JP6058032B2 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
JP6058032B2
JP6058032B2 JP2014555407A JP2014555407A JP6058032B2 JP 6058032 B2 JP6058032 B2 JP 6058032B2 JP 2014555407 A JP2014555407 A JP 2014555407A JP 2014555407 A JP2014555407 A JP 2014555407A JP 6058032 B2 JP6058032 B2 JP 6058032B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
opening
heating
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014555407A
Other languages
English (en)
Other versions
JPWO2014106895A1 (ja
Inventor
章吾 玉木
章吾 玉木
亮 大矢
亮 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6058032B2 publication Critical patent/JP6058032B2/ja
Publication of JPWO2014106895A1 publication Critical patent/JPWO2014106895A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0214Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being used parallel to the indoor unit during heating operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Description

本発明は、暖房運転及び給湯運転を同時に実行することができるヒートポンプシステムに関し、特に室内ユニットの暖房能力と給湯ユニットの給湯能力を同時に制御するヒートポンプシステムに関するものである。
従来から、熱源ユニットに対して、室内ユニットと給湯ユニットを配管接続し、室内暖房と給湯を1つのシステムにおいて同時に運転可能とするように冷凍サイクルを構成したヒートポンプシステムがある。このようなヒートポンプシステムでは、1つのシステムにて暖房と給湯を実施することができるため、設置スペースを小さくできる。加えて、暖房と給湯の同時運転が可能であるため、室内を暖房中であったとしても、暖房を止めないで給湯動作を行うことができる(例えば、特許文献1、2参照)。
しかしながら、従来のヒートポンプシステムでは、室内ユニットによる暖房と給湯ユニットによる給湯を同時に実施するため、熱源ユニットの能力が不足してしまい、室内の不暖、もしくは給湯能力不足で湯切れとなる可能性があった。そのため、従来から、機器制御により給湯能力と暖房能力の配分を制御する試みが実施されてきた。
特開2010―196955号公報(14−17頁、図5等) 特開2006―105434号公報(10―11頁、図1等)
特許文献1に記載されているヒートポンプシステムでは、まず、室内の目標設定温度Toから室内空気温度Trを差し引いて温度差Txを算出する。そして、温度差Txが所定値Ta以上である場合は、暖房能力が必要であると判断し、給湯側の減圧機構(第1利用側流量調整弁42a)の開度を小さくして暖房能力を確保する。一方、温度差Txが所定値Ta未満である場合は、暖房能力は不要であるとして暖房側の減圧機構(第2利用側流量調整弁102a)の開度を小さくして給湯能力を確保する。
このように、特許文献1のヒートポンプシステムでは、温度差Txに基づいて、給湯能力と暖房能力の配分を制御するため、給湯ユニットと室内ユニットの運転能力の総和が熱源ユニットの暖房定格容量を超過してしまう可能性を抑制できる。
また、特許文献2に記載されているヒートポンプシステムでは、運転開始時は暖房能力を優先する。そして、室内温度が上昇して暖房負荷が減少してきたと判断した場合は、暖房側の減圧機構(暖房側流量調整弁26)を同時運転開始当初の弁開度よりも1段階小さい弁開度に制御する。一方、給湯側の減圧機構(貯湯側流量調整弁27)を同時運転開始当初よりも1段階大きい弁開度に制御する。
このように、特許文献2のヒートポンプシステムでは、暖房側の負荷の変動に応じて、暖房側と給湯側の減圧機構の弁開度をそれぞれ調整する。こうすることによって、圧縮機の能力を能力余裕側から能力不足側へ移行させる配分調整が可能となり、暖房と給湯のそれぞれの状況に対応した能力配分を実行している。
しかしながら、特許文献1、2のヒートポンプシステムでは、能力配分を目的とした制御動作となっているだけで、冷媒状態を制御する動作がなかった。そのため、例えば、暖房側と給湯側の減圧機構のトータル開度が小さいと暖房側及び給湯側の液側の過冷却度が過度に大きくなり、運転効率低下と高圧過昇によって圧縮機の運転周波数を低くしなければならなかった。その結果、運転効率の低下をもたらしていた。
また、給湯能力を確保するために暖房側の減圧機構を小さくするため、特に、高水温時の給湯の場合に、暖房側のSC(サブクール(が過度に大きくなる状態となり、結果として、冷媒不足による低圧低下と吐出温度の上昇を招くことになっていた。この状況もまた、圧縮機の運転周波数を低くしなければならなくなり、熱源ユニットの能力低下及び運転効率の低下をもたらしていた。
暖房と給湯の同時運転では室内温調と同時に湯の沸き上げを実施するため、湯切れ回避の狙いから熱源ユニットの出力する能力である熱源能力をできるだけ大きくして、給湯能力をできるだけ大きくしたい。このことは、暖房負荷が大きい場合でも給湯能力を確保できるので、その面からも非常に重要なことである。ただし、熱源能力を最大とするためには、暖房と給湯の同時運転であったとしても運転状態を適切に制御できることが非常に重要となる。
ところが、給湯では特に水温が室内温度に対して高温となる場合(例えば室内温度が20℃に対して水温55℃)がしばしばある。このような場合に、給湯能力を大きくしようとすると室内側と給湯側の冷媒状態を所望の状態に制御することが難しくなってしまう。そのため、従来技術では熱源能力を最大にすることができず、給湯完了までに時間がかかり、又は不暖となって室内快適性が損なわれる結果となっていた。
本発明は、上記のような課題を解決するためになされたものであり、暖房能力と給湯能力のあらゆる負荷バランスにおいても熱源能力と運転効率の最大化を実現するヒートポンプシステムを提供することを目的とするものである。
