する前記室内ユニットの前記室内熱交換器に流す冷房運転モードと、前記圧縮機からの冷媒を、給湯要求を有する前記給湯ユニットの前記水熱交換器に流す給湯運転とを同時に実施する冷房給湯同時運転モードとを有し、
前記冷房給湯同時運転モードの制御モードとして、前記冷房負荷に応じて前記圧縮機の運転周波数を制御する冷房優先と、前記給湯要求に応じて前記圧縮機の運転周波数を制御する給湯優先とを有し、
前記運転制御部は、前記冷暖給湯同時運転モードの前記制御モードを、前記冷房負荷と前記給湯負荷の関係によって、前記冷房優先又は前記給湯優先とするものである。
上記冷凍サイクル装置においては、従来に比べて、室内の快適性を損なわず、湯切れ耐力が高く、運転効率の高い冷凍サイクル装置を得ることができる。
実施の形態1における冷凍サイクル装置100の冷媒回路図である。 実施の形態1における冷凍サイクル装置100の制御装置のブロック線図である。 実施の形態1における冷凍サイクル装置100の負荷バランスに対する冷房優先と給湯優先の切換え状態を示した図である。 実施の形態1における冷凍サイクル装置100の冷房優先と給湯優先の場合の各機器の制御方法を示した図である。 実施の形態1における冷凍サイクル装置100の給湯優先での熱源減圧機構6の開度に対する運転状態の変化を示した図である。 実施の形態1における冷凍サイクル装置100の貯湯量による空調優先及び給湯優先の判定方法を示した図である。 実施の形態1における冷凍サイクル装置100の冷房運転モードAと第2冷房給湯同時運転モードEの凝縮温度に対する運転効率の変化を示した図である。 実施の形態1における冷凍サイクル装置100の冷房運転モードAと第2冷房給湯同時運転モードEのモリエル線図を示した図である。 実施の形態1における冷凍サイクル装置100において冷房負荷があって給湯要求がなく、かつ貯湯タンク19の蓄熱量が最大でない場合の運転モード選択のフローチャートである。 実施の形態2における冷凍サイクル装置100の冷媒回路図である。
実施の形態1.
<機器構成>
本発明の実施の形態1の空気調和装置の構成を図面に基づいて説明する。なお、この明細書では、文中の記号に対して単位を示す場合は[ ]の中に示す。なお、無次元(単位なし)の場合は、[-]と表記する。図1は、実施の形態1に係る冷凍サイクル装置100の冷媒回路図である。この冷凍サイクル装置100は一般住宅やオフィスビル等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、室内ユニット303a,303bにて選択された、冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)又は給湯ユニット304に対する給湯指令(給湯ON/OFF)を、個別に処理することができる冷凍サイクル装置である。また、この冷凍サイクル装置は室内ユニット303a,303bの冷房指令と給湯ユニット304の給湯指令を同時に処理することができる。
熱源ユニット301と室内ユニット303a,303bは分岐ユニット302を介して接続されているため、室内ユニット台数が増加しても、熱源ユニット301に接続する配管本数が増えないようになっている。熱源ユニット301と分岐ユニット302とは冷媒配管である室内側液延長主配管7と冷媒配管である室内側ガス延長主配管12とで接続されている。分岐ユニット302と室内ユニット303a,303bとは冷媒配管である室内側液延長枝配管9a,9bと室内側ガス延長枝配管11a,11bとで接続されている。また、熱源ユニット301と給湯ユニット304とは冷媒配管である水側ガス延長主配管15と冷媒配管である水側液延長主配管20とで接続されている。空気調和装置に用いられる冷媒は、特に限定しない。例えば、R410A、R32、HFO-1234yf、炭化水素のような自然冷媒、などを用いることができる。
<熱源ユニット301>
熱源ユニット301は、圧縮機1と、油分離器2と、四方弁3,13と、熱源側熱交換器4と、熱源送風機5と、熱源減圧機構6と、給湯減圧機構21と、アキュムレータ14と、電磁弁22と、キャピラリーチューブ23とで構成されている。圧縮機1は、冷媒を吸入、圧縮して高温高圧の状態にするものであり、例えばインバータにより回転数が制御されるタイプのもので構成される。油分離器2は圧縮機1より流出した油を分離して圧縮機1に戻すために接続されており、分離された油はキャピラリーチューブ23を経由して圧縮機1とアキュムレータ14の間の配管に戻され、圧縮機1へと流れる。熱源側熱交換器4は例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり外気と冷媒とで熱交換を行い、排熱をする。また、熱源送風機5は、熱源側熱交換器4に供給する空気の流量を可変することが可能なファンを備えており、例えば、DCファンモータからなるモータ(図示せず)によって駆動されるプロペラファン等である。
熱源減圧機構6と、給湯減圧機構21は、冷媒の流量を制御するものであり、開度を可変に設定できる。また、熱源減圧機構6と、給湯減圧機構21と、電磁弁22と、四方弁3,13を制御することで、冷媒の流れ方向を設定することができる。アキュムレータ14は運転に過剰な冷媒を貯留する機能、及び運転状態が変化する際に一時的に発生する液冷媒を滞留させることで圧縮機1に大量の液冷媒が流入するのを防ぐ機能を有している。
 また、熱源ユニット301では運転によって、例えば圧縮機周波数が高くなるなどして電流が多くなると、例えば圧縮機駆動用の電子基板が発熱し、該電子基板の温度が上昇する。この温度が高くなりすぎると、電子基板が破損する可能性があるため、通常、電子基板には発生した熱を放熱するための放熱板31がついている。放熱板31は熱源送風機5の風路内に位置しており熱源送風機5からの空気の送風により熱源ユニット301内の電子基板の放熱を行うことができる。
 また、熱源ユニット301には圧力センサ201が圧縮機1吐出側に設けられており、設置場所の冷媒圧力を計測する。また、温度センサ202が圧縮機1吐出側、温度センサ203が熱源側熱交換器4のガス側、温度センサ205が熱源側熱交換器4の液側に設けられ、設置場所の冷媒温度を計測する。また、温度センサ204が空気吸込口に設けられており、設置場所の空気温度を計測する。また、温度センサ212が放熱板31に設けられており、放熱板温度を計測する。
<分岐ユニット302>
分岐ユニット302は、室内減圧機構8a,8bを含んで構成されている。室内減圧機構8a,8bは、冷媒の流量を制御するものであり、開度を可変に設定できる。また、室内減圧機構8a,8bを制御することで、冷媒の流れ方向を設定することができる。
<室内ユニット303a,303b>
 室内ユニット303a,303bは室内側熱交換器10a,10bを含んで構成されている。室内側熱交換器10a,10bは例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり室内空気と冷媒との熱交換を行う。
室内ユニット303a,303bには温度センサ206a,206bが室内側熱交換器10a,10bの液側、温度センサ208a,208bが室内熱交換器10a,10bのガス側に設けられており、設置場所の冷媒温度を検出する。また、温度センサ207a,207bが空気吸込口に設けられており、設置場所の空気温度を計測する。
<給湯ユニット304>
給湯ユニット304は水熱交換器16と、水側回路18と、水ポンプ17と、貯湯タンク19と伝熱コイル25により構成される。水側回路17は水熱交換器16と貯湯タンク19との間を接続しており、熱媒体が中間水として水側回路17を循環する。熱媒体は例えば、水、ナイブライン、エチレングリコールなどである。水熱交換器16は例えばプレート型熱交換器により構成され、熱媒体と冷媒を熱交換させて熱媒体を加熱する。水ポンプ17は水側回路18にて熱媒体を循環させる機能を有しており、水熱交換器16に供給する熱媒体の流量を可変できるもので構成してもよいし一定速のもので構成してもよい。貯湯タンク19は沸きあげられた湯を貯留する機能を有している。貯湯タンク19は満水式であり、負荷側の出湯要求に応じてタンク上部より湯が出水し、出湯時の貯湯タンク19の湯量減少分は低温の市水がタンク下部より給水される。
 水ポンプ17により送水された熱媒体は、水熱交換器16で冷媒により加熱されて温度が上昇し、その後、接続点24を通過して貯湯タンク19内に流入する。熱媒体は貯湯タンク19の水に混合されることはなく、伝熱コイル25にて水と熱交換をして温度が低くなる。その後、接続点26より貯湯タンク19を流出し、水ポンプ17に流れ、再び送水されて水熱交換器16に流入する。このようなプロセスにて貯湯タンク19に湯が沸き上げられる。
 伝熱コイル25は貯湯タンク19の下部に位置しており、接続点24と接続点26は貯湯タンク19の下部に位置している。タンク上部より湯が出水し、低温の市水がタンク下部より給水されるため、タンク下部には低温の水が存在している。実施の形態1では伝熱コイル25にて水を加熱しても水温が低ければ一度の熱交喚にて貯湯タンク19の水を高温の水にすることができない。運転としては貯湯タンク19の低温の水を徐々に昇温させる動作となり、伝熱コイル25にて複数回の熱交換がなされることにより貯湯タンク19の水が上昇して湯ができる。この沸き上げ方式を循環加温という。循環加温では伝熱コイル25にて水を例えば5℃ずつ昇温させ、貯湯タンク19のタンク水温を上昇させる。そのため、伝熱コイル25の熱媒体も5℃ずつ昇温し、結果、水熱交換器16の入口温度は25℃、30℃と増加していき、それにつれて出口温度も30℃、35℃と増加する。
 また、給湯ユニット304には、温度センサ209が水熱交換器12の冷媒側回路の液側に設置されており、設置場所の冷媒温度を検出する。また、温度センサ210が水側回路17の水熱交換器16の下流に、温度センサ211a~211dが貯湯タンク19のタンク壁面に設置されており、設置場所の水温を検出する。温度センサ211a~211dは貯湯タンク19の上部から下部に向かって、温度センサ211a、温度センサ211b、温度センサ211b、温度センサ211dの順に設置されている。
<制御装置101>
 熱源ユニット301内には、例えば、マイクロコンピュータにより構成された制御装置101が設けられている。図2は、本発明の実施の形態1に係る制御装置101の構成を示すブロック図である。各種温度センサ、圧力センサによって検知された各諸量は、測定部102に入力され、入力された情報に基づき運転制御部103にて、圧縮機1と、電磁弁22と、四方弁3,13と、熱源送風機5と、熱源減圧機構6と、室内減圧機構8a,8bと、水ポンプ17などを制御するようになっている。また、電話回線、LAN回線、無線などの通信手段からの通信データ情報の入力、及び外部に情報を出力することができる通信部104も有している。通信部104では給湯リモコン107より出力された給湯指令(給湯ON/給湯OFF)、設定出湯温度などを受信し制御装置101に入力する。また、空調リモコン108a,108bより出力された冷房指令(冷房ON/OFF)、または暖房指令(暖房ON/OFF)を受信し制御装置101に入力する。なお、給湯要求は給湯リモコン107からの入力の他に、貯湯タンク19の貯湯量が所定値以下、例えば、貯湯量が50%以下となった場合に自動で制御装置101に入力される仕様となっている。制御装置101には、さらに、貯湯タンク19の貯湯量を演算する貯湯量演算部105を有している。また、冷房負荷があるつまり冷房ONの状態で、かつ給湯要求がない場合に冷房と給湯の同時運転を実施するか否かを判定する追加排熱回収判定部106を有する。給湯リモコン107は、運転状態を表示する表示部109と、ユーザーから冷凍サイクル装置100の指示を入力する入力部110を有している。
