WO2013129612A1 - エレクトロルミネッセント素子の製造方法 - Google Patents

エレクトロルミネッセント素子の製造方法 Download PDF

Info

Publication number
WO2013129612A1
WO2013129612A1 PCT/JP2013/055529 JP2013055529W WO2013129612A1 WO 2013129612 A1 WO2013129612 A1 WO 2013129612A1 JP 2013055529 W JP2013055529 W JP 2013055529W WO 2013129612 A1 WO2013129612 A1 WO 2013129612A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electroluminescent element
conductive layer
layer
manufacturing
Prior art date
Application number
PCT/JP2013/055529
Other languages
English (en)
French (fr)
Inventor
鈴木 雅博
祐介 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/381,470 priority Critical patent/US9082980B2/en
Publication of WO2013129612A1 publication Critical patent/WO2013129612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • an organic layer including a light emitting layer is formed so as to be sandwiched between an anode and a cathode, and a voltage is applied between these electrodes, whereby a light emitting layer in a region where the anode and the cathode overlap each other.
  • an organic light emitting medium is provided between a first electrode (anode or cathode) and a semiconductor layer made of a non-single crystal material, and a second electrode (cathode or anode) is electrically connected to the edge of the semiconductor layer.
  • An object of the present invention is to provide a method for manufacturing a long-life electroluminescent device by reducing temperature unevenness on a light emitting surface.
  • a first conductive layer on a substrate a dielectric layer having a plurality of contact holes penetrating in a direction orthogonal to the substrate, and the first conductive layer in the contact hole
  • the temperature distribution measurement step it is preferable to measure a partial temperature, a maximum temperature (T H ), and a minimum temperature (T L ) of the electroluminescent element that emits light as the temperature unevenness information.
  • the difference (T H ⁇ T L ) between the partial temperature and the maximum temperature (T H ) and the minimum temperature (T L ) of the electroluminescent element that emits light is preferably obtained as temperature unevenness.
  • a threshold value is set to 3 ° C. or less and the temperature unevenness information is fed back to the first manufacturing process when the temperature unevenness exceeds the threshold value.
  • a plurality of the contact holes are 102 2 or more per light emitting region based on light emission of the light emitting layer, and the plurality of the contact holes. It is preferable to form such that the ratio of the total area occupied by the holes is 0.2 or less with respect to the area of the light emitting region.
  • temperature unevenness of the electroluminescent element can be reduced and the life can be extended.
  • FIG. 1 is a partial cross-sectional view illustrating an example of a light emitting region of an electroluminescent element 10 that is a target of the present embodiment.
  • the electroluminescent element 10 illustrated in FIG. 1 includes a substrate 11 and a stacked portion 110 formed on the substrate 11.
  • the stacked unit 110 includes, from the substrate 11 side, a first conductive layer 12 for injecting holes, an insulating dielectric layer 13, and a second conductive layer 14 covering the top surface of the dielectric layer 13.
  • a light emitting layer 15 that emits light by combining holes and electrons, and a third conductive layer 16 for injecting electrons are sequentially stacked.
  • the dielectric layer 13 of the electroluminescent element 10 is provided with a plurality of contact holes 17 penetrating the dielectric layer 13 in a direction orthogonal to the substrate 11.
  • Each contact hole 17 is filled with a component constituting the second conductive layer 14.
  • the contact hole 17 is filled only with the component of the second conductive layer 14.
  • the first conductive layer 12 and the second conductive layer 14 are electrically connected inside the contact hole 17. Therefore, when a voltage is applied between the first conductive layer 12 and the third conductive layer 16, a voltage is applied between the second conductive layer 14 and the third conductive layer 16, and the light emitting layer 15 is Emits light.
  • the surface of the light emitting layer 15 on the substrate 11 side, the surface on the third conductive layer 16 side opposite to the substrate 11 side, or both of these surfaces are outside the electroluminescent element 10. It becomes a light emitting surface from which light is extracted. Further, when viewed from the surface side of the substrate 11 of the electroluminescent element 10 or when viewed from the surface side of the third conductive layer 16 of the electroluminescent element 10, the light emitting layer 15 is continuous. Light is emitted as the light emitting region.
  • the second conductive layer 14 is formed so as to be in contact with the contact hole 17, and another component such as the light emitting layer 15 is further formed, so that the contact hole 17 becomes the second conductive layer. 14 and other components may be filled.
  • the substrate 11 serves as a support for forming the first conductive layer 12, the dielectric layer 13, the second conductive layer 14, the light emitting layer 15, and the third conductive layer 16.
  • the substrate 11 is typically made of a material that satisfies the mechanical strength required as a support for the electroluminescent element 10.
  • the light emitting layer 15 As a material of the substrate 11, when light is to be extracted from the substrate 11 side of the electroluminescent element 10 (that is, the surface on the substrate 11 side is a light emitting surface for extracting light), the light emitting layer 15 is used.
  • a material that is transparent to the wavelength of the emitted light is preferred.
  • the light emitted from the light emitting layer 15 is visible light, for example, glass such as soda glass or non-alkali glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, nylon resin; silicon Etc.
  • “transparent to the wavelength of light emitted from the light emitting layer 15” means that it is only necessary to transmit light in a certain wavelength range emitted from the light emitting layer 15. It does not have to be light transmissive over the entire visible light region.
  • the material of the substrate 11 is not limited to a transparent material, and an opaque material can also be used.
  • copper, silver, gold, platinum, tungsten, titanium, tantalum, niobium alone, alloys thereof, or materials made of stainless steel can also be used.
  • the first conductive layer 12 applies a voltage between the third conductive layer 16 and injects holes into the light emitting layer 15 through the second conductive layer 14. That is, in the present embodiment, the first conductive layer 12 is an anode layer.
  • the material used for the first conductive layer 12 is not particularly limited as long as it has electrical conductivity.
  • conductive metal oxide metal, alloy and the like can be mentioned.
  • the conductive metal oxide include ITO (indium tin oxide), IZO (indium zinc oxide), tin oxide, and zinc oxide.
  • the metal include stainless steel, copper, silver, gold, platinum, tungsten, titanium, tantalum, and niobium. An alloy containing these metals can also be used.
  • ITO, IZO, and tin oxide are preferable as the transparent material used for forming the transparent electrode.
  • a transparent conductive film made of an organic material such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the thickness of the first conductive layer 12 is preferably 2 nm to 300 nm in order to obtain high light transmittance when the surface on the substrate 11 side is a light emitting surface for extracting light. Further, when it is not necessary to extract light from the substrate 11 side, it may be formed in a range of 2 nm to 2 mm, for example.
  • the substrate 11 can be made of the same material as that of the first conductive layer 12. In this case, the substrate 11 may also serve as the first conductive layer 12.
  • the dielectric layer 13 is laminated on the first conductive layer 12, and a material transparent to the light emitted from the light emitting layer 15 is used.
  • the material constituting the dielectric layer 13 include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; and metal oxides such as silicon oxide and aluminum oxide.
  • metal nitrides such as silicon nitride, boron nitride, and aluminum nitride
  • metal oxides such as silicon oxide and aluminum oxide.
  • polymer compounds such as polyimide, polyvinylidene fluoride, and parylene can also be used.
  • the thickness of the dielectric layer 13 does not exceed 1 ⁇ m in order to suppress an increase in electrical resistance between the first conductive layer 12 and the second conductive layer 14.
  • the thickness of the dielectric layer 13 is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
  • the shape of the contact hole 17 formed through the dielectric layer 13 is not particularly limited, and examples thereof include a cylindrical shape and a quadrangular prism shape. Further, in the present embodiment, the contact hole 17 is formed so as to penetrate only the dielectric layer 13, but the present invention is not limited to this embodiment. For example, the contact hole 17 may be formed so as to penetrate the first conductive layer 12.
  • the second conductive layer 14 is electrically connected to the first conductive layer 12 inside the contact hole 17 and injects holes received from the first conductive layer 12 into the light emitting layer 15.
  • the second conductive layer 14 preferably contains a conductive metal oxide or a conductive polymer. Specifically, it is preferably a transparent conductive film made of an electrically conductive metal oxide such as ITO, IZO or tin oxide having optical transparency; or an organic material such as a conductive polymer compound.
  • the second hole is formed in order to facilitate film formation on the inner surface of the contact hole 17.
  • the conductive layer 14 is preferably formed by coating. Therefore, from this viewpoint, the second conductive layer 14 is particularly preferably a transparent conductive film made of an organic material such as a conductive polymer compound. Note that the second conductive layer 14 and the first conductive layer 12 may be formed using the same material.
  • the thickness of the second conductive layer 14 is preferably 2 nm to 300 nm in order to obtain high light transmittance when the surface on the substrate 11 side is a light emitting surface for extracting light.
  • a layer that facilitates injection of holes into the light emitting layer 15 is provided on the surface of the second conductive layer 14 that is in contact with the light emitting layer 15. May be.
  • a 1 nm to 200 nm layer composed of a conductive polymer such as a phthalocyanine derivative and a polythiophene derivative, amorphous carbon, carbon fluoride, polyamine compound, etc .; a metal oxide, a metal fluoride, Examples thereof include a layer made of an organic insulating material or the like having an average film thickness of 10 nm or less.
  • a conductive polymer such as a phthalocyanine derivative and a polythiophene derivative, amorphous carbon, carbon fluoride, polyamine compound, etc .
  • a metal oxide, a metal fluoride examples thereof include a layer made of an organic insulating material or the like having an average film thickness of 10 nm or less.
  • the light emitting layer 15 includes a light emitting material that emits light when a voltage is applied.
  • a light emitting material contained in the light emitting layer 15 either an organic material or an inorganic material can be used.
  • an organic material light-emitting organic material
  • both a low molecular compound low molecular compound
  • a polymer compound light-emitting polymer compound
  • the luminescent organic material a phosphorescent organic compound and a metal complex are preferable.
  • a cyclometalated complex from the viewpoint of improving the light emission efficiency of the light emitting layer 15.
  • cyclometalated complexes include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-thienyl) pyridine derivatives, 2- (1-naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like.
  • the complex include iridium, palladium, and platinum having a ligand. Among these, iridium complexes are particularly preferable.
  • the cyclometalated complex may have other ligands in addition to the ligands necessary for forming the cyclometalated complex.
