WO2013132606A1 - 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法 - Google Patents

車両用発電電動機の電力変換装置および車両用発電電動機の制御方法 Download PDF

Info

Publication number
WO2013132606A1
WO2013132606A1 PCT/JP2012/055797 JP2012055797W WO2013132606A1 WO 2013132606 A1 WO2013132606 A1 WO 2013132606A1 JP 2012055797 W JP2012055797 W JP 2012055797W WO 2013132606 A1 WO2013132606 A1 WO 2013132606A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
power
power generation
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2012/055797
Other languages
English (en)
French (fr)
Inventor
充規 田畑
森 真人
健一 秋田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/371,008 priority Critical patent/US9533580B2/en
Priority to JP2014503355A priority patent/JP5726369B2/ja
Priority to PCT/JP2012/055797 priority patent/WO2013132606A1/ja
Priority to IN4924CHN2014 priority patent/IN2014CN04924A/en
Priority to CN201280071234.4A priority patent/CN104160611B/zh
Priority to EP12870716.3A priority patent/EP2824830B1/en
Publication of WO2013132606A1 publication Critical patent/WO2013132606A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention is a field winding type power generation that is mounted on a vehicle mainly and operates as an electric motor when starting an engine or assisting torque, and also operates as a generator after starting.
  • the present invention relates to a power conversion device for a vehicular generator motor and a control method for the vehicular generator motor.
  • field winding type generator motors have a larger field winding inductance than armature winding inductance, so when the drive is stopped, the armature winding and field winding are turned off simultaneously. Then, the reduction rate of the field current is slower than the armature current, and an unintended power generation state may occur due to the induced voltage generated by the residual field magnetic flux. In such a case, excessive power generation may adversely affect the battery and other devices, or excessive braking torque output may adversely affect engine control.
  • Patent Document 1 after an instruction to stop driving is given, the field current is reduced while energization of the armature is continued, and after the field current is reduced to a certain level, A method of preventing power generation by stopping energization of the armature has been proposed.
  • the induced voltage is less than the B terminal voltage or the battery voltage using the rotational speed of the generator motor and the voltage between the input terminals (hereinafter referred to as the B terminal voltage) or the battery voltage.
  • a range value is being calculated.
  • Patent Document 2 proposes a method for preventing power generation by providing a field current rapid attenuating means and operating the means at the time of transition from the drive mode to the power generation mode. There is a problem that an additional cost is required for mounting the attenuation means.
  • the present invention prevents the unintentional power generation and excessive power generation torque due to the residual field magnetic flux when the drive is stopped without adding parts or circuits, and allows the power of the vehicular generator motor to quickly transition to the next operation mode.
  • An object is to provide a conversion device or the like.
  • the present invention relates to a field winding type vehicle generator motor field in which a power converter is connected to a rotating electric machine having a field winding and an armature winding, and control is performed according to an operation command from the outside.
  • the drive mode stop method is switched according to the operation mode of the transition destination, so that unintended power generation, overpower generation, and excessive torque fluctuations can be generated quickly.
  • a power conversion device for a vehicular generator-motor and a control method for a vehicular generator-motor that are caused to change the operation mode.
  • the present invention it is possible to prevent unintentional power generation or excessive power generation torque due to residual field magnetic flux when driving is stopped, without adding parts or circuits, and to quickly transition to the next operation mode.
  • a plurality of drive stop means are provided, and the drive stop means to be used is switched according to the next transition mode.
  • the level of the field current at which the drive stop means is started is determined by the next transition mode.
  • FIG. 1 is a schematic configuration diagram of a vehicle system equipped with a power conversion device for a vehicular generator motor according to the present invention.
  • the rotating electrical machine 20 of the generator motor 1 is connected to the engine 3 via a power transmission unit 4 such as a belt.
  • the generator motor When receiving an operation command (OC) including an operation mode and a torque command from an external idle stop system controller or key switch (both not shown), the generator motor operates in accordance with the command.
  • OC operation command
  • the generator motor When receiving an operation command (OC) including an operation mode and a torque command from an external idle stop system controller or key switch (both not shown), the generator motor operates in accordance with the command.
  • the generator motor 1 when the engine 3 is started, the generator motor 1 operates as a motor (drive mode) and rotates the engine. During operation of the engine, the generator motor 1 operates as a generator (power generation mode), and supplies the generated power to a battery 2 (or a capacitor, hereinafter referred to as a battery) 2 that is a power source that can be charged. In the power generation mode, the generated voltage is controlled to be constant, or the generated current is controlled to generate the commanded torque. Further, even when the engine 3 is in operation, there is a case where it operates as an electric motor as needed to perform torque assist. In addition, a mode in which generated power is consumed inside the generator motor 1 to generate braking torque (braking mode), a mode in which no operation is performed (stop mode), and the like are provided.
  • braking mode a mode in which no operation is performed (stop mode)
  • the generator motor 1 includes a power conversion device 10 and a rotating electrical machine 20.
  • the power converter 10 detects a field current, a field power converter 11, an armature power converter 12, a control unit 13 that instructs the power converters 11 and 12 to turn on / off a power conversion element, and a field current.
  • a current sensor 14 is provided.
  • the rotating electrical machine 20 includes a field winding 21 that energizes a field current to generate a field magnetic flux, an armature winding 22, and a position sensor 23 that is necessary for obtaining the rotational speed of the rotating electrical machine 20.
  • the field power conversion unit 11 of the generator motor 1 generally uses a half-bridge circuit made up of a MOSFET as a power conversion element.
  • the field power conversion unit 11 operates in accordance with an on / off command for the power conversion element from the control unit 13, and supplies a field current to the field winding 21 by PWM control.
  • the armature power conversion unit 12 generally uses a three-phase bridge circuit made up of MOSFETs as power conversion elements.
  • the armature power conversion unit 12 operates in response to an on / off command for a power conversion element from the control unit 13 during driving (driving mode), and supplies an armature current to the armature winding 22.
  • the armature current from the armature winding 22 is rectified and power is supplied to the battery 2 and other loads.
  • braking all the power conversion elements of one arm of the three-phase bridge circuit are turned on (referred to as three-phase short-circuit braking), and the generated electric power is consumed inside the generator motor 1.
  • stop mode all the power conversion elements are turned off.
  • the circuit configuration itself of these bridge circuits is a well-known technique, the detailed description beyond this is abbreviate
  • the terminals B and E of the power converter 10 or the generator motor 1 connected to the battery (capacitor) 2 are used as power input / output terminals.
  • the control unit 13 is composed of a computer including a storage unit, and FIG. 8 shows an example of a functional block diagram of the control unit 13. In FIG. 8, the configuration according to all the embodiments is shown together.
  • the control unit 13 includes a timer 131, a storage unit 132, a first drive stop unit 133, a second drive stop unit 134, a switching unit 135, a drive stop unit 136, and a power generation torque control unit 137.
