WO2013135935A1 - Sistema para la fabricación, manipulación y suministro de hormigón - Google Patents

Sistema para la fabricación, manipulación y suministro de hormigón Download PDF

Info

Publication number
WO2013135935A1
WO2013135935A1 PCT/ES2013/070166 ES2013070166W WO2013135935A1 WO 2013135935 A1 WO2013135935 A1 WO 2013135935A1 ES 2013070166 W ES2013070166 W ES 2013070166W WO 2013135935 A1 WO2013135935 A1 WO 2013135935A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
vehicle
handling
supply
water
Prior art date
Application number
PCT/ES2013/070166
Other languages
English (en)
French (fr)
Inventor
Serafín Lizarraga Galarza
Juan José Beltrán Núñez
Helmut Döllerer Maier
Original Assignee
Cementos Portland Valderrivas, S.A.
Liebherr Industrias Metálicas S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cementos Portland Valderrivas, S.A., Liebherr Industrias Metálicas S.A. filed Critical Cementos Portland Valderrivas, S.A.
Publication of WO2013135935A1 publication Critical patent/WO2013135935A1/es
Priority to TNP2014000383A priority Critical patent/TN2014000383A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4206Control apparatus; Drive systems, e.g. coupled to the vehicle drive-system
    • B28C5/422Controlling or measuring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4231Proportioning or supplying water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/0007Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust
    • B28C7/0023Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/0007Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust
    • B28C7/0023Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust by heating or cooling
    • B28C7/003Heating, e.g. using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0404Proportioning
    • B28C7/0418Proportioning control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/12Supplying or proportioning liquid ingredients

