WO2013133195A1 - 消臭マスク - Google Patents

消臭マスク Download PDF

Info

Publication number
WO2013133195A1
WO2013133195A1 PCT/JP2013/055789 JP2013055789W WO2013133195A1 WO 2013133195 A1 WO2013133195 A1 WO 2013133195A1 JP 2013055789 W JP2013055789 W JP 2013055789W WO 2013133195 A1 WO2013133195 A1 WO 2013133195A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
deodorizing
deodorant
mask
fabric layer
Prior art date
Application number
PCT/JP2013/055789
Other languages
English (en)
French (fr)
Inventor
喜直 山田
晃治 杉浦
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to CN201380010102.5A priority Critical patent/CN104125849A/zh
Priority to JP2014503828A priority patent/JP5811270B2/ja
Priority to US14/382,950 priority patent/US9421294B2/en
Priority to KR1020147027690A priority patent/KR101948962B1/ko
Publication of WO2013133195A1 publication Critical patent/WO2013133195A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • A41D13/1107Protective face masks, e.g. for surgical use, or for use in foul atmospheres characterised by their shape
    • A41D13/1115Protective face masks, e.g. for surgical use, or for use in foul atmospheres characterised by their shape with a horizontal pleated pocket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/045Deodorising additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material

Definitions

  • the present invention relates to a deodorizing mask having an extremely excellent deodorizing effect against bad odors such as excretion odor and rot odor.
  • masks having various functions such as antibacterial, antiviral, antiallergen, and deodorant have been proposed.
  • a mask using an activated carbon sheet as a filter Patent Document 1
  • a mask containing an adsorption odor-absorbing sheet of hydrous magnesium silicate clay mineral Patent Document 2
  • a deodorizing mask Patent Document 3
  • a breathable material in which a reaction product of one kind of metal and the metal and an oxypolybasic acid coexists is attached to a mask vent.
  • a physical adsorption type deodorant such as activated carbon cannot obtain a sufficient deodorizing effect, and malodorous gas is re-released by continuous use.
  • Hydrous magnesium silicate clay minerals also have no high deodorizing effect, and a complete deodorizing effect cannot be obtained unless they are used in large quantities and subjected to appropriate sheet processing. Even if the reaction product of metal and oxypolybasic acid coexists, it is difficult to arrange a large amount in the ventilation part because no binder is used, and the deodorant is unevenly distributed and the effect may be reduced, Sufficient deodorant performance cannot be obtained.
  • a three-dimensional deodorizing mask having a four-layer structure capable of thoroughly absorbing malodorous gas using a nonwoven fabric bonded with porous ceramic particles has been proposed (Patent Document 4).
  • porous ceramic particles are spread on a polyester non-woven fabric using acrylic resin so as to cover an area of 1/3 of the ceramic particles, and a microfiber as a collection layer on the face side of the deodorized non-woven fabric.
  • a non-woven fabric is further applied.
  • the deodorization performance of the present invention is unknown in detail because there is no description of the gas type and deodorization time, but it is not a deodorizing effect as a mask, but 96 in a deodorizing test using a deodorizing nonwoven fabric alone.
  • Patent Document 5 A deodorizing mask having an ion exchange function for ammonia gas and a paper or chemical product sandwiched between them has also been proposed (Patent Document 5). Since the deodorizer by an ion exchange function is 1 type of a chemisorption type deodorizer, there exists a possibility that high deodorizing performance may be obtained. However, this document does not describe specific deodorant components or prescriptions, and it is unclear whether a practical level of deodorizing effect can be obtained, and whether it is feasible.
  • a three-dimensional mask having a rod shape using 30 to 50% by mass of a fiber in which a non-woven fabric forming the mask body carries a metal complex having oxidation-reduction ability and / or a fiber in which metal ions are carried is proposed.
  • Patent Document 6 Such a deodorant is also considered as a chemisorption deodorant, and high deodorizing performance can be obtained depending on the method of use.
  • a mask having a single layer structure is used, a bad odor gas that passes through easily remains, so that a high deodorizing effect cannot be obtained.
  • Patent Document 7 chemisorption deodorants capable of exhibiting a high degree of deodorizing performance with a small amount have been developed (Patent Document 7, Patent Document 8, Patent Document 9). Since the chemisorption deodorant captures odor by reaction, it has the effect of deodorizing in a short time.
  • the property of malodor targeted by the mask is gas, and the contact opportunity between the deodorant and the malodorous gas is instantaneous.
  • the nonwoven fabric carrying the deodorant is also breathable, there is always a malodorous gas that passes through the non-contacting deodorant in the nonwoven fabric, so a mask that deodorizes to the extent that almost no odor is felt has been realized. Absent.
  • the demand for comfort has increased, and there is a demand for a mask having high deodorization performance that efficiently adsorbs malodorous gas and does not cause discomfort.
  • An object of the present invention is to provide a deodorizing mask having an excellent deodorizing effect against bad odors such as excretion odor and rot odor.
  • the present inventors have used the deodorizing nonwoven fabric layer containing a chemisorption type deodorant, and arranging the dust-proof nonwoven fabric layer having a lower air permeability than the deodorizing nonwoven fabric layer on the face side as described above. It was found that can be solved. That is, the present invention comprises a deodorizing nonwoven fabric layer containing a chemisorption type deodorant and a dustproof nonwoven fabric layer having a dustproof effect, and the breathability of this dustproof nonwoven fabric layer is 2/3 of the breathability of the deodorant nonwoven fabric layer.
  • the deodorizing mask is as follows. In the present specification, a substance that causes bad odor is referred to as “bad odor component”, and a gas containing the bad odor component is referred to as “bad odor gas”.
  • the amount of malodorous components that can be deodorized in 1 minute by 0.1 g of the chemisorption type deodorant is the amount of malodorous components contained in 10 L of malodorous gas with an odor intensity of 5 based on the 6-step odor intensity display method. It is preferable to use one that is more than the amount.
  • a deodorizing nonwoven fabric layer contains 2 or more types of chemisorption type deodorizing agents.
  • the deodorizing mask of the present invention has an excellent deodorizing effect against bad odors such as excretion odors and rot odors. Therefore, discomfort is suppressed by wearing it in a place where malodorous gas drifts.
  • the deodorizing mask of the present invention includes a sewage treatment plant, a wastewater treatment plant, a livestock farm, a garbage disposal plant, a fertilizer factory, a chemical factory, a food factory, a fishing port, a medical site, a nursing site for handling excrement, a cleaning site, a zoo. Useful in restaurants, toilets, etc.
  • FIG. It is a front schematic diagram of the deodorant mask of the present invention. It is the cross-sectional schematic of the deodorizing mask of this invention, and the cross-sectional enlarged view of the deodorizing mask of Example 1.
  • FIG. It is the front schematic of the deodorizing mask of the other form in this invention. It is a cross-sectional schematic diagram of the deodorizing mask of the other form in this invention. It is a front perspective schematic diagram of the deodorizing mask of other forms in the present invention. It is a back surface schematic diagram of the deodorizing mask of the other form in this invention.
  • the present invention comprises a deodorizing nonwoven fabric layer containing a chemisorption type deodorant and a dustproof nonwoven fabric layer having a dustproof effect in the mask body, and the air permeability of the dustproof nonwoven fabric layer is the breathability of the deodorizing nonwoven fabric layer.
  • the deodorizing mask is 2/3 or less, and is configured such that the dust-proof nonwoven fabric layer is on the face side.
  • the structure of the deodorizing mask of the present invention is not particularly limited as long as it has a shape that covers the wearer's nose and mouth.
  • the mask main body portion can have, for example, a planar structure, a three-dimensional structure, or the like. In the case of a three-dimensional structure, it can be a pleated type, an omega pleated type or a cup type mask.
  • the chemisorption deodorant used in the present invention is a material that deodorizes by adsorbing or decomposing the malodorous component by forming a chemical bond with the malodorous component contained in the malodorous gas.
  • the form of chemical bonding is not particularly limited and may depend on the functional group contained in the chemisorption deodorant.
  • the deodorant for malodorous gas in addition to the type that adsorbs malodorous components by chemical adsorption like the chemical adsorption type deodorant in the present invention, the type that adsorbs malodorous components by physical adsorption like activated carbon, There is a type that decomposes malodorous gas at the time of contact like a photocatalyst.
  • a chemisorption type deodorant that can adsorb malodorous components in a short time and has a high deodorization rate is optimal.
  • the chemisorption deodorant according to the present invention is preferably one having excellent deodorization capacity and deodorization speed.
  • the deodorizing capacity (mL / g) in the chemisorption deodorant means the amount (mL) of malodorous components that 1 g of the chemisorption deodorant can deodorize.
  • the deodorization rate [mL / (0.1 g ⁇ min)] in the chemisorption type deodorant is the amount of malodorous components (mL) that 0.1 g of the chemisorption type deodorant can deodorize in 1 minute.
  • the deodorizing capacity per unit mass (g) of the chemisorption deodorant is the deodorizing capacity (mL / g). It is preferable that the value be equal to or more than the value changed to the unit.
  • the odor intensity is a reference value defined by the Odor Prevention Law and the like, and a concentration corresponding to the odor intensity is set depending on the type of odor component contained in the odor gas.
  • the odor intensity 0 is odorless
  • the odor intensity 1 is finally detectable
  • the odor intensity 2 is a weak odor that can be detected
  • the odor intensity 3 is easily detectable
  • the odor intensity 4 is strong
  • the odor intensity 5 Shows a strong smell.
  • the strong odor intensity 5 of ammonia is 40 ppm
  • the odor intensity 5 of hydrogen sulfide is 8 ppm
  • the odor intensity 5 of methyl mercaptan is 0.2 ppm
  • the odor intensity 5 of acetic acid is 1.9 ppm
  • the odor intensity 5 of acetaldehyde is 10 ppm, etc. It is.
  • the unit “ppm” relating to the gas concentration is “volume ppm”.
  • the preferable lower limit of the deodorizing capacity of the chemisorption deodorant is the capacity obtained by replacing the concentration ppm of odor intensity 5 of malodorous gas with mL units. That is, in the case of ammonia, 40 ppm is replaced with 40 mL / g, and in the case of hydrogen sulfide, it is replaced with 8 mL / g. In the case of methyl mercaptan, it is replaced with 0.2 mL / g, and in the case of acetic acid, it is replaced with 1.9 mL / g. Furthermore, in the case of acetaldehyde, it is replaced with 10 mL / g.
  • the content of the chemisorption deodorant contained in one deodorizing mask is 0.1 g, 4 mL of ammonia can be adsorbed based on the deodorizing capacity of 40 mL / g of ammonia, If the gas concentration of odor intensity 5 is 40 ppm, the total malodorous gas is 100 L. If the gas concentration of odor intensity 4 is 10 ppm, 400 L of malodorous gas can be deodorized. Moreover, if the gas concentration of odor intensity
  • a chemisorption type deodorizer is more than the lower limit of the said deodorizing capacity, it can be said that it has sufficient deodorizing effect as a deodorizing mask used in a living space.
  • the gas concentration of odor intensity 5 differs depending on the type of malodorous component, it is preferable to similarly determine the lower limit of the preferred deodorizing capacity depending on the other malodorous component or the type of malodorous gas containing it. .
  • the amount of malodorous components that can be deodorized in 1 minute by 0.1 g of the chemisorption deodorant is defined as the deodorization rate.
  • the reason for this is that a chemisorption deodorant that has a high deodorizing effect when passing through a thin mask, has a high deodorizing effect, and has a high deodorizing effect when moving through a thin mask. It is because it is preferable to use.
  • the amount of malodorous component that can be deodorized in 1 minute by 0.1 g of chemisorption type deodorant, which is the deodorization rate of the chemisorption type deodorant is preferably more than the amount contained in 10 L of malodorous gas with an odor intensity of 5.
  • the amount of breathing per minute for an adult is approximately 10L.
  • strength 5 is 40 ppm, and the ammonia amount (40 ppm x10L) which exists in 10L corresponding to a respiration rate is 0.4 mL.
  • the deodorizer for ammonia adsorption it is preferable to have a deodorization rate that allows ammonia to be adsorbed to 0.1 g of the chemisorption deodorant within 1 minute.
  • the deodorization rate is less than the amount of malodorous components contained in the malodorous gas 10L with an odor intensity of 5
  • a large amount of chemisorption deodorant must be contained in the deodorizing nonwoven fabric layer. It may be difficult and may affect the comfort of the mask. In some cases, it is also economically disadvantageous.
  • malodorous components targeted by chemisorption deodorants include ammonia gas, basic gases such as amines, acidic gases such as acetic acid and isovaleric acid, aldehyde-based gases such as formaldehyde, acetaldehyde and nonenal, Sulfur-based gases such as hydrogen sulfide and methyl mercaptan.
  • chemisorption deodorants for these malodorous components include inorganic chemical adsorption deodorants and organic chemisorption deodorants.
  • the inorganic chemisorption deodorant include tetravalent metal phosphates, amorphous composite oxides, and synthetic zeolites.
  • Examples of the organic chemical adsorption deodorant include hydrazide compounds. Considering use in a mask, a deodorant that is excellent in safety and hardly changes in quality is desirable. Therefore, an inorganic chemisorption deodorant that is insoluble or hardly soluble in water is preferable.
  • the shape of the chemisorption deodorant in the present invention is not particularly limited.
  • the particle size is not limited.
  • the median diameter of the chemisorption deodorant used in the present invention measured by a laser diffraction particle size distribution analyzer is preferably 0.05 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, still more preferably 0.2 to 30 ⁇ m. It is.
  • the specific surface area is preferably 10 to 800 m 2 / g, more preferably 30 to 600 m. 2 / g.
  • the specific surface area can be measured by the BET method calculated from the nitrogen adsorption amount.
  • chemisorption deodorants may be used singly or in combination of two or more.
  • a synergistic effect may be obtained by using two types of chemisorption deodorants having different deodorization targets (bad odor components).
  • a combination of a chemical adsorption deodorant for basic gas and a chemisorption deodorant for sulfur gas is suitable for excrement and garbage odor, and against body odor such as sweat odor
  • a combination of a chemisorption deodorant for basic gas and a chemisorption deodorant for acid gas is suitable.
  • tobacco odor a combination of a basic gas chemisorption deodorant, an acid gas chemisorption deodorant, and an aldehyde gas chemisorption deodorant is suitable.
  • the ratio of the amount used is the deodorization performance such as deodorization capacity and deodorization rate of the chemisorption deodorant used, and the gas of the target environment. It is preferable to select according to the concentration (concentration of malodorous component).
  • concentration concentration of malodorous component
  • the approximate mass ratio is 10:90 to 90:10, and one type of chemisorption type If the mixing ratio of the deodorant is less than 10% by mass, sufficient deodorizing performance may not be obtained.
  • mixing may reduce the deodorization effect, so after mixing the two chemisorption deodorants, either use them as they are or do not mix them. However, it is necessary to select whether to process separately.
  • the chemisorption type deodorant which can be used in the present invention is exemplified.
  • the tetravalent metal phosphate that can be used as a chemisorption deodorant is preferably a compound represented by the following formula (1).
  • This compound is insoluble or hardly soluble in water and has an excellent deodorizing effect on basic gas.
  • M is a tetravalent metal
  • n is 0 or a positive integer.
  • Preferable specific examples include zirconium phosphate, hafnium phosphate, titanium phosphate, tin phosphate and the like.
  • These compounds include crystalline and amorphous compounds having various crystal systems such as ⁇ -type crystals, ⁇ -type crystals, and ⁇ -type crystals, and any of them can be preferably used.
  • the amorphous composite oxide that can be used as a chemisorption deodorant is preferably Al 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO, ZnO, ZrO. 2 , an amorphous compound composed of TiO 2 , WO 2 , CeO 2 , Li 2 O, Na 2 O, K 2 O, or the like.
  • This composite oxide is insoluble or hardly soluble in water and has an excellent deodorizing effect on basic gas.
  • the amorphous composite oxide represented by X 2 O—Al 2 O 3 —SiO 2 (X is at least one alkali metal atom selected from Na, K, and Li) is excellent in deodorizing performance. Is particularly preferred.
  • amorphous means that when a powder X-ray diffraction measurement is performed, an obvious diffraction signal based on the crystal plane is not observed. Specifically, the horizontal axis represents the diffraction angle, and the vertical axis represents the diffraction angle. In the X-ray diffraction chart in which the diffraction signal intensity is plotted, a signal peak with high kurtosis (so-called sharp) hardly appears.
  • the amine compound-carrying inorganic compound that can be used as a chemisorption deodorant is preferably an inorganic that carries a hydrazine compound or aminoguanidine salt, which is an organic compound that reacts with an aldehyde gas. A compound. This compound has an excellent deodorizing effect on aldehyde-based gases.
  • hydrazine compounds include adipic acid dihydrazide, carbohydrazide, succinic acid dihydrazide, and oxalic acid dihydrazide.
  • aminoguanidine salts include aminoguanidine hydrochloride, aminoguanidine sulfate, and aminoguanidine bicarbonate.
  • examples of inorganic compounds supporting these amine compounds include amorphous composite oxides, silica gels, and zeolites.
  • Hydrated zirconium oxide, zirconium oxide Hydrated zirconium oxide and zirconium oxide that can be used as a chemisorption deodorant are preferably amorphous compounds. These compounds are insoluble or hardly soluble in water and have an excellent deodorizing effect on acid gas.
  • Hydrated zirconium oxide is a compound having the same meaning as zirconium oxyhydroxide, zirconium hydroxide, hydrous zirconium oxide and zirconium oxide hydrate.
