WO2013133165A1 - 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 - Google Patents
熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 Download PDFInfo
- Publication number
- WO2013133165A1 WO2013133165A1 PCT/JP2013/055678 JP2013055678W WO2013133165A1 WO 2013133165 A1 WO2013133165 A1 WO 2013133165A1 JP 2013055678 W JP2013055678 W JP 2013055678W WO 2013133165 A1 WO2013133165 A1 WO 2013133165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- press
- amount
- steel sheet
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
Definitions
- the present invention is used when manufacturing a structural part of an automobile, and is a hot-press steel sheet suitable for hot press forming, a press-formed product obtained from such a hot-press steel plate, and a press-formed product.
- a hot-press steel sheet suitable for hot press forming
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- a press-formed product obtained from such a hot-press steel plate
- the steel sheet is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to lower the strength, and then formed with a mold having a temperature lower than that of the steel sheet (for example, room temperature).
- a hot press molding method is employed in the production of parts that performs quenching heat treatment (quenching) using the temperature difference between the two to ensure the strength after molding.
- a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot press method.
- FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out hot press molding as described above, in which 1 is a punch, 2 is a die, 3 is a blank holder, 4 is a steel plate (blank), BHF is a crease pressing force, rp is a punch shoulder radius, rd is a die shoulder radius, and CL is a punch / die clearance.
- the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
- a cooling medium for example, water
- the steel plate (blank) 4 is subjected to a two-phase region temperature (A c1 transformation point to A c3 transformation point) or an A c3 transformation. Molding is started in a state of being softened by heating to a single-phase temperature above the point. That is, the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, and the steel plate 4 is pushed into the hole of the die 2 by the punch 1 to correspond to the outer shape of the punch 1 while reducing the outer diameter of the steel plate 4. Mold into shape.
- a steel sheet for hot pressing that is widely used at present, a steel sheet made of 22MnB5 steel is known.
- This steel sheet has a tensile strength of 1500 MPa and an elongation of about 6 to 8%, and is applied to an impact resistant member (a member that is not deformed as much as possible and does not break).
- an impact resistant member a member that is not deformed as much as possible and does not break.
- Patent Documents 1 to 4 As hot-press steel sheets exhibiting good elongation, techniques such as Patent Documents 1 to 4 have been proposed. In these technologies, the basic strength class of each steel sheet is adjusted by setting the carbon content in the steel sheet to various ranges, and ferrite with high deformability is introduced, and the average of ferrite and martensite Elongation is improved by reducing the particle size. These techniques are effective for improving the elongation, but are still insufficient from the viewpoint of improving the elongation according to the strength of the steel sheet. For example, the tensile strength TS is 1470 MPa or more and the elongation EL is about 10.2% at the maximum, and further improvement is required.
- the part where deformation should be prevented is high strength (high strength side: impact resistant part side), and the part requiring energy absorption is low strength and high ductility (low strength side: energy absorbing part side).
- High strength side impact resistant part side
- low strength side energy absorbing part side
- Technology has been proposed. For example, in medium-sized and larger passenger cars, in consideration of compatibility at the time of side collision or rear collision (function to protect the other party when a small car collides), there is impact resistance in the parts of the B pillar and rear side member. In some cases, it has both functional parts of energy absorption.
- a tensile strength of 1500 MPa is achieved on the high strength side (impact resistant site side), but the maximum tensile strength is 700 MPa and the elongation EL is about 17% on the low strength side (energy absorption site side).
- the energy absorption site side In order to further improve the energy absorption characteristics, it is required to realize higher strength and higher ductility.
- Non-Patent Document 1 Although it is necessary to join automobile parts mainly by spot welding, it is known that the strength reduction in the welding heat affected zone (HAZ) is remarkable and the strength of the welded joint is reduced (softened) (for example, Non-Patent Document 1).
- the present invention has been made in view of the above circumstances, and its purpose is to provide a press-molded product that can achieve a high level of balance between high strength and elongation when uniform characteristics are required in the molded product.
- a region corresponding to an impact resistant site and an energy absorbing site is required in a single molded product, high strength and elongation balance can be achieved at a high level according to each region,
- the steel sheet for hot pressing useful for obtaining a press-formed product having good softening prevention characteristics in HAZ, a press-formed product exhibiting the above characteristics, and useful for producing such a press-formed product. Is to provide a simple method.
- the steel sheet for hot pressing of the present invention that was able to achieve the above object, C: 0.15 to 0.5% (meaning mass%, hereinafter the same for chemical composition) Si: 0.2-3%, Mn: 0.5 to 3%, P: 0.05% or less (excluding 0%), S: 0.05% or less (excluding 0%), Al: 0.01 to 1%, B: 0.0002 to 0.01%, Ti: 3.4 [N] + 0.002% or more, 3.4 [N] + 0.1% or less [where [N] indicates the content (% by mass) of N], and N: 0.0010 ⁇ 0.01%, Each of which contains iron and inevitable impurities, Among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the relationship between the precipitated Ti amount in the steel and the total Ti amount in the following formula (1) And the metal structure is characterized in that the total fraction of bainite and martensite is 80 area% or more.
- the “equivalent circle diameter” means the diameter when converted to a circle of the same area when focusing on the size (area) of the Ti-containing precipitate (eg, TiC) (the “average equivalent circle diameter” is its average Value).
- the hot-press forming steel sheet of the present invention if necessary, as another element, (a) one or more selected from the group consisting of V, Nb and Zr is 0.1% or less in total ( (B) 0% is not included), (b) one or more selected from the group consisting of Cu, Ni, Cr and Mo is 1% or less in total (not including 0%), (c) from Mg, Ca and REM It is also useful to contain one or more selected from the group consisting of 0.01% or less (excluding 0%), etc., and depending on the type of element contained, the properties of the press-formed product Is further improved.
- the method for producing a press-formed product of the present invention that has achieved the above-mentioned object includes the above-described hot-press steel sheet of the present invention having an A c1 transformation point of + 20 ° C. or higher and an A c3 transformation point of ⁇ 20 ° C. or lower. After being heated to a temperature of 10 ° C., press forming of the steel sheet is started, the temperature is 100 ° C. lower than the bainite transformation start temperature Bs while maintaining the bottom dead center and ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by cooling to the following.
- the microstructure of the pressed steel is as follows: retained austenite: 3 to 20 area%, annealed martensite and / or annealed bainite: 30 to 87 area%, as-quenched martensite: 10 to 67
- the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 10 nm or less
- the precipitated Ti amount and the total Ti amount in the steel are as follows ( The relationship of the formula (1) is satisfied, and the balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
- the area ratio of annealed martensite and / or annealed bainite is the total area ratio of both structures when both structures are included, and the area ratio of the structure when either structure is formed. Means. Precipitated Ti amount (mass%) ⁇ 3.4 [N] ⁇ 0.5 ⁇ [Total Ti amount (mass%) ⁇ 3.4 [N]] (1) (1) In formula, [N] shows content (mass%) of N in steel)
- another method for producing a press-formed product of the present invention that has achieved the above object is to use a steel sheet for hot pressing as described above, and divide the heating area of the steel sheet into at least two areas. And heating the other region to a temperature not lower than A c3 transformation point and not higher than 950 ° C., and heating the other region to a temperature not lower than A c1 transformation point + 20 ° C. and not higher than A c3 transformation point ⁇ 20 ° C. Press molding is started on the region, and the region is held at the bottom dead center in any region and cooled to a temperature not higher than the martensite transformation start temperature Ms while ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by that.