  • Examples of the light-emitting polymer compound include ⁇ -conjugated polymer compounds such as poly-p-phenylene vinylene (PPV) derivatives, polyfluorene derivatives, polythiophene derivatives; low molecular dyes, tetraphenyldiamine and triphenylamine. Examples thereof include a polymer introduced into a chain or a side chain. A light emitting high molecular compound and a light emitting low molecular weight compound can also be used in combination.
  • PSV poly-p-phenylene vinylene
  • the light emitting layer 15 includes a host material together with the light emitting material, and the light emitting material may be dispersed in the host material.
  • a host material preferably has a charge transporting property, and is preferably a hole transporting compound or an electron transporting compound.
  • a well-known material can be used as a positive hole transport compound or an electron transport compound.
  • the thickness of the light emitting layer 15 is appropriately selected in consideration of charge mobility, injection charge balance, interference of emitted light, and the like, and is not particularly limited. In this embodiment mode, the thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
  • the third conductive layer 16 applies a voltage between the first conductive layer 12 and injects electrons into the light emitting layer 15. That is, in the present embodiment, the third conductive layer 16 is a cathode layer.
  • the material used for the third conductive layer 16 is not particularly limited as long as it has electrical conductivity like the first conductive layer 12. In the present embodiment, a material having a low work function and being chemically stable is preferable. Specifically, materials such as Al; alloys of Al and alkali metals such as AlLi; alloys of Al and Mg such as MgAl alloys; alloys of Al and alkaline earth metals such as AlCa can be exemplified.
  • the material of the third conductive layer 16 is the light emitting surface from which light is extracted from the third conductive layer 16 side of the electroluminescent element 10 (that is, the surface on the third conductive layer 16 side extracts light).
  • the material that is transparent to the emitted light similar to that of the first conductive layer 12.
  • the thickness of the third conductive layer 16 is preferably 0.01 ⁇ m to 1 ⁇ m, and more preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • a cathode buffer layer (not shown) is used as the third conductive layer 16 for the purpose of lowering the electron injection barrier from the third conductive layer 16 to the light emitting layer 15 and increasing the electron injection efficiency. You may provide adjacent to.
  • the cathode buffer layer needs to have a work function lower than that of the third conductive layer 16, and a metal material is preferably used. Examples of such metal materials include alkali metals (Na, K, Rb, Cs), Mg and alkaline earth metals (Sr, Ba, Ca), rare earth metals (Pr, Sm, Eu, Yb), or these A compound selected from fluorides, chlorides and oxides of these metals, or a mixture of two or more thereof can be used.
  • the thickness of the cathode buffer layer is preferably 0.05 nm to 50 nm, more preferably 0.1 nm to 20 nm, and even more preferably 0.5 nm to 10 nm.
  • a layer other than the light emitting layer 15 may be formed between the second conductive layer 14 and the third conductive layer 16.
  • Examples of such a layer include a hole transport layer, a hole block layer, and an electron transport layer.
  • Each of these layers is formed using a known charge transporting material or the like according to each function.
  • the thicknesses of these layers are appropriately selected in consideration of charge mobility, injected charge balance, interference of emitted light, and the like, and are not particularly limited. In this embodiment mode, the thickness is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm.
  • FIG. 2 is a diagram for explaining the size of the contact hole 17.
  • FIG. 2A shows, for example, a case where the contact hole 17 is viewed from the vertical direction of the light emitting surface of the light emitting layer 15 with respect to the substrate 11, and the cross-sectional shape is a quadrangle, and FIG. This is a case where the shape is a regular hexagon.
  • the size of the contact hole 17 is the minimum circle (minimum inclusion circle) that includes the above-described cross-sectional shape when the contact hole 17 is viewed in plan view. ) The diameter of 17a is used.
  • the size of the contact hole 17 is set to be the first conductivity. Smaller is desirable as long as an electrical connection between the layer 12 and the second conductive layer 14 is sufficiently possible. From such a viewpoint, it is preferable that the minimum inner circle 17a has a diameter of 0.01 ⁇ m to 2 ⁇ m.
  • the diameter of the cylinder is preferably 0.01 ⁇ m to 2 ⁇ m.
  • the ratio of the total area occupied by the plurality of contact holes 17 is 0.2 or less with respect to the area of the light emitting region. It is preferable that it is 0.001 to 0.1. When the ratio of the total area occupied by the plurality of contact holes 17 is within the above-described range, it is easy to correct the temperature unevenness.
  • the number of the contact holes 17 formed in one of the light emitting region comprises at least 10 2 or more, it is preferred that preferably 10 4 or more.
  • the number of contact holes 17 is preferably in a range where the ratio of the area occupied by the contact holes 17 on the light emitting region surface is 0.2 or less. Since FIG. 1 is a schematic diagram, it does not necessarily represent the ratio of these numerical values.
  • the plurality of contact holes 17 may be uniformly distributed or unevenly distributed in the light emitting region depending on a desired light emitting form.
  • the arrangement of the plurality of contact holes 17 in the light emitting region may be regular or irregular.
  • the plurality of contact holes 17 are regularly arranged.
  • the regular arrangement for example, an arrangement of a cubic lattice or a hexagonal lattice can be given. With such an arrangement, in the electroluminescent element 10 to which the present exemplary embodiment is applied, the light emitting portion is formed on the smooth dielectric layer 13, and the uniformity of light emission in the light emitting region can be improved.
  • the present invention is not limited to this, and the first conductive layer 12 is not limited thereto. May be the cathode layer, and the third conductive layer 16 may be the anode layer.
  • FIG. 3 is a diagram illustrating a method for manufacturing the electroluminescent element 10.
  • first manufacturing process First, as shown in FIG. 3A, the first conductive layer 12 and the dielectric layer 13 are sequentially stacked on the substrate 11. In order to form these layers, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, or the like can be used.
  • a coating film forming method that is, a method in which a target material is dissolved in a solvent and then dried
  • a spin coating method a dip coating method, an ink jet method, a printing method
  • a method such as a spray method or a dispenser method.
  • contact holes 17 are formed in the dielectric layer 13.
  • the contact hole 17 can be formed by a method using photolithography. As shown in FIG. 3B, first, a photoresist solution is applied on the dielectric layer 13, and the excess photoresist solution is removed by spin coating or the like to form a photoresist layer 71.
  • a mask on which a predetermined pattern for forming the contact hole 17 is drawn is put on the photoresist layer 71, and ultraviolet (Ultra violet: UV), electron beam (Electron) is applied.
  • the photoresist layer 71 is exposed by, for example, Beam: EB).
  • Beam: EB Beam
  • a pattern of the contact hole 17 that is the same size as the mask pattern is formed.
  • reduced projection exposure for example, exposure using a stepper
  • a pattern of contact holes 17 reduced with respect to the mask pattern is formed.
  • the unexposed portion of the photoresist layer 71 is removed using a developing solution, the photoresist layer 71 in the pattern portion is removed, and a part of the dielectric layer 13 is exposed.
  • the exposed portion of the dielectric layer 13 is removed by etching to form a contact hole 17.
  • a part of the first conductive layer 12 provided below the dielectric layer 13 may also be removed by etching.
  • etching either dry etching or wet etching can be used. Examples of dry etching include reactive ion etching (RIE) and inductively coupled plasma etching. Examples of wet etching include a method of immersing in dilute hydrochloric acid or dilute sulfuric acid.
  • the layer through which the contact hole 17 penetrates can be selected by adjusting the etching conditions (for example, processing time, gas used, pressure, substrate temperature, etc.).
  • the contact hole 17 can also be formed by a nanoimprint method. Specifically, after the photoresist layer 71 is formed on the dielectric layer 13, a mask having a convex pattern drawn on the surface of the photoresist layer 71 is pressed with pressure. In this state, the photoresist layer 71 is cured by heating or light irradiation or heating and light irradiation. Next, when the mask is removed, the contact hole 17 pattern corresponding to the convex pattern of the mask is formed on the surface of the photoresist layer 71. Subsequently, the contact hole 17 is formed by performing the etching described above.
  • the second conductive layer 14, the light emitting layer 15, and the third conductive layer 16 are sequentially stacked on the dielectric layer 13 in which the contact holes 17 are formed.
  • These layers are formed by a method similar to the method for forming the first conductive layer 12 or the dielectric layer 13.
  • the second conductive layer 14 is preferably formed by a coating film forming method. When the coating film forming method is employed, the material constituting the second conductive layer 14 can be easily filled in the contact hole 17.
  • the electroluminescent element 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution is measured.
  • a voltage is applied to the electroluminescent element 10 by a direct current power source to light it with a predetermined average luminance, and the temperature distribution is measured using infrared thermography.
  • the more the number of samples of the electroluminescent device 10 for measuring the temperature distribution the more accurate the temperature distribution can be measured. In the present embodiment, 10 or more are preferable, and it is better to measure the total number.
  • the temperature (hereinafter also referred to as “partial temperature”), maximum temperature (T H ), minimum temperature (T L ), An average temperature (T A ) is obtained.
  • the temperature unevenness maximum temperature (T H ) and minimum temperature (T L ) of the electroluminescent element 10 that has emitted light is calculated by the following calculation formula (1).
  • the temperature difference T H ⁇ T L ) is calculated.
  • the temperature unevenness information of the electroluminescent element 10 manufactured in the first manufacturing process is used as the subsequent manufacturing (second manufacturing). Feedback to the process).
  • the threshold value is preferably 3 ° C. or less, and more preferably 1 ° C. or less.
  • Second manufacturing process Manufacturing of the second electroluminescent element (hereinafter referred to as “second manufacturing process”))
  • the first conductive layer 12 and the dielectric layer 13 are sequentially stacked on the substrate 11, and then the dielectric layer 13 is formed by photolithography.
  • a plurality of contact holes 17 are formed.
  • the density of the plurality of contact holes 17 is adjusted based on the temperature measurement value fed back as temperature unevenness information of the electroluminescent element 10 manufactured in the first manufacturing process.
  • the partial temperature of the electroluminescent element 10 that emits light is more susceptible to the density than the size and shape of the contact hole 17.
  • a plurality of contact holes penetrating the dielectric layer 13 are used. It is preferable to control the density of 17.
  • FIG. 4 is a diagram for explaining the relationship between the density of the contact holes 17 and the temperature of the electroluminescent element 10 that has emitted light.