Definitions

  • the present invention relates to a system for the manufacture, handling and supply of concrete that is framed within the construction sector, specifically in the concrete industry, and to an associated procedure.
  • the concrete of Central is a technology in which the concrete is manufactured in a concrete mixer where the components of the concrete are stored: cements, additions, water, aggregates, additives, and for the manufacture of concrete these components are dosed in a tank concrete mixer directly where the mixture is made. Instead of feeding the components directly to the tank, in some plants a mixer is fed to improve this mixing process. From this moment the concrete begins its hydration process by chemical reactions ("zero" time of concrete life).
  • Central concrete is characterized in that it must reach the destination point with a consistency agreed with the customer that can be self-compacting, fluid, soft or dry, respectively, from greater to less easy in placement.
  • This consistency also called workability, is maximum in the first moments of mixing, when a good mixture of all the components of the concrete is achieved, and that is usually between 1 and 10 minutes, and it decreases from that moment as the reactions Concrete chemicals are advancing with their reaction kinetics, which is a function of their dosage and temperatures, that of concrete and the environment.
  • the concrete technology of Central must predict what the loss of consistency will be based on these variables and the time from the exit of the tank to the destination point, and adjust the formulation with an excess of consistency, in such a way that its loss in the path is compensated and arrives with the desired one.
  • adding water As water implies a decrease in resistance, more cement must be added to compensate for them, add plasticizing additives, superplasticizers and retarders.
  • additive dispensers have been designed that allow them to be applied in situ, as described in WO 99/10148.
  • the system of the present invention allows to achieve the aforementioned objective and solve the problems existing in the state of the art related to the transport of concrete.
  • the system of the invention comprises the following parts:
  • a concrete mixer plant comprising storage of aggregates, additives, cements, additives and water.
  • At least one vehicle comprising the following elements:
  • auxiliary secondary tank independent of the main drum and connected to it by a conduit
  • control system connected to the main auxiliary tank, the secondary tank and the rotating drum.
  • a central computer and communications system for communication with the concrete mixer and the computer management system of at least one vehicle.
  • the concrete plant will have the appropriate formulas in the central computer system. With this information you will load the solid components, either previously mixing them with a concrete mixer or without mixing, directly feeding the tank.
  • the concrete plant will be responsible for filling the additive and water tanks.
  • the plant and concrete mixer tank will be connected by the computer system. The plant will pass the information of the solid materials fed into the tank and the amount of water to be dosed in situ, the amount of each of the additives as well as its sequence, which in some cases will be sequential and in others to the once the water is dosed so that the composition of the concrete is that of the selected formula.
  • the concrete mixer truck When the concrete mixer truck arrives at the destination and in accordance with the request of the concrete by the person responsible for pouring concrete, the concrete mixer truck with the software and hardware available will start the dosing program, electronically communicated by the plant to the concrete mixer tank , of water and additives according to the formula defined in the plant for the type of concrete requested and with a mixing time also defined by said formula. When the mixture is finished, the truck will be able to pour the newly manufactured concrete with the mentioned advantages of being in the best conditions to provide maximum performance according to its dosage.
  • the concrete mixer truck will have an additive dosing program for the smooth return of excess concrete.
  • Figure 1 is a schematic view of the improved system for the manufacture, handling and supply of concrete and its integral parts.
  • FIG. 2 is a more detailed view of the system of the present invention, in which the parts and elements it comprises, as well as its configuration and arrangement, are appreciated.
  • Figure 3 is a schematic view of the system elements included in the concrete mixer.
  • Figure 4 is a schematic view of the different elements mounted on the transport vehicle.
  • Figure 5 shows the plant connected computer system and trucks and an example of a sequence of mixing and kneading in situ of water and liquid additives.
  • Figure 1 shows a schematic representation of the improved system for the manufacture, handling and supply of concrete and its integral parts, that is, a concrete mixer, transport vehicles and a central computer and communications system (SIP).
  • SIP central computer and communications system
  • Figure 2 is a more detailed view of the system of Figure 1, which shows the parts and elements it comprises, as well as its configuration and arrangement.
  • Figure 3 shows a diagram of the corresponding part of a concrete mixer plant comprising storage of aggregates, cements, additions, additives and water, that is, the concrete components.
  • Solids storage are indicated as S1, S2, ... Sn and those of additives such as A1, A2, ... An.
  • the water tank can optionally carry a heating or cooling system to control the temperature of the concrete.
  • FIG. 1 also shows several transport vehicles.
  • Each transport vehicle includes as main elements:
  • main auxiliary tank 20 independent of the main drum 10 and connected to it by a conduit
  • auxiliary secondary tank 40 independent of the main drum 10 and connected to it by a conduit
  • control system 30 connected to the main auxiliary tank 20, the secondary tank 40 and the rotating drum 10.
  • Figure 1 shows the central computer and SIP communications system, in connection with the concrete mixer and the vehicles.
  • the concrete mixer has a control system 30 that prevents erroneous loading of the additives to the auxiliary secondary tanks 40 of the vehicle.
  • This SIP central computer and communications system consists of software and hardware for the control of the concrete mixer and vehicles, and can preferably be located in the concrete mixer.
  • the connections between the central computer system and SIP communications and vehicles can be wireless connections (WiFi or bluetooth, for example).
  • the central computer and SIP communications system can control the position of vehicles through GPS.
  • Figure 5 shows the connected computer system of the plant and vehicles.
  • the computer and communications system consists of software and hardware for the control of the plant, in the figure SIP (central computer and communications system), and for the control of the trucks, in the figure SIC (management computer system), and of the necessary communication in all the operations between both systems, SIP and SIC, for a coordinated operation of the operations.
  • SIP central computer and communications system
  • SIC management computer system
  • the SIP computer and communications system controls a fleet of vehicles, since it is normal that it is necessary to supply the concrete of more than one vehicle to the site.
  • Figure 2 also shows schematically the loading of vehicles with materials from the concrete mixer.
  • the rotating drum 10 is fed with the solid components (aggregates, cements and additions) from the respective storage (S1, S2, ... Sn) of the concrete mixer, the water is charged to the main auxiliary tank 20 from the water storage of the concrete mixer and the additives are loaded to the secondary auxiliary tanks 40 from the corresponding warehouses (A1, A2, ... An) of the concrete mixer.
  • the solid components can be fed to a mixer 70 located in the concrete mixer, before being discharged to the rotating drum 10 of the vehicle.
  • the transport vehicle comprises preferably Recently a main drum 10 capable of rotating, more preferably a conical rotating drum, such that this drum 10 can contain aggregates and cement in a certain proportion with a certain weight, which is preferably defined in a concrete plant, having been supplied aggregates and cement to the main drum 10.