- Another press-formed product of the present invention is a press-formed product of a steel plate having the above chemical composition, and the pressed steel has a microstructure of retained austenite: 3 area% or more, 20 area% or less, As-quenched martensite: 80% by area or more of the first region and the metal structure is retained austenite: 3-20 area%, annealed martensite and / or annealed bainite: 30-87 area%, as-quenched martensite Site: 10% to 67% of the second region, and among the Ti-containing precipitates contained in the steel of the second region, the average equivalent circle diameter of the one having an equivalent circle diameter of 30 nm or less is 10 nm.
- the amount of precipitated Ti in the steel and the total amount of Ti satisfy the following relationship (1).
- a balance between high strength and elongation can be achieved at a high level according to each region, and there are regions corresponding to impact-resistant sites and energy-absorbing sites in a single molded product.
- the softening prevention property of the HAZ when spot welding is performed in the second region is good.
- the chemical composition is strictly defined, the size of Ti-containing precipitates is controlled, the deposition rate is controlled for Ti that does not form TiN, and the tempered hard phase is controlled for the metal structure. Since the steel plate is used in which the ratio of the hard phase (martensite phase, martensite phase, etc.), the hardened phase (martensite phase), and the retained austenite phase is adjusted, this is hot-pressed under specified conditions. Strength-elongation balance can be made high. In addition, when hot pressing is performed under different conditions in a plurality of regions, an impact resistant part and an energy absorbing part can be formed in a single molded product, and a high strength and elongation balance can be achieved at each part at a high level. The anti-softening property of is improved.
- the inventors of the present invention when heating a steel plate to a predetermined temperature and then producing a press-formed product by hot press forming, show good ductility (elongation) while ensuring high strength after press forming. In order to realize a hot-press steel sheet that can provide a simple press-formed product, studies were made from various angles.
- the chemical composition of the steel sheet for hot pressing is strictly defined, the size of the Ti-containing precipitates and the amount of precipitated Ti are controlled, and the metal structure is made appropriate.
- the present inventors have found that a press-formed product having a predetermined amount of retained austenite after press forming and having a high inherent ductility (residual ductility) can be obtained.
- C is a region corresponding to an impact resistant site and an energy absorbing site in a single molded product in order to achieve a high balance between high strength and elongation when uniform characteristics are required in the molded product. Is an important element for securing retained austenite particularly in the low strength and high ductility regions. Moreover, at the time of heating by hot press molding, C concentrates to austenite, so that residual austenite can be formed after quenching. Furthermore, it contributes to an increase in the amount of martensite and raises the strength. In order to exert these effects, the C content needs to be 0.15% or more.
- the target metal structure annealed martensite and / or in a low-strength and high-ductility site
- the preferable lower limit of the C content is 0.17% or more (more preferably 0.20% or more), and the more preferable upper limit is 0.45% or less (more preferably 0.40% or less).
- Si exhibits the effect of forming retained austenite by suppressing martensite from tempering to form cementite and decomposition of untransformed austenite during cooling of mold quenching.
- the Si content needs to be 0.2% or more.
- the Si content is excessive and exceeds 3%, ferrite tends to be formed, making it difficult to make a single phase during heating, and the required fraction of bainite and martensite cannot be ensured in the hot-press steel sheet.
- the preferable lower limit of the Si content is 0.5% or more (more preferably 1.0% or more), and the preferable upper limit is 2.5% or less (more preferably 2.0% or less).
- Mn is an element effective in enhancing hardenability and suppressing the formation of structures (ferrite, pearlite, bainite, etc.) other than martensite and retained austenite during cooling of mold hardening. Further, it is an element that stabilizes austenite and contributes to an increase in the amount of retained austenite. In order to exhibit such an effect, it is necessary to contain 0.5% or more of Mn. Considering only the characteristics, it is preferable that the Mn content is large, but the alloy addition cost increases, so the content was made 3% or less. The minimum with preferable Mn content is 0.7% or more (more preferably 1.0% or more), and a preferable upper limit is 2.5% or less (more preferably 2.0% or less).
- P 0.05% or less (excluding 0%)
- P is an element inevitably contained in the steel, but it deteriorates ductility, so P is preferably reduced as much as possible.
- extreme reduction leads to an increase in steelmaking cost, and it is difficult to produce 0%, so 0.05% or less (excluding 0%) was set.
- the upper limit with preferable P content is 0.045% or less (more preferably 0.040% or less).
- S 0.05% or less (excluding 0%)
- S is an element inevitably contained in steel, and deteriorates ductility. Therefore, S is preferably reduced as much as possible.
- extreme reduction leads to an increase in steelmaking cost, and it is difficult to produce 0%, so 0.05% or less (excluding 0%) was set.
- the upper limit with preferable S content is 0.045% or less (more preferably 0.040% or less).
- Al 0.01 to 1%
- Al is useful as a deoxidizing element, and also fixes solid solution N present in steel as AlN, which is useful for improving ductility.
- the Al content needs to be 0.01% or more.
- the minimum with preferable Al content is 0.02% or more (more preferably 0.03% or more), and a preferable upper limit is 0.8% or less (more preferably 0.6% or less).
- B has an action of suppressing ferrite transformation, pearlite transformation, and bainite transformation on the high-strength portion side, so that during the cooling after heating to the two-phase region temperature (A c1 transformation point to A c3 transformation point), It is an element that prevents the formation of pearlite and bainite and contributes to securing retained austenite.
- B needs to be contained in an amount of 0.0002% or more, but the effect is saturated even if it is contained in excess of 0.01%.
- a preferable lower limit of the B content is 0.0003% or more (more preferably 0.0005% or more), and a preferable upper limit is 0.008% or less (more preferably 0.005% or less).
- Ti 3.4 [N] + 0.002% or more, 3.4 [N] + 0.1% or less: [N] is N content (mass%)]
- Ti fixes N and allows B to be maintained in a solid solution state, thereby exhibiting an effect of improving hardenability. In order to exert such an effect, it is important to contain 0.002% or more than the stoichiometric ratio of Ti and N [3.4 times the content of N]. Further, Ti added excessively to N is present in a solid solution state in the hot stamping molded product, and the precipitated compound is dispersed finely, so that the solid solution is dissolved when the hot stamping molded product is welded.
- Strength reduction in HAZ can be suppressed by effects such as precipitation strengthening due to the formation of Ti as TiC and an increase delay of dislocation density due to the effect of preventing dislocation movement due to TiC.
- the Ti content becomes excessive and exceeds 3.4 [N] + 0.1%, the Ti-containing precipitates formed (for example, TiN) are coarsened and the ductility of the steel sheet is lowered.
- the more preferable lower limit of the Ti content is 3.4 [N] + 0.005% or more (more preferably 3.4 [N] + 0.01% or more), and the more preferable upper limit is 3.4 [N] +0. 09% or less (more preferably 3.4 [N] + 0.08% or less).
- N 0.001 to 0.01%
- N is an element inevitably mixed in and is preferably reduced as much as possible.
- 0.001% was set as the lower limit.
- the Ti-containing precipitates formed for example, TiN
- the upper limit with more preferable N content is 0.008% or less (more preferably 0.006% or less).
