WO2013135127A1 - 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物、其制备方法及绝缘涂料组合物 - Google Patents

2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物、其制备方法及绝缘涂料组合物 Download PDF

Info

Publication number
WO2013135127A1
WO2013135127A1 PCT/CN2013/071654 CN2013071654W WO2013135127A1 WO 2013135127 A1 WO2013135127 A1 WO 2013135127A1 CN 2013071654 W CN2013071654 W CN 2013071654W WO 2013135127 A1 WO2013135127 A1 WO 2013135127A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenolphthalein
terpolymer
bis
agent
coating composition
Prior art date
Application number
PCT/CN2013/071654
Other languages
English (en)
French (fr)
Inventor
周光远
王红华
苏小龙
王志鹏
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210071241.6A external-priority patent/CN102585675B/zh
Priority claimed from CN201210071242.0A external-priority patent/CN102660016B/zh
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Publication of WO2013135127A1 publication Critical patent/WO2013135127A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4031(I) or (II) containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4043(I) or (II) containing oxygen other than as phenol or carbonyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK

Definitions

  • the invention relates to the technical field of polymer materials and coatings, in particular to a 2,6-bis[3 ⁇ 4 benzoquinone-4,4' bis[3 ⁇ 4 benzophenone-phenolphthalein terpolymer, a preparation method thereof and a Insulating coating composition.
  • Polyaryletherketone is a kind of polymer in which a kind of phenylene ring is linked by acid bond and bullying.
  • polyetheretherketone polyetherketone
  • polyetherketoneketone polyetherketoneketone
  • Polyether ketone ether ketone ketone and other varieties Polyaryletherketone is a kind of thermoplastic high performance engineering plastic with good heat resistance, chemical stability, fatigue resistance, radiation resistance, flame retardancy and dimensional stability. It is widely used in electrical and electronic, aerospace. And the automotive industry and other fields.
  • phenolphthalein polyaryl ether ketone which is soluble in hydrazine, hydrazine-dimercapto amide (DMF), Dimercaptoacetamide (DMAC), N-decylpyrrolidone (NMP) and halogenated alkane organic solvents have greatly improved dissolution processing properties and can be applied as structural materials such as films, sheets, sheets, tubes and fibers.
  • Polyarylene ether nitrile is also a class of thermoplastic high-performance engineering plastics. It was first commercialized by Japan Idemitsu Kosan Co., Ltd. in 1986, and developed a poly-aryl ether nitrile product PAN under the trade name ID300.
  • the molecular structure of poly(aryl ether nitrile) contains a strong polar group (-CN) side group, which increases the dipole-dipole interaction between the molecular chains, which not only helps to obtain better heat resistance and mechanical strength.
  • the atmosphere can be used as a potential crosslinking point to facilitate the formation of a molecular network structure with higher heat resistance, therefore, the polyaryl ether nitrile has excellent mechanical properties. , heat resistance and chemical stability, etc., have broad application prospects in the fields of electrical and electronic manufacturing, aerospace and automotive industries.
  • Matsuo S is equivalent to a phenolphthalein polyaryl ether nitrile prepared in 1993. Has a good overall performance (Journal of Polymer Science. Part A; Polymer Chemistry 1993, 31, 3439).
  • the present inventors have considered that an aromatic group can be introduced into the molecular structure of a phenolphthalein polyaryletherketone, and the glass transition temperature of the phenolphthalein polyaryletherketone can be further improved, and a material having better heat resistance and the like can be obtained, and the application range thereof can be expanded.
  • insulating coatings are coatings with excellent electrical insulation that can be used as protective coatings for products or components in the electrical and electronic industry.
  • the development of insulating coatings has attracted more and more attention.
  • insulating coatings with good heat resistance have become one of the hotspots of current research.
  • heat-resistant insulating coatings mainly include polyamide resins, polyimide resins, and polyamide-imide resins, such as polyimide varnish Pyre-ML manufactured by Du Pont, and Amoco.
  • CN100511491C Insulating coating material which is obtained by reacting an isocyanate component with an acid component in a main solvent Y-butyrolactone and blending with an organosilica sol, which can be used for producing an insulated wire or the like, wherein the isocyanate
  • the component uses 70% by mole or more of 4,4'-diphenyldecane diisocyanate and 30% by mole or less of isocyanate other than the above 4,4'-diphenyldecane diisocyanate, the acid component Use 80% by mole or more of trimellitic anhydride and 20% by mole or less of tetracarboxylic dianhydride or use 80% or more % Of trimellitic anhydride and less than 20 mol% of tricarboxylic acids, so that the organic silica sol component with respect to the polyamide-imide resin insulating coating material resin component of the complex ratio lphr ⁇ 100phr.
  • the above-mentioned polyamide resin, polyimide resin and polyamideimide resin-based insulating coatings generally have a heat resistance grade of C or S, that is, their operating temperatures are generally 200 ° C or 240 ° C or less, Applicable as an outer protective coating for electrical products and electronic components that require higher heat resistance, which greatly limits the application range of the above insulating coating.
  • the problem to be solved by the present invention is: Providing a ⁇ -diphenylnonenitrile-dibenzophenone-phenolphthalein terpolymer and a preparation method thereof, and the 2,6-dihalobenzoquinone dihalide provided by the invention Benzophenone-phenol The terpene terpolymer has excellent heat resistance.
  • the present invention provides a 2,6-bis[3 ⁇ 4 benzoquinone-dibenzophenone-phenolphthalein terpolymer having a repeating unit of the formula (I) and a second repeating unit represented by the formula (II) :
  • the molar ratio of the first repeating unit to the second repeating unit is 0.1: 9.9 to 9.9: 0.1.
  • the invention also provides a preparation method of 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4-di[3 ⁇ 4 benzophenone-phenolphthalein terpolymer, comprising the following steps:
  • the 2,6-bis[3 ⁇ 4 benzoquinone is 2,6-difluorobenzonitrile or 2,6-dichlorobenzonitrile
  • the 4,4-bis[3 ⁇ 4 benzophenone is 4 , 4-difluorobenzophenone or 4,4-dichlorobenzophenone.
  • the molar ratio of the 2,6-bis[3 ⁇ 4benzoquinone to the dibenzophenone is (0.05-0.95): (0.95-0.05), and the amount of the phenolphthalein is the same as the 2
  • the ratio of the total amount of the 6-dihalobenzoquinone to the 4,4-dihalodibenzophenone is (1 to 3):1.
  • the basic compound is anhydrous carbonic acid clock, anhydrous sodium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium hydroxide or sodium hydroxide.
  • the molar ratio of the basic compound to the phenolphthalein is (1 to 3):1.
  • the organic solvent is sulfolane, diphenyl sulfone or N-mercaptopyrrolone, and the water-carrying agent is diphenyl or benzene.
  • the volume ratio of the organic solvent to the water-carrying agent is 1: (1 to 3).
  • the preparation method is specifically:
  • the intermediate product is subjected to a second step reaction to obtain a 2,6-dibenzoquinone dibenzophenone-phenolphthalein terpolymer.
  • the temperature of the first step reaction is from 120 ° C to 180 ° C, and the time of the first step reaction is from 2 h to 7 h;
  • the temperature of the second step reaction is from 180 ° C to 240 ° C, and the reaction time of the second step is from 3 h to 10 h.
  • the present invention uses 2,6-bis[3 ⁇ 4 benzoquinone, ⁇ -dibenzophenone and phenolphthalein as raw materials, and reacts in an organic solvent in the presence of a basic compound and a water-carrying agent.
  • a 2,6-dihalobenzoquinone- ⁇ -dibenzophenone-phenolphthalein terpolymer was obtained.
  • the 2-dibenzoquinone-dihalodibenzophenone-phenolphthalein terpolymer provided by the present invention has a first repeating unit represented by the formula (I) and a second repeating unit represented by the formula (II), The molar ratio of the first repeating unit to the second repeating unit is
  • the 2,6-dihalobenzoquinone-4,4 dihalodibenzophenone-phenolphthalein terpolymer has an aromatic structure in the molecular structure, and satisfies the first repeating unit and the The second repeating unit has a molar ratio of 0.1:9.9-9.9:0.1, and has excellent heat resistance, and can be used for preparing materials such as high-performance paints, adhesives, functional films, and high-performance composite materials.
  • the experimental results show that the 2,6-dihalobenzoquinone-di-dibenzophenone-phenolphthalein terpolymer provided by the present invention is a flocculent substance having the first repeating unit and formula represented by formula (I). ⁇ )
  • the second repeating unit has an intrinsic viscosity of >0.2 dL/g, a glass transition temperature of 225 ° C to 265 ° C, a starting weight loss of 340 ° C to 385 ° C, and a weight loss of 5%.
  • the temperature is from 400 ° C to 490 ° C.
  • the preparation method of the 2,6-bis[3 ⁇ 4benzoquinone-dibenzophenone-phenolphthalein terpolymer provided by the invention is easy to implement and easy to popularize and apply.
  • Another problem to be solved by the present invention is to provide an insulating coating composition which has outstanding heat resistance.
  • the present invention provides an insulating coating composition comprising:
  • the 2,6-dihalobenzoquinone-4,4'-dihalodibenzophenone-phenolphthalein terpolymer has a second repeating unit represented by the first repeating unit shown by formula (I):
  • the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9 to 9.9:0.1; the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-
  • the intrinsic viscosity of the phenolphthalein terpolymer is
  • the solvent comprises:
  • the first solvent being hydrazine, hydrazine-dimercaptoacetamide, hydrazine, hydrazine-dimercaptoamide or dimethyl sulfoxide;
  • the second solvent being acetone or tetrahydrofuran.
  • the volume ratio of the first solvent to the second solvent is 1: 19 to 19:1.
  • the mass ratio of the solvent to the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is 95:5 to 75:25.
  • the adhesion promoting agent is a titanate coupling agent, a silane coupling agent, a chromium complex coupling agent or a zirconium coupling agent.
  • the quality of the adhesion promoting agent is 0.01% to 2% by mass of the insulating coating composition.
  • the leveling agent is an acrylic leveling agent, a silicone leveling agent or a fluorocarbon type leveling agent.
  • the leveling agent has a mass of 0.01% to 1% by mass of the insulating coating composition.
  • the antifoaming agent is a polyether antifoaming agent, a silicon antifoaming agent or a polyether modified antifoaming agent.
  • the mass of the antifoaming agent is 0.01% to 1% of the mass of the insulating coating composition.
  • the present invention provides an insulating coating composition
  • an insulating coating composition comprising: 2,6-dibenzoquinone-4,4'-dibenzophenone-phenolphthalein terpolymer; solvent; adhesion performance promoter; a leveling agent; an antifoaming agent; the 2,6-dihalobenzoquinone-4,4'-dihalodibenzophenone-phenolphthalein terpolymer having a first repeating unit and formula represented by formula (I) a second repeating unit represented by ( ⁇ ), wherein the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9 to 9.9:0.1; the 2,6-dihalobenzoquinone-4,
  • the intrinsic viscosity of the 4'-dihalodibenzophenone-phenolphthalein terpolymer is from 0.2 dL/g to 1.4 dL/g.
  • the 2,6-dihalobenzoquinone-4,4'-two! The 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is a matrix resin and has excellent heat resistance, so that the insulating coating composition has good heat resistance and can be used as an electrical product and an electronic component which are required to have high heat resistance.
  • the outer protective coating expands the range of applications. The experimental results show that the insulating coating composition does not crack or fall off after 30 hours when applied at a temperature of 300 ° C ⁇ 20 ° C.
  • the insulating coating composition provided by the invention not only has high impact strength, good electrical insulation, good flexibility, good adhesion, excellent comprehensive performance, but also has a very high cost performance and is easy to be applied.
  • Example 1 is an infrared optical map of a 2,6-dichlorobenzonitrile- 4,4-dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1 of the present invention
  • Example 2 is a nuclear magnetic resonance spectrum of a 2,6-dichlorobenzonitrile- 4,4-dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1 of the present invention
  • Fig. 3 is a nuclear magnetic resonance spectrum of a 2,6-dichlorobenzonitrile- 4,4-dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1 of the present invention. detailed description
  • the present invention provides a 2,6-bis[3 ⁇ 4 benzoquinone-dibenzophenone-phenolphthalein terpolymer having the first repeating unit represented by formula (I) and the formula (II) Two repeating units:
  • the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9 to 9.9:0.1.
  • the 2,6-bis[3 ⁇ 4 benzoquinone-dibenzophenone-phenolphthalein terpolymer provided by the invention contains a strong polar group in the molecular structure, and increases the molecular chain between the phenolphthalein polyaryl ether ketone chains.
  • the pole-dipole action is beneficial to improve the heat resistance of the phenolphthalein polyaryl ether ketone.
  • the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9-9.9:0.1, preferably 0.5:9.5 ⁇ 9.5:0.5, more preferably 1:9 ⁇ 9:1 .
  • the results of the whole horse show that the molar ratio of the first repeating unit to the second repeating unit is from 0.1:9.9 to 9.9:0.1 of 2,6-dihalobenzoquinone-4,4-dihalodiphenyl.
  • the ketone-phenolphthalein terpolymer is excellent in heat resistance and can be used to prepare materials such as high performance coatings, adhesives, functional films and high performance composite materials.
  • the degree of polymerization of the first repeating unit and the second repeating unit is not particularly limited, and the degree of polymerization of the first repeating unit is preferably from 1 to 500, more preferably from 2 to 200, most preferably from 3 to 100.
  • the degree of polymerization of the second repeating unit is preferably from 1 to 500, more preferably from 2 to 200, and most preferably from 3 to 100.
  • the intrinsic viscosity ([ ⁇ ] ) of the 2,6-bis[3 ⁇ 4 benzoquinone bis[3 ⁇ 4 benzophenone-phenolphthalein terpolymer] is 0.2 dL/g;
  • the glass transition temperature of the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is 225 ° C to 265 ° C ;
  • the temperature at which the 2,6-bis[3 ⁇ 4 benzoquinone bis[3 ⁇ 4 benzophenone-phenolphthalein terpolymer has an initial weight loss is 340 ° C to 385 ° C, and the temperature at which the weight loss is 5% is 400 ° C to 490. °C.
  • the invention also provides a preparation method of 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4-di[3 ⁇ 4 benzophenone-phenolphthalein terpolymer, comprising the following steps:
  • the invention heats 2,6-bis[3 ⁇ 4 benzoquinone, 4,4-di[3 ⁇ 4 benzophenone, phenolphthalein, basic compound, water-carrying agent and organic solvent in a reactor, and obtains 2,6 after the reaction.