  • the active oxide that can be used as a chemisorption deodorant is preferably an amorphous compound. This active oxide is insoluble or hardly soluble in water and has an excellent deodorizing effect on acid gas or sulfur gas. Specific examples include Al 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO, ZnO, CuO, MnO, ZrO 2 , TiO 2 , WO 2 , and CeO 2 .
  • the surface-treated active oxide can also be used. Specific examples of the surface treatment include an active oxide whose surface is treated with an organopolysiloxane, and an active oxide whose surface is coated with an oxide or hydroxide of aluminum, silicon, zirconium or tin. The surface treatment with an organic material such as organopolysiloxane is preferable because the deodorizing performance is higher than the surface treatment with an inorganic material.
  • hydrotalcite compound that can be used as a chemisorption deodorant is preferably a compound having a hydrotalcite structure represented by the following formula (2). This compound is insoluble or hardly soluble in water and has an excellent deodorizing effect on acid gas.
  • M 1 (1-x) M 2 x (OH) 2 A n- (x / n) ⁇ mH 2 O (2)
  • M 1 is a divalent metal ion
  • M 2 is a trivalent metal ion
  • x is a number greater than 0 and 0.5 or less
  • m is a positive number.
  • the hydrotalcite compound include magnesium-aluminum hydrotalcite, zinc-aluminum hydrotalcite and the like, and most preferred is magnesium-aluminum hydrotalcite.
  • a fired product of hydrotalcite is also included in the hydrotalcite-based compound, and is a compound obtained by firing a hydrotalcite compound at about 500 ° C. or more and releasing carbonate groups and hydroxyl groups.
  • a compound containing at least one of silver, copper, zinc or manganese is preferably Is a compound that is insoluble or hardly soluble in water. This compound has an excellent deodorizing effect on sulfur-based gases.
  • Preferred compounds containing at least one of silver, copper, zinc and manganese include inorganic acid salts such as oxides, hydroxides, phosphoric acid and sulfuric acid, organic acids such as acetic acid, oxalic acid and acrylic acid. Examples thereof include water-insoluble inorganic compounds carrying at least one salt, copper, zinc or manganese.
  • inorganic compounds as carriers for supporting silver, copper, zinc or manganese are tetravalent metal phosphate, zeolite, porous silicon dioxide and the like.
  • the zeolite that can be used as a chemisorption deodorant is preferably a synthetic zeolite.
  • the zeolite is insoluble or hardly soluble in water and has an excellent deodorizing effect on basic gas.
  • the deodorizing capacity has a capacity in which the concentration ppm of the odor intensity 5 of the odor gas is replaced with mL units, and the deodorization rate is included in the 10 L odor gas having the odor intensity 5.
  • zirconium phosphate and amorphous zeolite for ammonia More than the amount of zirconium phosphate and amorphous zeolite for ammonia, CuO.SiO 2 composite oxide for hydrogen sulfide, CuO.Al 2 O 3 .SiO 2 composite oxide for methyl mercaptan, acetic acid and hydrogen sulfide Examples thereof include active zinc oxide, adipic acid dihydrazide for acetaldehyde, hydrous zirconium oxide for isovaleric acid, and the like.
  • the area of the deodorizing nonwoven fabric layer that can be used in the deodorizing mask of the present invention is usually about 0.01 to 0.04 m 2 , for example, a chemisorption type deodorant applied to a 0.02 m 2 deodorizing nonwoven fabric. Is contained at 5 g / m 2 , the content of the chemisorption deodorant is 0.1 g. On the other hand, it is preferable that the content of the chemisorption deodorant per unit area of the deodorant nonwoven fabric layer is large. However, as the content increases, the breathability and cost of the deodorized nonwoven fabric layer also increase. In consideration of this, it is preferable to determine the content range.
  • the content in the deodorized nonwoven fabric layer per chemical adsorption type deodorant is preferably 1 g / m 2 or more, more preferably 3 g / m 2 or more, and further preferably 5 g / m 2 or more.
  • the total content when two or more types of chemisorption deodorants are used is preferably 5 g / m 2 or more, more preferably 7 g / m 2 or more, and further preferably 9 g / m 2 or more.
  • the deodorizing nonwoven fabric layer according to the present invention it is also possible to use a deodorizing nonwoven fabric layer composed of a multilayer body obtained by processing different chemisorption deodorants on a plurality of deodorizing nonwoven fabrics and then laminating them. it can.
  • two or more types of chemisorption deodorants are collectively or one by one processed into one type of non-woven fabric, and a plurality of chemisorption type deodorants are contained. Is to use.
  • the method for containing the chemisorption deodorant in the deodorant nonwoven layer is not particularly limited, and a general processing method can be used.
  • the chemical adsorption type deodorant can be processed by kneading into the fiber itself or by bringing a binder composition containing a binder such as an emulsion and the chemical adsorption type deodorant into contact with the fiber surface to remove the deodorization.
  • Examples thereof include a spreading process in which an agent is adhered, a method in which a chemisorption deodorant is adhered to a fiber surface constituting a nonwoven fabric without using a binder, and is fixed by heat treatment or chemical treatment.
  • a preferable processing method is spreading processing using a composition containing a binder resin that can be easily processed and easily exhibits an effect.
  • the binder resin that can be used for the spreading process is not particularly limited, the following can be exemplified.
  • natural resin natural resin, natural resin derivative, phenol resin, xylene resin, urea resin, melamine resin, ketone resin, coumarone / indene resin, petroleum resin, terpene resin, cyclized rubber, chlorinated rubber, alkyd resin, polyamide resin, polychlorinated resin
  • vinyl acrylic resin, vinyl chloride / vinyl acetate copolymer resin, polyvinyl acetate, polyvinyl alcohol, polyvinyl platyral, chlorinated polypropylene, styrene resin, epoxy resin, urethane resin, and cellulose derivatives.
  • acrylic resins or urethane resins are particularly preferable.
  • the said binder resin can be used individually by 1 type or in combination of 2 or more types.
  • the binder resin is preferably one that can fix the chemisorption type deodorant without dropping without impairing the control of the foldability, heat-fusibility, and air permeability of the nonwoven fabric by spread processing. Those with less are more preferred.
  • the content ratio of the chemisorption deodorant to the resin solid content derived from the emulsion in the binder composition Although it is not particularly limited, the larger the binder resin ratio, the better the fixing power of the deodorant and the better the deodorant falling off. On the other hand, the smaller the ratio of the binder resin solid content, the easier the deodorant comes into contact with the malodorous gas and the better the deodorizing effect.
  • the ratio of the binder resin and the chemisorption deodorant is preferably 10 to 90% by mass and 10 to 90%, respectively, when the total of the binder resin and the deodorant is 100% by mass. It is in the range of mass%, more preferably in the range of 25-60 mass% and 40-75 mass%.
  • an additive for a binder resin By adding an additive for a binder resin to a binder composition containing a chemisorption deodorant, it is possible to achieve a composite function having an effect other than the deodorizing performance, an improvement in workability, and the like.
  • the additive include a dispersant, an antifoaming agent, a viscosity adjusting agent, a pigment, a dye, a fragrance, a physical adsorption deodorant, an antibacterial agent, an antiviral agent, and an antiallergen agent.
  • Additives should be added in an appropriate amount in consideration of the purpose, but the deodorizing effect of the chemisorption deodorant and the physical properties and mask processability of the deodorizing nonwoven fabric should not be affected. There is a need to.
  • a general dispersion method such as inorganic powder can be applied.
  • an additive such as a dispersant may be added to an acrylic resin emulsion, and a chemisorption deodorant may be further added, followed by stirring and dispersing with a sand mill, a disper, a ball mill, or the like.
  • the solid content concentration of the chemisorption deodorant in the binder composition containing the deodorant increases, the viscosity of the binder composition increases and handling becomes difficult, but the stability tends to improve. Therefore, the solid content concentration of the deodorant in the binder composition is preferably 5 to 60% by mass.
  • a viscosity modifier or the like can be added within a range that does not affect the deodorizing performance.
  • the method of spreading the nonwoven fabric with the binder composition containing a chemisorption deodorant there is no limitation on the method of spreading the nonwoven fabric with the binder composition containing a chemisorption deodorant, and for example, an immersion method, a spray method, a padding method, or the like can be used.
  • the dipping method include a room temperature standing method and a heating and stirring method.
  • the padding method include a pad dry method and a pad steam method, and any method may be used.
  • the nonwoven fabric with a coating film thus obtained is appropriately removed through a drying process, whereby the binder resin functions and the chemisorption deodorant is fixed to the nonwoven fabric.
  • the drying temperature at this time is not particularly limited, but may be, for example, about 50 ° C. to 150 ° C., and preferably about 80 ° C. to 120 ° C.
  • the preferred drying time is 5 minutes to 12 hours, more preferably 10 minutes to 2 hours, although it depends on the drying temperature. By drying under such conditions
  • the dust-proof nonwoven fabric layer in the present invention is not limited except for air permeability, and a dust-proof nonwoven fabric having a dust-proof function, which is generally used in mask production, can be appropriately selected and used according to the purpose.
  • the standards for the dustproof performance (filtering performance) of masks vary from country to country. Generally, it is often displayed according to nine types of standards defined by the US NISH (National Institute of Occupational Safety and Health). The 9 types of NISH standards are the most difficult to collect with filters, “N (no oil resistance)”, “R (oil resistance)” and “P (oil resistance)”, which are three types of oil resistance.
  • the collection rate of particles of 0.1 to 0.3 ⁇ m is displayed in combination of “95 (95% or more can be removed)” “99 (99% or more can be removed)” “100 (99.97% or more can be removed)” N95, N99, N100, R95 and the like.
  • BFE bacterial filtration efficiency
  • PFE fine particle filtration efficiency
  • BFE is the percentage (%) of removal of bacteria-containing particles (average particle size 4.0-5.0 micrometers) by the mask
  • PFE is the test particles (0.1 micrometer polystyrene latex spheres) (Particles) are removed (%).
  • the surgical mask standard is BFE 95% or higher.
  • Deodorant nonwoven fabric and dustproof nonwoven fabric used in the production of the deodorant mask of the present invention include spunbond nonwoven fabric, meltblown nonwoven fabric, flash spun nonwoven fabric, spunlace nonwoven fabric, airlaid nonwoven fabric, thermal bond nonwoven fabric, needle punch nonwoven fabric, chemical bond Nonwoven fabric, paper, etc. are mentioned.
  • resin which comprises the fiber contained in these nonwoven fabrics polyester, polyethylene, polypropylene, polyvinyl chloride, polyacrylic acid, polyamide, polyvinyl alcohol, polyurethane, polyvinyl ester, polymethacrylic acid ester, rayon, etc. are mentioned. .
  • any of the deodorant nonwoven fabric and the dustproof nonwoven fabric may be a nonwoven fabric made of a fiber containing these resins alone or a nonwoven fabric made of a plurality of types of resin fibers.
  • the average diameter of the fibers constituting the deodorant nonwoven fabric and the dustproof nonwoven fabric is usually 5 to 30 ⁇ m, preferably 10 to 25 ⁇ m.
  • the basis weight of the deodorant nonwoven fabric and the dustproof nonwoven fabric is preferably 10 to 90 g / m 2 .
  • the basis weight is 10 g / m 2 or less, the chemisorption deodorant may be clogged in the voids of the nonwoven fabric and the air permeability may be lowered.
  • the basis weight exceeds 90 g / m 2 , the workability when attaching the chemisorption deodorant is lowered, and the mask main body becomes thick.
  • a multi-layered deodorizing nonwoven fabric or a dustproof nonwoven fabric each consisting of a plurality of nonwoven fabrics, in which case the total basis weight of the nonwoven fabric used is within the above range. Preferably there is.
  • the air permeability of the deodorant nonwoven fabric layer and the dustproof nonwoven fabric layer can be defined using values measured by the JIS L1096 Frazier method using a Frazier tester. In the mask main body according to the present invention, the greater the air permeability, the less resistance to exhalation and the easier to breathe, but the lower the air permeability, the easier the deodorizing effect will be exhibited.
  • the air permeability of the Frazier type method of the dustproof nonwoven fabric layer is preferably 10 to 120 cm 3 / (cm 2 ⁇ s), more preferably 20 to 100 cm 3 / (cm 2 ⁇ s).
  • the fragile method air permeability of the deodorant nonwoven fabric layer is preferably 40 to 400 cm 3 / (cm 2 ⁇ s), more preferably 60 to 350 cm 3 / (cm 2 ⁇ s).
  • the balance between the air resistance and the deodorizing performance of the mask main body is important for enhancing the commercial value of the deodorizing mask, and such a balance has been achieved for the first time in the present invention.
  • the deodorizing mask of the present invention comprises a deodorizing nonwoven fabric layer containing a chemisorption type deodorant and a dustproof nonwoven fabric layer having a dustproof effect, and the breathability of the dustproof nonwoven fabric layer is that of the deodorizing nonwoven fabric layer. It is essential that it is 2/3 or less.
  • the dust-proof nonwoven fabric layer positioned on the face side, it has excellent deodorizing performance against bad odor and can suppress inhalation of bad odor gas during use.
  • another layer can also be provided between the deodorizing nonwoven fabric layer and a dust-proof nonwoven fabric layer in the range which does not affect the effect of this invention.
  • the other layers are not particularly limited in configuration such as shape and material as long as they have air permeability, and may be a nonwoven fabric layer or a woven fabric layer. Preferably, it has a breathability higher than that of the deodorized nonwoven fabric layer.
  • the deodorizing mask of the present invention preferably has a structure in which the deodorizing nonwoven fabric layer is adjacent to the dustproof nonwoven fabric layer. When the deodorant nonwoven fabric layer is disposed so as to be in contact with the dustproof nonwoven fabric layer, the effects of the present invention can be efficiently exhibited.
  • the dustproof nonwoven fabric layer may be composed of a multilayer body of a plurality of nonwoven fabrics
  • the deodorizing nonwoven fabric layer may be composed of a multilayer body of a plurality of nonwoven fabrics.
  • the deodorizing nonwoven fabric layer formed of a multilayer body may be obtained by processing different chemisorption deodorants on each nonwoven fabric. The effect of the present invention is produced by the difference between the breathability of the dust-proof nonwoven fabric layer on the face side and the breathability of the deodorized nonwoven fabric layer.
  • the “difference” means that the air permeability of the dust-proof nonwoven fabric layer is 2/3 or less, preferably 1/2 or less, more preferably 2/5 or less of the deodorized nonwoven fabric layer in terms of the amount of fragile-type air flow.
  • the air permeability of the dust-proof nonwoven fabric layer is 1/20 of the deodorized nonwoven fabric layer, more preferably 1/10 in terms of the air permeability of the Frazier method.
  • a deodorizing non-woven fabric containing a chemisorption deodorant and a dust-proof non-woven fabric having a breathability of 2/3 or less of the deodorizing non-woven fabric are combined with a ventilation portion
  • a ventilation portion it is preferable to bond only the peripheral part without adhering the part surrounded by the peripheral part. That is, in order to prevent the non-woven fabric made of the multilayer body from being displaced, it can be fixed by a method such as heat fusion, bonding, sewing, or the like at the peripheral portion of the mask body that is not the ventilation portion.
  • Another non-woven fabric may be disposed on the face side and the outside air side.
  • the other nonwoven fabric is not particularly limited in the kind of the resin, but it is preferable to have a breathability equivalent to or more than that of the nonwoven fabric for deodorization and the nonwoven fabric for dust prevention, more preferably twice or more.
  • a water-repellent nonwoven fabric such as a polypropylene nonwoven fabric is preferably used on the outside air side, and a flexible rayon or polyolefin nonwoven fabric is preferably used on the face side.
  • the dust-proof nonwoven fabric layer with lower air permeability is configured to be on the face side, the negative pressure applied to the deodorized nonwoven fabric layer when inhaling is uniform, and the entire deodorized nonwoven fabric layer is This is thought to be due to the formation of air that is evenly used effectively and has a low concentration of malodorous components.
  • the air permeability of the dust-proof nonwoven fabric layer on the face side is higher than that of the deodorized nonwoven fabric layer, or when there is no dust-proof nonwoven fabric layer on the face side, the so-called channeling phenomenon occurs in the part of the deodorized nonwoven fabric layer where the pressure loss is partially low Is considered to occur. Thereby, air in which malodorous components remain is formed. Then, it is conceivable that malodorous gas is inhaled or the life of the deodorizing mask is shortened.
  • the deodorizing mask of the present invention is preferably a three-dimensional structure mask.
  • the deodorizing mask needs to exhibit a deodorizing function on the front surface of the user's nasal cavity, and air permeability and a feeling of use are regarded as important characteristics required in practice.
  • air permeability and a feeling of use are regarded as important characteristics required in practice.
  • the deodorant mask preferably has a three-dimensional structure that completely covers the mouth and nose portions in order to prevent odors from being sucked from the gaps derived from the unevenness of the face.
  • Three-dimensional masks include bowls and cups, which are called three-dimensional types, and pleats and omega pleats that are folded non-woven fabrics. Omega pleats are easy to manufacture using non-woven fabrics with a multilayer structure and are effective for deodorization. It is also preferable in that the use area of such a nonwoven fabric can be widened.
  • the manufacturing method of the three-dimensional structure mask having such a shape is known to those skilled in the art, and the shape of the mask body is also shown in FIG.
  • the shape and dimensions of the pleats can be set as appropriate based on a 10cm x 18cm rectangle as shown in Fig. 1.
  • Nose wire part of the mask body is partly aligned with the shape of the nose and held in shape.
  • Well-known components can be used as appropriate.
  • a known heat sealing device or the like can be used for assembly processing during manufacturing.
  • the deodorizing mask of the present invention includes a sewage treatment plant, a waste disposal plant, a livestock farm, a fertilizer plant, a chemical plant, a food factory, a fishing port, a medical site, a nursing site for handling excrement, a cleaning site, a zoo for handling animals, a restaurant, Suitable for use in toilets and the like.
