WO2013128728A1 - 光モジュール及びその製造方法 - Google Patents

光モジュール及びその製造方法 Download PDF

Info

Publication number
WO2013128728A1
WO2013128728A1 PCT/JP2012/079659 JP2012079659W WO2013128728A1 WO 2013128728 A1 WO2013128728 A1 WO 2013128728A1 JP 2012079659 W JP2012079659 W JP 2012079659W WO 2013128728 A1 WO2013128728 A1 WO 2013128728A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom plate
frame member
optical module
joining
optical
Prior art date
Application number
PCT/JP2012/079659
Other languages
English (en)
French (fr)
Inventor
真一 阪本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2013128728A1 publication Critical patent/WO2013128728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4267Reduction of thermal stress, e.g. by selecting thermal coefficient of materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4265Details of housings characterised by the shape of the housing of the Butterfly or dual inline package [DIP] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses

Definitions

  • the present invention relates to an optical module and a method for manufacturing the same, and more particularly to an optical module that inputs light output from a light emitting element such as a laser element into a core of an optical fiber, and more particularly to a high output optical module that spatially couples a plurality of light emitting elements. Is preferred.
  • Such an optical module generally has a package for housing a laser element or the like, but it is one of the important matters to suppress warping of the bottom plate in the package.
  • Patent Document 1 As a prior art for suppressing the warpage of the bottom plate, for example, there is one disclosed in Patent Document 1 below.
  • the package of the optical module of Patent Document 1 has a metal bottom plate and a metal frame, and a reinforcing portion is provided inside a joint portion between the flat metal bottom plate and the metal frame.
  • the material of the metal bottom plate is a copper-tungsten alloy
  • the material of the metal frame is an alloy of iron-nickel-cobalt
  • the material of the joining member between the metal bottom plate and the metal frame is silver solder.
  • the material of the reinforcement part is not disclosed.
  • an object of the present invention is to provide an optical module and a method for manufacturing the same that can simply reduce the optical axis deviation caused by mounting.
  • an optical module according to the present invention is made of a metal bottom plate and a metal different from the bottom plate, and is joined by a joining member on a surface opposite to the bottom surface of the bottom plate.
  • the region surrounded by the frame member in the bottom plate is warped on the surface side opposite to the bottom surface.
  • the optical module according to the present invention generally changes the conventional practice of trying to solve the problem of suppressing the warp, and the area of the bottom plate surrounded by the frame member warps to the surface side opposite to the bottom surface. It is what I did.
  • a metal fitting or the like is connected to the outside of the bottom plate so as to be substantially flush with the bottom surface of the bottom plate and is pressed and fixed to the mounting surface, the frame member is surrounded by the pressing. It is possible to suppress changes in warpage in the area.
  • an optical axis shift between the light emitting element disposed in the space surrounded by the bottom plate and the frame member and the optical fiber provided in the frame member can be suppressed without requiring a member for suppressing warpage. In this way, the optical axis shift in the optical module resulting from mounting can be simply reduced.
  • the bottom plate has a protruding region protruding from the outer wall of the frame member, and a warping amount of the protruding region is smaller than a warping amount of the region.
  • the optical module can be mounted with the protruding region fixed to the mounting surface, and the compulsory task of connecting another connector such as a metal fitting to the outside of the bottom plate can be avoided.
  • a portion that is flat with respect to the surface on which the bottom plate is mounted is formed in the protruding region.
  • the bottom plate having the relationship that the linear expansion of the bottom plate in the range from room temperature to the melting point of the joining member is greater than or equal to the linear expansion of the frame member in the range, the frame member, and the A step of preparing a joining member, and melting the joining member disposed at a joining portion between the bottom plate and the frame member while pressing the frame member placed on a surface opposite to the bottom surface of the bottom plate.
  • a bonding step of curing after heating, a light-emitting element arranged in a space surrounded by the bottom plate and the frame member, and an optical axis adjustment step of aligning the optical axis of the optical fiber provided in the frame member It is characterized by.
  • the bottom plate In the joining process of this manufacturing method, the bottom plate is heated while being pressed through the frame member. For this reason, even if the bottom plate is warped to the bottom surface side at the stage of preparation in the preparation step, the warpage to the bottom surface side is greatly relieved by pressing from the frame member.
  • the bottom plate and the frame member contract when returning from the temperature equal to or higher than the melting point of the joining member to room temperature. Since the bottom plate and the frame member have different linear expansion degrees, the contraction amounts are also different. Therefore, even if the bottom plate is pressed through the frame member, the region surrounded by the frame member tends to warp.
  • the warping direction changes to the bottom surface side or the surface side opposite to the bottom surface depending on the relationship with the material of the bottom plate or the material of the frame member.
  • a bottom plate, a frame member, and a joining member having a relationship in which the linear expansion of the bottom plate in the range from room temperature to the melting point of the joining member is greater than or equal to the linear expansion of the frame member in the range are prepared. The For this reason, even if the region surrounded by the frame member is warped, the warp can be restricted to the surface side opposite to the bottom surface.
  • this manufacturing method generally changes the conventional practice of trying to solve the problem of suppressing warpage, and dares to make the area of the bottom plate surrounded by the frame member warp to the surface side opposite to the bottom surface.
  • the material of the bottom plate is molybdenum
  • the material of the frame member is an iron-nickel-cobalt alloy
  • the material of the joining member is a eutectic solder of 20% gold-80% tin. .
  • the difference between the linear expansion of the bottom plate and the linear expansion of the frame member in the range from room temperature to the melting point of the joining member is significantly reduced. Therefore, the amount of warpage toward the surface opposite to the bottom surface in the region surrounded by the frame member can be greatly reduced.
  • the area of the surface opposite to the bottom surface of the bottom plate is preferably larger than the area of the region surrounded by the outer wall at the lower end of the frame member.
  • the bottom plate protrudes from the outer wall of the frame member placed on the bottom plate.
  • a protruding region will be provided. If the thickness and size are adjusted so that the amount of warpage is smaller than the area surrounded by the frame member, the protrusion area will return to the room temperature from the temperature above the melting point of the joining member. Even if it shrinks, it can be in a generally flat state. Therefore, it becomes possible to mount an optical module using this projecting area, and it is necessary to perform work such as connecting a coupling tool such as another metal fitting to the outside of the bottom plate. Can be avoided.
  • an optical module and a method for manufacturing the same that can simply reduce the optical axis deviation caused by mounting.
  • the optical module 1 of the present embodiment includes a box body 10, a pipe member 20, a laser element 30, a lens 40, and an optical fiber 50 as main components.
  • the box 10 is a package having an internal space for housing the laser element 30 and the lens 40, and includes a bottom plate 11 and a frame member 12.
  • the bottom plate 11 is a single plate made of metal.
  • the frame member 12 is made of a metal different from the bottom plate 11, and is joined by a joining member 13 on a surface opposite to the bottom surface of the bottom plate 11.
  • a region 11 ⁇ / b> A of the bottom plate 11 surrounded by the frame member 12 is warped on the surface side opposite to the bottom surface of the bottom plate 11.
  • the material of the bottom plate 11 is molybdenum
  • the material of the frame member 12 is an alloy of iron-nickel-cobalt
  • the material of the joining member 13 is eutectic solder of 20% gold-80% tin.
  • the bottom plate 11 is formed in a rectangular shape, and the frame member 12 is parallel to the pair of walls parallel to the longitudinal direction of the bottom plate 11 and the short direction of the bottom plate 11. It forms in the rectangular tube shape which unites a pair of wall which becomes.
  • a through hole PH perpendicular to the wall surface is formed in one wall of the pair of walls parallel to the short direction of the bottom plate 11.
  • the thickness T1 of the bottom plate 11 is set to be approximately the same as the thickness T2 of the frame member 12. Further, the area A1 of the wide surface of the bottom plate 11 is larger than the area A2 of the bottom surface of the frame member 12 (region surrounded by the outer wall of the frame member 12), and protrudes from the outer wall of the frame member 12 at the periphery of the bottom plate 11. A protruding region 11B is provided.