- the basic chemical components in the steel sheet for hot pressing of the present invention are as described above, and the balance is iron and inevitable impurities other than P and S (for example, O, H, etc.). Further, in the steel sheet for hot pressing of the present invention, if necessary, (a) one or more selected from the group consisting of V, Nb and Zr is 0.1% or less in total (not including 0%), (B) 1 or more selected from the group consisting of Cu, Ni, Cr and Mo in total 1% or less (not including 0%), (c) 1 selected from the group consisting of Mg, Ca and REM It is also useful to contain a total of 0.01% or less (excluding 0%), etc. of the seeds or more, and the characteristics of the steel sheet for hot pressing are further improved depending on the type of element contained. . The preferable range when these elements are contained and the reason for limiting the range are as follows.
- V, Nb, and Zr have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to exhibit such an effect, it is preferable to contain 0.001% or more in total. However, when the content of these elements is excessive, coarse carbides are formed, and the ductility is deteriorated by becoming the starting point of fracture. For these reasons, the total content of these elements is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.005% or more (more preferably 0.008% or more) in total, and the more preferable upper limit is 0.08% or less (more preferably 0.06%) in total. The following).
- Cu, Ni, Cr and Mo 1% or less in total (excluding 0%)
- Cu, Ni, Cr, and Mo suppress ferrite transformation, pearlite transformation, and bainite transformation, and thus prevent formation of ferrite, pearlite, and bainite during cooling after heating, and effectively act to secure retained austenite.
- the more preferable lower limit of the content of these elements is 0.05% or more (more preferably 0.06% or more) in total, and the more preferable upper limit is 0.5% or less (more preferably 0.3% or less) in total. ).
- a total of at least one selected from the group consisting of Mg, Ca and REM is 0.01% or less (excluding 0%)] Since these elements refine the inclusions, they effectively work to improve ductility. In order to exhibit these effects, it is preferable to contain 0.0001% or more in total. Considering only the characteristics, it is preferable that the content is large, but since the effect is saturated, the total content is preferably 0.01% or less. The more preferable lower limit of the content of these elements is 0.0002% or more (more preferably 0.0005% or more) in total, and the more preferable upper limit is 0.005% or less (more preferably 0.003% or less) in total. ).
- the Ti-containing precipitates and the control of the formula (1) are for preventing the softening of the HAZ, and are essentially necessary control in the molded product, but the change of these values before and after hot press molding is Therefore, it is necessary to already control at the stage before forming (hot press steel plate).
- a Ti-containing precipitate can be maintained in a solid solution state or a fine state during heating by hot pressing. It becomes like this.
- the amount of precipitated Ti in the press-formed product can be controlled to a predetermined amount or less, and joint characteristics can be improved by preventing softening in the HAZ.
- the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less.
- the equivalent circle diameter of the target Ti-containing precipitate is defined as 30 nm or less, except for TiN, which is coarsely formed in the melting stage and does not affect the structure change or properties thereafter. This is because it is necessary to control the Ti-containing precipitates.
- the size of the Ti-containing precipitate (the average equivalent circle diameter of the Ti-containing precipitate having a circle-equivalent diameter of 30 nm or less) is preferably 5 nm or less, and more preferably 3 nm or less.
- the Ti-containing precipitates that are the subject of the present invention include TiC and TiN as well as precipitates containing Ti such as TiVC, TiNbC, TiVCN, and TiNbCN.
- the average equivalent circle diameter of Ti-containing precipitates having an equivalent circle diameter of 30 nm or less in a press-formed product is defined as 10 nm or less, whereas before molding (steel plate for hot pressing). It is defined as 6 nm or less.
- the reason is that Ti is present in a fine precipitate or a solid solution state in the steel plate, but when heating for about 15 minutes or more near 800 ° C., the Ti-containing precipitate is slightly coarsened. Rather than the molded product, the size of the precipitate is defined larger.
- the average equivalent circle diameter of the Ti-containing precipitate having a circle equivalent diameter of 30 nm or less is 10 nm or less, and that the precipitation state is realized with a hot stamped product.
- the average equivalent circle diameter of fine precipitates of 30 nm or less must be 6 nm or less, and most of Ti must be present in a solid solution state.
- the amount of Ti existing as a precipitate other than TiN is the remaining 0.5 subtracting Ti forming TiN out of the total Ti. It is necessary to make it less than twice (that is, 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]] or less) [Requirement (B) above].
- the amount of precipitated Ti (mass%)-3.4 [N] is preferably 0.4 ⁇ [total Ti amount (mass%)-3.4 [N]] or less, more preferably 0.3 ⁇ [ The total Ti amount (% by mass) is -3.4 [N] or less.
- the metal structure is essentially the control necessary to achieve the desired strength-elongation balance in the molded product, but the metal structure cannot be controlled only by the hot press conditions, and the raw steel (hot press) It is necessary to control the structure of the steel sheet) in advance.
- the total fraction of bainite and martensite in the steel sheet for hot pressing must be 80 area% or more. It is necessary to.
- the total fraction of bainite and martensite is preferably 90 area% or more, more preferably 95 area% or more.
- the remainder of the metal structure is not particularly limited, and examples thereof include at least one of ferrite, pearlite, and retained austenite.
- a slab obtained by melting a steel material having the chemical composition as described above is heated at a temperature of 1100 ° C. or higher (preferably 1150 ° C.). Or higher) 1300 ° C. or lower (preferably 1250 ° C. or lower), the finish rolling temperature is 930 ° C. or higher (preferably 950 ° C. or higher), 1050 ° C. or lower (preferably 1000 ° C. or lower), and hot rolling is performed immediately thereafter.
- Cooling at an average cooling rate of 20 ° C / second or more (preferably 30 ° C / second or more) to 450 ° C or less (preferably 400 ° C or less), 100 ° C or more (preferably 150 ° C or more), 450 ° C or less
- the winding may be performed at (preferably 400 ° C. or lower).
- a steel sheet for hot pressing having the above-described chemical component composition, metal structure and Ti precipitation state may be used for the production of a hot press as it is, or a reduction ratio of 10 to 80% (preferably 20) after pickling. ( ⁇ 70%) may be used for the production of a hot press after cold rolling. Further, after heating the hot-press steel plate or its cold-rolled material to 830 ° C. or higher (preferably 850 ° C. or higher, 900 ° C. or lower), the temperature reaches 450 ° C. or lower (preferably 400 ° C.
- a hot press is performed after heat treatment such as holding at 450 ° C. or lower for 10 seconds to 1000 seconds or tempering at a temperature of 450 ° C. or lower.
- Steel plates subjected to such cold rolling and heat treatment are also included in the steel sheet for hot pressing of the present invention as long as the required characteristics are satisfied.
- the steel plate for hot pressing according to the present invention may be plated on the surface (base steel plate surface) containing one or more of Al, Zn, Mg, and Si.
- the heating temperature is It is necessary to control within a predetermined range.
- the heating temperature of the steel sheet is less than the Ac1 transformation point + 20 ° C., a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product).
- the amount of transformation to austenite increases too much during heating, and a predetermined amount of annealed martensite or annealed in the final structure (structure of the molded product). Cannot secure bainite.
- the average cooling rate and cooling end temperature in the mold are maintained at the bottom dead center. Need to be controlled appropriately. From such a viewpoint, the average cooling rate in the mold must be 20 ° C./second or more, and the cooling end temperature needs to be 100 ° C. or lower than the bainite transformation start temperature Bs.
- the average cooling rate at this time is preferably 30 ° C./second or more (more preferably 40 ° C./second or more). By making the cooling end temperature 100 ° C.
