JPWO2018055739A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JPWO2018055739A1
JPWO2018055739A1 JP2018540570A JP2018540570A JPWO2018055739A1 JP WO2018055739 A1 JPWO2018055739 A1 JP WO2018055739A1 JP 2018540570 A JP2018540570 A JP 2018540570A JP 2018540570 A JP2018540570 A JP 2018540570A JP WO2018055739 A1 JPWO2018055739 A1 JP WO2018055739A1
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
flow path
exchange unit
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018540570A
Other languages
English (en)
Other versions
JP6664503B2 (ja
Inventor
宏亮 浅沼
宏亮 浅沼
航祐 田中
航祐 田中
孔明 仲島
孔明 仲島
良太 赤岩
良太 赤岩
雄亮 田代
雄亮 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018055739A1 publication Critical patent/JPWO2018055739A1/ja
Application granted granted Critical
Publication of JP6664503B2 publication Critical patent/JP6664503B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

凝縮器(3)は、冷媒流路(33)と冷媒流路(34)とを有する熱交換器(3)と、冷媒流路(33)と冷媒流路(34)とに順に冷媒を流すか(方向DB)、並行して冷媒を流すか(方向DA)を切り替えるように構成された流路切替部(6)とを含む。空気調和装置(100)は、外気温Taを測定する室外温度検出部(11)と、室外温度検出部(11)の出力に基づいて流路切替部(6)の切替を制御する制御装置(30)とを備える。空気調和装置(100)は、検出した室外温度がしきい値より高い場合は、しきい値より低い時と比較し、熱交換部(3b)を流れる1冷媒流路当たりの流路を長くとる、若しくは、1流路当たりの冷媒流量を多くすることを特徴とする。

Description

本発明は、空気調和装置に関し、特に高外気などの負荷の高い条件での運転を効率良く行なうことが出来る空気調和装置に関する。
空気調和装置において、熱交換器の性能を有効に活用し、効率を上げる運転を行なうためには、凝縮器の場合は分岐数を減らして流速が早い状態で使用し、蒸発器の場合は、分岐数を増やして流速が遅い状態で使用するのが効果的である。その理由は、凝縮器では流速に依存する熱伝達が性能の向上に対して支配的であり、蒸発器では流速に依存した圧力損失を減少させることが性能の向上に対して支配的であるためである。
凝縮器と蒸発器のこのような特性に着目した熱交換器が、例えば特開2015−117936号公報(特許文献1)において提案されている。この熱交換器は、流路切替部を備える。流路切替部は、熱交換器を蒸発器として使用する場合には、冷媒が複数の流路に並行して流れるように流路を切り替え、熱交換器を凝縮器として使用する場合には、冷媒が複数の第1流路、複数の第2流路の順に流れるように流路を切り替える。
特開2015−117936号公報
しかしながら、特開2015−117936号公報(特許文献1)に開示された空気調和装置の熱交換器においては、冷房運転時の過冷却域を想定した流路構成になっておらず、冷房運転時に第2流路を冷媒が通過する際の伝熱性能が低下してしまうという課題があった。
例えば、室外温度が高く、空気調和装置の負荷が高い状態で運転をする場合、冷房時に凝縮器出口で必要な過冷却を得るために、空気と冷媒の温度差確保のために凝縮温度が上昇し、高圧側の冷媒圧力が上昇してしまうという課題もあった。
本発明は、上記課題を解決するためになされたものであり、その目的は、冷房運転を行なう際に凝縮器の過冷却域を可変とし、負荷に応じ適切に凝縮器を使用することができる空気調和装置を提供することである。
この発明に係る空気調和装置は、冷媒が、圧縮機、凝縮器、膨張弁、および蒸発器の順に循環する空気調和装置である。凝縮器は、第1冷媒流路と第2冷媒流路とを有する熱交換器と、第1冷媒流路と第2冷媒流路とに順に冷媒を流すか、並行して冷媒を流すかを切り替えるように構成された流路切替部とを含む。空気調和装置は、外気温を測定する室外温度検出部と、室外温度検出部の出力に基づいて流路切替部の切替を制御する制御装置とを備える。
本発明によれば、室外温度検出部が検出した室外温度を判定対象値として、空気調和装置の凝縮器を流れる冷媒の流路を変更することによって1冷媒流路当たりの流路長若しくは冷媒流量を調整する。これにより、凝縮器内部を占める液部割合が変化するような状態においても、凝縮器を効率良く使用することができる。
本発明の実施の形態1に係る空気調和装置100を示す概略図である。 室外熱交換器の具体的な構成例の斜視図である。 図2の室外熱交換器をY方向から見た側面図である。 三方弁の流路形態を説明するための図である。 制御装置30が三方弁の流路を切り替える制御を説明するためのフローチャートである。 暖房運転時およびTa<T1である場合の冷房運転時における冷媒の流れを示した図である。 Ta>T1である場合の冷房運転時における冷媒の流れを示した図である。 空気調和装置100を高外気温時および低外気温時に冷房運転させた場合の、P−H線図の概略図である。 冷媒の乾き度Xと冷媒による管内熱伝達率との関係を示す図である。 実施の形態1の変形例1に係る空気調和装置101(暖房・低外気温時冷房)を示す概略図である。 実施の形態1の変形例1に係る空気調和装置101(高外気温時冷房)を示す概略図である。 実施の形態1の変形例1における電磁弁の開閉制御を説明するための図である。 実施の形態1の変形例2に係る空気調和装置102(暖房・低外気温時冷房)を示す概略図である。 実施の形態1の変形例2に係る空気調和装置102(高外気温時冷房)を示す概略図である。 実施の形態2に係る空気調和装置103(暖房・低外気温時冷房)を示す概略図である。 実施の形態2に係る空気調和装置103(高外気温時冷房)を示す概略図である。 実施の形態3において実行される制御を説明するためのフローチャートである。 実施の形態4において実行される制御を説明するためのフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