本発明に係るヒートポンプシステムは、圧縮機と、室内側熱交換器と、給湯側熱交換器と、室内側減圧機構と、給湯側減圧機構と、熱源側熱交換器と、を有し、前記室内側熱交換器と前記室内側減圧機構とが直列に接続された流路と、前記給湯側熱交換器と前記給湯側減圧機構とが直列に接続された流路と、が並列に接続されて、前記圧縮機及び前記熱源側熱交換器とともに冷媒回路を構成しており、前記室内側熱交換器で空気を加熱する暖房負荷と、前記給湯側熱交換器で水を加熱する給湯負荷と、が同時に要求された際、前記室内側減圧機構の開度が前記給湯側減圧機構の開度よりも大きい暖房優先モードと、前記給湯側減圧機構の開度が前記室内側減圧機構の開度よりも大きい給湯優先モードと、を有し、前記室内側減圧機構の開度及び前記給湯側減圧機構の開度に基づいて、前記暖房優先モードでは、前記室内側熱交換器の過冷却度が調整され、前記給湯優先モードでは、前記給湯側熱交換器の過冷却度又は前記圧縮機の吐出温度のどちらか一方が調整され、暖房能力と給湯能力の割合は、前記室内側減圧機構の開度と前記給湯側減圧機構の開度のトータル減圧機構開度に対する前記室内側減圧機構の開度と前記トータル減圧機構開度に対する前記給湯側減圧機構の開度とで決まる暖房給湯開度比により制御され、前記暖房給湯開度比は前記暖房負荷によって決定されるものである。
また、本発明に係るヒートポンプシステムは、圧縮機と、室内側熱交換器と、給湯側熱交換器と、室内側減圧機構と、給湯側減圧機構と、熱源側熱交換器と、を有し、前記室内側熱交換器と前記室内側減圧機構とが直列に接続された流路と、前記給湯側熱交換器と前記給湯側減圧機構とが直列に接続された流路と、が並列に接続されて、前記圧縮機及び前記熱源側熱交換器とともに冷媒回路を構成しており、前記室内側熱交換器で空気を加熱する暖房負荷と、前記給湯側熱交換器で水を加熱する給湯負荷と、が同時に要求された際、前記室内側減圧機構の開度が前記給湯側減圧機構の開度よりも大きい暖房優先モードと、前記給湯側減圧機構の開度が前記室内側減圧機構の開度よりも大きい給湯優先モードと、を有し、前記室内側減圧機構の開度及び前記給湯側減圧機構の開度に基づいて、前記暖房優先モードでは、前記室内側熱交換器の過冷却度が調整され、前記給湯優先モードでは、前記給湯側熱交換器の過冷却度又は前記圧縮機の吐出温度のどちらか一方が調整され、暖房能力と給湯能力の割合は、前記室内側減圧機構の開度と前記給湯側減圧機構の開度のトータル減圧機構開度に対する前記室内側減圧機構の開度と前記トータル減圧機構開度に対する前記給湯側減圧機構の開度とで決まる暖房給湯開度比により制御され、前記トータル減圧機構開度を変更する場合は、前記暖房給湯開度比によって、前記室内側減圧機構の開度の変更量と前記給湯側減圧機構の開度の変更量が決定されるものである。
本発明に係るヒートポンプシステムによれば、暖房優先モード又は給湯優先モードを有し、暖房優先モードの際には室内側熱交換器の過冷却度を制御し、給湯優先モードの際には給湯側熱交換器の過冷却度又は圧縮機の吐出温度を制御するようにしたので、暖房能力と給湯能力のあらゆる負荷バランスに対して熱源ユニットの能力及び運転効率の最大化を実現することができる。
本発明の実施の形態1に係るヒートポンプシステムの冷媒回路構成を示す概略図である。 本発明の実施の形態1に係るヒートポンプシステムの制御装置の電気的な構成を示すブロック図である。 本発明の実施の形態1に係るヒートポンプシステムの暖房給湯同時運転時における優先モードの決定方法の処理の流れを示すフローチャート図である。 本発明の実施の形態1に係るヒートポンプシステムのトータル減圧機構開度の制御方法の処理の流れ示すフローチャートである。 本発明の実施の形態1に係るヒートポンプシステムの暖房優先モードでの運転状態を示した概略図である。 本発明の実施の形態1に係るヒートポンプシステムの給湯優先モードでの低水温時における運転状態を示した概略図である。 本発明の実施の形態1に係るヒートポンプシステムの給湯優先モードでの高水温時における運転状態を示した概略図である。 本発明の実施の形態2に係るヒートポンプシステムの冷媒回路構成を示す概略図である。
以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係るヒートポンプシステム100(以下、単にシステム100と称する)の冷媒回路構成を示す概略図である。図2は、システム100の制御装置101の電気的な構成を示すブロック図である。図1及び図2に基づいて、システム100の構成について説明する。
システム100は、蒸気圧縮式の冷凍サイクル運転を行うことによって、室内ユニット302による暖房指令(暖房ON/OFF)と、給湯ユニット303による給湯指令(給湯ON/OFF)とを同時に処理することができるものである。つまり、システム100は、室内ユニット302の暖房能力と給湯ユニット303の給湯能力を同時に制御することができる。
[システム100の機器構成]
システム100は、熱源ユニット301と、室内ユニット302と、給湯ユニット303と、を有している。熱源ユニット301と室内ユニット302とは、冷媒配管である室内側ガス延長配管4と冷媒配管である室内側液延長配管7とで接続されている。熱源ユニット301と給湯ユニット303とは、冷媒配管である水側ガス延長配管9と冷媒配管である水側液延長配管11とで接続されている。
なお、実施の形態1では、図1に示すように、1台の熱源ユニット301に、1台の室内ユニット302、1台の給湯ユニット303を接続した場合について説明するが、各ユニットの台数を特に限定するものではない。例えば、2台以上の熱源ユニット301、2台以上の室内ユニット302、及び2台以上の給湯ユニット303を接続した場合についても同様に実施することができる。また、システム100に用いられる冷媒は、特に限定しない。例えば、R410A、R407C、R404A、R32などのHFC(ハイドロフルオロカーボン)冷媒、R22、R134aなどのHCFC(ハイドロクロロフルオロカーボン)冷媒、もしくは炭化水素やヘリウム、二酸化炭素等のような自然冷媒などをシステム100の冷媒として用いることができる。
(熱源ユニット301)
熱源ユニット301は、圧縮機1と、吐出電磁弁2a,2bと、四方弁3と、室内側減圧機構8と、給湯側減圧機構12と、熱源側熱交換器13と、熱源側送風機14と、アキュムレータ15と、を有している。そして、圧縮機1、吐出電磁弁2a,2b、四方弁3、室内側減圧機構8、給湯側減圧機構12、熱源側熱交換器13、アキュムレータ15が、配管接続されて冷媒回路の一部を構成している。ただし、四方弁3、熱源側送風機14、アキュムレータ15は、必須なものではない。
圧縮機1は、インバータにより回転数が制御され、容量制御を可能とするタイプであり、冷媒を吸入、圧縮して高温高圧状態とするものである。圧縮機1に接続している吐出側配管は、途中で分岐されており、一方が吐出電磁弁2aを介して室内側ガス延長配管4に、他方が吐出電磁弁2bを介して水側ガス延長配管9に、それぞれ接続されている。
吐出電磁弁2a、2bは、冷媒流路を開閉することで冷媒の流れを制御するものである。吐出電磁弁2aは、圧縮機1の吐出側で分岐され、室内側ガス延長配管4に接続する配管に設置されている。吐出電磁弁2bは、圧縮機1の吐出側で分岐され、水側ガス延長配管9に接続する配管に設置されている。
四方弁3は、冷媒の流れ方向を制御するものである。四方弁3は、吐出電磁弁2aの下流側に設置されている。なお、冷媒の流れ方向が一定のものである場合、四方弁3は設置しなくてもよい。