  • a main drum 10 capable of rotating, more preferably a conical rotating drum, such that this drum 10 can contain aggregates and cement in a certain proportion with a certain weight, which is preferably defined in a concrete plant, having been supplied aggregates and cement to the main drum 10.
  • the vehicle further comprises a first auxiliary tank 20 independent of the main drum 10, this first auxiliary tank 20 comprising water for mixing the concrete mixture and for cleaning the main drum 10.
  • the said first auxiliary tank 20 is connected to the main drum 10 a through a primary precision measuring device 2, in particular a precision dispenser, providing a particular volume of water in a given time to the main drum 10.
  • the first auxiliary tank 20 mentioned above may comprise a heater and a temperature control device 5 for the water that is provided to the main drum 10, in order to control the temperature of the concrete mixture obtained.
  • the vehicle further comprises at least one auxiliary secondary tank 40, preferably three to six auxiliary secondary tanks 40, independent of the primary primary drum 10 and the first auxiliary tank 20, these auxiliary secondary tanks 40 containing different additives.
  • Each auxiliary secondary tank 40 is connected to the main drum 10 through a measuring device 3.
  • the first auxiliary tank 20 is connected to the main drum 10 through the primary precision measuring device 2, in particular a precision dispenser of dosage, such that the auxiliary secondary tanks 40 and the first auxiliary tank 20 provide the main drum 10 with the precise amounts of additives and water at predetermined times.
  • These auxiliary secondary tanks 40 are pre-stressed to drive the additives to the main drum 10, and are also thermally insulated.
  • the additives, coming from the auxiliary secondary tanks 40, are dosed to the main drum 10, through a common pipe 60, and are also connected to a water pump 50, to ensure that, after each dose of an additive , the tube 60 is cleaned by injecting controlled amounts of cleaning water, from the auxiliary tank twenty.
  • the vehicle also comprises a water injection tube 100 to ensure cleanliness of the interior of the main drum 10.
  • the vehicle also comprises a control system 30 based on a PLC;
  • This control system 30 is connected via a fieldbus of the CAN BUS® type to control absolutely all the various vehicle devices mentioned above.
  • This control system 30, duly programmed with the software developed for specific tasks, sends and receives information to and from all the devices to which it is connected, regulating such devices according to the reference values for each type of mixture of Concrete manufactured together with the mode of its placement.
  • the control system 30 also preferably receives in the concrete plant, the aggregate and cement data that is loaded into the main drum 10, preferably also receiving the reference values for the dosage of each additive and for the concrete plant. the water that is supplied to the concrete mix, as well as the cycle data and mixing times in the mix. This information is supplied from the plant's SIP, to the control system 30 and also to the SIC vehicle management computer system. .
  • the SIC vehicle management computer system and the control system 30 can be integrated into a single device.
  • the control system 30 is configured so that the main drum 10 begins to rotate sent by said control system 30 when the dosing of water from the main auxiliary tank 20 to the main drum 10 begins, such that the main drum 10 continues to rotate until the control system 30 indicates that the concrete mixture is prepared and ready to be placed.
  • the vehicle performs the mixing and obtaining of the concrete mixture in the workplace: thus, the main drum 10 contains aggregates and cement, which is they bind with water and additives from the first auxiliary tank 20 and auxiliary secondary tanks 40, respectively, directly at the work site. Due to the incorporation to the mixture at the site of the water and additives, the volume of the subsequent elements must be on average greater than normal, while trying to have all the components mixed in a short period of time and as uniformly as possible.
  • the vehicle may also comprise a lower track of the track type to allow access to difficult areas, such as wind farms.
  • a lower track of the track type to allow access to difficult areas, such as wind farms.
  • the control system 30 mainly controls the following parameters in the production of the concrete mixture:
  • control system 30 mentioned above can be implemented in a PLC through a specific control hardware, executed in accordance with the process specifications and the concrete mixing requirement.
  • the system according to the invention makes it possible to carry out a manufacturing, handling and supply process of concrete comprising the following steps:
  • step g Simultaneously with the beginning of step g), the control system 30 gives the order to start rotating the rotating drum 10
  • the vehicle management computer system (SIC) and the central computer and communications system (SIP) may issue delivery notes for the operation performed.
  • the designation of the concretes is in accordance with Spanish regulations EHE-08, example HA-40-L-12 Na followed by a designation R25 H08, indicates resistance (25 MPa) guaranteed at certain hours (8 hours).
  • the following table shows some examples of concrete with guaranteed resistance in a few hours, obtained by the invention.
  • the amounts of cement, sand and gravel are expressed in kg, and those of water in liters.
  • the density is expressed in kg / m 3 and the resistance in MPa.
  • the abbreviation a / c expresses the water - cement relationship.
  • the system of the invention is preferably used for accelerated concrete that is placed and achieves suitable mechanical conditions, up to 60 MPa, such as the maximum compression load that it can withstand in accordance with the tests of ASTM C39, in less than 8 hours preferably.
  • suitable mechanical conditions up to 60 MPa, such as the maximum compression load that it can withstand in accordance with the tests of ASTM C39, in less than 8 hours preferably.
  • the tests show that in less than 8 hours since placement, the accelerated concrete provided by the system of the invention typically has a compression load of approximately 30 or 40 MPa.
  • the system of the invention is used for concrete that can operate at temperatures above 45 ° C and below -5 o C, thus providing a system that is able to work in any temperature range.
  • the system is able to provide concrete adapted and carried out in situ depending on the ambient temperature conditions where the concrete is going to be placed, from the hardening time and the necessary stiffness after said hardening time, by means of the control system 30 in the system.
  • the system of the invention can be used regardless of the distance from the workplace where the concrete mixture is needed.
  • An object of the system of the invention is that it has a higher energy efficiency: because the main drum 10 is not continuously rotating, as in the prior art to prevent the concrete from hardening, the system's energy consumption is much lower than in the system known so far. It is estimated that, when the system is implemented in a vehicle, it consumes an average of 2,000 liters less fuel per year than in the case of a traditional mixer truck.
  • Another great advantage of the system is to reduce C02 emissions: taking into account the energy estimate given above, assuming C02 emissions of 750 g / km and a typical consumption of 30 1/100 km, the impact on the medium environment would be reduced by about 4.5 tons of CO2 per vehicle per year.
  • the system provides a concrete that can be used in any temperature range, including extreme ranges of low and high temperatures;
  • the system allows to have the advantages of concrete manufactured in situ (production control, reduction of waste materials) without having the problems associated with it (quality dispersion, use limited to non-structural applications);
  • the system can be used in remote areas and does not have the traditional 90-minute limitation to travel the maximum distance;
  • the system is preferably used in the necessary repairs in a very short time or for works that need to be completed very quickly; - Improved logistics for concrete placement due to the short period of time between the addition of the liquid portion to the solid part of the concrete (aggregates and sand);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

