WO2013133005A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2013133005A1
WO2013133005A1 PCT/JP2013/053980 JP2013053980W WO2013133005A1 WO 2013133005 A1 WO2013133005 A1 WO 2013133005A1 JP 2013053980 W JP2013053980 W JP 2013053980W WO 2013133005 A1 WO2013133005 A1 WO 2013133005A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
substrate
semiconductor device
main surface
Prior art date
Application number
PCT/JP2013/053980
Other languages
English (en)
French (fr)
Inventor
拓夫 中井
曽谷 直哉
森上 光章
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014503744A priority Critical patent/JP6156748B2/ja
Publication of WO2013133005A1 publication Critical patent/WO2013133005A1/ja
Priority to US14/476,833 priority patent/US20140370651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses a back junction solar cell that includes a substrate made of a semiconductor material, and a p-type semiconductor layer and an n-type semiconductor layer provided on one main surface of the substrate.
  • the main object of the present invention is to provide a method capable of easily manufacturing a semiconductor device.
  • a p-type semiconductor layer forming step for forming a p-type semiconductor layer on a part of one main surface of a substrate made of a semiconductor material is performed.
  • An n-type semiconductor layer is formed on one main surface of the substrate including the p-type semiconductor layer.
  • At least a part of the portion of the n-type semiconductor layer located on the p-type semiconductor layer is etched using an alkaline etchant.
  • the semiconductor device includes a substrate made of a semiconductor material, an n-type semiconductor layer, and a p-type semiconductor layer.
  • the n-type semiconductor layer is disposed on a part of one main surface of the substrate.
  • the p-type semiconductor layer is disposed on a portion of the main surface of the substrate where the n-type semiconductor layer is not disposed.
  • the n-type semiconductor layer has a portion arranged immediately above the p-type semiconductor layer.
  • a method capable of easily manufacturing a semiconductor device can be provided.
  • FIG. 1 is a schematic plan view of a solar cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view for explaining a method for manufacturing a solar cell in one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining a method for manufacturing a solar cell in one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a solar cell in one embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view for explaining a method for manufacturing a solar cell in one embodiment of the present invention.
  • the solar cell 1 has a substrate 10 made of a semiconductor material.
  • the substrate 10 can be made of, for example, crystalline silicon.
  • the substrate 10 is made of n-type crystalline silicon will be described.
  • the antireflection layer 16 is provided in this order.
  • the i-type semiconductor layer 17i can be made of, for example, substantially intrinsic i-type amorphous silicon.
  • the i-type semiconductor layer 17i preferably has a thickness that does not substantially contribute to power generation, for example, about several to 250 inches.
  • the n-type semiconductor layer 17n can be composed of, for example, n-type amorphous silicon.
  • the reflection suppression layer 16 can be made of, for example, silicon nitride.
  • an n-type semiconductor layer 13n and a p-type semiconductor layer 12p are arranged on the main surface (back surface) 10b of the substrate 10.
  • the n-type semiconductor layer 13n is disposed on a part of the main surface 10b.
  • the n-type semiconductor layer 13n can be composed of, for example, n-type amorphous silicon.
  • a substantially intrinsic i-type semiconductor layer 13i is disposed between the n-type semiconductor layer 13n and the main surface 10b.
  • the i-type semiconductor layer 13i can be made of, for example, substantially intrinsic i-type amorphous silicon.
  • the i-type semiconductor layer 13i preferably has a thickness that does not substantially contribute to power generation, for example, about several to 250 inches.
  • the p-type semiconductor layer 12p is disposed on at least a part of a portion of the main surface 10b where the n-type semiconductor layer 13n is not disposed.
  • the p-type semiconductor layer 12p and the n-type semiconductor layer 13n substantially cover the main surface 10b.
  • the n-type semiconductor layer 13n has a portion arranged immediately above the p-type semiconductor layer 12p. Specifically, the end portion of the n-type semiconductor layer 13n is disposed immediately above the p-type semiconductor layer 12p.
  • the p-type semiconductor layer 12p can be made of, for example, p-type amorphous silicon containing a p-type dopant such as boron.