熱源側熱交換器13は、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、外気等の熱媒体と冷媒との熱交換を行うものである。熱源側熱交換器13は、暖房運転時には蒸発器、冷房運転時には凝縮器として機能する。
熱源側送風機14は、DCモータ(図示せず)によって駆動される遠心ファンや多翼ファン等から構成されており、送風量を調整することが可能なものである。熱源側送風機14は、熱源ユニット301内に室外空気を吸入して、熱源側熱交換器13にて冷媒と熱交換させた後に、その空気を室外に排出するようになっている。熱源側送風機14は、熱源側熱交換器13の近傍に設置するとよい。なお、熱源側熱交換器13が、空気−冷媒熱交換器でない場合には、熱源側送風機14を設置しなくてもよい。
室内側減圧機構8は、冷媒を減圧して膨張させ、冷媒流量を調整するものである。この室内側減圧機構8は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段で構成するとよい。室内側減圧機構8は、熱源側熱交換器13と室内側熱交換器5とを接続している室内側液延長配管7に設置されている。
給湯側減圧機構12は、冷媒を減圧して膨張させ、冷媒流量を調整するものである。この給湯側減圧機構12は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段で構成するとよい。給湯側減圧機構12は、熱源側熱交換器13と水側熱交換器10とを接続している水側液延長配管11に設置されている。
アキュムレータ15は、圧縮機1の吸入側に設けられ、システム100に異常が発生した時や運転制御の変更の際に伴う運転状態の過渡応答時において、液冷媒を貯留して圧縮機1への液バックを防ぐ機能を有している。なお、アキュムレータ15は、必須のものではない。
また、熱源ユニット301には、圧力センサ201、温度センサ202、温度センサ206、温度センサ207が設けられている。
圧力センサ201は、圧縮機1の吐出側に設けられ、設置場所の冷媒圧力を計測するものである。
温度センサ202は、圧縮機1の吐出側に設けられ、設置場所の冷媒温度を計測するものである。
温度センサ206は、熱源側熱交換器13の液側に設けられ、設置場所の冷媒温度を計測するものである。
温度センサ207は、空気吸込口に設けられており、熱源側送風機14に取り込まれる外気の温度を計測するものである。
さらに、熱源ユニット301には、制御装置101が設けられており、熱源ユニット301に設けられている各センサで計測された情報は、制御装置101に送られるようになっている。なお、制御装置101については、後段で詳細に説明する。
(室内ユニット302)
室内ユニット302は、室内側熱交換器5と、室内側送風機6と、を有している。
室内側熱交換器5は、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、室内空気と冷媒との熱交換を行うものである。室内側熱交換器5は、暖房運転時には凝縮器、冷房運転時には蒸発器として機能する。
室内側送風機6は、DCモータ(図示せず)によって駆動される遠心ファンや多翼ファン等から構成されており、送風量を調整することが可能なものである。室内側送風機6は、室内ユニット302内に室内空気を吸入して、室内側熱交換器5にて冷媒と熱交換させた後に、その空気(調和空気)を室内に吹出すようになっている。
また、室内ユニット302には、温度センサ203、温度センサ204が設けられている。
温度センサ203は、室内側熱交換器5の液側に設けられ、設置場所の冷媒温度を計測するものである。
温度センサ204は、室内空気の吸入口側に設けられ、室内ユニット302内に流入する室内空気の温度を計測するものである。
室内ユニット302に設けられている各センサで計測された情報は、制御装置101に送られるようになっている。
(給湯ユニット303)
給湯ユニット303は、水側熱交換器10と、水ポンプ16と、コイル熱交換器17と、貯湯タンク18と、を有している。そして、水ポンプ16、水側熱交換器10、コイル熱交換器17が配管接続されて水回路を構成している。また、コイル熱交換器17を貯湯タンク18に設置することで、貯湯タンク18に貯湯される水を沸き上げるようになっている。さらに、水回路には、熱交換媒体である水が中間水として循環する。
水側熱交換器10は、たとえばプレート形水熱交換器により構成され、中間水と冷媒を熱交換させて中間水を加熱するものである。水側熱交換器10は、給湯運転時に凝縮器として機能する。
水ポンプ16は、たとえば回転数が一定速、もしくはインバータで可変にできるもので構成され、水側回路に中間水を循環させるものである。
コイル熱交換器17は、貯湯タンク18内に設置されており、貯湯タンク18の貯湯水と水回路を循環する中間水との間で熱交換させ、貯湯水を加熱して湯を生成するものである。
貯湯タンク18は、沸きあげられた湯を貯留するものである。貯湯タンク18は、満水式であり、出湯要求に応じてタンク上部より湯が出水し、出水した量だけ低温の市水がタンク下部より給水されるようになっている(図示せず)。
水側回路の運転状態について説明する。
給湯ユニット303にて水ポンプ16により送水された中間水は、水側熱交換器10で冷媒により加熱され高温となる。その後、加熱された高温水は、貯湯タンク18内のコイル熱交換器17に流入し、貯湯水を加熱して温度が低下する。その後、貯湯タンク18のコイル熱交換器17を流出し、水ポンプ16に流れ、再送水されて水側熱交換器10にて温水となる。このようなプロセスにて貯湯タンク18の湯が沸き上げられる。
なお、給湯ユニット303による貯湯タンク18の水の加熱方法は実施の形態1のような中間水による熱交換方式に限定されず、貯湯タンク18の水を直接配管に流して、水側熱交換器10にて熱交換をさせて温水とし、再び貯湯タンク18に戻す加熱方法にしてもよい。
また、給湯ユニット303には、温度センサ205、温度センサ208が設けられている。
温度センサ205は、水側熱交換器10の液側に設けられ設置場所の冷媒温度を計測するものである。
温度センサ208は、貯湯タンク18の側面に設置され、設置位置高さの貯湯タンク18内の水温を計測するものである。
給湯ユニット303に設けられている各センサで計測された情報は、制御装置101に送られるようになっている。
(制御装置101)
図2には、システム100の制御を行う制御装置101、制御装置101に接続されるリモコン102、各センサ及びアクチュエータ(圧縮機1、四方弁3、吐出電磁弁2a,2b、室内側減圧機構8、給湯側減圧機構12、熱源側送風機14、室内側送風機6、水ポンプ16等)の接続状態を示している。また、制御装置101は、測定部103、制御部104、通信部105、記憶部106を内蔵している。
各種温度センサ、圧力センサによって検知された各諸量は、制御装置101の測定部103に入力される。測定部103に入力された情報は制御部104に送られる。
制御部104は、測定部103に入力された情報に基づき、圧縮機1、吐出電磁弁2a、2b、四方弁3、熱源側送風機14、室内側減圧機構8、給湯側減圧機構12、室内側送風機6、水ポンプ16を制御するようになっている。