Sistema para la fabricación, manipulación y suministro de hormigón, que comprende: a) Una central hormigonera que comprende almacenamientos de áridos, adiciones, cementos, aditivos y agua. b) Al menos un vehículo que comprende: un tambor giratorio (10), un depósito auxiliar principal (20) independiente del tambor principal (10) y conectado a él mediante un conducto, al menos un depósito secundario auxiliar (40) independiente del tambor principal (10) y conectado a él mediante un conducto, y un sistema de control (30) conectado al depósito auxiliar principal (20), al depósito secundario (40) y al tambor giratorio (10) un sistema informático de gestíón (SIC) conectado al sistema de control (30). c) Un sistema central informático y de comunicaciones (SIP) para la comunicación con la central hormigonera y el sistema informático de gestión (SIC) del al menos un vehículo.

Description

SISTEMA PARA LA FABRICACIÓN. MANIPULACIÓN Y SUMINISTRO DE
HORMIGÓN
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un sistema para la fabricación, manipulación y suministro de hormigón que se enmarca dentro del sector de la construcción, concretamente en la industria del hormigón, y a un procedimiento asociado.
ANTECEDENTES DE LA INVENCIÓN
El hormigón de Central es una tecnología en la que el hormigón se fabrica en una central hormigonera donde se tienen almacenados los componentes del hormigón: cementos, adiciones, agua, áridos, aditivos, y para la fabricación del hormigón se dosifican estos componentes a una cuba hormigonera directamente donde se hace la mezcla. En lugar de hacer la alimentación de los componentes directamente a la cuba, en algunas plantas se alimenta a una mezcladora para mejorar este proceso de mezclado. Desde este momento el hormigón comienza su proceso de hidratación por las reacciones químicas (tiempo "cero" de la vida del hormigón). El hormigón de central se caracteriza porque debe llegar al punto de destino con una consistencia acordada con el cliente que puede ser autocompactable, fluida, blanda o seca, respectivamente de mayor a menor facilidad en la colocación. Esta consistencia, también llamada trabajabilidad, es máxima en los primeros momentos del mezclado, cuando se consigue una mezcla buena de todos los componentes del hormigón, y que suele ser entre 1 y 10 minutos, y va disminuyendo a partir de ese momento conforme las reacciones químicas del hormigón van avanzando con su cinética de reacción, que es función de su dosificación y de las temperaturas, la del hormigón y la ambiente.
De acuerdo con esto, la tecnología del hormigón de Central debe predecir cuál va a ser la pérdida de consistencia en función de estas variables y del tiempo desde la salida de la cuba al punto de destino, y ajustar la formulación con un exceso de consistencia, de tal manera que se compense su pérdida en el trayecto y llegue con la deseada. Hay varias maneras conocidas de hacer lo anterior, por ejemplo, añadiendo agua; como el agua implica una merma de resistencias, hay que añadir más cemento para compensarlas, añadir aditivos plastificantes, superplastificantes y retardadores.
Esto implica un sobrecoste, que es mayor cuanto mayor sea el tiempo de trayecto, pero además tiene muchos inconvenientes ya que el tiempo de trayecto presenta una incertidumbre, y tiene un límite que depende, como se ha indicado anteriormente, de estas variables: dosificación, temperatura del hormigón, temperatura ambiente. Se puede decir, admitiendo algunas excepciones, que este tiempo desde la mezcla al completo vertido del hormigón es siempre menor que 4 horas con un valor medio de 2 horas. De acuerdo con esto y con la logística de entrega de un servicio que normalmente implica varios camiones, en el mundo las centrales de hormigón tienen un área de servicio que suele ser inferior normalmente a los 100 km. Distancias mayores implican unos costes superiores, por lo que es mejor instalar una nueva planta que atender distancias superiores.
En algunos emplazamientos donde no hay planta hormigonera y hay que construir una obra (como una presa o un puente) y que después de esa obra no va a haber nuevas necesidades de hormigón se han diseñado hormigoneras móviles, como la del documento de patente de EE.UU. US 4752134
También para poder atender algunas eventualidades se han diseñado dosificadores de aditivos que permiten aplicarlos in situ, como el descrito en el documento de patente WO 99/10148.
Como se ha indicado anteriormente, para el transporte del hormigón, se realiza su dosificación de agua, áridos, cemento y aditivos en una central hormigonera desde donde se dispone de un periodo máximo de aproximadamente 90 minutos para entregar el hormigón en obra sin que el mismo pierda propiedades importantes. Este hecho limita los desplazamientos desde una central hormigonera a su destino y obliga a que siempre sea necesario tener una central hormigonera más o menos próxima del destino de obra, existiendo por tanto habitualmente una pérdida en la calidad del hormigón, además de otros posibles inconvenientes.
En el estado de la técnica son conocidos camiones hormigoneras que presentan un depósito de pequeña capacidad para contener agua destinada principalmente a la limpieza de la cuba, a los que la central hormigonera suministra el hormigón que deben transportar.
Otros documentos, como el documento de patente AU 778765 B2, describen vehículos mezcladores con un depósito adicional para aditivos líquidos. En este documento el depósito para aditivos está conectado a una cuba rotatoria, y cuando se desea se alimenta una cantidad fijada de aditivo líquido desde su depósito a la cuba rotatoria.
Por tanto, sería deseable obtener un sistema que permita fabricar, manipular y suministrar un hormigón con los componentes proporcionados por una central hormigonera cuyas propiedades no dependan de la distancia a la que se encuentra el punto de utilización con respecto a dicha central hormigonera.
SUMARIO DE LA INVENCIÓN
El sistema de la presente invención permite conseguir el objetivo anteriormente señalado y solventar los problemas existentes en el estado de la técnica referidos al transporte de hormigón.
El sistema de la invención comprende las siguientes partes:
a) Una central hormigonera que comprende almacenamientos de áridos, adicones, cementos, aditivos y agua.
b) Al menos un vehículo que comprende los siguientes elementos:
- un tambor giratorio,
- un depósito auxiliar principal independiente del tambor principal y conectado a él mediante un conducto,
- al menos un depósito secundario auxiliar independiente del tambor principal y conectado a él mediante un conducto, y - un sistema de control conectado al depósito auxiliar principal, al depósito secundario y al tambor giratorio.
c) Un sistema central informático y de comunicaciones para comunicación con la central hormigonera y el sistema informático de gestión del al menos un vehículo.
En función del hormigón solicitado, de sus propiedades mecánicas y de su consistencia, de los requisitos normativos aplicables, y de la cantidad a cargar en la cuba hormigonera, la planta de hormigón dispondrá de las fórmulas apropiadas en el sistema central informático. Con esta información cargará los componentes sólidos, bien previamente mezclándolos con una mezcladora de hormigón o sin mezclar alimentando directamente a la cuba. La planta de hormigón se encargará del llenado de los depósitos de aditivos y del agua. La planta y la cuba hormigonera estarán conectadas por el sistema informático. La planta pasará la información de los materiales sólidos alimentados en la cuba y de la cantidad de agua a dosificar in situ, de la cantidad de cada uno de los aditivos así como de su secuencia, que en algunos casos será secuencial y en otros a la vez que se dosifica el agua para que la composición del hormigón sea la de la fórmula seleccionada.
Cuando el camión cuba hormigonera llegue a destino y de acuerdo con la solicitud del hormigón por el responsable del vertido de hormigón, el camión cuba hormigonera con el software y hardware que dispone iniciará el programa de dosificación, comunicado electrónicamente por la planta a la cuba hormigonera, del agua y los aditivos de acuerdo con la fórmula definida en la planta para el tipo de hormigón solicitado y con un tiempo de mezcla también definido por dicha fórmula. Cuando se termina la mezcla el camión podrá verter el hormigón recién fabricado con las ventajas comentadas de encontrarse en las mejores condiciones para prestar las máximas prestaciones de acuerdo a su dosificación.
Al terminar el vertido el camión hormigonera dispondrá de un programa de dosificación de aditivo para el retorno sin problemas del hormigón sobrante.
Como el suministro de un hormigón normalmente supone más cantidad que lo que una unidad de camión hormigonera puede llevar, la planta, mediante el sistema informático y de comunicaciones, controla una flota de camiones hormigoneras como el descrito, control que es crítico con hormigones de fraguado muy rápido para evitar lo denominado como juntas frías. BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 es una vista esquemática del sistema mejorado para la fabricación, manipulación y suministro de hormigón y de sus partes integrantes.