貯湯量演算部105は貯湯量を、たとえば次のようにして求める。まず、貯湯タンク19の高さ方向に設けられている温度センサ211a~211dの設置位置毎に貯湯タンク19を高さ方向に分割する。そして計測部102にて計測した各分割区間における上端および下端の温度センサ211の計測データに基づいて、貯湯量演算部105は分割区間毎に平均温度を算出する。なお、最上部区間は下端の温度センサ211を、最下部区間は上端の温度センサ211の温度を平均温度とする。そして、各分割区間での湯量および水の比熱を平均温度から市水温度を引いた値に掛け合わせ、各分割区間の貯湯熱量を推算する。推算した各分割区間の貯湯熱量を積算し、積算した熱量を貯湯タンク19の貯湯熱量とする。ここで、各分割区間の湯量は貯湯タンク19の内容積を温度センサ211の設置数+1で割ることで求まる。また、市水は例えば15℃固定とする。温度センサ211a~dの計測値全てが出湯温度である場合を貯湯量100%とし、計測値の温度センサ211a~211dから求めた貯湯熱量を貯湯量100%の時の貯湯熱量でることで、貯湯量を求める。
<運転モード>
冷凍サイクル装置100は、室内ユニット303a, 303bに要求されるそれぞれの空調負荷、及び給湯ユニット304に要求される給湯要求、に応じて熱源ユニット301、分岐ユニット302、室内ユニット303a,303b、給湯ユニット304に搭載されている各機器の制御を行い、冷房運転モードA、暖房運転モードB、給湯運転モードC、冷房給湯同時運転モードDを実行する。以下に、各運転モードにおける運転動作について説明する。
 [冷房運転モードA]
まず、冷房運転モードAについて説明する。冷房運転モードAでは四方弁3は圧縮機1の吐出側を熱源側熱交換器4のガス側と接続し、吸入側を水熱交換器16と接続する。また、四方弁13は圧縮機1の吸入側を室内側熱交換器10a,10bのガス側と接続する。また、電磁弁22は閉路となっている。また、熱源減圧機構6は最大開度(全開)、給湯減圧機構21は最低開度(全閉)となっている。
 圧縮機1から吐出した高温・高圧のガス冷媒は油分離器2及び四方弁3を経由して、熱源側熱交換器4に流入し、室外空気と熱交換を行なって高圧液冷媒になる。その後、熱源側熱交換器4から流出し、熱源減圧機構6を流れる。その後、熱源ユニット301から流出して室内液延長主配管7を経由して分岐ユニット302に流入し、室内減圧機構8a、8bにて減圧され低圧の二相冷媒となり分岐ユニット302より流出する。その後、室内液延長枝配管9a,9bを経由して室内ユニット303a,303bに流入し、室内側熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、室内ユニット303a,303bを流出し、室内ガス延長枝配管11a,11b、分岐ユニット302、室内ガス延長主配管12を経由して、室外ユニット301に流入し、四方弁13を通過してアキュムレータ14を流れた後に再び圧縮機1に吸入される。なお、給湯ユニット304は停止しているため、給湯減圧機構21から四方弁3までの間は冷媒が流れておらず、気相の冷媒で満たされる。
なお、室内減圧機構8a,8bは熱源側熱交換器4の過冷却度が所定値となるようにトータルで開度が制御されている。熱源側熱交換器4の過冷却度は圧力センサ201により検出される圧力の飽和液温度から温度センサ205の温度を差し引いた値である。また、圧縮機1の運転周波数は蒸発温度が所定値となるように制御されている。蒸発温度は温度センサ206a,206bの検出温度である。また、熱源送風機5は凝縮温度が所定値となるように制御されている。凝縮温度は圧力センサ201より検出された圧力の飽和ガス温度である。
 [暖房運転モードB]
次に暖房運転モードBについて説明する。暖房運転モードBでは、四方弁3は圧縮機1の吐出側を水熱交換器16のガス側と接続し、吸入側を熱源側熱交換器4のガス側に接続する。四方弁13は圧縮機1の吐出側を室内熱交換器10a,10bのガス側に接続する。また、電磁弁22は閉路である。さらに、室外減圧機構6は最大開度(全開)、給湯減圧機構21は給湯ガス延長主配管15から給湯液延長主配管20の間に冷媒が滞留しない程度の開度に固定されている。
圧縮機1から吐出した高温・高圧のガス冷媒は油分離器2、四方弁13を経由して熱源ユニット301より流出し、室内ガス延長主配管12、分岐ユニット302、室内ガス延長枝配管11a,11bを経由し、室内ユニット303a,303bへと流れる。その後、室内側熱交換器10a,10bに流入し、室内空気を加熱して高圧液冷媒となり、室内側熱交換器10a,10bを流出する。その後、室内ユニット303a,303bから流出し、室内液延長枝配管9a,9bを経由して分岐ユニット302に流入し、室内減圧機構8a,8bにて減圧されて低圧二相冷媒となる。その後、分岐ユニット302を流出し、室内液延長主配管7を経由して熱源ユニット301に流入し、熱源減圧機構6を通過後に熱源側熱交換器4に流入し、室外空気と熱交換を行ない、低圧ガス冷媒となる。このガス冷媒は、熱源側熱交換器4から流出した後、四方弁3を経由して、アキュムレータ14を通過後、再び圧縮機1に吸入される。なお、給湯ユニット304は停止しているため、四方弁3から給湯減圧機構21までの間は冷媒が流れておらず、気相の冷媒で満たされる。
なお、室内減圧機構8a,8bは室内側熱交換器10a,10bの過冷却度が所定値となるように開度が制御されている。室内側熱交換器10a,10bの過冷却度は圧力センサ201により検出される飽和液温度から温度センサ206a,206bの温度を差し引いた値である。また、圧縮機1の運転周波数は凝縮温度が所定値となるように制御されている。凝縮温度は圧力センサ201より検出された圧力の飽和ガス温度である。また、熱源送風機5は蒸発温度が所定値となるように制御されている。蒸発温度は温度センサ205の検出温度である。
 [給湯運転モードC]
次に給湯運転モードCについて説明する。給湯運転モードでは、四方弁3は圧縮機1の吐出側を水熱交換器16のガス側、吸入側を熱源側熱交換器4のガス側と接続する。四方弁13は圧縮機1の吸入側を室内熱交換器10a、10bのガス側と接続する。また、電磁弁22は閉路である。さらに、室内減圧機構8a、8bは最低開度(全閉)、給湯減圧機構21は最大開度(全開)である。
 圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2、四方弁3を経由して熱源ユニット301から流出する。その後、給湯ガス延長主配管15を経由して給湯ユニット304に流入し、水熱交換器16に流入し、水ポンプ17によって供給される水を加熱し、高圧液冷媒となる。その後、水熱交換器16及び給湯ユニット304から流出後、給湯液延長主配管20を経由して熱源ユニット301に流入する。その後、給湯減圧機構21を通過して熱源減圧機構6により減圧され、低圧二相冷媒となる。熱源減圧機構6を通過した冷媒は、その後、熱源側熱交換器4に流入し、室外空気を冷却して低圧ガス冷媒となる。室外熱交換器4から流出した後、四方弁3を経由して、アキュムレータ14を通過後、再び圧縮機1に吸入される。なお、室内ユニット303a,303bは停止しているため、室内液延長主配管7から四方弁13までの間は冷媒が流れておらず、気相の冷媒で満たされる。
なお、熱源減圧機構6は水熱交換器16の過冷却度が所定値となるように開度が制御されている。水熱交換器16の過冷却度は圧力センサ201により検出される圧力の飽和液温度から温度センサ209の検出温度を差し引いた値である。圧力センサ201および温度センサ209は水熱交換器16の過冷却度検出手段として作用する。また、圧縮機1の周波数は最大周波数に制御されている。凝縮温度は圧力センサ201より検出された圧力の飽和ガス温度である。また、熱源送風機5は蒸発温度が所定値となるように制御されている。蒸発温度は温度センサ205の検出温度である。
 このように、冷凍サイクル装置100は室内の冷房と暖房、及び給湯を個別に実施することが可能である。具体的には、室内ユニット303a,303bにて選択された冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)と、給湯ユニット304における給湯指令(給湯ON/OFF)により、冷房運転モードAと暖房運転モードBと給湯運転モードCとを実施することができる。さらに、冷凍サイクル装置100は室内ユニット303a,303bの冷房ONと、給湯ユニット304の給湯ONを同時に実施することが可能となっている。
 [冷房給湯同時運転モード(第1冷房給湯同時運転モード)D]
次に、冷房給湯同時運転モードDについて説明する。冷房給湯同時運転モードDでは四方弁3は圧縮機1の吐出側を水熱交換器16のガス側と接続し、吸入側を熱源側熱交換器4のガス側と接続する。四方弁13は圧縮機1の吸入側を室内熱交換器10a,10bのガス側と接続する。また、電磁弁22は閉路となっており、給湯減圧機構21は最大開度(全開)である。
圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2と四方弁3を通過後、熱源ユニット301を流出し、給湯ガス延長主配管15を経由して給湯ユニット304に流入する。給湯ユニット304に流入した冷媒は、水熱交換器16に流入し、水ポンプ17によって供給される水を加熱して高圧液冷媒となり、水熱交換器16より流出する。冷媒はその後、給湯ユニット304を流出し、給湯液延長主配管20を経由して熱源ユニット301に流入し、給湯減圧機構21を通過後に、熱源ユニット301を流出して室内液延長主配管7に流れる冷媒と、熱源減圧機構6に流れる冷媒とに分配される。室内液延長主配管7に流入した冷媒は、分岐ユニット302に流入し、室内減圧機構8a,8bにて減圧されて、低圧二相冷媒となり、分岐ユニット302を流出する。冷媒はその後、室内液延長枝配管9a,9bを経由して室内ユニット303a,303bに流入し、室内熱交換器10a,10bに流入して、室内空気を冷却して低圧ガス冷媒となる。室内熱交換器10a,10bを流れた冷媒はその後、室内ユニット303a,303bを流出し、室内ガス延長枝配管11a,11b、分岐ユニット302、室内ガス延長主配管12を経由して、四方弁13を流れ、熱源減圧機構6を流れた冷媒と合流する。一方、熱源減圧機構6を流れた冷媒は減圧されて、低圧二相冷媒となった後、熱源側熱交換器4に流入し、室外空気を冷却して低圧ガス冷媒となる。冷媒はその後、四方弁3を経由して室内液延長主配管7に流入した冷媒と合流する。合流した冷媒は、アキュムレータ14を通過して再び圧縮機1に吸入される。