  • the protruding region 11B is a fixing region for screwing the bottom plate 11 and the amount of warping of the protruding region 11B is smaller than the amount of warping of the region 11A of the bottom plate 11 surrounded by the frame member 12. .
  • the pipe member 20 is attached to the outer wall of the frame member 12 in a state where the inner space IS of the pipe member 20 and the through hole PH provided in the frame member 12 communicate with each other.
  • the pipe member 20 is joined to the frame member 12 by a joining member (not shown), but may be formed integrally with the frame member 12. Further, when the pipe member 20 is joined to the frame member 12, the material of the pipe member 20 may be the same as or different from that of the frame member 12.
  • the laser element 30 is a light emitting element that emits laser light, and is disposed in a space surrounded by the bottom plate 11 and the frame member 12 as shown in FIG.
  • the laser mount unit 31 is installed at a predetermined position on the surface opposite to the bottom surface of the bottom plate 11, and the laser element 30 is mounted on the upper surface of the laser mount unit 31.
  • the shapes of the laser element 30 and the laser mount 31 are shown in a simplified state as a rectangular parallelepiped in FIG.
  • the lead pin 32 that penetrates a part of the frame member 12 that faces the through hole PH is electrically connected to the laser element 30 via a wire 33.
  • a power supply is connected to the lead pin 32, and a driving voltage is supplied from the power supply to the laser element 30 through the lead pin 32 and the wire 33 sequentially.
  • the lens 40 includes a collimating lens 40A for collimating the laser light emitted from the laser element 30, and a condensing lens 40B for condensing the laser light collimated by the collimating lens 40A.
  • these lenses 40A and 40B are not shown in cross section.
  • the collimating lens 40A is arranged at a predetermined position between the laser element 30 and the inner wall of the frame member 12, and the condenser lens 40B is arranged behind the collimating lens 40A.
  • the lens mount portions 41 and 42 are installed on the surface opposite to the bottom surface of the bottom plate 11, and the collimating lens 40A is placed on the upper surface of the lens mount portion 41.
  • the condenser lens 40 ⁇ / b> B is placed on the upper surface of the mount part 42.
  • the shape of the lens mount parts 41 and 42 is simplified as a rectangular parallelepiped.
  • the optical fiber 50 includes a core 51, a clad 52 that surrounds the outer peripheral surface of the core 51, and a coating layer 53 that covers the outer peripheral surface of the clad 52.
  • the coating layer 53 is peeled off at one end of the optical fiber 50, and a portion of the cladding 52 is exposed.
  • the exposed portion of the clad 52 is inserted into the inner space IS of the pipe member 20, and the boundary portion between the exposed portion and the coating layer 53 is disposed outside the frame wall where the through hole PH is provided. Further, a part of the optical fiber including this boundary portion is covered and protected by the boot 54.
  • a tubular ferrule 55 having an outer diameter similar to the inner diameter of the through hole PH is inserted into the inner space IS of the pipe member 20, and the cladding 52 is exposed in the inner space of the ferrule 55. Part of the part is inserted. One end of the ferrule 55 and one end of the clad 52 in an exposed state are positioned at the boundary between the frame member 12 and the pipe member 20.
  • the inner surface of the ferrule 55 and the outer surface of the clad portion inserted into the inner space of the ferrule 55 are bonded with an adhesive.
  • the inner space IS of the pipe member 20 and the inner space of the boot 54 are filled with a sealing member SL such as an ultraviolet curable resin, and the inner space IS of the pipe member 20 and the inner space of the boot 54 are filled with the sealing member SL.
  • the optical fiber 50 is fixed in the sky.
  • the end where the clad 52 is exposed is directed to the emission part of the laser element 30, and the optical fiber 50 and the laser element 30 are input so that the laser light output from the laser element 30 is input to the core 51.
  • the optical fiber 50 and the laser element 30 are input so that the laser light output from the laser element 30 is input to the core 51.
  • a top plate is attached to the upper end of the frame member 12 to cover the space surrounded by the bottom plate 11 and the frame member 12. Further, the protruding region 11B of the bottom plate 11 is screwed to, for example, a mounting surface of a heat sink, and the optical module is mounted.
  • the region 11A surrounded by the frame member 12 in the bottom plate 11 of the box 10 is warped on the surface side opposite to the bottom surface.
  • the optical module 1 of the present embodiment generally changes the conventional practice of trying to solve the problem of suppressing warpage, and the area 11A of the bottom plate 11 surrounded by the frame member 12 is the surface opposite to the bottom surface. It is in a state of warping to the side.
  • optical module 1 if a metal fitting or the like is connected to the outside of the bottom plate 11 so as to be substantially flush with the bottom surface of the bottom plate 11 and pressed against the mounting surface and fixed, the frame member 12 resulting from the pressing. It is possible to suppress a change in warpage in the region 11A surrounded by the. Therefore, the optical axis shift between the laser element 30 disposed in the space surrounded by the bottom plate 11 and the frame member 12 and the optical fiber 50 provided on the frame member 12 is suppressed without requiring a member for suppressing warpage. be able to. In this way, the optical axis shift in the optical module 1 resulting from the mounting can be simply reduced. In addition, it is possible to reduce the surface accuracy required on the heat sink side, and it is possible to provide a comprehensively inexpensive module.
  • the bottom plate 11 has a protruding area 11B protruding from the outer wall of the frame member 12, and the protruding area 11B is smaller than the amount of warpage of the area 11A surrounded by the frame member 12.
  • the manufacturing method of the optical module 1 mainly includes a preparation process P1, a joining process P2, an optical system attaching process P3, and an optical axis adjusting process P4.
  • the preparation step P1 is a step of preparing the bottom plate 11, the frame member 12, and the joining member 13.
  • the bottom plate 11, the frame member 12, and the joining member 13 have a relationship in which the linear expansion of the bottom plate 11 in the range from room temperature to the melting point of the joining member 13 is greater than or equal to the linear expansion of the frame member 12 in the range.
  • the frame member 12 to which the pipe member 20 is not joined is prepared, and the pipe member 20 is joined in the optical system attachment step P3.
  • the through hole PH to be provided in the frame member 12 may be provided in the preparation step P1 or may be provided in the optical system attachment step P3.
  • the material of the bottom plate 11 is molybdenum
  • the material of the frame member 12 is iron-nickel-cobalt
  • the material of the joining member 13 is eutectic solder of gold 20% tin 80%.
  • the eutectic solder has a melting point of approximately 270 ° C. As shown in FIG. 4, it can be seen that the linear expansion of molybdenum in the temperature range from room temperature to 270 ° C. is larger than the linear expansion of iron-nickel-cobalt in the temperature range. Therefore, the above condition is satisfied.
  • the normal temperature is a temperature that humans perceive as a standard sensibly, and specifically, a temperature selected as a standard from a temperature range of about 20 ° C. to 25 ° C.
  • the joining process P2 melts the joining member 13 disposed at the joining portion between the bottom plate 11 and the frame member 12 in a state where the frame member 12 placed on the surface opposite to the bottom surface of the bottom plate 11 is pressed. This is a step of curing later.
  • FIG. 5A the frame member 12 is placed on the surface opposite to the bottom surface of the bottom plate 11 as a first step.
  • the joining member 13 is disposed at the boundary portion between the lower end of the outer wall of the frame member 12 and the bottom plate 11, and is joined to the boundary portion between the lower end of the inner wall of the frame member 12 and the bottom plate 11.
  • a member (not shown) is arranged.
  • the shape of the joining member 13 is, for example, a ribbon shape.
  • FIG. 5 shows a case where the frame member 12 to which the pipe member 20 is not joined is prepared in the preparation step P1.
  • the frame member 12 is generally larger than the height of the bottom plate 11, if the frame member 12 is sufficiently pressed against the bottom plate 11 at the time of joining, the influence of the bending moment at the time of joining caused by warping of the bottom plate 11 is reduced. be able to. Further, when the bottom plate 11 is a composite formed by impregnation such as CuW, the influence of the bending moment of the frame member 12 caused by the warp of the bottom plate 11 can be particularly reduced.
  • the bonding member 13 is naturally cooled, for example, while the frame member 12 placed on the bottom plate 11 is pressed, and the bonding member 13 is cured.
  • the joining member 13 returns to a normal temperature from a temperature equal to or higher than the melting point, the bottom plate 11 and the frame member 12 contract.