La figura 2 es una vista más detallada del sistema de la presente invención, en la que se aprecian las partes y elementos que comprende, así como su configuración y disposición.
La figura 3 es una vista esquemática de los elementos del sistema comprendidos en la central hormigonera.
La figura 4 es una vista esquemática de los diferentes elementos montados en el vehículo de transporte.
La figura 5 muestra el sistema informático conexionado de planta y camiones y un ejemplo de secuencia de mezclado y amasado in situ de agua y aditivos líquidos.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En la figura 1 se observa una representación esquemática del sistema mejorado para la fabricación, manipulación y suministro de hormigón y de sus partes integrantes, es decir, una central hormigonera, vehículos de transporte y un sistema central informático y de comunicaciones (SIP).
La figura 2 es una vista más detallada del sistema de la figura 1 , en la que se aprecian las partes y elementos que comprende, así como su configuración y disposición.
En la figura 3 se observa un esquema de la parte correspondiente de una central hormigonera que comprende almacenamientos de áridos, cementos, adiciones, aditivos y agua, es decir, los componentes del hormigón. Los almacenamientos de sólidos se indican como S1 , S2,...Sn y los de aditivos como A1 , A2, ...An. El depósito de agua puede llevar, opcionalmente, un sistema de calefacción o refrigeración para controlar la temperatura del hormigón. Asimismo, puede haber una mezcladora 70 a la salida de los almacenamientos de los componentes sólidos (áridos, cementos y adiciones).
Es deseable que el depósito de agua de la central hormigonera esté provisto de un sistema de calefacción o refrigeración, para poder controlar la temperatura inicial del hormigón, y que la misma sea independiente de las condiciones climatológicas. En la figura 1 también se observan varios vehículos de transporte. Cada vehículo de transporte comprende como elementos principales:
- un tambor giratorio 10,
- un depósito auxiliar principal 20 independiente del tambor principal 10 y conectado a él mediante un conducto,
- al menos un depósito secundario auxiliar 40 independiente del tambor principal 10 y conectado a él mediante un conducto, y
- un sistema de control 30 conectado al depósito auxiliar principal 20, al depósito secundario 40 y al tambor giratorio 10.
Estos y otros elementos del vehículo se describirán en detalle más adelante al hacer referencia a la figura 4. Asimismo, en la figura 1 aparece representado el sistema central informático y de comunicaciones SIP, en conexión con la central hormigonera y los vehículos.
La central hormigonera tiene un sistema de control 30 que impide la carga errónea de los aditivos a los depósitos secundarios auxiliares 40 del vehículo.
Este sistema central informático y de comunicaciones SIP consta de software y hardware para el control de la central hormigonera y los vehículos, y de manera preferente puede estar ubicado en la central hormigonera. Las conexiones entre el sistema central informático y de comunicaciones SIP y los vehículos pueden ser conexiones inalámbricas (WiFi o bluetooth, por ejemplo).
Asimismo, el sistema central informático y de comunicaciones SIP puede controlar la posición de los vehículos por medio de GPS.
En la figura 5 se muestra el sistema informático conexionado de planta y vehículos. El sistema informático y de comunicaciones consta de software y hardware para el control de la planta, en la figura SIP (sistema central informático y de comunicaciones), y para el control de los camiones, en la figura SIC (sistema informático de gestión), y de la comunicación necesaria en todas las operaciones entre ambos sistemas, SIP y SIC, para un funcionamiento coordinado de las operaciones. Como se observa en la figura 5, el sistema informático y de comunicaciones SIP controla una flota de vehículos, ya que lo normal es que sea necesario suministrar a la obra el hormigón de más de un vehículo.
En la figura 2 también se representa esquemáticamente la carga de los vehículos con los materiales provenientes de la central hormigonera.
El tambor giratorio 10 es alimentado con los componentes sólidos (áridos, cementos y adiciones) desde los almacenamientos respectivos (S1 , S2, ... Sn) de la central hormigonera, el agua es cargada al depósito auxiliar principal 20 desde el almacenamiento de agua de la central hormigonera y los aditivos son cargados a los depósitos auxiliares secundarios 40 desde los almacenamientos correspondientes (A1 , A2, ... An) de la central hormigonera.
Los componentes sólidos (áridos, cementos y adiciones) pueden alimentarse a una mezcladora 70 situada en la central hormigonera, antes de descargarse al tambor giratorio 10 del vehículo.
En la figura 4 se observa que el vehículo de transporte comprende prefe- rentemente un tambor principal 10 capaz de girar, más preferentemente un tambor rotativo cónico, de tal manera que este tambor 10 puede contener áridos y cemento en una cierta proporción con un cierto peso, que se define preferentemente en una planta de hormigón, habiendo sido suministrados los áridos y el cemento al tambor principal 10.
El vehículo comprende además un primer depósito auxiliar 20 independiente del tambor principal 10, comprendiendo este primer depósito auxiliar 20 agua para mezclar la mezcla de hormigón y para la limpieza del tambor principal 10. El mencionado primer depósito auxiliar 20 está conectado al tambor principal 10 a través de un dispositivo de medida de precisión primario 2, en particular un dispensador de precisión, proporcionando un volumen determinado de agua en un tiempo determinado al tambor principal 10.
El primer depósito auxiliar 20 mencionado anteriormente puede comprender un calentador y un dispositivo de control de temperatura 5 para el agua que se proporciona al tambor principal 10, con el objeto de controlar la temperatura de la mezcla de hormigón obtenida.
El vehículo comprende además al menos un depósito secundario auxiliar 40, preferiblemente de tres a seis depósitos secundarios auxiliares 40, independientes del tambor principal 10 primario y del primer depósito auxiliar 20, conte- niendo estos depósitos secundarios auxiliares 40 diferentes aditivos. Cada depósito secundario auxiliar 40 está conectado al tambor principal 10 a través de un dispositivo de medida 3. Además, el primer depósito auxiliar 20 está conectado al tambor principal 10 a través del dispositivo de medida de precisión primario 2, en particular un dispensador de precisión de dosificación, de tal manera que los depósitos secundarios auxiliares 40 y el primer depósito auxiliar 20 proporcionan al tambor principal 10 las cantidades precisas de aditivos y agua en los tiempos predeterminados. Estos depósitos secundarios auxiliares 40 están pre- surizados para impulsar los aditivos al tambor principal 10, y también están térmicamente aislados.
Los aditivos, procedentes de los depósitos secundarios auxiliares 40, se dosifican al tambor principal 10, a través de una tubería común 60, y están también conectados a una bomba de impulsión de agua 50, para asegurar que, después de cada dosis de un aditivo, el tubo 60 se limpia mediante la inyección de cantidades controladas de agua de limpieza, proveniente del depósito auxiliar 20.
El vehículo comprende también un tubo de inyección de agua 100 para asegurar la limpieza del interior del tambor principal 10.
El vehículo también comprende un sistema de control 30 basado en un PLC; este sistema de control 30 está conectado a través de un bus de campo del tipo CAN BUS® para controlar absolutamente todos los diversos dispositivos del vehículo mencionados anteriormente. Este sistema de control 30, debidamente programado con el software desarrollado para tareas específicas, envía y recibe información desde y hacia todos los dispositivos a los que está conectado, regu- lando tales dispositivos de acuerdo con los valores de referencia para cada tipo de mezcla de hormigón fabricado junto con el modo de su colocación. El sistema de control 30 recibe también preferentemente en la planta de hormigón, los datos de áridos y de cemento que se cargan en el tambor principal 10, recibiendo también preferiblemente en la planta de hormigón los valores de referencia para la dosificación de cada aditivo y para el agua que se suministra a la mezcla de hormigón, así como los datos de los ciclos y los tiempos de mezclado en la mezcla. Dicha información se suministra desde el SIP de la planta, al sistema de control 30 y también al sistema informático de gestión del vehículo SIC. .
El sistema informático de gestión del vehículo SIC y el sistema de control 30 pueden estar integrados en un único equipo.
El sistema de control 30 está configurado de manera que el tambor principal 10 comienza a girar mandado por dicho sistema de control 30 cuando comienza la dosificación de agua del depósito auxiliar principal 20 al tambor principal 10, de tal manera que el tambor principal 10 sigue girando hasta que el sis- tema de control 30 indica que la mezcla de hormigón está preparada y lista para ser colocada.