通信部105は、電話回線、LAN回線、無線などの通信手段からの通信データ情報が入力されたり、リモコン102と情報の入出力を行ったりするようになっている。
記憶部106は、予め定められた定数やリモコン102から送信される設定値を記憶するようになっている。記憶部106に記憶されている記憶内容は、必要に応じて参照、書き換えることが可能になっている。
測定部103、制御部104、及び、通信部105はマイコンにより構成され、記憶部106は半導体メモリなどによって構成される。制御装置101は、熱源ユニット301に配置されているが、図1では単に設置場所の一例を示しているに過ぎない。制御装置101が配置場所は、特に限定されない。例えば、制御装置101を室内ユニット302、給湯ユニット303に設置してもよいし、各ユニットとは別の場所に設置してもよい。
(リモコン102)
システム100は、システム100とユーザーとの間で情報の入出力を行うためのユーザーインターフェース装置であるリモコン102を有している。リモコン102には、入力部107、表示部108が内蔵されている。
入力部107は、ユーザーからの指示を受け付けるものであり、例えば冷房ON/OFF、暖房ON/OFF、給湯ON/OFFの選択を受け付けたり、室内設定温度、沸き上げ温度の入力を受け付けたりすることができる。また、貯湯タンク18の壁側面に設置されている温度センサ208の検出温度が所定値以下(例えば45℃以下)となった場合には、自動的に給湯ONと入力部107に入力されるようになっている。
表示部108は、現在のシステム100の運転モードや、暖房給湯同時運転での優先運転モードを表示するものである。
[システム100の運転モード]
<暖房給湯同時運転モード>
システム100は、リモコン102を介して入力された暖房ON及び給湯ONを同時に処理することが可能なものであり、暖房給湯同時運転を実施することができる。以下に暖房給湯同時運転モード時の冷媒流れ状態及び各機器の制御について説明する。
暖房給湯同時運転モードでは、四方弁3は、圧縮機1の吐出側を室内側熱交換器5のガス側と接続し、吸入側を熱源側熱交換器13のガス側に接続する。また、吐出電磁弁2aは開路、吐出電磁弁2bは開路となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2a又は吐出電磁弁2bに流れる冷媒に分配される。吐出電磁弁2aを流れる冷媒は、四方弁3を経由して室内側ガス延長配管4を流れ、室内側熱交換器5に流入する。室内側熱交換器5に流入した冷媒は、室内側送風機6によって供給される室内空気を加熱して、室内側熱交換器5から流出する。その後、室内側液延長配管7を経由して、室内側減圧機構8により減圧され、吐出電磁弁2bを流れた冷媒と合流する。
一方、吐出電磁弁2bを流れる冷媒は、水側ガス延長配管9を経由して水側熱交換器10に流入する。水側熱交換器10に流入した冷媒は、水ポンプ16によって供給される中間水を加熱する。この冷媒は、水側熱交換器10から流出し、水側液延長配管11を経由して、給湯側減圧機構12により減圧され、吐出電磁弁2aを流れた冷媒と合流する。
吐出電磁弁2a及び吐出電磁弁2bを流れた冷媒は、合流後、熱源側熱交換器13に流入する。熱源側熱交換器13に流入した冷媒は、熱源側送風機14によって供給される室外空気と熱交換を行ない、低圧ガス冷媒となる。この冷媒は、熱源側熱交換器13から流出した後、四方弁3を経由して、アキュムレータ15を通過後、再び圧縮機1に吸入される。
システム100では、給湯ONの状態では湯切れ防止を優先して圧縮機1の運転周波数を最大固定とする。また、システム100では、圧縮機1の運転周波数を最大とすると多量の冷媒が熱源側熱交換器13に流れるため、熱源側送風機14の回転数も最大回転数固定とする。さらに、システム100では、室内側送風機6の回転数を利用者のリモコン102に入力される指令値に固定する。またさらに、システム100では、水ポンプ16の回転数を所定の回転数に固定する。
(室内温度による暖房給湯開度比制御)
次に、室内側減圧機構8及び給湯側減圧機構12の制御について説明する。システム100では、室内側減圧機構8及び給湯側減圧機構12の個別開度を暖房負荷によって制御することで、暖房負荷に応じた暖房能力と給湯能力の能力配分を実現している。具体的には以下のようにして制御する。
室内温度Taを所定時間ごとに計測し、室内温度の現在値Ta1と室内設定温度Toとの差温である室内差温dTset(dTset=To―Ta1)を演算する。また、室内温度の現在値Ta1と前回値Taoとの差である室内温度変化dtTa(Ta1−Ta0)を演算する。なお、室内温度は、温度センサ204の検出温度である。以下に、例えば、室内側減圧機構8の開度と給湯側減圧機構12の開度との開度比である暖房給湯開度比を5:5、トータル減圧機構開度を480p(480pulse)とした例を示す。
(1)dTset≧0かつdtTa≧0の場合
この場合、室内温度が室内設定温度以上かつ室内温度が上昇しているため、暖房給湯開度比を4:6として、室内側減圧機構8を480×4/10=192p、給湯側減圧機構12を480×6/10=288pとする。こうすることで、暖房能力を減少させて給湯能力を上昇させる。
(2)dTset≧0かつdtTa<0の場合
この場合、室内温度は室内設定温度以上だが室内温度が下降しているため、暖房給湯開度比は5:5のままとする。
(3)dTset<0かつdtTa≧0の場合
この場合、室内温度は室内設定温度未満だが室内温度が上昇しているため、暖房給湯開度比は5:5のままとする。
(4)dTset<0かつdtTa<0の場合
この場合。室内温度は室内設定温度未満かつ室内温度も下降しているため、暖房給湯開度比を6:4として、室内側減圧機構8を288p、給湯側減圧機構12を192pとする。こうすることで、暖房能力を増加させて給湯能力を減少させる。
以上のようにして、室内差温と室内温度変化の情報を用いることで暖房負荷を予測し、制御に反映することが可能なる。こうすることによって、システム100では、熱源能力が過度に暖房側もしくは給湯側に偏ることがなくなり、暖房負荷に応じた適切な暖房能力と給湯能力の配分を実現することができる。
(優先モードの判定とトータル減圧機構開度制御)
暖房給湯開度比によって暖房能力と給湯能力の配分は制御できるようになったが、これだけだと冷媒状態をコントロールしていない。そのため、高圧上昇や低圧低下をもたらすことがあり、運転効率が低下する可能性がある。そのため、システム100では、室内側減圧機構8の開度と給湯側減圧機構12の開度の合計であるトータル減圧機構開度を冷媒の運転状態により制御することで運転効率の最大化を図るようにしている。トータル減圧機構開度を制御することで実現する目標運転状態は、給湯能力と暖房能力のどちらを大きくしたいかにより異なる。加えて、運転状態により決める。この二つの要因から最適な制御目標と目標状態を選定し制御する。なお、給湯能力と暖房能力のどちらを大きくしたいかは優先モードを判定し、選択する。