  • a region A indicates a region where the partial temperature of the electroluminescent element 10 increases as the density of the contact holes 17 increases.
  • Region B indicates a region where the partial temperature of the electroluminescent element 10 decreases as the density of the contact holes 17 increases.
  • Such a condition for forming the region A or the region B can be obtained by measuring the relationship between the density of the contact hole 17 and the temperature in advance by a preliminary experiment.
  • the temperature fed back as temperature unevenness information of the electroluminescent element 10 manufactured in the first manufacturing process is changed. Based on the measured value, when forming the contact hole 17, the density of the contact hole 17 at a temperature higher than the average temperature (T A ) is decreased, and the contact hole 17 at a temperature lower than the average temperature (T A ). The operation of increasing the density is performed.
  • the density of the contact hole 17 at a portion higher than the average temperature (T A ) is increased.
  • an operation of decreasing the density of the contact hole 17 at a portion lower than the average temperature (T A ) is performed.
  • the temperature unevenness information obtained by the temperature distribution measurement is fed back to the subsequent manufacturing (second manufacturing process) to increase the density of the contact holes 17 in a specific portion of the electroluminescent element 10 to be manufactured or Make adjustments to decrease.
  • the range in which the density of the contact holes 17 is increased or decreased is not limited as long as the temperature unevenness obtained by the calculation formula (1) converges without divergence.
  • the temperature unevenness of the electroluminescent element 10 is averaged.
  • the photoresist layer coated and formed on the dielectric layer 13 is exposed while adjusting the density of the contact holes 17 by changing the scale of the mask for each predetermined portion by, for example, a stepper exposure apparatus. .
  • FIG. 5 is a flowchart for explaining the flow of the manufacturing method of the electroluminescent device 10 to which the exemplary embodiment is applied.
  • a first conductive layer 12 anode
  • a dielectric layer 13 in which a plurality of contact holes 17 are formed, and in the contact holes 17
  • the second conductive layer 14, the light emitting layer 15, and the third conductive layer 16 that are electrically connected to the first conductive layer 12 and fill the contact hole are sequentially laminated.
  • the device 10 is manufactured (step 100).
  • the electroluminescent element 10 manufactured in the first manufacturing process is caused to emit light, and the temperature distribution of the electroluminescent element 10 is measured to obtain temperature unevenness information (step 110).
  • the temperature unevenness information includes the partial temperature, maximum temperature (T H ), minimum temperature (T L ), and average temperature (T A ) of the electroluminescent element 10 that has emitted light. Then, based on the obtained temperature unevenness information, the temperature unevenness of the emitted electroluminescent element 10 is calculated by the calculation formula (1) described above.
  • step 120 it is determined whether or not the temperature unevenness calculated in the temperature distribution measurement step exceeds a predetermined threshold value (set to 3 ° C. in the present embodiment) (step 120).
  • a predetermined threshold value set to 3 ° C. in the present embodiment
  • the temperature unevenness information is fed back to the first manufacturing process, and the electroluminescent element 10 is manufactured while adjusting the density of the plurality of contact holes 17 penetrating the dielectric layer 13. (Second manufacturing process).
  • the temperature distribution of the electroluminescent element 10 manufactured in the second manufacturing process is measured, and it is determined whether or not the obtained temperature unevenness exceeds the threshold, and exceeds the threshold.
  • the temperature unevenness information is fed back to the first manufacturing process, and the process of adjusting the density of the contact holes 17 is repeated until the temperature unevenness is equal to or less than the threshold value.
  • the electroluminescent element 10 can be manufactured through the above steps. In addition, when using the electroluminescent element 10 stably for a long term, it is preferable to mount
  • the protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • the protective cover a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used.
  • the electroluminescent element 10 to which this exemplary embodiment is applied can be used for a display device, a lighting device, and the like, for example. Although it does not specifically limit as a display apparatus, For example, what is called a passive matrix type display apparatus is mentioned.
  • the lighting device normally supplies a current between the first conductive layer 12 and the third conductive layer 16 of the electroluminescent element 10 by a lighting circuit having a DC power supply and a control circuit therein, The light emitting layer 15 emits light. Then, the light emitted from the light emitting layer 15 is taken out through the substrate 11 and used as illumination light.
  • the electroluminescent element 10 was produced by the following method. First, on a glass substrate made of quartz glass (substrate 11: 25 mm square, thickness 1 mm), a first conductive film made of an ITO film having a thickness of 150 nm is formed using a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.). The layer 12 and a dielectric layer 13 made of a silicon dioxide (SiO 2 ) film having a thickness of 50 nm were sequentially stacked. Subsequently, a photoresist (AZ1500: AZ1500) layer 71 having a thickness of about 1 ⁇ m was formed on the dielectric layer 13 by spin coating.
  • a photoresist (AZ1500: AZ1500) layer 71 having a thickness of about 1 ⁇ m was formed on the dielectric layer 13 by spin coating.
  • a mask A corresponding to a pattern in which a circle (plate thickness: 3 mm) is used as a base and circles are arranged in a hexagonal lattice shape is manufactured, and a stepper exposure apparatus (manufactured by Nikon, model NSR-1505i6) is used.
  • Photoresist layer 71 was exposed to scale.
  • the exposed photoresist layer 71 is developed with a 1.2% solution of tetramethylammonium hydroxide (TMAH): (CH 3 ) 4 NOH), and the photoresist layer 71 is then patterned. Heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
  • TMAH tetramethylammonium hydroxide
  • the photoresist layer 71 was dry-etched. Next, the photoresist residue was removed with a photoresist removing solution, and a plurality of contact holes 17 penetrating the dielectric layer 13 made of SiO 2 layer were formed.
  • the contact holes 17 have a cylindrical shape with a diameter of 1 ⁇ m, and are formed on the entire surface of the dielectric layer 13 in a hexagonal lattice pattern with a pitch of 4 ⁇ m.
  • a water suspension of a mixture of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS) (mass ratio PEDOT: PSS 1: 6) on the dielectric layer 13.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • a liquid (content 1.5% by mass) was applied by spin coating (rotation speed: 3000 rpm), dried at 140 ° C. for 1 hour in a nitrogen atmosphere, and a second layer having a thickness of 20 nm on the dielectric layer 13.
  • the conductive layer 14 was formed.
  • a 1.1% by mass xylene solution of the following compound (A) is applied onto the second conductive layer 14 by a spin coating method (rotation speed: 3000 rpm), and at 210 ° C. for 1 hour in a nitrogen atmosphere. It dried and formed the 20-nm-thick hole transport layer.
  • a xylene solution (solid content concentration: 1.6% by mass) containing the following compound (B), compound (C), and compound (D) at a mass ratio of 9: 1: 90 on the hole transport layer. ) was applied by spin coating (rotational speed: 3000 rpm) and dried at 140 ° C. for 1 hour in a nitrogen atmosphere to form a light emitting layer 15 having a thickness of 50 nm.
  • a cathode buffer layer (thickness 4 nm) made of sodium fluoride and a third conductive layer 16 (thickness 130 nm) made of aluminum are sequentially formed on the light emitting layer 15 by vapor deposition, and electroluminescent A nescent element 10 was produced.
  • the produced electroluminescent element 10 has a light emitting surface on the substrate 11 side of the light emitting layer 15 and has one continuous light emitting region. Further, when the electroluminescent element 10 was observed from the light emitting surface side (plan view), the number of the plurality of contact holes 17 in the light emitting region was about 2 ⁇ 10 7 . The ratio of the total area occupied by the plurality of contact holes 17 to the area of the light emitting region was 0.057.
  • Ten electroluminescent elements 10 were manufactured per batch by the above-described operation. In addition, the obtained electroluminescent element 10 was an element having the characteristics included in the region A.
  • each of the ten electroluminescent elements 10 was caused to emit light, and the temperature distribution was measured.
  • the temperature distribution is measured by applying a voltage to the electroluminescent element 10 affixed to a vertical gypsum board with a DC power supply (manufactured by Keithley Instruments Co., Ltd., model SM2400) and lighting it with an average luminance of 300 cd / m 2 . Infrared thermography was used.
  • the partial temperature, the maximum temperature (T H ), the minimum temperature (T L ), and the average temperature (T A ) of the light-emitting electroluminescent element 10 were obtained as temperature unevenness information.
  • the temperature unevenness obtained by the temperature distribution measurement of the ten electroluminescent elements 10 produced in the first batch was 6 ° C., which was larger than the temperature unevenness threshold (1 ° C. in this example). . Therefore, the temperature unevenness information (partial temperature, T H , T L , T A ) obtained by the temperature distribution measurement described above is fed back to the manufacturing process of the electroluminescent element 10 and the emitted electroluminescent element 10 The electroluminescent element 10 was manufactured while adjusting the density of the plurality of contact holes 17 so that the temperature distribution was uniform.
  • a photoresist layer is applied and formed on the dielectric layer 13, and then exposure is performed using a predetermined mask while adjusting the density of the contact holes 17 for each 5 mm square portion using a stepper exposure apparatus. It was.
  • the contact hole density was adjusted by changing the mask scale so as to increase or decrease by 2% based on the temperature of the portion corresponding to the exposed portion measured by the temperature distribution measurement.
  • FIG. 6 is a view for explaining the temperature distribution of the electroluminescent element 10.
  • FIG. 6A is a view for explaining the temperature distribution of the electroluminescent element 10 in the first batch. As shown in FIG. 6 (a), the hottest portion with the highest temperature is measured at the central portion of the electroluminescent element 10 that emits light, the coldest portion with the lowest temperature is measured at the peripheral portion, It can be seen that a temperature distribution is generated over the part.
  • FIG. 6B is a diagram illustrating the temperature distribution of the electroluminescent element 10 in the third batch. It can be seen that the temperature distribution is reduced as compared to the first batch (FIG. 6A).
  • FIG. 6C is a diagram illustrating the temperature distribution of the electroluminescent element 10 in the 10th batch. It can be seen that the temperature distribution is further reduced as compared to the third batch (FIG. 6B).
  • the usable time (life) of the electroluminescent device 10 is 5000 hours, which is 50 times longer than the electroluminescent device 10 manufactured in the first batch. I understand that. Note that the usable time is a time during which the luminance is reduced by half compared to the initial lighting when a current of 10 mA is applied per 1 cm 2 of the light emitting surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