El unir en la mezcla de hormigón del tambor principal 10 otros aditivos y diferentes cantidades de cada uno de ellos, obliga al sistema de control 30 a controlar los diversos depósitos secundarios auxiliares 40 mencionados anterior- mente, y por lo tanto los diferentes aditivos, de modo que la desviación máxima de las cantidades y temperaturas de los aditivos en cuestión no afecte a las propiedades mecánicas de la mezcla de hormigón final obtenida.
El vehículo realiza la mezcla y obtención de la mezcla de hormigón en el lugar de trabajo: así, el tambor principal 10 contiene áridos y cemento, que se unen con agua y aditivos provenientes del primer depósito auxiliar 20 y los depósitos secundarios auxiliares 40, respectivamente, directamente en el sitio de trabajo. Debido a la incorporación a la mezcla en el sitio del agua y aditivos, el volumen de los elementos posteriores debe ser en promedio mayor de lo normal, intentándose al mismo tiempo tener todos los componentes mezclados en un corto período de tiempo y tan uniformemente como sea posible.
El vehículo puede comprender además un tren inferior de tipo oruga para permitir su acceso a zonas difíciles, tales como granjas de viento. Así, la incorporación de nuevos trenes inferiores permitirá la utilización del sistema para prepa- rar las mezclas de hormigón en el lugar de trabajo, en lugares de difícil acceso, tales como granjas de viento.
El sistema de control 30 controla principalmente los siguientes parámetros en la producción de la mezcla de hormigón:
- la temperatura del agua suministrada por el primer depósito auxiliar 20; - la temperatura de los aditivos en los depósitos auxiliares secundarios 40;
- la temperatura de la mezcla de hormigón obtenida;
- el volumen de agua que sale del primer depósito auxiliar 20;
- el volumen de los aditivos suministrados por los depósitos auxiliares 40;
- el volumen de la mezcla de hormigón vertido de descarga;
- el tiempo de dosificación del agua del primer depósito auxiliar 20 a través del dispositivo de medida de precisión primario 2;
- el tiempo de dosificación de los aditivos en los depósitos secundarios auxiliares 40 a través de los dispositivos de medición 3;
- el tiempo para la dosificación de la mezcla de hormigón vertido de des- carga.
El sistema de control 30 mencionado anteriormente puede ser implemen- tado en un PLC a través de un hardware de control determinado, ejecutado de acuerdo con las especificaciones del proceso y el requisito de mezcla de hormigón.
El sistema de acuerdo con la invención permite realizar un procedimiento de fabricación, manipulación y suministro de hormigón que comprende las siguientes etapas:
a) Introducción de la fórmula deseada del hormigón (componentes, secuencia de dosificación y tiempos de mezcla) en el sistema central informático y de comunicaciones (SIP).
b) Carga de componentes sólidos (áridos, cementos y adiciones) desde los almacenamientos respectivos de la planta hormigonera al tambor giratorio 10, según la fórmula anterior.
c) Carga de agua desde el almacenamiento respectivo de la planta al depósito auxiliar principal 20
d) Carga de aditivos desde los almacenamientos correspondientes de la planta a los depósitos auxiliares secundarios 40
e) Transmisión desde el sistema central informático y de comunicaciones (SIP) al sistema informático de gestión del vehículo (SIC) de la información correspondiente a la cantidad de los materiales sólidos contenidos en el tambor 10, de la cantidad de agua a dosificar y de la cantidad a dosificar de cada uno de los aditivos, así como su secuencia de dosificación y los tiempos de mezclado, y envío de dicha información al sistema de control 30.
f) Transporte del al menos un vehículo cargado hasta el punto de destino g) Comienzo del programa de dosificación del agua y los aditivos al tambor giratorio 10, de acuerdo con la fórmula de la etapa e), comandado por el sistema de control 30.
h) Simultáneamente con el comienzo de la etapa g), el sistema de control 30 da la orden de comenzar a girar el tambor giratorio 10
i) Mezcla de los componentes contenidos en el tambor 10 (áridos, cementos, adiciones, agua y aditivos) según el tiempo de mezcla establecido en la fórmula, comandada por el sistema de control 30 j) Parada del tambor giratorio 10 una vez que la mezcla de hormigón está preparada, comandada por el sistema de control 30
k) Suministro del hormigón recién fabricado.
i) Envío de los datos del proceso desde el sistema informático de gestión del vehículo (SIC) al sistema central informático y de comunicaciones (SIP).
El sistema informático de gestión del vehículo (SIC) y el sistema central informático y de comunicaciones (SIP) podrán emitir albaranes de la operación realizada.
A continuación se muestran unos ejemplos de fórmulas de hormigones de altas prestaciones en muy corto plazo de tiempo conseguidos con el sistema y el procedimiento de la invención:
Figure imgf000014_0001
La denominación de los hormigones es conforme a la normativa española EHE-08, ejemplo HA-40-L-12 Na seguida de una denominación R25 H08, indica resistencias (25 MPa) garantizadas a unas horas determinadas (8 horas).
En la siguiente tabla se observa unos ejemplos de hormigones con resistencias garantizadas en pocas horas, obtenidas mediante la invención.
Las cantidades de cemento, arena y grava vienen expresadas en kg, y las de agua en litros. La densidad viene expresada en kg/m3 y la resistencia en MPa. La abreviatura a/c, expresa la relación agua - cemento.
Figure imgf000015_0001
El sistema de la invención se utiliza preferentemente para hormigón acelerado que se coloca y consigue adecuadas condiciones mecánicas, de hasta 60 MPa, como la carga de compresión máxima que puede soportar de acuerdo con las pruebas de la Normativa ASTM C39, en menos de 8 horas, preferiblemente. Las pruebas muestran que en menos de 8 horas desde su colocación, el hormigón acelerado proporcionado por el sistema de la invención tiene una carga de compresión típicamente de 30 ó 40 MPa, aproximadamente. Además, el sistema de la invención se utiliza para el hormigón que puede funcionar a temperaturas superiores a 45° C y por debajo de -5 o C, proporcionando así un sistema que es capaz de trabajar en cualquier rango de temperatura. Además, el sistema es capaz de proporcionar hormigón adaptado y realizado in situ en función de las condiciones de temperatura ambiente donde el hormigón va a ser colocado, del tiempo de endurecimiento y de la rigidez necesaria después del mencionado tiempo de endurecimiento, por medio del sistema de control 30 en el sistema. Como el sistema fabrica el hormigón y lo coloca in situ, el sistema de la invención puede ser utilizado independientemente de la distancia del lugar de trabajo donde se necesita la mezcla de hormigón.
Un objeto del sistema de la invención es que tiene una mayor eficiencia de energía: debido a que el tambor principal 10 no está girando continuamente, como en la técnica anterior para evitar que el hormigón se endurezca, el consumo de energía del sistema es mucho menor que en el sistema conocido hasta ahora. Se estima que, cuando el sistema se implementa en un vehículo, éste consume una media de 2.000 litros menos de combustible por año que en el caso de un camión tradicional mezclador.
En cuanto a la seguridad vial, suponiendo que el sistema está integrado en un vehículo mezclador de hormigón, ya que el tambor principal 10 se mantie- ne estacionario (no rotativo) hasta llegar al sitio de trabajo, el vehículo lleva la carga en una posición centrada, no habiendo por lo tanto momentos de inercia aplicados sobre ella, por lo que el vehículo es mucho más estable. Esto lleva a un impacto positivo en la seguridad vial y contribuye a reducir los riesgos laborales del conductor del vehículo, y por lo tanto los de otros usuarios de la vía públi- ca.
Otra gran ventaja del sistema es la de reducir las emisiones de C02: teniendo en cuenta la estimación de la energía dada anteriormente, suponiendo emisiones de C02 de 750 g/km y un consumo típico de 30 1/100 km, el impacto en el medio ambiente se reduciría en unas 4,5 toneladas de C02 por vehículo al año.
Con respecto al enfoque productivo, ya que el transporte de material es en seco, se resuelven las barreras geográficas, siendo capaz de cubrir cualquier sitio de trabajo, independientemente de la distancia entre el sitio de trabajo y la planta de hormigón.
También es posible el transporte de hormigón de alta resistencia con el sistema, lo que significa que se puede utilizar en cualquier obra un hormigón de endurecimiento rápido. Tradicionalmente, debido a que estas mezclas de hormigón tienen períodos muy cortos de endurecimiento, no ha sido posible su uso con el transporte convencional. Sin embargo, mediante el uso del sistema, estas mezclas de hormigón podrían ser útiles en aplicaciones que requieren un tiempo de reacción muy pequeño, obras rápidas que tienen que hacerse, en condiciones extremas de temperatura alta o baja, tales como:
- protección civil en casos de desastre;
- las aplicaciones militares;
- rascacielos o edificios muy altos;
- estructuras prefabricadas (al mejorarse la productividad);
- la reparación del pavimento de las carreteras;
- la reparación de las pistas de los aeropuertos;
- la reparación de vías de tren;
- construcciones subterráneas, como túneles, al reducirse enormemente el tiempo de trabajo;