図3は、システム100の暖房給湯同時運転時における優先モードの決定方法の処理の流れを示すフローチャート図である。図3に基づいて、システム100の暖房給湯同時運転時における優先モードの決定方法について説明する。なお、図3に示すフローチャートの制御主体は、制御装置101である。
まず、ステップS1にて運転モードが暖房給湯同時運転モードであるかどうかを判定する。運転モードが暖房給湯同時運転モードであると判定すると、ステップS2にて室内側減圧機構8の開度Sjiと給湯側減圧機構の開度Sjwを取得する。ステップS3にて室内側減圧機構8の開度Sjiが給湯側減圧機構の開度Sjw以上であるかどうかを判定する。SjiがSjw以上でありと判定すると、暖房負荷が大きく、暖房能力を給湯能力以上としたい状況であると判定し、ステップS4にて優先モードを暖房優先モードと判定する。
一方、SjiがSjw未満であると判定すると、暖房負荷が小さく、給湯能力を暖房能力より大きくしたい状況であると判定し、ステップS5にて優先モードを給湯優先モードと判定する。以上のようにして優先モードを判定する。そのため、目標運転状態を決定できるようになる。
図4は、システム100のトータル減圧機構開度の制御方法の処理の流れ示すフローチャートである。図5は、システム100の暖房優先モードでの運転状態を示した概略図である。図6は、システム100の給湯優先モードでの低水温時における運転状態を示した概略図である。図7は、システム100の給湯優先モードでの高水温時における運転状態を示した概略図である。図4〜図7に基づいて、トータル減圧機構開度の制御方法について説明する。なお、図4に示すフローチャートの制御主体は、制御装置101である。また、図5〜図7では、横軸が比エンタルピー[kJ/kg]を、縦軸が圧力[MPaG]を、それぞれ示している。
まず、ステップS11にて優先モードが暖房優先モードであるかどうかを判定する。暖房優先モードであると判定した場合は、ステップS12にて室内側過冷却度が所定値以上となっているかどうかを判定する。室内側過冷却度が所定値以上であると判定した場合は、ステップS13にてトータル減圧機構開度を増加させる。一方、室内側過冷却度が所定値未満であると判定した場合は、ステップS14にてトータル減圧機構開度を減少させる。なお、室内側過冷却度は圧力センサ201の検出圧力の飽和温度から温度センサ203の検出温度を差し引いて求める。
暖房優先モードでは、暖房能力を給湯能力以上としたい状況であるため、図5に示すように、室内側熱交換器5の性能が最大となるように室内側過冷却度を所定値(例えば10℃程度)となる運転状態とする。このようにすることで、所定の暖房能力で給湯能力を大きくすることが可能になり、高暖房負荷の状況においても給湯能力を十分に確保できるようになる。
一方、ステップS11にて優先モードが給湯優先モードであると判定した場合は、ステップS15にて給湯側過冷却度が所定値以上となっているかどうかを判定する。給湯側過冷却度が所定値以上であると判定した場合、ステップS16にてトータル減圧機構開度を増加させて、給湯側過冷却度を小さくする。なお、給湯側過冷却度は圧力センサ201の検出圧力の飽和温度から温度センサ205の検出温度を差し引いて求める。
給湯優先モードでは、給湯能力を暖房能力以上としたい状況であるため、図6に示すように、水側熱交換器10の性能が最大となるように給湯側過冷却度を所定値(例えば5℃程度)となる運転状態とする。このようにすることで、給湯能力を大きくすることができるため、低水温かつ低暖房負荷の状況において沸き上げスピードを速めることができる。
ここで、ステップS15において、給湯側過冷却度が所定値未満であると判定した場合は、ステップS17にて吐出温度が基準値(基準吐出温度)以上であるかどうかを判定する。なお、吐出温度は温度センサ202の検出温度である。
高水温での給湯優先モードでは、高圧圧力が上昇(高圧側の冷媒温度が上昇)し、室内側減圧機構8の開度が給湯側減圧機構12の開度よりも小さいため、室内側過冷却度が増加する。そのため、アキュムレータ15から余剰液冷媒がなくなり、圧縮機1の吸入過熱度が上昇する。そして、圧縮機1から吐出する冷媒循環量が減少し、熱源能力が低下する。また、この場合はアキュムレータ15から余剰冷媒がないため、トータル減圧機構開度を減少させても給湯側過冷却度が所定値以上とすることはできず、さらに、圧縮機1の吸入過熱度が上昇するため、吐出温度が上昇する結果となる。
そこで、システム100では、余剰液冷媒がない状況かどうかを判定するために以下の動作を実施する。
つまり、圧縮機1の吸入過熱度が5℃の場合の吐出温度を基準吐出温度として、吐出温度が基準吐出温度以上であるかによってアキュムレータ15に余剰液冷媒が存在しているかを判定する。なお、基準吐出温度TdBと、圧縮機1の高圧圧力Pcと、低圧圧力Peと、圧縮機1の運転周波数Fにおいて、TdB=f(Pc,Pe,F)の関係を有するデータテーブルを記憶部106に記憶しておき、データテーブルより基準吐出温度TdBを求めるとよい。ここで、高圧圧力Pcは圧力センサ201の検出圧力であり、低圧圧力Peは温度センサ206の検出温度を換算した圧力である。
なお、基準吐出温度は、吸入過熱度が小さい状態を想定して、例えば3℃〜10℃程度でデータテーブルを作成とする。また、圧縮機1の運転周波数Fに対する吐出温度の変化はそれほど大きくないため、代表的な運転周波数のみにてデータテーブルを作成するようにしてもよい。
吐出温度が基準吐出温度以上である場合は、高水温状況下(例えば出口水温55℃程度)であり、給湯側過冷却度を所定値に調整困難であると判断し、ステップ18にてトータル減圧機構開度を増加させ、吐出温度が所定値以上とならないようにする。このようにすることで、吐出温度、圧縮機1の吸入過熱度の増加を抑制することができる。そのため、システム100の冷媒回路に封入されている冷媒量に応じて、圧縮機1からの吐出冷媒流量を最大量確保することができ、給湯能力を大きくすることができる。よって、高水温かつ低暖房負荷の状況において、沸き上げスピードを速めることができる。
一方、吐出温度が基準吐出温度未満である場合は、水温は低水温状況であり、アキュムレータ15に余剰液冷媒が存在していると判断し、給湯側過冷却度を所定値に調整可能であると判断する。そのため、ステップS19にてトータル減圧機構開度を減少させる。このようにすることで、給湯能力を大きくすることができるため、低水温かつ低暖房負荷の状況において沸き上げスピードを速めることができる。以上のようにしてトータル減圧機構開度を制御する。
暖房運転モードでは室内側減圧機構8の開度が給湯側減圧機構12の開度よりも大きいため、室内側過冷却度が給湯側過冷却度よりも小さくなっている場合が多い。
一方で給湯優先モードでは給湯側減圧機構12の開度が室内側減圧機構8の開度より大きいため、給湯側過冷却度が室内側過冷却度よりも小さくなっている場合が多い。
このように、過冷却度が制御されている場合というのは、おおよそ室内側過冷却度と給湯側過冷却度のうち小さい方の過冷却度が制御されている状況である。
トータル減圧機構開度の変更を行うときは、室内側減圧機構8の開度と給湯側減圧機構12の開度の合計が変更後のトータル減圧機構開度となるように開度を分配する。開度の配分方法は暖房給湯開度比制御によって実施する。