  • step S1 it is determined whether the next operation mode command is a power generation mode or a braking mode.
  • the process proceeds to step S2. If not, that is, if the next mode command is another mode such as a stop mode other than the power generation mode and the braking mode, the process proceeds to step S3.
  • step S2 the driving operation on the armature (22) side is stopped, the driving operation is terminated, and the mode is changed to the power generation mode or the braking mode. That is, when the next operation mode command is the power generation mode, the field power conversion unit 11 does not perform the field current reduction process, and controls the field power conversion unit 11 and the armature power conversion unit 12 to drive immediately. Exit the mode and enter the power generation mode. Similarly, when the operation mode command is the braking mode, the field power conversion unit 11 does not perform the field current reduction process, and controls the field power conversion unit 11 and the armature power conversion unit 12 to immediately perform the drive mode. To end the transition to the braking mode.
  • step S3 by controlling the armature power conversion unit 12 and continuing energization of the armature, the control of the field power conversion unit 11 is stopped and the energization to the field winding 21 is stopped. , Reduce the field current (reduction operation). Thereafter, in step S4, the field current level for determining the reduction operation completion is calculated.
  • the field current level for example, as in the above-mentioned patent document 1, the rotational speed of the generator motor 1, the B terminal voltage (the input / output terminal voltage indicated by B in FIG. 1), or the battery voltage (standard battery). Voltage: 12V, 24V, 36V, etc.) to determine a value in a range where the induced voltage is lower than the B terminal voltage or the battery voltage.
  • the controller 13 for this purpose is also connected to the input / output terminal B in order to obtain the B terminal voltage.
  • the standard voltage of the battery used is stored in the storage means 132 of the control unit 13.
  • the field current level for each rotation speed, B terminal voltage, or battery voltage of the generator motor 1 is stored in advance in the storage unit 132 as information for determining a reduction operation completion (field current level) in a table or mathematical expression. It may be stored.
  • the control unit 13 obtains the rotational speed of the generator motor 1 from the temporal change in position from the position sensor 23 that detects the rotational position of the rotating electrical machine 20, and obtains the field current from the current sensor 14.
  • the induced voltage, rotational speed, and field current of the rotating electrical machine 20 are approximately in the following relationship.
  • step S5 After obtaining the field current level for determining the reduction operation completion, in step S5, it is determined whether or not the field current value is equal to or less than the field current level (predetermined threshold value) for determining the reduction operation completion. If the value of the field current is equal to or lower than the field current level for determining the completion of the reduction operation, the induced voltage can be induced even if the control of the armature power conversion unit 12 is stopped and the energization to the armature side is stopped at this stage. Since no unintended power generation is performed in step S2, the process proceeds to step S2, the armature side driving operation is stopped, and the driving operation is terminated.
  • the field current level predetermined threshold value
  • step S5 If the value of the field current exceeds the field current level for determining the completion of the reduction operation in step S5, the process proceeds to step S6. If the driving operation on the armature side is stopped at this time, the power generation is performed even though the power generation command is not issued. Therefore, in step S6, the armature energization control in the drive mode is continued. Thereafter, the process proceeds to step S1, and this series of flows (steps S5 ⁇ S6 ⁇ S1 ⁇ S3 ⁇ S4 ⁇ S5) is repeated to wait for the field current to fall below the field level for completion of the reduction operation determination. Then stop driving.
  • step S1 constitutes the switching means 135
  • step S2 constitutes the first drive stop means 133
  • steps S1 to S6 constitute the second drive stop means 134.
  • the driving is stopped immediately without waiting for the field to fall, and the transition is made to power generation or braking.
  • the drive is stopped after the field current becomes a certain value or less, and the operation mode is changed to the next operation mode.
  • the drive mode is indispensable, but it is only necessary to have one of the power generation mode and the braking mode, and there is no particular need for the braking mode.
  • the next mode command is the power generation mode or the braking mode
  • the mode is immediately switched to the power generation mode or the braking mode without waiting for the reduction of the field current. If not, the drive ends after performing a reduction process so that unintended power generation is not performed by the residual field current. Therefore, when the next operation mode command is the power generation mode or the braking mode, the power generation operation or the braking operation can be performed quickly, and when it is other than the stop mode, unintended power generation can be prevented.
  • the field current level (threshold) is used to determine whether to stop driving. The determination may be made using each predetermined elapsed time corresponding to the field current reaching the above-described field current level after starting (that is, after receiving the next mode command) ( The drive is stopped after a predetermined time). In this case, the elapsed time is counted by the timer 131, for example. Also in such a case, for example, each operation mode to be transitioned, the rotation speed of the generator motor 1, the elapsed time for each B terminal voltage or the battery voltage is stored as a mathematical expression or a table as a reduced operation completion determination (elapsed time) information. May be stored in advance and used.
  • FIG. 3 is a flowchart showing the operation of the power conversion apparatus when the drive mode under the control of the control unit 13 is ended according to the second embodiment of the present invention. Except for the operation of the power conversion device when the drive mode is ended, the operation is the same as in the first embodiment, and the description is omitted.
  • step S11 field current reduction processing (reduction operation) is started. This reduction process is the same as in the first embodiment.
  • step S12 a field current level Ifth for determining the reduction operation completion is calculated.
  • the field current level Ifth as shown in FIG. 4, a value determined from the next operation mode command, the B terminal voltage or the battery voltage, and the rotation speed is used.
  • FIG. 4 shows the field current level Ifth (threshold) with respect to the operation mode in which the rotational speed Nmg of the generator motor transitions.
  • A indicates Ifth when the next operation mode is the power generation mode
  • B indicates Ifth when the next operation mode is other than the power generation mode.
  • the field current level Ifth in the power generation mode is set higher than the field current level Ifth in the stop mode other than the power generation mode.
  • VB 12V, 24V, 36V
  • it can be set for each detected B terminal voltage, or can be defined as an equation.
  • Such information (reduction operation completion determination information) can be stored in advance in the storage unit 132 and used, for example.
  • the field current level Ifth (threshold) is set so that the generated current immediately after the mode transition is equal to or less than a predetermined value when the operation mode in which the rotating electrical machine transitions next is the power generation mode.
  • the field current level Ifth (threshold) for determining the reduction operation completion is set near the maximum field current IfMAX during power generation, and the drive mode is set as early as possible. It is possible to transition from power generation mode to power generation mode. However, when a transition is made from the drive mode to the power generation mode in a state where high rotation and a large field current are flowing, an excessive power generation current is generated immediately after the transition, and an overvoltage may be caused in some cases. In such a case, as indicated by a broken line in FIG. 4, the value of the field current level Ifth is determined in a range in which the generated current does not exceed a certain value.