  • a substantially intrinsic i-type semiconductor layer 12i is disposed between the p-type semiconductor layer 12p and the main surface 10b.
  • the i-type semiconductor layer 12i can be made of, for example, substantially intrinsic i-type amorphous silicon.
  • the i-type semiconductor layer 12i preferably has a thickness that does not substantially contribute to power generation, for example, about several to 250 inches.
  • n-side electrode 14n is disposed on the n-type semiconductor layer 13n.
  • a p-side electrode 15p is disposed on the p-type semiconductor layer 12p.
  • the n-side electrode 14n and the p-side electrode 15p are each provided in a comb shape.
  • the electrodes 14n and 15p can be made of at least one kind of metal such as Ag, Cu, Au, Pt, Ni, or Sn, for example.
  • the electrodes 14n and 15p may be composed of a single conductive layer, or may be composed of a laminate of a plurality of conductive layers.
  • an i-type semiconductor layer 22i for forming an i-type semiconductor layer 12i and a p-type semiconductor layer 22p for forming a p-type semiconductor layer 12p are formed on the main surface 10b of the substrate 10. Are formed in this order (p-type semiconductor layer forming step).
  • the semiconductor layers 22i and 22p can be formed by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • a mask 21 is formed on the p-type semiconductor layer 22p so as to cover a portion where the semiconductor layers 12i and 12p are to be formed.
  • the mask 21 can be formed from, for example, a resist material.
  • Etching of the semiconductor layers 22i and 22p is performed by, for example, fluorinated nitric acid (HF-HNO 3 ), a mixed acid of fluorinated nitric acid / acetic acid (HF—HNO—CH 3 COOH), or a mixed acid of fluorinated nitric acid / hydrogen peroxide (HF—HNO—H 2).
  • fluorinated nitric acid HF-HNO 3
  • HF—HNO—CH 3 COOH a mixed acid of fluorinated nitric acid / hydrogen peroxide
  • inorganic alkalis such as sodium hydroxide (NaOH) and potassium hydroxide (KOH)
  • organic alkalis such as TMAH (tetramethylammonium), a mixture of ammonia and hydrogen fluoride (NH 3 —HF) ), A mixture of hydrogen fluoride and ozone (HF—O 3 ), phosphoric acid (H 3 PO 4 ), or the like.
  • an i-type semiconductor layer 23i for forming an i-type semiconductor layer 13i on the main surface 10b of the substrate 10 including the p-type semiconductor layer 12p, and an n-type An n-type semiconductor layer 23n for forming the semiconductor layer 13n is formed in this order.
  • the semiconductor layers 23i and 23n can be formed by, for example, a CVD method or a sputtering method.
  • a mask 24 is formed on the n-type semiconductor layer 23n so as not to cover at least part of the portion where the p-type semiconductor layer 12p is provided.
  • the mask 24 can be formed of, for example, a resist material.
  • the i-type semiconductor layer 13i is formed from the i-type semiconductor layer 23i
  • the n-type semiconductor layer 13n is formed from the n-type semiconductor layer 23n
  • the p-type semiconductor layer 12p is exposed.
  • the etching rate with respect to the alkaline etching solution of the p-type semiconductor layer 12p containing the p-type dopant such as boron is lower than the etching rate with respect to the alkaline etching solution of the n-type semiconductor layer 23n or the i-type semiconductor layer 23i. Therefore, at least a part of the n-type semiconductor layer 23n and the portion of the i-type semiconductor layer 23i located on the p-type semiconductor layer 12p can be selectively removed without disappearing the p-type semiconductor layer 12p. .
  • alkaline etching solution examples include an aqueous alkali metal hydroxide solution such as an aqueous potassium hydroxide solution.
  • the p-side electrode 15p is formed on the p-type semiconductor layer 12p, and the n-side electrode 14n is formed on the n-type semiconductor layer 13n, whereby the solar cell 1 can be completed.
  • the electrodes 14n and 15p can be formed by, for example, a plating method, a CVD method, a sputtering method, a method of applying a conductive paste, or the like.
  • the formation time of the semiconductor layers 17i and 17n and the reflection suppression layer 16 is not specifically limited.
  • the semiconductor layers 17i and 17n may be formed by the same process as the semiconductor layers 23i and 23n.
  • a solar cell in which the p-type semiconductor layer and the n-type semiconductor layer are opposite to the configuration of the present embodiment that is, a solar cell in which a part of the p-type semiconductor layer is located on the n-type semiconductor layer is manufactured. It is necessary to form an n-type semiconductor layer, etch an n-type semiconductor layer, form a p-type semiconductor layer, and etch a p-type semiconductor layer.
  • the etching rate of the n-type semiconductor layer with respect to the alkaline etching solution is higher than the etching rate of the p-type semiconductor layer with respect to the alkaline etching solution.
  • the n-type semiconductor layer of the p-type semiconductor layer is etched and removed. That is, it is difficult to selectively remove the p-type semiconductor layer by etching with an alkaline etchant. For this reason, it is necessary to provide an etching stop layer made of, for example, silicon nitride having an etching rate with respect to an alkaline etchant lower than that of the p-type semiconductor layer between the n-type semiconductor layer and the p-type semiconductor layer.
  • etching steps that is, an etching step for the p-type semiconductor layer and an etching step for the etching stop layer are required. It is also necessary to separately prepare an etchant that etches the insulating layer and does not etch the n-type semiconductor layer. Furthermore, an insulating layer forming step is also required. Thus, the manufacturing process of a solar cell becomes complicated.
  • the p-type semiconductor layer 22p having a relatively low etching rate with respect to the alkaline etching solution is provided under the n-type semiconductor layer 23n with a relatively high etching rate with respect to the alkaline etching solution. Therefore, the n-type semiconductor layer 23n can be selectively removed with an alkaline etching solution. Therefore, the step of forming an insulating layer on the p-type semiconductor layer 12p is not necessarily required, and the n-type semiconductor layer 23n may be etched once in order to expose the p-type semiconductor layer 12p. Further, an etchant that etches the insulating layer and does not etch the semiconductor layer is not necessarily required. Therefore, the solar cell 1 can be easily manufactured with a small number of steps.
  • a solar cell has been described as an example of the semiconductor device.