例えば、暖房給湯開度比が7:3でトータル減圧機構開度の変更前開度が480pで、変更後開度が500pである場合を例に説明する。この場合、変更前の室内側減圧機構8の開度は336p(480×7/10)、変更前の給湯側減圧機構12の開度は144p(480×3/10)である。そして、変更後の室内側減圧機構8の開度は500×7/10=350p、変更後の給湯側減圧機構12の開度は500×3/10=150pとなる。
このように暖房給湯開度比によって変更後のトータル減圧機構開度を分配することによって、暖房能力と給湯能力の配分比が変化せずに運転状態を所定値に制御することが可能となり、熱源能力を最大にすることができる。
ここで、例えば暖房給湯開度比が7:3であり、室内側減圧機構8と給湯側減圧機構12の全開開度ともに480pであった場合を想定する。そして、暖房優先モードにて室内側減圧機構8の開度が480p、給湯側減圧機構12の開度が206pである状況、つまりトータル減圧機構開度が480+206=686pの状況であり、かつ、室内側過冷却度が所定値以上であるときを想定する。このような場合、トータル減圧機構開度を増加させたくても、室内側減圧機構8の開度を大きくすることができない。そのため、暖房給湯開度比に応じてトータル減圧機構開度を配分することができない。
また、例えばトータル減圧機構開度が700pの場合は室内側減圧機構8の開度要求が700×7/10=490pとなり、実現不可である。このような場合を想定し、システム100では、制御部104において暖房給湯開度比を強制的に変更し、トータル減圧機構開度を実現できるようにしている。
例えば、7:3であった暖房給湯開度比を6.9:3.1とし、室内側減圧機構8の開度を480pとし、給湯側減圧機構12の開度を220pとする。また、室内側減圧機構8又は給湯側減圧機構12のどちらか一方が全閉開度となっている場合も同様の処理にて暖房給湯開度比を変更する。このように暖房給湯開度比を変更することで、所定の冷媒運転状態を実現することが可能であり、高圧の上昇や低圧の低下を回避でき、運転効率を大きい状態に維持できる。つまり、制御部104は、トータル減圧機構開度を配分することができるように暖房給湯開度比を変更可能にしている。
また、暖房給湯開度比は室内側熱交換器5と水側熱交換器10に流れる冷媒流量の割合を制御しているが、冷媒流量変化は冷媒運転状態(過冷却度や吐出温度)の変化よりも早い。冷媒運転状態は、室内側熱交換器5、水側熱交換器10の冷媒分布が変化しきるまでに時間がかかるため応答が遅くなる。そのため、トータル減圧機構開度の変更間隔は、暖房給湯開度比の変更間隔よりも長くするように制御部104にて制御するとよい。このようにすることで、所定の暖房能力と給湯能力を実現している状態にて冷媒運転状態を調整可能となるため、制御動作が安定する。
また、通常、室内温度が室内設定温度よりも所定値(例えば1℃)以上となった場合は、暖房サーモOFFとなり、室内温度上昇を防ぐために室内側減圧機構8を閉めて暖房能力を極端に落とす動作が実施される。この動作が度々実施されると運転状態が不安定となり、運転効率低下となってしまう。そのため、制御部104にて暖房給湯同時運転の場合は、暖房サーモOFFとなるまでの室内温度と室内設定温度の温度差を大きくする(例えば2℃)。このようにすることで暖房サーモOFFとなる動作回数を抑制することができるため、運転状態が安定する。
また、ケースによっては暖房室内の温調よりも湯の沸き上げ完了時間を短くしてほしい場合が考えられる。例えば、夜にシャワーを浴びる人の数が不意に増えてしまうケースも考えられる。このような場合に、追加の給湯を実施したとしても、普段の通常の速度では、湯が湧き上がるまでに夜遅くになってしまうケースが考えられる。このような状況となった場合、暖房給湯同時運転を実施している時にリモコン102の入力部107を介してユーザーが給湯優先モードを選択できるようにしておけば、給湯能力を大きくした状態での暖房給湯同時運転を維持することができようになる。そのため、給湯完了までの時間が短くすることができる。このように、ケースによって給湯優先モードを選択できるようにすることで、ユーザーの満足度を向上させることが可能となる。
以上のように、システム100では、トータル減圧機構開度を制御することで、如何なる室内温度及び水温条件においても、所定の暖房負荷において熱源能力と運転効率の最大化を実施することができ、室内の不暖回避及び給湯動作の早期完了を実現できる。特に、高水温条件にて給湯能力を大きくする場合には、室内側過冷却度が大きくなり、アキュムレータ15から余剰液冷媒がなくなる場合があるが、その場合でも吐出温度過昇を回避でき、システムに封入されている冷媒量に応じて熱源能力を最大とすることができる。
すなわち、システム100によれば、各減圧機構開度を能力配分制御にて制御することに加えて、そのトータル減圧機構開度を暖房負荷の大小と運転状態により制御することによって、熱源能力を最大に発揮することができ、かつ、所定の暖房能力及び給湯能力を取得することができる。
例えば、従来、室内ユニット302の複数台同時運転では、全ての室内ユニット302の運転状態を所定の状態にするように試みていた。しかしながら、給湯暖房の同時運転では、室内温度と異なって給湯側の水温が極端に低い場合や高い場合が存在する。そのため、給湯能力と暖房能力をともに十分確保しながら室内側と給湯側の両方の運転状態を所定値にするのは困難である。したがって、給湯暖房の同時運転では、優先したい能力によって給湯側もしくは室内側のどちらか一方、または、高温給湯の場合は冷媒が極端に室内側に滞留するケースがある。
そのため、システム100では、吐出温度によって、以上どれか一つの状態の目標を適切に選定し、狙いの運転状態を実現することで、高圧もしくは低圧の極端な変化を抑制でき、所定の給湯能力と暖房能力を確保可能な給湯暖房同時運転を実施することができるようにしている。
なお、実施の形態1では、室内ユニット302と給湯ユニット303の容量を同じとした場合を例に説明していたが、異なる場合でも同様に本技術を適用できる。また、室内側減圧機構8の容量と給湯側減圧機構12の容量を同じとしていたが、これも異なる場合でも本技術を適用できる。そのような機器構成となっていても、暖房給湯開度比制御により所定の給湯能力、暖房能力に制御できることができるので問題ない。
また、異なる容量の室内ユニット302が複数台あり、かつ、その同じ数だけ室内側減圧機構8が複数個あるシステムに関しては、トータル減圧機構開度と暖房給湯開度比にて決まる暖房側開度を容量ごとに分割すればよい。例えば、室内ユニット302が2HPが1台、1HPが2台あるシステムで、トータル減圧機構開度480pで暖房給湯開度比が7:3の場合を想定する。この場合、暖房側のトータル開度は336pであるため、2HPの室内ユニット302に冷媒を流す室内側減圧機構8の開度を336×2/(1+1+2)=168p、1HPの室内ユニット302に冷媒を流す室内側減圧機構8の開度を336×1/(1+1+2)=84pとする。このようにすることで、本技術を適用できるようになる。
実施の形態2.