冷房給湯同時運転モードDでは冷房負荷と給湯要求が同時にある状態であるため、各機器の制御方法は冷房負荷に合わせて運転を制御する冷房優先か、給湯要求に合わせて運転をする給湯優先かによって区別される。つまり、冷房給湯同時運転モードDの制御モードとして、冷房優先(冷房優先モード)と給湯優先(給湯優先モード)がある。冷房優先は冷房負荷に合わせた運転となり、排熱ゼロの状態であるため給湯優先よりも省エネ性能が高い。給湯優先では給湯要求に合わせた運転となり、短時間にて給湯完了が実現するため湯切れ耐力が高い。これらの特性があるため、基本は冷房優先にて運転して省エネ性能の高い状態を狙う。給湯動作が所定時間以上継続して行われた場合、つまり、給湯運転モードC及び冷房給湯同時運転モードDの運転時間が所定時間以上、例えば、2時間以上継続して行われた場合は給湯優先にて運転を行う。
 図3は冷房と給湯の負荷バランスに対する冷房優先と給湯優先の選択状態を示した図である。冷房負荷が大きくて冷房熱量が給湯熱量よりも多い場合は冷房優先による運転を選択する。これに対して、貯湯量が少なくて給湯熱量が冷房熱量よりも多くなる場合は給湯優先による運転を選択する。つまり、冷房負荷と給湯負荷の関係によって制御モードの冷房優先と給湯優先を選択する。図4は冷房優先と給湯優先の各機器の制御方法を示した図である。次に、それぞれの状態における各機器の制御方法について説明する。
冷房優先とする場合、室内減圧機構8a,8bは水熱交換器16の過冷却度が所定値となるように制御される。圧縮機1は蒸発温度が蒸発温度目標値となるように運転制御部103により制御される。蒸発温度は温度センサ206a,206b(蒸発温度検出手段として作用)の検出温度である。また、蒸発温度目標値は室内最大差温により変化する。室内最大差温は室内ユニット303a,303bの差温の最大値である。なお、室内ユニット303a,303bの差温は、温度センサ207a,207b(室内温度計測手段として作用)の検出温度から室内設定温度を差し引いた値である。室内最大差温が大きいほど冷房能力が大きいと判定され、蒸発温度目標値は低下する。熱源減圧機構6は最低開度(全閉)となるように運転制御部103にて制御される。これは圧縮機1が冷房負荷に合わせて運転されているため、熱源側熱交換器4に冷媒を流して排熱する必要がないためである。熱源送風機5は放熱板温度が目標値となるように回転数を運転制御部103にて制御する。放熱板温度は温度センサ212(放熱板温度検出手段として作用)の検出温度である。放熱板温度の目標値は、圧縮機駆動用の電子基板などに異常がでない最大温度に設定する。そうすることで、熱源送風機5の風量を必要最小とすることができ、モーターの電気入力が減る分、運転効率が高くなる。
 給湯優先とする場合、室内減圧機構8a,8bは冷房優先と同様に制御する。圧縮機1は固定周波数、例えば、最大周波数あるいは最大周波数の75%の周波数となるように運転制御部103により制御される。圧縮機1が冷房負荷によらず固定周波数に制御されているため、冷房能力過剰となり、室内が冷やしすぎとなって快適性を損なう可能性がある。そのため、熱源減圧機構6の開度を調整することにより、室内熱交換器10a,10bに流れる冷媒と熱源側熱交換器4に流れる冷媒とを分流する必要がある。つまり、熱源側熱交換器4にて余剰冷房能力を排熱する必要がある。
熱源減圧機構6は蒸発温度が蒸発温度目標値となるように開度が運転制御部103にて制御される。これは圧縮機1が給湯要求に合わせて運転されているため、余剰冷房熱を熱源側熱交換器4に冷媒を流して排熱する動作を狙うためである。蒸発温度が所定値となるように熱源減圧機構6にて冷媒の分配量を調整することで、室内熱交換器10a,10bにて所定の冷房能力を確保する。蒸発温度目標値は室内最大差温により変化し、室内最大差温が大きいほど冷房能力が大きいと判定され、蒸発温度目標値は低下する。熱源減圧機構6を開けると熱源側熱交換器4で処理する冷房能力の割合が増加するため蒸発温度は上昇し、絞ると蒸発温度は低下する。冷房優先にて圧縮機1が実施していた蒸発温度制御を、給湯優先では熱源減圧機構6にて実施することで、室内熱交換器10a,10bに供給される冷房能力を調整できる。そのため、湯切れを回避するために圧縮機1の運転周波数を高くしても、室内の冷やしすぎを防止し、室内の快適性を損なわないようにすることができる。
熱源送風機5の回転数は、放熱板温度が目標値となるように運転制御部103にて制御される。また、熱源側熱交換器4の過熱度が所定値以下、例えば2℃以下の場合は、過熱度が所定値以上となるように熱源送風機5の回転数を高くして、風量を多くする。なお、熱源側熱交換器4の過熱度は温度センサ203の検出温度から温度センサ205の検出温度を差し引いた値(温度センサ203及び温度センサ205は熱源側過熱度検出手段として作用)である。熱源側熱交換器4の過熱度が所定値以上確保できていない状態では伝熱性能の高い冷媒二相部の割合が多い状態であり、余剰冷房能力を効率よく排熱しきれていないということである。そのため、熱源送風機5の風量を多くすることで冷媒を気相になるまで加熱するようにして、必要な排熱量を確保できるようにする。
 また、熱源送風機5の回転数が最大となっているが熱源側熱交換器4の過熱度が所定値以上確保できない場合は、熱源側熱交換器4に冷媒が流れすぎている状態である。この場合は、熱源減圧機構6の開度を絞り、熱源側熱交換器4の冷媒流量を少なくすることで熱源側熱交換器4の過熱度が所定値以上となるようにする。具体的には、熱源送風機5の回転数が最大の時で、熱源側熱交換器4の過熱度が所定値以下の時、熱源側熱交換器4の過熱度が所定値となるように熱源減圧機構6の開度を運転制御部103にて制御する。このようにすることで、熱源側熱交換器4の排熱を効率よく実施することができ、運転効率の低下を回避することができる。
また、冷凍サイクル装置100では、室内熱交換器10a,10bを流れた冷媒と熱源側熱交換器4を流れた冷媒とが合流した後にアキュムレータに入る。アキュムレータに液冷媒がある場合は定常状態にてアキュムレータ入口は過熱度0となる。そのため、熱源側熱交換器4に過熱度があれば室内熱交換器10a,10bにて過熱度が無い状態であり、逆に、室内熱交換器10a,10bに過熱度があれば熱源側熱交換器4に過熱度が無い状態であるといえる。したがって、温度センサ203がなくても熱源側熱交換器4の過熱度の有無を判定可能である。具体的には、室内熱交換器10a,10b全てにおいて過熱度が所定値以上、例えば、2℃以上ある場合は、熱源側熱交換器4の過熱度が0の状態であるといえるので、室内熱交換器10a,10bのいずれか1つでも過熱度が2℃以下となるように熱源送風機5の回転数を運転制御部103にて制御する。室内熱交換器10a,10bの過熱度は温度センサ208a,208bの検出温度から温度センサ206a,206bの検出温度を差し引いた値である。したがって、温度センサ208a,208b,206a,206bは室内過熱度検出手段として作用する。なお、熱源送風機5の回転数を高くすると、室内熱交換器10a,10bの過熱度は低くなり、熱源送風機5の回転数を低くすると、室内熱交換器10a,10bの過熱度は高くなる。
 また、熱源送風機5の回転数が最大となっているが全ての室内熱交換器10a,10bにて過熱度が所定値以上となる場合は、熱源側熱交換器4に冷媒が流れすぎている状態である。この場合は、熱源減圧機構6の開度を絞り、熱源側熱交換器4の冷媒流量を少なくすることで、室内熱交換器10a,10bのうちいずれか一つでも過熱度が所定値以下となるようして、熱源側熱交換器4の過熱度が所定値以上となるようにする。具体的には、熱源送風機5の回転数が最大の時で、熱源側熱交換器4の過熱度が所定値以下の時は、熱源側熱交換器4の過熱度が所定値となるように熱源減圧機構6の開度を運転制御部103にて制御する。このようにすることで、熱源側熱交換器4の排熱を効率よく実施することができ、運転効率の低下を回避することができる。
 図5は給湯優先時の熱源減圧機構6の開度に対する運転状態の変化を示した概略図である。なお、この図は6HP程度の冷凍サイクル装置100を例としており、簡略化のため、室内ユニット303a,303bの仕様は同一で冷房負荷もそれぞれ同一とした。図5より、熱源減圧機構6の開度の増加に対して冷房能力は低下し、排熱量は増加する。また、熱源側熱交換器4にて処理する熱量の割合が増加するため、蒸発温度が高くなり、給湯能力も増加する。しかし、熱源減圧機構6の開度が大きくなると、室内減圧機構8a,8bが下限開度となり、絞りをきつくすることができなくなるため、水熱交換器16の過冷却度が低下する。水熱交換器16の過冷却度が低下すると運転効率が低下するため望ましい状態ではない。また、室内減圧機構8a,8bが下限開度で絞りきれなくなると、熱源減圧機構6の開度を大きくしても、室内熱交換器10a,10bの冷媒流量を少なくすることができず、冷媒分配がうまくできなくなるため、冷房能力がほとんど変化しなくなる。以上のことから、水熱交換器16の過冷却度が目標値に維持できなくなるほど熱源減圧機構6の開度を大きくしないようにする。具体的には、室内減圧機構8a,8bの開度がともに下限開度となる場合、熱源減圧機構6を水熱交換器16の過冷却度が目標値となるように運転制御部103にて制御する。このようにすることで、運転効率を過度に損なうことなく排熱量調整を実施することが可能となる。
 熱源減圧機構6は空調優先では最低開度となっているため、制御モードが空調優先から給湯優先に選択して切換わった場合に、冷凍サイクルの安定性を損なわないために適正な初期開度の設定が必要となる。その方法としては、冷房ONとなっている室内ユニット303a,303bのトータル容量と、給湯ONとなる給湯ユニット304の容量とから、熱源側熱交換器4で処理する排熱量を予測し、熱源側熱交換器4で処理する排熱量と、冷房ONとなっている室内ユニット303a,303bのトータル容量との比と、室内減圧機構8a,8bのトータル開度を用いて求める。具体的には、冷房ONとなっている室内ユニット303a,303bの容量が3.5kWと2.5kWの2台、給湯ユニット304の容量が18kW、この時のトータル開度が160pulse(減圧機構8a,8b1つの開度範囲32pulse~480pulse)であり、その時のトータルCv値が0.034であったとすると、熱減減圧機構6に必要なCv値(容量係数)は、{(18-3.5-2.5)/(3.5+2.5)}×0.034=0.068となる。熱源減圧機構6の開度をこの計算結果のCv値から求めることができる。また、厳密には圧縮機の入力分排熱量は小さくなるため、これを考慮すると、圧縮機入力が5kWの場合、熱源減圧機構6に必要なCv値は{(18-3.5-2.5-5)/(3.5+2.5)}×0.034=0.040となる。圧縮機の入力分排熱量を加えないと誤差になるが、初期開度決定時の誤差は定時制御でフィードバックできるので考慮しなくても可とすることができる。なお、冷房ONとなっている室内ユニット303a,303bと給湯ONとなる給湯ユニット304の容量は、制御装置101の通信部104にて取得する。