  • the invention preferably uses 2,6-dihalobenzoquinone, 4,4-dihalobenzophenone and phenolphthalein as raw materials under the protection of an inert gas such as nitrogen to obtain 2,6-bis[3 ⁇ 4benzoquinonitrile-4. , 4 - 2! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer.
  • an inert gas such as nitrogen
  • the nucleophilic substitution reaction and the polycondensation reaction of the above raw materials are carried out, and the cyano group is introduced into the molecular structure of the phenolphthalein polyaryl ether ketone, thereby improving the heat resistance of the phenolphthalein polyaryl ether ketone and expanding the application range.
  • the above-mentioned raw materials used in the present invention have wide sources, low cost, high performance and price, and good economic and social benefits.
  • the 2,6-diphenylenitrile is preferably 2,6-difluorobenzonitrile or 2,6-dichlorobenzonitrile, more preferably 2,6-dichlorobenzonitrile;
  • the di-dibenzophenone is preferably 4,4-difluorobenzophenone or 4,4-dichlorobenzophenone, more preferably 4,4-dichlorobenzophenone;
  • the molar ratio of the 2,6-bis[3 ⁇ 4 benzoquinone to the 4,4-bis[3 ⁇ 4 benzophenone is preferably (0.05 to 0.95): (0.95-0.05), more preferably (0.1 to 0.9). : (0.9-0.1 ); the ratio of the amount of the phenolphthalein to the amount of the total substance of the 2,6-dihalobenzoquinone and the 4,4-dihalobenzophenone is preferably (1 ⁇ ) 3) : 1, more preferably (1 to 2.5): 1, most preferably 1:1.
  • the basic compound is capable of catalyzing a reaction
  • the basic compound is preferably anhydrous potassium carbonate, anhydrous sodium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium hydroxide or sodium hydroxide. More preferably, it is anhydrous carbonic acid clock or anhydrous sodium carbonate, and most preferably anhydrous carbonic acid 4A;
  • the molar ratio of the basic compound to the phenolphthalein is preferably (1 to 3): 1, more preferably (1.1) ⁇ 2.5): 1, most preferably (1.15 ⁇ 2): 1;
  • the organic solvent is a medium for the reaction, and the organic solvent is preferably sulfolane, diphenyl sulfone or N-decylpyrrolidone, more preferably sulfolane.
  • the amount of the organic solvent used in the present invention is not particularly limited. The amount of complete dissolution can be used;
  • the water-carrying agent can separate the water produced by the reaction from the reaction system, thereby improving the reaction efficiency, and the water-carrying agent is preferably diphenylbenzene or toluene, more preferably dinonylbenzene; the organic solvent and Said
  • the volume ratio of the water-carrying agent is preferably 1: (1 to 3), more preferably 1: (1.5 to 2.5), and most preferably 1: (1.8-2).
  • the preparation method of the 2,6-bis[3 ⁇ 4benzoquinone-4,4-di[3 ⁇ 4 benzophenone-phenolphthalein terpolymer is preferably:
  • 2,6-bis[3 ⁇ 4 benzoquinone, 4,4-di[3 ⁇ 4 benzophenone and phenolphthalein are subjected to a first step reaction in an organic solvent in the presence of a basic compound and a water-carrying agent to obtain an intermediate product;
  • the intermediate product is subjected to a second step reaction to obtain a 2,6-dibenzoquinone dibenzophenone-phenolphthalein terpolymer.
  • the first step reaction is mainly a nucleophilic substitution reaction
  • the temperature of the first step reaction is preferably from 120 ° C to 180 ° C, more preferably from 130 ° C to 170 ° C, and most preferably 140 °. C ⁇ 160°C
  • the time of the first step reaction is preferably 2h ⁇ 7h, more preferably 3h ⁇ 6h, most preferably 4h ⁇ 5h;
  • the water-carrying agent carries out the water produced by the reaction, and the present invention preferably distills out all the water-carrying agent to obtain an intermediate product, and the intermediate product includes a product of a nucleophilic substitution reaction and a small amount of an oligomer;
  • the second step reaction is mainly a polycondensation reaction, and the temperature of the second step reaction is preferably 180 ° C to 240 ° C, more preferably 200 ° C to 220 ° C; For 31! ⁇ 10h, more preferably 41! ⁇ 9h, most preferably 51! ⁇ 8h.
  • the present invention cools the reaction system in the reactor, dilutes with dimercaptoacetamide (DMAC), and then pours into ethanol for precipitation under vigorous stirring, and then repeatedly filtered with distilled water.
  • the polymer product is washed to remove residual basic compounds, etc., and finally the filtered polymer product is dried to obtain a flocculent product 2,6-dihalobenzoquinone dihalodibenzophenone-phenolphthalein terpolymer.
  • the calculated yield is greater than 90%.
  • the glass transition temperature of the 2,6-dihalobenzoquinone-dibenzophenone-phenolphthalein terpolymer was measured by a METTLER TOLEDO DSC1 differential scanning calorimeter. The measurement conditions were as follows: Under nitrogen protection, the temperature was raised. The speed was 10 ° C / min, and the measured temperature range was 0 ° C to 300 ° C. The measurement results show that The 2,6-bis[3 ⁇ 4benzoquinonitrile- ⁇ -dibenzophenone-phenolphthalein terpolymer has a glass transition temperature of 225 ° C to 265 ° C.
  • the thermal decomposition properties of the 2,6-dihalobenzoquinone- ⁇ -dibenzophenone-phenolphthalein terpolymer were measured by METTLER TOLEDO TGA/DSC1 thermogravimetric analyzer. The measurement conditions were as follows: Under nitrogen protection, the temperature was raised. The speed was 10 ° C / min, and the measured temperature range was 0 ° C to 600 ° C. The measurement results show that the temperature of the initial weight loss of the 2,6-bis[3 ⁇ 4 benzoquinone-dibenzophenone-phenolphthalein terpolymer is 340 ° C to 385 ° C, and the temperature of 5% weight loss is 400. °C ⁇ 490 °C.
  • the experimental results show that the 2,6-bis[3 ⁇ 4benzoquinonitrile- ⁇ -dibenzophenone-phenolphthalein terpolymer provided by the present invention has the first repeating unit represented by formula (I) and formula (II).
  • the second repeating unit the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9 to 9.9:0.1;
  • the 2,6-dihalobenzoquinone dibenzophenone-phenolphthalein ternary Copolymers have excellent heat resistance and can be used to make materials such as high performance coatings, adhesives, functional films and high performance composites.
  • the preparation method provided by the invention is easy to implement and easy to popularize and apply.
  • the present invention provides an insulating coating composition comprising:
  • the 2,6-bis[3 ⁇ 4benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer has a first repeating unit represented by formula (I) and a formula ( ⁇ ) Second repeat unit:
  • the molar ratio of the first repeating unit to the second repeating unit is 0.1: 9.9 to 9.9: 0.1:
  • the intrinsic viscosity of the 2,6-bis[3 ⁇ 4benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is from 0.2 dL/g to 1.4 dL/g.
  • the insulating coating composition is mainly composed of a 2,6-dihalobenzoquinone-4,4'-dihalobenzophenone-phenolphthalein terpolymer, a solvent, an adhesion promoter, and a leveling agent. It is composed of an agent and an antifoaming agent, and has excellent heat resistance, and can be used as an outer protective coating for electrical products and electronic parts which have high heat resistance requirements, and has a wide application range.
  • the 2,6-bis[3 ⁇ 4 benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is a matrix resin of the insulating coating composition, and can be combined with other raw materials such as a solvent. Together, a uniform, dense coating film is formed on the substrate, which is cured to form a coating.
  • the 2,6-bis[3 ⁇ 4benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer has a first repeating unit represented by formula (I) and a formula ( ⁇ ) a second repeating unit, wherein the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9-9.9:0.1, preferably 0.5:9.5-9.5:0.5, more preferably 1.0:9.0-9.0:1.0
  • the intrinsic viscosity of the 2,6-dihalobenzoquinone-4,4'-dihalodibenzophenone-phenolphthalein terpolymer is from 0.2 dL/g to 1.4 dL/g, preferably 0.5 dL/g. It is preferably 1.2 dL/g, more preferably 0.8 dL/g to 1.0 dL/g.
  • the 2,6-bis[3 ⁇ 4 benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer has a glass transition temperature of 225 ° C to 265 ° C, and the initial weight loss temperature is 340 ° C ⁇ 385 ° C, weight loss 5% of the temperature is 400 ° C ⁇ 490 ° C.
  • the 2,6-bis[3 ⁇ 4benzoquinone-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer has excellent heat resistance and can be used as a matrix resin of the insulating coating composition. The heat resistance of the insulating coating composition is increased, thereby expanding the range of application.
  • the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer can also improve the adhesion of the insulating coating composition and is advantageous for application.
  • the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer is preferably prepared according to the following preparation method:
  • the above preparation method comprises heating 2,6-bis[3 ⁇ 4 benzoquinone, 4,4-di[3 ⁇ 4 benzophenone, phenolphthalein, basic compound, water-carrying agent and organic solvent in a reactor, and obtaining 2 after the reaction. 6-Dihalobenzoquinone dihalodibenzophenone-phenolphthalein terpolymer.
  • the above preparation method is preferably carried out under the protection of an inert gas such as nitrogen, using 2,6-dibenzoquinone, 4,4-dihalodibenzophenone and phenolphthalein as a raw material to obtain 2,6-bis[3 ⁇ 4benzoquinonitrile nitrile [ 3 ⁇ 4 benzophenone-phenolphthalein terpolymer.
  • the 2,6-bis[3 ⁇ 4 benzoquinone is preferably 2,6-difluorobenzonitrile or 2,6-dichlorobenzonitrile, more preferably 2,6-dichlorobenzene.
  • the benzoic acid; the di-dibenzophenone is preferably 4,4-difluorobenzophenone or 4,4-dichlorobenzophenone, more preferably 4,4-dichlorobenzophenone;
  • the molar ratio of the 2,6-bis[3 ⁇ 4 benzoquinone to the 4,4-bis[3 ⁇ 4 benzophenone is preferably (0.05 to 0.95): (0.95-0.05), more preferably (0.1 to 0.9). : (0.9-0.1 ); the ratio of the amount of the phenolphthalein to the amount of the total substance of the 2,6-dihalobenzoquinone and the 4,4-dihalobenzophenone is preferably (1 ⁇ ) 3) : 1, more preferably (1 to 2.5): 1, most preferably 1:1.
  • the basic compound is capable of catalyzing a reaction, and the basic compound is preferably anhydrous potassium carbonate, anhydrous sodium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium hydroxide or hydrogen hydroxide.
  • the sodium is more preferably anhydrous potassium carbonate or anhydrous sodium carbonate, and most preferably anhydrous potassium carbonate;
  • the molar ratio of the basic compound to the phenolphthalein is preferably (1 to 3): 1, more preferably (1.1). ⁇ 2.5) :1, most preferably (1.15 ⁇ 2): 1;
  • the organic solvent is a medium for the reaction, and the organic solvent is preferably sulfolane, diphenyl sulfone or N-decylpyrrolidone, more preferably sulfolane; the above preparation method has no particular limitation on the amount of the organic solvent, The amount of the raw material completely dissolved can be used;
  • the water-carrying agent can separate the water produced by the reaction from the reaction system, thereby improving the reaction efficiency, and the water-carrying agent is preferably diphenylbenzene or toluene, more preferably dinonylbenzene; the organic solvent and
  • the volume ratio of the water-carrying agent is preferably 1: (1 to 3), more preferably 1: (1.5-2.5), and most preferably 1: (1.8-2).
  • the preparation method of the 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4-di[3 ⁇ 4 benzophenone-phenolphthalein terpolymer is more preferably:
  • 2,6-bis[3 ⁇ 4 benzoquinone, 4,4-di[3 ⁇ 4 benzophenone and phenolphthalein are subjected to a first step reaction in an organic solvent in the presence of a basic compound and a water-carrying agent to obtain an intermediate product;
  • the intermediate product is subjected to a second reaction to obtain a 2,6-dihalobenzoquinone dihalodibenzophenone-phenolphthalein terpolymer.
  • the first step reaction is mainly a nucleophilic substitution reaction
  • the temperature of the first step reaction is preferably It is from 120 ° C to 180 ° C, more preferably from 130 ° C to 170 ° C, most preferably from 140 ° C to 160 ° C
  • the time of the first step reaction is preferably 21! ⁇ 7h, more preferably 31! ⁇ 6h, most preferably 41! ⁇ 5h;
  • the water-carrying agent carries out the water produced by the reaction, and the above preparation method preferably distills out all the water-carrying agents to obtain an intermediate product, and the intermediate product includes a product of a nucleophilic substitution reaction and a small amount of oligomers;
  • the second step reaction is mainly a polycondensation reaction, and the temperature of the second step reaction is preferably 180 ° C.
  • the time of the second step reaction is preferably 31! ⁇ 10h, more preferably 41! ⁇ 9h, most preferably 51! ⁇ 8h.
  • the reaction system in the reactor is cooled, diluted with dimercaptoacetamide (DMAC), and then poured into ethanol for precipitation under vigorous stirring, filtered and repeatedly washed with distilled water. a polymer product to remove residual basic compounds, etc., and finally the filtered polymer product is dried to obtain a flocculent product 2,6-dibenzoquinonitrile- ⁇ -dibenzophenone-phenolphthalein terpolymer, A yield of more than 90% is obtained.
  • DMAC dimercaptoacetamide
  • the solvent is capable of dissolving or dispersing the film-forming material into a uniform, stable liquid dispersion system to prepare a coating; when it is formed into a film, it is volatilized into the atmosphere.
  • the solvent preferably comprises a first solvent and a second solvent, the first solvent preferably being ruthenium, osmium-dimercaptoacetamide, hydrazine, fluorenyl-dimercaptoamide or dimethyl sulfoxide;
  • the solvent is preferably acetone or tetrahydrofuran.
  • the volume ratio of the first solvent to the second solvent is preferably 1: 19 to 19:1, more preferably 1: 15 to 15:1, most preferably
  • the solvent is preferably an aprotic polar solvent, which is capable of better dissolving the above-mentioned matrix resin and is used as a matrix resin of the insulating coating composition.
  • the amount of the solvent to be used in the present invention is not particularly limited, and an amount capable of dissolving the above-mentioned matrix resin may be employed, and the solvent and the 2,6-di[3 ⁇ 4benzoquinonitrile-4,4'-di!3 ⁇ 4
  • the mass ratio of the benzophenone-phenolphthalein terpolymer is preferably 95:5 to 75:25.
  • the adhesion promoting agent can significantly improve the adhesion of the film layer to the substrate, thereby further improving the adhesion of the insulating coating composition.
  • the mass of the adhesion promoting agent is preferably 0.01% to 2%, more preferably 0.05% to 1.5%, most preferably 0.5% to 1% by mass of the insulating coating composition.
  • the adhesion performance promoter mainly includes a resin-based adhesion property promoter, a coupling agent, an organic polymer compound, and the like.
  • the adhesion promoting agent is preferably a coupling agent, more preferably a titanate coupling agent, a silane coupling agent, a chromium complex coupling agent such as a chromic acid chromium chloride complex. Or zirconium A coupling agent such as tetra-n-propyl 4-ester ester or the like.
  • the titanate coupling agent includes, but not limited to, a titanate coupling agent TMC-201, a titanate coupling agent TMC-102, a titanate coupling agent TMC-101, a titanate coupling agent TMC-105, titanate coupling agent TMC-311w, titanate coupling agent TMC-311, titanate coupling agent TMC-TTS, titanate coupling agent TMC-3, titanate coupling agent TMC-114 and titanate coupling agent TMC-TE;