図8は、本発明の実施の形態2に係るヒートポンプシステム200(以下、単にシステム200と称する)の冷媒回路構成を示す概略図である。図8に基づいて、システム200の構成及び動作について説明する。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。
システム200は、実施の形態1に係るシステム100と同様に、蒸気圧縮式の冷凍サイクル運転を行うことによって、室内ユニット302による暖房指令(暖房ON/OFF)と、給湯ユニット303による給湯指令(給湯ON/OFF)とを同時に処理することができるものである。つまり、システム200は、室内ユニット302の暖房能力と給湯ユニット303の給湯能力を同時に制御することができる。
システム200の回路構成及び基本動作は、実施の形態1に係るシステム100と同様であるが、貯湯タンク18のタンク高さ方向に5つの温度センサ(下から209a〜209e)を設置した点、水側回路の水側熱交換器10の出口に温度センサ210を設置した点でシステム100と相違している。また、システム200では、測定部103で給湯ONの時間が計測できるように構成されている。このようにシステム200では、水温の取得や給湯時間の計測など、給湯負荷状況を実施の形態1よりも詳細に取得できる構成となっている。
システム200では、 貯湯タンク18の高さ方向に複数個の温度センサが追加設置されているため、タンク蓄熱量を計算することができる。温度センサ209a〜209eの設置位置毎に貯湯タンク18を高さ方向に分割し、測定部103にて計測した各分割区間における上端および下端の温度センサ209の計測データに基づいて、分割区間毎に平均温度を算出する。なお、最下部区間は温度センサ209aを、最上部区間は温度センサ209eの温度を平均温度とする。
そして、各分割区間にて分割区間容積と水の比熱を平均温度から市水温度を引いた値に掛け合わせ、各分割区間の貯湯熱量を推算する。推算した各分割区間の貯湯熱量を積算し、積算した熱量を貯湯タンク18の貯湯熱量とする。ここで、分割区間容積は貯湯タンク18の内容積を温度センサ211の設置数+1で割ることで求まる。また、市水は例えば15℃に固定する。
上記の計算を給湯ON指令入力後すぐに計算し、タンク熱量を求める。また、同じ計算を温度センサ209a〜209eの全てにおいて出湯温度を検出したとして計算し、求まる蓄熱量を目標タンク蓄熱量としても求める。そして、タンク蓄熱量が目標タンク蓄熱量よりも所定割合低い(例えば20%以下)の場合は、沸き上げ完了までの時間が長くなるため、運転モードを強制的に給湯優先モードにする。具体的には、室内側減圧機構8の開度が給湯側減圧機構12の開度以上となることを禁止とする。また、給湯時間が所定時間以上(例えば2時間以上)となっている場合も運転モードを強制的に給湯優先モードとする。このようにすることで、給湯完了までの時間が極端に長くなることを回避でき、湯切れの可能性が減少する。
給湯優先モードでは、給湯側減圧機構12の開度が室内側減圧機構8の開度よりも大きくすることで給湯能力が暖房能力よりも大きくなる動作を狙っている。しかし、給湯側減圧機構12の開度が室内側減圧機構8の開度よりも大きくても凝縮温度が水温以上となってなければ、冷媒の凝縮潜熱を水の加熱に用いていないことになる。そのため、給湯能力が小さい状態となってしまう。よって、凝縮温度が水側熱交換器10を流れる水の水温以上となるようにする。制御部104により、凝縮温度が水側熱交換器10で熱交換する水温以上となるように暖房給湯開度比を制御する。なお、凝縮温度は圧力センサ201にて検出する圧力の飽和温度であり、水温は温度センサ210の検出温度である。
このようにすることで、給湯優先モードでは常に冷媒の凝縮潜熱を水の加熱に用いることができるようになる。そのため、システム200では、確実に給湯能力を確保することができるようになり、より適切に暖房能力と給湯能力の能力配分を調整することができるようになる。なお、実施の形態2では、温度センサが水側熱交換器10の出口側に設置されているが、これに限定されず、水側熱交換器10の入口側に設置されるようにしてもよい。
以上のように、システム200では、給湯負荷状況(温度センサ209、給湯時間)と運転中の水温情報(温度センサ210)をモニターできる構成としたため、実施の形態1の効果に加えて、給湯完了までの時間が極端に長くなることを回避でき、湯切れの可能性を減少させることができるようになる。
1 圧縮機、2a 吐出電磁弁、2b 吐出電磁弁、3 四方弁、4 室内側ガス延長配管、5 室内側熱交換器、6 室内側送風機、7 室内側液延長配管、8 室内側減圧機構、9 水側ガス延長配管、10 水側熱交換器(給湯側熱交換器)、11 水側液延長配管、12 給湯側減圧機構、13 熱源側熱交換器、14 熱源側送風機、15 アキュムレータ、16 水ポンプ、17 コイル熱交換器、18 貯湯タンク、100 ヒートポンプシステム、101 制御装置、102 リモコン、103 測定部、104 制御部、105 通信部、106 記憶部、107 入力部、108 表示部、200 ヒートポンプシステム、201 圧力センサ、202 温度センサ、203 温度センサ、204 温度センサ、205 温度センサ、206 温度センサ、207 温度センサ、208 温度センサ、209 温度センサ、209a 温度センサ、209b 温度センサ、209c 温度センサ、209d 温度センサ、209e 温度センサ、210 温度センサ、211 温度センサ、301 熱源ユニット、302 室内ユニット、303 給湯ユニット。

Claims (11)

  1. 圧縮機と、室内側熱交換器と、給湯側熱交換器と、室内側減圧機構と、給湯側減圧機構と、熱源側熱交換器と、を有し、
    前記室内側熱交換器と前記室内側減圧機構とが直列に接続された流路と、前記給湯側熱交換器と前記給湯側減圧機構とが直列に接続された流路と、が並列に接続されて、前記圧縮機及び前記熱源側熱交換器とともに冷媒回路を構成しており、
    前記室内側熱交換器で空気を加熱する暖房負荷と、前記給湯側熱交換器で水を加熱する給湯負荷と、が同時に要求された際、
    前記室内側減圧機構の開度が前記給湯側減圧機構の開度よりも大きい暖房優先モードと、
    前記給湯側減圧機構の開度が前記室内側減圧機構の開度よりも大きい給湯優先モードと、を有し、
    前記室内側減圧機構の開度及び前記給湯側減圧機構の開度に基づいて、
    前記暖房優先モードでは、前記室内側熱交換器の過冷却度が調整され、
    前記給湯優先モードでは、前記給湯側熱交換器の過冷却度又は前記圧縮機の吐出温度のどちらか一方が調整され
    暖房能力と給湯能力の割合は、
    前記室内側減圧機構の開度と前記給湯側減圧機構の開度のトータル減圧機構開度に対する前記室内側減圧機構の開度と前記トータル減圧機構開度に対する前記給湯側減圧機構の開度とで決まる暖房給湯開度比により制御され、
    前記暖房給湯開度比は前記暖房負荷によって決定される
    ヒートポンプシステム。
  2. 圧縮機と、室内側熱交換器と、給湯側熱交換器と、室内側減圧機構と、給湯側減圧機構と、熱源側熱交換器と、を有し、
    前記室内側熱交換器と前記室内側減圧機構とが直列に接続された流路と、前記給湯側熱交換器と前記給湯側減圧機構とが直列に接続された流路と、が並列に接続されて、前記圧縮機及び前記熱源側熱交換器とともに冷媒回路を構成しており、
    前記室内側熱交換器で空気を加熱する暖房負荷と、前記給湯側熱交換器で水を加熱する給湯負荷と、が同時に要求された際、
    前記室内側減圧機構の開度が前記給湯側減圧機構の開度よりも大きい暖房優先モードと、
    前記給湯側減圧機構の開度が前記室内側減圧機構の開度よりも大きい給湯優先モードと、を有し、
    前記室内側減圧機構の開度及び前記給湯側減圧機構の開度に基づいて、
    前記暖房優先モードでは、前記室内側熱交換器の過冷却度が調整され、
    前記給湯優先モードでは、前記給湯側熱交換器の過冷却度又は前記圧縮機の吐出温度のどちらか一方が調整され
    暖房能力と給湯能力の割合は、
    前記室内側減圧機構の開度と前記給湯側減圧機構の開度のトータル減圧機構開度に対する前記室内側減圧機構の開度と前記トータル減圧機構開度に対する前記給湯側減圧機構の開度とで決まる暖房給湯開度比により制御され、
    前記トータル減圧機構開度を変更する場合は、
    前記暖房給湯開度比によって、前記室内側減圧機構の開度の変更量と前記給湯側減圧機構の開度の変更量が決定される
    ヒートポンプシステム。
  3. 前記給湯優先モードにおいて、
    前記給湯側熱交換器の過冷却度が予め設定されている所定値未満であって、前記圧縮機の吐出温度が基準値以上である場合は、前記圧縮機の吐出温度が制御される
    請求項1又は2に記載のヒートポンプシステム。
  4. 前記暖房給湯開度比は前記暖房負荷によって決定される
    請求項に記載のヒートポンプシステム。
  5. 前記トータル減圧機構開度を超えないように前記暖房給湯開度比が変更される
    請求項又はに記載のヒートポンプシステム。
  6. 前記トータル減圧機構開度の変更間隔は、
    前記暖房給湯開度比の変更間隔よりも長くされる
    請求項2、4又は5に記載のヒートポンプシステム。
  7. 室内温度が室内設定温度よりも所定値以上となると暖房サーモOFFとなるものにおいて、
    前記暖房サーモOFFとなるまでの前記室内温度と前記室内設定温度の温度差が予め定められている温度差よりも大きくされる
    請求項1〜のいずれか一項に記載のヒートポンプシステム。
  8. 前記暖房優先モード又は前記給湯優先モードを表示し、前記暖房優先モード又は前記給湯優先モードを選択的に入力できるリモコンを備えた
    請求項1〜のいずれか一項に記載のヒートポンプシステム。
  9. 前記給湯側熱交換器で加熱された水を貯える貯湯タンクを備え、
    給湯時間及び前記貯湯タンクの蓄熱量の少なくとも一方を測定し、
    前記給湯時間が所定値以上、及び、給湯開始時に前記貯湯タンクの蓄熱量が所定値以下の少なくとも一方を満たす場合には、優先モードが前記給湯優先モードとされる
    請求項1〜のいずれか一項に記載のヒートポンプシステム。
  10. 前記貯湯タンクの高さ方向に複数個の温度センサを備え、
    前記温度センサでの計測情報に基づいて前記貯湯タンクの蓄熱量が測定される
    請求項に記載のヒートポンプシステム。
  11. 前記給湯優先モードでは、
    凝縮温度が前記給湯側熱交換器を流れる水の水温以上とされる
    請求項1〜10のいずれか一項に記載のヒートポンプシステム。
JP2014555407A 2013-01-07 2013-01-07 ヒートポンプシステム Active JP6058032B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050023 WO2014106895A1 (ja) 2013-01-07 2013-01-07 ヒートポンプシステム

Publications (2)

Publication Number Publication Date
JP6058032B2 true JP6058032B2 (ja) 2017-01-11
JPWO2014106895A1 JPWO2014106895A1 (ja) 2017-01-19

Family

ID=51062218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014555407A Active JP6058032B2 (ja) 2013-01-07 2013-01-07 ヒートポンプシステム

Country Status (4)

Country Link
US (1) US9797605B2 (ja)
JP (1) JP6058032B2 (ja)
GB (1) GB2524673B (ja)
WO (1) WO2014106895A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2819308A1 (en) * 2012-06-22 2013-12-22 J. Scott Martin Refrigeration system with pressure-balanced heat reclaim
US10605498B2 (en) * 2014-01-23 2020-03-31 Mitsubishi Electric Corporation Heat pump apparatus
US20160047558A1 (en) * 2014-08-18 2016-02-18 Rinnai Corporation Hot water supply and heating system
JP6427380B2 (ja) * 2014-10-09 2018-11-21 リンナイ株式会社 ヒートポンプシステム
EP3236174B1 (en) * 2014-11-27 2020-07-01 Mitsubishi Electric Corporation Combined air conditioning and hot-water supply system
US10443900B2 (en) * 2015-01-09 2019-10-15 Trane International Inc. Heat pump
JP6095728B2 (ja) * 2015-06-15 2017-03-15 サンポット株式会社 ヒートポンプ装置
US10816248B2 (en) * 2016-06-09 2020-10-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN106403003A (zh) * 2016-06-20 2017-02-15 王学津 换热站二次网水力平衡辅助调节系统及调节方法
WO2019064332A1 (ja) * 2017-09-26 2019-04-04 三菱電機株式会社 冷凍サイクル装置
WO2019102538A1 (ja) 2017-11-22 2019-05-31 三菱電機株式会社 空調機
FR3076600B1 (fr) * 2018-01-08 2019-12-06 Aldes Aeraulique Systeme thermodynamique de chauffage, de climatisation et de production d'eau chaude sanitaire
US11420496B2 (en) * 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
KR20210076677A (ko) * 2019-12-16 2021-06-24 엘지전자 주식회사 가스 히트펌프 시스템 및 그 제어방법
CN113865061B (zh) * 2020-06-30 2022-11-15 青岛海尔空调器有限总公司 空调器的压缩机控制方法
KR102462769B1 (ko) * 2020-11-26 2022-11-02 엘지전자 주식회사 하이브리드 멀티 공조 시스템
US11815298B2 (en) 2021-06-17 2023-11-14 Rheem Manufacturing Company Combined air conditioning and water heating via expansion valve regulation
KR20230043532A (ko) * 2021-09-24 2023-03-31 엘지전자 주식회사 공기 조화기

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158998A (ja) 1993-12-10 1995-06-20 Mitsubishi Electric Corp 給湯或は追焚きユニットを備えたヒートポンプ式冷暖房装置
JPH08261599A (ja) * 1995-03-24 1996-10-11 Kyushu Electric Power Co Inc 空気調和装置
JP2000234811A (ja) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP3758627B2 (ja) * 2001-11-13 2006-03-22 ダイキン工業株式会社 ヒートポンプ式給湯装置
JP4215699B2 (ja) 2004-10-01 2009-01-28 三洋電機株式会社 ヒートポンプ式給湯暖房装置
JP4756035B2 (ja) * 2005-03-28 2011-08-24 東芝キヤリア株式会社 給湯機
JP4931791B2 (ja) 2007-12-27 2012-05-16 三菱電機株式会社 冷凍空調装置
JP2010196955A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
EP2469195B1 (en) * 2009-09-29 2017-10-25 Mitsubishi Electric Corporation Heat storage water-heating and air-conditioning machine
WO2011092802A1 (ja) * 2010-01-26 2011-08-04 三菱電機株式会社 ヒートポンプ装置及び冷媒バイパス方法
WO2011125111A1 (ja) * 2010-04-05 2011-10-13 三菱電機株式会社 空調給湯複合システム
KR101175516B1 (ko) * 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치
JP5121908B2 (ja) * 2010-09-21 2013-01-16 三菱電機株式会社 冷房給湯装置
JP5228023B2 (ja) * 2010-10-29 2013-07-03 三菱電機株式会社 冷凍サイクル装置
JP2012141113A (ja) 2011-01-06 2012-07-26 Daikin Industries Ltd 空気調和温水機器システム

Also Published As

Publication number Publication date
JPWO2014106895A1 (ja) 2017-01-19
GB201511115D0 (en) 2015-08-05
GB2524673A (en) 2015-09-30
WO2014106895A1 (ja) 2014-07-10
US20150330675A1 (en) 2015-11-19
GB2524673B (en) 2019-08-21
US9797605B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
JP6058032B2 (ja) ヒートポンプシステム
JP5865482B2 (ja) 冷凍サイクル装置
JP5511983B2 (ja) 空調給湯複合システム
JP6138364B2 (ja) 空気調和機
JP5518102B2 (ja) 空調給湯複合システム
JPWO2011125111A1 (ja) 空調給湯複合システム
JP4116645B2 (ja) ヒートポンプ式給湯機
CN107709887B (zh) 空气调节装置以及运行控制装置
JP6289734B2 (ja) 空調給湯複合システム
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6537629B2 (ja) 空気調和装置
JP6890706B1 (ja) 空気調和システムおよび制御方法
JP6465987B2 (ja) 空気調和装置および空気調和制御方法
JP6507598B2 (ja) 空調システム
JP2017116156A (ja) 空気調和装置
JP5642270B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6058032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250