さて、制御モードが給湯優先の場合は圧縮機1の運転周波数は固定制御されている。固定制御の値が例えば、運転効率を高めたいという狙いから、最大周波数の75%など、最大周波数から少し低い値に設定されているときがある。この時に冷房負荷が大きいと、冷房熱が不足して室内が不冷となる可能性がある。そこでこのケースに対応した制御を示す。制御モードが空調優先時に、給湯ON時間が所定時間経過し、給湯優先に制御モードを切換える場合に、現在の圧縮機周波数が給湯優先にて設定される圧縮機周波数よりも高い場合は、空調優先を継続する。このようにすることで、給湯優先に切換えたことによる、冷房熱が不足することがなくなり、室内の不冷を防止できる。なお、所定時間経過して現在の圧縮機周波数が給湯優先にて設定される圧縮機周波数よりも低くなった時点で、制御モードを給湯優先とする。また、制御モードが給湯優先時に、熱源減圧機構6が下限開度となり、ほとんど排熱量がないにも関わらず、蒸発温度が蒸発温度目標値以上となっている場合は、圧縮機1の運転周波数を、蒸発温度が蒸発温度目標値となるように高くする。このようにすることで、給湯優先時に冷房熱が不足することがなくなり、室内の不冷を防止できる。以上のように制御を実施することで、給湯優先にて圧縮機の運転周波数が最大周波数に固定されていなくても、冷房負荷が高い場合にはその負荷の大きさに応じて、制御モードの切換えや圧縮機周波数の制御がなされるため、室内が不冷となるのを防止できる。なお、ここで言う熱源減圧機構6の開度の下限とは通常運転制御で指定する開度の最小値のことを指す。
 ここで、一般的に冷房ONの室内ユニット303a,303bにおいて、室内空気温度が設定温度よりも所定値以上、例えば1.5℃以上低くなると、冷房サーモOFFとなり、室内減圧機構8a,8bを最低開度として、冷媒を室内熱交換器10a,10bに流れなくすることで室内がこれ以上冷えるのを防止する。その後、室内空気温度が設定温度よりも所定値以上、例えば0.5℃以上高くなった場合は冷房サーモONとなり、室内減圧機構8a,8bを開けて、冷媒を室内熱交換器10a,10bに流れるようにする。冷房運転モードAにて室内ユニット303a,303b全てがサーモOFFとなった場合、冷房する室内がなくなるため、運転は停止状態となる。これに対して、冷房給湯同時運転モードDでは、室内ユニット303a,303b全てがサーモOFFとなっても、給湯ユニット304があるため、停止とはならず、給湯運転モードCとなる。この動作は特に、制御モードが空調優先時に、冷房給湯同時運転モードDから給湯運転モードCに切換わると、熱源減圧機構6が最低開度固定状態から変化し、圧縮機1の運転周波数も高い周波数に固定されるため、運転の変動が大きく、不安定になる。そのため、運転状態を安定にするために、冷房給湯同時運転モードDの場合は冷房運転モードAに対して、冷房サーモOFFとする温度を1℃以上低くし、冷房サーモONとする温度を1℃以上高くするように制御装置101の運転制御部103にて制御する。つまり、冷房給湯同時運転モードDでは、室内空気温度が設定温度よりも2.5℃以上低くなると、冷房サーモOFFとなり、その後、室内空気温度が設定温度よりも1.5℃以上高くなった場合は冷房サーモONとする。このようにすることで、冷房給湯同時モードDと給湯運転モードCへの頻繁な切換えを抑制し、安定した運転状態とすることができる。そのため、品質の信頼性が向上する。
冷房給湯同時運転モードDの制御モードである空調優先と給湯優先の選択を、先に示した2時間という時間のみの指標としても良いが、貯湯量に応じて運転制御部103が変更するような方法としても良い。図6は貯湯量によって空調優先と給湯優先を選択する場合を示した図である。貯湯量100%から50%の間では湯量が多いため、湯切れの危険性が少ないとして制御モードを空調優先として運転する。これ対して貯湯量が50%から0%の間では湯量が少ないため、湯切れの危険性があるとして制御モードを給湯優先とする。湯量を指標として判定しているため、湯切れの危険性を精度良く評価することが可能となり、湯切れの可能性が高くない領域を適切に把握し、空調優先をして運転効率を高めることができるため、省エネとなる。
給湯優先では圧縮機の運転周波数は固定周波数にて運転される。この時に固定される運転周波数が高いほど、湯量が短時間で沸くものの、運転効率が低下するという特性がある。給湯優先でもなるべく運転効率を高くするためには、運転周波数をなるべく抑えて運転するのがよい。その判断の指標として貯湯量が使用できる。貯湯量が50%から25%の間ではある程度湯切れまでに余裕があると判断して圧縮機容量を75%に固定して運転させる。貯湯量が25%から0%の間では湯切れの危険性が高いとして圧縮機容量100%にて運転する。このようにすることで、給湯優先時でも極力運転効率を高くすることができる。また、貯湯量を指標として判定しているため、湯切れの危険性を精度良くを評価することが可能となり、湯切れの可能性が比較的高くない領域での給湯優先において運転効率を高めることができるため、省エネとなる。なお、運転効率100%とは、例えば圧縮機1の最大周波数が100Hzとすると、圧縮機1が100Hzで運転するということであり、圧縮機容量75%とは75Hzで運転するということである。
 図6に示す貯湯量による空調優先と給湯優先の閾値はユーザーが自由に可変にできるようにしても良い。例えば、ユーザーが給湯リモコン107の設定により、空調優先とする貯湯量を60%~100%、給湯優先とする貯湯量を0%~60%とするようにしても良い。また、湯の消費量が少ないユーザーでは空調優先とする貯湯量を0%~100%、もしくは湯の消費量が多いユーザーの場合は給湯優先とする貯湯量を0%~100%とするようにしても良い。このようにすることで、ユーザーの湯消費量に合わせて優先運転の使い分けを行うことができるため、湯切れ耐力を確保しつつ、省エネを高めることができる。
 さらに、給湯優先時の圧縮機運転容量(給湯優先運転切換え関係量)もユーザーが給湯リモコン107により設定できるようにしても良い。例えば、給湯優先とする貯湯量を0%~60%までとすると、O%~40%までを圧縮機容量90%、40%~60%までを圧縮機容量70%での運転とするようにしてもよい。このようにすることで、ユーザーの湯の使用状態に応じて、例えば、運転効率の高い状態での給湯を実現できるため、省エネ性能がさらに向上する。
 なお、圧縮機容量とか制御モードの閾値を給湯リモコン107に直接表示しても、ユーザーが分かりにくい可能性が高い。そのため、表示方法として、給湯優先と空調優先の閾値の指標は、急速給湯、通常給湯、マイルド給湯、としても良い(優先閾値切換え関係量)。この場合、貯湯量は例えば、急速給湯では給湯優先0~75%、空調優先75%~100%、通常給湯では給湯優先0~50%、空調優先50%~100%、マイルド給湯では給湯優先0~25%、空調優先25%~100%、とする。また、給湯優先時の圧縮機容量の指標は、大容量、普通、省エネとしてもよい(給湯優先運転切換え関係量)。この場合、例えば、大容量では圧縮機容量100%、普通では圧縮機容量80%、省エネでは圧縮機容量60%としても良い。また、圧縮機容量を選択して切換える給湯優先の閾値は給湯優先範囲の中間のところに設定し、それぞれに圧縮機容量を指定する形式としもよいし、全給湯優先範囲にて同じ圧縮機容量を指定するようにしても良い。なお、優先閾値切換え関係量と給湯優先運転切換え関係量は給湯リモコン107の表示部109にて表示され、入力部110にてユーザーが入力できるようにする。
 [第2冷房給湯同時運転モードE]
 次に、冷房負荷のある室内ユニット303a,303bに冷房熱を供給し、給湯要求のない給湯ユニット304に給湯熱を供給する(第2給湯運転)、第2冷房給湯同時運転モードEについて説明する。
実際の運転では、冷房負荷があり、給湯要求はないものの、ユーザーが湯を消費して貯湯タンク19の貯湯量が70%程度となっている状態がある。湯は毎日使用するものであると考えると、給湯要求はないが、運転効率の高い冷房給湯同時運転を選択して給湯熱を利用した方がトータルで省エネになると考えられる。そこで、貯湯量が多く、給湯負荷に対して余裕がある状況で冷房を行う場合、冷房運転モードAと第2冷房給湯同時運転モードEのどちらも実施可能とする。冷房給湯同時運転モードDと第2冷房給湯同時運転モードEは機器の制御方法、冷媒の流れ方向は同じである。そして、冷房給湯同時運転モードDでは制御モードに空調優先と給湯優先があるのに対し、第2冷房給湯同時運転モードEでは制御モードが空調優先のみである点だけが異なる。空調優先の制御方法は冷房給湯同時運転モードDと第2冷房給湯同時運転モードEは同じである。第2冷房給湯同時運転モードEでの給湯ユニットでは給湯要求がないものの、水ポンプ17は運転される。
 第2冷房給湯同時運転モードEを想定することで、以下のように、2つの冷房給湯同時運転モードを利用した運転が可能となる。まず、貯湯量が100%でない、例えば70%程度になっている場合に冷房負荷が発生し、空調リモコン108a,108bにて冷房ONとした場合、第2冷房給湯同時運転モードEとして冷房と給湯を同時に行う。この時は、給湯要求がない給湯動作となるため、制御モードは空調優先とする。これに対して、給湯要求がある状態で冷房ONとなった場合、冷房給湯同時運転モードDとして冷房と給湯を同時に行い、制御モードを給湯優先とする。このようにすることで、給湯要求がなく、湯切れの心配がない時には、運転効率の高い状態で給湯を実施し、給湯要求があり、湯切れの心配がある時には、給湯優先にて湯切れ耐力優先で運転を実施するため、湯切れの心配がない状態で省エネを実現することができる。もちろん、給湯優先時の圧縮機容量を貯湯量によって変化する態様を、この場合においても追加して良い。そうすることで、給湯優先時にも運転効率を高くすることができ、省エネとなる。
先の記述は給湯要求がない場合にも、冷房負荷が発生したら冷房給湯同時運転をするというものであった。しかし、如何なる場合でも冷房運転モードAよりも第2冷房給湯同時運転モードEの方が運転効率が高くなるわけではない。出湯温度や、外気温度、冷房負荷によっては、冷房運転モードAの方が第2冷房給湯同時運転モードEよりも運転効率が高くなるケースがある。図7は冷房運転モードAと第2冷房給湯同時運転モードE(制御モードは空調優先)における凝縮温度に対する運転効率の変化を示した図である。第2冷房給湯同時運転モードEは給湯熱を排熱回収するため、基本的に高い運転効率となるが、凝縮温度が50℃、55℃と高くなると、冷房運転モードAの凝縮温度25℃、30℃の場合よりも運転効率が低くなる。つまり、出湯温度が50℃、55℃と高くなり、凝縮温度が50℃、55℃と高くなる時は、外気温度が低い、もしくは冷房負荷が小さいことで、凝縮温度が25℃、30℃となる冷房運転モードAの方が第2冷房給湯同時運転モードEよりも運転効率が高くなる。