  • the semiconductor device according to the present invention may be a semiconductor device other than a solar battery.
  • the method for manufacturing a semiconductor device according to the present invention may be a method for manufacturing a semiconductor device other than a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

 半導体装置を容易に製造し得る方法を提供する。 半導体材料からなる基板10の一主面10bの一部分の上に、p型半導体層12pを形成するp型半導体層形成工程を行う。p型半導体層12pの上を含め、基板10の一主面10bの上にn型半導体層23nを形成する。n型半導体層23nのp型半導体層12pの上に位置する部分の少なくとも一部をアルカリエッチング液を用いてエッチングする。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 従来、改善された光電変換効率を実現し得る太陽電池として、裏面接合型の太陽電池が知られている。例えば特許文献1には、半導体材料からなる基板と、基板の一主面上に設けられたp型半導体層及びn型半導体層とを有する裏面接合型の太陽電池が開示されている。
特開2011-44749号公報
 特許文献1に記載の太陽電池のように、半導体材料からなる基板の一主面上に設けられたp型半導体層及びn型半導体層を有する半導体装置を製造するためには、例えば、p型半導体層、n型半導体層のパターニング工程などの多数のパターニング工程が必要となる。従って、このような半導体装置は、製造工程が煩雑であるという問題がある。
 本発明は、半導体装置を容易に製造し得る方法を提供することを主な目的とする。
 本発明に係る半導体装置の製造方法では、半導体材料からなる基板の一主面の一部分の上に、p型半導体層を形成するp型半導体層形成工程を行う。p型半導体層の上を含め、基板の一主面の上にn型半導体層を形成する。n型半導体層のp型半導体層の上に位置する部分の少なくとも一部をアルカリエッチング液を用いてエッチングする。
 本発明に係る半導体装置は、半導体材料からなる基板と、n型半導体層と、p型半導体層とを備える。n型半導体層は、基板の一主面の一部分の上に配されている。p型半導体層は、基板の一主面のn型半導体層が配されていない部分の上に配されている。n型半導体層は、p型半導体層の直上に配された部分を有する。
 本発明によれば、半導体装置を容易に製造し得る方法を提供することができる。
図1は、本発明の一実施形態における太陽電池の略図的平面図である。 図2は、図1の線II-IIにおける略図的断面図である。 図3は、本発明の一実施形態における太陽電池の製造方法を説明するための略図的断面図である。 図4は、本発明の一実施形態における太陽電池の製造方法を説明するための略図的断面図である。 図5は、本発明の一実施形態における太陽電池の製造方法を説明するための略図的断面図である。 図6は、本発明の一実施形態における太陽電池の製造方法を説明するための略図的断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態などにおいて参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態などにおいて参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率などが異なる場合がある。具体的な物体の寸法比率などは、以下の説明を参酌して判断されるべきである。
 (太陽電池1の構成)
 まず、図1及び図2を参照して、本実施形態において製造される、半導体装置である太陽電池1の構成について説明する。
 図2に示されるように、太陽電池1は、半導体材料からなる基板10を有する。基板10は、例えば、結晶シリコンなどにより構成することができる。本実施形態では、基板10がn型結晶シリコンからなる例について説明する。
 基板10の主面(受光面)10aの上には、実質的に真性なi型半導体層17iと、基板10と同じ導電型を有するn型半導体層17nと、保護膜としての機能を兼ね備えた反射抑制層16とがこの順番で設けられている。i型半導体層17iは、例えば実質的に真性なi型アモルファスシリコンなどにより構成することができる。i型半導体層17iは、例えば、数Å~250Å程度の、発電に実質的に寄与しない程度の厚みを有することが好ましい。n型半導体層17nは、例えば、n型アモルファスシリコンなどにより構成することができる。反射抑制層16は、例えば、窒化ケイ素などにより構成することができる。
 基板10の主面(裏面)10bの上には、n型半導体層13nと、p型半導体層12pとが配されている。
 n型半導体層13nは、主面10bの一部分の上に配されている。n型半導体層13nは、例えば、n型アモルファスシリコンなどにより構成することができる。n型半導体層13nと主面10bとの間には、実質的に真性なi型半導体層13iが配されている。i型半導体層13iは、例えば実質的に真性なi型アモルファスシリコンなどにより構成することができる。i型半導体層13iは、例えば、数Å~250Å程度の、発電に実質的に寄与しない程度の厚みを有することが好ましい。
 p型半導体層12pは、主面10bのn型半導体層13nが配されていない部分の少なくとも一部の上に配されている。このp型半導体層12pとn型半導体層13nとにより主面10bの実質的に全体が覆われている。n型半導体層13nは、p型半導体層12pの直上に配された部分を有する。具体的には、n型半導体層13nの端部は、p型半導体層12pの直上に配されている。