  • the linear expansion degree differs between the bottom plate 11 and the frame member 12, and the contraction amounts are also different. Therefore, even if the bottom plate 11 is pressed through the frame member 12, the region 11A surrounded by the frame member 12 tends to warp.
  • the warping direction depends on the direction CD1 on the bottom side or the bottom surface depending on the linear expansion degree of the bottom plate 11 or the linear expansion degree of the frame member 12, as shown in FIG. Changes in the direction CD2 on the opposite side.
  • the bottom plate 11, the frame member 12, The joining member 13 is prepared. For this reason, even if the region 11A surrounded by the frame member 12 is warped, the warp can be restricted in the direction CD2 on the surface side opposite to the bottom surface.
  • the material of the bottom plate 11 is molybdenum
  • the material of the frame member 12 is iron-nickel-cobalt
  • the material of the joining member 13 is eutectic solder of gold 20% tin 80%.
  • the area A1 (FIG. 2) of the surface opposite to the bottom surface of the bottom plate 11 is larger than the area A2 (FIG. 2) of the region surrounded by the outer wall at the lower end of the frame member 12. Is provided with a protruding region 11B protruding from the outer wall of the frame member 12 placed on the bottom plate 11.
  • the protruding region 11B can be screwed to the mounting surface of the heat sink without changing the warping state in the direction CD2 opposite to the bottom surface in the region 11A surrounded by the frame member 12. It becomes. Further, when there is no protruding region 11B, an operation such as connecting a metal fitting or the like to the outside of the bottom plate 11 is essential, but compulsion of such an operation can be avoided.
  • the optical system attachment process P3 is a process in which the laser element 30 is disposed in a space surrounded by the bottom plate 11 and the frame member 12 and the optical fiber 50 is provided on the frame member 12.
  • the laser mount 31 is fixed at a predetermined position on the surface opposite to the bottom surface in the region 11A of the bottom plate 11 surrounded by the frame member 12 as a first step. Thereafter, the laser element 30 is fixed on the laser mount portion 31.
  • a lead pin 32 is attached to a predetermined position of the frame member 12, and the lead pin 32 and the laser element 30 are electrically connected by a wire 33.
  • the collimating lens 40A is disposed on the lens mount portion 41, and on the lens mount portion 42.
  • a condenser lens 40B is disposed.
  • FIG. 7 (A) has shown the case where the frame member 12 to which the pipe member 20 is not joined is prepared in the preparation process P1.
  • an optical fiber to be fixed to the pipe member 20 is prepared. Specifically, the boot 54 is inserted into the optical fiber 50. Further, the cladding 52 is exposed from the coating layer 53 on one end side of the optical fiber 50. Further, the tip portion of the clad 52 is fixed to the inner space of the ferrule 55 in a state where the tip of the clad 52 and one end of the ferrule 55 coincide. For this fixing, for example, an adhesive is used.
  • the second stage may be performed in the preparation process P1.
  • the pipe member 20 is joined to the frame member 12 by the joining member. However, this joining is omitted when the frame member 12 integrally formed with the pipe member 20 is prepared in the preparation step P1.
  • the ferrule 55 to which the distal end portion of the clad 52 is fixed is inserted into the inner space IS of the pipe member 20 until one end of the ferrule 55 is located at the boundary between the pipe member 20 and the frame member 12.
  • the optical axis adjustment step P4 is a step of aligning the optical axes of the laser element 30 disposed in the space surrounded by the bottom plate 11 and the frame member 12 and the optical fiber 50 provided in the frame member 12.
  • the arrangement positions of the collimating lens 40A, the condensing lens 40B and the optical fiber 50 are finely adjusted, the optical axes of the collimating lens 40A, the condensing lens 40B and the optical fiber 50, and the laser element.
  • the optical axis OA (FIG. 1) of the laser light emitted from 30 is aligned.
  • the collimating lens 40A and the condenser lens 40B are fixed to the corresponding lens mount portions 41 and 41B with solder or the like. Further, as shown in FIG. 1, the optical fiber 50 is fixed to the inner space IS of the pipe member 20 and the inner space of the boot 54 by the sealing member SL.
  • a method for fixing the optical fiber 50 for example, a method may be used in which a hole is formed in the boot 54, and an ultraviolet ray is irradiated after filling an uncured ultraviolet curable resin from the hole.
  • optical system attachment process P3 and the optical axis adjustment process P4 is merely an example, and an order different from the order may be applied.
  • the optical module 1 as shown in FIG. 1 is manufactured through these steps P1 to P4.
  • the optical module 1 is actually used in a state where a top plate is attached to the upper end of the frame member 12 and the protruding region 11B protruding from the frame member 12 is screwed to a mounting surface such as a heat sink.
  • the manufacturing method of the present embodiment generally changes the conventional practice of trying to solve the problem of suppressing warpage, and the area 11A of the bottom plate 11 surrounded by the frame member 12 is the surface opposite to the bottom surface.
  • the optical module 1 is manufactured to warp to the side.
  • the material of the bottom plate 11 is molybdenum
  • the material of the frame member 12 is an alloy of iron-nickel-cobalt
  • the material of the joining member 13 is a eutectic solder of gold 20% tin 80%.
  • the materials of the bottom plate 11, the frame member 12, and the joining member 13 have a relationship in which the linear expansion of the bottom plate 11 in the range from room temperature to the melting point of the joining member 13 is greater than or equal to the linear expansion of the frame member 12 in the range. If it is, it is not limited to the said embodiment.
  • copper tungsten can be used as the bottom plate 11 and iron-nickel-cobalt can be applied as the frame member 12.
  • the bottom plate 11 in the said embodiment was made into the single metal element (molybdenum), from the viewpoint of improving the heat dissipation of the said bottom plate 11, you may be made into the alloy of metal elements, such as copper, and molybdenum. However, non-metallic elements such as ceramics may be used.
  • region 11B was provided in the periphery of the baseplate 11
  • region may be provided only in a part of the said periphery.
  • Such a protruding region may be prepared in advance in the preparation step P1, or a part of the protruding region 11B of the bottom plate 11 obtained through the joining step P2 may be cut.
  • a portion that is flat with respect to the surface MF on which the bottom plate 11 is mounted may be formed in a part PA of the protruding region 11 ⁇ / b> B.
  • mechanical polishing, grinding, etc. can be mentioned as a formation method of this flat part. The portion removed by this mechanical polishing or grinding is shown as a broken line in FIG.
  • the protruding region 11B may be omitted.
  • a flat metal or the like on the outside of the bottom plate 11 in the optical module 1 obtained by obtaining the optical axis adjustment step P4 so as to be substantially flush with the bottom surface of the bottom plate.
  • a screw hole may be drilled in this connector, and the thickness of the connector may be larger than the thickness T1 (FIG. 2) of the bottom plate 11.
  • the thickness of the protruding region 11B may be larger than the thickness of the bottom plate 11 other than the protruding region 11B.
  • a reinforcing member can be joined to the upper surface of the protruding region 11B.
  • the boundary portion between the lower end of the outer wall of the frame member 12 and the bottom plate 11 and the boundary portion between the lower end of the inner wall of the frame member 12 and the bottom plate 11 are joined by the joining member 13.
  • the lower end surface of the frame member 12 and the surface opposite to the bottom surface of the bottom plate 11 may be joined by the joining member 13.
  • the said The frame member 12 may be placed on the joining member 13.
  • the ferrule 55 is inserted into the inner space IS of the pipe member 20, but the ferrule 55 may be omitted.
  • the outer peripheral surface of the clad 52 in an exposed state and the inner peripheral surface of the inner space IS of the pipe member 20 are fixed by the sealing member SL.
  • the collimating lens 40A and the condensing lens 40B are disposed in the internal space of the box 10, but the lenses 40A and 40B may be omitted.
  • the lenses 40 ⁇ / b> A and 40 ⁇ / b> B are provided, a plurality of laser elements 30 are provided in front of the lens 40 ⁇ / b> A in the internal space of the box 10, and laser light emitted from the laser elements 30 is incident on the optical fiber 50. Is possible. Therefore, it is preferable that the lenses 40 ⁇ / b> A and 40 ⁇ / b> B are not omitted from the viewpoint of causing the laser beams emitted from the plurality of laser elements 30 to enter the optical fiber 50.
  • these lenses 40A and 40B are omitted, it is possible to adopt a form in which a fiber mount portion is provided in the internal space of the box 10 and one end in an exposed state is disposed on the mount portion. Therefore, it is preferable that these lenses 40A and 40B are omitted from the viewpoint of downsizing the box 10.
  • a hollow rectangular parallelepiped shape is applied as the shape of the box 10, but it may be a hollow cylindrical shape, and various shapes other than these can be applied.
  • the pipe member 20 has a rectangular cross section.
  • the pipe member 20 may have a circular cross section, and other cross sectional shapes can be applied.
  • the present invention may be used in the field of handling output light from an optical element, particularly a laser element.