図1は本発明の実施の形態1に係る空気調和装置100を示す概略図である。図1に示されるように、空気調和装置100は圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、流路切替部6とを含む。室外熱交換器3は、熱交換部3aと、熱交換部3bと、熱交換部3cとを含む。流路切替部6は、三方弁6aと三方弁6bとを含む。これらの各要素を、例えば配管で接続することによって、冷媒回路90が構成される。
圧縮機1は、例えば、冷媒を吸入・圧縮して高温及び高圧の冷媒として吐出する、可変容量の圧縮機である。
四方弁2は、例えば、暖房運転や冷房運転の運転指令に応じて、圧縮機1から吐出される冷媒の流れる方向を切替え可能な切替手段である。四方弁2は、圧縮機1の吸入口、吐出口を、それぞれ室内熱交換器5、室外熱交換器3に接続する第1の流路形態(図1に実線で示す)と、圧縮機1の吸入口、吐出口を、それぞれ室外熱交換器3、室内熱交換器5に接続する第2の流路形態(図1に破線で示す)をとり得る。第1の流路形態(実線)は冷房時に連通する流路を示し、第2の流路形態(破線)は暖房時に連通する流路を示す。
実施の形態1以降では、説明の都合上、四方弁2が搭載された空気調和装置について記載しているが、四方弁2が搭載されていない例えば冷房専用の空気調和装置にも本願発明は適用することができる。
膨張弁4は、冷房運転時において室外熱交換器3から流出した冷媒を減圧膨張し、暖房運転時において室内熱交換器5から流出した冷媒を減圧膨張するように構成される。
室内熱交換器5は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する熱交換器である。室内熱交換器5は例えば、室内空気を送風するファン23や、水やブラインを供給するポンプ(図示省略)などにより、室内熱交換器5の内部を流れる冷媒との間で熱交換を行なう。ファン23やポンプは電力を供給する電源装置(図示省略)によって駆動される。
以上のように構成された冷媒回路において、本実施の形態では、室外熱交換器3の冷媒の流路を変更可能に構成している。
室外熱交換器3は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する熱交換器である。室外熱交換器3は例えば、外気を供給するファン21や、水やブラインを供給するポンプ(図示省略)などにより、室外熱交換器3の内部を流れる冷媒との間で熱交換を行なう。ファン21やポンプは電力を供給する電源装置(図示省略)によって駆動される。
室外熱交換器3に含まれる熱交換部3a,3b,3cは、冷媒回路90において直列に接続されている。熱交換部3aは室外熱交換器3の主熱交換部である。熱交換部3bおよび3cは、冷房時は補助熱交換器(過冷却確保のための熱交換器)、暖房時は室外熱交換器3の下部の凍結を防止する根氷防止熱交換器などとして使用される。説明の都合上、図面上は熱交換部3a,3b,3cを分割した状態で図示しているが、これらは一体に成形された形状をとっても構わない。また、室外熱交換器3が、熱交換部3a,3bのみを含み、熱交換部3cについては設けなくてもよい。
図2は、室外熱交換器の具体的な構成例の斜視図である。図3は、図2の室外熱交換器をY方向から見た側面図である。図2、図3を参照して、この構成例の室外熱交換器は、熱交換部3a,3b,3cの冷媒通路が共通のフィンに貫通している。
熱交換部3aは最上部に配置され、熱交換部3cは最下部に配置され、熱交換部3bは、熱交換部3aと熱交換部3cとの間に配置されている。なお、図2において熱交換部3bは図示省略されており、熱交換部3aの最上部と、熱交換部3cの下部を代表的に示すことによって、室外熱交換器3の全体の外形が示されている。
図1、図3を参照して、室外熱交換器3は、熱交換部3a,3b,3cと、流路切替部6と、ヘッダ41〜47とを含む。
熱交換部3aは、冷媒流路31,32を含む。冷媒流路31は、並行して冷媒が流れる冷媒流路31aと冷媒流路31bとを含む。冷媒流路32は、並行して冷媒が流れる冷媒流路32aと冷媒流路32bとを含む。
熱交換部3bは、冷媒流路33,34を含む。冷媒流路33は、並行して冷媒が流れる冷媒流路33aと冷媒流路33bとを含む。冷媒流路34は、並行して冷媒が流れる冷媒流路34aと冷媒流路34bとを含む。
熱交換部3cは、冷媒流路35を備える。冷媒流路35は、並行して冷媒が流れる冷媒流路35aと冷媒流路35bとを含む。
説明の便宜のため、図3において冷媒の流れる向きを冷房時の向きとし、三方弁6a,6bの内部流路が後に図4に実線で示す流路であるとして説明する。熱交換部3aに流入し冷媒流路31aと冷媒流路31bに並行して流れた冷媒は、ヘッダ41において合流する。熱交換部3aに流入し冷媒流路32aと冷媒流路32bに並行して流れた冷媒は、ヘッダ42において合流する。ヘッダ41とヘッダ43は連通しており、冷媒はヘッダ43から冷媒流路33a,33bに分かれて並行して流れる。ヘッダ42とヘッダ44は連通しており、冷媒はヘッダ44から冷媒流路34a,34bに分かれて並行して流れる。
冷媒流路33aと冷媒流路33bに並行して流れた冷媒は、ヘッダ45において合流する。冷媒流路34aと冷媒流路34bに並行して流れた冷媒は、ヘッダ46において合流する。ヘッダ45を通過した冷媒とヘッダ46を通過した冷媒とは、ヘッダ47において合流する。冷媒は、ヘッダ47を通過後、冷媒流路35a,35bに分かれて並行して流れる。
流路切替部6は、三方弁6a,6bを含む。以下にこれらの三方弁の切替について、詳細に説明する。
図4は、三方弁の流路形態を説明するための図である。図1、図4を参照して、三方弁6a,6bは、各々の内部の流路形態を変更することによって、熱交換部3bを流れる冷媒の冷媒流路数を可変とするためのものである。冷房運転時に凝縮器として作用する熱交換部3bにおいて、三方弁6a,6bの各々の流れ方向をDAとした場合、流れ方向DBとした場合よりも、冷媒が並行して流れる冷媒流路数が多くなる。
本実施の形態では、室外温度検出部11で検出する外気温Taがしきい値T1より高いか低いかによって、冷房時の室外熱交換器の流路を切り替える。Ta>T1の場合、三方弁の流路は流れ方向がDAとなるように設定され、Ta<T1の場合、三方弁の流路は流れ方向がDBとなるように設定される。