- cualquier trabajo que se tiene que hacer en un corto período de tiempo, estando así el trabajo de obra enormemente minimizado.
Como resumen, algunas de las ventajas principales del sistema de la invención se indican a continuación:
- El sistema proporciona un hormigón que se puede utilizar en cualquier rango de temperaturas, incluyendo rangos extremos de temperaturas bajas y altas;
- Defectos negativos secundarios, tales como grietas, se reducen al mínimo;
- El sistema permite tener las ventajas de hormigón fabricado in situ (control de la producción, la reducción de los materiales de desecho) sin tener los problemas asociados a él (dispersión de calidad, el uso limitado a aplicaciones no estructurales);
- Los errores humanos se reducen al mínimo;
- El sistema puede ser utilizado en zonas remotas y no tiene la limitación tradicional de 90 minutos para recorrer la distancia máxima;
- La calidad de los productos obtenidos se puede probar in situ;
- La calidad de los aditivos para el hormigón acelerado en el sistema de la invención es estándar y rentable;
- El sistema se utiliza preferiblemente en las reparaciones necesarias en un tiempo muy corto o para obras que necesitan ser terminadas muy rápidamente; - Mejora de la logística para la colocación de hormigón debido al corto período de tiempo entre la adición de la porción líquida a la parte sólida del hormigón (áridos y arena);
- Mejora de la calidad del hormigón debido al proceso de fabricación mejo- rado, y posibilidad de ajustar todos los elementos que componen el hormigón.
También existe la posibilidad de controlar dos o más plantas a la vez, o una red de plantas centrales hormigoneras y vehículos de una zona determinada.
En las realizaciones preferentes que acabamos de describir pueden in- troducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1 . - Sistema para la fabricación, manipulación y suministro de hormigón, que comprende: a) Una central hormigonera que comprende almacenamientos de áridos, adiciones, cementos, aditivos y agua.
b) Al menos un vehículo que comprende los siguientes elementos:
- un tambor giratorio (10),
- un depósito auxiliar principal (20) independiente del tambor principal
(10) y conectado a él mediante un conducto,
- al menos un depósito secundario auxiliar (40) independiente del tambor principal (10) y conectado a él mediante un conducto, y
- un sistema de control (30) conectado al depósito auxiliar principal (20), al depósito secundario (40) y al tambor giratorio (10)
- un sistema informático de gestión (SIC) conectado al sistema de control (30),
caracterizado porque adicionalmente comprende:
c) Un sistema central informático y de comunicaciones (SIP) para la comunicación con la central hormigonera y el sistema informático de gestión (SIC) del al menos un vehículo.
2. - Sistema para la fabricación, manipulación y suministro de hormigón, según la reivindicación 1 , en el que la central hormigonera comprende adicionalmente una mezcladora (70) para componentes sólidos.
3. - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones 1 -2, en el que el almacenamiento de agua de la central hormigonera comprende un sistema de calefacción/ refrigeración.
4. - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones 1 -3, en el que el sistema informático de gestión (SIC) y el sistema de control (30) del vehículo se encuentran integrados en un único equipo.
5.- Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones 1 -4, en el que el depósito secundario auxiliar (40) del vehículo y el depósito auxiliar principal (20) del vehículo están conectados al tambor giratorio (10) a través de un dispositivo de medición (3) y a través de un dispositivo de precisión primario (2), respectivamente, para proporcionar al tambor principal (10) las cantidades precisas de mezcla y agua en los tiempos predeterminados.
6- Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, en el que el depósito auxiliar principal (20) del vehículo comprende un calentador y un dispositivo de control de temperatura (5) para el agua que se proporciona al tambor giratorio (10).
7. - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, en donde el depósito secundario auxiliar (40) del vehículo está presurizado para impulsar los aditivos al tambor giratorio (10), y también está aislado térmicamente.
8. - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, en el que los aditivos procedentes del depósito secundario auxiliar (40) del vehículo se dosifican al tambor giratorio (10) a través de una tubería común (60), estando también conectado a una bomba de impulsión de agua (50) para garantizar que, después de cada dosis de un aditivo, la tubería (60) se limpia mediante la inyección de agua desde el de- pósito auxiliar principal (20) del vehículo.
9. - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, que comprende además una tubería de agua de inyección (100) para limpiar el interior del tambor giratorio (10) con el agua del primer depósito auxiliar (20) del vehículo.
10.- Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, en el que el sistema central informático y de comunicaciones (SIP) se encuentra ubicado en la central hormigonera.
1 1 . - Sistema para la fabricación, manipulación y suministro de hormigón, según cualquiera de las reivindicaciones anteriores, en el que las conexiones entre el sistema central informático y de comunicaciones (SIP) y los vehículos son inalámbricas.
12. -Procedimiento de fabricación, manipulación y suministro de hormigón, que emplea un sistema de acuerdo con las reivindicaciones 1 -1 1 , caracterizado porque comprende las siguientes etapas: a) Introducción de la fórmula deseada del hormigón (componentes, secuencia de dosificación y tiempos de mezcla) en el sistema central informático y de comunicaciones (SIP).
b) Carga de componentes sólidos (áridos, cementos y adiciones) desde los almacenamientos respectivos de la planta hormigonera al tambor giratorio (10), según la fórmula anterior.
c) Carga de agua desde el almacenamiento respectivo de la planta al depósito auxiliar principal (20)
d) Carga de aditivos desde los almacenamientos correspondientes de la planta a los depósitos auxiliares secundarios (40)
e) Transmisión desde el sistema central informático y de comunicaciones (SIP) al sistema informático de gestión (SIC) del vehículo de la información correspondiente a la cantidad de los materiales sólidos contenidos en el tambor (10), de la cantidad de agua a dosificar y de la cantidad a dosificar de cada uno de los aditivos, así como su secuencia de dosificación y los tiempos de mezclado, y envío de dicha información al sistema de control 30 f) Transporte del al menos un vehículo cargado hasta el punto de destino g) Comienzo del programa de dosificación del agua y los aditivos al tambor giratorio (10), de acuerdo con la fórmula de la etapa e), comandado por el sistema de control 30
h) Simultáneamente con el comienzo de la etapa g), el sistema de control 30 da la orden de comenzar a girar al tambor giratorio (10)
i) Mezcla de los componentes contenidos en el tambor (10) (áridos, cemento, agua y aditivos) según el tiempo de mezcla establecido en la fórmula, comandada por el sistema de control 30 j) Parada del tambor giratorio (10) una vez que la mezcla de hormigón está preparada, comandada por el sistema de control 30
k) Suministro del hormigón recién fabricado.
I) Envío de los datos del proceso desde el sistema informático de gestión (SIC) del vehículo al sistema central informático y de comunicaciones (SIP).
13. -Procedimiento de fabricación, manipulación y suministro de hormigón, según la reivindicación 12, caracterizado porque el sistema informático de gestión del vehículo (SIC) y el sistema central informático y de comunicaciones (SIP) emiten albaranes de la operación realizada.
14. -Procedimiento de fabricación, manipulación y suministro de hormigón, según la reivindicación 12 o 13, caracterizado porque el sistema de control 30 del vehículo también gobierna la temperatura del agua en el depósito auxiliar principal (20) y la temperatura de los aditivos en los depósitos auxiliares secundarios (40).
15. -Procedimiento de fabricación, manipulación y suministro de hormigón, según la reivindicación 12, 13 o 14, caracterizado porque en la etapa b) los componentes sólidos (áridos, cementos y adiciones) se alimentan desde los almacenamientos respectivos de la planta hormigonera a una mezcladora (70) de la central hormigonera, y de la mezcladora (70) al tambor giratorio (10).
16. -Procedimiento de fabricación, manipulación y suministro de hormigón, según la reivindicación 12, 13, 14 o 15, caracterizado porque el sistema central informático y de comunicaciones (SIP) controla la posición de los vehículos por medio de GPS.
PCT/ES2013/070166 2012-03-14 2013-03-14 Sistema para la fabricación, manipulación y suministro de hormigón WO2013135935A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TNP2014000383A TN2014000383A1 (en) 2012-03-14 2014-09-12 System for manufacturing, handling and supplying concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12382092.0A EP2639030A1 (en) 2012-03-14 2012-03-14 Improved system for manufacturing, manipulating and laying up concrete
EP12382092.0 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013135935A1 true WO2013135935A1 (es) 2013-09-19