Abstract

 実装に起因する光軸ずれを簡素に低減し得る光モジュール及びその製造方法を提供することを目的とする。 本発明に係る光モジュール1は、金属でなる箱体10の底板11と、当該底板11とは異なる金属でなり、底板11における底面とは逆の面上に接合部材13により接合される箱体10の枠部材12と、底板11及び枠部材12で囲まれる空間内に配置されるレーザ素子30と、枠部材12に設けられ、レーザ素子30との間で光軸合わせされる光ファイバ50とを備えている。このような光モジュール1の底板11における枠部材12に囲まれる領域11Aは底面とは逆の面側に反っている。

Description

光モジュール及びその製造方法
 本発明は光モジュール及びその製造方法に関し、レーザ素子等の発光素子から出力された光を光ファイバのコアに入力する光モジュール、特に複数の発光素子を空間的に結合する高出力の光モジュールに好適なものである。
 このような光モジュールは、一般に、レーザ素子等を収納するパッケージを有しているが、当該パッケージにおける底板の反りを抑えることが重要事項の1つとなっている。この底板の反りを抑える先行技術として、例えば下記特許文献1に開示されたものがある。
 この特許文献1の光モジュールのパッケージは金属底板と金属枠体とを有し、平板の金属底板と金属枠体との接合部分の内側に補強部が設けられている。金属底板の材料は銅-タングステンの合金とされ、金属枠体の材料は鉄-ニッケル-コバルトの合金とされ、これら金属底板と金属枠体との接合部材の材質は銀ロウとされる。なお、補強部の材質は開示されていない。
 このような光モジュールのパッケージによれば、金属底板を薄くしても補強部によって枠体内部分の底板が反ることがなくなる。このため、金属底板の周辺を外部部材にねじ止めしても、パッケージに収納されるレーザ素子と金属枠体に設けられる光ファイバとの光軸ずれが低下すると記載されている。
特開平9-298248号
 ところが特許文献1の光モジュールのパッケージには、金属底板及び金属枠体以外に補強部という新たな構成要素が加わることになる。このため、光モジュールの構成もその光モジュールの製法も複雑化するといった問題が生じる。
 また複数のレーザを実装しているモジュールの場合、複数の光学部品を使用する必要がある。このため、一般に光モジュール内の光の伝搬距離が長くなり、光学部品の配置ずれによる光学特性への影響が大きい。さらには、筐体のパッケージが大型になるので、底板の反りが大きくなり、光モジュールをヒートシンクに実装する際に光学結合がずれてしまうという問題が生じていた。又、光モジュール自体の反りを抑えた場合においても、ヒートシンク側の状態においては光学結合がずれてしまうといった問題が生じ、これらの問題を解決するためにはヒートシンク側にも精度のよい加工が必要であった。
 そこで、本発明は、実装に起因する光軸ずれを簡素に低減し得る光モジュール及びその製造方法を提供することを目的とする。
 上記課題を解決するため本発明に係る光モジュールは、金属でなる箱体の底板と、前記底板とは異なる金属でなり、前記底板における底面とは逆の面上に接合部材により接合される前記箱体の枠部材と、前記底板及び前記枠部材で囲まれる空間内に配置される発光素子と、前記枠部材に設けられ、前記発光素子との間で光軸合わせされる光ファイバとを備え、前記底板における前記枠部材に囲まれる領域は前記底面とは逆の面側に反っていることを特徴とするものである。
 従来から、底板の反りが課題とされているが、当該反りが底板の底面側に反るか底面とは逆の面に反るかについて問題視されていないのが現状である。この点、本発明に係る光モジュールは、一般的に反りを抑える課題解決を試みる従来からの慣行を転換し、あえて、枠部材に囲まれる底板の領域が底面とは逆の面側に反るようにしたものである。このような光モジュールによれば、底板の底面と略同一面となるよう底板の外側に金具等を連結し実装面に押さえ付けて固定すれば、その押さえ付けに起因して枠部材に囲まれる領域における反りの変化を抑止させることができる。したがって、反りを抑えるための部材を要することなく、底板と枠部材とで囲まれる空間内に配置される発光素子と、枠部材に設けられる光ファイバとの光軸ずれを抑えることができる。こうして、実装に起因する光モジュールにおける光軸ずれを簡素に低減することができる。
 また、前記底板は前記枠部材の外壁から突出する突出領域を有し、前記突出領域の反り量は前記領域の反り量よりも小さいことが好ましい。
 このようにした場合、突出領域を実装面に固定して光モジュールを実装することが可能となり、別の金具等の連結具を底板の外側に連結するといった作業の強要を回避することができる。
 また、前記突出領域には、底板が実装される面に対して平坦となる部分が形成されることが好ましい。
 このようにした場合、底板の底面と略同一面となるよう底板の外側に金具等を連結し実装面に押さえ付けて固定する際に、その押さえ付けに起因して発生する応力の影響を小さくすることができるので、枠部材に囲まれる領域における反りの変化を更に抑止することができる。
 また、本発明に係る光モジュールの製造方法は、常温から接合部材の融点までの範囲における底板の線膨張が前記範囲における枠部材の線膨張以上となる関係を有する前記底板、前記枠部材及び前記接合部材を準備する準備工程と、前記底板における底面とは逆の面に載置される前記枠部材を押し付けながら、前記底板と前記枠部材との接合部分に配置される前記接合部材を溶融させた後に硬化させる接合工程と、前記底板と前記枠部材とで囲まれる空間内に配置される発光素子と、前記枠部材に設けられる光ファイバとの光軸を合わせる光軸調整工程とを備えることを特徴とする。
 本製造方法の接合工程では、底板は枠部材を介して押し付けられながら加熱される。このため、準備工程で準備した段階で底板が底面側へ反った状態にあったとしても、その底面側への反りは、枠部材からの押し付けによって大幅に緩和される。一方、溶融状態にある接合部材を冷却して硬化させる場合、その接合部材の融点以上の温度から常温に戻っていく際に底板及び枠部材は収縮するものである。これら底板と枠部材とでは線膨張度が異なるため収縮量も異なる。したがって底板は枠部材を介して押し付けられていたとしても、当該枠部材に囲まれる領域については反る傾向にある。しかも、底板が反った場合、その反る方向は、底板の材質あるいは枠部材の材質との関係などによって、底面側又は底面とは逆の面側に変化する。この点、本製造方法における準備工程では、常温から接合部材の融点までの範囲における底板の線膨張が当該範囲における枠部材の線膨張以上となる関係を有する底板、枠部材及び接合部材が準備される。このため、枠部材に囲まれる領域が反ったとしても、その反りを底面とは逆の面側に規制することができる。したがって、底板の底面と略同一面となるよう底板の外側に金具等を連結し実装面に押さえ付けて固定すれば、その押さえ付けに起因して枠部材に囲まれる領域における反りの変化を抑止させることができる。これに対し、枠部材に囲まれる領域が底面側に反っていた場合、底板を実装面に固定すると、当該固定に起因する応力が枠部材に囲まれる領域に作用し、光軸調整工程で合わせられた光軸のずれを生じる傾向が高くなる。このように本製造方法は、一般的に反りを抑える課題解決を試みる従来からの慣行を転換し、あえて、枠部材に囲まれる底板の領域が底面とは逆の面側に反るよう光モジュールを製造することで、反りを抑えるための部材を要することなく簡易に、実装に起因する光モジュールにおける光軸ずれを低減することができる。
 また、前記底板の材料はモリブデンとされ、前記枠部材の材料は鉄-ニッケル-コバルトの合金とされ、前記接合部材の材料は金20%-錫80%の共晶はんだとされることが好ましい。
 このような材料とした場合、常温から接合部材の融点までの範囲における底板の線膨張と枠部材の線膨張との差が大幅に小さくなる。したがって、枠部材に囲まれる領域における底面とは逆の面側への反り量を大幅に低減することができる。
 また、前記底板における底面とは逆の面の面積は前記枠部材における下端の外壁により囲まれる領域の面積よりも大きいことが好ましい。
 このように底板における底面とは逆の面の面積を枠部材における下端の外壁により囲まれる領域の面積よりも大きくした場合、底板には、その底板に載置される枠部材の外壁から突出する突出領域が設けられることになる。この突出領域が枠部材に囲まれる領域に比べて反り量が小さくなるよう厚みや大きさ等を調整すれば、当該突出領域については、接合部材の融点以上の温度から常温に戻っていく際に収縮してもおおむね平らな状態とすることができるしたがって、この突出領域を用いて光モジュールを実装することが可能となり、別の金具等の連結具を底板の外側に連結する等といった作業の強要を回避することができる。
 以上本発明によれば、実装に起因する光軸ずれを簡素に低減し得る光モジュール及びその製造方法が提供される。
本発明の実施形態に係る光モジュールを真横から見た概略図である。 箱体を示す斜視図である。 光モジュールの製造方法の主工程を示すフローチャートである。 室温からの平均線膨張係数と温度との関係を示すグラフである。 接合工程の様子を示す図である。 底板の反りの説明に供する概略図である。 製造中途段階にある光モジュールの様子を示す図である。 突出領域の底面の一部が平坦とされる箱体を真横から見た図である。
 以下、本発明に係る光モジュールの好適な実施形態について図面を参照しながら詳細に説明する。
 (1)光モジュールの構成
 図1に示すように、本実施形態の光モジュール1は、箱体10、パイプ部材20、レーザ素子30、レンズ40及び光ファイバ50を主な構成要素として備える。
 箱体10は、レーザ素子30及びレンズ40等を収納するための内部空間を有するパッケージであり、底板11と、枠部材12とを含む構成とされる。
 底板11は、金属でなる一枚板とされる。枠部材12は、底板11とは異なる金属でなり、当該底板11における底面とは逆の面上に接合部材13により接合される。この枠部材12で囲まれる底板11の領域11Aは、当該底板11における底面とは逆の面側に反っている。
 本実施形態の場合、底板11の材料はモリブデンとされ、枠部材12の材料は鉄-ニッケル-コバルトの合金とされ、接合部材13の材料は金20%-錫80%の共晶はんだとされる。
 また本実施形態の場合、図2に示すように、底板11は矩形状に形成され、枠部材12は底板11の長手方向に平行となる一対の壁と、底板11の短手方向に平行となる一対の壁とを一体とする矩形管状に形成される。この底板11の短手方向に平行となる一対の壁の一方の壁には、壁面に直交する貫通孔PHが形成される。
 さらに本実施形態の場合、底板11の厚みT1は枠部材12の厚みT2と同程度とされる。また、底板の11における広面の面積A1は、枠部材12の底面(枠部材12における外壁で囲まれる領域)の面積A2よりも大きく、当該底板11の周縁では、枠部材12の外壁から突出する突出領域11Bが設けられる。
 この突出領域11Bは、底板11をねじ止めする等の固定用の領域とされ、当該突出領域11Bの反り量は枠部材12で囲まれる底板11の領域11Aの反り量よりも小さい状態とされる。
 パイプ部材20は、図1に示すように、当該パイプ部材20の内空ISと枠部材12に設けられる貫通孔PHとが連絡する状態で、枠部材12の外壁に取り付けられる。なお、図1では、パイプ部材20が接合部材(図示せず)により枠部材12に接合された状態にあるが、枠部材12と一体に成型されていてもよい。また、パイプ部材20を枠部材12に接合する場合、当該パイプ部材20の材料は、枠部材12と同じであってもよく異なっていてもよい。
 レーザ素子30は、レーザ光を出射する発光素子であり、図1に示すように、底板11と枠部材12とで囲まれる空間内に配置される。本実施形態の場合、底板11の底面とは逆側の面の所定位置にレーザマウント部31が設置され、そのレーザマウント部31の上面にレーザ素子30が載置される。なお、理解の容易のため、レーザ素子30及びレーザマウント部31の形状は図1では直方体として簡略した状態で示している。
 このレーザ素子30には、貫通孔PHと正対する枠部材12の一部を貫通するリードピン32が、ワイヤ33を介して電気的に接続される。なお、リードピン32には電源が接続されており、この電源からリードピン32及びワイヤ33を順次介してレーザ素子30に駆動電圧が供給される。
 レンズ40は、図1に示すように、レーザ素子30から出射されるレーザ光をコリメートするコリメートレンズ40Aと、コリメートレンズ40Aによりコリメートされたレーザ光を集光する集光レンズ40Bとからなる。なお、理解の容易のため、これらレンズ40A及び40Bについては断面で示していない。
 コリメートレンズ40Aはレーザ素子30と枠部材12の内壁との間の所定位置に配置され、集光レンズ40Bはコリメートレンズ40Aよりも後方に配置される。本実施形態の場合、光軸OAに沿って、底板11の底面とは逆側の面にレンズマウント部41及び42が設置され、レンズマウント部41の上面にコリメートレンズ40Aが載置され、レンズマウント部42の上面に集光レンズ40Bが載置される。なお、レンズマウント部41及び42の形状は直方体として簡略している。
 光ファイバ50は、図1に示すように、コア51と、コア51の外周面を囲むクラッド52とクラッド52の外周面を被覆する被覆層53とから構成される。この光ファイバ50における一方の端部では被覆層53が剥離され、クラッド52の一部が露出される。
 このクラッド52の露出部分は、パイプ部材20の内空ISに挿通され、当該露出部分と被覆層53との境界部分は、貫通孔PHが設けられる枠壁の外方に配置される。また、この境界部分を含む光ファイバの一部はブーツ54によって覆われて保護される。
 この実施形態の場合、パイプ部材20の内空ISには、当該貫通孔PHの内径と同程度の外径を有する管状のフェルール55が挿通され、当該フェルール55の内空にはクラッド52の露出部分の一部が挿通される。フェルール55の一端と、露出状態にあるクラッド52の一端とは、枠部材12とパイプ部材20との境界に位置される。
 フェルール55の内表面とそのフェルール55の内空に挿通されるクラッド部分の外表面とは接着剤により接着される。また、パイプ部材20の内空IS及びブーツ54の内空には紫外線硬化樹脂等の封止部材SLが充填されており、この封止部材SLによってパイプ部材20の内空IS及びブーツ54の内空に光ファイバ50が固定される。
 なお、クラッド52が露出されるほうの端部は、レーザ素子30の出射部位に向けられており、当該レーザ素子30から出力されるレーザ光がコア51に入力するよう、光ファイバ50とレーザ素子30とが光学的に結合した状態(光軸合わせした状態)にある。
 このような光モジュール1のレーザ素子30からレーザ光を出射させる場合、枠部材12の上端に天板が取り付けられて底板11と枠部材12とで囲まれる空間が覆われる。また、底板11の突出領域11Bが例えばヒートシンクの載置面等にねじ止めされ、当該光モジュールが実装される。
 以上説明したように、本実施形態の光モジュール1では、箱体10の底板11における枠部材12に囲まれる領域11Aは底面とは逆の面側に反っている。
 従来から、底板11が反ってしまうことが課題とされているが、当該反りが底板11の底面側に反るか底面とは逆の面に反るかについて問題視されていないのが現状である。仮に反りを抑えたとしてもヒートシンクに精度のよい加工を行わない場合においては光学結合がずれてしまう場合があった。この点、本実施形態の光モジュール1は、一般的に反りを抑える課題解決を試みる従来からの慣行を転換し、あえて、枠部材12に囲まれる底板11の領域11Aが底面とは逆の面側に反った状態にある。
 このような光モジュール1によれば、底板11の底面と略同一面となるよう底板11の外側に金具等を連結し実装面に押さえ付けて固定すれば、その押さえ付けに起因した枠部材12に囲まれる領域11Aにおける反りの変化を抑止することができる。したがって、反りを抑えるための部材を要することなく、底板11と枠部材12とで囲まれる空間内に配置されるレーザ素子30と、枠部材12に設けられる光ファイバ50との光軸ずれを抑えることができる。こうして、実装に起因する光モジュール1における光軸ずれを簡素に低減することができる。又、ヒートシンク側に要求される面精度を下げることが可能となり、総合的に廉価なモジュールを提供する事が可能である。
 本実施の形態の場合、底板11は枠部材12の外壁から突出する突出領域11Bを有し、当該突出領域11Bは枠部材12に囲まれる領域11Aの反り量よりも小さいものとされる。
 このため、突出領域11Bを実装面に固定して光モジュール1を実装することが可能となり、わざわざ金具等の連結具を底板11の外側に連結する等といった作業の強要を回避することができる。
 (2)光モジュールの製造方法
 次に、光モジュール1の製造方法について説明する。図3に示すように、光モジュール1の製造方法は、主として、準備工程P1、接合工程P2、光学系取付工程P3、光軸調整工程P4を備える。
 <準備工程P1>
 準備工程P1は、底板11、枠部材12及び接合部材13を準備する工程である。これら底板11、枠部材12及び接合部材13は、常温から接合部材13の融点までの範囲における底板11の線膨張が当該範囲における枠部材12の線膨張以上となる関係を有するものとされる。
 なお、パイプ部材20と枠部材12とを一体成形しない場合、この準備工程P1では、パイプ部材20が接合されていない枠部材12を準備し、光学系取付工程P3でパイプ部材20を接合することを要する。ただし、枠部材12に設けるべき貫通孔PHは、この準備工程P1で施すようにしてもよく、光学系取付工程P3で施すようにしてもよい。
 本実施形態の場合、底板11の材料がモリブデンとされ、枠部材12の材料が鉄-ニッケル-コバルトとされ、接合部材13の材料が金20%錫80%の共晶はんだとされる。この共晶はんだの融点はおおむね270℃である。図4に示すように、常温から270℃までの温度範囲におけるモリブデンの線膨張は、当該温度範囲における鉄-ニッケル-コバルトの線膨張よりも大きいことが分かる。したがって、上述の条件を満たす。
 なお、常温とは、人間が感覚的に標準であると捉える温度であり、具体的には摂氏20℃~25℃程度の温度範囲から基準として選定された温度とされる。
 <接合工程P2>
 接合工程P2は、底板11における底面とは逆の面に載置される枠部材12を押圧した状態で、当該底板11と枠部材12との接合部分に配置される接合部材13を溶融させた後に硬化させる工程である。
 具体的には、第1段階として、図5(A)に示すように、底板11における底面とは逆の面に枠部材12を載置する。その後、図5(B)に示すように、枠部材12の外壁下端と底板11との境界部分に接合部材13を配置するとともに、当該枠部材12の内壁下端と底板11との境界部分に接合部材(図示せず)を配置する。この接合部材13の形状は例えばリボン状とされる。なお、図5は、パイプ部材20が接合されていない枠部材12が準備工程P1で準備された場合を示している。
 第2段階として、底板11に載置される枠部材12を押し付けながら、例えばリフロー炉等を用いて接合部材13の融点温度よりも30℃以上高い温度となる還元雰囲気中で1分以上加熱し、当該接合部材13を溶融させる。すなわち、底板11は枠部材12を介して押し付けられながら加熱される。このため、準備工程P1で準備した段階で底板11が底面側へ反った状態にあったとしても、その底面側への反りは、枠部材12からの押し付けによって大幅に緩和される。
 なお、枠部材12は、一般に底板11の高さよりも大きいため、底板11に対して接合時に十分に押し付けられていれば、当該底板11の反りに起因する接合時の曲げモーメントの影響を小さくすることができる。また、底板11がCuWのような含侵によって形成される複合体である場合、特に、底板11の反りに起因する枠部材12の曲げモーメントの影響を小さくすることができる。
 第3段階として、底板11に載置される枠部材12を押し付けながら、接合部材13を例えば自然冷却し、当該接合部材13を硬化させる。この接合部材13が融点以上の温度から常温に戻っていく場合、底板11及び枠部材12は収縮するが、当該底板11と枠部材12とでは線膨張度が異なるため収縮量も異なる。したがって、底板11は、枠部材12を介して押し付けられていたとしても、当該枠部材12に囲まれる領域11Aについては反る傾向にある。しかも、底板11が反った場合、その反る方向は、図6に示すように、底板11の線膨張度あるいは枠部材12の線膨張度との関係などによって、底面側の方向CD1又は底面とは逆の面側の方向CD2に変化する。
 この点、本製造方法における準備工程P1では、常温から接合部材13の融点までの範囲における底板11の線膨張が範囲における枠部材12の線膨張以上となる関係を有する底板11、枠部材12及び接合部材13が準備される。このため、枠部材12に囲まれる領域11Aが反ったとしても、その反りを底面とは逆の面側の方向CD2に規制することができる。
 また、本実施形態の場合、底板11の材料がモリブデンとされ、枠部材12の材料が鉄-ニッケル-コバルトとされ、接合部材13の材料が金20%錫80%の共晶はんだとされる。このため、図3に示したように、常温から接合部材13の融点までの範囲における底板11の線膨張と枠部材12の線膨張との差は小さい。したがって、枠部材12に囲まれる領域11Aにおける底面とは逆の面側への反り量を大幅に低減することができる。
 一方、本実施形態の場合、底板11における底面とは逆の面の面積A1(図2)が枠部材12における下端の外壁により囲まれる領域の面積A2(図2)よりも大きく、底板11には、その底板11に載置される枠部材12の外壁から突出する突出領域11Bが設けられる。
 この突出領域11Bについては、枠部材12に囲まれる領域11Aに比べて反り量が小さくなるよう厚みや大きさ等を調整することが可能であり、このように調整すれば、接合部材13の融点以上の温度から常温に戻っていく際に収縮してもおおむね平らな状態となる。したがって、枠部材12に囲まれる領域11Aにおける底面とは逆の面側の方向CD2の反りの状態を可変させることなく、例えば、ヒートシンクの載置面等に突出領域11Bをねじ止めさせることが可能となる。また、この突出領域11Bがない場合、底板11の外側に金具等を連結する等といった作業が必須となるが、このような作業の強要を回避することもできる。
 <光学系取付工程P3>
 光学系取付工程P3は、底板11と枠部材12とで囲まれる空間内にレーザ素子30を配置し、当該枠部材12に光ファイバ50を設ける工程である。
 具体的には、第1段階として、図7の(A)に示すように、枠部材12に囲まれる底板11の領域11Aにおける底面とは逆の面の所定位置にレーザマウント部31を固定した後、当該レーザマウント部31上にレーザ素子30を固定する。そして、枠部材12の所定位置にリードピン32を取り付け、そのリードピン32とレーザ素子30とをワイヤ33により電気的に接続する。
 また、底板11の領域11Aにおける底面とは逆の面の所定位置にレンズマウント部41及び42を固定した後、当該レンズマウント部41上にコリメートレンズ40Aを配置するとともに、レンズマウント部42上に集光レンズ40Bを配置する。
 なお、この図7(A)は、パイプ部材20が接合されていない枠部材12が準備工程P1で準備された場合を示している。
 第2段階として、図7の(B)に示すように、パイプ部材20に固定すべき光ファイバを準備する。具体的には、光ファイバ50にブーツ54を挿入する。また、光ファイバ50の一端側の被覆層53からクラッド52を露出する。さらに、クラッド52の先端とフェルール55の一端とが一致する状態で、当該クラッド52の先端部分をフェルール55の内空に固定する。この固定には、例えば接着剤が用いられる。なお、この第2段階は、準備工程P1で行われてもよい。
 第3段階として、図7の(C)に示すように、まず、パイプ部材20を接合部材により枠部材12に接合する。ただし、この接合は、パイプ部材20と一体成形した枠部材12が準備工程P1で準備された場合には省略される。
 次に、クラッド52の先端部分が固定されたフェルール55を、当該フェルール55の一端がパイプ部材20と枠部材12との境界に位置するまで、パイプ部材20の内空ISに挿入する。
 <光軸調整工程P4>
 光軸調整工程P4は、底板11と枠部材12とで囲まれる空間内に配置されるレーザ素子30と、当該枠部材12に設けられる光ファイバ50との光軸を合わせる工程である。
 具体的には、第1段階として、コリメートレンズ40A、集光レンズ40B及び光ファイバ50の配置位置を微調整し、当該コリメートレンズ40A、集光レンズ40B及び光ファイバ50の光軸と、レーザ素子30から出射されるレーザ光の光軸OA(図1)とを合わせる。
 第2段階として、コリメートレンズ40A及び集光レンズ40Bを対応するレンズマウント部41及び41Bにはんだ等により固定する。また、図1に示したように、パイプ部材20の内空IS及びブーツ54の内空に封止部材SLにより光ファイバ50を固定する。
 光ファイバ50を固定する具体的手法としては、例えば、ブーツ54に孔を穿設し、その孔から未硬化状態の紫外線硬化性樹脂を充填した後に紫外線を照射するといった手法を挙げることができる。
 なお、光学系取付工程P3及び光軸調整工程P4として上述した各段階の順序はあくまで一例であり、当該順序と異なる順序が適用されてもよい。
 このような各工程P1~P4を経ることによって、図1に示したような光モジュール1が製造される。なお、この光モジュール1は、実際には、枠部材12の上端に天板を取り付け、枠部材12から突出する突出領域11Bを例えばヒートシンク等の実装面にねじ止めした状態で使用される。
 以上のように本実施形態の製造方法は、一般的に反りを抑える課題解決を試みる従来からの慣行を転換し、あえて、枠部材12に囲まれる底板11の領域11Aが底面とは逆の面側に反るよう光モジュール1を製造する。
 このような光モジュールによれば、枠部材12から突出する突出領域11Bを実装面に押さえ付けて固定すれば、その押さえ付けに起因して枠部材12に囲まれる領域11Aにおける反りの変化を抑止させることができる。したがって、底板11と枠部材12とで囲まれる空間内に配置されるレーザ素子30と、枠部材12に設けられる光ファイバ50との光軸ずれ等を抑えることができる。
 このように本実施形態の製造方法によれば、反りを抑えるための部材を要することなく簡易に、実装に起因する光モジュール1における光軸ずれを低減することができる。
 (3)他の実施形態
 上記実施形態が一例として説明されたが、本発明は上記実施形態に限定されるものではない。
 例えば、上記実施形態では、底板11の材料がモリブデンとされ、枠部材12の材料が鉄-ニッケル-コバルトの合金され、接合部材13の材料が金20%錫80%の共晶はんだとされた。しかしながら、底板11、枠部材12及び接合部材13の材料は、常温から接合部材13の融点までの範囲における底板11の線膨張が当該範囲における枠部材12の線膨張以上となる関係を有していれば、上記実施形態に限定されるものではない。例えば、融点がおおむね500℃である金-銀-ゲルマニウム共晶はんだを接合部材13として適用する場合、銅タングステンを底板11とし、鉄-ニッケル-コバルトを枠部材12として適用することができる。
 なお、上記実施形態における底板11は単一の金属元素(モリブデン)とされたが、当該底板11の放熱性を向上させる観点では、銅などの金属元素とモリブデンとの合金とされていてもよいし、セラミックス等の非金属元素を用いてもよい。
 また、上記実施形態では、底板11の周縁に突出領域11Bが設けられたが、当該周縁の一部だけに突出領域が設けられてもよい。このような突出領域は、上記準備工程P1で予め準備するようにしてもよく、上記接合工程P2を経て得られた底板11の突出領域11Bの一部を切断するようにしてもよい。
 また、例えば図8に示すように、突出領域11Bの一部PAに、底板11が実装される面MFに対して平坦となる部分が形成されていてもよい。なお、この平坦部分の形成手法としては機械研磨や研削等を挙げることができる。この機械研磨や研削等により取り除かれた部分は、図8では、破線として示している。
 さらに、突出領域11Bが省略されてもよい。この突出領域11Bを省略する場合、上述したように、上記光軸調整工程P4を得て得られる光モジュール1における底板11の外側に、当該底板の底面と略同一面となるよう平らな金属等の連結具を連結すればよい。この連結具にねじ穴を穿設してもよく、当該連結具の厚みを底板11の厚みT1(図2)よりも大きくてもよい。なお、突出領域11Bにねじ穴を穿設するようにしてもよい。また、突出領域11Bの厚みが、その突出領域11B以外の底板11の厚みよりも大きくされていてもよい。このようにする手法として、例えば、突出領域11Bの上面に補強部材を接合する等を挙げることができる。
 また、上記実施形態では、枠部材12の外壁下端と底板11との境界部分、及び、当該枠部材12の内壁下端と底板11との境界部分が接合部材13により接合された。しかしながら、枠部材12の下端面と、底板11における底面とは逆の面とが接合部材13により接合されてもよい。なお、このように接合する場合、上述の接合工程P2においては、底板11における底面とは逆の面のうち、枠部材12の下端が対向されるべき位置に接合部材13を配置した後、当該接合部材13上に枠部材12を載置すればよい。
 また、上記実施形態では、パイプ部材20の内空ISにフェルール55が挿入されたが、このフェルール55は省略されていてもよい。このフェルール55が省略される場合、露出状態にあるクラッド52の外周面と、パイプ部材20の内空ISの内周面とが封止部材SLによって固定される。
 また、上記実施形態では、箱体10の内部空間にコリメートレンズ40A及び集光レンズ40Bが配置されたが、これらレンズ40A及び40Bが省略されていてもよい。なお、レンズ40A及び40Bを設けた場合、箱体10の内部空間におけるレンズ40Aの前方に複数のレーザ素子30を設け、それらレーザ素子30から出射されるレーザ光を光ファイバ50に入射させることが可能である。したがって、複数のレーザ素子30から出射されるレーザ光を光ファイバ50に入射させる観点では、レンズ40A及び40Bが省略されていないほうが好ましい。一方、これらレンズ40A及び40Bが省略される場合、箱体10の内部空間にファイバマウント部を設け、そのマウント部上に露出状態にある一端を配置する形態が採用可能である。したがって、箱体10の小型化の観点では、これらレンズ40A及び40Bが省略されるほうが好ましい。
 また、上記実施形態では、箱体10の形状として、中空の直方体状が適用されたが、中空の円柱状であってもよく、これら以外の様々な形状を適用することができる。
 また、上記実施形態では、パイプ部材20として、断面が矩形となるものが適用されたが、断面が円となるものであってもよく、これら以外の断面形状のものを適用することができる。
 本発明は、光素子、特にレーザ素子からの出力光を取り扱う分野において利用可能性がある。
 1・・・光モジュール
 10・・・箱体
 11・・・底板
 11B・・・突出領域
 12・・・枠部材
 13・・・接合部材
 20・・・パイプ部材
 30・・・レーザ素子(発光素子)
 31・・・レーザマウント部
 32・・・リードピン
 33・・・ワイヤ
 40A・・・コリメートレンズ
 40B・・・集光レンズ
 41,42・・・レンズマウント部
 50・・・光ファイバ
 51・・・コア
 52・・・クラッド
 53・・・被覆層
 54・・・ブーツ
 55・・・フェルール
 IS・・・内空
 PH・・・貫通孔
 SL・・・封止部材
 OA・・・光軸
 P1・・・準備工程
 P2・・・接合工程
 P3・・・光学系取付工程
 P4・・・光軸調整工程

Claims (6)

  1.  金属でなる箱体の底板と、
     前記底板とは異なる金属でなり、前記底板における底面とは逆の面上に接合部材により接合される前記箱体の枠部材と、
     前記底板及び前記枠部材で囲まれる空間内に配置される発光素子と、
     前記枠部材に設けられ、前記発光素子との間で光軸合わせされる光ファイバと
    を備え、
     前記底板における前記枠部材に囲まれる領域は前記底面とは逆の面側に反っている
    ことを特徴とする光モジュール。
  2.  前記底板は前記枠部材の外壁から突出する突出領域を有し、前記突出領域の反り量は前記領域の反り量よりも小さい
    ことを特徴とする請求項1に記載の光モジュール。
  3.  前記突出領域には、前記底板が実装される面に対して平坦となる部分が形成される
    ことを特徴とする請求項2に記載の光モジュール。
  4.  常温から接合部材の融点までの範囲における底板の線膨張が前記範囲における枠部材の線膨張以上となる関係を有する前記底板、前記枠部材及び前記接合部材を準備する準備工程と、
     前記底板における底面とは逆の面に載置される前記枠部材を押し付けながら、前記底板と前記枠部材との接合部分に配置される前記接合部材を溶融させた後に硬化させる接合工程と、
     前記底板と前記枠部材とで囲まれる空間内に配置される発光素子と、前記枠部材に設けられる光ファイバとの光軸を合わせる光軸調整工程と
    を備えることを特徴とする光モジュールの製造方法。
  5.  前記底板の材料はモリブデンとされ、前記枠部材の材料は鉄-ニッケル-コバルトの合金とされ、前記接合部材の材料は金20%-錫80%の共晶はんだとされる
    ことを特徴とする請求項4に記載の光モジュール。
  6.  前記底板における底面とは逆の面の面積は前記枠部材における下端の外壁により囲まれる領域の面積よりも大きい
    ことを特徴とする請求項4又は請求項5に記載の光モジュールの製造方法。
PCT/JP2012/079659 2012-03-02 2012-11-15 光モジュール及びその製造方法 WO2013128728A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012046647A JP2013183074A (ja) 2012-03-02 2012-03-02 光モジュール
JP2012-046647 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013128728A1 true WO2013128728A1 (ja) 2013-09-06

Family

ID=49081950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079659 WO2013128728A1 (ja) 2012-03-02 2012-11-15 光モジュール及びその製造方法

Country Status (2)

Country Link
JP (1) JP2013183074A (ja)
WO (1) WO2013128728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365175A1 (en) * 2014-06-12 2015-12-17 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module
WO2015190089A1 (en) * 2014-06-10 2015-12-17 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module
JP2015232643A (ja) * 2014-06-10 2015-12-24 住友電気工業株式会社 光受信モジュールの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477071B2 (ja) * 2015-03-16 2019-03-06 住友電気工業株式会社 光受信モジュールの製造方法
JP2017011043A (ja) 2015-06-18 2017-01-12 株式会社フジクラ レーザ装置、及び、レーザ装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682659A (ja) * 1992-09-07 1994-03-25 Sumitomo Electric Ind Ltd 光モジュール
JPH10142457A (ja) * 1996-11-07 1998-05-29 Mitsubishi Materials Corp 光素子モジュール
JP2001215372A (ja) * 1999-11-26 2001-08-10 Furukawa Electric Co Ltd:The レーザダイオードモジュール
JP2003209314A (ja) * 2002-01-15 2003-07-25 Kyocera Corp 光半導体素子収納用パッケージ
JP2004294782A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 光半導体素子収納用パッケージおよび光半導体装置
JP2012138437A (ja) * 2010-12-27 2012-07-19 Sumitomo Metal Electronics Devices Inc 電子部品収納用パッケージ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211813A (ja) * 1986-07-04 1987-01-20 Olympus Optical Co Ltd 調芯機構を有するレンズ
JPH09205227A (ja) * 1996-01-25 1997-08-05 Fujitsu Ltd 光半導体モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682659A (ja) * 1992-09-07 1994-03-25 Sumitomo Electric Ind Ltd 光モジュール
JPH10142457A (ja) * 1996-11-07 1998-05-29 Mitsubishi Materials Corp 光素子モジュール
JP2001215372A (ja) * 1999-11-26 2001-08-10 Furukawa Electric Co Ltd:The レーザダイオードモジュール
JP2003209314A (ja) * 2002-01-15 2003-07-25 Kyocera Corp 光半導体素子収納用パッケージ
JP2004294782A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 光半導体素子収納用パッケージおよび光半導体装置
JP2012138437A (ja) * 2010-12-27 2012-07-19 Sumitomo Metal Electronics Devices Inc 電子部品収納用パッケージ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190089A1 (en) * 2014-06-10 2015-12-17 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module
JP2015232643A (ja) * 2014-06-10 2015-12-24 住友電気工業株式会社 光受信モジュールの製造方法
US10281653B2 (en) 2014-06-10 2019-05-07 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module
US20150365175A1 (en) * 2014-06-12 2015-12-17 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module
US10128974B2 (en) 2014-06-12 2018-11-13 Sumitomo Electric Industries, Ltd. Optical receiver module and process to assemble optical receiver module

Also Published As

Publication number Publication date
JP2013183074A (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
CN101986179B (zh) 半导体器件组件
WO2013128728A1 (ja) 光モジュール及びその製造方法
US9088128B2 (en) Laser module and method for manufacturing same
JP2006284851A (ja) レンズホルダおよびそれを用いたレーザアレイユニット
JP5034353B2 (ja) 光デバイスの製造方法
JP5952326B2 (ja) 光レセプタクル
WO2010110068A1 (ja) 半導体レーザモジュールおよび半導体レーザモジュールの製造方法
WO2011122540A1 (ja) レーザ装置
US7397985B2 (en) High-power fused collimator and associated methods
JP2006301597A (ja) レーザー装置およびその組立方法
JP2007294523A (ja) 表面実装型光結合器、その実装方法、及び、その製造方法
JP7117138B2 (ja) レーザモジュール
JP2006267237A (ja) レーザー装置およびその組立方法並びにその取付構造
JP2014098926A (ja) 光モジュールの製造方法
JP6042083B2 (ja) 半導体レーザモジュール及びその製造方法
KR101164377B1 (ko) 집적형 두 파장 광 송신 모듈
JP2009093041A (ja) 光モジュール
US9335489B2 (en) Manufacturing method for optical module
JP5287243B2 (ja) 光送信モジュール及びその製造方法
JP2012256770A (ja) レーザモジュール
JP2954678B2 (ja) 光ファイバ付き半導体レーザ光源装置およびその製造方法
JP2005121921A (ja) 光モジュール用レンズホルダ、光モジュールおよび、光モジュールの組立方法
WO2020196562A1 (ja) 光ファイバにおける端部構造および半導体レーザモジュール
JP4308049B2 (ja) 半導体素子モジュール
JP2006293091A (ja) 光デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869967

Country of ref document: EP

Kind code of ref document: A1