再び図1に戻って、室外温度検出部11は室外熱交換器3外部の温度Taを検出するためのセンサであり、例えばサーミスタなどを使用することができる。以後の説明で、「室外温度」や「外気温度」という場合は、室外温度検出部11で検出した室外熱交換器3の外部の温度Taを指すこととする。室外温度検出部11の検出する温度は、上記室外熱交換器3外部の温度に限らず、たとえば、水やブラインなどの熱媒体の温度を検出する場合もある。
制御装置30は、圧縮機モータ(図示省略)を制御して、圧縮機1の回転速度を調整する。具体的には、制御装置30は、圧縮機モータに入力される電圧や電流を変化させることによって、圧縮機モータを制御して圧縮機1の回転速度を調整している。また、制御装置30は、四方弁2を制御して、圧縮機1から吐出される冷媒が冷媒回路90を流れる方向を切替える。また、制御装置30は、室外側モータを制御してファン21の回転速度を調整する。具体的に、制御装置30は、室外側モータに入力される電圧や電流を変化させることで、室外側モータを制御してファン21の回転速度を調整している。
制御装置は、空気調和装置100の運転を開始すると、圧縮機1の圧縮機モータおよび、ファン21の室外側モータに電力を供給して、圧縮機1および、ファン21の回転を制御する。なお、制御装置30には、圧縮機1、四方弁2、膨張弁4、三方弁6a,6b、ファン21などを制御する機能を実現するために、例えば、マイコン若しくはCPUを実装した回路デバイスなどのハードウェア、またはマイコン若しくはCPUなどの演算装置で実行されるソフトウェアによって構成されている。
制御装置30は、冷房運転を行なう場合、圧縮機1から吐出される冷媒を室外熱交換器3へ流れるように四方弁2の内部流路を切替える。また制御装置30は、暖房運転を行なう場合、圧縮機1から吐出される冷媒を室内熱交換器5へ流れるように四方弁2の内部流路を切替える。
図5は、制御装置30が三方弁の流路を切り替える制御を説明するためのフローチャートである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図1、図5を参照して、制御装置30は、まずステップS1において冷房運転が指定されているか暖房運転が指定されているかを判断する。冷房運転が指定されている場合にはステップS2の処理が実行され、暖房運転が指定されている場合には、ステップS5の処理が実行される。
ステップS2では、制御装置30は、室外温度検出部11を用いて、室外熱交換器3の外部温度Taを検出する。ステップS2に続くステップS3では、制御装置30は、外部温度Taが判定温度T1より高いか否かを判断する。ステップS3において、制御装置30は、Ta>T1であればステップS4の処理を実行し、Ta>T1でなければステップS5の処理を実行する。
ステップS4では、制御装置30は、三方弁の流れ方向をDBとするように三方弁6aおよび6bを制御する。一方、ステップS5では、制御装置30は、三方弁の流れ方向をDAとするように三方弁6aおよび6bを制御する。
ステップS4またはS5において、三方弁の流れ方向が決定されると、処理はメインルーチンに戻される。
次に、空気調和装置100が運転を行なう場合における冷媒の流れを、図6、図7を参照して説明する。図6は、暖房運転時およびTa<T1である場合の冷房運転時における冷媒の流れを示した図である。図7は、Ta>T1である場合の冷房運転時における冷媒の流れを示した図である。
冷房運転を行なう場合、まず、圧縮機1から吐出された冷媒は、四方弁2を介して熱交換部3aに流入する。冷房運転時、熱交換部3aは凝縮器として機能する。熱交換部3aに流入した冷媒は、ファン21によって熱交換部3aに供給された空気と熱交換を行なう。
三方弁6a、6bの流路を冷媒が図4の流れ方向DAに流れるように設定している場合、図6に示すように、熱交換部3bに流入する冷媒は、熱交換部3aから流出した状態と同じ冷媒流路数で熱交換部3bを通過し、冷媒流路を合流させて、熱交換部3cに流入する。
この場合、図3の具体例では、熱交換部3aから流出する冷媒流路31a,31b,32a,32bの数は4であり、熱交換部3bを並行して通過する冷媒流路33a,33b,34a,34bの数は4であり、熱交換部3cを並行して通過する冷媒流路35a,35bの数は2である。
一方、三方弁6a、6bの流路を冷媒が流れ方向DBに流れるように設定している場合、図7に示すように、冷媒は、熱交換部3aでの冷媒流路を通過後に出口で合流してから熱交換部3bに流入する。そして、冷媒は、熱交換部3aより少ない冷媒流路数で熱交換部3bを通過し、熱交換部3bと同じ冷媒流路数で熱交換部3cを通過する。
この場合、図3の具体例では、熱交換部3aから流出する冷媒流路数は4であり、熱交換部3cを並行して通過する冷媒流路数は2であり、流れ方向DAの場合と同じであるが、熱交換部3bを同時に並行して通過する冷媒流路数は2となる。つまり、熱交換部3bにおいて、冷媒は、冷媒流路33a,33bに並行して通過し、その後冷媒流路34a,34bに並行して通過するので、同時に並行して通過する冷媒流路数は4から2に減少する。
図6、図7に戻って、室外熱交換器3で熱交換された冷媒は、室外熱交換器3から流出して、膨張弁4に流入する。膨張弁4に流入した冷媒は、膨張弁4で減圧された後、膨張弁4から流出する。膨張弁4から流出した冷媒は、冷房運転時に蒸発器として機能する室内熱交換器5に流入して、ファン23から室内熱交換器5の内部に供給された空気と熱交換を行なう。室内熱交換器5で熱交換された冷媒は、四方弁2を経由して圧縮機1に流入する。
以上説明したように、冷房運転時には、熱交換部3bにおいて並行して流れる流路数を外気温Taに基づいて増減させる。一方、暖房運転時には、図6の破線矢印に示すように冷媒が流れるように熱交換部3bにおいて並行して流れる流路数は固定される。
次に、外気温Taに基づいて、冷房運転時に室外熱交換器3の冷媒流路を切り替える理由について説明する。
空気調和装置100が冷房運転を行なう場合で、外気温度が高い条件の場合、一般的に、制御装置30は室内機側の空調負荷要求を満たすため、圧縮機1を増速させる。圧縮機1を増速させることで、圧縮機1から吐出される冷媒循環量も増加する。
図8は、空気調和装置100を高外気温時および低外気温時に冷房運転させた場合の、P−H線図の概略図である。一般に、高外気温時に冷房運転を行なう場合、室外の空気温度と室外熱交換器3を流れる冷媒の冷媒温度差を確保するために、室外熱交換器3における冷媒の凝縮温度は上昇する。凝縮温度の上昇に伴い、高圧側の冷媒圧力も図8の破線のサイクルC1で示すように上昇する。一方、低外気温時に冷房運転を行なう場合は、高外気温時に冷房運転を行なう場合と比較して、凝縮温度が低くても空気温度と冷媒温度の温度差を確保可能であるため、凝縮温度は低下する。また高圧側の冷媒圧力も図8の実線のサイクルC2で示すように低下する。