ここで、具体的にどのような条件の時に冷房運転モードAが第2冷房給湯同時運転モードEよりも運転効率が高くなるかを示す。図8は冷房運転モードAと第2冷房給湯同時運転モードEでのモリエル線図を示した図である。冷房負荷Qe[kW]で、冷房運転モードAの圧縮機入力がW1[kW]、第2冷房給湯同時運転モードEでの圧縮機入力がW2[kW]とすると、第2冷房給湯同時運転モードEでの給湯熱はQe+Qe+W2=2Qe+W2となるため、冷房運転モードAが第2冷房給湯同時運転モードEよりも運転効率が高くなるのは以下の条件が成立した場合である。
(数1)
Qe/W1≧(2Qe+W2)/W2
 ここで、冷房運転モードAの運転効率COPc=Qe/W1となるので、次式が導出できる。
(数2)
W2/W1≧(2COPc)/(COPc-1)
 ここで、圧縮機入力が圧縮比(高圧/低圧)に比例するとした場合、冷房運転モードAの高圧をPd1[MPa]、第2冷房給湯同時運転モードEの高圧をPd2[MPa]、冷房運転モードAと第2冷房給湯同時運転モードEでは蒸発器となるのがともに室内熱交換器10a,10bであり、室内温度も変化しないので、切換え前後で低圧はともにPs[MPa]と変わらないとすると、次式が導出できる。
(数3)
(Pd2―Ps)/(Pd1―Ps)≧(2COPc)/(COPc-1)
右辺をCOPcに対して演算すると、COPcが5以上になると、右辺は2.5以下となる。冷房運転モードAの運転効率が第2冷房給湯同時運転モードEの運転効率よりも高くなるのは外気温度が低い、もしくは冷房負荷が小さい場合であり、ほとんどCOPcが5以上の時であると想定すると、圧縮比が2.5倍以上になるかどうかで切換え判断ができる。また、切換え前後で低圧は変化しないので、高圧Pd1,Pd2の変化のみで運転の選択とその切換えの判断をすることができる。つまり、冷房運転モードAの高圧に対する第2冷房給湯同時運転モードEの高圧の割合にて運転モード切換えの判断が可能である。
図9は冷房負荷があって、給湯要求がない場合での運転モードを選択して切換えをするフローチャートである。なお、図9の動作は制御装置101の追加排熱回収判定部106にて実施される。図9を用いて、給湯要求がない場合での運転モードの切換えについて説明する。まず、ステップS11にて現在の運転状態を判定する。冷房運転モードAの場合、ステップS12にて高圧P1を取得する。高圧P1は現在運転中の冷房運転モードAの高圧であり、圧力センサ201の検出圧力である。次に、ステップS13にて高圧P2を予測する。第2冷房給湯同時運転モードEにした場合の高圧P2は以下のようにして予測する。すなわち、貯湯タンク19の沸き上げ方式は循環加温であり、水熱交換器16に流入した熱媒体は、所定温度ずつ上昇しながら水側回路18を循環する。つまり、水熱交換器16の出口水温は入口水温+所定温度、例えば、入口水温+5℃となる。水熱交換器16を凝縮器とした場合、高圧Pd2の凝縮温度は普通、水熱交換器出口の熱媒体温度とほぼ等しくなるため、高圧Pd2の凝縮温度を水熱交換器16の入口水温+5℃としても良い。水熱交換器16の入口水温は例えば、貯湯タンク19の水温を検出している温度センサの一番下部、実施の形態1では温度センサ211dの検出温度とする。また、温度センサ211a~dがなければ一般的な水温の値、例えば15℃固定としても良い。また、水ポンプ17と水熱交換器16の間に温度センサをつけてその検出温度としても良い。求めた凝縮温度から高圧P2を演算する。追加排熱回収判定部106は、このように高圧P2を演算する第2冷房給湯高圧予測手段を備える。その後、ステップS14にてPd2/Pd1が高圧判定閾値M[―]以下か判定し、M以下でかつ、貯湯量が貯湯量判定閾値N未満の場合は、ステップS15にて第2冷房給湯同時運転モードEに切換える。Mは先の検討結果から2.5とする。Nは給湯要求がない場合の第2冷房給湯同時運転モードEを許容する閾値となり、例えば、70として設定する。また、Pd2/Pd1がM以上もしくは貯湯量がNより大きい場合は運転モードをそのまま冷房運転モードAとする。
 ステップS11にて現在の運転状態を第2冷房給湯同時運転モードEと判定した場合は、ステップS16に移行する。なお、ステップS15で第2冷房給湯同時運転モードEに切り替わった後に、ステップS11の判断をするとこの状態となる。ステップS16では高圧P2を取得する。高圧P2は現在運転中の第2冷房給湯同時運転モードEの高圧であり、圧力センサ201の検出圧力である。次に、ステップS17にて高圧P1を予測する。冷房運転モードAにした場合の高圧P1は以下のようにして予測する。すなわち、冷房運転モードAの凝縮温度は外気温度+所定温度であるとする。ステップS12~ステップS15の行程にて第2冷房給湯同時運転モードEに切り替わるケースは冷房負荷が低い場合が主であると考えられ、その場合の所定温度はおよそ5℃程度となる。つまり、凝縮温度が外気温度+5℃の場合としたときの圧力を高圧P1とする。外気温度は温度センサ204の検出温度である。なお、外気温度が低い場合は凝縮温度が異常に低くなってしまうので、例えば、外気温度+5℃が25℃以下となる場合は25℃固定とする。求めた凝縮温度から高圧P1を演算する。追加排熱回収判定部106は、このように高圧P1を演算する冷房高圧予測手段を備える。その後、ステップS18にてPd2/Pd1が高圧判定閾値M以上であるかを判定し、M以上である場合はステップS19にて冷房運転モードAに切換え、M以下である場合は運転モードを第2冷房給湯同時運転モードEのままとする。また、貯湯量が100となった場合も、これ以上貯湯できないため、冷房運転モードAに切換える。図9のフローチャートは所定時間間隔、例えば5分ごとに実施する。
なお、高圧判定閾値Mは“2.5”としたが、これに限定されず、“2”もしくは“3”としても良い。高圧判定閾値Mを低くするほど冷房運転モードAの運転を選択しやすくなり、高くするほど第2冷房給湯同時運転モードEの運転をしやすくなる。また、ステップS17にて高圧P1の予測値を設定するのに、切換え前の冷房運転モードAの運転状態を用いても良い。具体的には、ステップS14にてYESとなったら、現在の所定温度を凝縮温度と外気温度の温度差として記憶し、その所定温度をステップS17の演算に用いる所定温度に適用する。なお、凝縮温度は高圧センサ201の検出圧力の飽和温度であり、外気温度は温度センサ204の検出温度である。また、運転モードの切換えのハンチングを防ぐため、運転モードの切換えがなされる、つまり、ステップS15もしくはステップS19がなされた場合は図9のフローチャートを30分間実施しないとしても良い。
 以上のように、現在の運転状態の高圧と、外気温度もしくは水温から予測した高圧を用いることで、冷房運転モードAと第2冷房給湯同時運転モードEとでどちらの運転効率が高くなるかを適切に判定し、運転効率が高い運転を実施するようにしたので、高い運転効率にて冷房熱と給湯熱を賄う事ができるようになり、省エネとなる。
 図9のフローチャートを適用する貯湯タンク19の貯湯量閾値は基本値を70%としておいて、ユーザーが給湯リモコン107を介して例えば、60%、80%というように入力するようにしても良い。適用する貯湯量閾値を大きくすることで、高い運転効率で湯を得ることができるため、省エネとなる。また、貯湯量閾値を小さく設定することで湯の過度の沸き上げを防止することできる。このようにユーザーが設定できるようにすることでユーザーの湯の使用スタイルにあった熱量管理できるため、沸き上げ湯量が最適化されて無駄な湯の沸き増し、もしくは効率の高い運転にて湯を得ることができるため、省エネとなる。また、ユーザーの貯湯量閾値の入力方法は%の指定に限定されず、ユーザーが分かりやすいように多め(80%)、普通(60%)、少なめ(40%)といった指定方法としても良い。
 実施の形態1では給湯ユニット304の沸き上げ方式が循環加温であるため、図9のフローチャートを実施した場合、以下のような動作になると予測される。貯湯タンク19下部には低温の市水があり、ステップS13にて高圧P2は市水+5℃の凝縮温度となる圧力として判定されるため、貯湯量がN未満の場合は外気温度が低いもしくは冷房負荷が低い場合でもほぼ確実に第2冷房給湯同時運転モードEに切り替わる。そして、しばらく運転を実施後、タンク下部の水温が複数回で昇温されると、凝縮温度が上昇していく。その後、外気温度が低いもしくは冷房負荷が低い場合はステップS18にて冷房運転モードAを再度選択し、ステップS19にて切換えることで運転が継続される。
実施の形態2.
<実施の形態1との相違点>
 図10は、本発明の実施の形態2に係る冷凍サイクル装置200の冷媒回路図を示したものである。図10に基づいて、冷凍サイクル装置200の冷媒回路構成について説明する。なお、実施の形態1と同一部分については同一符号を付し、実施の形態1との相違点を中心に説明する。実施の形態2に係る冷凍サイクル装置200では、給湯ユニット304に代えて給湯ユニット304bが接続されている。
<給湯ユニット304b>
 給湯ユニット304bはプレート水熱交換器16と、水側回路27と、水ポンプ17と、貯湯タンク19により構成される。水側回路27は水熱交換器16と貯湯タンク19との間を接続しており貯湯タンク19の水が循環する。水ポンプ17は水側回路27にて貯湯タンク19の水を循環させる機能を有しており、水熱交換器16に供給する水の流量を可変できるもので構成される。貯湯タンク19は満水式であり、負荷側の出湯要求に応じてタンク上部より湯が出水し、湯量減少分は低温の市水がタンク下部より給水される。
 水ポンプ17により貯湯タンク19の水はタンク下部の接続点28からより送水され、水ポンプ17を経由して水熱交換器16で冷媒により加熱されて温度が上昇し、その後、タンク上部の接続点29を通過して貯湯タンク19内に流入する。このようなプロセスにて貯湯タンク19に湯が沸き上げられる。
貯湯タンク19は、タンク上部より湯が出水し、低温の市水がタンク下部より給水されるため、タンク下部には低温の水が存在している。貯湯タンク19と水側回路27とはタンク下部の接続点28より水が流出し、タンク上部の接続点29に水が流入するため、流入する水の温度が出湯温度以下であると、タンク上部の水温が低下してしまう。そのため、実施の形態1とは異なり、水熱交換器16にて水を一度の熱交換にて設定出湯温度にしなければならない。この沸き上げ方式を一過加温という。一度の熱交換で沸きあげるために、実施の形態1に対して、実施の形態2では水ポンプ17の流量が少なくなる。例えば、設定出湯温度が55℃で、貯湯タンク19下部の水温が15℃であったとすると、水側回路27にて水熱交換器16の入口水温は15℃となり、出口水温は55℃となる。
実施の形態2の運転モードは実施の形態1と同様に冷房運転モードA、暖房運転モードB、給湯運転モードC、冷房給湯同時運転モードD、及び第2冷房給湯同時運転モードEがあり、各運転モード時の機器の制御方法も、以下に示す点を除いて、実施の形態1と同様である。実施の形態2は実施の形態1と異なり、給湯ユニット304bで一過加温にて沸き上げるため、図9のフローチャート実施時の動作方法が異なる。具体的にはステップS13の第2冷房給湯同時運転モードEの高圧P2の予測方法が異なる。その点について説明する。