基板上に第1の導電層、基板に対して直交する方向に貫通する複数のコンタクトホールが形成された誘電体層、コンタクトホール内で第1の導電層と電気的に接続するとともにコンタクトホール内を充填する第2の導電層、発光層および第3の導電層とが順に積層されたエレクトロルミネッセント素子を製造する1回目のエレクトロルミネッセント素子の製造(第1の製造工程)と、第1の製造工程で製造されたエレクトロルミネッセント素子の第1の導電層および第3の導電層に電圧を印加し発光層を発光させるとともにエレクトロルミネッセント素子の温度分布を測定してエレクトロルミネッセント素子の温度ムラ情報を得る温度分布測定工程と、温度ムラ情報を基に、誘電体層を貫通する複数のコンタクトホールの密度を調整してエレクトロルミネッセント素子の温度ムラを低減する2回目のエレクトロルミネッセント素子の製造(第2の製造工程)と、を行なう製造方法により、発光面における温度ムラを低減し、長寿命のエレクトロルミネッセント素子が得られる。

Description

エレクトロルミネッセント素子の製造方法
 本発明は、エレクトロルミネッセント素子の製造方法に関する。
 従来、エレクトロルミネッセント素子として、発光層を含む有機層を陽極と陰極とで挟むように形成し、これらの電極間に電圧を印加することによって、陽極と陰極とが重なった領域の発光層が発光するものが知られている。
 近年、第1の電極(陽極または陰極)と非単結晶材料からなる半導体層との間に有機発光媒体を設け、かつ、半導体層の縁部に第2の電極(陰極または陽極)を電気接続することにより、第1の電極と第2の電極とを実質的に対向させることなく、半導体層からエレクトロルミネッセント発光を外部に取り出す有機エレクトロルミネッセント素子が報告されている(特許文献1参照)。
国際公開第00/67531号パンフレット
 ところで、特許文献1に記載されたような構造を有する有機エレクトロルミネッセント素子を製造する場合、微細なパターニングにより形成した電極に接して半導体層を形成する必要がある。そのため、陰極と陽極とを対向させることなく半導体層から発光を外部に取り出せるものの、平滑な半導体層を形成することが難しく、製造工程が複雑になるとともに発光面内の発光が不均―になりやすい。
 一方、従来のエレクトロルミネッセント素子の場合も、製造工程によっては発光面に温度ムラが生じ、素子としての寿命が短くなる場合がある。
 本発明の目的は、発光面における温度ムラを低減し、長寿命のエレクトロルミネッセント素子の製造方法を提供することにある。
 本発明によれば、基板上に第1の導電層、当該基板に対して直交する方向に貫通する複数のコンタクトホールが形成された誘電体層、当該コンタクトホール内で当該第1の導電層と電気的に接続するとともに当該コンタクトホール内を充填する第2の導電層、発光層および第3の導電層とが順に積層されたエレクトロルミネッセント素子を製造する1回目のエレクトロルミネッセント素子の製造(第1の製造工程)と、前記第1の製造工程で製造されたエレクトロルミネッセント素子の前記第1の導電層および前記第3の導電層に電圧を印加し前記発光層を発光させるとともに、当該エレクトロルミネッセント素子の温度分布を測定して、当該エレクトロルミネッセント素子の温度ムラ情報を得る温度分布測定工程と、前記温度ムラ情報を基に、前記誘電体層を貫通する複数の前記コンタクトホールの密度を調整して、前記エレクトロルミネッセント素子の温度ムラを低減する2回目のエレクトロルミネッセント素子の製造(第2の製造工程)と、を行なうエレクトロルミネッセント素子の製造方法が提供される。
 ここで、前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記エレクトロルミネッセント素子の部分温度と最高温度(T)と最低温度(T)とを測定することが好ましい。
 前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記エレクトロルミネッセント素子の部分温度と最高温度(T)と最低温度(T)との差(T-T)を温度ムラとして得ることが好ましい。
 前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報を前記第1の製造工程にフィードバックすることが好ましい。
 前記第1の製造工程および前記第2の製造工程において、複数の前記コンタクトホールを、当該コンタクトホールの個数が前記発光層の発光に基づく発光領域あたり10個以上であると共に、複数の当該コンタクトホールが占める合計の面積の割合が当該発光領域の面積に対して0.2以下となるように形成することが好ましい。
 本発明によれば、エレクトロルミネッセント素子の温度ムラを低減し、長寿命化を図ることができる。
本実施の形態の対象となるエレクトロルミネッセント素子の発光領域の一例を説明する部分断面図である。 コンタクトホールの大きさを説明する図である。 エレクトロルミネッセント素子の製造方法の一例を説明する図である。 コンタクトホールの密度と発光したエレクトロルミネッセント素子の温度との関係を説明する図である。 本実施の形態が適用されるエレクトロルミネッセント素子の製造方法の流れを説明するフローチャートである。 エレクトロルミネッセント素子の温度分布を説明する図である。
 以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。すなわち、実施の形態の例に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に記載がない限り本発明の範囲を限定するものではなく、単なる説明例に過ぎない。また、使用する図面は、本実施の形態を説明するための一例であり、実際の大きさを表すものではない。各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。また、本明細書において、「層上」等の「上」は、必ずしも上面に接触して形成される場合に限定されず、離間して上方に形成される場合や、層と層の間に介在層が存在する場合も包含する意味で使用する。
<エレクトロルミネッセント素子>
 図1は、本実施の形態の対象となるエレクトロルミネッセント素子10の発光領域の一例を説明する部分断面図である。
 図1に示したエレクトロルミネッセント素子10は、基板11と、基板11上に形成された積層部110とを有している。積層部110は、基板11側から、正孔を注入するための第1の導電層12と、絶縁性の誘電体層13と、誘電体層13の上面を覆った第2の導電層14と、正孔と電子が結合して発光する発光層15と、電子を注入するための第3の導電層16とが順に積層されている。
 図1に示すように、エレクトロルミネッセント素子10の誘電体層13には、当該誘電体層13を基板11に対して直交する方向に貫通する複数のコンタクトホール17が設けられている。それぞれのコンタクトホール17内には、第2の導電層14を構成する成分が充填されている。
 本実施の形態では、コンタクトホール17には第2の導電層14の成分だけが充填されている。これにより、第1の導電層12と第2の導電層14とは、コンタクトホール17の内部で電気的に接続する。そのため、第1の導電層12と第3の導電層16との間に電圧を印加すると、第2の導電層14と第3の導電層16との間に電圧が印加され、発光層15が発光する。
 この場合、発光層15の基板11側の面、または基板11側とは反対側の第3の導電層16側の面、あるいは、これらの両方の面が、エレクトロルミネッセント素子10の外に光が取り出される発光面となる。また、エレクトロルミネッセント素子10の基板11の面側から平面視した場合、又は、エレクトロルミネッセント素子10の第3の導電層16の面側から平面視した場合、発光層15は、連続した発光領域として発光する。
 尚、その他の実施形態として、コンタクトホール17と接するように第2の導電層14が形成され、さらに発光層15等の他の成分が形成されることで、コンタクトホール17が第2の導電層14と他の成分によって充填されていても良い。
(基板11)
 基板11は、第1の導電層12、誘電体層13、第2の導電層14、発光層15及び第3の導電層16を形成する支持体となるものである。基板11には、通常、エレクトロルミネッセント素子10の支持体として要求される機械的強度を満たす材料が用いられる。
 基板11の材料としては、エレクトロルミネッセント素子10の基板11側から光を取り出したい場合(すなわち、基板11側の面が、光を取出す発光面となる場合である。)、発光層15で発光する光の波長に対して透明である材料であることが好ましい。具体的には、発光層15で発光する光が可視光の場合、例えば、ソーダガラス、無アルカリガラス等のガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂等の透明プラスチック;シリコン等が挙げられる。
 尚、本実施の形態において、「発光層15で発光する光の波長に対し透明である」とは、発光層15から発する一定の波長範囲の光を透過させることができればよいという意味であり、可視光領域全域にわたり光透過性である必要はない。
 エレクトロルミネッセント素子10の基板11側の面から光を取り出す必要がない場合、基板11の材料としては、透明であるものに限られず、不透明なものも使用できる。具体的には、上記材料に加えて、銅、銀、金、白金、タングステン、チタン、タンタル、もしくはニオブの単体、またはこれらの合金、あるいはステンレス等からなる材料も使用することができる。
(第1の導電層12)
 第1の導電層12は、第3の導電層16との間で電圧を印加し、第2の導電層14を介して発光層15に正孔を注入する。即ち、本実施の形態では、第1の導電層12は陽極層である。第1の導電層12に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではない。