- the austenite existing during heating is transformed into bainite or martensite while preventing the formation of a structure such as ferrite or pearlite.
- a predetermined amount of retained austenite is secured by allowing fine austenite to remain between bainite and martensite lath while securing martensite.
- the cooling end temperature is higher than the temperature lower by 100 ° C. than the bainite transformation start temperature Bs or the average cooling rate is less than 20 ° C./second, a structure such as ferrite or pearlite is formed, and a predetermined amount of retained austenite is secured. This is not possible, and the elongation (ductility) of the molded product is deteriorated.
- the cooling end temperature is not particularly limited as long as it is 100 ° C. or lower than Bs, and may be, for example, martensitic transformation start temperature Ms or lower.
- control of the average cooling rate is basically unnecessary at a stage where the temperature is 100 ° C. lower than the bainite transformation start temperature Bs, for example, at an average cooling rate of 1 ° C./second or more and 100 ° C./second or less. You may cool to room temperature. It should be noted that the average cooling rate within the mold held at the bottom dead center is controlled by (a) controlling the temperature of the mold (cooling medium shown in FIG. 1), and (b) heat of the mold. This can be achieved by means such as controlling the conductivity.
- a press-formed product (single region molded product) manufactured by hot pressing as described above, the metal structure is retained austenite: 3 to 20 area%, annealed martensite and / or annealed bainite: 30 to 87. Area%, as-quenched martensite: 10 to 67 area%, and a balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
- the reason for setting the range of each requirement (basic structure) in such a hot press-formed product is as follows.
- Residual austenite has the effect of increasing the work hardening rate (transformation-induced plasticity) and improving the ductility of the press-formed product by transforming into martensite during plastic deformation.
- the retained austenite fraction needs to be 3 area% or more.
- the higher the retained austenite fraction the better.
- the retained austenite that can be secured is limited, and the upper limit is about 20 area%.
- the preferable lower limit of retained austenite is 5 area% or more (more preferably 7 area% or more).
- the ductility (elongation) of the press-formed product can be enhanced while ensuring a predetermined strength.
- the fraction of annealed martensite and / or annealed bainite is 30 area% or more. However, if this fraction exceeds 87 area%, the fraction of retained austenite becomes insufficient and ductility (residual ductility) decreases.
- the preferable lower limit of the fraction of annealed martensite and / or annealed bainite is 40 area% or more (more preferably 50 area% or more), and the preferable upper limit is less than 80 area% (more preferably less than 70 area%). is there.
- As-quenched martensite is a structure with poor ductility, and when it is present in a large amount, it degrades the elongation, but in order to achieve high strength of over 100 kg in a structure where the matrix is annealed and martensite has low strength, It is necessary to secure a predetermined amount of martensite as it is quenched. From this viewpoint, the fraction of martensite as quenched is 10 area% or more. However, if the fraction of martensite as it is quenched is too high, the strength becomes too high and the elongation becomes insufficient. Therefore, the fraction needs to be 67 area% or less.
- the preferable lower limit of the martensite fraction as-quenched is 20 area% or more (more preferably 30 area% or more), and the preferable upper limit is 60 area% or less (more preferably 50 area% or less).
- ferrite, pearlite, bainite, etc. may be included as the remaining structure, but these structures have a lower contribution to strength and ductility than other structures, and are basically contained. It is preferable not to do this (it may be 0 area%). However, up to 20 area% is acceptable.
- the remaining structure is more preferably 10 area% or less, and still more preferably 5 area% or less.
- the average equivalent circle diameter of the equivalent circle diameter of 30 nm or less is 10 nm or less.
- the average equivalent circle diameter of the Ti-containing precipitate having an equivalent circle diameter of 30 nm or less is preferably 8 nm or less, and more preferably 6 nm or less.
- the Ti amount (deposited Ti amount (mass%)-3.4 [N]) present as precipitates other than TiN is Ti that forms TiN out of all Ti.
- the remaining Ti is 0.5 times or less (that is, 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]] or less).
- the amount of precipitated Ti (mass%)-3.4 [N] is preferably 0.4 ⁇ [total Ti amount (mass%)-3.4 [N]] or less, more preferably 0.3 ⁇ [ The total Ti amount (% by mass) is -3.4 [N] or less.
- the properties such as strength and elongation of the press-formed product can be controlled by appropriately adjusting the press forming conditions (heating temperature and cooling rate) and high ductility. (Residual ductility) press-molded products can be obtained, so it can be applied to parts that have been difficult to apply with conventional press-molded products (for example, energy absorbing members). Useful.
- the heating temperature and the conditions of each region at the time of molding are appropriately controlled.
- a press-formed product that exhibits a strength-ductility balance corresponding to each region hereinafter sometimes referred to as a multi-region molded product
- the heating region of the steel plate is divided into at least two regions, one of which is hereinafter referred to as the first region. Is heated to a temperature not lower than A c3 transformation point and not higher than 950 ° C., and the other region (hereinafter referred to as second region) is not lower than A c1 transformation point + 20 ° C. and a temperature not higher than A c3 transformation point ⁇ 20 ° C. Then, press molding is started for both the first and second regions, and the first and second regions are held at the bottom dead center at 20 ° C./second or more in the mold. What is necessary is just to cool to the temperature below the martensitic transformation start temperature Ms, ensuring an average cooling rate.
- the heating region of the steel sheet is divided into at least two regions (high-strength side region and low-strength side region), and the manufacturing conditions are controlled according to each region, whereby the strength-ductility balance corresponding to each region is obtained.
- a press-molded product that exhibits the above can be obtained.
- the second region corresponds to the low-strength side region
- the manufacturing conditions, structure, and characteristics in this region are basically the same as those of the single-region molded product described above.
- manufacturing conditions for forming the other first region corresponding to the high-strength side region
- the heating temperature of the steel sheet is preferably Ac3 transformation point + 50 ° C. or higher and 930 ° C. or lower.
- the average cooling rate is 20 ° C./second or more and the cooling end temperature is not more than the martensite transformation start temperature (Ms point).
- the average cooling rate at this time is preferably 30 ° C./second or more (more preferably 40 ° C./second or more).
- the cooling end temperature is specifically 400 ° C. or lower, preferably 300 ° C. or lower.
- the metal structure and precipitates are different between the first region and the second region.
- the metal structure is retained austenite: 3 to 20 area% (the effect of retained austenite is the same as above), and as-quenched martensite: 80 area% or more.
- the same metal structure and Ti state average equivalent circle diameter of Ti-containing precipitates, amount of precipitated Ti (mass%) -3.4 [N], etc.) as the single region molded product are satisfied. .
- the area fraction of the martensite as quenched is required to be 80 area% or more.
- the fraction of martensite as quenched is preferably 85 area% or more (more preferably 90 area% or more).
- the structure in the first region may partially include ferrite, pearlite, bainite, and the like.
- Example 1 The steel materials (steel Nos. 1-32) having the chemical composition shown in Tables 1 and 2 below are vacuum-melted to form experimental slabs, then hot rolled into steel plates, and then cooled and wound. A treatment simulating removal was performed (plate thickness: 3.0 mm). In the winding simulation processing method, after cooling to the winding temperature, the sample was placed in a furnace heated to the winding temperature, held for 30 minutes, and then cooled in the furnace. The steel plate manufacturing conditions at this time are shown in Table 3 below.
- the A c1 transformation point, the A c3 transformation point, the Ms point, and the Bs point are obtained using the following formulas (2) to (5) (for example, “Leslie Steel Materials Science, Maruzen, (1985)). Further, the treatments (1) to (3) shown in the remarks column of Table 3 are obtained by performing the following treatments (rolling, cooling, alloying).
- a c1 transformation point (° C.) 723 + 29.1 ⁇ [Si] ⁇ 10.7 ⁇ [Mn] + 16.9 ⁇ [Cr] ⁇ 16.9 [Ni] (2)
- a c3 transformation point (°C) 910-203 ⁇ [C ] 1/2 + 44.7 ⁇ [Si] -30 ⁇ [Mn] + 700 ⁇ [P] + 400 ⁇ [Al] + 400 ⁇ [Ti] + 104 ⁇ [V ] -11 ⁇ [Cr] + 31.5 ⁇ [Mo] ⁇ 20 ⁇ [Cu] ⁇ 15.2 ⁇ [Ni] (3)
- Ms point (° C.) 550 ⁇ 361 ⁇ [C] ⁇ 39 ⁇ [Mn] ⁇ 10 ⁇ [Cu] ⁇ 17 ⁇ [Ni] ⁇ 20 ⁇ [Cr] ⁇ 5 ⁇ [Mo] + 30 ⁇ [Al] ( 4)
- Bs point (° C.) 830 ⁇ 270 ⁇ [C]
- Process (1) The hot-rolled steel sheet was cold-rolled (plate thickness: 1.6 mm).
- Process (2) After cold-rolling a hot-rolled steel sheet (sheet thickness: 1.6 mm), simulating continuous annealing, heating to 860 ° C., and cooling to 400 ° C. at an average cooling rate of 30 ° C./second , Retained.
- Process (3) After cold rolling the hot rolled steel sheet (sheet thickness: 1.6 mm), after heating to 860 ° C. to simulate a continuous hot dip galvanizing line, 400 ° C. at an average cooling rate of 30 ° C./sec. After cooling to 50 ° C., it was further cooled after heating at 500 ° C. for 10 seconds.
- the obtained steel sheet was subjected to analysis of Ti precipitation state and observation of metal structure (fraction of each structure) in the following manner. The result is shown in the following table together with a calculated value [0.5 ⁇ (total Ti amount-3.4 [N])] of 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]]. 4 and 5.
- the amount of precipitated Ti (mass%)-3.4 [N] (the amount of Ti present as a precipitate) was subjected to extraction residue analysis using a mesh having a mesh diameter of 0.1 ⁇ m (in the extraction process, Precipitates aggregate and fine precipitates can be measured), and the amount of precipitated Ti (mass%)-3.4 [N] (in Tables 4 and 5, indicated as precipitated Ti amount-3.4 [N]) is obtained. It was. When the Ti-containing precipitate partially contains V or Nb, the content of these precipitates was also measured.
- Each steel plate (1.6 mm t ⁇ 150 mm ⁇ 200 mm) (with the exception of the above treatments (1) to (3), the thickness is adjusted to 1.6 mm by hot rolling), and a predetermined temperature in a heating furnace Then, press molding and cooling treatment were performed with a hat-shaped mold (FIG. 1) to obtain a molded product.
- Table 6 below shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature during press molding).
- the obtained molded product was measured for tensile strength (TS), elongation (total elongation EL), observation of metal structure (fraction of each structure), and hardness reduction after heat treatment by the following methods.
- TS tensile strength
- EL elongation
- TS ⁇ EL strength-elongation balance
- the observation results of the metal structure are shown in Tables 7 and 8 below. Further, the mechanical properties (tensile strength TS, elongation EL, TS ⁇ EL, and hardness reduction amount ⁇ Hv) of the molded product are shown in Table 9 below.
- the value of the precipitated Ti amount-3.4 [N] in the formed product is slightly different from the value of the precipitated Ti amount-3.4 [N] in the press-formed steel sheet, but this is a measurement error.
- Steel No. Those of 3, 6, 7, 9, 13, 18, and 22 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, Steel No. No. 3 uses a steel sheet with a low Si content, and the retained austenite fraction in the molded product is not ensured and elongation is not achieved, and the strength-elongation balance is deteriorated. Steel No. No. 6 has a low finish rolling temperature at the time of manufacturing the steel sheet, and does not satisfy the relationship of the formula (1) at any stage of the steel sheet for hot press and the formed product, and is not stretched. Besides, the strength-elongation balance is deteriorated, and the softening prevention property is also deteriorated.
- Example 2 Steel materials (steel Nos. 33 to 37) having the chemical composition shown in Table 10 below were melted in vacuum to form experimental slabs, followed by hot rolling, followed by cooling and winding (sheet thickness) : 3.0 mm). The steel plate manufacturing conditions at this time are shown in Table 11 below.
- the obtained steel sheet was analyzed in the same manner as in Example 1 for analysis of the precipitation state of Ti-containing precipitates and observation of the metal structure (fraction of each structure). The results are shown in Table 12 below.
- each steel sheet (3.0mm t ⁇ 150mm ⁇ 200mm) was heated to a predetermined temperature in a heating furnace, performing a press-forming and cooling process in a mold of hat-shaped (FIG. 1), and a molded article .
- the steel plate is put in an infrared furnace, and the portion (steel plate portion corresponding to the first region) to be strengthened is directly irradiated with infrared rays so that it can be heated at a high temperature.
- the steel plate portion corresponding to the second region was covered with a cover so as to block a part of infrared rays so that it could be heated at a low temperature, thereby giving a heating temperature difference. Therefore, the molded product has regions having different strengths within a single part.
- Table 13 shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature in each region during press molding).
- TS tensile strength
- elongation total elongation EL
- observation of metal structure fraction of each structure in each region were determined in the same manner as in Example 1.
- Table 14 The observation results of metal structure (fraction of each structure) are shown in Table 14 below.
- Table 15 shows the mechanical properties (tensile strength TS, elongation EL, TS ⁇ EL, and hardness reduction amount) of the molded product.
- the tensile strength (TS) on the high strength side is 1470 MPa or higher
- the elongation (EL) satisfies 8% or higher
- the strength-elongation balance (TS ⁇ EL) is 14000 (MPa ⁇ %) or higher.
- evaluation criteria on the low strength side are the same as in Example 1).
- the steel sheet for hot pressing according to the present invention is suitable for structural parts of automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.2~3%、
Mn:0.5~3%、
P :0.05%以下(0%を含まない)、
S :0.05%以下(0%を含まない)、
Al:0.01~1%、
B :0.0002~0.01%、
Ti:3.4[N]+0.002%以上、3.4[N]+0.1%以下[但し、[N]はNの含有量(質量%)を示す]、および
N :0.0010~0.01%、
を夫々含有し、残部が鉄および不可避不純物からなり、
鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、ベイナイトおよびマルテンサイトの合計分率が80面積%以上であることを特徴とする。尚、「円相当直径」とは、Ti含有析出物(例えばTiC)の大きさ(面積)に着目したときに、同一面積の円に換算したときの直径(「平均円相当直径」はその平均値)である。
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
(1)式中、[N]は鋼中のNの含有量(質量%)を示す)
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
Cは、成形品内で均一な特性が要求される場合の高強度と伸びのバランスを高レベルで達成するために、或は単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合の、特に低強度・高延性部位において残留オーステナイトを確保する上で重要な元素である。また熱間プレス成形での加熱時に、Cがオーステナイトに濃化することで、焼入れ後に残留オーステナイトを形成させることができる。更に、マルテンサイト量の増加にも寄与し、強度を上昇させる。これらの効果を発揮させるためには、C含有量は0.15%以上とする必要がある。
Siは、金型焼入れの冷却中にマルテンサイトが焼戻されてセメンタイトが形成されたり、未変態のオーステナイトが分解されることを抑制することで、残留オーステナイトを形成させる効果を発揮する。こうした効果を発揮させるためには、Si含有量は0.2%以上とする必要がある。またSi含有量が過剰になって3%を超えると、フェライトが形成されやすくなり、加熱時に単相化が難しくなり、熱間プレス用鋼板においてベイナイトおよびマルテンサイトの必要分率を確保できなくなる。Si含有量の好ましい下限は0.5%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
Mnは、焼入れ性を高め、金型焼入れの冷却中のマルテンサイト、残留オーステナイト以外の組織(フェライト、パーライト、ベイナイト等)の形成を抑制するのに有効な元素である。また、オーステナイトを安定化させる元素であり、残留オーステナイト量の増加に寄与する元素である。こうした効果を発揮させるためには、Mnは0.5%以上含有させる必要がある。特性だけを考慮した場合は、Mn含有量は多い方が好ましいが、合金添加のコストが上昇することから、3%以下とした。Mn含有量の好ましい下限は0.7%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
Pは、鋼中に不可避的に含まれる元素であるが、延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とした。P含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とした。S含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が過剰になって1%を超えると、Al2O3が過剰に生成し、延性を劣化させる。尚、Al含有量の好ましい下限は0.02%以上(より好ましくは0.03%以上)であり、好ましい上限は0.8%以下(より好ましくは0.6%以下)である。
Bは、高強度部位側でフェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、(Ac1変態点~Ac3変態点)の二相域温度に加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0002%以上含有させる必要があるが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量の好ましい下限は0.0003%以上(より好ましくは0.0005%以上)であり、好ましい上限は0.008%以下(更に好ましくは0.005%以下)である。
Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、TiとNの化学量論比[Nの含有量の3.4倍]よりも0.002%以上多く含有させることが重要である。またNに対して過剰に添加されたTiをホットスタンプ成形品内に固溶状態で存在させ、且つ析出した化合物を微細に分散させておくことによって、ホットスタンプ成形品を溶接した際に固溶したTiがTiCとして形成されることによる析出強化や、TiCによる転位の移動防止効果による転位密度の増加遅延等の効果により、HAZにおける強度低下が抑制できる。但し、Ti含有量が過剰になって3.4[N]+0.1%よりも多くなると、形成されるTi含有析出物(例えばTiN)が粗大化され、鋼板の延性が低下する。Ti含有量のより好ましい下限は3.4[N]+0.005%以上(更に好ましくは3.4[N]+0.01%以上)であり、より好ましい上限は3.4[N]+0.09%以下(更に好ましくは3.4[N]+0.08%以下)である。
Nは、不可避的に混入する元素であり、できるだけ低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、形成されるTi含有析出物(例えばTiN)が粗大化され、この析出物が破壊の起点として働き、鋼板の延性を低下させるため、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
V,NbおよびZrは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させる。こうしたことから、これらの元素は合計で0.1%以下とすることが好ましい。これらの元素の含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
Cu,Ni,CrおよびMoは、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.5%以下(更に好ましくは0.3%以下)である。
これらの元素は、介在物を微細化するため、延性向上に有効に作用する。こうした効果を発揮させるためには、合計で0.0001%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、効果が飽和することから、合計で0.01%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.0002%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は合計で0.005%以下(更に好ましくは0.003%以下)である。
プレス成形品の組織を適切に調整するためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、所定量の残留オーステナイトを確保しつつ、マルテンサイトを主体とする組織に変態させ、最終的な熱間プレス成形品の領域内で所望の組織に作り込むことができる。この領域での鋼板加熱温度がAc3変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、鋼板の加熱温度が950℃を超えると、加熱時にオーステナイトの粒径が大きくなり、マルテンサイト変態開始温度(Ms点)およびマルテンサイト変態終了温度(Mf点)が上昇し、焼入れ時に残留オーステナイトを確保できず、良好な成形性が達成されない。鋼板の加熱温度は、好ましくはAc3変態点+50℃以上であり、930℃以下である。
下記表1、2に示した化学成分組成を有する鋼材(鋼No.1~32)を真空溶製し、実験用スラブとした後、熱間圧延を行って鋼板とし、その後に冷却して巻取りを模擬した処理を施した(板厚:3.0mm)。巻取り模擬処理方法は、巻取り温度まで冷却後、巻取り温度に加熱した炉に試料を入れ、30分保持した後炉冷した。このときの鋼板製造条件を下記表3に示す。尚、表1、2中のAc1変態点、Ac3変態点、Ms点およびBs点は、下記の(2)式~(5)式を用いて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。また、表3の備考欄に示した処理(1)~(3)は、下記に示す各処理(圧延、冷却、合金化)を行ったものである。
Ac3変態点(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni] …(3)
Ms点(℃)=550-361×[C]-39×[Mn]-10×[Cu]-17×[Ni]-20×[Cr]-5×[Mo]+30×[Al] …(4)
Bs点(℃)=830-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo] …(5)
但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(2)式~(5)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
処理(2):熱間圧延鋼板を冷間圧延後(板厚:1.6mm)、連続焼鈍を模擬し、860℃に加熱した後、30℃/秒の平均冷却速度で400℃まで冷却し、保持した。
処理(3):熱間圧延鋼板を冷間圧延後(板厚:1.6mm)、連続溶融亜鉛めっきラインを模擬するため860℃に加熱した後、30℃/秒の平均冷却速度で400℃まで冷却し、保持後、更に500℃×10秒加熱後冷却した。
抽出レプリカサンプルを作製し、透過型電子顕微鏡(TEM)にてTi含有析出物の透過型電子顕微鏡像(倍率:10万倍)を撮影した。このとき、エネルギー分散型X線分光器(EDX)により析出物の組成分析をすることによって、Ti含有析出物を特定した。少なくとも100個以上のTi含有析出物の面積を画像解析により測定し、円相当直径が30nm以下のものを抽出し、その平均値を析出物サイズとした。尚、表中には「Ti含有析出物の平均円相当直径」として示す。また、析出Ti量(質量%)-3.4[N](析出物として存在するTi量)は、メッシュ径:0.1μmのメッシュを用いて抽出残渣分析を行い(抽出処理の際に、析出物が凝集して微細な析出物も測定できる)、析出Ti量(質量%)-3.4[N](表4、5では析出Ti量-3.4[N]と表示)を求めた。尚、Ti含有析出物がVやNbを一部含有している場合は、これらの析出物の含有量についても測定した。
(1)鋼板中のマルテンサイト、ベイナイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、マルテンサイト、ベイナイトを区別し、夫々の分率(面積率)を求めた。
(2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、引張強度(TS)が780~1270MPaで伸び(EL)が20%以上を満足し、強度-伸びバランス(TS×EL)が20000(MPa・%)以上のときに合格と評価した。
(1)鋼板中の焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトを区別し、夫々の分率(面積率)を求めた。
(2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
(3)焼入れままマルテンサイト分率については、鋼板をレペラ腐食し、白いコントラストを焼入れままマルテンサイトと残留オーステナイトの混合組織として面積率を測定し、そこからX線回折により求めた残留オーステナイト分率を差いて、焼入れままマルテンサイト分率を計算した。
スポット溶接に準ずる熱履歴として、熱処理シミュレータで平均加熱速度50℃/秒で700℃に加熱後、平均冷却速度50℃/秒で冷却し、元の硬さ(ビッカース硬さ)に対する硬さ低下量(ΔHv)を測定した。硬さ低下量(ΔHv)が50Hv以下のときに、HAZでの軟化防止特性が良好であると判断した。
下記表10に示した化学成分組成を有する鋼材(鋼No.33~37)を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻取った(板厚:3.0mm)。このときの鋼板製造条件を下記表11に示す。
本出願は、2012年3月9日出願の日本特許出願(特願2012-053845)に基づくものであり、その内容はここに参照として取り込まれる。