 p型半導体層12pは、例えば、ホウ素などのp型ドーパントを含むp型アモルファスシリコンなどにより構成することができる。p型半導体層12pと主面10bとの間には、実質的に真性なi型半導体層12iが配されている。i型半導体層12iは、例えば実質的に真性なi型アモルファスシリコンなどにより構成することができる。i型半導体層12iは、例えば、数Å~250Å程度の、発電に実質的に寄与しない程度の厚みを有することが好ましい。
 n型半導体層13nの上には、n側電極14nが配されている。一方、p型半導体層12pの上には、p側電極15pが配されている。n側電極14nとp側電極15pとは、それぞれ、くし歯状に設けられている。
 電極14n、15pは、それぞれ、例えば、Ag、Cu、Au、Pt、Ni、Snなどの少なくとも一種の金属により構成することができる。電極14n、15pは、単一の導電層により構成されていてもよいし、複数の導電層の積層体により構成されていてもよい。
 (太陽電池1の製造方法)
 次に、主として図3~図6を参照しながら、太陽電池1の製造方法の一例について説明する。
 図3に示されるように、基板10の主面10bの上に、i型半導体層12iを構成するためのi型半導体層22iと、p型半導体層12pを構成するためのp型半導体層22pとを、この順番で形成する(p型半導体層形成工程)。半導体層22i、22pは、例えば、CVD(Chemical Vapor Deposition)法やスパッタリング法などにより形成することができる。
 次に、p型半導体層22pの上に、半導体層12i、12pを形成しようとする部分を覆うようにマスク21を形成する。マスク21は、例えばレジスト材料などにより形成することができる。
 次に、マスク21の上から半導体層22i、22pをエッチングすることにより、半導体層22i、22pのマスク21に覆われていない部分を除去する。これにより、図4に示される半導体層12i、12pを形成する。
 半導体層22i、22pのエッチングは、例えばフッ硝酸(HF-HNO)やフッ硝酸・酢酸の混酸(HF-HNO-CHCOOH)、フッ硝酸・過酸化水素の混酸(HF-HNO-H)の他、水酸化ナトリウム(NaOH)や水酸化カリウム(KOH)などの無機アルカリ類、又はTMAH(テトラメチルアンモニウム)等の有機アルカリ類、アンモニア・フッ化水素の混合物(NH-HF)、フッ化水素・オゾンの混合物(HF-O)リン酸(HPO)などを用いて好適に行うことができる。
 次に、図5に示されるように、p型半導体層12pの上を含め、基板10の主面10bの上に、i型半導体層13iを構成するためのi型半導体層23iと、n型半導体層13nを構成するためのn型半導体層23nとをこの順番で形成する。半導体層23i、23nは、例えば、CVD法やスパッタリング法などにより形成することができる。
 次に、n型半導体層23nの上に、p型半導体層12pが設けられている部分の少なくとも一部を覆わないように、マスク24を形成する。マスク24は、例えばレジスト材料などにより形成することができる。
 次に、マスク24の上から、アルカリエッチング液を用いてエッチングすることにより、n型半導体層23nのp型半導体層12pの上に位置する部分の少なくとも一部を除去する。これにより、図6に示されるように、i型半導体層23iからi型半導体層13iを形成し、n型半導体層23nからn型半導体層13nを形成すると共に、p型半導体層12pを露出させる。
 ここで、ホウ素などのp型ドーパントを含むp型半導体層12pのアルカリエッチング液に対するエッチングレートは、n型半導体層23nやi型半導体層23iのアルカリエッチング液に対するエッチングレートよりも低い。このため、p型半導体層12pが消失することなく、n型半導体層23n及びi型半導体層23iのp型半導体層12pの上に位置する部分の少なくとも一部を選択的に除去することができる。
 好ましく用いられるアルカリエッチング液としては、例えば水酸化カリウム水溶液などのアルカリ金属水酸化物水溶液などが挙げられる。
 次に、p型半導体層12pの上にp側電極15pを形成すると共に、n型半導体層13nの上にn側電極14nを形成することにより、太陽電池1を完成させることができる。電極14n、15pは、例えば、めっき法、CVD法、スパッタリング法、導電性ペーストを塗布する方法などにより形成することができる。
 なお、半導体層17i、17n及び反射抑制層16の形成時期は、特に限定されない。例えば、半導体層17i、17nを半導体層23i、23nと同一プロセスで形成してもよい。
 ところで、本実施形態の構成とはp型半導体層とn型半導体層とが逆の構成の太陽電池、すなわちp型半導体層の一部がn型半導体層の上に位置する太陽電池を作製するには、n型半導体層の形成、n型半導体層のエッチング、p型半導体層の形成、及びp型半導体層のエッチングを行う必要がある。ここで、n型半導体層のアルカリエッチング液に対するエッチングレートが、p型半導体層のアルカリエッチング液に対するエッチングレートよりも高い。このため、p型半導体層のn型半導体層の上に位置する部分を確実に除去すると、n型半導体層までエッチングされて除去されてしまう。すなわち、アルカリエッチング液によるエッチングによって、p型半導体層を選択的に除去することは困難である。このため、n型半導体層とp型半導体層との間に、アルカリエッチング液に対するエッチングレートがp型半導体層よりも低い、例えば窒化シリコンなどからなるエッチングストップ層を設ける必要がある。従って、p型半導体層の下方に位置するn型半導体層を露出させるためには、p型半導体層のエッチング工程と、エッチングストップ層のエッチング工程との2回のエッチング工程が必要となる。また、絶縁層をエッチングし、n型半導体層をエッチングしないエッチング液を別途に準備する必要もある。さらに、絶縁層の形成工程も必要となる。このように、太陽電池の製造工程が煩雑になる。
 それに対して、本実施形態では、アルカリエッチング液に対するエッチングレートが相対的に低いp型半導体層22pを、アルカリエッチング液に対するエッチングレートが相対的に高いn型半導体層23nの下に設ける。よって、アルカリエッチング液によって、n型半導体層23nを選択的に除去することができる。従って、p型半導体層12pの上に絶縁層を形成する工程を必ずしも必要とせず、また、p型半導体層12pを露出させるために、n型半導体層23nのエッチング工程を1回行えばよい。また、絶縁層をエッチングし、かつ半導体層をエッチングしないエッチング液が必ずしも必要ではない。従って、太陽電池1は、少ない工程数で容易に製造することができる。
 なお、本実施形態では、半導体装置として太陽電池を例に挙げて説明した。但し、本発明は、これに限定されない。本発明に係る半導体装置は、太陽電池以外の半導体装置であってもよい。本発明に係る半導体装置の製造方法は、太陽電池以外の半導体装置を製造する方法であってもよい。
1…太陽電池
10…基板
12p…p型半導体層
13n…n型半導体層
14n…n側電極
15p…p側電極
16…反射抑制層
22p…p型半導体層
23n…n型半導体層

Claims (7)

  1.  半導体材料からなる基板の一主面の一部分の上に、p型半導体層を形成するp型半導体層形成工程と、
     前記p型半導体層の上を含め、前記基板の一主面の上にn型半導体層を形成する工程と、
     前記n型半導体層の前記p型半導体層の上に位置する部分の少なくとも一部をアルカリエッチング液を用いてエッチングする工程と、
    を備える、半導体装置の製造方法。
  2.  前記アルカリエッチング液として、アルカリ金属水酸化物水溶液を用いる、請求項1に記載の半導体装置の製造方法。
  3.  前記p型半導体層の上にp側電極を形成し、前記n型半導体層の上にn側電極を形成する工程をさらに備え、
     前記半導体装置が太陽電池である、請求項1または2に記載の半導体装置の製造方法。
  4.  前記p型半導体層形成工程は、前記基板の一主面の上に形成したp型半導体層の一部分をエッチングする工程を含む、請求項1~3のいずれか一項に記載の半導体装置の製造方法。
  5.  前記p型半導体層のエッチングをフッ硝酸を用いて行う、請求項4に記載の半導体装置の製造方法。
  6.  半導体材料からなる基板と、
     前記基板の一主面の一部分の上に配されたn型半導体層と、
     前記基板の一主面の前記n型半導体層が配されていない部分の上に配されたp型半導体層と、
    を備え、
     前記n型半導体層は、前記p型半導体層の直上に配された部分を有する、半導体装置。
  7.  前記n型半導体層の上に配されたn側電極と、
     前記p型半導体層の上に配されたp側電極と、
    をさらに備え、
     太陽電池である、請求項6に記載の半導体装置。
PCT/JP2013/053980 2012-03-08 2013-02-19 半導体装置の製造方法 WO2013133005A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014503744A JP6156748B2 (ja) 2012-03-08 2013-02-19 半導体装置の製造方法
US14/476,833 US20140370651A1 (en) 2012-03-08 2014-09-04 Method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012051757 2012-03-08
JP2012-051757 2012-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/476,833 Continuation US20140370651A1 (en) 2012-03-08 2014-09-04 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2013133005A1 true WO2013133005A1 (ja) 2013-09-12

Family

ID=49116489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053980 WO2013133005A1 (ja) 2012-03-08 2013-02-19 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20140370651A1 (ja)
JP (1) JP6156748B2 (ja)
WO (1) WO2013133005A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158977A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 太陽電池および太陽電池モジュール
JPWO2016098701A1 (ja) * 2014-12-15 2017-09-21 シャープ株式会社 半導体基板の製造方法、光電変換素子の製造方法、半導体基板および光電変換素子
US10505064B2 (en) 2015-09-14 2019-12-10 Sharp Kabushiki Kaisha Photovoltaic device
US11316061B2 (en) 2014-10-31 2022-04-26 Sharp Kabushiki Kaisha Photovoltaic devices, photovoltaic modules provided therewith, and solar power generation systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080887A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池及びその製造方法