  • the silane coupling agent includes but is not limited to silane coupling agent KH-402, silane coupling agent KH-552, silane coupling agent KH-550, silane coupling A crosslinking agent KH-570, a silane coupling agent KH-172, a silane coupling agent SCA-1103, and a silane coupling agent SI-69.
  • the leveling agent can improve the flow pattern by lowering the surface tension of the coating film, thereby obtaining a good coating film appearance.
  • the mass of the leveling agent is preferably from 0.01% to 1%, more preferably from 0.05% to 0.8%, most preferably from 0.1% to 0.5%, based on the mass of the insulating coating composition.
  • the type of the leveling agent is not particularly limited in the present invention, and the leveling agent is preferably an acrylic leveling agent, a silicone leveling agent or a fluorocarbon type leveling agent such as a fluorocarbon type leveling agent MF3777A or the like.
  • the acrylic leveling agent includes, but is not limited to, an acrylic leveling agent BYK-361N and an acrylic leveling agent BYK-358N;
  • the silicone leveling agent includes, but not limited to, a silicone leveling agent BYK-333, a silicone Leveling agent BYK-323, silicone leveling agent BYK-322 and silicone leveling agent BYK-306.
  • the antifoaming agent may be an additive which is added to the formed foam to rupture the foam, and may also be an additive which is added before the foaming to prevent foaming.
  • the mass of the antifoaming agent is preferably from 0.01% to 1%, more preferably from 0.05% to 0.8%, most preferably from 0.1% to 0.5%, based on the mass of the insulating coating composition.
  • the antifoaming agent is preferably a polyether antifoaming agent, a silicone antifoaming agent or a polyether modified antifoaming agent.
  • the insulating coating composition may further contain other auxiliaries such as a flame retardant, a plasticizer and the like.
  • the 2,6-dihalobenzoquinone-4,4'-dihalodibenzophenone-phenolphthalein terpolymer is preferably weighed according to the above mass ratio or mass fraction, and the solvent is added thereto.
  • the performance-importing agent, the leveling agent, the antifoaming agent, and the like are preferably stirred and allowed to stand to obtain the insulating coating composition.
  • the present invention is not particularly limited in terms of the weighing, the stirring, and the standing, and the insulating coating composition can be obtained by mixing.
  • the insulating coating composition After obtaining the insulating coating composition, it is evenly coated on the substrate, dried at 25 ° C for 1 h to 3 h to reach the surface dryness, and then placed in an oven at 80 ° C, dried completely after 3 h, and taken out for performance index. test.
  • the invention evaluates the paint film according to the Chinese national standard GB/T1723-1993 "paint viscosity measurement method” Appearance, according to the Chinese national standard GB/T1732-1993 "paint film impact resistance measurement method” to determine its impact strength, according to the Chinese national standard GB/T1731-1993 “paint film flexibility determination method” to determine its flexibility, in accordance with Chinese national standards GB/T6739-1996 "coating film hardness pencil determination method” to determine its hardness, according to the Chinese national standard GB/T1720-1993 “paint film adhesion determination method” in the cross-hatch method to determine its adhesion, in accordance with the Chinese national standard GB / T1735-1993 "film heat resistance assay” assay heat resistance, and the use of common language broadband dielectric instrument, a dielectric constant measured at 10 6 Hz conditions lHz ⁇ l.
  • the measurement results show that the paint film of the insulating coating composition has a transparent appearance, no mechanical impurities, an impact strength of 100 kg ⁇ cm, a flexibility of 1 mm, a hardness of 1 H or more, an adhesion of 2 or more, and a dielectric constant of 2.5 to 3.2. And when it is applied at a temperature of 300 ° C ⁇ 20 ° C, it does not crack or fall off for 30 hours.
  • the present invention mainly comprises 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer, solvent, adhesion promoter, leveling agent and defoaming agent.
  • the raw material and the obtained insulating coating composition have excellent heat resistance, and can be used as an outer protective coating for a transformer, a generator, and various types of coils and the like, which have high heat resistance, and have a wide application range.
  • the insulating coating composition provided by the present invention has good electrical insulation, impact resistance and flexibility, and is excellent in overall performance.
  • Figure 1 is a Infrared spectrum of the 2,6-dichlorobenzonitrile dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1.
  • Figure 1 shows that, at a wave number 3516cm- 1 is a terminal phenolphthalein hydroxyl vibration peak, at a wave number 3042cm- 1 is on the phenyl ring CH stretching vibration peak wavenumber 2230cm "at 1 is -CN stretching vibration, i.e. characterized atmosphere group absorption
  • the wave number 1772cm- 1 is the detonation vibrational peak on the phenolphthalein structural unit lactone.
  • the wave number is 1653cm, which is the benzophenone carbonyl stretching vibration peak.
  • the wave number is 1593cm, the wave number is 1501cm, the wave number is 1460cm, and the wave number is 1411cm.
  • the wave number of 1243cm is the C-0-C stretching vibration peak on the aryl ether, which is the characteristic peak of the aryl ether.
  • the wave number is 1162cm- 1 , which is the C-0 stretching vibration peak of the phenolphthale lactone.
  • the wave number is l lOlcm ' i 1080cm" 1 .
  • Fig. 2 is a 2,6-dichlorobenzonitrile dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1 of the present invention.
  • Fig. 3 is a nuclear magnetic resonance hydrogen diagram of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer obtained in Example 1 of the present invention. It can be seen from Fig.
  • the peak at 151.29ppm chemical shift is attributed to the carbon at the 6th position on the phenolphthalein ring
  • the peak at the chemical shift of 137.16ppm and 136.42ppm is attributed to the carbon at the 5th position on the phenolphthalein ring
  • the peak at the chemical shift of 135.94ppm On the 22-position carbon of the benzophenone ring, the peak at the chemical shift of 135.22 ppm is attributed to the carbon at the 10 position on the benzophenone ring
  • the peak at the chemical shift of 132.09 ppm is attributed to the 21 position on the benzophenone ring.
  • the peak at the chemical shift of 131.06ppm is attributed to the carbon at position 16 on the phenylene benzene ring
  • the peak at 130.10ppm chemical shift is attributed to the carbon at the 12th position on the phenolphthalein ring
  • the peak at 128.90ppm chemical shift is attributed to phenolphthalein.
  • the peak at the chemical shift of 117.71 ppm is attributed to the carbon at position 20 on the benzophenone ring, and the peak at 112.68 ppm of the chemical shift is attributed to the carbon at position 18 on the benzoonitrile.
  • the peak at 112.14 ppm chemical shift is attributed to benzene
  • the carbon at position 15 of the nitrile benzene ring, the peak at the chemical shift of 95.29 ppm is attributed to the carbon at position 17 on the phenylene benzene ring, and the peak at the chemical shift of 90.17 ppm is attributed to the carbon at the 4 position on the phenolphthalein;
  • the peak at the chemical shift of 7.97 ppm is attributed to the hydrogen at the 6-position of the phenolphthalein ring
  • the peak at the chemical shift of 7.90 ppm is attributed to the hydrogen at the 4-position on the phenolphthalein ring
  • the peak at the chemical shift of 7.76 ppm is attributed to The hydrogen at the 5 position on the phenolphthalein ring
  • the peak at 7.72 ppm chemical shift is attributed to the hydrogen at the 3 position on the phenolphthalein ring
  • the peak at the chemical shift of 7.54 ppm is attributed to the hydrogen at the 8 position on the phenylbenzene ring, 7.45 ppm chemical shift
  • the peak at the chemical shift of 7.25 ppm is attributed to the hydrogen at the 2 position on the phenolphthalein ring
  • the peak at the chemical shift of 7.17 ppm is assigned to the 10 position on the benzophenone ring.
  • the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer has a first repeating unit represented by formula (I) and a formula (II) The second repeating unit shown.
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.34 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 243 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 350 ° C, and the temperature loss of 5% was 427 ° C.
  • reaction was heated to 240 ° C to continue the reaction. After 6 h of reaction, a viscous polymer product was obtained, and the heating was stopped. After cooling, 20 mL of DMAC was added, and the mixture was stirred. The mixture was poured into ethanol under vigorous stirring, and then filtered. The polymer product was repeatedly washed and dried to obtain a flocculent product of 2,6-dichlorobenzonitrile dichlorobenzophenone-phenolphthalein terpolymer in a yield of more than 95%.
  • the 2,6-dichlorobenzonitrile dichlorobenzophenone-phenolphthalein terpolymer has a first repeating unit represented by the formula (I) and a second repeating unit represented by the formula (II).
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.45 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 243 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 340 ° C and the temperature loss of 5% was 424 ° C.
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.63 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 250 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 345 ° C and the temperature loss of 5% was 430 ° C.
  • Example 4 10 mmol of phenolphthalein, ⁇ , -dichlorobenzophenone, 9 mmol of 2,6-dichlorobenzonitrile, 11.5 mmol of anhydrous potassium carbonate, 10 mL of sulfolane and 20 mL of diphenylbenzene were placed with a water separator, thermometer, mechanical stirrer In a flask with a nitrogen tube, the mixture was heated to a constant temperature of 140 ° C to azeotrope with water, and after 5 hours, all the diphenylbenzene was distilled off;
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.28 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 251 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 350 ° C and the temperature loss of 5% was 425 ° C.
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.49 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 256 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 360 ° C, and the temperature at 5% weight loss was 436 ° C.
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.54 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 225 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature is 350 ° C, and the temperature loss of 5% is 445 ° C.
  • the intrinsic viscosity of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the intrinsic viscosity was found to be 0.53 dL. /g.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature is 229 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature is 360 ° C, and the temperature loss of 5% is 445 ° C.
  • reaction was further heated to 250 ° C, and after 6 hours of reaction, a viscous polymer product was obtained, the heating was stopped, and after cooling, 20 mL of DMAC was added, and the mixture was stirred, and poured into ethanol for precipitation under vigorous stirring, followed by filtration and then with distilled water.
  • the polymer product was repeatedly washed and dried to obtain a flocculent product of 2,6-dichlorobenzonitrile-indole-dichlorobenzophenone-phenolphthalein terpolymer in a yield of more than 90%.
  • the glass transition temperature of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the glass transition was The temperature was 234 °C.
  • the thermal decomposition property of the 2,6-dichlorobenzonitrile-4,4-dichlorobenzophenone-phenolphthalein terpolymer was measured according to the above-described measurement method, and the measurement results showed that the initial weight loss was The temperature was 360 ° C, and the temperature loss of 5% was 460 ° C.
  • the 2,6-dihalobenzoquinone- ⁇ -dihalodibenzophenone-phenolphthalein terpolymer provided by the present invention is a flocculent substance having the first repeating unit represented by formula (I). And a second repeating unit represented by the formula (II), wherein the molar ratio of the first repeating unit to the second repeating unit is 0.1:9.9-9.9:0.1.
  • the 2,6-dihalobenzoquinone-4,4-dihalodibenzophenone-phenolphthalein terpolymer has an intrinsic viscosity of 0.2 dL/g and a glass transition temperature of 225 ° C to 265 ° C. The temperature of the weight loss is 340 ° C ⁇ 385 ° C, and the temperature of 5% weight loss is 400 ° C ⁇ 490 ° C.
  • the experimental results show that the 2,6-dihalobenzoquinone dihalobenzophenone-phenolphthalein terpolymer provided by the invention has excellent heat resistance and can be used for preparing high performance coatings, adhesives, functional films and high Materials such as performance composites.
  • a titanate coupling agent TMC-201 with a mass fraction of 0.4%, a silicone leveling agent BYK-333 with a mass fraction of 0.3%, and a defoaming agent BYK-088 with a mass fraction of 0.01% were added. Stirring, mixing, and mixing are allowed to stand to obtain a product insulating coating composition.
  • Table 1 is the performance index of the insulating coating composition provided by the embodiment of the present invention.
  • the tetra-n-propyl 4-ester acid ester, the acrylic acid leveling agent BYK-361N with a mass fraction of 0.5%, and the defoaming agent BYK-057 with a mass fraction of 0.06% are dissolved and stirred, uniformly mixed, and then allowed to stand for product insulation. Coating composition.
  • the silane coupling agent SCA-1103 with a fraction of 0.4%, the silicone leveling agent BYK-306 with a mass fraction of 0.8%, and the defoaming agent BYK-057 with a mass fraction of 0.05% were dissolved and mixed.
  • the product is provided with an insulating coating composition.
  • the silane coupling agent ⁇ -550 with a fraction of 1.0%, the silicone leveling agent ⁇ -333 with a mass fraction of 0.03%, and the defoaming agent BYK-057 with a mass fraction of 0.01% were dissolved and dissolved, and then allowed to stand and then allowed to stand. , obtaining a product insulating coating composition.
  • the obtained products were all smeared on the substrate, dried at 25 ° C for 2 h to reach the surface dryness, placed in an oven at 80 ° C, dried completely after 3 h, and taken out, according to the measurement method described above. Performance
  • the paint coating composition provided by the embodiment of the present invention has a transparent appearance, no mechanical impurities, an impact strength of >100 kg ⁇ cm, a flexibility of 1 mm, a hardness of 1 H or more, and an adhesion of 2 grades.
  • the dielectric constant is 2.5 to 3.2, and when it is applied at a temperature of 300 ° C ⁇ 20 ° C, it does not crack or fall off for 30 hours.
  • the present invention mainly comprises 2,6-bis[3 ⁇ 4benzoquinonitrile-4,4'-bis! 3 ⁇ 4 benzophenone-phenolphthalein terpolymer, solvent, adhesion promoter, leveling agent and defoaming agent.
  • the raw material and the obtained insulating coating composition have excellent heat resistance, and can be used as an outer protective coating for a transformer, a generator, and various types of coils and the like, which have high heat resistance, and have a wide application range.
  • the insulating coating composition provided by the present invention has good electrical insulation, impact resistance and flexibility, and is excellent in overall performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyethers (AREA)