 例えば、導電性金属酸化物、金属、合金等が挙げられる。ここで、導電性金属酸化物としては、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)、酸化スズ、酸化亜鉛等が挙げられる。金属としては、例えば、ステンレス、銅、銀、金、白金、タングステン、チタン、タンタル、ニオブ等が挙げられる。また、これらの金属を含む合金も使用できる。これらの材料の中でも、透明電極を形成するのに用いられる透明材料としては、ITO、IZO、酸化スズが好ましい。また、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体等の有機物からなる透明導電膜を用いてもよい。
 第1の導電層12の厚さは、基板11側の面が光を取出す発光面となる場合、高い光透過率を得るためには、2nm~300nmであることが好ましい。また、基板11側から光を取り出す必要がない場合、例えば、2nm~2mmの範囲で形成してもよい。
 尚、基板11は、第1の導電層12と同一の材質を使用することもできる。この場合、基板11は第1の導電層12を兼ねてもよい。
(誘電体層13)
 誘電体層13は、第1の導電層12上に積層され、発光層15で発光する光に対して透明な材料が用いられる。
 誘電体層13を構成する具体的な材料としては、例えば、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化珪素、酸化アルミニウム等の金属酸化物が挙げられる。さらに、ポリイミド、ポリフッ化ビニリデン、パリレン等の高分子化合物も使用可能である。
 誘電体層13の厚さは、第1の導電層12と第2の導電層14との間の電気抵抗の増大を抑制するために1μmを越えないことが好ましい。誘電体層13の厚さとしては、好ましくは、10nm~500nm、さらに好ましくは50nm~200nmで形成するのがよい。
 尚、誘電体層13を貫通して形成されているコンタクトホール17の形状は、特に限定されず、例えば、円柱形、四角柱形等が挙げられる。
 また、本実施の形態では、コンタクトホール17は誘電体層13のみを貫通するように形成されているが、この実施の形態に限定されない。例えば、さらに、コンタクトホール17が第1の導電層12を貫通して形成されていてもよい。
(第2の導電層14)
 第2の導電層14は、コンタクトホール17の内部で第1の導電層12と電気的に接続し、第1の導電層12から受け取った正孔を発光層15へ注入する。第2の導電層14は、導電性金属酸化物または導電性高分子を含むことが好ましい。具体的には、光透過性を有するITO、IZO、酸化スズ等の導電性金属酸化物;導電性高分子化合物等の有機物からなる透明導電膜であることが好ましい。
 また、本実施の形態では、コンタクトホール17の内部は、第2の導電層14を形成する材料で充填されるため、コンタクトホール17内表面への膜形成を容易にするために、第2の導電層14は、塗布により成膜されることが好ましい。従って、この観点から、第2の導電層14は、導電性高分子化合物等の有機物からなる透明導電膜であることが特に好ましい。尚、第2の導電層14と第1の導電層12を同一の材料を用いて形成してもよい。
 第2の導電層14の厚さは、基板11側の面が光を取出す発光面となる場合、高い光透過率を得るため、2nm~300nmであることが好ましい。
 また、本実施の形態では、発光層15への正孔の注入を容易にする層(例えば、正孔注入層等)を、第2の導電層14の発光層15と接触する表面上に設けてもよい。このような層としては、具体的には、フタロシアニン誘導体、ポリチオフェン誘導体等の導電性高分子、アモルファスカーボン、フッ化カーボン、ポリアミン化合物等からなる1nm~200nmの層;金属酸化物、金属フッ化物、有機絶縁材料等からなる平均膜厚10nm以下の層等が挙げられる。
(発光層15)
 発光層15は、電圧を印加することにより光を発する発光材料を含む。発光層15に含まれる発光材料としては、有機材料および無機材料のいずれも用いることができる。有機材料(発光性有機材料)の場合、低分子化合物(発光性低分子化合物)及び高分子化合物(発光性高分子化合物)のいずれをも使用することができる。発光性有機材料としては、リン光性有機化合物および金属錯体が好ましい。
 本実施の形態においては、発光層15の発光効率を向上させる観点から、シクロメタル化錯体を用いることが特に望ましい。シクロメタル化錯体としては、例えば、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体、2-フェニルキノリン誘導体等の配位子を有するイリジウム、パラジウムおよび白金等の錯体が挙げられる。これらの中でも、イリジウム錯体が特に好ましい。シクロメタル化錯体は、シクロメタル化錯体を形成するのに必要な配位子以外に、他の配位子を有していてもよい。
 発光性高分子化合物としては、例えば、ポリ-p-フェニレンビニレン(PPV)誘導体、ポリフルオレン誘導体、ポリチオフェン誘導体等のπ共役系の高分子化合物;低分子色素とテトラフェニルジアミンやトリフェニルアミンを主鎖や側鎖に導入したポリマー等が挙げられる。発光性高分子化合物と発光性低分子化合物とを併用することもできる。
 発光層15は発光材料とともにホスト材料を含み、ホスト材料中に発光材料が分散されている場合もある。このようなホスト材料は電荷輸送性を有していることが好ましく、正孔輸送性化合物や電子輸送性化合物であることが好ましい。尚、正孔輸送性化合物や電子輸送性化合物としては公知の材料を用いることができる。
 発光層15の厚さは、電荷の移動度や注入電荷のバランス、発光する光の干渉等を考慮して適宜選択され特に限定されない。本実施の形態では、好ましくは1nm~1μm、より好ましくは2nm~500nm、特に好ましくは5nm~200nmである。
(第3の導電層16)
 第3の導電層16は、第1の導電層12との間で電圧を印加し、発光層15に電子を注入する。即ち、本実施の形態では第3の導電層16は、陰極層である。
 第3の導電層16に使用される材料としては、第1の導電層12と同様に電気伝導性を有するものであれば、特に限定されるものではない。本実施の形態では、仕事関数が低く、かつ化学的に安定なものが好ましい。具体的には、Al;AlLi等のAlとアルカリ金属の合金;MgAl合金等のAlとMgの合金;AlCa等のAlとアルカリ土類金属の合金等の材料を例示することができる。
 ただし、第3の導電層16の材料は、エレクトロルミネッセント素子10の第3の導電層16側から光を取り出したい場合(すなわち、第3の導電層16側の面が光を取出す発光面となる場合である。)は、例えば、第1の導電層12と同様な発光光に対して透明な材料を用いることが好ましい。
 第3の導電層16の厚さは0.01μm~1μmが好ましく、0.05μm~0.5μmがより好ましい。
 本実施の形態では、第3の導電層16から発光層15への電子の注入障壁を下げて電子の注入効率を上げる目的で、陰極バッファ層(図示せず)を、第3の導電層16に隣接して設けてもよい。陰極バッファ層は、第3の導電層16より仕事関数の低いことが必要であり、金属材料が好適に用いられる。このような金属材料としては、例えば、アルカリ金属(Na、K、Rb、Cs)、Mgおよびアルカリ土類金属(Sr、Ba、Ca)、希土類金属(Pr、Sm、Eu、Yb)、またはこれらの金属のフッ化物、塩化物、酸化物から選ばれる化合物もしくは2つ以上の混合物を使用することができる。陰極バッファ層の厚さは0.05nm~50nmが好ましく、0.1nm~20nmがより好ましく、0.5nm~10nmがより一層好ましい。
 さらに、本実施の形態では、第2の導電層14と第3の導電層16の間に、発光層15以外の層が形成されていてもよい。このような層としては、例えば、正孔輸送層、正孔ブロック層、電子輸送層等が例示される。これらの各層は、それぞれの機能に応じ、公知の電荷輸送性材料等を用いて形成される。また、これらの各層の厚さは、電荷の移動度や注入電荷のバランス、発光する光の干渉等を考慮して適宜選択され、特に限定されない。本実施の形態では、好ましくは1nm~500nm、より好ましくは5nm~200nmである。
(コンタクトホール17)
 図2は、コンタクトホール17の大きさを説明する図である。図2(a)は、例えば、コンタクトホール17を発光層15の発光面を基板11に対して鉛直方向から平面視した場合、断面形状が四角形の場合であり、図2(b)は、断面形状が正六角形の場合である。本実施の形態では、コンタクトホール17の大きさは、図2(a)及び(b)に示すように、コンタクトホール17を平面視した場合の上述した断面形状を内包する最小円(最小内包円)17aの直径を用いて表している。
 本実施の形態において、誘電体層13上に形成される発光層15の面積を大きくし、エレクトロルミネッセント素子10の輝度を高くする観点から、コンタクトホール17の大きさは、第1の導電層12と第2の導電層14との間で電気的な接続が十分可能である限りにおいて、より小さいことが望ましい。
 このような観点から、最小内包円17aの直径は、0.01μm~2μmであることが好ましい。例えば、コンタクトホール17が円柱形状である場合、その円柱の直径は0.01μm~2μmであることが好ましい。
 本実施の形態では、発光層15の発光面側から誘電体層13を平面視した場合、複数のコンタクトホール17が占める合計の面積の割合が、発光領域の面積に対して0.2以下であることが好ましく、0.001~0.1であることが特に好ましい。複数のコンタクトホール17が占める合計の面積の割合が上述した範囲内の場合、温度ムラの修正がしやすくなる。
 本実施の形態では、1つの発光領域に形成されるコンタクトホール17の個数は、少なくとも10個以上、好ましくは10個以上であることが好ましい。但し、コンタクトホール17の個数は、前述したとおり、発光領域面におけるコンタクトホール17の占める面積の割合が0.2以下となる範囲であることが好ましい。尚、図1は模式図であるので必ずしもこれら各数値の比を表すものとしていない。