一般に、空気調和装置に用いられる冷媒の特性として、温度が高くなった状態、すなわち圧力が高くなった状態では、潜熱は減少する。冷媒のガス部の状態をRg、二相部をRs、液部をRLとし、それぞれの状態におけるエンタルピ差をΔH(Rg)、ΔH(Rs)、ΔH(RL)とする。過冷却度を同一に確保した場合、ΔH(RL)は、圧力に応じて変化することなくおおむね一定である(図8でΔH(RL)1=ΔH(RL)2)。これに対して、ΔH(Rs)は圧力上昇に伴い減少していく(図8でΔH(Rs)1<ΔH(Rs)2)。
このため、液部と二相部のエンタルピ差比率α(=ΔH(RL)/ΔH(Rs))は、外気温度上昇に応じて増加していく。空気調和装置100は、冷房運転時に能力を確保するためや運転効率を最大にするために、室外熱交換器3出口で過冷却度を確保するように運転する場合がある。仮に、空気調和装置100において、同一の過冷却度を目標にして制御装置30による制御を行なった場合、室外熱交換器3内部での液部と二相部のエンタルピ差比率αは外気温度上昇に応じて増加することとなる。即ち、室外熱交換器3内部が液で満たされている領域が大きいということになる。
図9は、冷媒の乾き度Xと冷媒による管内熱伝達率との関係を示す図である。図9に示すように、冷媒の管内熱伝達率は乾き度によって変化し、一般的に二相部の時に高くピークを有し、単相部(ガス(X=1)または液(X=0))の時に低いという傾向がある。したがって、空気調和装置100における室外熱交換器3を通過している場合も、室外熱交換器3内では相変化(乾き度変化)が起きているため、熱伝達率の良い部分と、悪い部分が存在していることとなる。
上記のような状態を考慮して、エンタルピ差比率αが大きいような状態(高外気温)では、室外熱交換器3の1冷媒流路当たりの流路を長くとり、管内流速向上による伝熱促進を図り、効率の良い運転を行なう。またエンタルピ差αが小さいような状態(低外気温)では、室外熱交換器3の1冷媒流路当たりの流路を短くとり、管内熱伝達率の高い二相部割合を増やすことで、伝熱促進を図り、効率の良い運転を行なう。
具体的には、実施の形態1に記載の空気調和装置100においては、上記エンタルピ差比率αを簡易的に判定するために、室外温度検出部11により検出した外気温度Taをしきい値T1と比較して、三方弁6a、6bを切替え、熱交換部3bを流れる冷媒の冷媒流路を図4に示したように可変とする。
上記の可変流路を採用することによって、室外温度Taが所定温度T1より高い場合は、室外温度Taが所定温度T1より低い場合と比較し、熱交換部3bの1冷媒流路当たりの流路を長くとることができる。このため、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置100を運転する際に、空調能力の向上や、効率の改善が期待でき、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。
実施の形態1において空気調和装置100に適用された技術は、空気と熱交換を行なうプレートフィン型の空気式熱交換器などに限定せず、水やブラインなどと熱交換を行なうプレート式熱交換器にも適用可能な技術である。
実施の形態1における空気調和装置100では、説明の便宜上、図1、図6、図7を主に用い、簡易的な冷媒回路90において説明を行なったが、例えば、図2、図3に示したように室外熱交換器や室内熱交換器の入口や出口に分配ヘッダが配置された熱交換器の構成も取ることも可能であるし、信頼性確保ためのレシーバーやアキュームレータ等の液溜め装置を有する冷媒回路であってもよい。
また、実施の形態1における空気調和装置100では、主に冷房運転時において、外気温度を判定対象値として熱交換部3bを流れる冷媒流路を可変とする構成について記載したが、暖房運転時においても必要に応じて、冷媒流路を可変としても良い。
一部説明が重複するところもあるが、以上説明した実施の形態1について、図面を参照して総括しておく。
図1に示す空気調和装置100は、冷媒が、圧縮機1、凝縮器(室外熱交換器3)、膨張弁4、および蒸発器(室内熱交換器5)の順に循環する空気調和装置である。凝縮器は、冷媒流路33と冷媒流路34とを有する室外熱交換器3と、冷媒流路33と冷媒流路34とに順に冷媒を流すか(方向DB)、並行して冷媒を流す(方向DA)かを切り替えるように構成された流路切替部6とを含む。空気調和装置100は、外気温Taを測定する室外温度検出部11と、室外温度検出部11の出力に基づいて流路切替部6の切替を制御する制御装置30とを備える。
図5に示すように、好ましくは、制御装置30は、室外温度検出部11の検出値Taがしきい値T1よりも低い場合には、冷媒流路33と冷媒流路34とに並行して冷媒が流れるように流路切替部6を制御し、室外温度検出部11の検出値Taがしきい値T1よりも高い場合には、冷媒流路33を通過した冷媒が冷媒流路34に流れるように流路切替部6を制御する。
図1、図3に示すように、好ましくは、室外熱交換器3は、熱交換部3aと、熱交換部3aよりも熱交換容量が小さく、かつ冷媒が循環する経路において熱交換部3aの下流側に接続される熱交換部3bとを含む。熱交換部3bは、冷媒流路33と、冷媒流路34とを含む。
図3に示す例では、各熱交換部の冷媒配管の断面積は同じであり、熱交換部3aの本数は48本、熱交換部3bの本数は8本である。したがって、より好ましくは、熱交換部3aの熱交換容量は、熱交換部3bの熱交換容量の2倍以上である。さらに好ましくは、図3に示すように、熱交換部3aの冷媒配管の合計長と、熱交換部3bの冷媒配管の合計長との比率は、6:1である。
図1に示すように、好ましくは、室外熱交換器3は、熱交換部3aと、冷媒が循環する経路において熱交換部3aの下流側に配置される熱交換部3bと、冷媒が循環する経路において熱交換部3bの下流側に配置される熱交換部3cとを含む。熱交換部3bは、冷媒流路33と冷媒流路34とを含む。熱交換部3aは、冷媒が並行して流れる、冷媒流路31と、冷媒流路32とを含む。熱交換部3cは、冷媒流路35を有する。冷媒流路31の出口は、冷媒流路33の入口と連通し、冷媒流路34の出口は、冷媒流路35の入口と連通する。流路切替部6は、冷媒流路33の出口を、冷媒流路35の入口と連通させるか、冷媒流路34の入口と連通させるかを切り替える三方弁6bと、冷媒流路32の出口を、冷媒流路33の入口と連通させるか、冷媒流路34の入口と連通させるかを切り替える三方弁6aとを含む。
実施の形態1の変形例1.