  • the induced voltage is made lower than the B terminal voltage or the battery voltage using the rotation speed of the generator motor and the B terminal voltage or the battery voltage.
  • a field current level Ifth (threshold value) within a range is set to prevent unintended power generation.
  • the fluctuation range of the B terminal voltage is small and the influence on the field current level Ifth is small. That is, the standard battery voltage stored in advance in the storage means 132 or the like or information for each standard battery voltage (see FIG. 4) is used without detection from the input / output terminals.
  • step S13 After obtaining the field current level for determining the reduction operation completion, in step S13, it is determined whether or not the value of the field current is equal to or less than the field current level Ifth (threshold value) for determining the reduction operation completion. If the value of the field current is equal to or less than the field current level for determining the completion of the reduction operation, unintentional power generation is not performed even if the energization to the armature side is stopped at this stage, so go to Step S14. The driving operation on the armature side is stopped and the driving operation is terminated.
  • step S15 If the driving operation on the armature side is stopped at this time, the power generation is performed even though the power generation command is not issued. Therefore, in step S15, the armature energization control in the drive mode is continued. Thereafter, the process proceeds to step S11, and after repeating this series of steps (steps S13, S15, S11, S12, and S13), the field current waits for the field level to decrease to a field level for completion of the reduction operation determination. Stop driving.
  • steps S11 to S15 constitute the drive stopping means 136.
  • the field current level Ifth (threshold) for determining the reduction operation completion may be obtained by calculation as described above, or the information for determining the reduction operation completion (field current level) as shown in FIG. Alternatively, it may be stored in advance in the storage means 132 as a table and used.
  • the field current threshold for stopping energization on the armature side when changing from the drive mode to another operation mode (next mode) other than the drive mode is changed according to the next operation mode. For example, in the case of a transition from the drive mode to the power generation mode, the energization on the armature side is stopped when the field current decreases to 10 A, and in the case of the transition from the drive mode to the stop mode, the armature side Stop energizing.
  • next mode information rotation speed, B terminal voltage or battery voltage.
  • the next mode information rotation speed, B terminal voltage or battery voltage.
  • the current decreases, the energization on the armature side is stopped.
  • the field current is reduced, and the reduction operation completion determination field current level is set to the next operation mode command, B terminal voltage, Search by calculation or storage means according to the rotation speed. Therefore, when the next operation mode command is power generation, power generation operation can be performed promptly, and unintended power generation can be prevented in other operation modes.
  • the field current level (threshold) is used to determine whether or not to stop the drive, but this is determined after the field current reduction control is started (that is, the next mode command It may be determined using each predetermined elapsed time corresponding to the field current reaching the above-described field current level. Also in such a case, for example, each operation mode to be transitioned, the rotation speed of the generator motor 1, the elapsed time for each B terminal voltage or the battery voltage is stored as a mathematical expression or a table as a reduced operation completion determination (elapsed time) information. May be stored in advance and used.
  • the field current level Ifth may be set based on the next transition operation mode and the rotational speed of the generator motor, or may be set based on the addition of the B terminal voltage or the battery voltage. Also good.
  • Embodiment 3 FIG.
  • the third embodiment is different from the second embodiment in the field current level calculation method for determining the reduction operation completion. Since other parts are the same as those in the second embodiment, only the parts peculiar to the third embodiment will be described below.
  • a desired field current command is obtained from the command value of the power generation torque commanded from the host controller and the rotation speed, and the field current control is performed according to the command value of the field current.
  • a power generation torque control that generates torque has been proposed (for example, Patent Document 3).
  • FIG. 5 shows an example of the relationship between torque and field current when such a generator motor having a power generation torque control function performs control as in the second embodiment.
  • FIG. 5 (a) shows the change with time of the torque, and FIG.
  • the power generation torque command Tg is small and the field current at the time of driving is large, the field current remains large, and the mode immediately shifts from the driving mode to the power generation mode. Power generation is performed in a state close to the magnetic current, and more power generation torque than necessary is generated.
  • the power generation calculated based on the power generation torque command, the rotation speed, the B terminal voltage, or the battery voltage as shown in FIG.
  • the field current command Ifg at the time of torque control is used as the field current level Ifth for determining the reduction operation completion.
  • the power generation torque command is included in the operation command OC.
  • the generated torque decreases to the torque command in the power generation mode, and then the mode is switched to the power generation mode.
  • Such reduction operation completion determination (field current level) information may be stored in advance in, for example, the storage unit 132 as a mathematical expression or a table and used.
  • FIG. 7 shows changes with time of torque and field current corresponding to (a) and (b) of FIG. 5, respectively.
  • the above processing is performed by the power generation torque control means 137 in FIG.
  • a power generation torque command is included in the operation command from the outside, and the power generation torque control means 137 controls the generated power so that the torque generated by the rotating electrical machine 20 during power generation matches the power generation torque command given from the outside.
  • the field current threshold is set according to the power generation torque command value.
  • the reduction operation is performed, and the field current level for determining the completion of the reduction operation is set to the B terminal voltage, the rotational speed, Calculated according to the torque command at the time. Therefore, when the next operation mode command is power generation, power generation operation can be performed promptly, and generation of excessive power generation torque can be prevented.
  • the above operation may be performed based on a torque limit value stored in advance in the storage unit 132 of the control unit 13.
  • the “power generation torque command” in the present embodiment can be considered as it is replaced with the “power generation torque limit value”.
  • the operation command from the outside includes a power generation torque limit value instead of the power generation torque command, and the power generation torque control means 137 has the torque generated by the rotating electrical machine 20 during power generation equal to or less than the power generation torque limit value.
  • the field current threshold is set according to the power generation torque limit value.
  • the power conversion device for a vehicular generator motor and the control method for the vehicular generator motor according to the present invention can be applied to a vehicular generator motor in many fields, and has similar effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 界磁巻線と電機子巻線とを有する回転電機に電力変換装置が接続されて、外部からの動作指令に従って制御を行う界磁巻線方式の車両用発電電動機界において、発電電動機が駆動状態から他の動作モードに遷移するとき、遷移先の動作モードに応じて駆動モードの停止方法を切り換えることで、意図しない発電、過発電、過度なトルク変動を発生させることなく、迅速に動作モードを遷移させるようにした車両用発電電動機の電力変換装置および車両用発電電動機の制御方法を提供する。

Description

車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
 この発明は、主に車両に搭載され、エンジンの始動やトルクアシスト時には電動機として動作すると共に、始動後には発電機としても動作する電機子巻線及び界磁巻線を有する界磁巻線式発電電動機からなる車両用発電電動機の電力変換装置および車両用発電電動機の制御方法に関するものである。
 近年、燃費の向上や、環境基準への適合を目的とし、発電電動機を搭載し、車両の停止時にエンジンを停止させ発進時に再始動を行ういわゆるアイドルストップを行う車両が開発されている。このような車両用の発電電動機は小型、低コスト、高トルクが求められるため、界磁巻線式発電電動機を用いることが多い。
 一般に、界磁巻線式発電電動機は、電機子巻線のインダクタンスに比べ界磁巻線のインダクタンスが大きいため、駆動を停止させる際に電機子巻線と界磁巻線への通電を同時に停止すると、電機子電流に対して界磁電流の低減速度が遅く、残留界磁磁束によって発生する誘起電圧で意図しない発電状態となることがある。このような場合、過大な発電によってバッテリや他の機器類に悪影響を与えたり、過度な制動トルクの出力によってエンジン制御にも悪影響を与えることがある。
 これに対し、下記特許文献1では、駆動停止の指示が出たあと、電機子への通電を継続したまま界磁電流の低減処理を行い、界磁電流がある一定のレベルまで低下した後に、電機子への通電を停止することで、発電を防止する方法が提案されている。
 下記特許文献1ではこの界磁電流レベルについて、発電電動機の回転速度と入力端子間電圧(以下、B端子電圧という)またはバッテリ電圧を用いて、誘起電圧がB端子電圧またはバッテリ電圧を下回るような範囲の値を求めている。
特許第4185094号公報 特許第4570982号公報 特開2010-81709号公報
 しかし、上述の下記特許文献1のような制御を一律に行うと、例えばエンジンを始動するための駆動を終了した後、エンジンの吹け上がりを抑制するためにすぐに発電を行いたい場合などに、制動方向のトルクを出力したいにもかかわらず、界磁電流の逓減、および停止制御が完了するまでは駆動方向のトルクを出力してしまう。
 また、この場合本来発電を行いたいにもかかわらず、電機子側は通電を継続しているため、この間の電機子側の電力は無駄に消費されることとなる。
 このように、特許文献1による方法では、駆動停止後、次のモードに迅速に遷移できないという課題がある。
 また、特許文献2では、界磁電流急速減衰手段を設け、駆動モードから発電モードへ遷移する際に当該手段を作動させることで、発電を防止する方法が提案されているものの、界磁電流急速減衰手段の実装に際し追加コストがかかるという問題がある。
 この発明は、部品や回路の追加なしに、駆動停止時の残留界磁磁束による意図しない発電や過度な発電トルクを防ぎ、次の動作モードに迅速に遷移することができる車両用発電電動機の電力変換装置等を提供することを目的とする。
 この発明は、界磁巻線と電機子巻線とを有する回転電機に電力変換装置が接続されて、外部からの動作指令に従って制御を行う界磁巻線方式の車両用発電電動機界において、発電電動機が駆動状態から他の動作モードに遷移するとき、遷移先の動作モードに応じて駆動モードの停止方法を切り換えることで、意図しない発電、過発電、過度なトルク変動を発生させることなく、迅速に動作モードを遷移させるようにした車両用発電電動機の電力変換装置および車両用発電電動機の制御方法にある。
 この発明によれば、部品や回路の追加なしに、駆動停止時の残留界磁磁束による意図しない発電や過度な発電トルクを防ぎ、次の動作モードに迅速に遷移することができる。
この発明による車両用発電電動機の電力変換装置を搭載した車両システムの概略的な構成図である。 この発明の実施の形態1における駆動モードを終了する際の電力変換装置の動作を示すフローチャートである。 この発明の実施の形態2における駆動モードを終了する際の電力変換装置の動作を示すフローチャートである。 この発明の実施の形態2における低減動作完了判定用の界磁電流レベルIfthを示す図である。 この発明の実施の形態2における低減動作を説明するための図である。 この発明の実施の形態3における発電時界磁電流指令Ifgを説明するための図である。 この発明の実施の形態3における低減動作を説明するための図である。 この発明による車両用発電電動機の電力変換装置の制御部の機能ブロック図である。
 この発明では、複数の駆動停止手段を持ち、次に遷移するモードによって使用する駆動停止手段を切換えるものである。
 また、界磁電流低減処理の開始後、駆動停止手段を開始する界磁電流のレベルを、次に遷移するモードによって決定することとしたものである。
 以下、この発明による車両用発電電動機の電力変換装置等を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一または相当部分は同一符号で示し、重複する説明は省略する。
 実施の形態1.
 図1はこの発明による車両用発電電動機の電力変換装置を搭載した車両システムの概略的な構成図である。図1において、発電電動機1の回転電機20は、例えばベルト等の動力伝達部4を介してエンジン3に接続されている。
 外部のアイドルストップシステムのコントローラまたはキースイッチ(共に図示省略)などから運転モードやトルク指令等を含む動作指令(OC)を受けて、発電電動機はその指令に応じた運転を行う。
 例えばエンジン3を始動させるとき、発電電動機1は電動機として動作し(駆動モード)、エンジンを回転させる。エンジンの運転中は、発電電動機1は発電機として動作し(発電モード)、発電した電力を充電可能な電源であるバッテリ(またはキャパシタ、以下バッテリとする)2に供給する。発電モードでは、発電電圧が一定となるように制御したり、あるいは指令されたトルクを発生させるように発電電流を制御したりする。また、エンジン3の運転中であっても必要に応じて電動機として動作し、トルクアシストを行う場合などがある。また、このほかに、発電した電力を発電電動機1内部で消費し、制動トルクを発生させるモード(制動モード)や、何も動作を行わず待機するモード(停止モード)等、を備える。
 発電電動機1は、電力変換装置10と回転電機20により構成されている。電力変換装置10は、界磁電力変換部11、電機子電力変換部12、これらの電力変換部11,12に対して電力変換素子のオン・オフ指令を行う制御部13、界磁電流を検出するための電流センサ14を備える。回転電機20は、界磁電流を通電させ、界磁磁束を発生させる界磁巻線21、電機子巻線22、さらに回転電機20の回転速度等を得るために必要な位置センサ23を備える。
 発電電動機1の界磁電力変換部11は、一般的には、電力変換素子としてのMOSFETによるハーフブリッジ回路が用いられる。界磁電力変換部11は、制御部13からの電力変換素子のオン・オフ指令によって動作し、界磁巻線21へPWM制御によって界磁電流を通電させる。電機子電力変換部12には、一般的には、電力変換素子としてのMOSFETによる3相ブリッジ回路が用いられる。電機子電力変換部12は、駆動時(駆動モード)には、制御部13からの電力変換素子のオン・オフ指令によって動作し、電機子巻線22へ電機子電流を通電させる。発電時(発電モード)には、電機子巻線22からの電機子電流を整流し、電力をバッテリ2や他の負荷へ供給する。制動時(制動モード)には、3相ブリッジ回路の片側アームの電力変換素子を全てオンし(3相短絡制動という)、発電した電力を発電電動機1内部で消費させる。停止時(停止モード)は、電力変換素子を全てオフする。なお、駆動モードからそれ以外の次のモードに遷移する場合、後述する制御を経て、最終的に電力変換素子を全てオフし、次のモードへ移行する。なお、これらのブリッジ回路の回路構成自体は周知の技術であるので、これ以上の詳細な説明は省略する。また、バッテリ(キャパシタ)2に接続された電力変換装置10または発電電動機1の端子B,Eを電力の入出力端子とする。
 制御部13は記憶部を含むコンピュータで構成され、図8に制御部13の機能ブロック図の一例を示す。図8では全ての実施の形態に係る構成がまとめて示されている。制御部13はタイマ131、記憶手段132、第一の駆動停止手段133、第二の駆動停止手段134、切換手段135、駆動停止手段136、発電トルク制御手段137を含む。
 続いて、図2を参照しながら、制御部13の制御による電力変換装置10の動作を説明する。図2は、制御部13の制御による駆動モードを終了する際の電力変換装置の動作を示すフローチャートである。まず、ステップS1において、次の動作モード指令が発電モードまたは制動モードかを判定する。次のモード指令が発電モードまたは制動モードの時、ステップS2へ進む。そうでない場合、すなわち次のモード指令が発電モードおよび制動モード以外の例えば停止モード等のその他のモードの場合、ステップS3へ進む。
 ステップS2では、電機子(22)側の駆動動作を停止させ、駆動動作を終了し、発電モードまたは制動モードへ遷移する。すなわち、次の動作モード指令が発電モードの場合、界磁電力変換部11による界磁電流の低減処理を行わず、界磁電力変換部11、電機子電力変換部12を制御して、ただちに駆動モードを終了し、発電モードへ遷移する。同様に、動作モード指令が制動モードの場合、界磁電力変換部11による界磁電流の低減処理を行わず、界磁電力変換部11、電機子電力変換部12を制御して、ただちに駆動モードを終了し、制動モードへ遷移する。
 一方、ステップS3では、電機子電力変換部12を制御して電機子の通電を継続したままま、界磁電力変換部11の制御を止めて界磁巻線21への通電を停止させることで、界磁電流を低減させる(低減動作)。その後、ステップS4において、低減動作完了判定用の界磁電流レベルを演算する。この界磁電流レベルについては、例えば上述の特許文献1の発明のように、発電電動機1の回転速度と、B端子電圧(図1の符号Bの入出力端子電圧)またはバッテリ電圧(規格のバッテリ電圧:12V,24V,36V等)とを用いて、誘起電圧がB端子電圧またはバッテリ電圧を下回るような範囲の値を求める。このための制御部13はB端子電圧を得るために入出力端子Bにも接続されている。また制御部13の記憶手段132に使用バッテリの規格電圧が格納されている。後述するように、発電電動機1の回転速度、B端子電圧またはバッテリ電圧毎の上記界磁電流レベルをテーブルや数式等にして低減動作完了判定用(界磁電流レベル)情報として予め記憶手段132に格納しておいてもよい。
 ここで制御部13は、発電電動機1の回転速度は回転電機20の回転位置を検出する位置センサ23からの位置の時間的変化から求め、界磁電流は電流センサ14から得る。そして、回転電機20の誘起電圧、回転速度、界磁電流はおおよそ以下の関係にある。
  (誘起電圧)=(係数)×(回転速度)×(界磁電流)
  (界磁電流)=(誘起電圧)/{(係数)×(回転速度)}
 低減動作完了判定用の界磁電流レベルを求めた後、ステップS5において、界磁電流の値がこの低減動作完了判定用の界磁電流レベル(所定の閾値)以下か否かを判定する。界磁電流の値がこの低減動作完了判定用の界磁電流レベル以下であれば、この段階で電機子電力変換部12の制御を止めて電機子側への通電を停止しても、誘起電圧で意図しない発電を行うことは無いため、ステップS2へ進み、電機子側の駆動動作を停止させ、駆動動作を終了する。
 一方、ステップS5において、界磁電流の値がこの低減動作完了判定用の界磁電流レベルを上回っている場合、ステップS6へ進む。この時点で電機子側の駆動動作を停止させると、発電の指令をしていないのに発電を行ってしまうため、ステップS6では駆動モードの電機子通電制御を継続する。その後、ステップS1へ進み、この一連のフロー(ステップS5→S6→S1→S3→S4→S5)を繰り返すことで、界磁電流が低減動作判定完了用の界磁レベル以下まで低下するのを待ってから、駆動を停止する。
 なお、ステップS1が切換手段135、ステップS2が第一の駆動停止手段133、ステップS1~S6が第二の駆動停止手段134を構成する。
 この実施の形態では、駆動モードから発電モードへの遷移、または駆動モードから制動モードへの遷移の場合のみ、界磁の立下りを待たずに、すぐに駆動を停止し、発電または制動へ遷移させる。それ以外の動作モードの場合は、界磁電流が一定値以下になってから駆動を停止し、次の動作モードへ遷移させる。駆動モードは必須であるが、発電モード、制動モードはどちらか1つがあればよく、特に制動モードは無くてもよい。
 以上のように、この実施の形態においては、駆動を終了する際に、次のモード指令が発電モードまたは制動モードの場合には、界磁電流の低減を待つことなくただちに発電モードまたは制動モードへ遷移し、そうでない場合には残留界磁電流によって意図しない発電を行わないよう、低減処理を行ってから駆動を終了する。そのため、次の動作モード指令が発電モードまたは制動モードの場合には速やかに発電動作または制動動作を行うことができ、それ以外の停止モード等の場合には意図しない発電を防ぐことができる。
 なお、本実施の形態において次のモードが発電モードまたは制動モード以外の場合、駆動を停止するかどうかの判定に界磁電流レベル(閾値)を用いているが、これを界磁電流低減制御が開始してから(すなわち、次のモード指令を受信してから)の、界磁電流が上述の界磁電流レベルになるのに相当するそれぞれの所定の経過時間を用いて判定してもよい(所定時間経過後に駆動を停止)。この場合、時間経過は例えばタイマ131でカウントする。このような場合も、例えば、遷移する各動作モード、発電電動機1の回転速度、B端子電圧またはバッテリ電圧毎の経過時間を低減動作完了判定用(経過時間)情報として数式またはテーブルとして記憶手段132に予め記憶しておき、これを使用するようにしてもよい。
 実施の形態2.
 次に、この発明の実施の形態2による車両用発電電動機の電力変換装置ついて説明する。図3はこの発明の実施の形態2による、制御部13の制御による駆動モードを終了する際の電力変換装置の動作を示すフローチャートである。駆動モードを終了する際の電力変換装置の動作以外は、実施の形態1と同様であるため、説明を省略する。
 まず、ステップS11において、界磁電流の低減処理(低減動作)を開始する。この低減処理は、実施の形態1と同様である。
 次に、ステップS12では、低減動作完了判定用の界磁電流レベルIfthを演算する。この界磁電流レベルIfthは、図4に示すように、次の動作モード指令、B端子電圧またはバッテリ電圧、回転速度から定まる値を用いる。
 例えば図4では、発電電動機の回転速度Nmgと遷移する動作モードに対する界磁電流レベルIfth(閾値)が示されている。Aは次の動作モードが発電モードの時のIfth、Bは次の動作モードが発電モード以外の時のIfthを示す。発電モードの界磁電流レベルIfthは発電モード以外の停止モード等の界磁電流レベルIfthより高く設定されている。このような関係がバッテリ電圧毎(VB=12V,24V,36V)に設定されている。同様にして検出したB端子電圧ごとに設定しておくことも可能であり、また数式として規定しておくことも可能である。このような情報(低減動作完了判定用情報)は例えば記憶手段132に予め格納しておき、使用することが可能である。
 特に界磁電流レベルIfth(閾値)は、回転電機が次に遷移する動作モードが発電モードの場合、モード遷移直後の発電電流が所定値以下になるように設定される。
 次の動作モード指令(遷移先モード)が発電モードの時には、低減動作完了判定用の界磁電流レベルIfth(閾値)を発電時の最大界磁電流IfMAX付近に設定し、なるべく早い段階で駆動モードから発電モードへ遷移できるようにする。
 ただし、高回転かつ大きな界磁電流が流れている状態で駆動モードから発電モードに遷移した場合、遷移直後に過大な発電電流が生じ、場合によっては過電圧を引き起こすことがある。そのような場合は、図4の破線で示すように、界磁電流レベルIfthの値を発電電流がある一定の値を超えないような範囲で定める。
 一方、次の動作モード指令が停止モードの時には、特許文献1の発明のように、発電電動機の回転速度とB端子電圧またはバッテリ電圧を用いて、誘起電圧がB端子電圧またはバッテリ電圧を下回るような範囲の界磁電流レベルIfth(閾値)を設定し、意図しない発電を防止する。
 なお、一般的な12V鉛バッテリを使用する場合、B端子電圧の変動幅は少なく、界磁電流レベルIfthに与える影響は小さいため、これを一定として扱ってもよい。すなわち、入出力端子から検出せずに、記憶手段132等に予め格納された規格のバッテリ電圧または規格のバッテリ電圧ごとの情報(図4参照)を使用する。
 低減動作完了判定用の界磁電流レベルを求めた後、ステップS13において、界磁電流の値がこの低減動作完了判定用の界磁電流レベルIfth(閾値)以下か否かを判定する。界磁電流の値がこの低減動作完了判定用の界磁電流レベル以下であれば、この段階で電機子側への通電を停止しても、意図しない発電を行うことは無いため、ステップS14へ進み、電機子側の駆動動作を停止させ、駆動動作を終了する。
 一方、界磁電流の値がこの低減動作完了判定用の界磁電流レベルを上回っている場合、ステップS15へ進む。この時点で電機子側の駆動動作を停止させると、発電の指令をしていないのに発電を行ってしまうため、ステップS15では駆動モードの電機子通電制御を継続する。その後、ステップS11へ進み、この一連のフロー(ステップS13→S15→S11→S12→S13)を繰り返すことで、界磁電流が低減動作判定完了用の界磁レベル以下まで低下するのを待ってから、駆動を停止する。
 なお、ステップS11~S15が駆動停止手段136を構成する。また、低減動作完了判定用の界磁電流レベルIfth(閾値)は上述のように計算で求めてもよいし、また図4に示すような低減動作完了判定用(界磁電流レベル)情報を数式またはテーブルとして記憶手段132に予め格納しておき、これを使用するようにしてもよい。
 この実施の形態では、駆動モードから駆動モード以外の他の動作モード(次モード)に遷移する際の電機子側の通電を停止する界磁電流の閾値を、次動作モードに従って変化させる。例えば、駆動モードから発電モードへの遷移の場合、10Aまで界磁電流が低下したら電機子側の通電を停止させ、駆動モードから停止モードへの遷移の場合、0.5Aまで低下したら電機子側の通電を停止させる。
 さらに、次モード情報と、回転速度、B端子電圧またはバッテリ電圧によって変化させる。例えば、駆動モードから発電モードへの遷移の場合、1000r/min、VB=12Vなら10Aまで界磁電流が低下したら電機子側の通電を停止させ、2000r/min、VB=18Vなら6Aまで界磁電流が低下したら電機子側の通電を停止させる。
 以上のように、この実施の形態においては、駆動を終了する際に、界磁電流の低減動作を行い、その低減動作の完了判定用界磁電流レベルを次の動作モード指令、B端子電圧、回転速度によって演算または記憶手段で検索する。そのため、次の動作モード指令が発電の場合には速やかに発電動作を行うことができるうえ、それ以外の動作モードの場合には意図しない発電を防ぐことができる。
 なお、本実施の形態においても、駆動を停止するかどうかの判定に界磁電流レベル(閾値)を用いているが、これを界磁電流低減制御が開始してから(すなわち、次のモード指令を受信してから)の、界磁電流が上述の界磁電流レベルになるのに相当するそれぞれの所定の経過時間を用いて判定してもよい。このような場合も、例えば、遷移する各動作モード、発電電動機1の回転速度、B端子電圧またはバッテリ電圧毎の経過時間を低減動作完了判定用(経過時間)情報として数式またはテーブルとして記憶手段132に予め記憶しておき、これを使用するようにしてもよい。
 そして界磁電流レベルIfth(閾値)は、次に遷移する動作モードと発電電動機の回転速度に基づいて設定されてもよいし、B端子電圧またはバッテリ電圧をさらに加えたものに基づいて設定されてもよい。
 実施の形態3.
 実施の形態3は、実施の形態2に対して、低減動作完了判定用の界磁電流レベルの演算方法を変更したものである。その他の部分は実施の形態2と同様のため、以下には実施の形態3に特有の部分のみについて説明する。
 従来より、上位のコントローラから指令される発電トルクの指令値と、回転速度などから、対応する界磁電流指令を求め、その界磁電流の指令値に従って界磁電流制御を行うことで、所望のトルクを発生させる、発電トルク制御が提案されている(例えば、上記特許文献3)
 このような発電トルク制御機能を持つ発電電動機で実施の形態2のような制御を行う場合のトルクと界磁電流の関係の一例を図5に示す。図5の(a)はトルク、(b)は界磁電流のそれぞれ経時変化を示す。例えば図5に示すように、発電トルク指令Tgが微小で、かつ駆動時の界磁電流が大きい場合、界磁電流が大きいまますぐに駆動モードから発電モードへ遷移するため、発電時の最大界磁電流に近い状態での発電を行うことになり、必要以上の発電トルクが発生する。
 そのため、この実施の形態においては、前述したような必要以上のトルク発生を防ぐため、図6に示すように発電トルク指令、回転速度、B端子電圧またはバッテリ電圧をもとに演算された、発電トルク制御時の界磁電流指令Ifgを、低減動作完了判定用の界磁電流レベルIfthとして用いる。発電トルク指令は動作指令OCに含まれる。
 この実施の形態では、駆動モードから発電モードへ遷移する場合、発生するトルクが発電モードのトルク指令まで下がってから、発電モードへ切換える。
 例えば図6では、発電電動機の回転速度Nmgと発電時のトルク指令Tg=T1,T2、T3(T1>T2>T3)に対する発電時開示電流指令Ifgが示されている。そしてこのような関係が各B端子電圧またはバッテリ電圧毎(VB=12V,24V,36V)に設定されている。そしてこのような低減動作完了判定用(界磁電流レベル)情報は数式またはテーブルとして例えば記憶手段132に予め格納しておき、使用するようにしてもよい。
 これによって、図7に示したように、駆動モードから発電モードへ遷移する際の必要以上の発電トルクの発生を防止することができる。図7の(a)(b)は図5の(a)(b)に対応するそれぞれトルク、界磁電流のそれぞれ経時変化を示す。
 なお、上記処理は図8の発電トルク制御手段137で行われる。外部からの動作指令に発電トルク指令が含まれており、発電トルク制御手段137は、発電時に回転電機20が発生するトルクが外部から与えられる発電トルク指令と一致するように発電電力を制御する。そして回転電機20が次に遷移する動作モードが発電モードの場合、界磁電流の閾値が、発電トルク指令値に従って設定される。
 以上のように、この実施の形態においては、駆動モードを終了し発電モードへ遷移する際に、低減動作を行い、その低減動作の完了判定用界磁電流レベルをB端子電圧、回転速度、発電時のトルク指令によって演算する。そのため、次の動作モード指令が発電の場合には速やかに発電動作を行うことができるうえ、必要以上の発電トルクの発生を防ぐことができる。
 なお、本実施の形態中では、外部からトルク指令を受け、発電トルク制御を行う場合における、必要以上の発電トルクが発生することを防止する方法について述べたが、発電電圧制御などの場合でも、トルクの急変を防ぐために、制御部13の記憶手段132に予め格納したトルク制限値をもとに、上記の動作を行ってもよい。その場合、本実施の形態中の「発電トルク指令」はそのまま「発電トルク制限値」と置き換えて考えることができる。
 すなわち、この場合、外部からの動作指令に発電トルク指令の代わりに発電トルク制限値が含まれており、発電トルク制御手段137は、発電時に回転電機20が発生するトルクが該発電トルク制限値以下となるように発電電力を制御し、回転電機20が次に遷移する動作モードが発電モードの場合、界磁電流の閾値を、前記発電トルク制限値に従って設定する。
 発電トルク指令を使用する場合、定められたトルクとなるよう運転することを想定しているが、発電トルク制限値を使用する場合、基本的には電圧制御をしつつ、最大トルクは制限する運転制御となる。
 また、この発明は上記各実施の形態に限定されるものではなく、これら実施の形態の可能な組み合わせを全て含むことは云うまでもない。
産業上の利用の可能性
 この発明による車両用発電電動機の電力変換装置および車両用発電電動機の制御方法は多くの分野の車両用発電電動機に適用可能であり、同様な効果を奏する。
 1 発電電動機、2 バッテリ(キャパシタ)、3 エンジン、4 動力伝達部、10 電力変換装置、11 界磁電力変換部、12 電機子電力変換部、13 制御部、14 電流センサ、20 回転電機、21 界磁巻線、22 電機子巻線、23 位置センサ、131 タイマ、132 記憶手段、133 第一の駆動停止手段、134 第二の駆動停止手段、135 切換手段、136 駆動停止手段、137 発電トルク制御手段、B,E 入出力端子。

Claims (11)

  1.  界磁巻線と電機子巻線とを有する回転電機に電力変換装置が接続されて外部からの動作指令に従って制御を行う車両用発電電動機の電力変換装置であって、
     前記界磁巻線と電力の入出力端子間に接続され、界磁巻線に流れる界磁電流を制御する界磁電力変換部と、
     前記電機子巻線と前記入出力端子間に接続され、交直相互変換を行う電機子電力変換部と、
     前記動作指令に基づく前記回転電機の動作モードに応じて前記界磁電力変換部と前記電機子電力変換部を制御する制御部を備え、
     前記制御部は、
     前記入出力端子から供給される直流電力を交流電力に変換し前記回転電機に駆動トルクを発生させる駆動モード、
     前記回転電機で発電された交流電力を直流電力に変換し前記入出力端子に接続された外部の負荷へ供給する発電モード、および
     前記回転電機で発電された交流電力を前記回転電機内部および前記電力変換装置内部で消費し、制動トルクを発生させる制動モード、
     のうち、前記駆動モードと少なくとも前記発電モードまたは制動モードを含む複数の動作モード間で動作モードを切換え、
     前記駆動モードから他のモードへ遷移する際に、次に遷移するモードの種類に従って前記電機子巻線の電機子電流の通電を停止するタイミングを変える、
     ことを特徴とする車両用発電電動機の電力変換装置。
  2.  前記制御部は、前記回転電機の動作を駆動モードから他の動作モードに遷移させる際に、ただちに前記電機子電力変換部に電機子電流の通電を停止させる第一の駆動停止手段と、
     前記界磁電力制御部に界磁電流の低減処理を開始させ、その後、界磁電流が所定の閾値以下になった場合に、前記電機子電力変換部に電機子電流の通電を停止させる第二の駆動停止手段と、
     駆動モードから発電モードまたは制動モードに遷移させる際には前記第一の駆動停止手段を使用し、駆動モードから発電モードまたは制動モード以外に遷移させる際には前記第二の駆動停止手段を使用するように切り換える切換手段と、
     含むことを特徴とする請求項1に記載の車両用発電電動機の電力変換装置。
  3.  前記制御部は、前記回転電機の動作を駆動モードから他の動作モードに遷移させる際に、前記界磁電力変換部に界磁電流の低減処理を開始させ、その後、界磁電流が、遷移する動作モードによって設定されたそれぞれの所定の閾値以下になった場合に、前記電機子電力変換部に電機子電流の通電を停止させる駆動停止手段を含む、ことを特徴とする請求項1に記載の車両用発電電動機の電力変換装置。
  4.  前記発電モードへの遷移の際の界磁電流の前記閾値が、他の動作モードへの遷移の際の界磁電流の前記閾値より大きいことを特徴とする請求項3に記載の車両用発電電動機の電力変換装置。
  5.  前記界磁電流の前記閾値が、前記回転電機が次に遷移する動作モードと、前記回転電機の回転速度に従って設定されることを特徴とする請求項3または4に記載の車両用発電電動機の電力変換装置。
  6.  前記界磁電流の前記閾値が、前記回転電機が次に遷移する動作モードと、前記回転電機の回転速度と、前記入出力端子の電圧に従って設定されることを特徴とする請求項3または4に記載の車両用発電電動機の電力変換装置。
  7.  前記界磁電流の前記閾値が、前記回転電機が次に遷移する動作モードが前記発電モードの場合、モード遷移直後の発電電流が所定値以下になるように設定されることを特徴とする請求項3から6までのいずれか1項に記載の車両用発電電動機の電力変換装置。
  8.  外部からの前記動作指令が発電トルク指令を含み、前記制御部は、発電時に前記回転電機が発生するトルクが外部から与えられる前記発電トルク指令と一致するように発電電力を制御する発電トルク制御手段を含み、前記回転電機が次に遷移する動作モードが発電モードの場合、前記界磁電流の前記閾値が、前記発電トルク指令値に従って設定されることを特徴とする、請求項3から6までのいずれか1項に記載の車両用発電電動機の電力変換装置。
  9.  外部からの前記動作指令が発電トルク制限値を含み、前記制御部は、発電時に前記回転電機が発生するトルクが前記発電トルク制限値以下となるように発電電力を制御する発電トルク制限手段を含み、前記回転電機が次に遷移する動作モードが発電モードの場合、前記界磁電流の前記閾値が、前記発電トルク制限値に従って設定されることを特徴とする、請求項3から6までのいずれか1項に記載の車両用発電電動機の電力変換装置。
  10.  前記界磁電流のための前記閾値の代わりに、前記界磁電流が前記所定の閾値以下になるのに相当するそれぞれの所定の時間経過を使用したことを特徴とする請求項2から9までのいずれか1項に記載の車両用発電電動機の電力変換装置。
  11.  界磁巻線と電機子巻線とを有する回転電機に電力変換装置が接続されて外部からの動作指令に従って制御を行う車両用発電電動機の制御方法であって、
     前記界磁巻線と電力の入出力端子間に接続された界磁電力変換部により界磁巻線に流れる界磁電流を制御し、
     前記電機子巻線と前記入出力端子間に接続された電機子電力変換部により交直相互変換を行い、
     制御部により前記動作指令に従った前記回転電機の動作モードに応じて前記界磁電力変換部と前記電機子電力変換部を制御し、
     前記入出力端子から供給される直流電力を交流電力に変換し前記回転電機に駆動トルクを発生させる駆動モード、
     前記回転電機で発電された交流電力を直流電力に変換し前記入出力端子に接続された外部の負荷へ供給する発電モード、および
     前記回転電機で発電された交流電力を前記回転電機内部および前記電力変換装置内部で消費し、制動トルクを発生させる制動モードのうち、
     前記駆動モードと少なくとも前記発電モードまたは制動モードを含む動作モード間で動作モードを切換え、前記駆動モードから他のモードへ遷移する際に、次に遷移するモードの種類に従って前記電機子巻線の電機子電流の通電を停止するタイミングを変えることを特徴とする車両用発電電動機の制御方法。
PCT/JP2012/055797 2012-03-07 2012-03-07 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法 WO2013132606A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/371,008 US9533580B2 (en) 2012-03-07 2012-03-07 Power converter for vehicle generator-motor and method for controlling vehicle generator-motor
JP2014503355A JP5726369B2 (ja) 2012-03-07 2012-03-07 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
PCT/JP2012/055797 WO2013132606A1 (ja) 2012-03-07 2012-03-07 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
IN4924CHN2014 IN2014CN04924A (ja) 2012-03-07 2012-03-07
CN201280071234.4A CN104160611B (zh) 2012-03-07 2012-03-07 车辆用发电电动机的功率转换装置以及车辆用发电电动机的控制方法
EP12870716.3A EP2824830B1 (en) 2012-03-07 2012-03-07 Power converter for vehicle generator-motor and method for controlling vehicle generator-motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055797 WO2013132606A1 (ja) 2012-03-07 2012-03-07 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法

Publications (1)

Publication Number Publication Date
WO2013132606A1 true WO2013132606A1 (ja) 2013-09-12

Family

ID=49116122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055797 WO2013132606A1 (ja) 2012-03-07 2012-03-07 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法

Country Status (6)

Country Link
US (1) US9533580B2 (ja)
EP (1) EP2824830B1 (ja)
JP (1) JP5726369B2 (ja)
CN (1) CN104160611B (ja)
IN (1) IN2014CN04924A (ja)
WO (1) WO2013132606A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104293A (zh) * 2014-07-16 2014-10-15 国家电网公司 一种基于发电机静态稳定极限的最小励磁电流限制方法
JP2018102067A (ja) * 2016-12-21 2018-06-28 株式会社デンソー 回転電機の制御装置、回転電機ユニット
JP2018121484A (ja) * 2017-01-27 2018-08-02 三菱電機株式会社 回転電機の制御装置及び制御方法
JPWO2018083758A1 (ja) * 2016-11-02 2019-02-14 三菱電機株式会社 発電電動機の制御装置および発電電動機の制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454928B1 (en) * 2016-05-09 2021-04-21 ART MEDICAL Ltd. Smart ett ventilation attachment
FR3077445B1 (fr) * 2018-01-30 2020-01-10 Valeo Equipements Electriques Moteur Procede d'optimisation du passage d'un mode de fonctionnement a un autre pour une machine electrique tournante

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061398A (ja) * 2001-08-20 2003-02-28 Denso Corp 車両用発電電動機装置
JP4185094B2 (ja) 2005-12-20 2008-11-19 三菱電機株式会社 回転電機装置
JP2010081709A (ja) 2008-09-25 2010-04-08 Mitsubishi Electric Corp 界磁巻線式同期発電電動機
JP2010081741A (ja) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp 発電電動機制御装置およびそれを備える車両システム
JP4570982B2 (ja) 2005-02-25 2010-10-27 日立オートモティブシステムズ株式会社 発電制御装置及び発電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517405B2 (ja) * 2001-08-10 2004-04-12 三菱電機株式会社 車両用回転電機の制御装置および制御法
JP4376589B2 (ja) * 2003-10-29 2009-12-02 日産自動車株式会社 四輪駆動車両
JP2006034027A (ja) 2004-07-20 2006-02-02 Nissan Motor Co Ltd 界磁巻線式電動機の制御装置
FR2881295B1 (fr) * 2005-01-26 2007-03-23 Valeo Equip Electr Moteur Gestion du fonctionnement d'un alterno-demarreur de vehicule automobile
JP2007159353A (ja) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp 界磁巻線式同期発電電動機
FR2918222B1 (fr) * 2007-06-27 2010-06-04 Valeo Equip Electr Moteur Procede et une machine electrique de freinage d'un moteur thermique et vehicule lors de la phase d'arret de celui-ci.
JP4906825B2 (ja) * 2008-10-07 2012-03-28 三菱電機株式会社 車両挙動制御装置
JP5174617B2 (ja) * 2008-10-30 2013-04-03 日立オートモティブシステムズ株式会社 回転電機装置及びその制御装置
JP2012228017A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp 発電電動機の制御装置
JPWO2013171843A1 (ja) * 2012-05-15 2016-01-07 三菱電機株式会社 界磁巻線式回転電機および界磁巻線式回転電機の界磁電流制御方法
JP5972385B2 (ja) * 2012-09-19 2016-08-17 三菱電機株式会社 界磁巻線式回転電機
JP2014204451A (ja) * 2013-04-01 2014-10-27 三菱電機株式会社 車両用発電電動機の制御装置およびその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061398A (ja) * 2001-08-20 2003-02-28 Denso Corp 車両用発電電動機装置
JP4570982B2 (ja) 2005-02-25 2010-10-27 日立オートモティブシステムズ株式会社 発電制御装置及び発電装置
JP4185094B2 (ja) 2005-12-20 2008-11-19 三菱電機株式会社 回転電機装置
JP2010081709A (ja) 2008-09-25 2010-04-08 Mitsubishi Electric Corp 界磁巻線式同期発電電動機
JP2010081741A (ja) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp 発電電動機制御装置およびそれを備える車両システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104293A (zh) * 2014-07-16 2014-10-15 国家电网公司 一种基于发电机静态稳定极限的最小励磁电流限制方法
JPWO2018083758A1 (ja) * 2016-11-02 2019-02-14 三菱電機株式会社 発電電動機の制御装置および発電電動機の制御方法
JP2018102067A (ja) * 2016-12-21 2018-06-28 株式会社デンソー 回転電機の制御装置、回転電機ユニット
JP2018121484A (ja) * 2017-01-27 2018-08-02 三菱電機株式会社 回転電機の制御装置及び制御方法

Also Published As

Publication number Publication date
CN104160611A (zh) 2014-11-19
JP5726369B2 (ja) 2015-05-27
EP2824830A4 (en) 2016-08-03
JPWO2013132606A1 (ja) 2015-07-30
IN2014CN04924A (ja) 2015-09-18
US20150019059A1 (en) 2015-01-15
CN104160611B (zh) 2016-09-28
EP2824830B1 (en) 2023-08-30
US9533580B2 (en) 2017-01-03
EP2824830A1 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5726369B2 (ja) 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
JP4134964B2 (ja) 発電制御装置
JP2007074868A (ja) 車両用電圧制御装置
WO2014091602A1 (ja) モータ制御装置
US8339074B2 (en) Power converter control apparatus
JP2016141356A (ja) 自動車用電源装置及び自動車用電源装置の制御方法
JP2005160247A (ja) モータ駆動4wd車両の制御装置及び制御方法
JP4675299B2 (ja) 車両用回転電機の制御装置
JP5644723B2 (ja) 電力供給制御装置
JP7294101B2 (ja) 電源装置
JP2007195352A (ja) 電動機の電源装置
US8736235B2 (en) Power generation motor control system
JP2010074913A (ja) 電源システムおよびそれを搭載した車両
JP4780171B2 (ja) 車両用発電制御装置
JP5214995B2 (ja) 車両用電力変換装置及び車両用駆動制御装置
JP2005253213A (ja) 多軸モータ制御方法および装置
JP6656404B2 (ja) 発電電動機の制御装置および発電電動機の制御方法
JP7361740B2 (ja) 電動機制御装置
JP5418416B2 (ja) モータ制御装置
JP4450085B2 (ja) 車両用発電制御装置
JP5183709B2 (ja) 車両用電源装置
US9231516B2 (en) Control device for generator-motor and control method for generator-motor
JP2010011622A (ja) 車両用制御装置及び車両用制御システム
JP2007221966A (ja) 駆動装置およびその制御方法
JP4627330B2 (ja) 電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503355

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012870716

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE