WO2013133235A1 - 蒸発燃料処理装置の診断装置および診断方法 - Google Patents

蒸発燃料処理装置の診断装置および診断方法 Download PDF

Info

Publication number
WO2013133235A1
WO2013133235A1 PCT/JP2013/055899 JP2013055899W WO2013133235A1 WO 2013133235 A1 WO2013133235 A1 WO 2013133235A1 JP 2013055899 W JP2013055899 W JP 2013055899W WO 2013133235 A1 WO2013133235 A1 WO 2013133235A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
canister
valve
fuel
fuel tank
Prior art date
Application number
PCT/JP2013/055899
Other languages
English (en)
French (fr)
Inventor
晋祐 高倉
功 大津
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013133235A1 publication Critical patent/WO2013133235A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space

Definitions

  • the present invention relates to an evaporative fuel processing apparatus for processing evaporative fuel generated in a fuel tank during refueling using a canister, and more particularly to a diagnostic apparatus and a diagnostic method for diagnosing the presence or absence of the leak.
  • Patent Document 1 discloses an evaporative fuel processing apparatus that is provided with a blocking valve in a passage between a fuel tank and a canister so that evaporative fuel is adsorbed from the fuel tank to the canister basically only at the time of refueling.
  • the fuel tank is kept in a sealed state by the blocking valve when the vehicle is stopped other than at the time of refueling, and the system prevents the evaporative fuel from flowing out to the outside more reliably.
  • the evaporative fuel processing apparatus of patent document 1 is equipped with the diagnostic apparatus which diagnoses the presence or absence of the leak in the canister side area
  • the diagnostic device of Patent Document 1 includes a pressurizing pump connected to a drain port of a canister, and the canister is closed using the pressurizing pump in a state where the block valve is closed and the canister side region is separated from the fuel tank. The side region is pressurized, and the presence or absence of leakage is determined based on the pressure change at that time.
  • pressurization by the pressurization pump is performed at the time of diagnosis, so that the pressurization pump is indispensable as a constituent element of the evaporated fuel processing apparatus, and energy associated with the drive of the pressurization pump There is a loss, which is not preferable.
  • the diagnostic device is based on an evaporative fuel processing device that adsorbs evaporative fuel generated in a fuel tank during refueling with a canister and introduces it into the intake system of the internal combustion engine for processing during operation of the internal combustion engine.
  • a block valve provided in an evaporative fuel passage from the fuel tank to the canister, a purge control valve provided in a purge passage from the canister to the intake system of the internal combustion engine, and a drain passage of the canister
  • a pressure sensor provided in a diagnosis target region including the canister defined by the block valve, the purge control valve, and the drain cut valve.
  • the fuel tank when the fuel tank is separated from the canister side by a shutoff valve except when refueling, the fuel tank is in a sealed state. Becomes a pressure (positive pressure or negative pressure) different from the atmospheric pressure.
  • the canister side since the canister side is basically at atmospheric pressure before the start of diagnosis, there is a pressure difference between the two.
  • the present invention pays attention to such a pressure difference, and pressurizes or depressurizes the region to be diagnosed using the pressure in the fuel tank as a pressure source. Then, the blockade valve is closed in such a pressurized or decompressed state, and the presence or absence of a leak is diagnosed from the subsequent pressure change.
  • the present invention it is possible to perform a leak diagnosis by pressurizing or depressurizing an area on the canister side without depending on an electric pump or the like.
  • FIG. 1 is a structural explanatory view showing an embodiment of a fuel vapor processing apparatus equipped with a diagnostic device according to the present invention.
  • a vehicle (not shown) is equipped with an internal combustion engine 1 and is provided with a sealed fuel tank 2, and a canister 3 is used to process evaporated fuel generated in the fuel tank 2 during refueling.
  • An evaporative fuel processing device is provided.
  • the fuel tank 2 includes a fuel supply pipe portion 5 in which a filler cap 4 is detachably attached to a fuel supply port 5a at the tip, and a fuel pump unit 7 that supplies fuel to the fuel injection device 6 of the internal combustion engine 1. Is contained in the fuel tank 2.
  • the canister 3 has a U-turn channel formed by a synthetic resin case 11 and is filled with an adsorbent 12 made of activated carbon or the like.
  • the canister 3 has a U-turn channel flow.
  • a charge port 13 serving as an inflow portion for the evaporated fuel
  • a purge port 14 serving as an outflow portion for a purge gas containing a fuel component are provided.
  • a drain port 15 for taking in outside air is provided.
  • the charge port 13 is connected to the upper space of the fuel tank 2 through the evaporated fuel passage 16.
  • the tip of the fuel vapor passage 16 on the fuel tank 2 side is connected to the fuel tank via an FLV valve 20 that prevents liquid fuel from overflowing into the fuel vapor passage 16 when the fuel level is high. It communicates with the upper space of 2.
  • a blocking valve 21 for opening and closing the evaporated fuel passage 16 is provided in the middle of the evaporated fuel passage 16. This blocking valve 21 is used for shutting off the canister 3 and the fuel tank 2 and sealing the fuel tank 2 except when refueling, as a general rule, and is a normally closed electromagnetic that closes when no power is supplied. It consists of a valve.
  • the purge port 14 is connected to the intake system of the internal combustion engine 1, for example, the downstream side of the throttle valve 18 of the intake passage 17 via a purge passage 19.
  • the purge passage 19 is provided with a purge control valve 23 for controlling the introduction of the purge gas to the internal combustion engine 1, and prohibits the introduction of the purge gas under a predetermined condition such as when the engine is not warmed up or when the fuel is cut. It has become.
  • the purge control valve 23 is also composed of a normally closed solenoid valve.
  • the purge control valve 23 may be configured to be simply open / close controlled on / off, or may be configured to continuously and variably control the purge gas flow rate by so-called duty ratio control. .
  • the drain port 15 is connected to a drain passage 25 whose tip is open to the atmosphere, and a drain cut valve 26 for opening and closing the drain passage 25 is provided in the drain passage 25.
  • the drain cut valve 26 is a normally open solenoid valve that is opened when the power is not supplied. This drain cut valve 26 closes the system at the time of leak diagnosis described later, and, for example, detects the breakthrough of the canister 3 (a state where the amount of evaporated fuel exceeds the capacity of the canister and cannot be absorbed) by any means.
  • the drain passage 25 is basically opened in an open state.
  • the blocking valve 21, the purge control valve 23, and the drain cut valve 26 are various controls of the internal combustion engine 1 (for example, fuel injection amount control, injection timing control, ignition timing control, throttle valve 18 opening control, etc.). As will be described later, an adsorption process during refueling, a purge process during operation, a leak diagnosis after stopping the vehicle operation or during operation, and the like are executed. Further, a tank pressure sensor 32 is attached to the fuel tank 2 as a pressure sensor for detecting the pressure in the system. A sensor 33 (hereinafter abbreviated as evaporation pressure) is attached.
  • two pressure sensors are provided as pressure sensors for detecting the pressure in the system, and one tank pressure sensor 32 is divided into two by the block valve 21 on the fuel tank 2 side in the system.
  • tank pressure more specifically, the pressure in the upper space of the fuel tank 2, and the other evaporation pressure sensor 33 is divided into two by the block valve 21. 3 (a region surrounded by the drain cut valve 26, the purge control valve 23, and the blocking valve 21) (herein referred to as an evaporation pressure) is detected.
  • the area including the latter canister 3 corresponds to a “diagnosis target area” in the present embodiment.
  • the evaporative fuel processing apparatus configured as described above, basically, only the evaporative fuel generated during refueling is adsorbed to the canister 3, and the fuel tank 2 is kept in a sealed state except during refueling. That is, for example, when the engine control unit 31 recognizes that it is during refueling based on an operation of a fuel lid opener (not shown) (a lid opening / closing mechanism for the vehicle body covering the refueling port 5a) or the like, the drain cut valve 26 is open. , The purge control valve 23 is closed and the blocking valve 21 is opened, so that the inside of the fuel tank 2 and the charge port 13 of the canister 3 are in communication. Therefore, the evaporated fuel generated in the fuel tank 2 with refueling is introduced into the canister 3 and adsorbed by the adsorbent 12.
  • a fuel lid opener not shown
  • the drain cut valve 26 is open.
  • the purge control valve 23 is closed and the blocking valve 21 is opened, so that the inside of the fuel tank 2 and the charge port
  • the closing valve 21 is closed. Accordingly, the inside of the fuel tank 2 is kept in a sealed state separated from the canister 3, and the amount of adsorption of the canister 3 does not basically increase or decrease while the internal combustion engine 1 is stopped. Thereafter, the operation of the vehicle is started, and when the internal combustion engine 1 is in a predetermined operation state, the purge control valve 23 is appropriately opened while the blocking valve 21 is closed, and the purge of the fuel component from the canister 3 is performed. Done.
  • the atmosphere is introduced from the drain port 15 due to the pressure difference with the intake system of the internal combustion engine 1, and the fuel component purged from the adsorbent 12 by this atmosphere passes through the purge control valve 23 to the intake passage 17 of the internal combustion engine 1. be introduced. Therefore, the amount of adsorption of the canister 3 gradually decreases during the operation of the internal combustion engine 1.
  • the evaporative fuel treatment apparatus permits the adsorption to the canister 3 only when refueling in principle. However, when the fuel tank 2 becomes considerably high during operation due to a temperature change or the like, an exception is made.
  • the blocking valve 21 may be temporarily opened.
  • the evaporated fuel that has traveled toward the canister 3 via the blocking valve 21 flows as a shortcut from the charge port 13 to the adjacent purge port 14 and is directly introduced into the intake passage 17 of the internal combustion engine 1. That is, the adsorbent 12 of the canister 3 is hardly adsorbed.
  • the canister 3 and the fuel tank 2 communicate with each other only during refueling, and the fuel tank 2 is in a sealed state except during refueling, so the evaporative fuel leakage is extremely low. Suppressed to level.
  • the canister is controlled by the engine control unit 31 rather than the block valve 21 at an appropriate time during the operation of the vehicle or after the end of the operation.
  • the diagnosis of the presence or absence of a leak in the diagnosis target area on the third side is executed.
  • FIG. 2 is a flowchart showing the flow of the leak diagnosis process, which will be described below with reference to the time chart of FIG.
  • step 1 it is repeatedly determined whether or not there is a leak diagnosis request, in other words, whether or not a predetermined leak diagnosis condition is satisfied.
  • the substantial diagnostic process is started. Prior to the start of diagnosis, as shown in FIG. 3, the blocking valve 21 is closed and the drain cut valve 26 is opened. Accordingly, the diagnosis target region including the canister 3 is substantially at atmospheric pressure.
  • the purge control valve 23 is not shown in FIG. 3, but is basically closed except when the internal combustion engine 1 is in operation and purging.
  • step 2 the absolute value of the pressure difference ⁇ P between the tank pressure detected by the tank pressure sensor 32 and the evaporation pressure detected by the evaporation pressure sensor 33 (that is, the relative pressure difference between the two) is obtained, and the pressure difference ⁇ P It is determined whether or not the absolute value is greater than or equal to a predetermined threshold value ⁇ .
  • a predetermined threshold value ⁇ As described above, due to the temperature change of the fuel after refueling, the pressure in the fuel tank 2 in the sealed state becomes a positive pressure or a negative pressure. For example, when the internal combustion engine 1 is operated for a long period of time, the fuel temperature in the fuel tank 2 becomes high, so that the pressure in the fuel tank 2 becomes considerably higher than the atmospheric pressure due to the vapor pressure.
  • the pressure in the fuel tank 2 becomes negative as the fuel temperature subsequently decreases. Since the evaporation pressure is basically atmospheric pressure at this stage, it may be determined in step 2 whether or not the value of the tank pressure is outside the range of “atmospheric pressure ⁇ ⁇ ”.
  • step 4 the blocking valve 21 is opened, and the region on the canister 3 side (that is, the region to be diagnosed) and the region on the fuel tank 2 side are in communication with each other.
  • the opening of the blocking valve 21 may be almost simultaneously with the switching of the drain cut valve 26, but in one example, in order to avoid outflow and inflow of gas through the canister 3, the time chart of FIG. As shown, the blocking valve 21 is opened a little after the switching of the drain cut valve 26.
  • the blocking valve 21 When the blocking valve 21 is thus opened, the positive pressure or negative pressure in the fuel tank 2 acts on the area on the canister 3 side, and the area, that is, the diagnosis target area is pressurized or depressurized.
  • the pressure in the fuel tank 2 is positive at the start of diagnosis, the pressure in the diagnosis target region increases as the blockade valve 21 is opened, and the pressure in the fuel tank 2 is reversed Somewhat lower.
  • step 5 it is determined whether the evaporation pressure on the canister 3 side has reached a predetermined diagnostic pressure.
  • the diagnostic pressure is set on the positive pressure side and the negative pressure side, respectively. If the evaporative pressure does not reach the predetermined diagnostic pressure even after the predetermined time has elapsed, the process proceeds to step 6 and the abnormality is that the block valve 21 is stuck in the closed state or the evaporative pressure sensor 33 is abnormal. , And the diagnosis is terminated.
  • step 5 the process proceeds from step 5 to step 7 and the block valve 21 is switched to the closed state.
  • the area on the canister 3 side and the area on the fuel tank 2 side are separated from each other and individually sealed.
  • each region is in a state of being pressurized to a positive pressure.
  • the diagnosis target region that is, the region on the canister 3 side is pressurized (or depressurized)
  • the process proceeds to step 8, and leak diagnosis is executed for a predetermined time. That is, it is determined whether or not a decrease in the evaporation pressure in the pressurized state (or an increase in the evaporation pressure in the reduced pressure state) has occurred.
  • step 9 a pressure change amount after a predetermined time has elapsed or a pressure change rate per unit time. If no pressure change of a predetermined level or more has occurred, it is determined that there is no leak (step 9), and if a pressure change of a predetermined level or more has occurred, it is determined that there is a leak (step 10). Thereby, it is possible to diagnose the presence or absence of leaks in the diagnosis target area, for example, a seal failure when the drain cut valve 26 or the purge control valve 23 is closed, or leaks in each part of the canister 3. After completion of the diagnosis, the process proceeds to step 12, the drain cut valve 26 is switched to open, and the series of diagnosis processes is ended.
  • the blockade valve 21 is closed when the evaporation pressure reaches a predetermined diagnostic pressure in step 5. That is, when the minimum necessary gas moves through the blocking valve 21, the canister 3 side and the fuel tank 2 side are separated, and unnecessary gas movement is prevented. Thereby, there is an advantage that the evaporated fuel in the fuel tank 2 does not flow excessively into the canister 3 at the time of diagnosis, particularly when the pressure in the fuel tank 2 is positive.
  • step 2 If it is determined in step 2 that there is no sufficient pressure difference, the process proceeds from step 2 to step 12 and the subsequent steps, and a leak diagnosis using the intake negative pressure of the internal combustion engine 1 is performed. Since this is possible only during operation of the internal combustion engine 1, it is determined in step 12 whether or not the internal combustion engine 1 is in operation, and the process proceeds to step 13 on condition that it is in operation. In step 13, the drain cut valve 26 is closed, and then in step 14 the block valve 21 is opened. Further, in step 15, the purge control valve 23 is opened. As a result, the negative suction pressure of the internal combustion engine 1 is introduced into the diagnosis target region including the canister 3 and the region on the fuel tank 2 side, and the pressure in the entire system gradually decreases (negative pressure).
  • step 16 it is repeatedly determined whether the tank pressure on the fuel tank 2 side and the evaporation pressure on the canister 3 side have reached a predetermined diagnostic pressure.
  • the routine proceeds from step 16 to step 17 where the purge control valve 23 is closed.
  • the entire system including the canister 3 and the fuel tank 2 is sealed as one space.
  • the determination may be made using only one of the tank pressure and the evaporation pressure.
  • step 8 a leak diagnosis is executed for a predetermined time.
  • a leak diagnosis it is determined whether or not an increase in the evaporation pressure or the tank pressure in the reduced pressure state has occurred. For example, it is determined from the pressure change amount after a predetermined time has elapsed or the pressure change speed per unit time. If no pressure change of a predetermined level or more has occurred, it is determined that there is no leak (step 9), and if a pressure change of a predetermined level or more has occurred, it is determined that there is a leak (step 10).
  • the leak in the entire system including the canister 3 and the fuel tank 2 for example, a seal failure when the drain cut valve 26 and the purge control valve 23 are closed, a leak in each part of the canister 3, a pinhole in the fuel tank 2, etc.
  • the presence or absence of leaks can be diagnosed.
  • the process proceeds to step 12, the drain cut valve 26 is switched to open, and the series of diagnosis processes is ended.
  • the leak diagnosis target area on the canister 3 side is pressurized or depressurized to make a leak diagnosis. If a sufficient pressure difference cannot be secured, the suction negative pressure is used if the internal combustion engine 1 is in operation. Since the leak diagnosis is performed, the leak diagnosis can be performed without using any pressurizing / depressurizing means such as a pump. In addition, in the above-described embodiment, the diagnosis on the pressurization side as well as the negative pressure side can be performed without depending on the pump, so that the accuracy of the leak diagnosis becomes higher.
  • the blockade valve 21 is opened in step 14, and leak diagnosis of the entire system including the fuel tank 2 side is performed using the suction negative pressure, but the blockage valve 21 is closed.
  • the suction negative pressure may be introduced only into the diagnosis target area on the canister 3 side, and the leak diagnosis may be performed only on the diagnosis target area on the canister 3 side. Therefore, in this case, the tank pressure sensor 32 on the fuel tank 2 side is not always essential.
  • the blockade valve 21 may be closed after the entire system is set to a negative pressure, and leak diagnosis may be performed for each region.
  • the above embodiment does not include a pressurizing / depressurizing means such as a pump for pressurizing or depressurizing the diagnosis target region
  • a pressurizing / depressurizing means such as a pump for pressurizing or depressurizing the diagnosis target region
  • the present invention is not limited to this. In other words, when a pressure reducing means such as a pump is provided and there is no sufficient pressure difference between the fuel tank 2 side and the canister 3 side, a leak diagnosis using this pump or the like may be performed.