実施の形態1では、三方弁6a、6bを用いて熱交換部3bの冷媒流路を可変とする構成について記載した。実施の形態1の変形例1では、熱交換部3bの冷媒流路を可変とする別構成について説明する。
図10は、実施の形態1の変形例1に係る空気調和装置101(暖房・低外気温時冷房)を示す概略図である。図11は、実施の形態1の変形例1に係る空気調和装置101(高外気温時冷房)を示す概略図である。
図10および図11に示されるように、空気調和装置101は、圧縮機1と、四方弁2と、熱交換部3aと、熱交換部3bと、熱交換部3cと、膨張弁4と、室内熱交換器5と電磁弁7a、電磁弁7b、電磁弁7c、電磁弁7dとを、例えば配管で接続することによって、冷媒回路91が構成される。
室外熱交換器3は、熱交換部3aと、冷媒が循環する経路において熱交換部3aの下流側に配置される熱交換部3bと、冷媒が循環する経路において熱交換部3bの下流側に配置される熱交換部3cとを含む。熱交換部3bは、冷媒流路33と冷媒流路34とを含む。熱交換部3aは、冷媒が並行して流れる、冷媒流路31と、冷媒流路32とを含む。熱交換部3cは、冷媒流路35を有する。冷媒流路31の出口は、冷媒流路33の入口と連通し、冷媒流路34の出口は、冷媒流路35の入口と連通する。
空気調和装置101は、図1に示した空気調和装置100の構成において、流路切替部6に代えて流路切替部7を含み、他の部分は同じである。実施の形態1の変形例1では、流路切替部7は、電磁弁7a、電磁弁7b、電磁弁7c、電磁弁7dを含む。
電磁弁7dは、冷媒流路33の出口を冷媒流路35の入口に連通させるか否かを切り替える。電磁弁7aは、冷媒流路32の出口を冷媒流路34の入口に連通させるか否かを切り替える。電磁弁7cは、冷媒流路33の出口を冷媒流路34の入口に連通させるか否かを切り替える。電磁弁7bは、冷媒流路32の出口を冷媒流路33の入口に連通させるか否かを切り替える。
図12は、実施の形態1の変形例1における電磁弁の開閉制御を説明するための図である。
室外温度Taが所定温度T1より低い場合には、制御装置30は、電磁弁7aを開き、電磁弁7bを閉じ、電磁弁7cを閉じ、電磁弁7dを開くように、流路切替部7を制御する。この場合の冷媒の流れが図10に示される。
一方、室外温度Taが所定温度T1より高い場合には、制御装置30は、電磁弁7aを閉じ、電磁弁7bを開き、電磁弁7cを開き、電磁弁7dを閉じるように、流路切替部7を制御する。この場合の冷媒の流れが図11に示される。
図12に示した開閉パターンに従って電磁弁を制御することによって、室外温度Taが所定温度T1より高い場合は、室外温度Taが所定温度T1より低い場合と比較し、熱交換部3bの1冷媒流路当たりの流路を長くとることができる。このため、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置101を運転する際に、空調能力の向上や、効率の改善が期待でき、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。
実施の形態1の変形例2.
実施の形態1では、三方弁6a、6bを用いて熱交換部3bの冷媒流路を可変とする構成について記載した。実施の形態1の変形例2では、熱交換部3bの冷媒流路を可変とする別構成について説明する。
図13は、実施の形態1の変形例2に係る空気調和装置102(暖房・低外気温時冷房)を示す概略図である。図14は、実施の形態1の変形例2に係る空気調和装置102(高外気温時冷房)を示す概略図である。
図13および図14に示されるように、空気調和装置102は、圧縮機1と、四方弁2と、熱交換部3aと、熱交換部3bと、熱交換部3cと、膨張弁4と、室内熱交換器5と電磁弁9a、電磁弁9b、逆止弁10a、逆止弁10bとを、例えば配管で接続することで、冷媒回路92が構成される。
室外熱交換器3は、熱交換部3aと、冷媒が循環する経路において熱交換部3aの下流側に配置される熱交換部3bと、冷媒が循環する経路において熱交換部3bの下流側に配置される熱交換部3cとを含む。熱交換部3bは、冷媒流路33と冷媒流路34とを含む。熱交換部3aは、冷媒が並行して流れる、冷媒流路31と、冷媒流路32とを含む。熱交換部3cは、冷媒流路35を有する。冷媒流路31の出口は、冷媒流路33の入口と連通し、冷媒流路34の出口は、冷媒流路35の入口と連通する。
空気調和装置102は、図1に示した空気調和装置100の構成において、流路切替部6に代えて流路切替部9を含み、他の部分は同じである。実施の形態1の変形例2では、流路切替部9は、電磁弁9a、電磁弁9b、逆止弁10a、逆止弁10bを含む。
電磁弁9bは、冷媒流路33の出口を冷媒流路35の入口に連通させるか否かを切り替える。電磁弁9aは、冷媒流路32の出口を冷媒流路34の入口に連通させるか否かを切り替える。逆止弁10bは、冷媒流路33の出口と冷媒流路34の入口との間に配置され、冷媒流路33の出口から冷媒流路34の入口に向けて冷媒を流すように構成される。逆止弁10aは、冷媒流路32の出口と冷媒流路33の入口との間に配置され、冷媒流路32の出口から冷媒流路33の入口に向けて冷媒を流すように構成される。
上記、空気調和装置102において、熱交換部3bの冷媒流路を可変とするために、制御装置30は、電磁弁9a、9bの開閉パターンを変更する。
室外温度Taが所定温度T1より低い場合には、制御装置30は、電磁弁9aを開き、電磁弁9bを開くように、流路切替部9を制御する。この場合の冷媒の流れが図13に示される。
一方、室外温度Taが所定温度T1より高い場合には、制御装置30は、電磁弁9aを閉じ、電磁弁9bを閉じるように、流路切替部9を制御する。この場合の冷媒の流れが図14に示される。
上記のように電磁弁を開閉することによって、室外温度Taが所定温度T1より高い場合は、室外温度Taが所定温度T1より低い場合と比較し、熱交換部3bの1冷媒流路当たりの流路を長くとることができる。このため、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置102を運転する際に、空調能力の向上や、効率の改善が期待でき、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。さらに、逆止弁は制御信号が不要で体格も電磁弁より小さいため、室外熱交換器の構成を簡単にすることができる。
実施の形態2.
実施の形態1では、三方弁6a、6bを用いて熱交換部3bの冷媒流路を可変とする構成について記載した。実施の形態1に記載の熱交換部3bは熱交換部3a、と直列に接続されており、直列に接続されたうえでの熱交換部3bの冷媒流路可変方式について提案した。実施の形態2では熱交換部3bに代えて熱交換部3dが配置される。実施の形態2では熱交換部3aと熱交換部3dを直列または並列として、冷媒流路を可変とする方式について記載する。
図15は、実施の形態2に係る空気調和装置103(暖房・低外気温時冷房)を示す概略図である。図16は、実施の形態2に係る空気調和装置103(高外気温時冷房)を示す概略図である。
図15および図16に示されるように、空気調和装置103は圧縮機1と、四方弁2と、熱交換部3aと、熱交換部3dと、熱交換部3cと、膨張弁4と、室内熱交換器5と流路切替弁8とを、例えば配管で接続することで、冷媒回路93が構成される。
実施の形態2では、流路切替部は、入口P1、入口P2、出口P3、出口P4が設けられた流路切替弁8である。流路切替弁8は、弁体を上下させることで、冷媒流路を入口2か所、出口2か所の流れパターンPA(図15)と入口1か所、出口1か所の流れパターンPB(図16)とに変更可能に構成される。
入口P1は、熱交換部3aの入口と連通し、入口P3は、熱交換部3aの出口と連通する。出口P3は、熱交換部3dの入口と連通し、出口P4は、熱交換部3dの出口と連通する。流路切替弁8は、流路切替弁8内の弁体の位置を第1位置に設定したときに、入口P2から冷媒を受けて出口P3に流す第1流路(PB)を形成するように構成され、流路切替弁8内の弁体の位置を第2位置に設定したときに、入口P1から冷媒を受けて出口P3に流すとともに、入口P2から冷媒を受けて出口P4に流す第2流路(PA)を形成するように構成される。
空気調和装置103においては、流路切替弁8の流れパターンをPA、PBと切替えることによって、熱交換部3aと熱交換部3dとが並列または直列に接続されるように冷媒流路を可変とする。流路切替弁8の流れパターンPAの場合は、熱交換部3dと熱交換部3aとに並列に冷媒が流れるように流路が形成される。流路切替弁8の流れパターンPBの場合は、熱交換部3dと熱交換部3aとに直列に冷媒が流れるように流路が形成される。
熱交換部3dを熱交換部3aと直列に接続した場合、1冷媒流路あたりの冷媒流速は増加する。熱交換部3dを熱交換部3aと並列に接続した場合は、1冷媒流路あたりの冷媒流速は減少する。
上記の流路切替弁8により可変流路を構成することによって、室外温度Taが所定温度T1より高い場合は、室外温度Taが所定温度T1より低い場合と比較し、熱交換部3a、3dにおいて1冷媒流路当たりの流路を長くとることができる。このため、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置101を運転する際に、空調能力の向上や、効率の改善が期待でき、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。
実施の形態3.