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)
Claims (6)
- C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.2~3%、
Mn:0.5~3%、
P :0.05%以下(0%を含まない)、
S :0.05%以下(0%を含まない)、
Al:0.01~1%、
B :0.0002~0.01%、
Ti:3.4[N]+0.002%以上、3.4[N]+0.1%以下[但し、[N]はNの含有量(質量%)を示す]、および
N :0.001~0.01%、
を夫々含有し、残部が鉄および不可避不純物からなり、
鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、ベイナイトおよびマルテンサイトの合計分率が80面積%以上であることを特徴とする熱間プレス用鋼板。
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
((1)式中、[N]は鋼中のNの含有量(質量%)を示す) - 更に他の元素として、下記(a)~(c)の少なくとも1つを含有するものである請求項1に記載の熱間プレス用鋼板。
(a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)
(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)
(c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)。 - 請求項1または2に記載の熱間プレス用鋼板を、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、前記鋼板のプレス成形を開始し、下死点で保持して金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することを特徴とするプレス成形品の製造方法。
- 請求項1または2に記載の化学成分組成を有する鋼板のプレス成形品であって、プレス成形品中の金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、プレス鋼中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、成形品中の析出Ti量と全Ti量とが下記(1)式の関係を満足することを特徴とするプレス成形品。
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
((1)式中、[N]は鋼中のNの含有量(質量%)を示す) - 請求項1または2に記載の熱間プレス用鋼板を用い、鋼板の加熱領域を少なくとも2つの領域に分け、その一の領域をAc3変態点以上、950℃以下の温度に加熱すると共に、他の一の領域をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、両方の領域に対してプレス成形を開始し、いずれの領域でも下死点で保持して金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却することを特徴とするプレス成形品の製造方法。
- 請求項1または2に記載の化学成分組成を有する鋼板のプレス成形品であって、前記プレス成形品は、金属組織が、残留オーステナイト:3~20面積%、焼入れままマルテンサイト:80面積%以上である第1の領域と、金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67%である第2の領域を有しており、この第2の領域の鋼中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、成形品中の析出Ti量と全Ti量とが下記(1)式の関係を満足することを特徴とするプレス成形品。
析出Ti量(質量%)-3.4[N]≦0.5×[全Ti量(質量%)-3.4[N]] …(1)
((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/382,437 US20150090377A1 (en) | 2012-03-09 | 2013-03-01 | Steel sheet for hot pressing use, press-formed product, and method for manufacturing press-formed product |
EP13757070.1A EP2824204A4 (en) | 2012-03-09 | 2013-03-01 | STEEL SHEET FOR HOT PRESSING USE, PRESSED MOLDED ARTICLE, AND METHOD FOR MANUFACTURING PRESSED MOLDED ARTICLE |
KR1020147024783A KR101609968B1 (ko) | 2012-03-09 | 2013-03-01 | 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법 |
CN201380012503.4A CN104160051B (zh) | 2012-03-09 | 2013-03-01 | 热压用钢板和冲压成形品以及冲压成形品的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-053845 | 2012-03-09 | ||
JP2012053845A JP5756774B2 (ja) | 2012-03-09 | 2012-03-09 | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133165A1 true WO2013133165A1 (ja) | 2013-09-12 |
Family
ID=49116645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/055678 WO2013133165A1 (ja) | 2012-03-09 | 2013-03-01 | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150090377A1 (ja) |
EP (1) | EP2824204A4 (ja) |
JP (1) | JP5756774B2 (ja) |
KR (1) | KR101609968B1 (ja) |
CN (1) | CN104160051B (ja) |
WO (1) | WO2013133165A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015041159A1 (ja) * | 2013-09-18 | 2015-03-26 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
CN105874091A (zh) * | 2014-01-06 | 2016-08-17 | 新日铁住金株式会社 | 热成形构件及其制造方法 |
WO2018097200A1 (ja) * | 2016-11-25 | 2018-05-31 | 新日鐵住金株式会社 | 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材 |
US10774405B2 (en) | 2014-01-06 | 2020-09-15 | Nippon Steel Corporation | Steel and method of manufacturing the same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5890711B2 (ja) * | 2012-03-15 | 2016-03-22 | 株式会社神戸製鋼所 | 熱間プレス成形品およびその製造方法 |
KR101827187B1 (ko) * | 2013-09-10 | 2018-02-07 | 가부시키가이샤 고베 세이코쇼 | 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법 |
KR20180001590A (ko) | 2013-11-29 | 2018-01-04 | 신닛테츠스미킨 카부시키카이샤 | 열간 성형용 강판 |
JP2017155329A (ja) * | 2016-02-29 | 2017-09-07 | 株式会社神戸製鋼所 | 焼入れ用鋼板及びその製造方法 |
WO2017149999A1 (ja) * | 2016-02-29 | 2017-09-08 | 株式会社神戸製鋼所 | 焼入れ用鋼板、焼入れ部材、及び焼入れ用鋼板の製造方法 |
WO2018061779A1 (ja) * | 2016-09-30 | 2018-04-05 | 株式会社神戸製鋼所 | 鉄鋼部品およびその製造方法ならびに鉄鋼部品用の鋼板 |
US11027522B2 (en) | 2017-01-17 | 2021-06-08 | Nippon Steel Corporation | Steel sheet for hot stamping |
WO2019092483A1 (en) * | 2017-11-10 | 2019-05-16 | Arcelormittal | Cold rolled and heat treated steel sheet and a method of manufacturing thereof |
JP7353768B2 (ja) * | 2018-03-27 | 2023-10-02 | 株式会社神戸製鋼所 | ホットスタンプ用鋼板 |
CN112513310A (zh) * | 2018-05-24 | 2021-03-16 | 通用汽车环球科技运作有限责任公司 | 改善压制硬化钢的强度和延性的方法 |
CN112534078A (zh) | 2018-06-19 | 2021-03-19 | 通用汽车环球科技运作有限责任公司 | 具有增强的机械性质的低密度压制硬化钢 |
US20200156134A1 (en) * | 2018-11-20 | 2020-05-21 | GM Global Technology Operations LLC | Thermal-assisted multiple sheet roll forming |
US11530469B2 (en) | 2019-07-02 | 2022-12-20 | GM Global Technology Operations LLC | Press hardened steel with surface layered homogenous oxide after hot forming |
CN118028702A (zh) * | 2022-11-14 | 2024-05-14 | 育材堂(苏州)材料科技有限公司 | 热冲压成形用钢板、热冲压成形构件及钢板制造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197186A (ja) * | 1993-12-30 | 1995-08-01 | Kobe Steel Ltd | 耐遅れ破壊特性の優れた980N/mm2以上の強度を有する熱延鋼板及びその製造方法 |
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
JP2006274335A (ja) * | 2005-03-29 | 2006-10-12 | Jfe Steel Kk | 超高強度熱延鋼板の製造方法 |
JP2009061473A (ja) * | 2007-09-06 | 2009-03-26 | Sumitomo Metal Ind Ltd | 高強度部品の製造方法 |
JP2010065292A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065293A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065294A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065295A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2012012701A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4649868B2 (ja) * | 2003-04-21 | 2011-03-16 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
JP4635525B2 (ja) * | 2003-09-26 | 2011-02-23 | Jfeスチール株式会社 | 深絞り性に優れた高強度鋼板およびその製造方法 |
JP2005288528A (ja) * | 2004-04-05 | 2005-10-20 | Nippon Steel Corp | 成形後高強度となる鋼板の熱間プレス方法 |