Abstract

 キャニスタ(3)を用いた蒸発燃料処理装置は、パージ制御バルブ(23)およびドレンカットバルブ(26)を備えるとともに、燃料タンク(2)とキャニスタ(3)との間の連通・遮断を切り換える封鎖弁(21)を備え、基本的に給油時以外は燃料タンク(2)が密閉状態に維持される。診断要求があったときに、キャニスタ(3)側と燃料タンク(2)側との間で十分な圧力差が存在すれば、封鎖弁(21)を一時的に開いてキャニスタ(3)側の診断対象領域を加圧もしくは減圧する。封鎖弁(21)を閉じ、その後の圧力変化からリークの有無を診断する。十分な圧力差がないときは、吸入負圧を利用してリーク診断を行う。ポンプ等の加圧減圧手段に依存せずにキャニスタ(3)を含む診断対象領域のリーク診断が可能である。

Description

蒸発燃料処理装置の診断装置および診断方法
 この発明は、給油時に燃料タンク内で発生する蒸発燃料をキャニスタを用いて処理する蒸発燃料処理装置に関し、特に、そのリークの有無を診断する診断装置および診断方法に関する。
 車両の燃料タンクで発生する蒸発燃料が外部へ流出することがないように、活性炭等の吸着材を用いたキャニスタに一時的に吸着させ、その後、内燃機関の運転中に、新気の導入によりキャニスタから燃料成分をパージさせて内燃機関の吸気系に導入するようにした蒸発燃料処理装置が従来から広く用いられている。
 特許文献1には、燃料タンクとキャニスタとの間の通路に封鎖弁を備え、基本的に給油時にのみ燃料タンクからキャニスタへ蒸発燃料を吸着させるようにした蒸発燃料処理装置が開示されている。つまり、給油時以外の車両停車中は封鎖弁によって燃料タンクが密閉状態に維持され、蒸発燃料の外部への流出がより確実に防止されるシステムとなっている。
 そして、特許文献1の蒸発燃料処理装置は、封鎖弁で燃料タンクから分離されたキャニスタ側領域におけるリークの有無を診断する診断装置を具備している。この特許文献1の診断装置は、キャニスタのドレンポートに接続された加圧ポンプを備えており、封鎖弁を閉としてキャニスタ側領域を燃料タンクから分離した状態において、上記加圧ポンプを用いてキャニスタ側領域を加圧し、そのときの圧力変化に基づいてリークの有無を判別している。
 しかし、上記従来の診断装置においては、診断の際に加圧ポンプによる加圧を行うので、蒸発燃料処理装置の構成要素として加圧ポンプが必須となるとともに、加圧ポンプの駆動に伴うエネルギのロスがあり、好ましくない。
特許第3849584号
 この発明の診断装置は、給油時に燃料タンク内で発生した蒸発燃料をキャニスタで吸着し、内燃機関の運転中に該内燃機関の吸気系に導入して処理する蒸発燃料処理装置を前提とするものであって、上記燃料タンクから上記キャニスタに至る蒸発燃料通路に設けられた封鎖弁と、上記キャニスタから上記内燃機関の吸気系に至るパージ通路に設けられたパージ制御バルブと、上記キャニスタのドレン通路に設けられたドレンカットバルブと、上記封鎖弁と上記パージ制御バルブと上記ドレンカットバルブとで区画された上記キャニスタを含む診断対象領域内に設けられた圧力センサと、を備えている。そして、リーク診断要求時に、上記診断対象領域を密閉状態とするとともに、上記封鎖弁を開いて上記燃料タンク内の正圧側もしくは負圧側の圧力を上記診断対象領域内に導入し、かつ上記封鎖弁を閉じた後の圧力変化に基づきリークの有無を診断する。
 すなわち、給油時以外などで燃料タンクが封鎖弁によりキャニスタ側から分離されている状態においては、燃料タンクが密閉状態にあるので、蒸気圧や燃料の温度変化などによって、多くの場合は燃料タンク内が大気圧とは異なる圧力(正圧側もしくは負圧側の圧力)となる。これに対し、キャニスタ側は、診断開始前は基本的に大気圧であるので、両者間に圧力差が存在する。本発明は、このような圧力差に着目し、燃料タンク内の圧力を圧力源として、診断対象領域内の加圧もしくは減圧を行う。そして、このように加圧もしくは減圧した状態で封鎖弁を閉じ、その後の圧力変化からリークの有無が診断される。
 従って、本発明では、基本的にポンプ等の加圧減圧手段が不要である。また、温度条件等により十分な圧力差が確保できない場合のために仮に電動ポンプ等を加圧減圧手段として備えるとしても、診断に際してこの電動ポンプ等を駆動する頻度が少なくなり、エネルギのロスが抑制される。
 この発明によれば、電動ポンプ等に依存せずにキャニスタ側の領域を加圧もしくは減圧してリーク診断を行うことが可能となる。
この発明に係る診断装置を備えた蒸発燃料処理装置の一実施例を示す構成説明図。 この実施例における診断処理の流れを示すフローチャート。 診断の際の圧力変化等を示すタイムチャート。
 図1は、この発明に係る診断装置を備えた蒸発燃料処理装置の一実施例を示す構成説明図である。図示せぬ車両に、内燃機関1が搭載されているとともに、密閉型の燃料タンク2が設けられており、給油時に燃料タンク2内で発生した蒸発燃料を処理するために、キャニスタ3を用いた蒸発燃料処理装置が設けられている。上記燃料タンク2は、先端の給油口5aにフィラーキャップ4が着脱可能に装着された給油管部5を備えており、また、内燃機関1の燃料噴射装置6へ燃料を供給する燃料ポンプユニット7が燃料タンク2内部に収容されている。
 上記キャニスタ3は、合成樹脂製のケース11によってUターン形状に流路が形成され、その内部に活性炭等からなる吸着材12が充填されたものであって、Uターン形状をなす流路の流れ方向の一端部に、蒸発燃料の流入部となるチャージポート13と、燃料成分を含むパージガスの流出部となるパージポート14と、が設けられており、流れ方向の他端部に、パージの際に外気を取り込むためのドレンポート15が設けられている。
 上記チャージポート13は、蒸発燃料通路16を介して燃料タンク2の上部空間に接続されている。なお、この蒸発燃料通路16の燃料タンク2側の先端部は、燃料液面が高い位置にあるときに液体燃料が蒸発燃料通路16内に溢れ出ることを防止するFLVバルブ20を介して燃料タンク2の上部空間に連通している。そして、上記蒸発燃料通路16の通路途中には、該蒸発燃料通路16を開閉する封鎖弁21が設けられている。この封鎖弁21は、原則として給油時以外はキャニスタ3と燃料タンク2との間を遮断して燃料タンク2を密閉状態とするためのものであって、非通電時に閉となる常閉型電磁弁から構成されている。
 上記パージポート14は、内燃機関1の吸気系、例えば吸気通路17のスロットル弁18下流側に、パージ通路19を介して接続されている。上記パージ通路19には、内燃機関1へのパージガスの導入を制御するパージ制御バルブ23が設けられており、未暖機時やフューエルカット時など所定の条件のときにはパージガスの導入を禁止する構成となっている。上記パージ制御バルブ23は、やはり常閉型電磁弁から構成されている。なお、このパージ制御バルブ23は単純にオン・オフ的に開閉制御される構成であってもよく、あるいは、いわゆるデューティ比制御によってパージガスの流量を連続的に可変制御し得る構成であってもよい。
 上記ドレンポート15には、先端が大気開放されたドレン通路25が接続されており、かつこのドレン通路25に、該ドレン通路25を開閉するドレンカットバルブ26が設けられている。このドレンカットバルブ26は、非通電時に開となる常開型電磁弁から構成されている。このドレンカットバルブ26は、後述するリーク診断の際に系を閉じるほか、例えば、キャニスタ3の破過(蒸発燃料量がキャニスタの容量を上回り、吸着しきれなくなる状態)を何らかの手段で検知した場合などに閉じられ得るが、基本的には開状態となってドレン通路25を開放している。
 上記の封鎖弁21、パージ制御バルブ23、およびドレンカットバルブ26は、内燃機関1の種々の制御(例えば、燃料噴射量制御、噴射時期制御、点火時期制御、スロットル弁18の開度制御など)を行うエンジンコントロールユニット31によって適宜に制御され、後述するように、給油時の吸着処理、運転中のパージ処理、車両運転停止後ないし運転中のリーク診断、などが実行される。また、系内の圧力を検出する圧力センサとして、燃料タンク2にタンク圧センサ32が取り付けられており、パージ通路19のパージ制御バルブ23よりも上流側(キャニスタ3側)にエバポレーションシステム圧(以下、エバポ圧と略記する)センサ33が取り付けられている。すなわち、この実施例では、系内の圧力を検出する圧力センサとして2つの圧力センサを具備しており、一方のタンク圧センサ32は、封鎖弁21により2分される系内の燃料タンク2側の領域の圧力(以下、これをタンク圧と呼ぶ)、詳しくは燃料タンク2の上部空間の圧力を検出し、また他方のエバポ圧センサ33は、封鎖弁21により2分される系内のキャニスタ3を含む領域(ドレンカットバルブ26とパージ制御バルブ23と封鎖弁21とで囲まれた領域)の圧力(ここではエバポ圧と呼ぶ)を検出する。なお、後者のキャニスタ3を含む領域が、本実施例では「診断対象領域」に相当する。
 上記のように構成された蒸発燃料処理装置は、基本的に、給油時に発生する蒸発燃料のみがキャニスタ3に吸着され、給油時以外は、燃料タンク2が密閉状態に保たれる。すなわち、例えば図示せぬフューエルリッドオープナー(給油口5aを覆う車体のリッドの開閉機構)などの操作に基づき、給油時であるとエンジンコントロールユニット31が認識したときには、ドレンカットバルブ26が開いている状態において、パージ制御バルブ23が閉、封鎖弁21が開、となり、燃料タンク2内とキャニスタ3のチャージポート13とが連通状態となる。従って、給油に伴って燃料タンク2内で発生した蒸発燃料は、キャニスタ3に導入され、その吸着材12に吸着される。
 そして、給油が終わると、封鎖弁21が閉となる。従って、燃料タンク2内がキャニスタ3から分離した密閉状態に保たれ、内燃機関1の停止中は、キャニスタ3の吸着量は基本的に増減しない。その後、車両の運転が開始され、内燃機関1が所定の運転状態となると、封鎖弁21を閉とした状態のまま、パージ制御バルブ23が適宜に開かれ、キャニスタ3からの燃料成分のパージが行われる。つまり、内燃機関1の吸気系との圧力差によってドレンポート15から大気が導入され、この大気により吸着材12からパージされた燃料成分が、パージ制御バルブ23を通して内燃機関1の吸気通路17へと導入される。従って、内燃機関1の運転中に、キャニスタ3の吸着量は徐々に減少する。なお、上記蒸発燃料処理装置は、原則として給油時のみにキャニスタ3への吸着を許可するものであるが、温度変化などにより運転中に燃料タンク2がかなり高圧となった場合に、例外的に封鎖弁21を一時的に開くようにしてもよい。但し、この場合に封鎖弁21を経由してキャニスタ3に向かった蒸発燃料は、チャージポート13から隣接するパージポート14へとショートカットして流れ、そのまま内燃機関1の吸気通路17に導入される。つまり、キャニスタ3の吸着材12には殆ど吸着されない。
 このように上記の蒸発燃料処理装置では、給油時のみにキャニスタ3と燃料タンク2とが連通し、給油時以外では燃料タンク2が密閉状態となるため、蒸発燃料の外部への漏洩が極めて低いレベルに抑制される。
 そして、このような蒸発燃料処理装置の本来の処理性能を担保するために、上記実施例では、車両の運転中や運転終了後の適宜な時期に、エンジンコントロールユニット31によって封鎖弁21よりもキャニスタ3側となる診断対象領域におけるリークの有無の診断が実行される。
 図2は、このリーク診断の処理の流れを示すフローチャートであって、図3のタイムチャートを参照しつつ、以下、これを説明する。ステップ1においては、リーク診断要求があるか否か、換言すれば、所定のリーク診断条件が成立したか否かを繰り返し判定しており、リーク診断要求があったときにステップ2以降へ進み、実質的な診断処理を開始する。なお、診断開始前は、図3にも示すように、封鎖弁21が閉であり、ドレンカットバルブ26は開である。従って、キャニスタ3を含む診断対象領域は実質的に大気圧である。また、パージ制御バルブ23の状態は図3には図示していないが、内燃機関1が運転中でパージを行っているとき以外は、基本的に閉となっている。
 ステップ2では、タンク圧センサ32が検出したタンク圧とエバポ圧センサ33が検出したエバポ圧との圧力差ΔPの絶対値(つまり両者の相対的な圧力差)を求めるとともに、この圧力差ΔPの絶対値が所定の閾値α以上であるか否かを判定する。前述したように、給油後の燃料の温度変化などに起因して、密閉状態にある燃料タンク2内の圧力は、正圧もしくは負圧となる。例えば、内燃機関1を長期間運転したような場合には、燃料タンク2内の燃料温度が高くなるので、蒸気圧によって燃料タンク2内の圧力が大気圧よりもかなり高くなる。また、寒冷地において室温付近の温度の燃料を給油したような場合には、その後の燃料温度の低下に伴って燃料タンク2内の圧力が負圧となる。なお、エバポ圧はこの段階では基本的に大気圧であるから、ステップ2では、タンク圧の値が「大気圧±α」の範囲外にあるか否かを判定するようにしてもよい。