実施の形態1、2に記載の空気調和装置では、室外温度検出手段により検出した室外温度Taを判定対象値として、流路切替手段を用いて、流路を切替えることについて記載したが、実施の形態3における空気調和装置においては、圧縮機1の運転周波数fを判定対象値として流路を切替えることを特徴とする。すなわち、実施の形態3では、制御装置30は、圧縮機1の運転周波数fに基づいて、流路切替部の切替判定を行なう。
圧縮機1の運転周波数fが高い場合、冷媒回路内に流れる冷媒循環量が増加する。冷媒循環量が増加した場合、室外熱交換器3で処理できる熱量が減少し、空気との温度差を確保するために、凝縮温度が上昇し、高圧側冷媒圧力が上昇する。圧縮機1の運転周波数が低い状態では、逆に凝縮温度は低下し、高圧側冷媒圧力も低下する。この傾向は実施の形態1に記載の空気調和装置において、室外温度Taが高くなった場合と低くなった場合と同様の傾向である。したがって、実施の形態3では、圧縮機1の運転周波数を判定対象値として、実施の形態1、2に記載の空気調和装置と同様の処理を行なう。
実施の形態3では、制御装置30は、圧縮機1の運転周波数fがしきい値f1より高い場合には、実施の形態1の流路切替部6,7,9のいずれか、または実施の形態2の流路切替弁8を用い、室外熱交換器3に流れる1冷媒流路あたりの流路を長くとる、若しくは、流量を多くとる。
一方、制御装置30は、圧縮機運転周波数fがしきい値f1より低い場合には、実施の形態1の流路切替部6,7,9のいずれか、または実施の形態2の流路切替弁8を用い、室外熱交換器3に流れる1冷媒流路あたりの流路を短くとる、若しくは、流量を少なくとる。
図17は、実施の形態3において実行される制御を説明するためのフローチャートである。このフローチャートの処理は、図1に示した実施の形態1に圧縮機1の運転周波数に基づく流路切替を適用したものである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図17を参照して、制御装置30は、まずステップS11において冷房運転が指定されているか暖房運転が指定されているかを判断する。冷房運転が指定されている場合にはステップS12の処理が実行され、暖房運転が指定されている場合には、ステップS14の処理が実行される。
ステップS12では、制御装置30は、圧縮機1の運転周波数fが、しきい値f1より高いか否かを判断する。ステップS12において、制御装置30は、f>f1であればステップS13の処理を実行し、f>f1でなければステップS14の処理を実行する。
ステップS13では、制御装置30は、三方弁の流れ方向をDBとするように三方弁6aおよび6bを制御する。一方、ステップS14では、制御装置30は、三方弁の流れ方向をDAとするように三方弁6aおよび6bを制御する。
ステップS13またはS14において、三方弁の流れ方向が決定されると、処理はメインルーチンに戻される。
上記の構成および制御により、圧縮機1の運転周波数fが所定のしきい値f1より高い場合は、圧縮機1の運転周波数fが所定のしきい値f1より低い場合と比較して、室外熱交換器3の1冷媒流路当たりの流路を長く、若しくは、流量を多くとることができ、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置を運転する際に、能力の向上や、効率の改善、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。
なお、三方弁に代えて、実施の形態1の変形例1(電磁弁)、変形例2(電磁弁と逆止弁)の構成に上記の制御を適用しても良く、また実施の形態2の切替弁の構成に上記の制御を適用しても良い。
実施の形態4.
実施の形態1,2に記載の空気調和装置では、室外温度検出部11により検出した室外温度Taを判定対象値として、流路を切替えることについて記載したが、実施の形態4における空気調和装置においては、負荷側到達温度を検出する温度検出部と、設定温度の差分を算出し、差分を判定対象値とすることで、流路を切替えることを特徴とする。この検出部として、図1において室内熱交換器5からの吹き出し温度Tjを検出する温度検出部12を使用することができ、設定温度としてはリモコンなどでユーザが設定する設定温度Tmを使用することができる。
実施の形態4に係る空気調和装置において、制御装置30は、吹き出し温度Tjと目標となる設定温度Tmにおいて、ΔT=|Tm−Tj|を算出する。制御装置30は、負荷側到達温度Tjと、設定温度Tmとの差分を算出し、室外温度検出部11の出力と差分とに基づいて流路切替部6の切替判定を行なう。
具体的には、制御装置30は、ΔTがしきい値ΔT1よりも大きい場合は、負荷側到達温度が目標到達温度に到達していないと判断し、空気調和装置105は、例えば、圧縮機1を増速させたり、膨張弁4の開度を調整したりして、目標到達温度への早期到達を目指す。
ΔTがしきい値ΔT1より大きい場合は、目標到達のため、高圧側冷媒圧力が上昇したり、凝縮温度が上昇したりということが考えられるため、実施の形態1〜3に記載の流路切替手段の切替措置が必要となる。
ΔTがしきい値ΔT1より大きい場合には、制御装置30は、実施の形態1〜3に記載の空気調和装置における、室外熱交換器3に流れる冷媒流路を可変とする流路切替部6を用い、室外熱交換器3に流れる1冷媒流路あたりの流路を長くとる、若しくは、流量を多くとる。
一方、ΔTがしきい値ΔT1より小さい場合には、制御装置30は、実施の形態1〜3に記載の空気調和装置における、室外熱交換器3に流れる冷媒流路を可変とする流路切替部6を用い、室外熱交換器3に流れる1冷媒流路あたりの流路を短くとる、若しくは、流量を少なくとる。
図18は、実施の形態4において実行される制御を説明するためのフローチャートである。このフローチャートの処理は、図1に示した実施の形態1に吹き出し温度Tjに基づく流路切替を適用したものである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図18を参照して、制御装置30は、まずステップS21において冷房運転が指定されているか暖房運転が指定されているかを判断する。冷房運転が指定されている場合にはステップS22の処理が実行され、暖房運転が指定されている場合には、ステップS26の処理が実行される。
ステップS22では、制御装置30は、温度検出部12によって、室内熱交換器5からの吹き出し温度Tjを検出する。ステップS22に続いてステップS23では、制御装置30は、吹き出し温度Tjと目標となる設定温度Tmにおいて、ΔT=|Tm−Tj|を算出する。そして、ステップS24では、差分値ΔTがしきい値ΔT1より高いか否かを判断する。ステップS24において、制御装置30は、ΔT>ΔT1であればステップS25の処理を実行し、ΔT>ΔT1でなければステップS26の処理を実行する。
ステップS25では、制御装置30は、三方弁の流れ方向をDBとするように三方弁6aおよび6bを制御する。一方、ステップS26では、制御装置30は、三方弁の流れ方向をDAとするように三方弁6aおよび6bを制御する。