図9は冷房負荷があって、給湯要求がない場合の運転モード選択のフローチャートである。なお、図9は制御装置101の追加排熱回収判定部106にて実施される。まず、ステップS11にて現在の運転状態を判定する。冷房運転モードAの場合、ステップS12にて高圧P1を取得する。高圧P1は現在運転中の冷房運転モードAの高圧であり、圧力センサ201の検出圧力である。次に、ステップS13にて高圧P2を予測する。第2冷房給湯同時運転モードEにした場合の高圧P2は以下のようにして予測する。具体的には、貯湯タンク19の沸き上げ方式は一過加温であり、水熱交換器16に流入した水は出口にて出湯温度となる。例えば、設定出湯温度が55℃の場合は水熱交換器16出口の水の温度も55℃となる。水熱交換器16を凝縮器とした場合、高圧Pd2の凝縮温度は普通、水熱交換器出口の水温度とほぼ等しくなるため、高圧Pd2の凝縮温度を出湯温度としても良い。求めた凝縮温度から高圧P2を演算する。追加排熱回収判定部106は、このような高圧P2を演算する第2冷房給湯高圧予測手段を備える。その後、ステップS14にてPd2/Pd1が高圧判定閾値M[-]以下か判定し、M以下でかつ、貯湯量が貯湯量判定閾値N未満の場合はステップS15にて第2冷房給湯同時運転モードEに切換える。高圧判定閾値Mは先の検討結果から2.5とする。貯湯量判定閾値Nは給湯要求がない場合の第2冷房給湯同時運転モードEを許容する閾値となり、例えば70として設定する。また、Pd2/Pd1がM以上もしくは貯湯量がNより大きい場合は運転モードをそのまま冷房運転モードAとする。
 ステップS11にて、運転モードを第2冷房給湯同時運転モードEと判断するとステップS16に移行する。たとえば、ステップS15にて第2冷房給湯同時運転モードEに切り替わった後に図9のフローを実施するとステップS16に移行する。ステップS16からステップS19までの処理は実施の形態1と同様である。このように沸き上げ方式によってステップS13の処理方法が変わってくるが、それでも、現在の運転状態の高圧と、外気温度もしくは水温から予測した高圧を用いることで、冷房運転モードAと第2冷房給湯同時運転モードEとでどちらが運転効率が高くなるかを適切に判定し、運転効率が高い運転を実施することができる。そのため、高い運転効率にて冷房熱と給湯熱を賄う事ができるようになり、省エネとなる。
 実施の形態2では給湯ユニット304bの沸き上げ方式が一過加温であるため、図9のフローチャートを実施した場合、以下のような動作になると予測される。ステップS13にて高圧P2は出湯温度と等しい凝縮温度となる圧力として判定されるため、外気温度が低いか、もしくは冷房負荷が低い場合などで冷房運転モードAの凝縮温度が低い場合は、第2冷房給湯同時運転モードEを選択しない。一方で、外気温度が高いか、もしくは冷房負荷が高い場合は第2冷房給湯同時運転モードEを選択し、貯湯量100%となるまで運転が継続される。
1 圧縮機、2 油分離器、3 四方弁、4 熱源側熱交換器、5 熱源送風機、6 熱源減圧機構、7室内液延長主配管、8a,8b 室内減圧機構、9a,9b 室内液延長枝配管、10a,10b 室内熱交換器、11a,11b 室内ガス延長枝配管、12 室内ガス延長主配管、13 四方弁、14 アキュムレータ、15 給湯ガス延長主配管、16 水熱交換器、17 水ポンプ、18 水側回路、19 貯湯タンク、20 水液延長主配管、21 給湯減圧機構、22 電磁弁、23 キャピラリーチューブ、24 接続点、25 伝熱コイル、26 接続点、27 水側回路、28 接続点、29 接続点、31 放熱板、100,200 冷凍サイクル装置、101 制御装置、102 測定部、103 運転制御部、104 通信部、105 貯湯量演算部、106 追加排熱回収判定部、107 給湯リモコン、108a,108b 空調リモコン、109 表示部、110 入力部、201 圧力センサ、202~212 温度センサ、301 熱源ユニット、302 分岐ユニット、303a,303b 室内ユニット、304,304b 給湯ユニット。

Claims (12)

  1. 運転周波数の制御が可能な圧縮機と、熱源側熱交換器と、熱源側熱交換器に外気を供給する熱源送風機と、熱源減圧機構と、を有する1つ以上の熱源ユニットと、
    室内減圧機構を有する分岐ユニットと、
    室内の空気を冷却又は加熱する室内熱交換器を有する1つ以上の室内ユニットと、
    貯湯タンクと、水ポンプと、前記貯湯タンクの水を加熱する水熱交換器と、前記貯湯タンクと、前記水ポンプと、前記水熱交換器とを配管接続した水側回路を有する1つ以上の給湯ユニットと、
    前記圧縮機、前記水熱交換器、前記室内減圧機構、前記室内熱交換器の順に配管接続された冷凍サイクル回路と、
    前記水熱交換器と前記室内減圧機構の間から分岐して、前記熱源減圧機構と、前記熱源側熱交換器の順に配管接続し、前記室内熱交換器と前記圧縮機の間に接続する排熱回路と、
    各ユニットの動作を制御する運転制御部を有した制御装置を備え、
    前記運転制御部は、
    前記圧縮機からの冷媒を、冷房負荷を有する前記室内ユニットの前記室内熱交換器に流す冷房運転モードと、前記圧縮機からの冷媒を、給湯要求を有する前記給湯ユニットの前記水熱交換器に流す給湯運転とを同時に実施する冷房給湯同時運転モードとを有し、
    前記冷房給湯同時運転モードの制御モードとして、前記冷房負荷に応じて前記圧縮機の運転周波数を制御する冷房優先と、前記給湯要求に応じて前記圧縮機の運転周波数を制御する給湯優先を有し、
    前記運転制御部は、前記冷暖給湯同時運転モードの前記制御モードを、前記冷房負荷と前記給湯負荷の関係によって、前記冷房優先又は前記給湯優先とすることを特徴とする冷凍サイクル装置。
  2. 前記室内ユニットの室内空気を計測する室内温度計測手段と、
    前記室内減圧機構と前記圧縮機の間の蒸発温度を検出する蒸発温度検出手段を備え、
    前記運転制御部は、さらに、
    前記冷房給湯同時運転モードの前記給湯優先時に、
    前記熱源減圧機構の開度を前記蒸発温度が蒸発温度目標となるように制御し、
    前記蒸発温度目標を、
    前記利用ユニットの前記室内温度と設定温度との差温が最大の差温に応じて設定することを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記熱源側ユニット内にある電子基板から発生する熱を放熱する放熱板と、前記放熱板の温度を検出する放熱板温度検出手段と、前記熱源側熱交換器の過熱度を検出する熱源側過熱度検出手段又は前記室内熱交換器の過熱度を検出する室内過熱度検出手段とを有し、
    前記運転制御部は、さらに、
    前記冷房給湯同時運転モードの前記冷房優先時に、
    前記放熱板温度を前記電子基板が破損しない温度である放熱板目標温度以下となるように前記熱源送風機の回転数を制御し、
    前記冷房給湯同時運転モードの前記給湯優先時に、
    前記放熱板温度が放熱板目標温度以下となり、かつ、前記熱源側過熱度が所定値以上もしくは前記室内過熱度が所定値以下のいずれか一つとなるように前記熱源送風機の回転数を制御することを特徴とする請求項1~2のいずれか1項に記載の冷凍サイクル装置。
  4. 前記運転制御部は、さらに、
    前記冷房給湯同時運転モードの前記給湯優先時で、前記熱源送風機が最大回転数である時に、
    前記熱源側熱交換器の過熱度が所定値以下の場合に、前記熱源側熱交換器の過熱度が所定値となるように前記熱源減圧機構の開度を制御するか、もしくは、前記室内熱交換器の過熱度が所定値以上の場合に、前記室内熱交換器の過熱度が所定値以下となるように前記熱源減圧機構の開度を制御することを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記水熱交換器の過冷却度を検出する過冷却度検出手段を備え、
    前記運転制御部は、さらに、
    前記冷房給湯同時運転モードの前記給湯優先時に、
    全ての前記室内減圧機構の開度が下限開度となった場合に、前記熱源減圧機構の開度を前記水熱交換器の過冷却度が所定値となるように制御することを特徴とする請求項1~4のいずれか1項に記載の冷凍サイクル装置。
  6. 前記制御装置は、さらに、
    冷房負荷のある前記室内ユニットの容量と給湯要求のある前記給湯ユニットの容量とを、通信により前記制御装置に入力することができる通信部を備え、
    前記運転制御部は、
    前記冷房給湯同時運転モードの制御モードを、前記空調優先から前記給湯優先に選択した場合に、前記室内ユニットの容量と前記給湯ユニットの容量と前記室内減圧機構の開度とから、前記熱源減圧機構の初期開度を決めることを特徴とする請求項1~5のいずれか1項に記載の冷凍サイクル装置。
  7.  前記運転制御部は、さらに、
     前記冷房給湯同時運転モードの前記制御モードが前記空調優先時、前記圧縮機の運転周波数が前記給湯優先の前記目標周波数よりも高い場合は、前記空調優先を実施し、
    前記制御モードが前記給湯優先時、前記熱源減圧機構の開度が下限開度で、前記蒸発温度が蒸発温度目標以上の場合は、前記圧縮機の運転周波数を前記蒸発温度が前記蒸発温度目標となるように制御することを特徴とする請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記運転制御部は、さらに、
    前記冷房給湯同時運転モードにおいて、前記冷房運転に対して前記室内ユニットを冷房サーモOFFとする前記差温を1℃以上低くし、前記室内ユニットの冷房サーモONとする前記差温を1℃以上高くすることを特徴とする請求項2~7のいずれか1項に記載の冷凍サイクル装置。
  9. 前記制御装置は、さらに、
     前記貯湯タンクの貯湯量を演算する貯湯量演算部を備え、
     前記運転制御部は、さらに、
     前記貯湯量によって、前記冷房給湯同時運転モードの制御モードである前記空調優先と前記給湯優先を選択し、かつ、前記給湯優先の場合には前記圧縮機の運転周波数の固定量を選択することを特徴とする請求項1~8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記制御モードの前記空調優先と前記給湯優先の切換えに関係する優先閾値切換え関係量と、前記給湯優先の前記圧縮機の前記運転周波数に関係する給湯優先運転切換え関係量とを表示する表示部と、
    前記優先閾値切換え関係量と前記給湯優先運転切換え関係量を入力する入力部とを有した給湯リモコンを備えた、ことを特徴とする請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  11. 前記運転制御部は、さらに、
    前記圧縮機からの冷媒を前記冷房負荷を有する前記室内ユニットの前記室内熱交換器に流す前記冷房運転と、前記圧縮機からの冷媒を前記給湯要求を有しない前記給湯ユニットの前記水熱交換器に流す第2給湯運転とを同時に実施する第2冷房給湯同時運転モードを有し、
    前記第2冷房給湯同時運転モードは、前記冷房優先の制御モードを有し、
    前記運転制御部は、さらに、
    前記冷房負荷があって前記給湯要求がない場合には、前記制御モードが前記冷房優先の前記第2冷房給湯時運転モードを実施し、前記冷房負荷があって前記給湯要求がある場合には、前記給湯優先の前記冷房給湯同時運転モードを実施することを特徴とする請求項1~10のいずれか1項に記載の冷凍サイクル装置。
  12.  前記冷房運転モードと前記第2冷房給湯同時運転モードの高圧を検出する高圧検出手段と、前記冷房運転モードの高圧を予測する冷房高圧予測手段と、前記第2冷房給湯同時運転モードの高圧を予測する第2冷房給湯高圧予測手段とを有し、
     前記制御装置は、さらに、
    前記冷房負荷があって前記給湯要求がない場合に前記第2冷房給湯同時運転モードを実施するか否かを判定する追加排熱回収判定部を備え、
     追加排熱回収判定部は、
    前記冷房運転モード時において、前記冷房運転モードの高圧に対して、前記冷房給湯同時運転モードの予測高圧の割合が高圧判定閾値以下の場合には、前記冷房運転モードから前記第2冷房給湯同時運転モードに変更し、前記第2冷房給湯同時運転時モードにおいて、前記冷房運転モードの予測高圧に対する前記第2冷房給湯同時運転モードの予測高圧の割合が前記高圧判定閾値以上の場合には、前記第2冷房給湯同時運転モードから前記冷房運転モードに変更することを特徴とする請求項11に記載の冷凍サイクル装置。
PCT/JP2012/001810 2012-03-15 2012-03-15 冷凍サイクル装置 WO2013136368A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/381,033 US9644876B2 (en) 2012-03-15 2012-03-15 Refrigeration cycle apparatus
JP2014504462A JP5865482B2 (ja) 2012-03-15 2012-03-15 冷凍サイクル装置
CN201280072396.XA CN104246395B (zh) 2012-03-15 2012-03-15 制冷循环装置
EP12871423.5A EP2829823B1 (en) 2012-03-15 2012-03-15 Refrigeration cycle apparatus
PCT/JP2012/001810 WO2013136368A1 (ja) 2012-03-15 2012-03-15 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001810 WO2013136368A1 (ja) 2012-03-15 2012-03-15 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2013136368A1 true WO2013136368A1 (ja) 2013-09-19

Family

ID=49160344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001810 WO2013136368A1 (ja) 2012-03-15 2012-03-15 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US9644876B2 (ja)
EP (1) EP2829823B1 (ja)
JP (1) JP5865482B2 (ja)
CN (1) CN104246395B (ja)
WO (1) WO2013136368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133956A (ja) * 2019-02-15 2020-08-31 株式会社コロナ 冷房排熱利用ヒートポンプ給湯機

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140260380A1 (en) * 2013-03-15 2014-09-18 Energy Recovery Systems Inc. Compressor control for heat transfer system
KR101488472B1 (ko) * 2013-08-23 2015-02-03 주식회사 경동나비엔 믹싱밸브를 이용한 배열환수온도 제어시스템 및 그 방법
US10088198B2 (en) * 2014-11-27 2018-10-02 Mitsubishi Electric Corporation Air-conditioning and hot water supplying composite system
JP6052380B2 (ja) * 2014-12-26 2016-12-27 ダイキン工業株式会社 蓄熱式空気調和機
TWI630361B (zh) * 2015-02-13 2018-07-21 旺矽科技股份有限公司 用於冷卻工作流體之適應性溫度控制系統
CN106016741B (zh) * 2016-06-02 2018-09-28 珠海格力电器股份有限公司 一种热泵热水机组的性能提升方法
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置
EP3299738A1 (en) * 2016-09-23 2018-03-28 Daikin Industries, Limited System for air-conditioning and hot-water supply
DE112017007594T5 (de) * 2017-06-01 2020-03-12 Mitsubishi Electric Corporation Klimatisierungssystem
CN107178944B (zh) * 2017-07-13 2019-12-13 上海三菱电机·上菱空调机电器有限公司 一种防止空调器排气过热度过小的方法及空调器控制系统
US20220057122A1 (en) * 2019-03-06 2022-02-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN110961017B (zh) * 2019-11-26 2022-09-20 浙江嘉华特种尼龙有限公司 全自动纺丝乳化油供给系统
CN113124531A (zh) * 2019-12-30 2021-07-16 青岛海尔空调电子有限公司 用于自动切换冷水机组的运行模式的控制方法
CN111692637B (zh) * 2020-06-18 2021-08-20 广东美的制冷设备有限公司 控制方法、控制装置、空调系统和计算机可读存储介质
CN112524836B (zh) * 2020-12-17 2022-07-08 广东积微科技有限公司 一种三管制多联机系统及其控制方法
CN112594871B (zh) * 2020-12-31 2022-02-08 广东积微科技有限公司 一种具有双四通阀多功能多联机系统的化霜控制方法
CN113007867A (zh) * 2021-02-09 2021-06-22 珠海格力电器股份有限公司 一种多联机空调系统的控制方法
CN114992868B (zh) * 2022-01-17 2024-01-05 青岛海尔新能源电器有限公司 热泵热水器控制方法、热泵热水器及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596876A (en) * 1979-01-18 1980-07-23 Matsushita Electric Ind Co Ltd Cooling* heating and hot water supply equipment
JPS61107066A (ja) * 1984-10-30 1986-05-24 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPS61235658A (ja) * 1985-04-11 1986-10-20 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPH01281378A (ja) * 1988-05-06 1989-11-13 Daikin Ind Ltd ヒートポンプ式冷房給湯機
JP2000111181A (ja) * 1998-10-02 2000-04-18 Matsushita Refrig Co Ltd ヒートポンプ式冷温水発生装置
JP2007232265A (ja) 2006-02-28 2007-09-13 Daikin Ind Ltd 冷凍装置
JP2008138954A (ja) 2006-12-04 2008-06-19 Daikin Ind Ltd 冷凍装置
WO2009028043A1 (ja) * 2007-08-28 2009-03-05 Mitsubishi Electric Corporation 空気調和装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200142A (ja) * 1983-04-26 1984-11-13 Matsushita Electric Ind Co Ltd ヒ−トポンプ給湯暖冷房機
US4940079A (en) * 1988-08-11 1990-07-10 Phenix Heat Pump Systems, Inc. Optimal control system for refrigeration-coupled thermal energy storage
GB2230873B (en) * 1989-02-27 1993-10-06 Toshiba Kk Multi-system air conditioning machine
US6109339A (en) * 1996-07-15 2000-08-29 First Company, Inc. Heating system
JP2001248937A (ja) * 2000-03-08 2001-09-14 Toshiba Kyaria Kk ヒートポンプ給湯エアコン
JP4287677B2 (ja) * 2003-03-11 2009-07-01 日立アプライアンス株式会社 冷凍サイクル装置
US8234876B2 (en) * 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
US7152413B1 (en) * 2005-12-08 2006-12-26 Anderson R David Thermal energy transfer unit and method
US7363772B2 (en) * 2004-08-18 2008-04-29 Ice Energy, Inc. Thermal energy storage and cooling system with secondary refrigerant isolation