Abstract

2,6-二卤苯甲腈-4,4'-二卤二苯酮-酚酞三元共聚物,具有式(I)所示第一重复单元和式(II)所示第二重复单元,该第一重复单元与第二重复单元的摩尔比为0.1:9.9∼9.9:0.1。一种2,6-二卤苯甲腈-4,4'-二卤二苯酮-酚酞三元共聚物的制备方法,包括:将2,6-二卤苯甲腈、4,4'-二卤二苯酮和酚酞于有机溶剂中在碱性化合物和带水剂存在下进行反应,得到2,6-二卤苯甲腈-4,4'-二卤二苯酮-酚酞三元共聚物。该三元共聚物的耐热性能较好,可制备高性能涂料和粘合剂等。一种绝缘涂料组合物,包含:上文所述的三元共聚物,其特性粘数为0.2dL/g〜1.4dL/g;溶剂;流平剂等。

Description

2,6-二卤苯甲腈 -4, 二卤二苯酮 -酚酞三元共聚物、 其制备方法及绝缘涂料 组合物
本申请要求于 2012 年 03 月 16 日提交中国专利局、 申请号为 201210071242.0, 发明名称为 "2,6-二卤苯曱腈 -4,4' 二卤二苯酮 -酚酞三元共 聚物及其制备方法" 的中国专利申请, 以及于 2012年 03月 16日提交中国专 利局、 申请号为 201210071241.6、 发明名称为 "一种绝缘涂料组合物" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高分子材料和涂料的技术领域,尤其涉及一种 2,6-二[¾苯曱腈 -4,4' 二[¾二苯酮 -酚酞三元共聚物、 其制备方法和一种绝缘涂料组合物。 背景技术
聚芳醚酮 (PEAK )是一类亚苯基环通过酸键和欺基连接而成的聚合物, 目前主要有聚醚醚酮、聚醚酮、聚醚酮酮、聚醚醚酮酮和聚醚酮醚酮酮等品种。 聚芳醚酮是一类热塑性高性能工程塑料, 具有良好的耐热性、 化学稳定性、 耐 疲劳、 耐辐射、 阻燃性和尺寸稳定性等性能, 被广泛地应用于电子电气、 航空 航天和汽车工业等领域。 为了改善上述传统聚芳醚酮的溶解加工性能等, 申请 号为 85108751的中国专利文献公开了一种酚酞聚芳醚酮, 该产品可溶于 Ν,Ν- 二曱基曱酰胺(DMF )、 二曱基乙酰胺(DMAC )、 N-曱基吡咯烷酮 (NMP ) 及卤代烷烃类有机溶剂, 溶解加工性能大大改善, 可作为膜、 片、 板、 管和纤 维等结构材料而应用。
聚芳醚腈也是一类热塑性高性能工程塑料, 它最早于 1986年被日本出光 兴产公司商业化, 开发得到商品名为 ID300的聚芳醚腈产品 PAN。 聚芳醚腈 的分子结构中包含强极性的氛基 ( -CN )侧基, 这一方面增加了分子链间的 偶极 -偶极作用, 不但利于获得较好的耐热性能和机械强度, 而且利于增强树 脂基体的附着力; 另一方面, 氛基可作为一个潜在的交联点, 利于形成具有更 高的耐热性能的分子网络结构, 因此, 聚芳醚腈具有优良的力学性能、 耐热性 能和化学稳定性等优点,在电子电器制造、航空航天和汽车工业等领域中具有 广阔的应用前景, 如 Matsuo S等于 1993年制备得到了一种酚酞聚芳醚腈, 其 具有良好的综合性能 ( Journal of Polymer Science. Part A; Polymer Chemistry 1993 , 31 , 3439 )。
本发明人考虑, 可将氛基引入酚酞聚芳醚酮的分子结构中, 进一步提高酚 酞聚芳醚酮的玻璃化转变温度等, 获得耐热性能等更好的材料,扩大其应用范 围。
在涂料领域中, 绝缘涂料是一种具有优良的电绝缘性的涂料, 可被用作电 子电气行业中产品或部件的保护性涂层。 近年来, 随着科技水平的不断提高, 绝缘涂料的发展也越来越受到关注, 其中, 耐热性良好的绝缘涂料已成为当前 研究的热点之一。
目前, 耐热性良好的绝缘涂料主要包括聚酰胺树脂类、聚酰亚胺树脂类和 聚酰胺酰亚胺树脂类等,如 Du Pont公司生产的聚酰亚胺清漆 Pyre-ML、 Amoco 公司生产的聚酰胺酰亚胺 A1涂料、 申请公布号为 CN101720340A的中国专利 文献公开的具有改善的涂料粘合性的聚酰胺树脂组合物、 授权公告号 CN100511491C的中国专利文献公开的聚酰胺酰亚胺树脂绝缘涂料, 该聚酰胺 酰亚胺树脂绝缘涂料由异氰酸酯成分与酸成分在主溶剂 Y -丁内酯中反应、 并 配合有机硅溶胶而得到, 其可用于制造绝缘电线等, 其中, 所述异氰酸酯成分 使用大于等于 70摩尔%的 4,4' -二苯基曱烷二异氰酸酯和小于等于 30摩尔% 的除上述 4,4' -二苯基曱烷二异氰酸酯以外的异氰酸酯类, 所述酸成分使用大 于等于 80摩尔%的偏苯三酸酐和小于等于 20摩尔%的四羧酸二酐类或者使用 大于等于 80摩尔%的偏苯三酸酐和小于等于 20摩尔%的三羧酸类, 所述有机 硅溶胶使其二氧化硅组分相对于所述聚酰胺酰亚胺树脂绝缘涂料的树脂成分 的配合比为 lphr〜100phr。
上述聚酰胺树脂类、聚酰亚胺树脂类和聚酰胺酰亚胺树脂类绝缘涂料的耐 热等级一般为 C级或 S级, 即其工作温度一般在 200 °C或 240°C以下, 不适用 作对耐热性要求更高的电气产品和电子部件等的外层防护涂料,较大地限制了 上述绝缘涂料的应用范围。
发明内容
本发明要解决的问题是: 提供一种 ^-二 苯曱腈- -二 二苯酮-酚酞 三元共聚物及其制备方法, 本发明提供的 2,6-二卤苯曱腈 二卤二苯酮-酚 酞三元共聚物具有优异的耐热性能。
本发明提供了一种 2,6-二[¾苯曱腈 ^ -二 二苯酮 -酚酞三元共聚物, 具 有式(I ) 所 一重复单元和式(II )所示的第二重复单元:
Figure imgf000004_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1。
本发明还提供了一种 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物的 制备方法, 包括以下步骤:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行反应, 得到 2,6-二卤苯曱腈 二卤二苯酮-酚酞三元 共聚物。
优选的, 所述 2,6-二 [¾苯曱腈为 2,6-二氟苯曱腈或 2,6-二氯苯曱腈, 所述 4,4 -二 [¾二苯酮为 4,4 -二氟二苯酮或 4,4 -二氯二苯酮。
优选的, 所述 2,6-二[¾苯曱腈与所述 -二 二苯酮的摩尔比为 ( 0.05-0.95 ): ( 0.95-0.05 ), 所述酚酞的物质的量与所述 2,6-二卤苯曱腈和所 述 4,4 -二卤二苯酮的总物质的量的比值为 ( 1〜3 ) :1。
优选的, 所述碱性化合物为无水碳酸钟、 无水碳酸钠、 碳酸氢钾、 碳酸氢 钠、 氢氧化钾或氢氧化钠。
优选的, 所述碱性化合物与所述酚酞的摩尔比为 (1〜3 ) :1。
优选的, 所述有机溶剂为环丁砜、 二苯砜或 N-曱基吡咯酮, 所述带水剂 为二曱苯或曱苯。
优选的, 所述有机溶剂与所述带水剂的体积比为 1: ( 1〜3 )。
优选的, 所述制备方法具体为:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行第一步反应, 得到中间产物;
将所述中间产物进行第二步反应, 得到 2,6-二 苯曱腈 二 二苯酮- 酚酞三元共聚物。
优选的, 所述第一步反应的温度为 120°C〜180°C, 所述第一步反应的时间 为 2h〜7h;
所述第二步反应的温度为 180°C〜240°C, 所述第二步反应的时间为 3h 〜10h。
与现有技术相比, 本发明以 2,6-二 [¾苯曱腈、 ^-二 二苯酮和酚酞为原 料, 在碱性化合物和带水剂的存在下在有机溶剂中进行反应, 得到 2,6-二卤苯 曱腈 - ^-二 二苯酮 -酚酞三元共聚物。 本发明提供的 ^-二 苯曱腈^ - 二卤二苯酮-酚酞三元共聚物具有式(I)所示的第一重复单元和式(II)所示 的第二重复单元, 所述第一重复单元与所述第二重复单元的摩尔比为
0.1:9.9〜9.9:0.1。 在本发明中, 所述 2,6-二卤苯曱腈 -4,4 二卤二苯酮-酚酞三元 共聚物的分子结构中含有氛基,并满足所述第一重复单元与所述第二重复单元 的摩尔比为 0.1:9.9-9.9:0.1, 具有优异的耐热性能, 可用于制备高性能涂料、 粘合剂、 功能膜和高性能复合材料等材料。 实验结果表明, 本发明提供的 2,6- 二卤苯曱腈 -^ -二 二苯酮-酚酞三元共聚物为絮状物质, 具有式(I)所示的 第一重复单元和式(Π)所示的第二重复单元, 其特性粘度 >0.2dL/g, 玻璃化 转变温度为 225°C〜265°C, 起始失重的温度为 340°C〜385°C, 失重 5%的温度 为 400°C〜490°C。
另外, 本发明提供的 2,6-二[¾苯曱腈 - -二 二苯酮 -酚酞三元共聚物的 制备方法容易实施, 易于推广应用。
本发明要解决的另一个问题是: 提供一种绝缘涂料组合物, 该绝缘涂料组 合物具有突出的耐热性。
本发明提供了一种绝缘涂料组合物, 包含:
2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物;
溶剂;
粘附性能促进剂;
流平剂; 消泡剂;
所述 2,6-二卤苯曱腈 -4,4' -二卤二苯酮-酚酞三元共聚物具有式(I ) 所示 的第一重复单 Π )所示的第二重复单元:
Figure imgf000006_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1; 所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物的特性粘数为
0.2dL/g〜1.4dL/g。
优选的, 所述溶剂包含:
第一溶剂, 所述第一溶剂为 Ν,Ν-二曱基乙酰胺、 Ν,Ν-二曱基曱酰胺或二 曱基亚砜;
第二溶剂, 所述第二溶剂为丙酮或四氢呋喃。
优选的, 所述第一溶剂与所述第二溶剂的体积比为 1: 19〜19:1。
优选的,所述溶剂与所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚 物的质量比为 95:5〜75:25。
优选的, 所述粘附性能促进剂为钛酸酯偶联剂、 硅烷偶联剂、铬络合物偶 联剂或锆类偶联剂。
优选的, 所述粘附性能促进剂的质量为所述绝缘涂料组合物的质量的 0.01%〜2%。
优选的, 所述流平剂为丙烯酸流平剂、有机硅流平剂或氟碳化合物类流平 剂。
优选的, 所述流平剂的质量为所述绝缘涂料组合物的质量的 0.01%〜1%。 优选的, 所述消泡剂为聚醚类消泡剂、 硅类消泡剂或聚醚改性消泡剂。 优选的, 所述消泡剂的质量为所述绝缘涂料组合物的质量的 0.01%〜1%。 与现有技术相比, 本发明提供的绝缘涂料组合物包含: 2,6-二 苯曱腈 -4,4' -二 二苯酮 -酚酞三元共聚物; 溶剂; 粘附性能促进剂; 流平剂; 消泡 剂; 所述 2,6-二卤苯曱腈 -4,4' -二卤二苯酮-酚酞三元共聚物具有式(I ) 所示 的第一重复单元和式(Π )所示的第二重复单元, 所述第一重复单元与所述第 二重复单元的摩尔比为 0.1 :9.9〜9.9:0.1; 所述 2,6-二卤苯曱腈 -4,4' -二卤二苯酮 -酚酞三元共聚物的特性粘数为 0.2dL/g〜1.4dL/g。 在本发明中, 所述 2,6-二卤 苯曱腈—4,4' -二! ¾二苯酮-酚酞三元共聚物为基体树脂, 具有优异的耐热性, 使得所述绝缘涂料组合物的耐热性较好,可用作对耐热性要求较高的电气产品 和电子部件等的外层防护涂料, 扩大了应用范围。 实验结果表明, 所述绝缘涂 料组合物在 300°C±20°C的温度下应用时, 30h不开裂、 不脱落。
另外, 本发明提供的绝缘涂料组合物不但抗冲击强度高、 电绝缘性好、 柔 韧性好、 粘附性好, 具有优异的综合性能, 而且具有非常高的性价比, 易于推 广应用。 附图说明
图 1为本发明实施例 1得到的 2,6 -二氯苯曱腈—4,4 -二氯二苯酮-酚酞三元 共聚物的红外光语图;
图 2为本发明实施例 1得到的 2,6 -二氯苯曱腈—4,4 -二氯二苯酮-酚酞三元 共聚物的核磁共振碳谱图;
图 3为本发明实施例 1得到的 2,6 -二氯苯曱腈—4,4 -二氯二苯酮-酚酞三元 共聚物的核磁共振氢谱图。 具体实施方式
为了进一步了解本发明, 下面结合实施例对本发明优选实施方案进行描 述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是 对本发明权利要求的限制。
本发明提供了一种 2,6-二[¾苯曱腈 ^ -二 二苯酮 -酚酞三元共聚物, 具 有式(I ) 所示的第一重复单元和式(II )所示的第二重复单元:
Figure imgf000008_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1 :9.9〜9.9:0.1。
本发明提供的 2,6-二[¾苯曱腈 - -二 二苯酮 -酚酞三元共聚物的分子结 构中包含强极性的氛基, 增加了酚酞聚芳醚酮分子链间的偶极 -偶极作用, 利 于提高酚酞聚芳醚酮的耐热性能等。
在本发明中, 所述第一重复单元与所述第二重复单元的摩尔比为 0.1 :9.9-9.9:0.1 , 优选为 0.5:9.5〜9.5:0.5 , 更优选为 1 :9〜9: 1。 实马全结果表明, 满 足所述第一重复单元与所述第二重复单元的摩尔比为 0.1 :9.9〜9.9:0.1的 2,6-二 卤苯曱腈 -4,4 -二卤二苯酮-酚酞三元共聚物的耐热性能优异, 可用于制备高性 能涂料、 粘合剂、 功能膜和高性能复合材料等材料。
本发明对所述第一重复单元和所述第二重复单元的聚合度没有特殊限制, 所述第一重复单元的聚合度优选为 1〜500, 更优选为 2〜200, 最优选为 3〜100, 所述第二重复单元的聚合度优选为 1〜500, 更优选为 2〜200, 最优选为 3〜100。
在本发明中, 所述 2,6-二[¾苯曱腈 二 [¾二苯酮-酚酞三元共聚物的特 性粘度( [ η ] ) > 0.2dL/g;
所述 2,6-二[¾苯曱腈 -4,4 -二! ¾二苯酮-酚酞三元共聚物的玻璃化转变温度 为 225 °C〜265 °C ;
所述 2,6-二[¾苯曱腈 二 [¾二苯酮-酚酞三元共聚物的起始失重的温度 为 340°C〜385 °C , 失重 5%的温度为 400°C〜490°C。
本发明还提供了一种 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物的 制备方法, 包括以下步骤:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行反应, 得到 2,6-二[¾苯曱腈 -4,4 -二! ¾二苯酮-酚酞三元 共聚物。
本发明将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮、 酚酞、 碱性化合物、 带水剂 和有机溶剂置于反应器中加热, 反应后得到 2,6-二卤苯曱腈 二卤二苯酮- 酚酞三元共聚物。
本发明优选在惰性气体如氮气保护下, 以 2,6-二卤苯曱腈、 4,4 -二卤二苯 酮和酚酞为原料,反应得到 2,6-二[¾苯曱腈 -4,4 -二! ¾二苯酮 -酚酞三元共聚物。 本发明通过上述原料发生亲核取代反应和缩聚反应,将氰基引入酚酞聚芳醚酮 的分子结构中, 提高了酚酞聚芳醚酮的耐热性能, 扩大了应用范围。
另外, 本发明所用的上述原料来源广泛, 成本较低, 性能价格比较高, 具 有较好的经济效益和社会效益。
在本发明中, 所述 2,6-二 苯曱腈优选为 2,6-二氟苯曱腈或 2,6-二氯苯曱 腈, 更优选为 2,6-二氯苯曱腈; 所述 -二 二苯酮优选为 4,4 -二氟二苯酮 或 4,4 -二氯二苯酮, 更优选为 4,4 -二氯二苯酮;
所述 2,6-二 [¾苯曱腈与所述 4,4 -二 [¾二苯酮的摩尔比优选为( 0.05〜0.95 ): ( 0.95-0.05 ), 更优选为 (0.1〜0.9): (0.9-0.1 ); 所述酚酞的物质的量与所述 2,6-二卤苯曱腈和所述 4,4 -二卤二苯酮的总物质的量的比值优选为 (1〜3) :1, 更优选为( 1〜2.5):1,最优选为 1:1。通过调节所述 2,6-二卤苯曱腈、所述 4,4 - 二卤二苯酮和所述酚酞的比例, 可获得不同氛基含量的聚合物产物,表明可根 据分子设计要求控制聚合物产物的结构和性能。
在本发明中, 所述碱性化合物能够对反应起到催化作用, 所述碱性化合物 优选为无水碳酸钾、无水碳酸钠、碳酸氢钾、碳酸氢钠、氢氧化钾或氢氧化钠, 更优选为无水碳酸钟或无水碳酸钠, 最优选为无水碳酸 4甲; 所述碱性化合物与 所述酚酞的摩尔比优选为( 1〜3 ):1,更优选为( 1.1〜2.5):1,最优选为( 1.15〜2): 1;
所述有机溶剂为反应的介质, 所述有机溶剂优选为环丁砜、 二苯砜或 N- 曱基吡咯酮, 更优选为环丁砜; 本发明对所述有机溶剂的用量没有特殊限制, 采用使上述原料完全溶解的用量即可;
所述带水剂能够把反应产生的水从反应体系中分离开来,从而提高反应效 率, 所述带水剂优选为二曱苯或曱苯, 更优选为二曱苯; 所述有机溶剂与所述 带水剂的体积比优选为 1: ( 1〜3 ),更优选为 1: ( 1.5-2.5 ),最优选为 1 : ( 1.8-2 )。 在本发明中, 所述 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物的制 备方法优选具体为:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行第一步反应, 得到中间产物;
将所述中间产物进行第二步反应, 得到 2,6-二 苯曱腈 二 二苯酮- 酚酞三元共聚物。
其中, 所述第一步反应以亲核取代反应为主, 所述第一步反应的温度优选 为 120°C〜180°C , 更优选为 130°C〜170°C , 最优选为 140°C〜160°C ; 所述第一 步反应的时间优选为 2h〜7h, 更优选为 3h〜6h, 最优选为 4h〜5h;
所述带水剂带出反应产生的水, 本发明优选蒸出全部所述带水剂后,得到 中间产物, 所述中间产物包括亲核取代反应的产物和少量低聚物等;
所述第二步反应以缩聚反应为主, 所述第二步反应的温度优选为 180°C 〜240°C , 更优选为 200°C〜220°C ; 所述第二步反应的时间优选为 31! 〜 10h, 更 优选为 41!〜 9h, 最优选为 51!〜 8h。
反应得到粘稠状聚合物产物时, 本发明将反应器中的反应体系降温,加入 二曱基乙酰胺(DMAC )进行稀释, 然后在剧烈搅拌下倾入乙醇中沉淀, 过滤 后再用蒸馏水反复煮洗聚合物产物, 以去除残留的碱性化合物等, 最后将过滤 后的聚合物产物干燥, 得到絮状产物 2,6-二卤苯曱腈 二卤二苯酮-酚酞三 元共聚物, 计算得到产率大于 90%。
得到所述絮状产物后,对其进行红外光谱分析和核磁共振分析。分析结果 表明, 所述 2,6-二卤苯曱腈 二卤二苯酮-酚酞三元共聚物具有式(I )所示 的第一重复单元和式(Π )所示的第二重复单元。
将所述 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物溶解于 Ν,Ν-二曱 基曱酰胺(DMF ) 中, 在 25°C的温度下测定其特性粘度。 测定结果表明, 所 述 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物的特性粘度》 0.2dL/g。
利用 METTLER TOLEDO DSC1差示扫描量热仪测定所述 2,6-二卤苯曱腈 - -二 二苯酮-酚酞三元共聚物的玻璃化转变温度, 测定条件如下: 在氮气 保护下,升温速度为 10°C/min,测定的温度范围为 0°C〜300°C。测定结果表明, 所述 2,6-二[¾苯曱腈 - ^ -二 二苯酮-酚酞三元共聚物的玻璃化转变温度为 225°C〜265 °C。
利用 METTLER TOLEDO TGA/DSC1热重分析仪测定所述 2,6-二卤苯曱 腈— ^ -二 二苯酮 -酚酞三元共聚物的热分解性能, 测定条件如下: 在氮气保 护下, 升温速度为 10°C/min, 测定的温度范围为 0°C〜600°C。 测定结果表明, 所述 2,6-二[¾苯曱腈 ^ -二 二苯酮-酚酞三元共聚物的起始失重的温度为 340°C〜385 °C , 失重 5%的温度为 400°C〜490°C。
实验结果表明, 本发明提供的 2,6-二[¾苯曱腈 - ^ -二 二苯酮-酚酞三元 共聚物具有式(I )所示的第一重复单元和式(II )所示的第二重复单元, 所述 第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1; 所述 2,6-二卤 苯曱腈 二 二苯酮 -酚酞三元共聚物具有优异的耐热性能, 可用于制备高 性能涂料、 粘合剂、 功能膜和高性能复合材料等材料。
另外, 本发明提供的制备方法容易实施, 易于推广应用。
本发明提供了一种绝缘涂料组合物, 包含:
2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物;
溶剂;
粘附性能促进剂;
流平剂;
消泡剂;
所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物具有式(I ) 所示 的第一重复单元和式(Π )所示的第二重复单元:
Figure imgf000011_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1: 所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物的特性粘数为 0.2dL/g〜1.4dL/g。
在本发明中, 所述绝缘涂料组合物主要由 2,6-二卤苯曱腈 -4,4' -二卤二苯 酮 -酚酞三元共聚物、 溶剂、 粘附性能促进剂、 流平剂和消泡剂组成, 其具有 优异的耐热性,可用作对耐热性要求较高的电气产品和电子部件等的外层防护 涂料, 应用范围较广。
其中,所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物为所述绝缘 涂料组合物的基体树脂, 能够和溶剂等其他原料结合在一起,在底材上形成均 一、 致密的涂膜, 经固化后形成涂层。
所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物具有式(I ) 所示 的第一重复单元和式(Π )所示的第二重复单元, 所述第一重复单元与所述第 二重复单元的摩尔比为 0.1 :9.9-9.9:0.1 , 优选为 0.5:9.5-9.5:0.5 , 更优选为 1.0:9.0-9.0: 1.0; 所述 2,6-二卤苯曱腈 -4,4' -二卤二苯酮-酚酞三元共聚物的特 性粘数为 0.2dL/g〜1.4dL/g,优选为 0.5dL/g〜1.2dL/g,更优选为 0.8dL/g〜1.0dL/g。
所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物的玻璃化转变温 度为 225 °C〜265 °C , 起始失重的温度为 340°C〜385 °C , 失重 5%的温度为 400 °C〜490°C。 所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物具有优异 的耐热性, 其作为所述绝缘涂料组合物的基体树脂, 能够提高所述绝缘涂料组 合物的耐热性, 从而扩大应用范围。
另外, 所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物还能够改 善所述绝缘涂料组合物的粘附性, 利于应用。
所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物优选按照下述制 备方法制备:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行反应, 得到 2,6-二卤苯曱腈 -4,4 -二卤二苯酮-酚酞三元 共聚物。
上述制备方法将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮、 酚酞、 碱性化合物、 带水剂和有机溶剂置于反应器中加热, 反应后得到 2,6-二卤苯曱腈 二卤 二苯酮 -酚酞三元共聚物。 上述制备方法优选在惰性气体如氮气保护下, 以 2,6-二 苯曱腈、 4,4 - 二卤二苯酮和酚酞为原料, 反应得到 2,6-二[¾苯曱腈 二 [¾二苯酮-酚酞三 元共聚物。
在上述制备方法中, 所述 2,6-二[¾苯曱腈优选为 2,6-二氟苯曱腈或 2,6-二 氯苯曱腈, 更优选为 2,6-二氯苯曱腈; 所述 -二 二苯酮优选为 4,4 -二氟 二苯酮或 4,4 -二氯二苯酮, 更优选为 4,4 -二氯二苯酮;
所述 2,6-二 [¾苯曱腈与所述 4,4 -二 [¾二苯酮的摩尔比优选为( 0.05〜0.95 ): ( 0.95-0.05 ), 更优选为 (0.1〜0.9): (0.9-0.1 ); 所述酚酞的物质的量与所述 2,6-二卤苯曱腈和所述 4,4 -二卤二苯酮的总物质的量的比值优选为 (1〜3) :1, 更优选为( 1〜2.5):1,最优选为 1:1。通过调节所述 2,6-二卤苯曱腈、所述 4,4 - 二卤二苯酮和所述酚酞的比例, 可获得不同氛基含量的聚合物产物。
在上述制备方法中, 所述碱性化合物能够对反应起到催化作用, 所述碱性 化合物优选为无水碳酸钾、 无水碳酸钠、 碳酸氢钾、 碳酸氢钠、 氢氧化钾或氢 氧化钠, 更优选为无水碳酸钾或无水碳酸钠, 最优选为无水碳酸钾; 所述碱性 化合物与所述酚酞的摩尔比优选为 (1〜3) :1, 更优选为 (1.1〜2.5) :1, 最优 选为 ( 1.15〜2): 1;
所述有机溶剂为反应的介质, 所述有机溶剂优选为环丁砜、 二苯砜或 N- 曱基吡咯酮, 更优选为环丁砜; 上述制备方法对所述有机溶剂的用量没有特殊 限制, 采用使上述原料完全溶解的用量即可;
所述带水剂能够把反应产生的水从反应体系中分离开来,从而提高反应效 率, 所述带水剂优选为二曱苯或曱苯, 更优选为二曱苯; 所述有机溶剂与所述 带水剂的体积比优选为 1: ( 1〜3 ),更优选为 1: ( 1.5-2.5 ),最优选为 1: ( 1.8-2 )。
在本发明中, 所述 2,6-二 [¾苯曱腈 -4,4 -二 [¾二苯酮-酚酞三元共聚物的制 备方法更优选具体为:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行第一步反应, 得到中间产物;
将所述中间产物进行第二步反应, 得到 2,6-二卤苯曱腈 二卤二苯酮- 酚酞三元共聚物。
其中, 所述第一步反应以亲核取代反应为主, 所述第一步反应的温度优选 为 120°C〜180°C , 更优选为 130°C〜170°C , 最优选为 140°C〜160°C ; 所述第一 步反应的时间优选为 21!〜 7h, 更优选为 31!〜 6h, 最优选为 41!〜 5h;
所述带水剂带出反应产生的水, 上述制备方法优选蒸出全部所述带水剂 后, 得到中间产物, 所述中间产物包括亲核取代反应的产物和少量低聚物等; 所述第二步反应以缩聚反应为主, 所述第二步反应的温度优选为 180°C
〜240°C , 更优选为 200°C〜220°C ; 所述第二步反应的时间优选为 31!〜 10h, 更 优选为 41!〜 9h, 最优选为 51!〜 8h。
反应得到粘稠状聚合物产物时,将反应器中的反应体系降温,加入二曱基 乙酰胺(DMAC )进行稀释, 然后在剧烈搅拌下倾入乙醇中沉淀, 过滤后再用 蒸馏水反复煮洗聚合物产物, 以去除残留的碱性化合物等, 最后将过滤后的聚 合物产物干燥, 得到絮状产物 2,6-二 苯曱腈 - ^ -二 二苯酮-酚酞三元共聚 物, 计算得到产率大于 90%。
在本发明中, 所述溶剂能够将成膜物溶解或分散成均一、稳定的液体分散 体系, 以制备涂料; 当施工成膜后, 其会挥发到大气环境中。 所述溶剂优选包 含第一溶剂和第二溶剂, 所述第一溶剂优选为 Ν,Ν-二曱基乙酰胺、 Ν,Ν-二曱 基曱酰胺或二曱基亚砜; 所述第二溶剂优选为丙酮或四氢呋喃。 所述第一溶剂 与所述第二溶剂的体积比优选为 1 : 19〜19: 1 , 更优选为 1 : 15〜15: 1 , 最优选为
1 : 10〜10: 1 , 所述溶剂优选为非质子极性溶剂, 能够更好地溶解上述基体树脂, 使其作为所述绝缘涂料组合物的基体树脂而应用。
本发明对所述溶剂的用量没有特殊限制,采用能够将上述基体树脂溶解的 用量即可,所述溶剂与所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物 的质量比优选为 95:5〜75:25。
所述粘附性能促进剂能够显著提高膜层与基材的附着力,从而进一步改善 所述绝缘涂料组合物的粘附性。在本发明中, 所述粘附性能促进剂的质量优选 为所述绝缘涂料组合物的质量的 0.01%〜2%, 更优选为 0.05%〜1.5%, 最优选 为 0.5%〜1%。
所述粘附性能促进剂主要包括树脂类粘附性能促进剂、偶联剂和有机高分 子化合物等。 在本发明中, 所述粘附性能促进剂优选为偶联剂, 更优选为钛酸 酯偶联剂、硅烷偶联剂、铬络合物偶联剂如曱基丙烯酸氯化铬络合物等或锆类 偶联剂如四正丙基 4告酸酯等。 其中, 所述钛酸酯偶联剂包括但不限于钛酸酯偶 联剂 TMC-201、 钛酸酯偶联剂 TMC-102、 钛酸酯偶联剂 TMC-101、 钛酸酯偶 联剂 TMC-105、 钛酸酯偶联剂 TMC-311w、 钛酸酯偶联剂 TMC-311、 钛酸酯 偶联剂 TMC-TTS、 钛酸酯偶联剂 TMC-3、 钛酸酯偶联剂 TMC-114和钛酸酯 偶联剂 TMC-TE; 所述硅烷偶联剂包括但不限于硅烷偶联剂 KH-402、 硅烷偶 联剂 KH-552、硅烷偶联剂 KH-550、硅烷偶联剂 KH-570、硅烷偶联剂 KH-172、 硅烷偶联剂 SCA-1103和硅烷偶联剂 SI-69。
所述流平剂能够通过降低涂膜表面张力来改善流动方式,从而获得良好的 涂膜外观。在本发明中, 所述流平剂的质量优选为所述绝缘涂料组合物的质量 的 0.01%〜1%, 更优选为 0.05%〜0.8%, 最优选为 0.1%〜0.5%。 本发明对所述 流平剂的种类没有特殊限制, 所述流平剂优选为丙烯酸流平剂、有机硅流平剂 或氟碳化合物类流平剂如氟碳化合物类流平剂 MF3777A等。 其中, 所述丙烯 酸流平剂包括但不限于丙烯酸流平剂 BYK-361N和丙烯酸流平剂 BYK-358N; 所述有机硅流平剂包括但不限于有机硅流平剂 BYK-333、 有机硅流平剂 BYK-323 , 有机硅流平剂 BYK-322和有机硅流平剂 BYK-306。
所述消泡剂可以为加到已形成的泡沫中使泡沫破裂的添加剂,也可以为起 泡前预先加入而阻止起泡的添加剂。在本发明中, 所述消泡剂的质量优选为所 述绝缘涂料组合物的质量的 0.01%〜1%, 更优选为 0.05%〜0.8%, 最优选为 0.1%〜0.5%。所述消泡剂优选为聚醚类消泡剂、硅类消泡剂或聚醚改性消泡剂。
为了进一步提高所述绝缘涂料组合物的应用性能,所述绝缘涂料组合物还 可以包含其他助剂如阻燃剂、 增塑剂等。
本发明优选按照上述质量比或质量分数称取所述 2,6-二卤苯曱腈 -4,4' -二 卤二苯酮 -酚酞三元共聚物, 再加入所述溶剂、 所述粘附性能促进剂、 所述流 平剂和所述消泡剂等, 优选经搅拌、 静置, 得到所述绝缘涂料组合物。
本发明对所述称取、所述搅拌和所述静置没有特殊限制, 能够混合得到所 述绝缘涂料组合物即可。
得到绝缘涂料组合物后, 将其均匀涂在基材上, 在 25 °C下干燥 lh〜3h达 到表干, 再置于 80°C的烘箱中, 3h后干燥完全, 将其取出进行性能指标测试。
本发明按照中国国家标准 GB/T1723-1993《涂料粘度测定法》评估其漆膜 外观, 按照中国国家标准 GB/T1732-1993《漆膜耐冲击测定法》测定其冲击强 度, 按照中国国家标准 GB/T1731-1993 《漆膜柔韧性测定法》测定其柔韧度, 按照中国国家标准 GB/T6739-1996《涂膜硬度铅笔测定法》测定其硬度, 按照 中国国家标准 GB/T1720-1993《漆膜附着力测定法》中的划格法测定其附着力, 按照中国国家标准 GB/T1735-1993《漆膜耐热性测定法》测定其耐热性, 并采 用常用宽频介电语仪, 在 lHz〜l 106Hz的条件下测定其介电常数。
测定结果显示, 所述绝缘涂料组合物的漆膜外观透明、 无机械杂质, 冲击 强度 100kg · cm, 柔韧度为 1mm, 硬度为 1H以上, 附着力为 2级以上, 介 电常数为 2.5〜3.2, 并且其在 300°C±20°C的温度下应用时, 30h不开裂、 不脱 落。
表明本发明以 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物、 溶剂、 粘附性能促进剂、 流平剂和消泡剂为主要原料,得到的绝缘涂料组合物具有优 异的耐热性, 可用作对耐热性要求较高的变压器、发电机和各类型线圈等产品 或零部件的外层防护涂料, 具有较为宽广的应用范围。
另夕卜, 本发明提供的绝缘涂料组合物具有良好的电绝缘性、抗冲击性和柔 韧性, 综合性能优异。
为了进一步理解本发明, 下面结合实施例对本发明提供的 2,6-二卤苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物、 其制备方法和绝缘涂料组合物进行详细地 描述。
实施例 1
将 lOmmol酚酞、 SmmoW^ -二氯二苯酮、7mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 120 °C恒温共沸带水反应, 7h后将二曱苯全 部蒸出;
然后加热至 180°C继续反应, 反应 10h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 90%。
对所述絮状产物进行红外光语分析, 分析结果参见图 1 , 图 1为本发明实 施例 1 得到的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物的红外光谱 图。 由图 1可知, 波数 3516cm-1处为末端酚酞羟基振动峰, 波数 3042cm-1处 为苯环上 C-H伸缩振动峰, 波数 2230cm"1处为 -CN伸缩振动峰, 即氛基的特 征吸收峰, 波数 1772cm-1处为酚酞结构单元内酯上的欺基伸缩振动峰, 波数 1653cm 处为苯酮羰基伸缩振动峰, 波数 1593cm 、 波数 1501cm 、 波数 1460cm 和波数 1411cm 处为苯环骨架伸缩振动峰, 波数 1243cm 处为芳醚 上 C-0-C伸缩振动峰, 即芳醚的特征峰, 波数 1162cm-1处为酚酞内酯中 C-0 伸缩振动峰, 波数 l lOlcm ' i 1080cm"1 , 波数 1016cm-1和 971cm-1处为苯 环面内弯曲振动峰, 波数 839cm-1处为苯环双取代特征峰, 波数 754cm-1和波 数 690 cm"1处为苯环上面外弯曲振动峰。
对所述絮状产物进行核磁共振分析, 分析结果参见图 2和图 3 , 图 2为本 发明实施例 1得到的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物的核磁 共振碳谱图, 图 3为本发明实施例 1得到的 2,6-二氯苯曱腈 -4,4 -二氯二苯酮- 酚酞三元共聚物的核磁共振氢语图。 由图 2可知, 193.08ppm化学位移处的峰 归属于二苯酮上 11位欺基碳, 168.55ppm化学位移处的峰归属于酚酞内酯环 上 8位欺基碳, 159.99ppm化学位移处的峰归属于苯酮苯环上 19位的碳, 159.63ppm 化学位移处的峰归属于苯腈苯环上 14 位的碳, 155.50ppm、 154.89ppm化学位移处的峰归属于酚酞苯环上 1位的碳, 151.29ppm化学位移 处的峰归属于酚酞苯环上 6位的碳, 137.16ppm、 136.42ppm化学位移处的峰 归属于酚酞苯环上 5位的碳, 135.94ppm化学位移处的峰归属于二苯酮苯环上 22 位的碳, 135.22ppm化学位移处的峰归属于二苯酮苯环上 10 位的碳, 132.09ppm化学位移处的峰归属于二苯酮苯环上 21位的碳, 131.06ppm化学位 移处的峰归属于苯腈苯环上 16位的碳, 130.10ppm化学位移处的峰归属于酚 酞苯环上 12位的碳, 128.90ppm化学位移处的峰归属于酚酞苯环上 3位的碳, 126.01ppm化学位移处的峰归属于酚酞苯环上 Ί位的碳, 124.54ppm化学位移 处的峰归属于酚酞苯环上 9位的碳, 124.26ppm化学位移处的峰归属于酚酞苯 环上 13 位的碳, 119.67ppm化学位移处的峰归属于酚酞苯环上 2位的碳, 117.71ppm化学位移处的峰归属于二苯酮苯环上 20位的碳, 112.68ppm化学位 移处的峰归属于苯腈上氛基 18位的碳, 112.14ppm化学位移处的峰归属于苯 腈苯环上 15位的碳, 95.29ppm化学位移处的峰归属于苯腈苯环上 17位的碳, 90.17ppm化学位移处的峰归属于酚酞上 4位的碳;
由图 3 可知, 7.97ppm化学位移处的峰归属于酚酞苯环上 6 位的氢, 7.90ppm化学位移处的峰归属于酚酞苯环上 4位的氢, 7.76ppm化学位移处的 峰归属于酚酞苯环上 5位的氢, 7.72ppm化学位移处的峰归属于酚酞苯环上 3 位的氢, 7.54ppm化学位移处的峰归属于苯腈苯环上 8位的氢, 7.45ppm化学 位移处的峰归属于酚酞苯环上 1位的氢, 7.25ppm化学位移处的峰归属于酚酞 苯环上 2位的氢, 7.17ppm化学位移处的峰归属于二苯酮苯环上 10位的氢, 7.14ppm化学位移处的峰归属于二苯酮苯环上 9位的氢, 6.72ppm化学位移处 的峰归属于苯腈苯环上 7位的氢。
综上所述, 所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物具有式 ( I )所示的第一重复单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.34dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 243 °C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 350°C , 失重 5%的温度为 427°C。
实施例 2
将 lOmmol酚酞、 SmmoW^ -二氯二苯酮、5mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 150°C恒温共沸带水反应, 5h后将二曱苯全 部蒸出;
然后加热至 240°C继续反应, 反应 6h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 二氯二苯酮 -酚酞三元共聚物, 产率大于 95%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物具有式(I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.45dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 243 °C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 340°C , 失重 5%的温度为 424 °C。
实施例 3
将 lOmmol酚酞、 SmmoW^ -二氯二苯酮、 8mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 120 °C恒温共沸带水反应, 7h后将二曱苯全 部蒸出;