WO2010113750A1 (ja) * 2009-03-30 2010-10-07 三洋電機株式会社 太陽電池
JP2012028718A (ja) * 2010-07-28 2012-02-09 Sanyo Electric Co Ltd 太陽電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277485B2 (ja) * 2007-12-13 2013-08-28 シャープ株式会社 太陽電池の製造方法
KR101099480B1 (ko) * 2009-02-13 2011-12-27 엘지전자 주식회사 태양전지 및 그의 제조방법과 기판 식각 방법
US8148230B2 (en) * 2009-07-15 2012-04-03 Sandisk 3D Llc Method of making damascene diodes using selective etching methods
JP5401203B2 (ja) * 2009-08-07 2014-01-29 株式会社日立製作所 半導体受光装置及びその製造方法
JP5334926B2 (ja) * 2010-08-02 2013-11-06 三洋電機株式会社 太陽電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080887A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池及びその製造方法
WO2010113750A1 (ja) * 2009-03-30 2010-10-07 三洋電機株式会社 太陽電池
JP2012028718A (ja) * 2010-07-28 2012-02-09 Sanyo Electric Co Ltd 太陽電池の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316061B2 (en) 2014-10-31 2022-04-26 Sharp Kabushiki Kaisha Photovoltaic devices, photovoltaic modules provided therewith, and solar power generation systems
JPWO2016098701A1 (ja) * 2014-12-15 2017-09-21 シャープ株式会社 半導体基板の製造方法、光電変換素子の製造方法、半導体基板および光電変換素子
WO2016158977A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 太陽電池および太陽電池モジュール
CN107112375A (zh) * 2015-03-31 2017-08-29 株式会社钟化 太阳能电池以及太阳能电池模块
JPWO2016158977A1 (ja) * 2015-03-31 2018-01-25 株式会社カネカ 太陽電池および太陽電池モジュール
US10644178B2 (en) 2015-03-31 2020-05-05 Kaneka Corporation Solar battery and solar battery module
US10505064B2 (en) 2015-09-14 2019-12-10 Sharp Kabushiki Kaisha Photovoltaic device

Also Published As

Publication number Publication date
US20140370651A1 (en) 2014-12-18
JP6156748B2 (ja) 2017-07-05
JPWO2013133005A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5879515B2 (ja) 太陽電池の製造方法
JP5879538B2 (ja) 光電変換装置及びその製造方法
JP5485060B2 (ja) 太陽電池の製造方法
JP5334926B2 (ja) 太陽電池の製造方法
JP6350858B2 (ja) 太陽電池の製造方法及び太陽電池
JP5273728B2 (ja) 配線シート付き太陽電池セルおよび太陽電池モジュール
JP5595850B2 (ja) 太陽電池の製造方法
JP6156748B2 (ja) 半導体装置の製造方法
JP5884030B2 (ja) 光電変換装置の製造方法
WO2012132835A1 (ja) 太陽電池
JP6136024B2 (ja) 太陽電池の製造方法
US9705027B2 (en) Solar cell manufacturing method using etching paste
JP2016066709A (ja) 太陽電池
WO2012090650A1 (ja) 太陽電池
JP2013187388A (ja) 半導体装置の製造方法
JP5971499B2 (ja) 太陽電池及びその製造方法
WO2012132834A1 (ja) 太陽電池及び太陽電池の製造方法
WO2012132614A1 (ja) 光電変換装置
US20110277824A1 (en) Solar Cell and Method of Manufacturing the Same
JPWO2015145886A1 (ja) 電極パターンの形成方法及び太陽電池の製造方法
JP6906195B2 (ja) 太陽電池
WO2012132932A1 (ja) 太陽電池及び太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757563

Country of ref document: EP

Kind code of ref document: A1