US8172153B1 (en) * 2004-12-30 2012-05-08 Kennedy Metal Products & Buildings, Inc. Energy usage control for a building
JP2006283989A (ja) 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム
US7895850B2 (en) * 2005-04-15 2011-03-01 Comforture, L.P. Modulating proportioning reversing valve
CA2574996A1 (en) * 2005-06-03 2006-12-07 Springer Carrier Ltda Heat pump system with auxiliary water heating
US8056348B2 (en) * 2005-06-03 2011-11-15 Carrier Corporation Refrigerant charge control in a heat pump system with water heater
KR100634810B1 (ko) * 2005-07-12 2006-10-16 엘지전자 주식회사 열병합 발전 시스템
KR100971060B1 (ko) * 2005-10-18 2010-07-20 캐리어 코포레이션 물 가열을 위한 절약형 냉매 증기 압축 시스템
US8074459B2 (en) * 2006-04-20 2011-12-13 Carrier Corporation Heat pump system having auxiliary water heating and heat exchanger bypass
WO2009102975A2 (en) * 2008-02-15 2009-08-20 Ice Energy, Inc. Thermal energy storage and cooling system utilizing multiple refrigerant and cooling loops with a common evaporator coil
US8166773B2 (en) * 2008-10-08 2012-05-01 Venturedyne, Ltd. Refrigeration capacity banking for thermal cycling
US8146375B2 (en) * 2009-03-10 2012-04-03 Thermo King Corporation Hydrocooler with thermal storage
KR101280381B1 (ko) * 2009-11-18 2013-07-01 엘지전자 주식회사 히트 펌프
EP2503266B1 (en) * 2009-11-18 2018-10-24 Mitsubishi Electric Corporation Refrigeration cycle device and information propagation method adapted thereto
US9068766B2 (en) 2010-04-05 2015-06-30 Mitsubishi Electric Corporation Air-conditioning and hot water supply combination system
WO2011130162A2 (en) * 2010-04-12 2011-10-20 Drexel University Heat pump water heater
US9212834B2 (en) * 2011-06-17 2015-12-15 Greener-Ice Spv, L.L.C. System and method for liquid-suction heat exchange thermal energy storage
US8756943B2 (en) * 2011-12-21 2014-06-24 Nordyne Llc Refrigerant charge management in a heat pump water heater
US9383126B2 (en) * 2011-12-21 2016-07-05 Nortek Global HVAC, LLC Refrigerant charge management in a heat pump water heater
US9127851B2 (en) * 2012-06-28 2015-09-08 Yixin Yang Heating and cooling system including a heat pump and a heat storage tank
US9181939B2 (en) * 2012-11-16 2015-11-10 Emerson Climate Technologies, Inc. Compressor crankcase heating control systems and methods
US9182142B2 (en) * 2013-02-07 2015-11-10 General Electric Company Method for operating an HVAC system
US9405304B2 (en) * 2013-03-15 2016-08-02 A. O. Smith Corporation Water heater and method of operating a water heater
US9416987B2 (en) * 2013-07-26 2016-08-16 Honeywell International Inc. HVAC controller having economy and comfort operating modes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596876A (en) * 1979-01-18 1980-07-23 Matsushita Electric Ind Co Ltd Cooling* heating and hot water supply equipment
JPS61107066A (ja) * 1984-10-30 1986-05-24 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPS61235658A (ja) * 1985-04-11 1986-10-20 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPH01281378A (ja) * 1988-05-06 1989-11-13 Daikin Ind Ltd ヒートポンプ式冷房給湯機
JP2000111181A (ja) * 1998-10-02 2000-04-18 Matsushita Refrig Co Ltd ヒートポンプ式冷温水発生装置
JP2007232265A (ja) 2006-02-28 2007-09-13 Daikin Ind Ltd 冷凍装置
JP2008138954A (ja) 2006-12-04 2008-06-19 Daikin Ind Ltd 冷凍装置
WO2009028043A1 (ja) * 2007-08-28 2009-03-05 Mitsubishi Electric Corporation 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133956A (ja) * 2019-02-15 2020-08-31 株式会社コロナ 冷房排熱利用ヒートポンプ給湯機
JP7265368B2 (ja) 2019-02-15 2023-04-26 株式会社コロナ 冷房排熱利用ヒートポンプ給湯機

Also Published As

Publication number Publication date
JPWO2013136368A1 (ja) 2015-07-30
EP2829823A4 (en) 2015-12-09
US20150040595A1 (en) 2015-02-12
CN104246395A (zh) 2014-12-24
JP5865482B2 (ja) 2016-02-17
EP2829823B1 (en) 2019-07-17
EP2829823A1 (en) 2015-01-28
US9644876B2 (en) 2017-05-09
CN104246395B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5865482B2 (ja) 冷凍サイクル装置
JP5642207B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP5228023B2 (ja) 冷凍サイクル装置
JP5121908B2 (ja) 冷房給湯装置
JP6058032B2 (ja) ヒートポンプシステム
US9377224B2 (en) Heat pump apparatus and control method for heat pump apparatus
JP5674572B2 (ja) 空気調和機
EP2375188B1 (en) Air conditioner
JP6545375B2 (ja) ヒートポンプ式空調給湯装置
AU2008310483A1 (en) Air conditioner
JP6129520B2 (ja) マルチ型空気調和機及びマルチ型空気調和機の制御方法
JPWO2012164684A1 (ja) 温度調節システム及び空気調和システム及び制御方法
EP2378223B1 (en) Complex system for air conditioning and hot water supplying
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6589946B2 (ja) 冷凍装置
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
CN113645809B (zh) 冷却装置、空调系统和冷却装置的控制方法
JP2005016881A (ja) 空気調和装置
JPWO2018055739A1 (ja) 空気調和装置
WO2023203745A1 (ja) 空気調和装置、および空気調和方法
EP4310416A1 (en) Hybrid multi-air conditioning system
JP2013181730A (ja) ヒートポンプ式給湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012871423

Country of ref document: EP