然后加热至 220°C继续反应, 反应 6h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 92%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物具有式 ( I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.63dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 250°C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 345 °C , 失重 5%的温度为 430°C。
实施例 4 将 lOmmol酚酞、 ΙηιηιοΜ, -二氯二苯酮、9mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 140 °C恒温共沸带水反应, 5h后将二曱苯全 部蒸出;
然后加热至 180°C继续反应, 反应 10h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 93%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物具有式 ( I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.28dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 251 °C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 350°C , 失重 5%的温度为 425°C。
实施例 5
将 lOmmol 酚酞、 OJmmo -二氯二苯酮、 9.5mmol2,6-二氯苯曱腈、
11.5mmol无水碳酸钾、 lOmL环丁砜和 20mL二曱苯置于带有分水器、温度计、 机械搅拌器和通氮气管的烧瓶中,加热至 150°C恒温共沸带水反应, 5h后将二 曱苯全部蒸出;
然后加热至 210°C继续反应, 反应 6h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均匀, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 92%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物具有式(I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.49dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 256°C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 360°C , 失重 5%的温度为 436°C。
实施例 6
将 lOmmol 酚酞、 ^Smmo -二氯二苯酮、 0.5mmol2,6-二氯苯曱腈、
11.5mmol无水碳酸钾、 lOmL环丁砜和 20mL二曱苯置于带有分水器、温度计、 机械搅拌器和通氮气管的烧瓶中,加热至 170 °C恒温共沸带水反应, 5h后将二 曱苯全部蒸出;
然后加热至 220°C继续反应, 反应 6h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 92%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物具有式(I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.54dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 225 °C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 350°C , 失重 5%的温度为 445 °C。
实施例 7
将 lOmmol酚酞、 διηηιοΜ, -二氯二苯酮、2mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 170°C恒温共沸带水反应, 5h后将二曱苯全 部蒸出;
然后加热至 260°C继续反应, 反应 5h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 二氯二苯酮 -酚酞三元共聚物, 产率大于 93%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物具有式(I )所示的第一重复 单元和式(II ) 所示的第二重复单元。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.53dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 229 °C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 360°C , 失重 5%的温度为 445 °C。
实施例 8
将 lOmmol酚酞、 ηιηιοΜ, -二氯二苯酮、3mmol2,6-二氯苯曱腈、 11.5mmol 无水碳酸钾、 10mL环丁砜和 20mL二曱苯置于带有分水器、 温度计、 机械搅 拌器和通氮气管的烧瓶中,加热至 160 °C恒温共沸带水反应, 5h后将二曱苯全 部蒸出;
然后加热至 250°C继续反应, 反应 6h后, 得到粘稠状聚合物产物, 停止 加热, 降温后加入 20mLDMAC, 搅拌均勾, 在剧烈搅拌下将其倾入乙醇中沉 淀, 过滤后再用蒸馏水反复煮洗聚合物产物, 经干燥, 得到絮状产物 2,6-二氯 苯曱腈 - ΐ, -二氯二苯酮 -酚酞三元共聚物, 产率大于 90%。
对所述絮状产物进行红外光谱分析和核磁共振分析, 分析结果表明, 所述 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚物具有式(I )所示的第一重复 单元和式(II ) 所示的第二重复单元。 按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的特性粘度, 测定结果表明, 其特性粘度为 0.60dL/g。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的玻璃化转变温度, 测定结果表明, 其玻璃化转变温度为 234°C。
按照上文所述的测定方法测定所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮 -酚酞 三元共聚物的热分解性能, 测定结果表明, 其起始失重的温度为 360°C , 失重 5%的温度为 460°C。
由以上实施例可知, 本发明提供的 2,6-二卤苯曱腈 -^ -二卤二苯酮 -酚酞 三元共聚物为絮状物质, 具有式(I )所示的第一重复单元和式(II )所示的第 二重复单元, 所述第一重复单元与所述第二重复单元的摩尔比为 0.1 :9.9-9.9:0.1。 所述 2,6-二卤苯曱腈 -4,4 -二卤二苯酮-酚酞三元共聚物的特性 粘度 0.2dL/g,玻璃化转变温度为 225 °C〜265°C ,起始失重的温度为 340°C〜385 °C , 失重 5%的温度为 400°C〜490°C。
实验结果表明, 本发明提供的 2,6-二卤苯曱腈 二卤二苯酮-酚酞三元 共聚物具有优异的耐热性能, 可用于制备高性能涂料、 粘合剂、 功能膜和高性 能复合材料等材料。
实施例 9
称取 0.4g实施例 1制备的 2,6-二氯苯曱腈 -4,4'-二氯二苯酮-酚酞三元共聚 物, 按照溶剂与所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物的质量 比为 95:5,加入溶剂,所述溶剂由体积比为 3:7的 Ν,Ν-二曱基乙酰胺与四氢呋 喃混合而成, 然后加入质量分数为 0.4%的钛酸酯偶联剂 TMC-201、 质量分数 为 0.3%的有机硅流平剂 BYK-333和质量分数为 0.01%的消泡剂 BYK-088, 经 搅拌溶解、 混合均勾后静置, 得到产品绝缘涂料组合物。
将所得产品均勾涂在基材上,在 25 °C下干燥 2h达到表干,再置于 80°C的 烘箱中, 3h后干燥完全, 将其取出, 按照上文所述的测定方法进行性能指标 测试, 测试结果参见表 1 , 表 1为本发明实施例提供的绝缘涂料组合物的性能 指标。
实施例 10
称取 0.4g实施例 1制备的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚 物, 按照溶剂与所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物的质量 比为 75:25 , 加入溶剂 , 所述溶剂由体积比为 4:6的 Ν,Ν-二曱基曱酰胺与四氢 呋喃混合而成, 然后加入质量分数为 0.3%的曱基丙烯酸氯化铬络合物、 质量 分数为 0.2%的氟碳化合物类流平剂 MF3777A和质量分数为 0.05%的消泡剂 ΒΥΚ-066, 经搅拌溶解、 混合均匀后静置, 得到产品绝缘涂料组合物。
实施例 11
称取 0.4g实施例 1制备的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚 物, 按照溶剂与所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物的质量 比为 80:20, 加入溶剂, 所述溶剂由体积比为 5:5的二曱基亚砜与丙酮混合而 成, 然后加入质量分数为 0.5%的四正丙基 4告酸酯、 质量分数为 0.5%的丙烯酸 流平剂 BYK-361N和质量分数为 0.06%的消泡剂 BYK-057 , 经搅拌溶解、 混 合均匀后静置, 得到产品绝缘涂料组合物。
实施例 12
称取 0.4g实施例 1制备的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚 物, 按照溶剂与所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物的质量 比为 85: 15 , 加入溶剂, 所述溶剂由体积比为 4:6的 Ν,Ν-二曱基曱酰胺与四氢 呋喃混合而成, 然后加入质量分数为 0.4%的硅烷偶联剂 SCA-1103、 质量分数 为 0.8%的有机硅流平剂 BYK-306和质量分数为 0.05%的消泡剂 BYK-057, 经 搅拌溶解、 混合均勾后静置, 得到产品绝缘涂料组合物。
将所得产品均勾涂在基材上,在 25 °C下干燥 2h达到表干,再置于 80°C的 烘箱中, 3h后干燥完全, 将其取出, 按照上文所述的测定方法进行性能指标 测试, 测试结果参见表 1。
实施例 13
称取 0.4g实施例 1制备的 2,6-二氯苯曱腈 二氯二苯酮-酚酞三元共聚 物, 按照溶剂与所述 2,6-二氯苯曱腈 -4,4 -二氯二苯酮-酚酞三元共聚物的质量 比为 90: 10, 加入溶剂 , 所述溶剂由体积比为 7:3的 Ν,Ν-二曱基乙酰胺与丙酮 混合而成,然后加入质量分数为 1.0%的硅烷偶联剂 ΚΗ-550、质量分数为 0.03% 的有机硅流平剂 ΒΥΚ-333和质量分数为 0.01%的消泡剂 BYK-057 , 经搅拌溶 解、 混合均匀后静置, 得到产品绝缘涂料组合物。 将所得产品均勾涂在基材上,在 25 °C下干燥 2h达到表干,再置于 80°C的 烘箱中, 3h后干燥完全, 将其取出, 按照上文所述的测定方法进行性能指标
实 硬 柔韧 附着 耐热性
漆膜 介电
施 度 度 力 ( 300±20 ) 外观 常数 。c 例 ( H ) ( mm ) (级)
透明、 无机 30h不开裂
9 1 1 100 1 2.5-3.2
械杂质 脱落 透明、 无机 30h不开裂
12 2 1 100 2 2.5-3.2
械杂质 脱落 透明、 无机 30h不开裂
13 1 1 100 0 2.5-3.2
械杂质 脱落 由表 1可知, 本发明实施例提供的绝缘涂料组合物的漆膜外观透明、无机 械杂质, 冲击强度 > 100kg · cm, 柔韧度为 lmm, 硬度为 1H以上, 附着力为 2 级以上, 介电常数为 2.5〜3.2, 并且其在 300°C士 20°C的温度下应用时, 30h 不开裂、 不脱落。
表明本发明以 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物、 溶剂、 粘附性能促进剂、 流平剂和消泡剂为主要原料,得到的绝缘涂料组合物具有优 异的耐热性, 可用作对耐热性要求较高的变压器、发电机和各类型线圈等产品 或零部件的外层防护涂料, 具有较为宽广的应用范围。
另夕卜, 本发明提供的绝缘涂料组合物具有良好的电绝缘性、抗冲击性和柔 韧性, 综合性能优异。
以上实施例的说明只是用于帮助理解本发明的装置、 方法及其核心思想。 应当指出, 对于本技术领域技术人员来说, 在不脱离本发明原理的前提下, 还 可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的 保护范围内。
+