ステップS25またはS26において、三方弁の流れ方向が決定されると、処理はメインルーチンに戻される。
上記の構成および制御により、ΔTがしきい値ΔT1より高い場合は、ΔTがしきい値ΔT1より低い場合と比較して、室外熱交換器3の1冷媒流路当たりの流路を長く、若しくは、流量を多くとることができ、各運転状態に適した室外熱交換器3の使いこなしが可能となる。よって、空気調和装置を運転する際に、能力の向上や、効率の改善、または高圧抑制や吐出温度抑制による機器信頼性に対する効果などが期待できる。
なお、以上の実施の形態1〜4では、それぞれ、室外温度Ta、圧縮機周波数f、負荷側到達温度Tjと設定温度Tmの差分ΔTを判定対象値として、室内熱交換器の流路を切替える構成について記載した。実施の形態1〜4では、各々単独の判定対象値を用いて冷媒流路を可変とするとしたが、これら判定対象値は組み合わせて使用してもよい。複数の判定対象値を組み合わせて判定する場合には、たとえば、複数の判定対象値のいずれか一つが判定値より高くなった場合に、流れ方向をDAからDBに切替えるようにすることができる。
なお、三方弁に代えて、実施の形態1の変形例1(電磁弁)、変形例2(電磁弁と逆止弁)の構成に上記の制御を適用しても良く、また実施の形態2の切替弁の構成に上記の制御を適用しても良い。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 四方弁、3 室外熱交換器、3a,3b,3c,3d 熱交換部、4 膨張弁、5 室内熱交換器、6,7,9 流路切替部、6a,6b 三方弁、7a,7b,7c,7d,9a,9b 電磁弁、8 流路切替弁、10a,10b 逆止弁、11 室外温度検出部、12 温度検出部、21,23 ファン、30 制御装置、31,31a,31b,32,32a,32b,33,33a,33b,34,34a,34b,35,35a,35b 冷媒流路、41〜47 ヘッダ、90〜93 冷媒回路、100〜105 空気調和装置。

Claims (11)

  1. 冷媒が、圧縮機、凝縮器、膨張弁、および蒸発器の順に循環する空気調和装置であって、
    前記凝縮器は、
    第1冷媒流路と第2冷媒流路とを有する熱交換器と、
    前記第1冷媒流路と前記第2冷媒流路とに順に前記冷媒を流すか、並行して前記冷媒を流すかを切り替えるように構成された流路切替部とを含み、
    外気温を測定する室外温度検出部と、
    前記室外温度検出部の出力に基づいて前記流路切替部の切替を制御する制御装置とを備える、空気調和装置。
  2. 前記制御装置は、前記室外温度検出部の検出値が第1しきい値よりも低い場合には、前記第1冷媒流路と前記第2冷媒流路とに並行して前記冷媒が流れるように前記流路切替部を制御し、前記室外温度検出部の検出値が第1しきい値よりも高い場合には、前記第1冷媒流路を通過した前記冷媒が前記第2冷媒流路に流れるように前記流路切替部を制御する、請求項1に記載の空気調和装置。
  3. 前記熱交換器は、
    第1熱交換部と、
    前記第1熱交換部よりも熱交換容量が小さく、かつ前記冷媒が循環する経路において前記第1熱交換部の下流側に接続される第2熱交換部とを含み、
    前記第2熱交換部は、前記第1冷媒流路と、前記第2冷媒流路とを含む、請求項1に記載の空気調和装置。
  4. 前記第1熱交換部の熱交換容量は、前記第2熱交換部の熱交換容量の2倍以上である、請求項3に記載の空気調和装置。
  5. 前記第1熱交換部の冷媒配管の合計長と、前記第2熱交換部の冷媒配管の合計長との比率は、6:1である、請求項4に記載の空気調和装置。
  6. 前記熱交換器は、
    第1熱交換部と、
    前記冷媒が循環する経路において前記第1熱交換部の下流側に配置される第2熱交換部と、
    前記冷媒が循環する経路において前記第2熱交換部の下流側に配置される第3熱交換部とを含み、
    前記第2熱交換部は、前記第1冷媒流路と前記第2冷媒流路とを含み、
    前記第1熱交換部は、前記冷媒が並行して流れる、第3冷媒流路と、第4冷媒流路とを含み、
    前記第3熱交換部は、第5冷媒流路を有し、
    前記第3冷媒流路の出口は、前記第1冷媒流路の入口と連通し、
    前記第2冷媒流路の出口は、前記第5冷媒流路の入口と連通し、
    前記流路切替部は、
    前記第1冷媒流路の出口を、前記第5冷媒流路の入口と連通させるか、前記第2冷媒流路の入口と連通させるかを切り替える第1の三方弁と、
    前記第4冷媒流路の出口を、前記第1冷媒流路の入口と連通させるか、前記第2冷媒流路の入口と連通させるかを切り替える第2の三方弁とを含む、請求項1または2に記載の空気調和装置。
  7. 前記熱交換器は、
    第1熱交換部と、
    前記冷媒が循環する経路において前記第1熱交換部の下流側に配置される第2熱交換部と、
    前記冷媒が循環する経路において前記第2熱交換部の下流側に配置される第3熱交換部とを含み、
    前記第2熱交換部は、前記第1冷媒流路と前記第2冷媒流路とを含み、
    前記第1熱交換部は、前記冷媒が並行して流れる、第3冷媒流路と、第4冷媒流路とを含み、
    前記第3熱交換部は、第5冷媒流路を有し、
    前記第3冷媒流路の出口は、前記第1冷媒流路の入口と連通し、
    前記第2冷媒流路の出口は、前記第5冷媒流路の入口と連通し、
    前記流路切替部は、
    前記第1冷媒流路の出口を前記第5冷媒流路の入口に連通させるか否かを切り替える第1電磁弁と、
    前記第4冷媒流路の出口を前記第2冷媒流路の入口に連通させるか否かを切り替える第2電磁弁と、
    前記第1冷媒流路の出口を前記第2冷媒流路の入口に連通させるか否かを切り替える第3電磁弁と、
    前記第4冷媒流路の出口を前記第1冷媒流路の入口に連通させるか否かを切り替える第4電磁弁とを含む、請求項1または2に記載の空気調和装置。
  8. 前記熱交換器は、
    第1熱交換部と、
    前記冷媒が循環する経路において前記第1熱交換部の下流側に配置される第2熱交換部と、
    前記冷媒が循環する経路において前記第2熱交換部の下流側に配置される第3熱交換部とを含み、
    前記第2熱交換部は、前記第1冷媒流路と前記第2冷媒流路とを含み、
    前記第1熱交換部は、前記冷媒が並行して流れる、第3冷媒流路と、第4冷媒流路とを含み、
    前記第3熱交換部は、第5冷媒流路を有し、
    前記第3冷媒流路の出口は、前記第1冷媒流路の入口と連通し、
    前記第2冷媒流路の出口は、前記第5冷媒流路の入口と連通し、
    前記流路切替部は、
    前記第1冷媒流路の出口を前記第5冷媒流路の入口に連通させるか否かを切り替える第1電磁弁と、
    前記第4冷媒流路の出口を前記第2冷媒流路の入口に連通させるか否かを切り替える第2電磁弁と、
    前記第1冷媒流路の出口と前記第2冷媒流路の入口との間に配置され、前記第1冷媒流路の出口から前記第2冷媒流路の入口に向けて前記冷媒を流すように構成された第1逆止弁と、