Family

ID=48289223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070166 WO2013135935A1 (es) 2012-03-14 2013-03-14 Sistema para la fabricación, manipulación y suministro de hormigón

Country Status (3)

Country Link
EP (1) EP2639030A1 (es)
TN (1) TN2014000383A1 (es)
WO (1) WO2013135935A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737726A (zh) * 2013-12-23 2014-04-23 新疆金宇鑫投资管理有限公司 混凝土搅拌运输罐车运输过程自动添加配料装置
WO2018130913A3 (en) * 2017-01-15 2018-11-22 Butler Michael George Apparatuses and systems for and methods of generating and placing zero-slump-pumpable concrete

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107584673A (zh) * 2017-10-19 2018-01-16 徐工集团工程机械有限公司 混凝土外加剂添加装置、混凝土制备设备及控制方法
CN109760209A (zh) * 2019-03-05 2019-05-17 上海城建道桥工程有限公司 一种混凝土桥梁的施工装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004090A1 (de) * 1980-02-05 1981-08-13 Alfons 7321 Schlat Seibold Anlage und vorrichtung zum erwaermen des wassers im vorratstank von fertigbeton-fahrmischern
US4752134A (en) 1987-12-11 1988-06-21 Milek Robert C Mobile concrete mixer
WO1992015437A1 (en) * 1991-03-04 1992-09-17 Daniel Assh System for control of the condition of mixed concrete
WO1999010148A1 (en) 1997-08-25 1999-03-04 W.R. Grace & Co.-Conn. Mobile cement additive and concrete admixture manufacturing process and system
DE19952978A1 (de) * 1999-11-03 2001-05-10 Hudelmaier Joerg Qualitätsüberwachungsverfahren
AU778765B2 (en) 1999-12-02 2004-12-23 Construction Research & Technology Gmbh Modified concrete transport mixers
US20080173372A1 (en) * 2007-01-24 2008-07-24 Mcneilus Truck And Manufacturing, Inc. Non-metallic auxiliary tank system for a vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767170A (en) * 1972-04-26 1973-10-23 First Nat Bank Of Missoula Of Method and apparatus for mixing and transporting concrete
DE2518084A1 (de) * 1975-04-23 1976-11-04 Gerhard Dr Hudelmaier Einrichtung zum steuern der betonherstellung in transportbetonmischern
GB2390089A (en) * 1999-11-29 2003-12-31 Innovation Holdings A process for manufacturing concrete on a continuous basis
KR20060013302A (ko) 2004-08-06 2006-02-09 김재환 고인성 시멘트 복합체와 포러스콘크리트를 복합한흡음패널의 제조방법 및 제품
KR100774448B1 (ko) 2006-06-22 2007-11-08 (주)삼우아이엠씨 조강 시멘트를 이용한 라텍스 개질 콘크리트 조성물
KR100690393B1 (ko) 2006-10-31 2007-03-12 (주)한동재생공사 도로포장용 표층 아스콘의 시공방법
KR101360262B1 (ko) 2007-06-08 2014-02-12 이형근 조강성이 포함된 콘크리트 방동제 조성물
KR100967952B1 (ko) 2008-01-10 2010-07-06 (주)삼우아이엠씨 도로포장의 덧씌우기 공법
DE102008007918A1 (de) 2008-02-06 2009-08-13 Putzmeister Concrete Pumps Gmbh Fahrbare Arbeitsmaschine
KR100908675B1 (ko) 2008-04-17 2009-07-22 (주)대덕레미콘 저온 조기강도 콘크리트 조성물.
EP2128110B1 (de) 2008-05-29 2016-08-17 Sika Technology AG Zusatzmittel für hydraulische Bindemittel mit langer Verarbeitungszeit und hoher Frühfestigkeit
DE102009016518A1 (de) * 2009-04-08 2010-10-14 Rombold & Gfröhrer GmbH & Co. KG Transportfahrzeug zur Anlieferung eines Bindemittel/Zuschlagsgemischs
PL214023B1 (pl) 2009-06-25 2013-06-28 Tugeb Polbud Spolka Z Ograniczona Odpowiedzialnoscia Urzadzenie do wytwarzania betonu i sposób wytwarzania betonu
ITPG20090061A1 (it) 2009-11-27 2011-05-28 Andrea Marcantonini Impianto mobile per la produzione di calcestruzzo
KR101019073B1 (ko) 2010-07-06 2011-03-07 (주)삼우아이엠씨 초조강 시멘트 조성물 및 이를 이용한 라텍스 개질 콘크리트 조성물
KR101011504B1 (ko) 2010-08-05 2011-01-31 (주)지에프시알엔디 칼라 밀크 그라우트 및 이를 이용한 조기개통식 콘크리트 포장방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004090A1 (de) * 1980-02-05 1981-08-13 Alfons 7321 Schlat Seibold Anlage und vorrichtung zum erwaermen des wassers im vorratstank von fertigbeton-fahrmischern
US4752134A (en) 1987-12-11 1988-06-21 Milek Robert C Mobile concrete mixer
WO1992015437A1 (en) * 1991-03-04 1992-09-17 Daniel Assh System for control of the condition of mixed concrete
WO1999010148A1 (en) 1997-08-25 1999-03-04 W.R. Grace & Co.-Conn. Mobile cement additive and concrete admixture manufacturing process and system
DE19952978A1 (de) * 1999-11-03 2001-05-10 Hudelmaier Joerg Qualitätsüberwachungsverfahren
AU778765B2 (en) 1999-12-02 2004-12-23 Construction Research & Technology Gmbh Modified concrete transport mixers
US20080173372A1 (en) * 2007-01-24 2008-07-24 Mcneilus Truck And Manufacturing, Inc. Non-metallic auxiliary tank system for a vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737726A (zh) * 2013-12-23 2014-04-23 新疆金宇鑫投资管理有限公司 混凝土搅拌运输罐车运输过程自动添加配料装置
WO2018130913A3 (en) * 2017-01-15 2018-11-22 Butler Michael George Apparatuses and systems for and methods of generating and placing zero-slump-pumpable concrete
US11766807B2 (en) 2017-01-15 2023-09-26 Michael George BUTLER Apparatuses and systems for and methods of generating and placing zero-slump-pumpable concrete

Also Published As

Publication number Publication date
EP2639030A1 (en) 2013-09-18
TN2014000383A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
US20120205400A1 (en) System and process for delivering building materials
CA2866257C (en) System and method for delivering treatment fluid
US9863228B2 (en) System and method for delivering treatment fluid
AU730488B2 (en) Mobile cement additive and concrete admixture manufacturing process and system
WO2013135935A1 (es) Sistema para la fabricación, manipulación y suministro de hormigón
CN103936360B (zh) 一种高效能混凝土及其制备方法
US11203879B2 (en) System and process for delivering building materials
KR101374085B1 (ko) 이동식 배합타설 장비
KR101272626B1 (ko) 물순환 기능을 높이면서 투수성·보수성을 갖는 흙콘크리트 포장재 제조방법 및 이를 믹스하는 자동화 장치
CN103660040B (zh) 快捷移动式混凝土搅拌站
CN106192623A (zh) Crtsⅲ型板自密实混凝土灌注施工设备及工作流程
US20210229322A1 (en) Containerized concrete batch plant
CN103669169B (zh) 一种基于快捷移动式混凝土搅拌站的混凝土施工方法
KR100672002B1 (ko) 이동식 콘크리트 혼합재 정량 투입장치
CN103979874A (zh) 一种自密实混凝土及其生产过程质量控制方法
KR100672003B1 (ko) 이동식 콘크리트 혼합재 정량 투입장치
US20240083068A1 (en) Mobile volumetric concrete-production system
KR200417671Y1 (ko) 이동식 콘크리트 혼합재 정량 투입장치
US10739328B2 (en) Apparatus, systems, and methods for metering total water content in concrete
CN202492784U (zh) 一种间歇式沥青搅拌设备
BR0204747B1 (pt) método de gerenciar inventário de material de mistura e aditivo para concreto, emboço e argamassa.
CN115545615A (zh) 一种新型低碳预配现拌混凝土的供应方法及供应信息管理系统
CN214687286U (zh) 一种基于袋装配比料的混凝土生产设备
US20160319494A1 (en) Portable Mastic Sealer Production
CA2940336A1 (en) Dry mortar, mortar slurry and method for producing semi-rigid coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13720432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13720432

Country of ref document: EP

Kind code of ref document: A1