Claims

权 利 要 求
2,6-二卤苯曱腈 二卤二苯酮 -酚酞三元共聚物, 具有式(I) 所示 重复单 Π)所示的第二重复单元:
Figure imgf000026_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1。
2、 一种 2,6-二[¾苯曱腈 - -二 二苯酮-酚酞三元共聚物的制备方法, 包括以下步骤:
在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行反应, 得到 2,6-二卤苯曱腈 -4,4 -二卤二苯酮-酚酞三元 共聚物。
3、 根据权利要求 2所述的制备方法, 其特征在于, 所述 2,6-二卤苯曱腈 为 2,6-二氟苯曱腈或 2,6-二氯苯曱腈, 所述 4,4 -二 [¾二苯酮为 4,4 -二氟二苯 酮或 4,4 -二氯二苯酮。
4、 根据权利要求 2所述的制备方法, 其特征在于, 所述 2,6-二卤苯曱腈 与所述 4,4 -二卤二苯酮的摩尔比为(0.05〜0.95 ): (0.95〜0.05), 所述酚酞的物 质的量与所述 2,6-二[¾苯曱腈和所述 4,4 -二 [¾二苯酮的总物质的量的比值为
( 1〜3 ) :1。
5、 根据权利要求 2所述的制备方法, 其特征在于, 所述碱性化合物为无 水碳酸钾、 无水碳酸钠、 碳酸氢钾、 碳酸氢钠、 氢氧化钾或氢氧化钠。
6、 根据权利要求 2所述的制备方法, 其特征在于, 所述碱性化合物与所 述酚酞的摩尔比为 ( 1〜3 ) :1。
7、 根据权利要求 2所述的制备方法, 其特征在于, 所述有机溶剂为环丁 砜、 二苯砜或 N-曱基吡咯酮, 所述带水剂为二曱苯或曱苯。
8、 根据权利要求 2所述的制备方法, 其特征在于, 所述有机溶剂与所述 带水剂的体积比为 1; ( 1〜3 )。
9、根据权利要求 2所述的制备方法, 其特征在于, 所述制备方法具体为: 在碱性化合物和带水剂的存在下, 将 2,6-二 [¾苯曱腈、 4,4 -二 [¾二苯酮和 酚酞在有机溶剂中进行第一步反应, 得到中间产物;
将所述中间产物进行第二步反应, 得到 2,6-二 苯曱腈 二 二苯酮- 酚酞三元共聚物。
10、根据权利要求 9所述的制备方法, 其特征在于, 所述第一步反应的温 度为 120 °C〜180 °C , 所述第一步反应的时间为 2h〜7h;
所述第二步反应的温度为 180 °C〜240°C , 所述第二步反应的时间为 3h 〜10h。
11、 一种绝缘涂料组合物, 包含:
2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮 -酚酞三元共聚物;
溶剂;
粘附性能促进剂;
流平剂;
消泡剂;
所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物具有式(I ) 所示 的第一重复单元和式(II )所示的第二重复单元:
-。
Figure imgf000027_0001
所述第一重复单元与所述第二重复单元的摩尔比为 0.1:9.9〜9.9:0.1; 所述 2,6-二[¾苯曱腈 -4,4' -二! ¾二苯酮-酚酞三元共聚物的特性粘数为
0.2dL/g〜1.4dL/g。
12、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述溶剂包 第一溶剂, 所述第一溶剂为 Ν,Ν-二曱基乙酰胺、 Ν,Ν-二曱基曱酰胺或二 曱基亚砜;
第二溶剂, 所述第二溶剂为丙酮或四氢呋喃。
13、 根据权利要求 12所述的绝缘涂料组合物, 其特征在于, 所述第一溶 剂与所述第二溶剂的体积比为 1 : 19〜19: 1。
14、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述溶剂与 所述 2,6-二[¾苯曱腈 -4,4 ' -二 ! ¾二苯酮-酚酞三元共聚物的质量比为
95:5〜75:25。
15、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述粘附性 能促进剂为钛酸酯偶联剂、 硅烷偶联剂、 铬络合物偶联剂或锆类偶联剂。
16、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述粘附性 能促进剂的质量为所述绝缘涂料组合物的质量的 0.01%〜2%。
17、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述流平剂 为丙烯酸流平剂、 有机硅流平剂或氟碳化合物类流平剂。
18、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述流平剂 的质量为所述绝缘涂料组合物的质量的 0.01 %〜 1 %。
19、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述消泡剂 为聚醚类消泡剂、 硅类消泡剂或聚醚改性消泡剂。
20、 根据权利要求 11所述的绝缘涂料组合物, 其特征在于, 所述消泡剂 的质量为所述绝缘涂料组合物的质量的 0.01 %〜 1 %。
+
PCT/CN2013/071654 2012-03-16 2013-02-19 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物、其制备方法及绝缘涂料组合物 WO2013135127A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210071241.6A CN102585675B (zh) 2012-03-16 2012-03-16 一种绝缘涂料组合物
CN201210071242.0A CN102660016B (zh) 2012-03-16 2012-03-16 2,6-二卤苯甲腈-4,4′二卤二苯酮-酚酞三元共聚物及其制备方法
CN201210071241.6 2012-03-16
CN201210071242.0 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013135127A1 true WO2013135127A1 (zh) 2013-09-19

Family

ID=49160254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071654 WO2013135127A1 (zh) 2012-03-16 2013-02-19 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物、其制备方法及绝缘涂料组合物

Country Status (1)

Country Link
WO (1) WO2013135127A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108751A (zh) * 1985-11-25 1987-06-03 中国科学院长春应用化学研究所 合成带有酞侧基的新型聚醚醚酮
EP0373633A2 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Polyetheric copolymers, process for preparing the same, compositions containing the same, their molded products, and their use
CN1124745A (zh) * 1994-12-13 1996-06-19 四川联合大学 一种聚芳醚腈及其制造方法
CN102585675A (zh) * 2012-03-16 2012-07-18 中国科学院长春应用化学研究所 一种绝缘涂料组合物
CN102660016A (zh) * 2012-03-16 2012-09-12 中国科学院长春应用化学研究所 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108751A (zh) * 1985-11-25 1987-06-03 中国科学院长春应用化学研究所 合成带有酞侧基的新型聚醚醚酮
EP0373633A2 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Polyetheric copolymers, process for preparing the same, compositions containing the same, their molded products, and their use
CN1124745A (zh) * 1994-12-13 1996-06-19 四川联合大学 一种聚芳醚腈及其制造方法
CN102585675A (zh) * 2012-03-16 2012-07-18 中国科学院长春应用化学研究所 一种绝缘涂料组合物
CN102660016A (zh) * 2012-03-16 2012-09-12 中国科学院长春应用化学研究所 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物及其制备方法

Similar Documents

Publication Publication Date Title
JP6123929B2 (ja) 共重合ポリイミド前駆体及び共重合ポリイミド
KR101538559B1 (ko) 폴리이미드막 적층체의 제조 방법
CN105492496A (zh) 聚酰亚胺前体和聚酰亚胺
JP6476469B2 (ja) ポリアミド酸組成物およびポリイミド組成物
CN102498155B (zh) 含有pmda、dade、bpda及bcd的可溶于有机溶剂的聚酰亚胺
JP2006206825A (ja) 芳香族ポリイミド樹脂前駆体及び芳香族ポリイミド樹脂
JP2008239820A (ja) ポリアミック酸のイミド化重合体絶縁膜および膜形成組成物とその製造方法
JP2015101710A (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP5822064B2 (ja) 芳香族ポリイミドシームレスベルトの製造方法
WO2014199724A1 (ja) 溶媒可溶型ポリイミド共重合体
KR101896537B1 (ko) 폴리이미드 공중합체, 및 그 제조 방법
CN111592669B (zh) 一种多交联碳纳米管接枝聚酰亚胺导热薄膜及其制备方法和应用
CN105295374A (zh) 聚酰亚胺前体组合物、制备聚酰亚胺前体的方法、聚酰亚胺成形体及其制备方法
CN101177484A (zh) 一种双酚a型聚酰亚胺材料及其制备方法
JP2619515B2 (ja) シリコンポリイミド前駆体組成物
JP2010085450A (ja) シームレスベルトおよびシームレスベルトの製造方法
CN102585675B (zh) 一种绝缘涂料组合物
WO2013135127A1 (zh) 2,6-二卤苯甲腈-4,4'二卤二苯酮-酚酞三元共聚物、其制备方法及绝缘涂料组合物
JP6638744B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
TWI542618B (zh) 聚醯胺酸混合物及其製備方法以及聚醯亞胺膜的製備方法
JP2021033139A (ja) 赤外線透過フィルム、それを用いた量子ドット太陽電池及び赤外線センサ
JPH09328612A (ja) 加工性・接着性に優れる耐熱性樹脂組成物
KR20130002838A (ko) 고온에서의 열적 치수안정성이 우수한 폴리이미드 필름 및 그를 이용한 디스플레이 소자용 기판
KR102260028B1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
KR102260048B1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761024

Country of ref document: EP

Kind code of ref document: A1