 本実施の形態において、複数のコンタクトホール17は、所望の発光形態により、発光領域内で均一に分布していても不均一に分布していてもよい。また、発光領域内における複数のコンタクトホール17の配列は、規則的であっても不規則的であってもよい。但し、製造上の観点から、複数のコンタクトホール17が規則的に配列されていることが好ましい。規則的な配列の例としては、例えば、立方格子状や六方格子状の配列を挙げることができる。このような配列により、本実施の形態が適用されるエレクトロルミネッセント素子10では、平滑な誘電体層13上に発光部分が形成され、発光領域における発光の均一性を高めることができる。
 尚、上述した例では、第1の導電層12を陽極層とし、第3の導電層16を陰極層とする例について説明を行なったがこれに限られるものではなく、第1の導電層12を陰極層とし、第3の導電層16を陽極層としてもよい。
<エレクトロルミネッセント素子の製造方法>
 次に、エレクトロルミネッセント素子の製造方法について、図1に示したエレクトロルミネッセント素子10の場合を例に挙げて説明する。
(1回目のエレクトロルミネッセント素子の製造(以下、「第1の製造工程」という))
 図3は、エレクトロルミネッセント素子10の製造方法について説明する図である。
 先ず、図3(a)に示すように、基板11上に、第1の導電層12及び誘電体層13を順に積層する。これらの層を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法等を用いることができる。また、塗布成膜方法(即ち、目的とする材料を溶剤に溶解させた状態で基板に塗布し乾燥する方法。)が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法等の方法を用いて成膜することも可能である。
 次に、誘電体層13にコンタクトホール17を形成する。コンタクトホール17の形成には、例えば、フォトリソグラフィを用いる方法が挙げられる。
 図3(b)に示すように、先ず、誘電体層13上にフォトレジスト液を塗布し、スピンコート等により余分なフォトレジスト液を除去してフォトレジスト層71を形成する。
 続いて、図3(c)に示すように、コンタクトホール17を形成するための所定のパターンが描画されたマスクをフォトレジスト層71上に被せ、紫外線(Ultra violet:UV)、電子線(Electron Beam:EB)等によりフォトレジスト層71を露光する。ここで、等倍露光(例えば、接触露光やプロキシミティ露光の場合)を行うと、マスクパターンと等倍のコンタクトホール17のパターンが形成される。また、縮小投影露光(例えば、ステッパーを使用した露光の場合)を行うと、マスクパターンに対して縮小されたコンタクトホール17のパターンが形成される。次に、現像液を用いてフォトレジスト層71の未露光部分を除去すると、パターンの部分のフォトレジスト層71が除去され、誘電体層13の一部が露出する。
 次に、図3(d)に示すように、誘電体層13の露出した部分をエッチングにより除去し、コンタクトホール17を形成する。この場合、誘電体層13の下側に設けた第1の導電層12の一部もエッチングにより除去してもよい。エッチングは、ドライエッチングとウェットエッチングの何れをも使用することができる。ドライエッチングとしては、反応性イオンエッチング(Reactive Ion Etching:RIE)や誘導結合プラズマエッチングが挙げられる。また、ウェットエッチングとしては、希塩酸や希硫酸に浸漬する方法等が挙げられる。尚、エッチングを行う際、エッチングの条件(例えば、処理時間、使用ガス、圧力、基板温度等)を調節することにより、コンタクトホール17が貫通する層を選択することができる。
 また、コンタクトホール17は、ナノインプリント法により形成することもできる。具体的には、誘電体層13上にフォトレジスト層71を形成した後、フォトレジスト層71表面に凸パターンが描画されたマスクを、圧力をかけて押し当てる。そしてこの状態で、フォトレジスト層71に、加熱または光照射あるいは加熱および光照射を施すことにより、フォトレジスト層71を硬化させる。次に、マスクを除去すると、フォトレジスト層71表面にマスクの凸パターンに対応するコンタクトホール17のパターンが形成される。続いて、前述したエッチングを行うことにより、コンタクトホール17が形成される。
 次いで、図3(e)に示すように、コンタクトホール17が形成された誘電体層13上に、第2の導電層14、発光層15及び第3の導電層16を順に積層する。これらの層は、第1の導電層12または誘電体層13の形成方法と同様の手法により形成される。尚、本実施の形態では、第2の導電層14は塗布成膜方法により形成することが好ましい。塗布成膜方法を採用すると、コンタクトホール17内部に第2の導電層14を構成する材料を容易に充填することができる。
(温度分布測定工程)
 続いて、第1の製造工程で製造したエレクトロルミネッセント素子10を発光させ、温度分布を測定する。具体的には、エレクトロルミネッセント素子10に直流電源により電圧を印加し、所定の平均輝度で点灯させ、赤外線サーモグラフィーを用いて温度分布を測定する。温度分布を測定するエレクトロルミネッセント素子10のサンプル個数は多いほど正確な温度分布が測定できる。本実施の形態では、10個以上が好ましく、より好ましくは全数を測定した方がよい。
 温度分布の測定により、温度ムラ情報として、発光させたエレクトロルミネッセント素子10の各部分の温度(以下、「部分温度」ともいう)、最高温度(T)、最低温度(T)および平均温度(T)が得られる。
 次に、温度分布測定により得られた温度ムラ情報に基づき、下記の計算式(1)により、発光したエレクトロルミネッセント素子10の温度ムラ(最高温度(T)と最低温度(T)との温度差(T-T))を計算する。なお、本発明において温度の単位はすべて℃を用いる。
   温度ムラ=(T-T)   (1)
 続いて、計算式(1)により計算した温度ムラが、所定の閾値より大きい場合、第1の製造工程で製造したエレクトロルミネッセント素子10の温度ムラ情報を、後続する製造(第2の製造工程)にフィードバックする。なお、エレクトロルミネッセント素子10の寿命の低下を防ぐためには、前記閾値を3℃以下とすることが好ましく、1℃以下とすることがより好ましい。
(2回目のエレクトロルミネッセント素子の製造(以下、「第2の製造工程」という))
 第2の製造工程では、前述した第1の製造工程と同様に、基板11上に、第1の導電層12及び誘電体層13を順に積層し、続いて、フォトリソグラフィにより、誘電体層13に複数のコンタクトホール17を形成する。
 第2の製造工程では、第1の製造工程において製造したエレクトロルミネッセント素子10の温度ムラ情報としてフィードバックされた温度の測定値に基づき、複数のコンタクトホール17の密度を調整する。
 発光したエレクトロルミネッセント素子10の部分的な温度は、コンタクトホール17の大きさや形状等よりも密度に影響されやすく、温度分布を制御するには、誘電体層13を貫通する複数のコンタクトホール17の密度を制御することが好ましい。
 図4は、コンタクトホール17の密度と発光したエレクトロルミネッセント素子10の温度との関係を説明する図である。
 図4において、領域Aは、コンタクトホール17の密度が増大すると、エレクトロルミネッセント素子10の部分的な温度も上昇する領域を示している。また、領域Bは、コンタクトホール17の密度が増大すると、エレクトロルミネッセント素子10の部分的な温度が下降する領域を示している。このような領域Aまたは領域Bとなる条件は、あらかじめ予備実験により、コンタクトホール17の密度と温度との関係を測定しておくことにより求めることができる。
 温度分布が均一となるようにコンタクトホール17の密度を調整するには、例えば、領域Aにおいては、第1の製造工程において製造したエレクトロルミネッセント素子10の温度ムラ情報としてフィードバックされた温度の測定値に基づき、コンタクトホール17を形成する際に、平均温度(T)より高温の部分のコンタクトホール17の密度を減少させ、また、平均温度(T)より低温の部分のコンタクトホール17の密度を増大させる操作を行う。
 同様に、領域Bにおいては、温度ムラ情報としてフィードバックされた温度の測定値に基づき、コンタクトホール17を形成する際に、平均温度(T)より高温の部分のコンタクトホール17の密度を増大させ、また、平均温度(T)より低温の部分のコンタクトホール17の密度を減少させる操作を行う。
 このように、温度分布測定により得られた温度ムラ情報を後続する製造(第2の製造工程)にフィードバックし、製造するエレクトロルミネッセント素子10の特定の部分のコンタクトホール17の密度を増大または減少させる調整を行う。コンタクトホール17の密度を増減させる範囲は、計算式(1)で得られる温度ムラが発散せずに収束する範囲であればよく、通常、1%~10%の範囲で増減することが好ましい。このような範囲でコンタクトホール17の密度を調整することにより、エレクトロルミネッセント素子10の温度ムラが平均化される。具体的には、誘電体層13上に塗布形成したフォトレジスト層を、例えば、ステッパー露光装置により、所定の部分毎にマスクの縮尺を変えて、コンタクトホール17の密度を調整しながら露光を行う。
 図5は、本実施の形態が適用されるエレクトロルミネッセント素子10の製造方法の流れを説明するフローチャートである。
 エレクトロルミネッセント素子の製造方法においては、第1の製造工程として、基板11上に第1の導電層12(陽極)、複数のコンタクトホール17が形成された誘電体層13、コンタクトホール17内で第1の導電層12と電気的に接続するとともにコンタクトホール内を充填する第2の導電層14、発光層15および第3の導電層16(陰極)とが順に積層されたエレクトロルミネッセント素子10を製造する(ステップ100)。