    前記第4冷媒流路の出口と前記第1冷媒流路の入口との間に配置され、前記第4冷媒流路の出口から前記第1冷媒流路の入口に向けて前記冷媒を流すように構成された第2逆止弁とを含む、請求項1または2に記載の空気調和装置。
  9. 前記熱交換器は、
    第1熱交換部と、
    前記第1熱交換部よりも熱交換容量が小さく、かつ前記冷媒が循環する経路において前記第1熱交換部の下流側に接続される第2熱交換部とを含み、
    前記流路切替部は、第1入口、第2入口、第1出口、第2出口が設けられた切替弁であり、
    前記第1入口は、前記第1熱交換部の入口と連通し、
    前記第2入口は、前記第1熱交換部の出口と連通し、
    前記第1出口は、前記第2熱交換部の入口と連通し、
    前記第2出口は、前記第2熱交換部の出口と連通し、
    前記切替弁は、前記切替弁内の弁体の位置を第1位置に設定したときに、前記第2入口から冷媒を受けて前記第1出口に流す第1流路を形成するように構成され、前記切替弁内の弁体の位置を第2位置に設定したときに、前記第1入口から冷媒を受けて前記第1出口に流すとともに、第2入口から冷媒を受けて第2出口に流す第2流路を形成するように構成される、請求項1または2に記載の空気調和装置。
  10. 負荷側到達温度を検出する負荷側温度検出部をさらに備え、
    前記制御装置は、前記負荷側到達温度と、設定温度との差分を算出し、前記室外温度検出部の出力と前記差分とに基づいて前記流路切替部の切替判定を行なう、請求項1に記載の空気調和装置。
  11. 前記制御装置は、前記圧縮機の運転周波数に基づいて、前記流路切替部の切替判定を行なう、請求項1に記載の空気調和装置。
JP2018540570A 2016-09-23 2016-09-23 空気調和装置 Active JP6664503B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078056 WO2018055739A1 (ja) 2016-09-23 2016-09-23 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2018055739A1 true JPWO2018055739A1 (ja) 2019-04-25
JP6664503B2 JP6664503B2 (ja) 2020-03-13

Family

ID=61690320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018540570A Active JP6664503B2 (ja) 2016-09-23 2016-09-23 空気調和装置

Country Status (2)

Country Link
JP (1) JP6664503B2 (ja)
WO (1) WO2018055739A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964776B2 (ja) * 2018-07-05 2021-11-10 三菱電機株式会社 冷凍サイクル装置
CN112351651B (zh) * 2020-10-30 2023-01-10 中国移动通信集团设计院有限公司 冷凝器、风冷机房专用空调及风冷机房专用空调控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910260B2 (ja) * 1991-02-07 1999-06-23 ダイキン工業株式会社 空気調和装置及び空気調和装置の運転制御装置
JP3300188B2 (ja) * 1995-03-16 2002-07-08 定祐 伊藤 圧縮式ヒートポンプ
JP2006097978A (ja) * 2004-09-29 2006-04-13 Denso Corp 冷凍サイクル
JP2010139097A (ja) * 2008-12-09 2010-06-24 Mitsubishi Electric Corp 空気調和機
JP5518089B2 (ja) * 2009-10-28 2014-06-11 三菱電機株式会社 空気調和装置
JP2011220616A (ja) * 2010-04-09 2011-11-04 Hitachi Appliances Inc 冷凍装置
JP5927415B2 (ja) * 2011-04-25 2016-06-01 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6528078B2 (ja) * 2015-03-23 2019-06-12 パナソニックIpマネジメント株式会社 空気調和機

Also Published As

Publication number Publication date
WO2018055739A1 (ja) 2018-03-29
JP6664503B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6644154B2 (ja) 空気調和装置
JP4959800B2 (ja) 冷凍サイクル装置の運転制御方法
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP5570531B2 (ja) ヒートポンプ装置
US8047011B2 (en) Refrigeration system
JP6595205B2 (ja) 冷凍サイクル装置
JPWO2010128551A1 (ja) 空気調和装置
JP3998024B2 (ja) ヒートポンプ床暖房空調装置
JP6880204B2 (ja) 空気調和装置
CN107490090B (zh) 空调器
JP2003172523A (ja) ヒートポンプ床暖房空調装置
JP5855284B2 (ja) 空気調和装置
CN107726475B (zh) 空调器
JP6664503B2 (ja) 空気調和装置
US20210048216A1 (en) Air-conditioning apparatus
JP5496161B2 (ja) 冷凍サイクルシステム
US11408627B2 (en) Air-conditioning apparatus
JP5627564B2 (ja) 冷凍サイクルシステム
WO2020115812A1 (ja) 空気調和機
US11879677B2 (en) Air-conditioning apparatus
JP7055239B2 (ja) 空気調和装置
JP7065681B2 (ja) 空気調和装置
WO2021014520A1 (ja) 空気調和装置
JP5987479B2 (ja) ヒートポンプ式空気調和装置
JP2019203688A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6664503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250