 正圧側もしくは負圧側のいずれであっても十分な圧力差が存在していれば、ステップ2からステップ3へ進み、ドレンカットバルブ26を閉とする。なお、仮に条件によりパージ制御バルブ23が開いている場合には、該パージ制御バルブ23も閉とする。次に、ステップ4において、封鎖弁21を開とし、キャニスタ3側の領域(つまり診断対象領域)と燃料タンク2側の領域とを互いに連通した状態とする。この封鎖弁21の開はドレンカットバルブ26の切換とほぼ同時であってもよいが、一つの例では、キャニスタ3を通したガスの流出や流入を回避するために、図3のタイムチャートに示すように、ドレンカットバルブ26の切換から多少遅れて封鎖弁21を開とする。
 このように封鎖弁21が開くと、燃料タンク2内の正圧もしくは負圧がキャニスタ3側の領域に作用し、該領域つまり診断対象領域が加圧もしくは減圧される。図3のタイムチャートの例では、診断開始時点で燃料タンク2内が正圧であり、封鎖弁21の開放に伴って診断対象領域の圧力が上昇し、また燃料タンク2内の圧力は逆に多少低下する。
 ステップ5では、キャニスタ3側のエバポ圧が所定の診断圧力に達したかを判定する。なお、この診断圧力は、正圧側および負圧側にそれぞれ設定される。万一、所定時間が経過してもエバポ圧が所定の診断圧力に到達しない場合には、ステップ6へ進み、封鎖弁21が閉状態のまま固着している異常、あるいはエバポ圧センサ33の異常、であると判定し、診断を終了する。
 所定の診断圧力に到達したら、ステップ5からステップ7へ進み、封鎖弁21を閉に切り換える。これにより、キャニスタ3側の領域と燃料タンク2側の領域とは互いに分離され、かつ個々に密閉状態となる。図3の例では、各々の領域が正圧に加圧された状態となる。そして、このように診断対象領域つまりキャニスタ3側の領域が加圧(あるいは減圧)されている状態において、ステップ8へ進み、所定時間の間、リーク診断を実行する。つまり、加圧状態にあったエバポ圧の低下(あるいは減圧状態にあったエバポ圧の上昇)が生じたか否かを判定する。これは、例えば、所定時間経過後の圧力変化量あるいは単位時間当たりの圧力変化速度などから判定する。そして、所定レベル以上の圧力変化が生じていなければ、リークがないと判定し(ステップ9)、所定レベル以上の圧力変化が生じている場合は、リークがあると判定する(ステップ10)。これにより、診断対象領域のリーク、例えば、ドレンカットバルブ26やパージ制御バルブ23の閉弁時のシール不良、キャニスタ3各部の漏れ、などのリークの有無を診断できる。診断の終了後、ステップ12へ進み、ドレンカットバルブ26を開に切り換えて、一連の診断処理を終了する。
 なお、上記実施例では、ステップ5でエバポ圧が所定の診断圧力に到達した段階で封鎖弁21を閉としている。つまり、封鎖弁21を介して必要最小限のガスが移動した時点でキャニスタ3側と燃料タンク2側とが分離され、不必要なガスの移動が防止される。これにより、特に、燃料タンク2内が正圧である場合に、診断の際に燃料タンク2内の蒸発燃料が過度にキャニスタ3側へ流入することがない、という利点がある。
 ステップ2で十分な圧力差が存在しないと判定した場合は、ステップ2からステップ12以降へ進み、内燃機関1の吸入負圧を利用したリーク診断を行う。これは、内燃機関1の運転中でのみ可能であるので、ステップ12で内燃機関1が運転中であるか否かを判定し、運転中であることを条件としてステップ13へ進む。ステップ13では、ドレンカットバルブ26を閉とし、次いで、ステップ14で封鎖弁21を開とする。さらに、ステップ15でパージ制御バルブ23を開とする。これによって、内燃機関1の吸入負圧がキャニスタ3を含む診断対象領域ならびに燃料タンク2側の領域に導入され、系内全体の圧力が徐々に低下(負圧化)する。
 ステップ16では、燃料タンク2側のタンク圧およびキャニスタ3側のエバポ圧が所定の診断圧力に到達したか否かを繰り返し判定する。所定の診断圧力に到達した段階でステップ16からステップ17へ進み、パージ制御バルブ23を閉じる。これにより、キャニスタ3および燃料タンク2を含む系内全体が一つの空間として密閉される。なおステップ16において、タンク圧とエバポ圧のいずれか一方のみで判定を行ってもよい。
 このように系内を負圧にして密閉した状態において、ステップ8へ進み、所定時間の間、リーク診断を実行する。ここでは、減圧状態にあったエバポ圧ないしタンク圧の上昇が生じたか否かを判定する。例えば、所定時間経過後の圧力変化量あるいは単位時間当たりの圧力変化速度などから判定する。そして、所定レベル以上の圧力変化が生じていなければ、リークがないと判定し(ステップ9)、所定レベル以上の圧力変化が生じている場合は、リークがあると判定する(ステップ10)。これにより、キャニスタ3および燃料タンク2を含む系内全体のリーク、例えば、ドレンカットバルブ26やパージ制御バルブ23の閉弁時のシール不良、キャニスタ3各部の漏れ、燃料タンク2のピンホール、などのリークの有無を診断できる。診断の終了後、ステップ12へ進み、ドレンカットバルブ26を開に切り換えて、一連の診断処理を終了する。
 このように上記実施例では、リーク診断要求時に、封鎖弁21で分離されている燃料タンク2側とキャニスタ3側との間で十分な圧力差が存在している場合には、この圧力差を利用してキャニスタ3側の診断対象領域を加圧もしくは減圧することで、リーク診断を行い、また十分な圧力差が確保できない場合は、内燃機関1の運転中であれば、吸入負圧を利用してリーク診断を行うので、特にポンプ等の加圧減圧手段を用いることなくリーク診断を行うことができる。しかも、上記実施例では、ポンプに依存することなく、負圧側のみならず加圧側での診断が可能であるため、リーク診断の精度がより高くなる。
 以上、この発明の一実施例を説明したが、本発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、図2の例では、ステップ14において封鎖弁21を開とし、吸入負圧を利用して燃料タンク2側をも含めた系全体のリーク診断を行っているが、封鎖弁21を閉じたままキャニスタ3側の診断対象領域にのみ吸入負圧を導入し、このキャニスタ3側の診断対象領域のみでリーク診断を行うようにしてもよい。従って、この場合は、燃料タンク2側のタンク圧センサ32は必ずしも必須ではない。あるいは、系内全体を負圧とした後に封鎖弁21を閉じ、各々の領域毎にリーク診断を行うようにしてもよい。
 また上記実施例は、診断対象領域を加圧もしくは減圧するポンプ等の加圧減圧手段を具備していないが、本発明は、これに限定されるものではない。すなわち、ポンプ等の加圧減圧手段を備え、燃料タンク2側とキャニスタ3側との間に十分な圧力差が存在しない場合に、このポンプ等を用いたリーク診断を行うようにしてもよい。

Claims (8)

  1.  給油時に燃料タンク内で発生した蒸発燃料をキャニスタで吸着し、内燃機関の運転中に該内燃機関の吸気系に導入して処理する蒸発燃料処理装置において、
     上記燃料タンクから上記キャニスタに至る蒸発燃料通路に設けられた封鎖弁と、
     上記キャニスタから上記内燃機関の吸気系に至るパージ通路に設けられたパージ制御バルブと、
     上記キャニスタのドレン通路に設けられたドレンカットバルブと、
     上記封鎖弁と上記パージ制御バルブと上記ドレンカットバルブとで区画された上記キャニスタを含む診断対象領域内に設けられた圧力センサと、
     を備え、
     リーク診断要求時に、上記診断対象領域を密閉状態とするとともに、上記封鎖弁を開いて上記燃料タンク内の正圧側もしくは負圧側の圧力を上記診断対象領域内に導入し、かつ上記封鎖弁を閉じた後の圧力変化に基づきリークの有無を診断する、蒸発燃料処理装置の診断装置。
  2.  上記リーク診断要求時に、上記診断対象領域内の圧力と上記燃料タンク内の圧力との相対的な圧力差が所定値以上であることを条件として上記封鎖弁を開く、請求項1に記載の蒸発燃料処理装置の診断装置。
  3.  上記リーク診断要求時に、上記診断対象領域内の圧力と上記燃料タンク内の圧力との相対的な圧力差が所定値未満であるときには、内燃機関が運転中であることを条件として、内燃機関の吸入負圧を上記パージ制御バルブを介して導入し、該吸入負圧を用いたリーク診断を行う、請求項2に記載の蒸発燃料処理装置の診断装置。
  4.  上記燃料タンク内が正圧であることを条件として上記封鎖弁を開く、請求項1~3のいずれかに記載の蒸発燃料処理装置の診断装置。
  5.  上記燃料タンク内が負圧であることを条件として封鎖弁を開く、請求項1~3のいずれかに記載の蒸発燃料処理装置の診断装置。
  6.  上記封鎖弁を開いた後、上記診断対象領域内の圧力が所定の診断圧力に達したときに、上記封鎖弁を閉じる、請求項1~5のいずれかに記載の蒸発燃料処理装置の診断装置。
  7.  燃料タンクからキャニスタに至る蒸発燃料通路に封鎖弁を有し、給油時に上記封鎖弁を開として上記燃料タンク内で発生した蒸発燃料を上記キャニスタで吸着し、内燃機関の運転中には上記封鎖弁を閉として上記キャニスタ内の燃料成分を該内燃機関の吸気系に導入して処理する蒸発燃料処理装置において、
     リーク診断要求時に、上記キャニスタを含みかつ上記封鎖弁によって燃料タンク側の領域から区画されている診断対象領域を密閉状態とし、
     上記封鎖弁を開いて上記燃料タンク内の正圧側もしくは負圧側の圧力を上記診断対象領域内に導入し、
     上記封鎖弁を閉じ、
     その後の上記診断対象領域内の圧力変化に基づきリークの有無を診断する、蒸発燃料処理装置の診断方法。
  8.  上記リーク診断要求時に、上記診断対象領域内の圧力と上記燃料タンク内の圧力との相対的な圧力差が所定値以上であることを条件として上記封鎖弁を開く、請求項7に記載の蒸発燃料処理装置の診断方法。
PCT/JP2013/055899 2012-03-09 2013-03-05 蒸発燃料処理装置の診断装置および診断方法 WO2013133235A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-052521 2012-03-09
JP2012052521A JP6251469B2 (ja) 2012-03-09 2012-03-09 蒸発燃料処理装置の診断装置

Publications (1)

Publication Number Publication Date
WO2013133235A1 true WO2013133235A1 (ja) 2013-09-12

Family

ID=49116710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055899 WO2013133235A1 (ja) 2012-03-09 2013-03-05 蒸発燃料処理装置の診断装置および診断方法

Country Status (2)

Country Link
JP (1) JP6251469B2 (ja)
WO (1) WO2013133235A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207964A1 (ja) * 2015-06-23 2016-12-29 日産自動車株式会社 蒸発燃料処理装置の診断装置
CN115111076A (zh) * 2021-12-16 2022-09-27 长城汽车股份有限公司 燃油蒸发系统及其故障诊断方法、装置、车辆及存储介质
WO2022218639A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage
WO2022218638A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage
CN115324779A (zh) * 2022-08-26 2022-11-11 联合汽车电子有限公司 一种脱附诊断方法、脱附装置、存储介质、控制器及车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232973B (zh) * 2014-05-27 2019-10-11 日产自动车株式会社 蒸发燃料处理装置
WO2018045100A1 (en) * 2016-08-30 2018-03-08 Eaton Corporation Fuel tank system and method for detecting automotive fuel system leaks
JP7163723B2 (ja) * 2018-11-06 2022-11-01 株式会社デンソー 蒸発燃料処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294052A (ja) * 2000-04-11 2001-10-23 Toyota Motor Corp 燃料タンクの異常診断方法及び異常診断装置
JP2012002138A (ja) * 2010-06-17 2012-01-05 Aisan Industry Co Ltd 蒸発燃料処理装置の漏れ診断装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110931B2 (ja) * 2002-11-05 2008-07-02 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294052A (ja) * 2000-04-11 2001-10-23 Toyota Motor Corp 燃料タンクの異常診断方法及び異常診断装置
JP2012002138A (ja) * 2010-06-17 2012-01-05 Aisan Industry Co Ltd 蒸発燃料処理装置の漏れ診断装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207964A1 (ja) * 2015-06-23 2016-12-29 日産自動車株式会社 蒸発燃料処理装置の診断装置
US10184430B2 (en) 2015-06-23 2019-01-22 Nissan Motor Co., Ltd. Diagnostic device for evaporated fuel processing device
WO2022218639A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage
WO2022218638A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage
CN115111076A (zh) * 2021-12-16 2022-09-27 长城汽车股份有限公司 燃油蒸发系统及其故障诊断方法、装置、车辆及存储介质
CN115324779A (zh) * 2022-08-26 2022-11-11 联合汽车电子有限公司 一种脱附诊断方法、脱附装置、存储介质、控制器及车辆
CN115324779B (zh) * 2022-08-26 2024-04-12 联合汽车电子有限公司 一种脱附诊断方法、脱附装置、存储介质、控制器及车辆

Also Published As

Publication number Publication date
JP6251469B2 (ja) 2017-12-20
JP2013185527A (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5998529B2 (ja) 蒸発燃料処理装置の診断装置
JP6251469B2 (ja) 蒸発燃料処理装置の診断装置
JP5880159B2 (ja) 蒸発燃料処理装置の診断装置
US10184430B2 (en) Diagnostic device for evaporated fuel processing device
JP6299867B2 (ja) 蒸発燃料処理装置
JP5880158B2 (ja) 蒸発燃料処理装置の診断装置
JP5936985B2 (ja) 蒸発燃料処理装置
JP6287581B2 (ja) 蒸発燃料処理装置
CN108301942B (zh) 燃料箱系统及燃料箱系统的控制方法
JP2006118473A (ja) 内燃機関の蒸発燃料処理装置
WO2019017068A1 (ja) 蒸発燃料処理装置の漏れ検出装置
EP3315755B1 (en) Evaporated fuel processing device
JP2011169276A (ja) 蒸発燃料処理装置
JP4432615B2 (ja) 内燃機関の蒸発燃料制御装置
JP4303537B2 (ja) 加減圧装置
JP6657911B2 (ja) 蒸発燃料処理装置
JP2017067004A (ja) 蒸発燃料処理装置
JP2017067003A (ja) 蒸発燃料処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758456

Country of ref document: EP

Kind code of ref document: A1