 続いて、温度分布測定工程として、第1の製造工程において製造したエレクトロルミネッセント素子10を発光させ、エレクトロルミネッセント素子10の温度分布を測定して温度ムラ情報を得る(ステップ110)。温度ムラ情報としては、発光させたエレクトロルミネッセント素子10の部分温度、最高温度(T)、最低温度(T)および平均温度(T)である。そして、得られた温度ムラ情報に基づき、前述して計算式(1)により、発光したエレクトロルミネッセント素子10の温度ムラを計算する。
 次に、温度分布測定工程において計算した温度ムラが所定の閾値(本実施の形態では、3℃に設定した。)を超えるか否かを判定する(ステップ120)。温度ムラが閾値を超える場合(NO)、温度ムラ情報を第1の製造工程にフィードバックし誘電体層13を貫通する複数のコンタクトホール17の密度を調整しつつエレクトロルミネッセント素子10を製造する(第2の製造工程)。
 そして、再び、温度分布測定工程において、第2の製造工程で製造したエレクトロルミネッセント素子10の温度分布を測定し、得られた温度ムラが閾値を超えるか否かを判定し、閾値を超える場合は、温度ムラ情報を第1の製造工程にフィードバックし、温度ムラが閾値以下になるまで、コンタクトホール17の密度を調整する工程を繰り返す。
 以上の工程により、エレクトロルミネッセント素子10を製造することができる。尚、エレクトロルミネッセント素子10を長期安定的に用いる場合、エレクトロルミネッセント素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物や、窒化ケイ素、酸化ケイ素等のケイ素化合物等を用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属等を用いることができる。
 本実施の形態が適用されるエレクトロルミネッセント素子10は、例えば、表示装置、照明装置等に使用することができる。
 表示装置としては特に限定されないが、例えば、いわゆるパッシブマトリクス型の表示装置が挙げられる。
 また、照明装置は、通常、直流電源と制御回路を内部に備える点灯回路により、エレクトロルミネッセント素子10の第1の導電層12と第3の導電層16との間に電流を供給し、発光層15を発光させる。そして、発光層15において発光した光を基板11を通し外部に取り出し、照明光として利用する。
 以下、実施例に基づき本発明をさらに詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。
(エレクトロルミネッセント素子の作製)
 以下の方法により、エレクトロルミネッセント素子10を作製した。
 先ず、石英ガラスからなるガラス基板(基板11:25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、厚さ150nmのITO膜からなる第1の導電層12と、厚さ50nmの二酸化ケイ素(SiO)膜からなる誘電体層13を順に積層して成膜した。続いて、誘電体層13上に、スピンコート法により厚さ約1μmのフォトレジスト(AZエレクトロニックマテリアルズ株式会社製:AZ1500)層71を成膜した。
 続いて、石英(板厚3mm)を基材とし、円を六方格子状に配置したパターンに対応するマスクAを作製し、ステッパー露光装置(ニコン製、型式NSR-1505i6)を用い、1/5縮尺でフォトレジスト層71を露光した。次に、露光したフォトレジスト層71をテトラメチルアンモニウムハイドロオキサイド(Tetramethyl ammonium hydroxide(TMAH):(CHNOH))1.2%液により現像し、フォトレジスト層71をパターン化し、その後、130℃で10分間熱を加えた(ポストベイク処理)。
 次に、反応性イオンエッチング装置(サムコ株式会社製RIE-200iP)により、反応ガスとしてCHFを使用し、圧力0.3Pa、出力Bias/ICP=50/100(W)の条件で18分間反応させ、フォトレジスト層71にドライエッチング処理を施した。次いで、フォトレジスト除去液によりフォトレジスト残渣を除去し、SiO層からなる誘電体層13を貫通する複数のコンタクトホール17を形成した。このコンタクトホール17は直径1μmの円柱状であり、誘電体層13の全面に4μmピッチで六方格子状に配列して形成された。
 続いて、誘電体層13上に、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)との混合物(質量比でPEDOT:PSS=1:6)の水懸濁液(含有量1.5質量%)を、スピンコート法(回転数:3000rpm)により塗布し、窒素雰囲気下、140℃で1時間乾燥し、誘電体層13上に厚さが20nmの第2の導電層14を形成した。
 次に、第2の導電層14上に、以下に示す化合物(A)の1.1質量%キシレン溶液をスピンコート法(回転数:3000rpm)により塗布し、窒素雰囲気下、210℃で1時間乾燥し、厚さ20nmの正孔輸送層を形成した。
 続いて、上記の正孔輸送層上に、以下に示す化合物(B)、化合物(C)、化合物(D)を質量比9:1:90で含むキシレン溶液(固形分濃度1.6質量%)をスピンコート法(回転数:3000rpm)により塗布し、窒素雰囲気下、140℃で1時間乾燥し、厚さ50nmの発光層15を形成した。
Figure JPOXMLDOC01-appb-C000001
 さらに、蒸着法により、上記の発光層15上に、フッ化ナトリウムからなる陰極バッファ層(厚さ4nm)とアルミニウムからなる第3の導電層16(厚さ130nm)を順に成膜し、エレクトロルミネッセント素子10を作製した。
 作製したエレクトロルミネッセント素子10は、発光層15の基板11側を発光面とし、連続した発光領域を1つ有している。また、このエレクトロルミネッセント素子10を発光面側から観察(平面視)したところ、前記発光領域中の複数のコンタクトホール17の数は約2×10個であった。また、当該発光領域の面積に対して複数のコンタクトホール17が占める合計の面積の割合は0.057であった。上述した操作により、1バッチ当たり10個のエレクトロルミネッセント素子10を作製した。
 なお、得られたエレクトロルミネッセント素子10は、前記領域Aに含まれる特性を有する素子であった。
(温度分布の測定)
 続いて、10個のこれらのエレクトロルミネッセント素子10の各々を発光させ、温度分布を測定した。温度分布の測定は、垂直な石膏ボードに貼り付けたエレクトロルミネッセント素子10に直流電源(ケースレーインスツルメンツ株式会社製、型式SM2400)により電圧を印加し、300cd/mの平均輝度で点灯させ、赤外線サーモグラフィーを用いて行った。
 温度分布の測定により、発光させたエレクトロルミネッセント素子10の部分温度、最高温度(T)、最低温度(T)および平均温度(T)とが温度ムラ情報として得られた。
 続いて、最初の1バッチで作製した10個のエレクトロルミネッセント素子10の温度分布測定により得られた温度ムラ情報に基づき、前述した計算式(1)(温度ムラ=(T-T))により得られた温度ムラは6℃であった。尚、温度ムラは10個のエレクトロルミネッセント素子10の測定結果の平均値である。
 最初の1バッチで作製した10個のエレクトロルミネッセント素子10の温度分布測定により得られた温度ムラが6℃であり、温度ムラの閾値(本実施例では1℃とした。)より大きかった。
 そこで、前述の温度分布測定により得られた温度ムラ情報(部分温度、T、T、T)をエレクトロルミネッセント素子10の製造工程にフィードバックし、発光したエレクトロルミネッセント素子10の温度分布が均一になるように複数のコンタクトホール17の密度を調整しつつエレクトロルミネッセント素子10を製造した。
 具体的には、誘電体層13上にフォトレジスト層を塗布形成し、次いで、所定のマスクを用い、ステッパー露光装置により、5mm四方の部分毎にンタクトホール17の密度を調整しながら露光を行った。コンタクトホールの密度の調整は、前記温度分布の測定で測定された前記露光部分に対応する部分の温度を基に、2%ずつ増減するように、マスクの縮尺を変えて露光を行った。
 上述した操作を、バッチ毎の温度ムラ情報に基づく温度ムラが閾値(1℃)以下になるまで繰り返し、エレクトロルミネッセント素子10を製造した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 また、図6に、エレクトロルミネッセント素子10の温度分布を説明する図を示した。
 図6(a)は、1バッチ目のエレクトロルミネッセント素子10の温度分布を説明する図である。図6(a)に示すように、発光させたエレクトロルミネッセント素子10の中央部分に最も温度が高い高温部が測定され、周辺部分に最も温度が低い低温部が測定され、高温部から低温部にかけて温度分布が生じていることが分かる。
 図6(b)は、3バッチ目のエレクトロルミネッセント素子10の温度分布を説明する図である。1バッチ目(図6(a))と比較して温度分布が低減されているのが分かる。
 図6(c)は、10バッチ目のエレクトロルミネッセント素子10の温度分布を説明する図である。3バッチ目(図6(b))と比較して温度分布がさらに低減されているのが分かる。
 表1に示す結果から、バッチ毎に得られる温度ムラ情報を、次の製造工程にフィードバックしつつエレクトロルミネッセント素子10を製造することにより、10バッチ目において、温度ムラが0.03に低減し、発光面の温度分布が減少することが分かる。
 さらに、温度ムラが低減することにより、エレクトロルミネッセント素子10の使用可能時間(寿命)が5000時間になり、最初のバッチにおいて製造したエレクトロルミネッセント素子10と比較して50倍に伸びたことが分かる。なお、使用可能時間は、発光面1cmあたり10mAの電流を流して点灯させたとき、輝度が点灯初期に対して半減する時間である。
10…エレクトロルミネッセント素子、11…基板、12…第1の導電層、13…誘電体層、14…第2の導電層、15…発光層、16…第3の導電層、17…コンタクトホール、17a…最小内包円、110…積層部