  • the air permeability of the PP nonwoven fabric (average fiber diameter 15 ⁇ m, basis weight 20 g / cm 2 ) is 220 cm 3 / (cm 2 ⁇ s), and the rayon nonwoven fabric (average fiber diameter 22 ⁇ m, basis weight 25 g / cm 2 ) 405cm 3 / (cm 2 ⁇ s ), the air permeability of PP-PE composite nonwoven fabric comprising PP fibers and PE fibers (average fiber diameter 20 [mu] m, basis weight 25 g / cm 2) was 280cm 3 / (cm 2 ⁇ s ) .
  • the deodorization rate test the amount of deodorization with respect to the malodorous gas that is the target of deodorization by 0.1 g of the deodorant was measured, and the amount of deodorization was defined as the deodorization rate.
  • the deodorization rate test was performed as follows. After putting 0.1 g of deodorant in a Tedlar bag and sealing it, 1 L of malodorous gas of 50 times the concentration of odor intensity 5 (ammonia 2000 ppm, hydrogen sulfide 400 ppm, methyl mercaptan 10 ppm, acetic acid 95 ppm, acetaldehyde 500 ppm, isovaleric acid 15 ppm) In addition, after 1 minute, the residual gas concentration was measured with a gas detector tube.
  • Table 1 shows the residual odor gas concentration, the value of the deodorizing rate [mL / (0.1 g ⁇ min)] of each deodorant obtained by the following method, and the deodorizing capacity (mL / g). It was shown to.
  • Deodorization rate [mL / (0.1 g ⁇ min)] is 1000 (mL) ⁇ (initial malodor gas concentration (ppm) ⁇ residual gas concentration (ppm)) ⁇ 10 ⁇ 6 /(0.1 g ⁇ min). Calculated.
  • capacitance test which calculates a deodorizing capacity
  • the value of the deodorizing capacity (mL / g) was calculated by 2000 (mL) ⁇ (initial malodor gas concentration (ppm) ⁇ residual gas concentration (ppm)) ⁇ 10 ⁇ 6 /0.01 (g).
  • the deodorizers listed in Table 1 are all chemisorption deodorants except for activated carbon which is a physical adsorption deodorant. The chemisorption deodorants listed here are used for deodorization rate tests.
  • the deodorant of 0.1 g of the deodorizer has a performance capable of deodorizing the odor gas 10L having a concentration corresponding to the odor intensity 5 of the target odor gas in 1 minute or a performance larger than that. It is shown.
  • the deodorant sensory test was conducted by filling 1 L of malodorous gas (ammonia 40 ppm, hydrogen sulfide 8 ppm, methyl mercaptan 0.2 ppm, acetic acid 1.9 ppm, acetaldehyde 10 ppm) in an odor bag with 5 odor intensity. Each of them smelled the odor in the odor bag while wearing the odor mask, and the odor intensity was determined according to the following criteria. The odor intensity of 5 persons was averaged, and the result was the odor intensity in the sensory test. Odor intensity 0; odorless. Odor intensity 1; odor can finally be detected. Odor intensity 2: Know what odor is. Odor intensity 3; odor can be easily detected. Odor intensity 4: Strong odor. Odor intensity 5: Strong odor.
  • Reference Example 1 (Preparation of deodorant nonwoven fabric A) Zirconium phosphate with a deodorizing capacity of 190 mL / g and a deodorizing rate of 2 mL / (0.1 g ⁇ min) for ammonia gas in a standard state as a chemisorption deodorant for ammonia, and chemisorption for hydrogen sulfide
  • a CuO.SiO 2 composite oxide having a deodorizing capacity of 98 mL / g with respect to hydrogen sulfide gas in a standard state and a deodorizing rate exceeding 0.4 mL / (0.1 g ⁇ min) was used. .
  • the zirconium phosphate powder is adjusted so that the zirconium phosphate content is 2 parts, the CuO.SiO 2 composite oxide content is 6 parts, and the acrylic emulsion resin solid content is 5 parts by mass.
  • Deodorant-containing acrylic emulsion A having a solid content concentration of 10% by mass was prepared using CuO ⁇ SiO 2 composite oxide powder and acrylic emulsion. This deodorant-containing acrylic emulsion A was spread on a non-woven fabric (average fiber diameter 18 ⁇ m, basis weight 50 g / cm 2 ) composed of 60% by mass of rayon fibers, 20% by mass of PP fibers and 20% by mass of PET fibers.
  • a deodorizing nonwoven fabric A was prepared by uniformly coating and drying so that the amount was 2 g / m 2 and the spread amount of the CuO ⁇ SiO 2 composite oxide was 6 g / m 2 .
  • the fragile-type air permeability of this non-woven fabric A for deodorization was 188 cm 3 / (cm 2 ⁇ s) (see Table 2).
  • Reference Example 2 (Preparation of deodorant nonwoven fabric B) Zirconium phosphate with a deodorizing capacity of 190 mL / g for standard ammonia gas and a deodorizing rate of 2 mL / (0.1 g ⁇ min) as chemisorption deodorant for ammonia, and chemisorption for methyl mercaptan CuO / Al 2 O 3 / SiO 2 composite oxidation with a deodorizing capacity of 48 mL / g for methyl mercaptan gas in the standard state as a mold deodorant and a deodorizing rate exceeding 0.01 mL / (0.1 g ⁇ min) The thing was used.
  • Deodorant-containing acrylic emulsion B having a solid content concentration of 10% by mass was prepared using zirconium phosphate powder, CuO.Al 2 O 3 .SiO 2 composite oxide powder and acrylic emulsion.
  • This deodorant-containing composite acrylic emulsion B was spread on a non-woven fabric (average fiber diameter 16 ⁇ m, basis weight 45 g / cm 2 ) composed of 60% by mass of rayon fiber, 30% by mass of PE fiber and 10% by mass of PET fiber.
  • Reference Example 3 (Preparation of deodorant nonwoven fabric C) Amorphous zeolite with a deodorizing capacity of 53 mL / g and a deodorizing rate of 0.9 mL / (0.1 g ⁇ min) for ammonia gas in the standard state as a chemisorption deodorant for ammonia, and chemisorption for acetic acid Active zinc oxide with a deodorizing capacity of 28 mL / g for acetic acid gas in a standard state as a mold deodorant and a deodorizing rate exceeding 0.095 mL / (0.1 g ⁇ min), and a chemisorption deodorant for aldehydes
  • silica gel carrying 30% adipic acid dihydrazide having a deodorizing capacity of 38 mL / g with respect to acetaldehyde gas in a standard state and a deodorizing rate of 0.3 mL / (0.1 g ⁇ min) was used.
  • a deodorant-containing acrylic emulsion C having a solid content concentration of 10% by mass was prepared using amorphous zeolite powder, active zinc oxide powder, adipic acid dihydrazide 30% -supported silica gel powder and acrylic emulsion.
  • This deodorant-containing acrylic emulsion C was spread on a non-woven fabric (average fiber diameter 17 ⁇ m, basis weight 48 g / cm 2 ) composed of 60% by mass of rayon fibers, 20% by mass of PP fibers and 20% by mass of PET fibers. Apply uniformly and dry so that the amount is 2 g / m 2 , the amount of active zinc oxide is 4 g / m 2 , and the amount of silica gel carrying 30% adipic acid dihydrazide is 2 g / m 2.
  • Deodorant nonwoven fabric C was prepared.
  • the fragile-type air permeability of this non-woven fabric C for deodorization was 190 cm 3 / (cm 2 ⁇ s) (see Table 2).
  • Reference Example 4 (Production of deodorant nonwoven fabric D) Zirconium phosphate with a deodorizing capacity of 190 mL / g and a deodorizing rate of 2 mL / (0.1 g ⁇ min) for ammonia gas in a standard state as a chemisorption deodorant for ammonia, and a chemical for isovaleric acid Zirconium oxyhydroxide with a deodorizing capacity of 18 mL / g for standard isovaleric acid gas as an adsorptive deodorant and a deodorizing rate exceeding 0.015 mL / (0.1 g ⁇ min) (also known as hydrous oxide) Zirconium) was used.
  • a deodorant-containing acrylic emulsion D having a solid content concentration of 10% by mass was prepared using zirconium and an acrylic emulsion. This deodorant-containing acrylic emulsion D was spread on a non-woven fabric (average fiber diameter 15 ⁇ m, basis weight 40 g / cm 2 ) composed of 60% by mass of rayon fibers, 20% by mass of PP fibers and 20% by mass of PET fibers.
  • This deodorant-containing acrylic emulsion E was spread evenly on a nonwoven fabric (average fiber diameter 18 ⁇ m, basis weight 50 g / cm 2 ) composed of 60% by mass of rayon fibers, 20% by mass of PP fibers and 20% by mass of PET fibers.
  • a non-woven fabric E for deodorization was prepared by uniformly applying and drying so that the amount was 5 g / m 2 .
  • the fragile-type method air permeability of this non-woven fabric for deodorization E was 251 cm 3 / (cm 2 ⁇ s) (see Table 2).
  • Reference Example 6 (Production of Deodorant Nonwoven Fabric J)
  • the deodorant-containing acrylic emulsion A prepared in Reference Example 1 was added to a non-woven fabric (average fiber diameter 18 ⁇ m, basis weight 50 g / cm 2 ) composed of 60% by mass of PE fibers, 20% by mass of PP fibers, and 20% by mass of PET fibers.
  • a non-woven fabric for deodorization J was prepared by uniformly coating and drying so that the spread amount of zirconium acid was 2 g / m 2 and the spread amount of the CuO ⁇ SiO 2 composite oxide was 6 g / m 2 .
  • the fragile-type air permeability of this deodorant nonwoven fabric J was 210 cm 3 / (cm 2 ⁇ s) (see Table 2).
  • Non-woven fabric for dust prevention A nonwoven fabric composed of 70% by mass of rayon fibers, 10% by mass of PP fibers and 20% by mass of PET fibers was used as a nonwoven fabric for dust prevention.
  • Dust-proof nonwoven fabric F 25 g / cm 2 basis weight, Frazier type air flow rate 56 cm 3 / (cm 2 ⁇ s) (2) Dust-proof nonwoven fabric G 20 g / cm 2 in basis weight, fragile air flow rate 146 cm 3 / (cm 2 ⁇ s) (3) Dust-proof nonwoven fabric H 25 g / cm 2 basis weight, Frazier type air flow rate 98 cm 3 / (cm 2 ⁇ s) (4) Dust-proof nonwoven fabric I 20 g / cm 2 per unit area, fragile air flow rate 411 cm 3 / (cm 2 ⁇ s)
  • Example 1 After stacking four nonwoven fabrics made of PP each having a size of 16 cm ⁇ 18 cm, the nonwoven fabric A for deodorization obtained in Reference Example 1, the nonwoven fabric for dust prevention F in Reference Example 6, and the nonwoven fabric made of rayon in this order, The three-stage pleats were folded so as to form a 10 cm ⁇ 18 cm rectangular shape. And the mask main-body part 1 was produced by heat-sealing a peripheral part with an ultrasonic sealing apparatus in the state which inserted the nose wire in the edge part (center part by the code
  • a deodorizing mask having a three-dimensional structure of corrugated pleats was produced (see FIGS. 1 and 2).
  • This method is a method for producing a three-dimensional structure mask known to those skilled in the art, in addition to the method for selecting and laminating the nonwoven fabric constituting the mask body 1, and the materials and devices for the ear hook 3 are common. I used something.
  • a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity for each odor gas are shown in Table 3.
  • Example 2 In the same manner as in Example 1, a PP non-woven fabric, a deodorizing non-woven fabric B obtained in Reference Example 2, a dust-proof non-woven fabric G, and a rayon non-woven fabric were used in this order, and three-stage pleated solids were used. A structural mask was fabricated. A deodorizing sensory test of ammonia and methyl mercaptan was carried out using the obtained deodorizing mask, and the measurement results of odor intensity against odor gas are shown in Table 3.
  • Example 3 In the same manner as in Example 1, a three-stage pleated three-dimensional pleated mask was produced by stacking four sheets of PP nonwoven fabric, the deodorant nonwoven fabric C obtained in Reference Example 3, the dustproof nonwoven fabric F, and the rayon nonwoven fabric. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia, acetic acid and acetaldehyde was carried out, and the measurement results of odor intensity against odor gas are shown in Table 3.
  • Example 4 In the same manner as in Example 1, a three-stage pleated three-dimensional pleated mask was produced by stacking four sheets of PP nonwoven fabric, the deodorant nonwoven fabric D obtained in Reference Example 4, the dustproof nonwoven fabric H, and the rayon nonwoven fabric. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and isovaleric acid was performed, and the measurement results of odor intensity against odor gas are shown in Table 3.
  • Example 5 Deodorant nonwoven fabric J obtained in Reference Example 6, PP-PE hybrid nonwoven fabric, dustproof nonwoven fabric F, and PP-PE hybrid nonwoven fabric, three-layer pleated three-dimensional mask obtained in the same manner as in Example 1 was made. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and isovaleric acid was performed, and the measurement results of odor intensity against odor gas are shown in Table 3.
  • Example 6 In the same manner as in Example 1, PP non-woven fabric each having a size of 16 cm ⁇ 18 cm, deodorizing non-woven fabric J obtained in Reference Example 6, dust-proof non-woven fabric F in Reference Example 7, and PP-PE hybrid non-woven fabric, After the four sheets were stacked in this order, the three-stage omega pleats were folded so as to form a rectangle having a size of 10 cm ⁇ 18 cm. And the mask main-body part 1 was produced by heat-sealing a peripheral part with an ultrasonic sealing apparatus in the state which inserted the nose wire in the edge part (center part by the code
  • a heat-welding seam portion 6 by heat-sealing is formed on the peripheral edge portion to form a three-dimensional omega pleat three-dimensional structure
  • the deodorizing mask which has this was produced (refer FIG. 3 and FIG. 4).
  • This method is a method for producing a three-dimensional structure mask known to those skilled in the art, in addition to the method for selecting and laminating the nonwoven fabric constituting the mask body 1, and the materials and devices for the ear hook 3 are common. I used something.
  • Table 3 shows the results of performing deodorization sensory tests of ammonia and hydrogen sulfide using the obtained deodorization mask and measuring the odor intensity for each odor gas.
  • Example 7 The PP non-woven fabric, the deodorant non-woven fabric J obtained in Reference Example 6, the dust-proof non-woven fabric F in Reference Example 7, and the PP-PE hybrid non-woven fabric are stacked in this order in the order of 4 sheets, then 12 cm long and 14 cm wide. It processed so that it might become, and the cup type deodorizing mask was produced (refer FIG. 5 and FIG. 6).
  • Table 3 shows the results of performing deodorization sensory tests of ammonia and hydrogen sulfide using the obtained deodorization mask and measuring the odor intensity for each odor gas.
  • Comparative Example 1 From the outside air side of the mask, a three-layer pleated three-dimensional pleated mask was prepared by stacking three sheets of PP nonwoven fabric, dustproof nonwoven fabric F, and rayon nonwoven fabric. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • Comparative Example 2 A three-stage pleated three-dimensional structure mask was produced only with the deodorant nonwoven fabric A obtained in Reference Example 1. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • Comparative Example 3 From the outside air side of the mask, a PP non-woven fabric, a deodorizing non-woven fabric E obtained in Reference Example 5, a dust-proof non-woven fabric F, and a rayon non-woven fabric were stacked to form a three-stage pleated three-dimensional structure mask. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • Comparative Example 4 From the outside air side of the mask, PP non-woven fabric, dust-proof non-woven fabric F, deodorizing non-woven fabric A obtained in Reference Example 1, and rayon non-woven fabric were stacked to produce a three-stage pleated three-dimensional structure mask. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • Comparative Example 5 From the outside air side of the mask, a three-stage pleated three-dimensional pleated mask was produced by stacking two layers of the deodorant nonwoven fabric A, the dustproof nonwoven fabric I and the rayon nonwoven fabric obtained in Reference Example 1. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • Comparative Example 6 From the outside air side of the mask, a three-stage pleated three-dimensional mask was prepared by stacking three layers of PP nonwoven fabric, the deodorizing nonwoven fabric A obtained in Reference Example 1, and the nonwoven fabric made of rayon. Using the obtained deodorizing mask, a deodorizing sensory test of ammonia and hydrogen sulfide was carried out, and the measurement results of odor intensity against odor gas are shown in Table 4.
  • the column of ( ⁇ ) in the deodorizing nonwoven fabric or the dustproof nonwoven fabric indicates that the corresponding nonwoven fabric is not used.
  • the average results of the odor intensity according to the sensory tests of Examples 1 to 6 were all smaller than 1, that is, an odorless region in which almost no bad odor was felt.
  • Comparative Example 2 and Example 1 although the deodorant nonwoven fabric used was the same deodorant nonwoven fabric A, no bad odor was felt in Example 1, and an average of 2. An odor intensity of 2 to 2.6 was detected. From this result, it can be seen that even if the same deodorizing nonwoven fabric is used, the deodorizing effect is inferior unless the mask body is provided with a dustproof nonwoven fabric layer on the face side.
  • the comparative example 5 is an example which laminated
  • Comparative Example 6 is an example in which the air permeability of the dust-proof nonwoven fabric layer of the mask body is greater than or equal to the air permeability of the deodorized nonwoven fabric layer, and the air permeability of the dust-proof nonwoven fabric layer is not 2/3 or less. It can be seen that the deodorizing performance is inferior. From these things, it has shown that the air permeability ratio of a deodorant nonwoven fabric layer and a dust-proof nonwoven fabric layer is required in order to show the effect of this invention.
  • Example 5 is an example in which a PP-PE hybrid nonwoven fabric layer is further provided between the deodorant nonwoven fabric layer and the dustproof nonwoven fabric layer.
  • Example 5 although the evaluation of hydrogen sulfide is slightly inferior to the evaluation result of Example 1, it can be seen that the overall deodorizing effect is excellent.
  • Example 6 is a mask in which the shape of the mask is a three-stage omega pleated three-dimensional structure. In Example 6, the same deodorizing effect as in Example 1 was obtained, and the mask was further excellent in wearability.
  • Example 7 is a mask in which the shape of the mask is a cup-shaped three-dimensional shape. In Example 7, an excellent deodorizing effect was obtained as in Example 1, and the mask was further excellent in adhesion.
  • Comparative Example 3 the order of combination of the deodorized nonwoven fabric layer and the dustproof nonwoven fabric layer is the same as that of the example.
  • Comparative Example 3 is an example using activated carbon that is not a chemisorption deodorant, and the deodorizing effect is extremely inferior.
  • Comparative Example 4 is an example in which the dust-proof nonwoven fabric layer is laminated on the outside air side of the deodorant nonwoven fabric layer. In Comparative Example 4, it can be seen that the deodorizing performance is inferior to that of Example 1, and the combination order of the deodorized non-woven fabric layer and the dust-proof non-woven fabric layer produces a great difference in effect.
  • a deodorizing mask or a deodorizing mask having a deodorizing effect at a level that hardly feels bad odor against excretion odors, spoiled odors, etc. immediately after wearing in a malodorous gas atmosphere. Therefore, it is used effectively in places and operations where odors occur, such as excrement disposal, sewage-related work, livestock farms, waste disposal, fertilizer factories, chemical factories, fishing ports, medical / nursing / disaster site cleaning, and body treatment. it can.
  • Mask body part 2 Mask body upper part 3: Ear hook part 4: End seal 5: Nose wire 6: Thermal fusion seam part 7: Non-woven fabric layer 8 made of PP on the outside air side: Deodorized nonwoven fabric layer 9: Dust-proof nonwoven fabric layer 10 : Facial rayon nonwoven fabric layer 11: Pleated 12: Heat fusion mesh part 13: Neck hook part 14: Nose pad part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

 本発明の消臭マスクは、通気性を有し、且つ、少なくとも2種類の不織布によって着用者の鼻および口を覆うマスク本体部を備え、マスク本体部は、化学吸着型消臭剤を含む消臭不織布層と、防塵効果を有する防塵不織布層とを備え、防塵不織布層の通気性は前記消臭不織布層の通気性の2/3以下である。また、前記防塵不織布層の通気性が、フラジール形法に基づく通気量で10~120cm3/(cm2・s)の範囲であり、前記消臭不織布層の通気性が、フラジール形法に基づく通気量で40~400cm3/(cm2・s)の範囲であり、前記防塵不織布層の前記通気量が前記消臭不織布層の前記通気量の2/3以下であることが好ましい。

Description

消臭マスク
 本発明は、排泄臭や腐敗臭等の悪臭に対して極めて優れた消臭効果を有する消臭マスクに関する。
 従来、抗菌、抗ウイルス、抗アレルゲン、消臭等、様々な機能を有するマスクが提案されている。特に各種消臭剤を用いた消臭機能を有するマスクに対する提案は多い。例えば、活性炭シートをフィルターに使用したマスク(特許文献1)、含水珪酸マグネシウム質粘土鉱物の吸着吸臭シートを収納したマスク(特許文献2)、Fe、Mn、Al、ZnおよびCuから選ばれた少なくとも1種の金属ならびに前記金属とオキシ多塩基酸類との反応生成物を共存させた通気性素材をマスク通気部に装着した脱臭マスク(特許文献3)等がある。しかし、活性炭のような物理吸着型消臭剤では十分な消臭効果は得られず、継続使用により悪臭ガスが再放出されてしまう。含水珪酸マグネシウム質粘土鉱物も消臭効果は高くなく、多量に用いたうえに適切なシート加工を施さなければ完全な消臭効果は得られない。金属とオキシ多塩基酸類との反応生成物を共存させたものも、バインダーを用いていないので通気部に多量に配置することが難しく、消臭剤が偏在して効果が低下する場合もあり、十分な消臭性能は得られない。
 多孔質のセラミック粒子が接着された不織布を用いて、悪臭ガスを徹底的に吸収することが可能な4層構造からなる立体式消臭マスクが提案されている(特許文献4)。この提案は、多孔質のセラミック粒子をセラミック粒子の1/3の面積を覆うようにアクリル系樹脂を用いてポリエステル系不織布に展着し、この消臭不織布の顔面側に捕集層としてミクロ繊維不織布を更に施してある。しかし、この発明の消臭性能は、ガス種類および消臭時間の記載がないため詳細は不明であるが、マスクとしての消臭効果ではなく、消臭不織布を単独で用いた消臭試験において96体積%の消臭率しか確認されておらず、実用的な消臭効果としては極めて効果が低い。臭気等に対する人の感覚はウェーバーフェヒナーの法則で知られているように、悪臭ガスが90体積%減少してもやっと半分程度に減少したと感じる程度であるため、消臭率は、最低でも99.9体積%以上、可能であれば99.99体積%以上でなければ、消臭効果を感じない。
 アンモニア系ガスを対象としたイオン交換機能をもつ布や紙または化学製品を挟んだ消臭マスクも提案されている(特許文献5)。イオン交換機能による消臭剤は化学吸着型消臭剤の1種であるため、高い消臭性能が得られる可能性がある。しかし、この文献には、具体的な消臭剤の成分や処方が記載されておらず、実用レベルの消臭効果が得られるか否かが不明であり、実現可能か否かも不明である。
 また、マスク本体を形成している不織布に酸化還元能を有する金属錯体を担持させた繊維および/または金属イオンを担持させた繊維を30~50質量%用いて椀状とした立体マスクも提案されている(特許文献6)。このような消臭剤も、化学吸着型消臭剤と考えられ、使用方法によっては高い消臭性能が得られる。しかし、単層構造のマスクとした場合、素通りした悪臭ガスが残りやすいため、やはり高い消臭効果は得られない。
 一方、少量で高度な消臭性能を発揮できる化学吸着型消臭剤が開発されている(特許文献7、特許文献8、特許文献9)。化学吸着型消臭剤は、反応により臭気を捕捉するため、短時間で消臭する効果がある。しかし、マスクが対象とする悪臭の性状は気体であり、消臭剤と悪臭ガスとの接触機会は一瞬である。消臭剤を担持する不織布にも通気性がある以上、不織布中の消臭剤に未接触で通過する悪臭ガスも必ず存在するため、悪臭をほぼ感じない程度に消臭するマスクは実現されていない。その一方、近年は快適性に対する要求が高まっており、悪臭ガスを効率よく吸着し、不快感を生じないような高い消臭性能を有するマスクが求められている。
特開2011-125596号公報 特開昭62-87174号公報 実開平5-33743号公報 特開2007-159796号公報 特開2005-152560号公報 実開平5-65354号公報 特開2000-279500号公報 特開2002-200149号公報 特開2011-104274号公報
 本発明の課題は、排泄臭、腐敗臭等の悪臭に対して優れた消臭効果を有する消臭マスクを提供することである。
 本発明者らは、鋭意検討した結果、化学吸着型消臭剤を含む消臭不織布層を用い、この消臭不織布層よりも通気性が低い防塵不織布層を顔面側に配置することにより上記課題を解決できることを見出した。すなわち、本発明は、化学吸着型消臭剤を含む消臭不織布層と、防塵効果を有する防塵不織布層とを備え、この防塵不織布層の通気性が消臭不織布層の通気性の2/3以下である消臭マスクである。
 本明細書において、悪臭の原因となる物質を「悪臭成分」といい、その悪臭成分を含むガスを「悪臭ガス」という。
 本発明においては、特に悪臭ガスに含まれる悪臭成分に対する反応速度の大きな化学吸着型消臭剤を用いることが好ましい。具体的には、化学吸着型消臭剤0.1gが1分で消臭可能な悪臭成分量が、6段階臭気強度表示法に基づく臭気強度5の悪臭ガスの10L分に含まれる悪臭成分の量以上であるものを用いることが好ましい。更に、消臭不織布層は、2種類以上の化学吸着型消臭剤を含むことが好ましい。
 本発明の消臭マスクは、排泄臭、腐敗臭等の悪臭に対して優れた消臭効果を有する。従って、悪臭ガスの漂う場所で着用することで、不快感が抑制される。
 また、本発明の消臭マスクは、下水処理場、排水処理場、畜産農場、ゴミ処理場、肥料工場、化学工場、食品工場、漁港、医療現場、排泄物を扱う介護現場、掃除現場、動物園、レストラン、便所等における使用に有用である。そして、瞬間的なガス流速の高い呼吸気に対して、悪臭ガスに含まれる悪臭成分との反応速度が大きい化学吸着型消臭剤を用いた場合には、着用直後からほぼ悪臭を感じないレベルの消臭効果が得られる。
本発明の消臭マスクの正面概略図である。 本発明の消臭マスクの断面概略図および実施例1の消臭マスクの断面拡大図である。 本発明における他の形態の消臭マスクの正面概略図である。 本発明における他の形態の消臭マスクの断面概略図である。 本発明における他の形態の消臭マスクの正面斜視概略図である。 本発明における他の形態の消臭マスクの背面概略図である。
 本発明は、化学吸着型消臭剤を含有する消臭不織布層と、防塵効果を有する防塵不織布層とをマスク本体部に備え、この防塵不織布層の通気性が消臭不織布層の通気性の2/3以下であり、防塵不織布層が顔面側となるよう構成された消臭マスクである。
 本発明の消臭マスクの構造は、着用者の鼻および口を覆う形状を備える限り、特に限定されない。マスク本体部は、例えば、平面構造、立体構造等とすることができる。立体構造の場合、プリーツ型、オメガプリーツ型またはカップ型マスク等とすることができる。
 本発明で用いる化学吸着型消臭剤とは、悪臭ガスに含まれる悪臭成分と化学結合を形成することにより、悪臭成分を吸着または分解して、消臭する材料である。化学結合の形態は、特に限定されず、化学吸着型消臭剤に含まれる官能基等に依存する場合がある。一般に、悪臭ガス用の消臭剤には、本発明における化学吸着型消臭剤のように化学吸着により悪臭成分を吸着するタイプ以外に、活性炭のように物理吸着により悪臭成分を吸着するタイプ、光触媒のように悪臭ガスを接触時に分解するタイプがある。しかし、マスク本体部に含有させて使用する場合、悪臭ガスが呼吸により通過する短時間で悪臭成分を吸着する必要があり、消臭速度の遅い物理吸着タイプや光を当てて分解させる分解タイプでは十分な効果が得られない。従って、消臭マスクに用いる消臭剤としては、短時間で悪臭成分を吸着することが可能であり、消臭速度の大きい化学吸着型消臭剤が最適である。
 化学吸着型消臭剤の場合、消臭不織布層を構成する不織布に多量に含ませることが難しい場合がある。従って、本発明に係る化学吸着型消臭剤としては、消臭容量と消臭速度に優れるものが好ましい。
 ここで、化学吸着型消臭剤における消臭容量(mL/g)とは、化学吸着型消臭剤1gが消臭可能な悪臭成分の量(mL)を意味する。また、化学吸着型消臭剤における消臭速度[mL/(0.1g・分)]とは、化学吸着型消臭剤0.1gが1分間で消臭可能な悪臭成分の量(mL)を意味する。
 本発明において、化学吸着型消臭剤の単位質量(g)あたりの消臭容量としては、6段階臭気強度表示法の臭気強度5における濃度(ppm)の数値を、消臭容量(mL/g)の単位に変えた値以上となるものが好ましい。
 この臭気強度とは、悪臭防止法等で定められている基準値であり、悪臭ガスに含まれる悪臭成分の種類によって、臭気強度に対応する濃度が設定されている。すなわち、臭気強度0が無臭、臭気強度1がやっと感知できる臭い、臭気強度2が何の臭いであるかわかる弱い臭い、臭気強度3が楽に感知できる臭い、臭気強度4が強い臭い、臭気強度5が強烈な臭いを示している。例えば、アンモニアの強烈な臭気強度5は40ppm、硫化水素の臭気強度5は8ppm、メチルメルカプタンの臭気強度5は0.2ppm、酢酸の臭気強度5は1.9ppm、アセトアルデヒドの臭気強度5は10ppm等である。
 尚、本明細書において、ガス濃度に関する単位「ppm」は「体積ppm」である。
 以上より、化学吸着型消臭剤の好ましい消臭容量の下限値としては、悪臭ガスの臭気強度5の濃度ppmをmL単位に置き換えた容量である。すなわち、アンモニアの場合、40ppmは40mL/gに置き換えられ、硫化水素の場合、8mL/gに置き換えられる。また、メチルメルカプタンの場合、0.2mL/gに置き換えられ、酢酸の場合、1.9mL/gに置き換えられる。更に、アセトアルデヒドの場合、10mL/gに置き換えられる。これは、消臭マスク1枚に含まれる化学吸着型消臭剤の含有量が0.1gであった場合、アンモニア40mL/gの消臭容量に基づいて、4mLのアンモニアを吸着可能であり、臭気強度5のガス濃度である40ppmならば悪臭ガス全体としては100L、臭気強度4のガス濃度10ppmであれば400Lの悪臭ガスが消臭可能である。また、臭気強度3のガス濃度2ppmであれば2000Lの悪臭ガスを消臭可能であることを意味する。よって、化学吸着型消臭剤が上記消臭容量の下限値以上であれば、生活空間で用いる消臭マスクとしては十分な消臭効果を有すると言える。上記のように、悪臭成分の種類によって、臭気強度5のガス濃度が異なるので、上記以外の悪臭成分またはそれを含む悪臭ガスの種類により、好ましい消臭容量の下限値を同様に決めることが好ましい。
 また、上記のように、化学吸着型消臭剤0.1gが1分間で消臭可能な悪臭成分の量を消臭速度として規定している。この理由は、マスクを装着した際のマスク断面方向における、呼吸気の移動速度が大きく、薄いマスクを通り抜ける際に十分な消臭効果を発揮し、消臭速度が速い化学吸着型消臭剤を用いることが好ましいからである。
 化学吸着型消臭剤の消臭速度である、化学吸着型消臭剤0.1gが1分で消臭可能な悪臭成分の量は、好ましくは臭気強度5の悪臭ガス10Lに含まれる量以上であり、より好ましくはその2倍量以上であり、更に好ましくはその5倍量以上である。すなわち、成人1分間の呼吸量は、大凡10Lである。そして、アンモニアの場合、臭気強度5の濃度は40ppmであり、呼吸量に相当する10L中に存在するアンモニア量(40ppm×10L)は、0.4mLである。アンモニア吸着用消臭剤を用いる場合、アンモニアを0.1gの化学吸着型消臭剤に1分以内で吸着させる消臭速度を有することが好ましい。消臭速度が、臭気強度5の悪臭ガス10Lに含まれる悪臭成分の量より少ない場合は、化学吸着型消臭剤を多量に消臭不織布層に含有させなければならないため、通気量の制御が難しくなり、マスクの着け心地にも影響を及ぼす場合がある。また、経済的にも不利な場合がある。
 化学吸着型消臭剤が対象とする悪臭成分の具体例としては、アンモニアガス、アミン等の塩基性ガス、酢酸、イソ吉草酸等の酸性ガス、ホルムアルデヒド、アセトアルデヒド、ノネナールのようなアルデヒド系ガス、硫化水素、メチルメルカプタン等の硫黄系ガス等である。
 これらの悪臭成分に対する化学吸着型消臭剤としては、無機系化学吸着型消臭剤および有機系化学吸着型消臭剤が挙げられる。無機系化学吸着型消臭剤としては、具体的には、4価金属リン酸塩、非晶質複合酸化物、合成ゼオライト等が挙げられる。また、有機系化学吸着型消臭剤としては、ヒドラジド化合物等があげられる。マスクに使用することを考慮すると、安全性に優れ、変質しにくい消臭剤が望ましいため、水に対して不溶性または難溶性の無機系の化学吸着型消臭剤が好ましい。
 本発明における化学吸着型消臭剤の形状は、特に限定されない。粒状物の場合、その粒度に制限はないが、細かいほど消臭効率に優れ、不織布への添着加工がしやすく、更に加工後の脱落等も発生し難いため好ましい。本発明に用いる化学吸着型消臭剤のレーザー回折式粒度分布測定機で測定したメジアン径は、好ましくは0.05~100μm、より好ましくは0.1~50μm、更に好ましくは0.2~30μmである。
 また、化学吸着型消臭剤は、悪臭ガスと接触する効率が高いほど、優れた消臭効果も得られることから、比表面積は、好ましくは10~800m2/g、より好ましくは30~600m2/gである。比表面積は、窒素吸着量から算出するBET法により測定することができる。
 これらの化学吸着型消臭剤は、1種単独でもよいし、2種以上を組み合わせて用いてもよい。消臭対象(悪臭成分)の異なる2種類の化学吸着型消臭剤を用いることにより、相乗的な効果が得られることもある。例えば、排泄物や生ごみの臭気に対しては、塩基性ガス用化学吸着型消臭剤および硫黄系ガス用化学吸着型消臭剤の組み合わせが好適であり、汗臭等の体臭に対しては、塩基性ガス用化学吸着型消臭剤および酸性ガス用化学吸着型消臭剤の組み合わせが好適である。また、タバコ臭に対しては、塩基性ガス用化学吸着型消臭剤、酸性ガス用化学吸着型消臭剤、およびアルデヒドガス用化学吸着型消臭剤の組み合わせが適している。2種類以上の化学吸着型消臭剤を組み合わせて用いる場合の使用量の割合は、用いる化学吸着型消臭剤の消臭容量や消臭速度等の消臭性能と、目的とする環境のガス濃度(悪臭成分の濃度)により選択することが好ましい。2種類の化学吸着型消臭剤を使用して、複数の悪臭成分を含む悪臭ガスを消臭する場合、凡その質量割合は、10:90~90:10であり、1種類の化学吸着型消臭剤の配合割合が10質量%より少ないと、十分な消臭性能が得られない場合がある。尚、化学吸着型消臭剤の種類によっては、混合することで消臭効果が低減することもあるため、2種類の化学吸着型消臭剤を混合後、そのまま加工に用いるか、混合せずに、別々に加工するかを選択して行う必要がある。次に、本発明で用いることのできる化学吸着型消臭剤を例示する。
(A)4価金属リン酸塩
 化学吸着型消臭剤として用いることのできる4価金属リン酸塩は、好ましくは、下記式(1)で表される化合物である。この化合物は、水に対して不溶性または難溶性であり、塩基性ガスに対する消臭効果に優れる。
  Hab(PO4cn2O             (1)
(式中、Mは、4価金属であり、a,bおよびcは、式(a+4b=3c)を満たす正の整数であり、nは0または正の整数である。
 好ましい具体例としては、リン酸ジルコニウム、リン酸ハフニウム、リン酸チタン、リン酸スズ等が挙げられる。これらの化合物には、α型結晶、β型結晶、γ型結晶等、種々の結晶系を有する結晶質のものと非晶質のものがあるが、いずれも好ましく用いることができる。
(B)非晶質複合酸化物
 化学吸着型消臭剤として用いることのできる非晶質複合酸化物は、好ましくは、Al23、SiO2、MgO、CaO、SrO、BaO、ZnO、ZrO2、TiO2、WO2、CeO2、Li2O、Na2O、K2O等から構成される非晶質の化合物である。この複合酸化物は、水に対して不溶性または難溶性であり、塩基性ガスに対する消臭効果に優れる。X2O-Al23-SiO2(Xは、Na、K、およびLiから選ばれる少なくとも1種のアルカリ金属原子)で示される非晶質複合酸化物が、消臭性能に優れることから、特に好ましい。非晶質であることは、粉末X線回折測定を行ったときに、結晶面に基づく明らかな回折シグナルが認められないことを意味し、具体的には、横軸に回折角、縦軸に回折シグナル強度をプロットしたX線回折チャートに、尖度の高い(いわゆるシャープな)シグナルピークがほとんど現れないものである。
(C)アミン化合物担持無機化合物
 化学吸着型消臭剤として用いることのできるアミン化合物担持無機化合物は、好ましくは、アルデヒド系ガスと反応する有機化合物であるヒドラジン系化合物またはアミノグアニジン塩を担持した無機化合物である。この化合物は、アルデヒド系ガスに対する消臭効果に優れる。ヒドラジン系化合物としては、アジピン酸ジヒドラジド、カルボヒドラジド、コハク酸ジヒドラジド、シュウ酸ジヒドラジドが例示され、アミノグアニジン塩としては、アミノグアニジン塩酸塩やアミノグアニジン硫酸塩、アミノグアニジン重炭酸塩等が例示される。一方、これらアミン化合物を担持する無機化合物としては、非晶質複合酸化物やシリカゲル、ゼオライト等が例示される。
(D)水和酸化ジルコニウム、酸化ジルコニウム
 化学吸着型消臭剤として用いることのできる水和酸化ジルコニウムおよび酸化ジルコニウムは、好ましくは、非晶質化合物である。これらの化合物は、水に対して不溶性または難溶性であり、酸性ガスに対する消臭効果に優れる。水和酸化ジルコニウムは、オキシ水酸化ジルコニウム、水酸化ジルコニウム、含水酸化ジルコニウム、酸化ジルコニウム水和物と同義の化合物である。
(E)活性酸化物
 化学吸着型消臭剤として用いることのできる活性酸化物は、好ましくは、非晶質化合物である。この活性酸化物は、水に対して不溶性または難溶性であり、酸性ガスまたは硫黄系ガスに対する消臭効果に優れる。具体的にはAl23、SiO2、MgO、CaO、SrO、BaO、ZnO、CuO、MnO、ZrO2、TiO2、WO2、CeO2等が挙げられる。また、表面処理された活性酸化物をも用いることができる。表面処理の具体例としては、オルガノポリシロキサンで表面処理した活性酸化物や、アルミニウム、ケイ素、ジルコニウムまたはスズの酸化物あるいは水酸化物で表面を被覆した活性酸化物がある。オルガノポリシロキサン等の有機系材料で表面処理する方が無機系材料で表面処理するよりも、消臭性能が高いので好ましい。
(F)ハイドロタルサイト系化合物
 化学吸着型消臭剤として用いることのできるハイドロタルサイト系化合物は、好ましくは、下記式(2)で表されるハイドロタルサイト構造を有する化合物である。この化合物は、水に対して不溶性または難溶性であり、酸性ガスに対する消臭効果に優れる。
 M1 (1-x)2 x(OH)2n- (x/n)・mH2O   (2)
(式中、M1は2価の金属イオンであり、M2は3価の金属イオンであり、xは0より大きく0.5以下の数であり、An-は炭酸イオン、硫酸イオン等のn価の陰イオンであり、mは正数である。)
 ハイドロタルサイト系化合物としては、マグネシウム-アルミニウムハイドロタルサイト、亜鉛-アルミニウムハイドロタルサイト等が挙げられるが、最も好ましくはマグネシウム-アルミニウムハイドロタルサイトである。また、ハイドロタルサイトの焼成物もハイドロタルサイト系化合物に含まれ、ハイドロタルサイト化合物を約500℃以上で焼成し、炭酸根や水酸基が脱離することにより得られる化合物である。
(G)銀、銅、亜鉛またはマンガンを少なくとも1種を含有する化合物
 化学吸着型消臭剤として用いることのできる、銀、銅、亜鉛およびマンガンのうちの少なくとも1種を含有する化合物は、好ましくは、水に対して不溶性または難溶性の化合物である。この化合物は、硫黄系性ガスに対する消臭効果に優れる。銀、銅、亜鉛およびマンガンのうちの少なくとも1種を含有する好ましい化合物には、酸化物、水酸化物、リン酸、硫酸等の無機酸の塩、酢酸、蓚酸、アクリル酸等の有機酸の塩、銅、亜鉛またはマンガンを少なくとも1種担持させた水に不溶性の無機化合物等が例示される。無機化合物に担持させる金属の中で、消臭性能が高く、安価であることから、銅、亜鉛またはマンガンが好ましい。銀、銅、亜鉛またはマンガンを担持させる担体として好ましい無機化合物は4価金属リン酸塩、ゼオライトおよび多孔質二酸化珪素等である。
(H)ゼオライト
 化学吸着型消臭剤として用いることのできるゼオライトは、好ましくは、合成ゼオライトである。上記ゼオライトは、水に対して不溶性または難溶性であり、塩基性ガスに対する消臭効果に優れる。ゼオライトの構造は多様であるが公知のものはいずれのものも使用でき、構造としては、A型、X型、Y型、α型、β型、ZSM-5、アモルファス等がある。
 以上に挙げた化学吸着型消臭剤のうち、消臭容量が悪臭ガスの臭気強度5の濃度ppmをmL単位に置き換えた容量を有し、消臭速度が臭気強度5の悪臭ガス10Lに含まれる量以上であるものとしては、アンモニアに対するリン酸ジルコニウムやアモルファスゼオライト、硫化水素に対するCuO・SiO2複合酸化物、メチルメルカプタンに対するCuO・Al23・SiO2複合酸化物、酢酸および硫化水素に対する活性酸化亜鉛、アセトアルデヒドに対するアジピン酸ジヒドラジド、イソ吉草酸に対する含水酸化ジルコニウム等を挙げることができる。
 本発明の消臭マスクに使用可能な消臭不織布層の面積は、通常、0.01~0.04m2程度であり、例えば、0.02m2の消臭用不織布に化学吸着型消臭剤を5g/m2で含有させた場合、化学吸着型消臭剤の含有量は0.1gとなる。一方、消臭不織布層の単位面積当たりの化学吸着型消臭剤の含有量は、多い方が好ましい。しかし、含有量が多くなるにつれて、消臭不織布層の通気性とコストも上昇する。これを考慮して、含有量の範囲を決めることが好ましい。化学吸着型消臭剤1種あたりの消臭不織布層における含有量は、好ましくは1g/m2以上、より好ましくは3g/m2以上、更に好ましくは5g/m2以上である。また、2種類以上の化学吸着型消臭剤を用いる場合の合計含有量は、好ましくは5g/m2以上、より好ましくは7g/m2以上、更に好ましくは9g/m2以上である。本発明に係る消臭不織布層としては、複数の消臭用不織布に、互いに異なる化学吸着型消臭剤を加工した後、積層して得られた多層体からなる消臭不織布層を用いることもできる。好ましくは、1種の不織布に、2種類以上の化学吸着型消臭剤を一括して、あるいは、1種ずつ、順次加工して、複数の化学吸着型消臭剤を含有した消臭用不織布を用いることである。
 消臭不織布層における化学吸着型消臭剤の含有方法は、特に限定されず、一般的な加工方法を用いることができる。例えば、その化学吸着型消臭剤の加工方法としては、繊維自体への錬り込みや、エマルション等のバインダーと化学吸着型消臭剤とを含むバインダー組成物を繊維表面に接触させて消臭剤を付着させる展着加工、バインダーを用いないで化学吸着型消臭剤を不織布を構成する繊維表面に付着させ、熱処理や化学処理によって定着させる方法等が挙げられる。これらのうち、好ましい加工方法としては、簡便に処理できて効果の現れやすいバインダー樹脂を含む組成物を用いた展着加工である。この展着加工に用いることのできるバインダー樹脂は、特に限定されないが、以下のものが例示できる。すなわち、天然樹脂、天然樹脂誘導体、フェノール樹脂、キシレン樹脂、尿素樹脂、メラミン樹脂、ケトン樹脂、クマロン・インデン樹脂、石油樹脂、テルペン樹脂、環化ゴム、塩化ゴム、アルキド樹脂、ポリアミド樹脂、ポリ塩化ビニル、アクリル系樹脂、塩化ビニル・酢酸ビニル共重合樹脂、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルプラチラール、塩素化ポリプロピレン、スチレン樹脂、エポキシ樹脂、ウレタン系樹脂およびセルロース誘導体等である。これらのうち、特に好ましいものとしては、アクリル系樹脂またはウレタン系樹脂である。尚、上記バインダー樹脂は、1種単独で、または2種以上を組み合わせて使用することができる。また、上記バインダー樹脂は、展着加工により不織布の折り畳み性や熱融着性、および通気性の制御を損ねずに化学吸着型消臭剤を脱落なく固着させることができるものが好ましく、更に臭気の少ないものがより好ましい。
 展着加工に用いるために、バインダー樹脂と化学吸着型消臭剤とを配合したバインダー組成物を用いる場合、バインダー組成物中のエマルションに由来する樹脂固形分に対する化学吸着型消臭剤の含有割合は、特に限定されないが、バインダー樹脂の比率が大きいほど、消臭剤の固定力が高まって消臭剤の脱落が減少する点では好ましい。その一方で、バインダー樹脂固形分の比率が小さいほど消臭剤が悪臭ガスと接触しやすくなり消臭効果に優れるものとなる。従って、両者のバランスから、バインダー樹脂および化学吸着型消臭剤の割合は、バインダー樹脂および消臭剤の合計を100質量%とした場合に、それぞれ、好ましくは10~90質量%および10~90質量%の範囲であり、より好ましくは25~60質量%および40~75質量%の範囲である。
 化学吸着型消臭剤を含むバインダー組成物には、バインダー樹脂用の添加剤を加えることにより、消臭性能以外の作用を有する複合機能化や加工性の向上等を図ることができる。添加剤としては、分散剤、消泡剤、粘度調整剤、顔料、染料、芳香剤、物理吸着型消臭剤、抗菌剤、抗ウイルス剤、抗アレルゲン剤等が挙げられる。添加剤の配合量は、目的を考慮し適正量が必要とはなるが、化学吸着型消臭剤の消臭効果の低下や消臭用不織布の物性やマスク加工性に影響を及ぼさないようにする必要がある。
 化学吸着型消臭剤とバインダーとを用いたバインダー組成物の調製方法としては、無機粉末等の一般的な分散方法を適用することができる。例えば、アクリル系樹脂のエマルションに分散剤等の添加剤を加え、更に化学吸着型消臭剤を添加し、サンドミル、ディスパー、ボールミル等により攪拌し分散させればよい。消臭剤を含有するバインダー組成物中の化学吸着型消臭剤の固形分濃度が大きいほど、バインダー組成物の粘度が上がってハンドリングは難しくなる一方、安定性は良くなる傾向がある。そのため、バインダー組成物の中での消臭剤の固形分濃度としては5~60質量%が好ましい。バインダー組成物の粘度を調節するために、消臭性能に影響を与えない範囲で、粘度調整剤等を加えることもできる。
 化学吸着型消臭剤を含有するバインダー組成物による不織布への展着加工方法に制限はなく、例えば、浸漬法、スプレー法、パディング法等を使用できる。浸漬法の例としては、室温静置法、加熱撹拌法等が挙げられる。パディング法としては、パッドドライ法、パッドスチーム法等があり、いずれの方法を使用してもよい。このようにして得られた塗膜付き不織布は、乾燥工程にかけて水分を適宜除去することにより、バインダー樹脂が機能を発揮して化学吸着型消臭剤が不織布に固定される。このときの乾燥温度は、特に制限はないが、例えば、50℃~150℃程度とすればよく、80℃~120℃程度とすることが好ましい。好ましい乾燥時間は、乾燥温度にもよるが、5分~12時間、より好ましくは10分~2時間である。このような条件で乾燥することによって、化学吸着型消臭剤を不織布に定着させることができる。
 本発明における防塵不織布層は、通気性以外の制限はなく、マスクの製造に一般的に用いられる、防塵機能を有する防塵用不織布を、目的に応じて、適宜選択し、使用することができる。マスクの防塵性能(濾過性能)の規格は国によって異なっている。一般には、米国 NIOSH(National Institute of Occupational Safety and Health)が定めた9種類の基準で表示されることが多い。NIOSHの9種類の基準とは、耐油性に関する3種類の基準である「N(耐油性なし)」「R(耐油性あり)」「P(防油性あり)」とフィルターで最も捕集しづらい0.1~0.3μmの粒子の捕集率が「95(95%以上除去できる)」「99(99%以上除去できる)」「100(99.97%以上除去できる)」の組み合わせで表示され、N95、N99、N100、R95等で記載される。他にもマスクの防塵性能を表す指標はあり、例えば、BFE(細菌濾過効率)およびPFE(微粒子濾過効率)がある。BFEは、マスクによって細菌を含む粒子(平均粒子径4.0~5.0マイクロメートル)が除去された割合(%)であり、PFEは、試験粒子(0.1マイクロメートルのポリスチレン製ラテックス球形粒子)が除去された割合(%)である。例えば、アメリカ食品衛生局では、サージカルマスクの基準をBFE95%以上と規定している。
 本発明の消臭マスクの製造に用いる、消臭用不織布および防塵用不織布としては、スパンボンド不織布、メルトブローン不織布、フラッシュ紡糸不織布、スパンレース不織布、エアレイド不織布、サーマルボンド不織布、ニードルパンチ不織布、ケミカルボンド不織布、紙等が挙げられる。また、これらの不織布に含まれる繊維を構成する樹脂としては、ポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリル酸、ポリアミド、ポリビニルアルコール、ポリウレタン、ポリビニルエステル、ポリメタクリル酸エステル、レーヨン等が挙げられる。これらの樹脂のなかでも、化学吸着型消臭剤をバインダーを用いた展着加工をする場合には、バインダーの接着性、展着加工された不織布の折り畳み加工性、通気性等の点から、ポリエチレン、ポリプロピレン、ポリエステルおよびレーヨンが好ましい。消臭用不織布および防塵用不織布のいずれにおいても、これらの樹脂を単独で含む繊維からなる不織布であってよいし、複数種類の樹脂繊維からなる不織布であってもよい。
 上記の消臭用不織布および防塵用不織布を構成する繊維の平均径は、通常、5~30μm、好ましくは10~25μmである。
 上記の消臭用不織布および防塵用不織布の目付は、10~90g/m2が好ましい。目付が10g/m2以下の場合、化学吸着型消臭剤が不織布の空隙に詰まり、通気度が低下することがある。一方、目付が90g/m2を超えると、化学吸着型消臭剤を付着させる際の加工性が低下し、マスク本体部が厚くなる。本発明では、いずれも、複数の不織布からなる、多層型の消臭用不織布または防塵用不織布を用いることもできるが、その場合は、各々、用いた不織布の目付の合計が、上記の範囲にあることが好ましい。
 上記の消臭不織布層および防塵不織布層に係る通気性は、フラジール形試験機を用いたJIS L1096フラジール形法により測定された値を用いて定義することができる。本発明に係るマスク本体部において、通気性が大きいほど、呼気に対する抵抗が少なくて呼吸しやすいが、通気性が小さいと、消臭効果が発揮されやすくなる。防塵不織布層のフラジール形法通気量は、好ましくは10~120cm3/(cm2・s)、より好ましくは20~100cm3/(cm2・s)である。また、消臭不織布層のフラジール形法通気量は、好ましくは40~400cm3/(cm2・s)、より好ましくは60~350cm3/(cm2・s)である。マスク本体部の空気抵抗と消臭性能のバランスが消臭マスクの商品価値を高めるためには重要であり、このようなバランスは、本発明で初めて達成されたものである。
 本発明の消臭マスクは、化学吸着型消臭剤を含有する消臭不織布層と、防塵効果を有する防塵不織布層とを備え、防塵不織布層の通気性が、消臭不織布層の通気性の2/3以下であることが必須である。このような構成を有し、顔面側に防塵不織布層が位置するように用いることにより、悪臭に対する優れた消臭性能を有し、使用時における悪臭ガスの吸入を抑制することができる。
 また、本発明においては、消臭不織布層と防塵不織布層との間に、本願発明の効果に影響を及ぼさない範囲で、その他の層を備えることもできる。その他の層としては、通気性を有するものであれば、形状および材質等の構成は、特に限定されず、不織布層でも織布層でも構わない。好ましくは消臭不織布層以上の通気性を有するものである。
 また、本願発明の消臭マスクとしては、好ましくは、消臭不織布層が防塵不織布層に隣接した構造を有することである。消臭不織布層が防塵不織布層に接するように配置されている場合、本発明の効果を効率的に発揮することができる。また、上記のように、防塵不織布層は、複数の不織布の多層体からなるものであっても良く、消臭不織布層は、複数の不織布の多層体からなるものであっても良い。更に、多層体からなる消臭不織布層は、それぞれの不織布に、異なる化学吸着型消臭剤を加工したものであっても良い。
 顔面側の防塵不織布層の通気性と消臭不織布層の通気性との差によって、本願発明の効果が生じる。その「差」とは、防塵不織布層の通気性が、フラジール形法通気量で消臭不織布層の2/3以下であり、好ましくは1/2以下、より好ましくは2/5以下である。好ましい下限としては、防塵不織布層の通気性が、フラジール形法通気量で消臭不織布層の1/20であり、より好ましくは1/10である。防塵不織布層や消臭不織布層の両方が多層体からなるときは、それぞれの多層体全体の通気性によって上記の効果が生ずる。
 本発明の消臭マスクを製造する場合には、化学吸着型消臭剤を含有する消臭用不織布と、通気性が消臭用不織布の2/3以下の防塵用不織布とを、通気部分(通常、周縁部により囲まれた部分)を接着させずに周縁部のみを接着することが好ましい。すなわち、多層体からなる不織布のずれを防止するために、通気部分でないマスク本体部の周縁部等において、熱融着または接着、縫製等の方法で固定することができる。顔面側および外気側には、更に他の不織布を配設してもよい。他の不織布は、樹脂種類等において、特に制限はないが、消臭用不織布および防塵用不織布のいずれに対しても、同等かそれ以上、更に好ましくは2倍以上の通気性を有するものが好ましい。例えば、外気側にはポリプロピレン製不織布等の撥水性不織布が好ましく用いられ、顔面側には柔軟なレーヨン製またはポリオレフィン製不織布等が好ましく用いられる。
 本発明において、より通気性の低い防塵不織布層が顔面側となるよう構成されたことで、吸気を行ったときに消臭不織布層にかかる負圧が均等になり、消臭不織布層の全体がまんべんなく有効利用されて悪臭成分の濃度が低くなった空気が形成されるためと考えられる。顔面側の防塵不織布層の通気性が消臭不織布層よりも高い場合や、顔面側に防塵不織布層が存在しない場合では、消臭不織布層の中の部分的に圧損の少ない部分でいわゆるチャネリング現象が生ずると考えられる。それにより、悪臭成分が残存した空気が形成される。そして、悪臭ガスを吸入したり、消臭マスクの寿命が短くなること等が考えられる。
 また、本発明の消臭マスクは、立体構造マスクであることが好ましい。消臭マスクは、使用者の鼻腔の前面で消臭機能を発揮させる必要があり、実用上要求される特性は、通気性や使用感が重視される。こうした要求に応えるため、通気抵抗が少なく、かつ軽量な消臭剤が必要とされているために、マスク用不織布に加工できる消臭剤の量は、良好な通気性や使用感を維持できる範囲に限定されている。更に消臭マスクでは、顔の凹凸に由来する隙間から臭気が吸引されることを防ぐために、口と鼻の部分を完全に覆うような立体構造であることが好ましい。そこで、マスク本体部を立体的に加工することで、顔に密着しやすい形状とした各種立体構造マスクまたは3次元マスクであることが好ましい。3次元マスクには立体型といわれるお椀型およびカップ型、ならびに不織布を折りたたんだプリーツ型およびオメガプリーツ型があるが、オメガプリーツ型が複層構造の不織布を用いて製造しやすく、消臭に有効な不織布の使用面積を広くできる点でも好ましい。
 マスク本体部を構成する不織布の選択と積層方法の他は、このような形状の立体構造マスクの製造方法自体は、当業者には知られたものであり、マスク本体部の形状としても図1に示すような長方形で10cm×18cm程度の長方形を基本としてプリーツの形状や寸法等も、適宜設定することができる、ノーズワイヤー(マスク本体部の一部周縁部を鼻の形状に合わせて形状保持させるための針金)や耳かけ部、補強シール等の部品も公知のものが適宜使用できる。更に、製造時に係る組み立て加工のため、熱シール装置等も公知のものが使用できる。
 本発明の消臭マスクは、下水処理場、ゴミ処理場、畜産農場、肥料工場、化学工場、食品工場、漁港、医療現場、排泄物を扱う介護現場、掃除現場、動物を扱う動物園、レストラン、便所等における使用に好適である。
 以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
 化学吸着型消臭剤のメジアン径は、レーザー回折式粒度分布を用いて体積基準により測定した。
 各種消臭試験でのガス濃度は、それぞれのガスに対応するガス検知管を用いて測定した。
 通気性は、JIS L1913:2010に規定された、フラジール形法により測定した。単位はcm3/(cm2・s)である。なお、PP製不織布(平均繊維径15μm、目付20g/cm2)の通気性は220cm3/(cm2・s)、レーヨン製不織布(平均繊維径22μm、目付25g/cm2)の通気性は405cm3/(cm2・s)、PP繊維およびPE繊維からなるPP-PE混成不織布(平均繊維径20μm、目付25g/cm2)の通気性は280cm3/(cm2・s)であった。
 消臭速度試験としては、消臭剤0.1gが1分で消臭可能な対象とする悪臭ガスに対する消臭量を測定し、その消臭量を消臭速度とした。
 消臭速度試験は以下のように行った。
 消臭剤0.1gをテドラーバッグに入れ密封後、臭気強度5の濃度の50倍濃度(アンモニア2000ppm、硫化水素400ppm、メチルメルカプタン10ppm、酢酸95ppm、アセトアルデヒド500ppm、イソ吉草酸15ppm)の悪臭ガス1Lを加え、1分後に残存ガス濃度をガス検知管で測定した。そして、残存臭気ガス濃度、下記の方法によって得られたそれぞれの消臭剤の消臭速度[mL/(0.1g・分)]の値、および、消臭容量(mL/g)を表1に示した。
 消臭速度[mL/(0.1g・分)]は、1000(mL)×(初期悪臭ガス濃度(ppm)-残存ガス濃度(ppm))×10-6/(0.1g・分)により算出した。
 また、消臭容量を算出する消臭容量試験は以下のように行った。
 消臭剤0.01gをテドラーバッグに入れ密封後、臭気強度5の濃度の200倍濃度(アンモニア8000ppm、硫化水素1600ppm、メチルメルカプタン40ppm、酢酸380ppm、アセトアルデヒド2000ppm、イソ吉草酸60ppm)の悪臭ガス2Lを加え、その24時間後に残存ガス濃度をガス検知管で測定した。
 消臭容量(mL/g)の値は、2000(mL)×(初期悪臭ガス濃度(ppm)-残存ガス濃度(ppm))×10-6/0.01(g)により算出した。
 表1に挙げた消臭剤は、物理吸着型消臭剤である活性炭を除くといずれも化学吸着型消臭剤であり、ここに挙げた化学吸着型消臭剤は消臭速度の試験の結果、消臭剤0.1gの消臭剤は、対象の悪臭ガスの臭気強度5に相当する濃度の悪臭ガス10Lを1分で消臭できる性能またはそれより大きな性能を有するものであることが示されている。
 消臭官能試験は、臭気強度5の濃度の悪臭ガス(アンモニア40ppm、硫化水素8ppm、メチルメルカプタン0.2ppm、酢酸1.9ppm、アセトアルデヒド10ppm)1Lを臭気袋に充填し、5人の被験者が消臭マスクを着用した状態で各々が臭気袋内の臭いを嗅ぎ、以下の基準に従って、臭気強度を判定した。5人の臭気強度を平均し、官能試験での臭気強度の結果とした。
 臭気強度0;無臭。
 臭気強度1;臭いがやっと感知できる。
 臭気強度2;何の臭いか分かる。
 臭気強度3;臭いが楽に感知できる。
 臭気強度4;臭いが強い。
 臭気強度5;臭いが強烈。
Figure JPOXMLDOC01-appb-T000001
 参考例1(消臭用不織布Aの作製)
 アンモニア用化学吸着型消臭剤として標準状態のアンモニアガスに対する消臭容量が190mL/gであり、消臭速度が2mL/(0.1g・分)であるリン酸ジルコニウムと、硫化水素用化学吸着型消臭剤として標準状態の硫化水素ガスに対する消臭容量が98mL/gであり、消臭速度が0.4mL/(0.1g・分)を超えるCuO・SiO2複合酸化物とを用いた。そして、リン酸ジルコニウムの含有量が2部、CuO・SiO2複合酸化物の含有量が6部、およびアクリルエマルション樹脂固形分の含有量が5部の質量比率になるように、リン酸ジルコニウム粉末、CuO・SiO2複合酸化物粉末およびアクリルエマルションを用いて、固形分濃度が10質量%の消臭剤含有アクリルエマルションAを調製した。この消臭剤含有アクリルエマルションAを、レーヨン繊維60質量%、PP繊維20質量%およびPET繊維20質量%からなる不織布(平均繊維径18μm、目付50g/cm2)に、リン酸ジルコニウムの展着量が2g/m2、CuO・SiO2複合酸化物の展着量が6g/m2、となるように、均一に塗布した後乾燥して、消臭用不織布Aを作製した。この消臭用不織布Aのフラジール形法通気量は、188cm3/(cm2・s)であった(表2参照)。
 参考例2(消臭用不織布Bの作製)
 アンモニア用化学吸着型消臭剤として標準状態のアンモニアガスに対する消臭容量が190mL/gであり、消臭速度が2mL/(0.1g・分)であるリン酸ジルコニウムと、メチルメルカプタン用化学吸着型消臭剤として標準状態のメチルメルカプタンガスに対する消臭容量が48mL/gであり、消臭速度が0.01mL/(0.1g・分)を超えるCuO・Al23・SiO2複合酸化物とを用いた。そして、リン酸ジルコニウムの含有量が4部、CuO・Al23・SiO2複合酸化物の含有量が4部、およびアクリルエマルション樹脂固形分の含有量が3部の質量比率になるように、リン酸ジルコニウム粉末、CuO・Al23・SiO2複合酸化物粉末およびアクリルエマルションを用いて、固形分濃度が10質量%の消臭剤含有アクリルエマルションBを調製した。この消臭剤含有合アクリルエマルションBを、レーヨン繊維60質量%、PE繊維30質量%およびPET繊維10質量%からなる不織布(平均繊維径16μm、目付45g/cm2)に、リン酸ジルコニウムの展着量が4g/m2、CuO・Al23・SiO2複合酸化物の展着量が4g/m2、となるように、均一に塗布した後乾燥して、消臭用不織布Bを作製した。この消臭用不織布Bのフラジール形法通気量は、246cm3/(cm2・s)であった(表2参照)。
 参考例3(消臭用不織布Cの作製)
 アンモニア用化学吸着型消臭剤として標準状態のアンモニアガスに対する消臭容量が53mL/gであり、消臭速度が0.9mL/(0.1g・分)であるアモルファスゼオライトと、酢酸用化学吸着型消臭剤として標準状態の酢酸ガスに対する消臭容量が28mL/gであり、消臭速度が0.095mL/(0.1g・分)を超える活性酸化亜鉛と、アルデヒド用化学吸着型消臭剤として標準状態のアセトアルデヒドガスに対する消臭容量38mL/gであり、消臭速度が0.3mL/(0.1g・分)であるアジピン酸ジヒドラジド30%担持シリカゲルとを用いた。そして、アモルファスゼオライトの含有量が2部、活性酸化亜鉛の含有量が4部、アジピン酸ジヒドラジド30%担持シリカゲルの含有量が2部、およびアクリルエマルション樹脂固形分の含有量が6部の質量比率になるように、アモルファスゼオライト粉末、活性酸化亜鉛粉末、アジピン酸ジヒドラジド30%担持シリカゲル粉末およびアクリルエマルションを用いて、固形分濃度が10質量%の消臭剤含有アクリルエマルションCを調製した。この消臭剤含有アクリルエマルションCを、レーヨン繊維60質量%、PP繊維20質量%およびPET繊維20質量%からなる不織布(平均繊維径17μm、目付48g/cm2)に、リン酸ジルコニウムの展着量が2g/m2、活性酸化亜鉛の展着量が4g/m2、アジピン酸ジヒドラジド30%担持のシリカゲルの展着量が2g/m2となるように、均一に塗布した後乾燥して、消臭用不織布Cを作製した。この消臭用不織布Cのフラジール形法通気量は、190cm3/(cm2・s)であった(表2参照)。
 参考例4(消臭用不織布Dの作製)
 アンモニア用化学吸着型消臭剤として標準状態のアンモニアガスに対する消臭容量が190mL/gであり、消臭速度が2mL/(0.1g・分)であるリン酸ジルコニウムと、イソ吉草酸用化学吸着型消臭剤として標準状態のイソ吉草酸ガスに対する消臭容量が18mL/gであり、消臭速度が0.015mL/(0.1g・分)を超えるオキシ水酸化ジルコニウム(別名:含水酸化ジルコニウム)とを用いた。そして、リン酸ジルコニウムの含有量が3部、オキシ水酸化ジルコニウムの含有量が3部、およびアクリルエマルション樹脂固形分の含有量が4部の質量比率になるように、リン酸ジルコニウム、オキシ水酸化ジルコニウムおよびアクリルエマルションを用いて、固形分濃度が10質量%の消臭剤含有アクリルエマルションDを調製した。この消臭剤含有アクリルエマルションDを、レーヨン繊維60質量%、PP繊維20質量%およびPET繊維20質量%からなる不織布(平均繊維径15μm、目付40g/cm2)に、リン酸ジルコニウムの展着量が3g/m2、オキシ水酸化ジルコニウムの展着量が3g/m2となるように、均一に塗布した後乾燥して、消臭用不織布Dを作製した。この消臭用不織布Dのフラジール形法通気量は、211cm3/(cm2・s)であった(表2参照)。
 参考例5(消臭用不織布Eの作製)
 アンモニア用物理吸着型消臭剤として、標準状態のアンモニアガスに対する消臭容量が9.8mL/gであり、消臭速度が0.3mL/(0.1g・分)である活性炭を用いた。そして、活性炭の含有量が5部、およびアクリルエマルション樹脂固形分の含有量が4部の質量比率となるように、活性炭およびアクリルエマルションを用いて、固形分濃度が10質量%の消臭剤含有アクリルエマルションEを調製した。この消臭剤含有アクリルエマルションEを、レーヨン繊維60質量%、PP繊維20質量%およびPET繊維20質量%からなる不織布(平均繊維径18μm、目付50g/cm2)に均一に、活性炭の展着量が5g/m2となるように、均一に塗布した後乾燥して、消臭用不織布Eを作製した。この消臭用不織布Eのフラジール形法通気量は、251cm3/(cm2・s)であった(表2参照)。
 参考例6(消臭用不織布Jの作製)
 参考例1で調製した消臭剤含有アクリルエマルションAを、PE繊維60質量%、PP繊維20質量%およびPET繊維20質量%からなる不織布(平均繊維径18μm、目付50g/cm2)に、リン酸ジルコニウムの展着量が2g/m2、CuO・SiO2複合酸化物の展着量が6g/m2となるように、均一に塗布した後乾燥して、消臭用不織布Jを作製した。この消臭用不織布Jのフラジール形法通気量は、210cm3/(cm2・s)であった(表2参照)。
Figure JPOXMLDOC01-appb-T000002
 参考例7(防塵用不織布)
 レーヨン繊維70質量%、PP繊維10質量%およびPET繊維20質量%からなる不織布を防塵用不織布として用いた。
(1)防塵用不織布F
 目付25g/cm2、フラジール形法通気量56cm3/(cm2・s)
(2)防塵用不織布G
 目付20g/cm2、フラジール形法通気量146cm3/(cm2・s)
(3)防塵用不織布H
 目付25g/cm2、フラジール形法通気量98cm3/(cm2・s)
(4)防塵用不織布I
 目付20g/cm2、フラジール形法通気量411cm3/(cm2・s)
 実施例1
 各々16cm×18cmの大きさのPP製不織布、参考例1で得られた消臭用不織布A、参考例6における防塵用不織布F、および、レーヨン製不織布を、この順に、4枚重ねた後、10cm×18cmの大きさの長方形となるように、3段プリーツの折り畳み加工を行った。そして、積層物の縁部(図1における符号2側の中央部)にノーズワイヤを挿入した状態で、周縁部を超音波シール装置で熱融着してマスク本体部1を作製した。また、マスク本体部1の両端に耳かけ部3を熱融着により形成した後、端部シールとして端部の補強のために熱融着シートで端部を挟んで熱融着して、3段プリーツの立体構造を有する消臭マスクを作製した(図1および図2参照)。この方法は、マスク本体部1を構成する不織布の選択と積層方法の他は、当業者には知られた立体構造マスクの作製方法であり、耳かけ部3の材料や装置等は一般的なものを使用した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、各臭気ガスに対する臭気強度の測定結果を表3に記載した。
 実施例2
 実施例1と同様にして、PP製不織布、参考例2で得られた消臭用不織布B、防塵用不織布G、および、レーヨン製不織布を、この順に、4枚用いて、3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアとメチルメルカプタンの消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表3に記載した。
 実施例3
 実施例1と同様にして、PP製不織布、参考例3で得られた消臭用不織布C、防塵用不織布F、および、レーヨン製不織布を4枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニア、酢酸とアセトアルデヒドの消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表3に記載した。
 実施例4
 実施例1と同様にして、PP製不織布、参考例4で得られた消臭用不織布D、防塵用不織布H、および、レーヨン製不織布を4枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアとイソ吉草酸の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表3に記載した。
 実施例5
 実施例1と同様にして、参考例6で得られた消臭用不織布J、PP-PE混成不織布、防塵用不織布F、および、PP-PE混成不織布を4枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアとイソ吉草酸の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表3に記載した。
 実施例6
 実施例1と同様にして、各々16cm×18cmの大きさのPP製不織布、参考例6で得られた消臭用不織布J、参考例7における防塵用不織布F、およびPP-PE混成不織布を、この順に、4枚重ねた後、10cm×18cmの大きさの長方形となるように、3段オメガプリーツの折り畳み加工を行った。そして、積層物の縁部(図1における符号2側の中央部)にノーズワイヤを挿入した状態で、周縁部を超音波シール装置で熱融着してマスク本体部1を作製した。また、マスク本体部1の両端に耳かけ部3を熱融着メッシュ部により固定した後、周縁部に、熱融着による熱融着シーム部6を形成させて、3段オメガプリーツの立体構造を有する消臭マスクを作製した(図3および図4参照)。この方法は、マスク本体部1を構成する不織布の選択と積層方法の他は、当業者には知られた立体構造マスクの作製方法であり、耳かけ部3の材料や装置等は一般的なものを使用した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、各臭気ガスに対する臭気強度を測定した結果を表3に記載した。
 実施例7
 PP製不織布、参考例6で得られた消臭用不織布J、参考例7における防塵用不織布F、およびPP-PE混成不織布を、この順に、4枚重ねた後、縦12cm、横14cmの大きさとなるように加工を行い、カップ型消臭マスクを作製した(図5および図6参照)。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、各臭気ガスに対する臭気強度を測定した結果を表3に記載した。
 比較例1
 マスクの外気側から、PP製不織布、防塵用不織布F、および、レーヨン製不織布を3枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
 比較例2
 参考例1で得られた消臭用不織布Aのみで3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
 比較例3
 マスクの外気側から、PP製不織布、参考例5で得られた消臭用不織布E、防塵用不織布F、および、レーヨン不織布を4枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
 比較例4
 マスクの外気側から、PP製不織布、防塵用不織布F、参考例1で得られた消臭用不織布A、および、レーヨン不織布を4枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
 比較例5
 マスクの外気側から、参考例1で得られた消臭用不織布A、防塵用不織布I、および、レーヨン製不織布を2枚重ね3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
 比較例6
 マスクの外気側から、PP不織布、参考例1で得られた消臭用不織布A、および、レーヨン製不織布を3枚重ねとして3段プリーツの立体構造マスクを作製した。得られた消臭マスクを用いてアンモニアと硫化水素の消臭官能試験を実施し、臭気ガスに対する臭気強度の測定結果を表4に記載した。
<マスクの構成と官能試験結果>
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4において、消臭用不織布または防塵用不織布の欄が(-)で表記してあるのは該当する不織布が用いられていないことを示す。実施例1~6の官能試験による臭気強度の平均結果はすべて1よりも小さい、すなわちほとんど悪臭を感じない無臭の領域となった。比較例2と実施例1とでは、用いた消臭用不織布は同じ消臭用不織布Aだったにもかかわらず、実施例1では悪臭を感じることがなく、比較例2では平均して2.2~2.6の臭気強度を感知した。この結果から、同じ消臭用不織布を用いても、マスク本体部に防塵用不織布層を顔面側に備えなければ消臭効果が劣ることがわかる。
 比較例5は、消臭不織布層を防塵不織布層に対して顔面側に積層した例である。この比較例5も実施例に比べ消臭効果が劣ることがわかる。
 また、比較例6は、マスク本体の防塵不織布層の通気性が消臭不織布層の通気性以上であり、防塵不織布層の通気性が2/3以下ではない例であり、実施例1よりも消臭性能が劣ることがわかる。これらのことから、消臭不織布層と防塵不織布層の通気性の比率が本願発明の効果を奏するために必要であることを示している。
 また、実施例5は、消臭不織布層と防塵不織布層との間に、更にPP-PE混成不織布層を設けた例である。この実施例5では硫化水素の評価が実施例1の評価結果に比べ、若干劣るものの、全体の消臭効果としては優れていることが分かる。
 また、実施例6は、マスクの形状を3段オメガプリーツ型の立体構造にしたマスクである。この実施例6では、実施例1と同様に優れた消臭効果が得られると共に、更に装着性に優れるマスクになった。
 また、実施例7は、マスクの形状をカップ型の立体形状にしたマスクである。この実施例7では、実施例1と同様に優れた消臭効果が得られると共に、更に密着性に優れるマスクになった。
 また、比較例3は、消臭不織布層と防塵不織布層の組み合わせ順序としては実施例と同じである。しかし、比較例3は、化学吸着型消臭剤ではない活性炭を用いた例であり、消臭効果が著しく劣る。比較例4は、防塵不織布層が消臭不織布層よりも外気側に積層された例である。この比較例4では、実施例1よりも消臭性能が劣り、消臭不織布層と防塵不織布層との組み合わせ順序が大きな効果の違いを生じることがわかる。
 本発明によれば、悪臭ガス雰囲気における着用直後から、排泄臭や腐敗臭等に対しほぼ悪臭を感じないレベルの消臭効果を有する消臭マスク又は防臭マスクとすることができる。従って、排泄物処理、下水関連作業、畜産農場、ゴミ処理、肥料工場、化学工場、漁港、医療・介護・被災現場の片づけ、遺体処理等の悪臭の発生する場所や作業の際に有効に利用できる。
1:マスク本体部
2:マスク本体上部
3:耳かけ部
4:端部シール
5:ノーズワイヤ
6:熱融着シーム部
7:外気側PP製不織布層
8:消臭不織布層
9:防塵不織布層
10:顔面側レーヨン製不織布層
11:プリーツ
12:熱融着メッシュ部
13:首かけ部
14:鼻あて部

Claims (7)

  1.  通気性を有し、且つ、少なくとも2種類の不織布によって着用者の鼻および口を覆うマスク本体部を備える消臭マスクであって、
     前記マスク本体部は、化学吸着型消臭剤を含む消臭不織布層と、防塵効果を有する防塵不織布層とを備え、前記防塵不織布層の通気性は前記消臭不織布層の通気性の2/3以下であり、前記防塵不織布層は前記消臭不織布層よりも顔面側に設置されている消臭マスク。
  2.  前記防塵不織布層の通気性が、フラジール形法に基づく通気量で10~120cm3/(cm2・s)の範囲であり、前記消臭不織布層の通気性が、フラジール形法に基づく通気量で40~400cm3/(cm2・s)の範囲であり、前記防塵不織布層の前記通気量が前記消臭不織布層の前記通気量の2/3以下である、請求項1に記載の消臭マスク。
  3.  前記化学吸着型消臭剤として、その0.1gで1分間に消臭可能な悪臭成分の量が、6段階臭気強度表示法に基づく臭気強度5に相当する悪臭ガスの10L分に含まれる悪臭成分の量以上である消臭剤が用いられ、
     前記消臭不織布層に含まれる前記化学吸着型消臭剤の含有量が1g/m2以上である請求項1または2に記載の消臭マスク。
  4.  前記消臭不織布層が、2種類以上の化学吸着型消臭剤を含む請求項1~3のいずれか1項に記載の消臭マスク。
  5.  前記消臭不織布層に含まれる前記化学吸着型消臭剤が、バインダー樹脂により接合されており、前記バインダー樹脂および前記化学吸着型消臭剤の割合が、両者の合計を100質量%とした場合に、それぞれ、10~90質量%および10~90質量%である、請求項1~4のいずれか1項に記載の消臭マスク。
  6.  前記消臭不織布が、オレフィン樹脂、ポリエステル樹脂およびレーヨンの少なくとも1種から構成された請求項1~5のいずれか1項に記載の消臭マスク。
  7.  前記消臭不織布層および前記防塵不織布層が隣接している構造である請求項1~6のいずれか1項に記載の消臭マスク。
PCT/JP2013/055789 2012-03-07 2013-03-04 消臭マスク WO2013133195A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380010102.5A CN104125849A (zh) 2012-03-07 2013-03-04 除臭面罩
JP2014503828A JP5811270B2 (ja) 2012-03-07 2013-03-04 消臭マスク
US14/382,950 US9421294B2 (en) 2012-03-07 2013-03-04 Deodorizing mask
KR1020147027690A KR101948962B1 (ko) 2012-03-07 2013-03-04 소취 마스크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049866 2012-03-07
JP2012049866 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133195A1 true WO2013133195A1 (ja) 2013-09-12

Family

ID=49116672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055789 WO2013133195A1 (ja) 2012-03-07 2013-03-04 消臭マスク

Country Status (6)

Country Link
US (1) US9421294B2 (ja)
JP (1) JP5811270B2 (ja)
KR (1) KR101948962B1 (ja)
CN (1) CN104125849A (ja)
TW (1) TWI556754B (ja)
WO (1) WO2013133195A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193000A (ja) * 2014-03-20 2015-11-05 公立大学法人大阪市立大学 吸着剤および口臭除去剤
WO2015194334A1 (ja) * 2014-06-20 2015-12-23 東亞合成株式会社 消臭マスク
WO2016098460A1 (ja) * 2014-12-17 2016-06-23 東亞合成株式会社 マスク用消臭フィルター及び消臭マスク
KR20170115917A (ko) * 2016-04-08 2017-10-18 이용환 습기 및 악취흡착 제거제의 제조방법
JP6293340B1 (ja) * 2017-07-27 2018-03-14 日本バイリーン株式会社 マスク
JP2018134449A (ja) * 2013-10-17 2018-08-30 東亞合成株式会社 消臭フィルター
US20210387121A1 (en) * 2018-11-22 2021-12-16 Nikki-Universal Co., Ltd. Filtering material for air filters and method for manufacturing filtering material for air filters

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067839A1 (ja) * 2014-10-31 2016-05-06 東亞合成株式会社 消臭剤及びこれを用いた消臭性加工品、並びに消臭剤及び消臭性加工品の製造方法
US11840797B1 (en) 2014-11-26 2023-12-12 Microban Products Company Textile formulation and product with odor control
JP6304404B2 (ja) * 2014-12-26 2018-04-04 東亞合成株式会社 消臭剤組成物及び消臭製品
USD819800S1 (en) * 2015-10-21 2018-06-05 Ronald Tuan Mask
US10357069B2 (en) * 2016-06-20 2019-07-23 Ronald Tuan Gauze mask with folding lines capable of enabling the gauze mask to be folded into a flat package or unfolded into a three dimensional configuration
EP3474692B1 (en) * 2016-06-28 2022-09-21 W. L. Gore & Associates GmbH Method for manufacturing a water vapor permeable or breathable three-dimensional glove or glove lining
WO2018003831A1 (ja) * 2016-06-30 2018-01-04 株式会社くればぁ マスク、呼吸負荷型マスクおよびマスクケース
USD803391S1 (en) * 2016-07-07 2017-11-21 Prestige Ameritech, Ltd. Medical face mask
TWI587888B (zh) 2016-09-12 2017-06-21 宣德醫材科技股份有限公司 置入式鼻墊之防護口罩
US12054879B2 (en) 2016-12-15 2024-08-06 Microban Products Company Odor control composition and treatment method
WO2018184046A1 (en) 2017-04-03 2018-10-11 Lenzing Ag A nonwoven material designed for use as filter media
USD837456S1 (en) * 2017-05-11 2019-01-01 Medline Industries, Inc. Adjustable mask
US10850141B2 (en) 2017-05-11 2020-12-01 Medline Industries, Inc. Mask with self-adherent securement strap and methods therefor
USD854144S1 (en) * 2017-09-05 2019-07-16 Prestige Ameritech, Ltd. Ear loop mask
DE102018103682A1 (de) * 2018-02-19 2019-08-22 Twe Gmbh & Co. Kg Filtermedium
KR20200138223A (ko) * 2018-03-30 2020-12-09 도레이 카부시키가이샤 다층 여과재
USD892410S1 (en) * 2018-12-27 2020-08-04 Alexandru David Dust mask
US20220132949A1 (en) * 2019-03-12 2022-05-05 Ga International Nasal mask
JPWO2021193137A1 (ja) * 2020-03-27 2021-09-30
DE102020109443B3 (de) * 2020-04-03 2021-06-17 Rico Genau Atemschutzmaske
USD906597S1 (en) * 2020-05-14 2020-12-29 Ralph Davis Wilson Mask with tabs and snap
USD910929S1 (en) * 2020-06-30 2021-02-16 Joseph Chi Won Face mask
KR102230005B1 (ko) * 2020-07-27 2021-03-19 이정안 목화필터 마스크
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
KR102339663B1 (ko) * 2020-08-20 2021-12-14 김하나 입 냄새 제거 기능성 마스크 및 이의 제조방법
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
USD905351S1 (en) * 2020-09-02 2020-12-15 Jm Manufacturing (Hk) Limited Face mask
USD928936S1 (en) * 2020-09-16 2021-08-24 Yiwu Yaochun Network Technology Co., Ltd. Face mask
KR102291690B1 (ko) * 2021-05-03 2021-08-19 김형덕 구리 부직포층을 포함하는 한지 마스크
WO2022243658A1 (en) * 2021-05-17 2022-11-24 Heathcoat Fabrics Limited Adsorbent material
AU2021286385B2 (en) * 2021-07-06 2024-01-25 EMP Image Solution Sdn. Bhd. Face Mask
WO2023031697A1 (en) * 2021-09-01 2023-03-09 3M Innovative Properties Company Anti-virus respirator and mask
USD1038530S1 (en) * 2023-12-08 2024-08-06 Brian J. Fortier Protective face mask
USD1044138S1 (en) * 2024-01-30 2024-09-24 Shirley Doloris Stradford Nose mask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533743U (ja) * 1991-10-15 1993-05-07 新日本製鐵株式会社 脱臭マスク
JPH0947500A (ja) * 1995-08-07 1997-02-18 Kobe Steel Ltd 脱臭フィルタ
JPH10108915A (ja) * 1996-10-03 1998-04-28 Hitachi Chem Co Ltd 脱臭マスク
JP2008295961A (ja) * 2007-06-04 2008-12-11 Kobayashi Pharmaceut Co Ltd マスク
JP2009201634A (ja) * 2008-02-27 2009-09-10 Sekisui Plastics Co Ltd マスク
JP2009221618A (ja) * 2008-03-14 2009-10-01 Kuraray Kuraflex Co Ltd 生分解性不織布のエレクトレット体及びフィルター
WO2011040035A1 (ja) * 2009-09-30 2011-04-07 株式会社Nbcメッシュテック マスク

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287174A (ja) 1985-10-14 1987-04-21 株式会社豊田中央研究所 マスク
JPH0565354U (ja) 1992-02-21 1993-08-31 ダイワボウ・クリエイト株式会社 消臭性簡易マスク
JPH11267236A (ja) * 1998-03-19 1999-10-05 Japan Vilene Co Ltd 抗菌性帯電フィルター
JP4178656B2 (ja) 1999-03-31 2008-11-12 東亞合成株式会社 消臭剤組成物及び消臭性製品
JP2002200149A (ja) 2000-12-28 2002-07-16 Toagosei Co Ltd 消臭剤
JP2005152560A (ja) 2003-11-25 2005-06-16 Hideo Mizukami イオン交換系マスク
TWI264315B (en) 2003-12-31 2006-10-21 San Fang Chemical Industry Co Respiratory mask and its manufacturing method
US20050172968A1 (en) * 2004-02-05 2005-08-11 Iwao Hishida Mask
JP2007159796A (ja) * 2005-12-14 2007-06-28 Dht Corp マスク
CN102548439B (zh) * 2009-08-07 2015-03-25 尤妮佳股份有限公司 口罩
JP5625333B2 (ja) 2009-11-20 2014-11-19 東亞合成株式会社 硫黄系ガス消臭剤
JP2011125596A (ja) 2009-12-21 2011-06-30 Meiko Shoji Kk マスク用フィルタ、マスク用フィルタ包装体及びフィルタ付きマスクの使用方法
CN201798054U (zh) 2010-09-28 2011-04-20 马贵芹 新型防尸臭口罩
CN102182062B (zh) 2011-03-31 2012-10-31 渤扬复合面料科技(昆山)有限公司 一种吸湿除臭涤纶针织布

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533743U (ja) * 1991-10-15 1993-05-07 新日本製鐵株式会社 脱臭マスク
JPH0947500A (ja) * 1995-08-07 1997-02-18 Kobe Steel Ltd 脱臭フィルタ
JPH10108915A (ja) * 1996-10-03 1998-04-28 Hitachi Chem Co Ltd 脱臭マスク
JP2008295961A (ja) * 2007-06-04 2008-12-11 Kobayashi Pharmaceut Co Ltd マスク
JP2009201634A (ja) * 2008-02-27 2009-09-10 Sekisui Plastics Co Ltd マスク
JP2009221618A (ja) * 2008-03-14 2009-10-01 Kuraray Kuraflex Co Ltd 生分解性不織布のエレクトレット体及びフィルター
WO2011040035A1 (ja) * 2009-09-30 2011-04-07 株式会社Nbcメッシュテック マスク

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693159B (zh) * 2013-10-17 2020-05-11 日商東亞合成股份有限公司 除臭過濾器
JP2018134449A (ja) * 2013-10-17 2018-08-30 東亞合成株式会社 消臭フィルター
JP2015193000A (ja) * 2014-03-20 2015-11-05 公立大学法人大阪市立大学 吸着剤および口臭除去剤
JPWO2015194334A1 (ja) * 2014-06-20 2017-04-20 東亞合成株式会社 消臭マスク
KR20170020761A (ko) * 2014-06-20 2017-02-24 도아고세이가부시키가이샤 소취 마스크
US9878063B2 (en) 2014-06-20 2018-01-30 Toagosei Co., Ltd. Deodorizing mask
TWI673016B (zh) * 2014-06-20 2019-10-01 日商東亞合成股份有限公司 除臭罩
WO2015194334A1 (ja) * 2014-06-20 2015-12-23 東亞合成株式会社 消臭マスク
KR102331088B1 (ko) * 2014-06-20 2021-11-25 도아고세이가부시키가이샤 소취 마스크
JPWO2016098460A1 (ja) * 2014-12-17 2017-09-07 東亞合成株式会社 マスク用消臭フィルター及び消臭マスク
WO2016098460A1 (ja) * 2014-12-17 2016-06-23 東亞合成株式会社 マスク用消臭フィルター及び消臭マスク
KR20170115917A (ko) * 2016-04-08 2017-10-18 이용환 습기 및 악취흡착 제거제의 제조방법
JP6293340B1 (ja) * 2017-07-27 2018-03-14 日本バイリーン株式会社 マスク
JP2019026952A (ja) * 2017-07-27 2019-02-21 日本バイリーン株式会社 マスク
US20210387121A1 (en) * 2018-11-22 2021-12-16 Nikki-Universal Co., Ltd. Filtering material for air filters and method for manufacturing filtering material for air filters
US12128339B2 (en) * 2018-11-22 2024-10-29 Nikki-Universal Co., Ltd. Filtering material for air filters and method for manufacturing filtering material for air filters

Also Published As

Publication number Publication date
US9421294B2 (en) 2016-08-23
KR101948962B1 (ko) 2019-02-15
TW201406309A (zh) 2014-02-16
JP5811270B2 (ja) 2015-11-11
TWI556754B (zh) 2016-11-11
KR20140143380A (ko) 2014-12-16
CN104125849A (zh) 2014-10-29
JPWO2013133195A1 (ja) 2015-07-30
US20150056102A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5811270B2 (ja) 消臭マスク
JP6445448B2 (ja) 消臭フィルター
WO2016098460A1 (ja) マスク用消臭フィルター及び消臭マスク
JP6571648B2 (ja) 消臭マスク
JP5155884B2 (ja) 多層式マスク
JP5476112B2 (ja) マスク
KR101224786B1 (ko) 피톤치드가 발산되는 항균 마스크
JP2005124777A (ja) 感染予防マスク
JPH10108915A (ja) 脱臭マスク
CN211185966U (zh) 口罩
JP3169106U (ja) 機能性吸水シート
KR20190060508A (ko) 고체산소가 구비된 리필형 필터
TWM574500U (zh) 複合機能性口罩
CN101219260A (zh) 吸附过滤口鼻罩的生产方法
JP7201183B2 (ja) 抗菌シート及びマスク
CN109072537A (zh) 除臭剂分散液、含除臭剂加工液、和除臭制品的制造方法
TWM456926U (zh) 車用空調香氛負離子濾網
JP2005021844A (ja) シート形状機能材
TWM377228U (en) Filter of gauze mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503828

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027690

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13758149

Country of ref document: EP

Kind code of ref document: A1