BRPI0818530A2 (pt) * | 2007-10-10 | 2015-06-16 | Nucor Corp | Aço laminado a frio de estrutura metalográfica complexa e método de fabricar uma chapa de aço de estrutura metalográfica complexa |
KR101010971B1 (ko) * | 2008-03-24 | 2011-01-26 | 주식회사 포스코 | 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품 |
JP5385554B2 (ja) * | 2008-06-19 | 2014-01-08 | 株式会社神戸製鋼所 | 熱処理用鋼 |
JP5131844B2 (ja) * | 2008-08-12 | 2013-01-30 | 新日鐵住金株式会社 | 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法 |
KR101091294B1 (ko) * | 2008-12-24 | 2011-12-07 | 주식회사 포스코 | 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법 |
-
2012
- 2012-03-09 JP JP2012053845A patent/JP5756774B2/ja not_active Expired - Fee Related
-
2013
- 2013-03-01 WO PCT/JP2013/055678 patent/WO2013133165A1/ja active Application Filing
- 2013-03-01 EP EP13757070.1A patent/EP2824204A4/en not_active Withdrawn
- 2013-03-01 KR KR1020147024783A patent/KR101609968B1/ko active IP Right Grant
- 2013-03-01 CN CN201380012503.4A patent/CN104160051B/zh not_active Expired - Fee Related
- 2013-03-01 US US14/382,437 patent/US20150090377A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197186A (ja) * | 1993-12-30 | 1995-08-01 | Kobe Steel Ltd | 耐遅れ破壊特性の優れた980N/mm2以上の強度を有する熱延鋼板及びその製造方法 |
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
JP2006274335A (ja) * | 2005-03-29 | 2006-10-12 | Jfe Steel Kk | 超高強度熱延鋼板の製造方法 |
JP2009061473A (ja) * | 2007-09-06 | 2009-03-26 | Sumitomo Metal Ind Ltd | 高強度部品の製造方法 |
JP2010065292A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065293A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065294A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2010065295A (ja) | 2008-09-12 | 2010-03-25 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2012012701A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法 |
Non-Patent Citations (6)
Title |
---|
HEPING LIU ET AL.: "Enhanced mechanical properties of a hot stamped advanced high- strength steel treated by quenching and partitioning process", SCRIPTA MATERIALIA, vol. 64, no. 8, April 2011 (2011-04-01), pages 749 - 752, XP028360180 * |
HIROSUE ET AL., NIPPON STEEL TECHNICAL REPORT, 2003, pages 15 - 20 |
ISJJ INT., vol. 33, no. 7, 1933, pages 776 |
L.XU ET AL.: "Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement", JOURNAL OF MATERIAL SCIENCE, vol. 46, no. 19, October 2011 (2011-10-01), pages 6384 - 6389, XP019926653 * |
LESLIE: "The Physical Metallurgy of Steels", 1985, MARUZEN COMPANY, LIMITED |
See also references of EP2824204A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015041159A1 (ja) * | 2013-09-18 | 2015-03-26 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
CN105518173A (zh) * | 2013-09-18 | 2016-04-20 | 新日铁住金株式会社 | 热冲压成型体以及其制造方法 |
EP3020845A1 (en) * | 2013-09-18 | 2016-05-18 | Nippon Steel & Sumitomo Metal Corporation | Hot stamp molded body and method for producing same |
US10301699B2 (en) | 2013-09-18 | 2019-05-28 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamped part and method of manufacturing the same |
JPWO2015041159A1 (ja) * | 2013-09-18 | 2017-03-02 | 新日鐵住金株式会社 | ホットスタンプ成形体及びその製造方法 |
EP3020845A4 (en) * | 2013-09-18 | 2017-04-05 | Nippon Steel & Sumitomo Metal Corporation | Hot stamp molded body and method for producing same |
EP3093359A4 (en) * | 2014-01-06 | 2017-08-23 | Nippon Steel & Sumitomo Metal Corporation | Hot-formed member and process for manufacturing same |
US10266911B2 (en) | 2014-01-06 | 2019-04-23 | Nippon Steel & Sumitomo Metal Corporation | Hot-formed member and manufacturing method of same |
CN105874091A (zh) * | 2014-01-06 | 2016-08-17 | 新日铁住金株式会社 | 热成形构件及其制造方法 |
US10774405B2 (en) | 2014-01-06 | 2020-09-15 | Nippon Steel Corporation | Steel and method of manufacturing the same |
CN114438418A (zh) * | 2014-01-06 | 2022-05-06 | 日本制铁株式会社 | 热成形构件及其制造方法 |
WO2018097200A1 (ja) * | 2016-11-25 | 2018-05-31 | 新日鐵住金株式会社 | 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材 |
JP6460296B2 (ja) * | 2016-11-25 | 2019-01-30 | 新日鐵住金株式会社 | 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材 |
JPWO2018097200A1 (ja) * | 2016-11-25 | 2019-02-28 | 新日鐵住金株式会社 | 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材 |
US11078550B2 (en) | 2016-11-25 | 2021-08-03 | Nippon Steel Corporation | Method for manufacturing quenched molding, method for manufacturing hot press steel material, and hot press steel material |
Also Published As
Publication number | Publication date |
---|---|
US20150090377A1 (en) | 2015-04-02 |
EP2824204A1 (en) | 2015-01-14 |
CN104160051B (zh) | 2016-08-24 |
EP2824204A4 (en) | 2015-11-04 |
JP2013185243A (ja) | 2013-09-19 |
KR20140127857A (ko) | 2014-11-04 |
CN104160051A (zh) | 2014-11-19 |
JP5756774B2 (ja) | 2015-07-29 |
KR101609968B1 (ko) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5756774B2 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
JP5756773B2 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
JP6001883B2 (ja) | プレス成形品の製造方法およびプレス成形品 | |
WO2015037061A1 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
WO2015037060A1 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
JP6001884B2 (ja) | プレス成形品の製造方法およびプレス成形品 | |
KR101716624B1 (ko) | 프레스 성형품의 제조 방법 및 프레스 성형품 | |
KR20130014520A (ko) | 강, 강판 제품, 강 부품 및 강 부품의 제조 방법 | |
JP5894470B2 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
JP5894469B2 (ja) | 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 | |
JP5802155B2 (ja) | プレス成形品の製造方法およびプレス成形品 | |
JP5869924B2 (ja) | プレス成形品の製造方法およびプレス成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757070 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013757070 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14382437 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147024783 Country of ref document: KR Kind code of ref document: A |