Claims (5)

  1.  基板上に第1の導電層、当該基板に対して直交する方向に貫通する複数のコンタクトホールが形成された誘電体層、当該コンタクトホール内で当該第1の導電層と電気的に接続するとともに当該コンタクトホール内を充填する第2の導電層、発光層および第3の導電層とが順に積層されたエレクトロルミネッセント素子を製造する1回目のエレクトロルミネッセント素子の製造(第1の製造工程)と、
     前記第1の製造工程で製造されたエレクトロルミネッセント素子の前記第1の導電層および前記第3の導電層に電圧を印加し前記発光層を発光させるとともに、当該エレクトロルミネッセント素子の温度分布を測定して、当該エレクトロルミネッセント素子の温度ムラ情報を得る温度分布測定工程と、
     前記温度ムラ情報を基に、前記誘電体層を貫通する複数の前記コンタクトホールの密度を調整して、前記エレクトロルミネッセント素子の温度ムラを低減する2回目のエレクトロルミネッセント素子の製造(第2の製造工程)と、を行なう
    エレクトロルミネッセント素子の製造方法。
  2.  前記温度分布測定工程において、前記温度ムラ情報として、発光させた前記エレクトロルミネッセント素子の部分温度と最高温度(T)と最低温度(T)とを測定する請求項1に記載のエレクトロルミネッセント素子の製造方法。
  3.  前記温度分布測定工程において、前記温度ムラ情報に基づき、発光させた前記エレクトロルミネッセント素子の部分温度と最高温度(T)と最低温度(T)との差(T-T)を温度ムラとして得る請求項1又は2に記載のエレクトロルミネッセント素子の製造方法。
  4.  前記温度分布測定工程において、閾値を3℃以下に設定し、前記温度ムラが前記閾値を超える場合、前記温度ムラ情報を前記第1の製造工程にフィードバックする請求項3に記載のエレクトロルミネッセント素子の製造方法。
  5.  前記第1の製造工程および前記第2の製造工程において、複数の前記コンタクトホールを、当該コンタクトホールの個数が前記発光層の発光に基づく発光領域あたり10個以上であると共に、複数の当該コンタクトホールが占める合計の面積の割合が当該発光領域の面積に対して0.2以下となるように形成する請求項1乃至4のいずれか1項に記載のエレクトロルミネッセント素子の製造方法。
PCT/JP2013/055529 2012-02-29 2013-02-28 エレクトロルミネッセント素子の製造方法 WO2013129612A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/381,470 US9082980B2 (en) 2012-02-29 2013-02-28 Manufacturing method for electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-044537 2012-02-29
JP2012044537 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013129612A1 true WO2013129612A1 (ja) 2013-09-06

Family

ID=49082803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055529 WO2013129612A1 (ja) 2012-02-29 2013-02-28 エレクトロルミネッセント素子の製造方法

Country Status (3)

Country Link
US (1) US9082980B2 (ja)
JP (1) JPWO2013129612A1 (ja)
WO (1) WO2013129612A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128601A1 (ja) * 2012-02-29 2013-09-06 昭和電工株式会社 エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
CN107681061B (zh) * 2017-09-25 2019-08-13 京东方科技集团股份有限公司 Oled背板、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067531A1 (fr) 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2006018169A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその温度補正方法
JP2006018170A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその駆動方法
JP2006030336A (ja) * 2004-07-13 2006-02-02 Sony Corp 画像表示装置及びその駆動方法と走査線駆動回路
JP2011203314A (ja) * 2010-03-24 2011-10-13 Sony Corp 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体
JP4913927B1 (ja) * 2010-09-01 2012-04-11 昭和電工株式会社 エレクトロルミネッセント素子、表示装置および照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69735782T2 (de) * 1996-09-24 2006-10-26 Seiko Epson Corp. Projektionsanzeigevorrichtung mit einer Lichtquelle
JP5333121B2 (ja) * 2009-09-28 2013-11-06 大日本印刷株式会社 有機エレクトロルミネッセンス素子、その製造方法及び発光表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067531A1 (fr) 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et procede de fabrication
JP2006018169A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその温度補正方法
JP2006018170A (ja) * 2004-07-05 2006-01-19 Sony Corp 画像表示装置及びその駆動方法
JP2006030336A (ja) * 2004-07-13 2006-02-02 Sony Corp 画像表示装置及びその駆動方法と走査線駆動回路
JP2011203314A (ja) * 2010-03-24 2011-10-13 Sony Corp 画像表示部温度分布推定方法、画像表示部温度分布推定装置、画像表示装置、プログラム及び記録媒体
JP4913927B1 (ja) * 2010-09-01 2012-04-11 昭和電工株式会社 エレクトロルミネッセント素子、表示装置および照明装置

Also Published As

Publication number Publication date
US9082980B2 (en) 2015-07-14
JPWO2013129612A1 (ja) 2015-07-30
US20150132864A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
WO2013128601A1 (ja) エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
JP5528774B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2011044296A (ja) 電極付基板の製造方法
JP4913927B1 (ja) エレクトロルミネッセント素子、表示装置および照明装置
US9099598B2 (en) Light-emitting device and method for manufacturing light-emitting device
WO2012176335A1 (ja) 有機発光素子および有機発光素子の製造方法
JP5471162B2 (ja) 有機エレクトロルミネッセンス素子
WO2013129612A1 (ja) エレクトロルミネッセント素子の製造方法
WO2013129611A1 (ja) エレクトロルミネッセント素子の製造方法
WO2013129615A1 (ja) 有機電界発光素子の製造方法
WO2013129613A1 (ja) 有機電界発光素子の製造方法
WO2012147390A1 (ja) 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
WO2010061898A1 (ja) 有機電界発光素子、表示装置および照明装置
JP2012028338A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
EP2725874A1 (en) Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
JP5145483B2 (ja) 有機発光素子、有機発光素子の製造方法、表示装置および照明装置
JP5919821B2 (ja) 光学基板及びその製造方法並びに発光表示装置
KR20130017088A (ko) 발광 소자, 화상 표시 장치 및 조명 장치
KR101626149B1 (ko) 유기발광소자 제조 방법 및 장치
JPWO2013128601A1 (ja) エレクトロルミネッセント素子、エレクトロルミネッセント素子の製造方法、表示装置および照明装置
JP2015095438A (ja) 透明電極、透明電極の製造方法、透明電極を備えた有機エレクトロルミネッセンス素子
WO2014069396A1 (ja) 有機発光素子および有機発光素子の製造方法
JP2014107173A (ja) 発光装置および発光装置の輝度分布を小さくする方法
JP2015011893A (ja) 有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502384

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381470

Country of ref document: US

Ref document number: 2013755812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE