WO2013127368A1 - 一种含有植物纤维织物的复合材料及其制备方法 - Google Patents
一种含有植物纤维织物的复合材料及其制备方法 Download PDFInfo
- Publication number
- WO2013127368A1 WO2013127368A1 PCT/CN2013/072087 CN2013072087W WO2013127368A1 WO 2013127368 A1 WO2013127368 A1 WO 2013127368A1 CN 2013072087 W CN2013072087 W CN 2013072087W WO 2013127368 A1 WO2013127368 A1 WO 2013127368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fabric
- fiber
- epoxy resin
- plant fiber
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/55—Epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
- B29C44/1209—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements by impregnating a preformed part, e.g. a porous lining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/22—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/028—Net structure, e.g. spaced apart filaments bonded at the crossing points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/32—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2071/00—Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2081/00—Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
- B29K2081/06—PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2093/00—Use of natural resins, e.g. shellac, or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0014—Catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/048—Expandable particles, beads or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0872—Prepregs
- B29K2105/089—Prepregs fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2279/00—Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain not provided for in groups B29K2261/00 - B29K2277/00, as reinforcement
- B29K2279/08—PI, i.e. polyimides or derivatives thereof
- B29K2279/085—Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2311/00—Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
- B29K2311/10—Natural fibres, e.g. wool or cotton
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0012—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
- B29K2995/0016—Non-flammable or resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
- B29L2031/087—Propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
- B32B2262/062—Cellulose fibres, e.g. cotton
- B32B2262/065—Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0221—Vinyl resin
- B32B2266/0235—Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/025—Polyolefin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0271—Epoxy resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/27—Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
Definitions
- the invention relates to a composite material containing plant fiber fabric and a preparation method thereof. Background technique
- Composite materials have the advantages of higher specific strength and higher specific stiffness, and are therefore widely used as lightweight and high-strength structural materials. However, some specific applications also require functional composite laminates, such as coatings on specific parts of the aircraft in a propeller aircraft. On the one hand, the composite should be able to absorb sound, absorb shock, and reduce noise; on the other hand, it should be resistant to impact damage, such as accidental debris hitting the fuselage of the aircraft. Therefore, the composite material has the functions of sound absorption, shock absorption, heat insulation, noise reduction and the like as a weak bearing structure. Other typical applications for composite materials include aviation, ground transportation, and interiors for ships. As one of the composite materials, the foam has the advantages of low density, moderate mechanical properties, and adjustable properties.
- this material can also be used for functions such as shock absorption, low thermal conductivity and thermal insulation, filling, etc., so it can be used in the cabin or interior, including vehicles, ships, trains, airplanes, home improvement. Furniture, etc.
- this material can also be used for functions such as shock absorption, low thermal conductivity and thermal insulation, filling, etc., so it can be used in the cabin or interior, including vehicles, ships, trains, airplanes, home improvement. Furniture, etc.
- the lack of stiffness and strength is a common feature of these foams.
- the mechanical properties of the above foam materials can be greatly enhanced by the reinforcement of fibers, especially long fibers or continuous fibers.
- Patent No. 4,483,889 discloses a group of fibers, curable thermosetting resins and expandable microspheres.
- the technique of preparing a network composite foam by using a material discloses a thermal expansion of a polymerizable package
- the microsphere technology of the agent discloses a microparticle technology in which a foamable agent is encapsulated by a expandable polymer. Previously, such panels have been commercialized.
- the continuous fibers used in the above invention are structurally dense conventional fiber materials such as glass fibers, carbon fibers or organic synthetic fibers, and do not have excellent shock absorption, noise reduction, sound absorption and sound insulation properties, and cannot be used in some with a clear reduction. Where noise reduction is required, such as engine interior walls and floors.
- Plant fibers come from natural crops. Traditionally, plant fibers have been used to make paper, cloth or ropes and the like. The hollow structure of some plant fibers makes them have significant sound absorption, shock absorption, heat insulation, noise reduction and damping characteristics, superior specific strength and specific stiffness, and relatively low cost, and can be used as an environmentally friendly green material for compounding. In the material.
- the interface compatibility between the plant fiber and the resin matrix is poor, affecting the mechanical properties of the composite material, and is flammable, which is not suitable for use in an environment with fireproof requirements.
- invention patent plant fiber composite glass fiber reinforced plastic material and its preparation process
- invention patent a plant fiber polypropylene composite material and preparation method
- invention patent polyethylene fiber-plant fiber composite In the hot pressing manufacturing method of the material (Application No. 200810064906.4)
- the invention patent a plant fiber composite wood-based panel and a production process thereof” (Application No. 200610062751.1)
- the plant fiber is filled or reinforced with a powder or short fiber
- Plant fibers are not pretreated, so their interfacial compatibility is poor and the mechanical properties of composite products are low.
- Fiber-metal laminates are a new class of hybrid reinforced structural composites. They are collectively referred to as FML (Fiber-Metal Laminate) laminates. The typical representative is aluminum alloy-aramid fiber laminated composite laminates.
- FML Fiber-Metal Laminate
- GLARE GLAss-REinforced aluminum
- US Patent Nos. 5,039,571, US 5,547,735 and US 5,219,629 and references Vogelesang, L., Development of a New Hybrid Material (ARALL) for Aircraft Structure, Ind. Eng. Chem. Prod. Res. Dev. , 1983, pp. 492-496
- the preparation methods of laminated composite laminates were studied in detail.
- GLARE has been widely used on the upper body of the A380. Summary of the invention
- the invention provides a composite material containing plant fiber fabric and a preparation method thereof.
- a composite material comprising a matrix resin and a plant fiber fabric distributed in the matrix resin, wherein: the plant fiber of the plant fiber fabric is subjected to surface modification pretreatment,
- the surface modification treatment includes a coupling treatment using a coupling agent and/or a surface flame retarding treatment using a flame retardant, and the matrix resin is a biomass matrix resin.
- the biomass matrix resin is a rosin-based epoxy resin and/or an expanded biomass resin.
- the plant fiber is selected from the group consisting of castor, jute, kenaf, hemp, sisal or sub. Hemp.
- the plant fiber fabric is a continuous plant fiber fabric, a nonwoven fabric, a mesh yarn or a non-continuous plant fiber nonwoven fabric.
- the coupling agent is selected from a silane coupling agent or a potassium permanganate solution
- the silane coupling agent is selected from the group consisting of vinyl triethoxysilane, ⁇ -(mercapto acryloyloxy)propyl group.
- the flame retardant is a nitrogen-phosphorus flame retardant selected from the group consisting of ZR-PZM type intumescent flame retardant, TZ-01 nitrogen-phosphorus general-purpose flame retardant, TPU-1, Newray 911.
- the composite material further comprises at least one additional layer selected from the group consisting of: the at least one additional layer selected from the group consisting of: glass fibers Aramid fiber or carbon fiber nonwoven fabric or fabric, preferably distributed in the matrix resin; polymer fiber nonwoven fabric or fabric, preferably distributed in the matrix resin, the polymer fiber nonwoven fabric or
- the fabric comprises a polyimide fiber, a polybenzimidazole, a polybenzoxazole, a polylactic acid, a polyethylene, a polypropylene or a nylon fiber nonwoven fabric or a fiber fabric; and a polymer foam or rubber material, the polymer foam
- the invention comprises polyimide, polydecyl acrylimide, polyvinyl chloride, polyethylene, polypropylene, epoxy resin, polyurethane resin, phenolic resin foam material, and the rubber material comprises butylbenzene, butyl cyanide, cis-butane, Polysulfide or silicone rubber.
- the plant fiber has an areal density of 20 g/m 2 to 300 g/m 2
- the matrix resin is a biomass rosin-based epoxy resin
- the plant fiber is contained in the composite material.
- the base resin is contained in the composite in an amount of from 30 to 90% by weight.
- the composite material is a foam sheet
- the matrix resin is an intumescent biomass resin and a biomass epoxy resin
- the content of the plant fiber in the composite material is
- a method of making a composite material having a plant fiber fabric comprises: preparing a plant fiber fabric, performing surface modification pretreatment on the surface of the plant fiber of the plant fiber fabric using a coupling agent and/or a flame retardant; preparing a biomass matrix resin prepolymer; The treated plant fiber fabric is pre-impregnated in the biomass matrix resin prepolymer; and the impregnated plant fiber fabric is subjected to a curing and molding process to prepare the composite material.
- the step of preparing a biomass matrix resin prepolymer comprises mixing and cooling a rosin-based epoxy resin, an epoxy resin curing agent, a curing accelerator, and a thermoplastic polymer at a predetermined temperature to obtain a biomass rosin-based epoxy resin. Prepolymer.
- the epoxy resin curing agent is fluorenamic acid anhydride, mercapto hexahydrophthalic anhydride, mercapto tetrahydrophthalic anhydride or dicyandiamide or a oxaborocyclic boronamine complex.
- the curing accelerator is DMP-30 or boron trifluoride monoethylamine or 1,1,-dimercapto-3-phenylurea.
- the thermoplastic polymer is a phenolphthalein modified polyether ketone, a phenolphthalein modified polysulfone or a phenolphthalein modified polyetherimide.
- the step of pre-impregnating the surface-modified pre-treated plant fiber fabric in the matrix resin prepolymer comprises: coating the biomass-based epoxy resin prepolymer on the mold release On the surface of the paper; and transferring the biomass rosin-based epoxy resin prepolymer coated on the surface of the release paper to the plant fabric by heating the pressure roller.
- the step of preparing a plant fiber fabric comprises preparing a plant fiber mat and subjecting the plant fiber mat to a surface modification pretreatment using a coupling agent and a flame retardant.
- the step of preparing a biomass matrix resin prepolymer comprises: preparing a microcapsule foaming agent, comprising preparing a microcapsule of a microcapsule; charging the alkane in the suede and heating, so that the microcapsule volume expands;
- the maleic rosin-based epoxy resin curing agent is mixed with an epoxy resin and milled to prepare a partially bio-based epoxy resin micropowder;
- the micro-powder enamel foaming agent is added to the epoxy resin micropowder to be equipped a water-based suspension; and a surface-modified pre-treated plant fiber mat placed in the water-based suspension, impregnated, and air-dried to prepare a foamed prepreg.
- the step of curing and molding the impregnated plant fiber fabric comprises: heating and holding the foamed prepreg to expand the plant fiber mat to form a plant fiber reinforced biomass resin composite material. Foam sheet.
- the step of preparing the plant fiber mat is performed by a needling technique or a bonding technique, and the plant fiber mat has a thickness of 0.1 to 5 mm.
- the microcapsule of the microcapsule is made of polylactic acid, silicone rubber, polyacrylonitrile or polydecyl acrylate, and the microcapsule foaming agent has a particle size of 5 ⁇ -50 ⁇ , the microcapsule
- the heating temperature is from 100 ° C to 180 ° C, and the volume of the microcapsules is expanded by 50 to 100 times.
- the fine particle size of the epoxy resin is 10 ⁇ m to 100 ⁇ m.
- the content of the microcapsule blowing agent in the epoxy resin fine powder is 5% to 15% by weight.
- the foamed prepreg is heated to 100 ° C - 180 ° C and held for 10 min - 15 min to expand the thickness of the plant fiber mat by 5-8 times.
- a plant fiber reinforced biomass resin based green biomass composite is provided in place of the existing glass fiber or other chemical fiber interface reinforcement.
- the composite material can be used to prepare green composite parts, and the plant fiber-reinforced biomass resin-based green composite material can be produced on a large scale to maximize the proportion of renewable resources in the composite material.
- the renewable natural plant fiber material is used as the basic reinforcing material, and the hollow flame and light mechanical and acoustic characteristics are fully exerted through suitable flame retardant, anti-aging and interfacial treatment;
- Material Resin As a expandable microcapsule and a curable or thermoformable resin material, a continuous plant fiber reinforced biomass resin-based composite foam sheet is designed.
- the reinforcing materials are all made of natural and renewable plant resources, mainly using mature materials compared with existing ones, but with superior specific strength and specific stiffness mechanical properties.
- the expandability of biomass resins Microcapsules and impregnating resins are mainly derived from natural plant resources, and their basic properties and performance are comparable to those of existing mature materials.
- the composite foam sheet Due to the multi-scale and multi-layered porous structural features of most plant fibers, as well as the hollow core structure, the composite foam sheet has superior damping and acoustic properties, such as shock absorption, noise reduction, sound absorption, sound insulation and the like.
- the thermal insulation property of the plant fiber is good, and the expanded porous structure formed by the expandable particles makes the composite foam sheet have good thermal insulation and heat preservation performance.
- this composite foam sheet Due to the use of natural plant fibers and biomass resins, this composite foam sheet is degradable and its main raw materials are renewable and therefore environmentally friendly, all of which are not found in conventional continuous fiber reinforced composite foam sheets.
- periodic or non-periodic laminar mixing is carried out by using a thin layer of a non-woven fabric or a woven fabric of aramid fiber, glass fiber, carbon fiber or other polymer fiber, a polymer foam or a polymer rubber.
- Composite giving this laminated composite laminate a special function of sound absorption, shock absorption, heat insulation, damping, impact resistance, noise reduction, etc., while taking into account certain specific strength and specific stiffness properties, can be applied to aviation, rail transit Weakly or non-loading occasions in the automotive, construction, and other fields, including interior structures.
- a new type of laminate using the plant fiber fabric is called Hybrid Natural Fiber Laminate (Hybrid Natural Hybrid Laminate).
- Example 1 Phenolic resin based ramie fabric
- the phenol resin-based ramie fiber fabric according to Example 1 comprises a phenol resin matrix and continuous ramie fibers distributed in the phenolic resin.
- the ramie fiber was coupled with vinyl triethoxysilane.
- the phenol resin-based ramie fiber fabric according to Example 1 was prepared by the following method.
- a continuous ramie fabric is first prepared, which can be selected from commercially available ramie fabrics.
- Ethyl ethoxylated triethoxysilane (trade name: KH550) was selected as a silane coupling agent to prepare a 2% aqueous solution of a coupling agent, which was impregnated with a ramie fiber fabric, and dried to obtain a conjugated ramie fabric.
- a phenolic resin (trade name: GP4141) was selected, and the above-mentioned coupled ramie fiber fabric was pre-impregnated to obtain a corresponding ramie fiber fabric phenolic resin prepreg.
- the phenolic resin-based ramie fabric was prepared according to the curing process parameters of the GP4141 phenolic acid resin prepreg, and the curing and molding processes were carried out.
- ILSS interlaminar shear strength
- flexural strength e.g., ASTM D6641, ASTM D790 or ASTM D2344, etc.
- the test results of the above laminates showed that the properties of the phenolic resin-based ramie fabric were remarkably improved.
- the ILSS value was increased from 10 MPa without coupling treatment to 16 MPa after coupling modification; its bending strength and modulus were increased from 100 MPa and 8.5 GPa without coupling treatment to 120 MPa after coupling treatment, respectively. 9.0 GPa.
- the saturated water absorption is approximately equal to 5%.
- the phenolic resin based kenaf fabric according to Example 2 comprises a phenolic resin matrix and continuous kenaf fibers distributed in the phenolic resin.
- the kenaf fiber was coupled with potassium permanganate.
- the phenol resin-based kenaf fabric according to Example 2 was prepared by the following method.
- a continuous Kenaf fabric is prepared, which can be selected from commercial kenaf fabrics.
- the above-mentioned kenaf fiber fabric was impregnated with a 1% potassium permanganate (KMn0 4 ) aqueous solution, and after the fabric was dried, it was impregnated with water to remove residual potassium permanganate, and dried again to obtain a coupled red. Hemp fiber fabric.
- a phenolic resin (trade name: GP4141) was selected, and the above-mentioned coupled treated plant fiber fabric was pre-impregnated to obtain a corresponding kenaf fiber fabric phenolic resin prepreg.
- the phenolic resin-based kenaf fabric was prepared in accordance with the curing process parameters of the GP4141 phenolic resin prepreg by a curing and molding process.
- the test results of the above laminates showed that the performance of the phenolic resin-based kenaf fabric was remarkably improved.
- the ILSS value was increased from 7 MPa without coupling treatment to 10 MPa after coupling modification; its bending strength was unchanged before and after coupling treatment, which was 68 MPa, and its modulus was increased from 7.0 GPa without coupling treatment. 7.2 GPa after coupling treatment.
- the saturated water absorption is approximately equal to between 6 and 7%.
- the phenolic resin-based plant fiber fabric according to Example 3 comprises a phenolic resin matrix and continuous ramie, jute, sisal (Sisal) and kenaf (kenaf) fibers respectively distributed in the phenolic resin.
- the above plant fibers were separately treated with vinyltriethoxysilane and potassium permanganate.
- the phenol resin-based plant fiber fabric according to Example 3 was prepared by the following method.
- a phenolic resin (trade name: GP4141) was selected, and the above-mentioned eight kinds of coupled plant fiber fabrics were impregnated to obtain corresponding plant fiber phenolic resin-based prepregs.
- the interlaminar shear strength (ILSS) of the above plant fiber fabric was tested in accordance with the usual material standards mentioned in Example 1 above.
- the ILSS values of the above phenolic resin-based plant fiber fabrics are shown in Table 1 below.
- the test results show that, for the interlaminar shear strength (ILSS) of the above plant fiber fabrics, the ILSS values are ranked as follows: phenolic resin based ramie fabric > phenolic resin based jute fabric > phenolic resin based kenaf fabric > Phenolic resin-based sisal fabric, while KH550 silane treatment is superior to potassium permanganate treatment. Moreover, the ISS value of the KH550 silane-treated phenolic resin-based plant fiber fabric is approximately equal to or greater than the ILSS value (7.84 MPa) of the conventional phenolic resin-based glass fiber fabric.
- the phenolic resin-based ramie fiber fabric of Example 4 was substantially the same as the fabric of Example 1, except that the ramie fiber was subjected to a flame retardant treatment to provide a double with improved interfacial compatibility and flame retardancy. Functional continuous plant fiber fabric.
- the flame retardant phenolic resin-based ramie fiber fabric according to Example 4 was prepared by the following method.
- a continuous ramie fabric is prepared, which can be selected from commercially available ramie fabrics.
- Ethyl ethoxylated triethoxysilane (trade name: KH550) was selected as a silane coupling agent to prepare a 2% aqueous solution of a coupling agent, which was impregnated with a ramie fiber fabric, and dried to obtain a conjugated ramie fabric. Then choose a flame retardant (such as No.
- a phenolic resin (trade name: GP4141) was selected for prepreg and solidification molding to prepare a phenolic resin-based ramie fiber fabric having flame retardancy.
- the flame-retardant phenolic resin-based ramie fiber fabric was subjected to a burning test, and the test results were as follows: ignition time 60 seconds, flame temperature 840 ° C, burning time of about 2 minutes, and burning length of about 160 mm. In the combustion test, there was no burning drip.
- the flame retardant mass concentration fraction is about 10%
- the total heat release of the above flame-retarded ramie fabric reaches about 50 kw min/m 2
- the peak heat release reaches about 90 kw/m 2
- the fuel concentration concentration fraction is about 20%
- the total heat release of the above flame-retarded ramie fabric reaches about 22 kw min/m 2
- the peak heat release reaches about 60 kw/m 2 .
- Both materials meet the basic flame retardant requirements for civil aircraft interiors such as the Boeing OSU standard.
- the above-mentioned plant fiber fabric was tested in accordance with the usual material standards mentioned in the above Example 1.
- Mechanical properties The flame retardant phenolic resin-based ramie fiber fabric has a tensile strength of about 60 MPa, an interlaminar shear strength of about 15 MPa, a compressive strength of about 50 MPa, and a flexural strength and modulus of about 100 MPa and 8.5 GPa, respectively.
- Example 5 Flame retardant phenolic resin-based ramie fiber fabric and flame retardant phenolic resin-based jute fabric
- the phenol resin-based ramie fiber fabric according to Example 5 includes a phenol resin matrix and continuous ramie fibers distributed in the phenolic resin.
- the ramie fiber was conjugated with vinyl triethoxysilane and the ramie fiber was flame retarded with a nitrogen-phosphorus flame retardant.
- the phenolic resin-based jute fiber fabric according to Example 5 includes a phenol resin matrix and continuous jute fibers distributed in the phenol resin. The jute fiber was conjugated to the jute fiber and the jute fiber was flame retarded by using a nitrogen-phosphorus flame retardant.
- the phenol resin-based ramie fabric and the phenolic resin-based jute fabric according to Example 5 were prepared by the following method.
- a continuous ramie fabric and a jute fabric are separately prepared, and the above fabrics may be selected from commercial ramie fabrics and jute fabrics.
- Select vinyl triethoxysilane (trade name: KH550) as a silane coupling agent, prepare a 2% aqueous solution of coupling agent, and separately impregnate the ramie fabric and jute fabric, and then dry and then obtain the coupling treatment.
- Ramie fabric and jute fabric are separately prepared, and the above fabrics may be selected from commercial ramie fabrics and jute fabrics.
- a nitrogen-phosphorus flame retardant such as the brand name Newray 911
- prepare 7-12% of the flame retardant aqueous solution respectively impregnate the conjugated ramie fabric and jute fabric, and dry to obtain flame retardant Sexual ramie fabric and jute fabric.
- a phenolic resin (commercial brand No. Cycom 6070) was selected for pre-impregnation and solidification molding processes to prepare a corresponding phenolic resin-based prepreg of the plant fiber fabric.
- the vertical burning properties of the ramie fabric were tested in accordance with ASTM material standards. It was found that when the concentration of the flame retardant was about 11%, the ramie fiber fabric treated as described above had a burning time of less than 15 seconds, a burning length of about 40 mm, and no burnt droppings; At 12%, the jute fabric treated as described above had a burning time of less than 15 seconds and a burning length of about 38 mm, and was also free of burning matter. These two materials have a good flame retardant effect.
- Example 6 Polyester-based ramie fabric with flame retardancy
- the polyester-based ramie fabrics according to Example 6 respectively comprise a polyester matrix and continuous ramie fibers distributed in the polyester.
- the ramie fiber was flame-treated by coupling the ramie with ⁇ -(mercapto acryloyloxy)propyltrimethoxysilane and using an expansive nitrogen-phosphorus flame retardant.
- the polyester-based ramie fabric according to Example 6 was prepared by the following method.
- a continuous ramie fiber fabric is prepared, and a commercially available ramie fiber fabric can be selected as the above fabric.
- ⁇ -(mercaptoacryloyloxy)propyltrimethoxysilane (trade name ⁇ 570) was selected as a silane coupling agent to prepare a 2% aqueous solution of a coupling agent, which was respectively impregnated with ramie fabric and dried to obtain Coupling treated ramie fabric.
- an expansive nitrogen-phosphorus flame retardant (trade name brand ZR-PZM), prepare 14% aqueous solution of flame retardant, impregnate the ramie fiber fabric after coupling treatment, and obtain a corresponding flame retardancy after drying. Ramie fabric.
- a flame-retardant unsaturated polyester (trade name: Synolite 9001) was selected, and a polyester-based ramie fabric was prepared by a direct liquid molding process with the above ramie fabric.
- the tensile properties and bending properties of the polyester-based ramie fabric were then tested according to the usual material standards mentioned in Example 1 above, and the properties of the ramie fabric without coupling and flame retardant treatment were compared.
- the tensile strength and flexural strength of the ramie fabric are 95 MPa and 156 MPa, respectively, before the joint treatment and the flame retardant treatment; the tensile strength and flexural strength of the ramie fabric after the above coupling treatment and flame retardant treatment Increased to 103 MPa and 176 MPa, respectively.
- Example 7 Epoxy-based ramie fabric with flame retardancy
- the epoxy resin-based ramie fabric according to Example 7 respectively comprises an epoxy resin matrix and continuous ramie fibers distributed in an epoxy resin.
- the phthalocyanine fiber was coupled by ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane and the epoxy resin matrix itself was flame retardant.
- the epoxy resin-based ramie fiber fabric according to Example 7 was prepared by the following method.
- a continuous ramie fiber fabric is prepared, and a commercially available ramie fiber fabric can be selected as the above fabric.
- Select ⁇ -( 2, 3-epoxypropoxy) propyltrimethoxysilane (trade name ⁇ 560) as a silane coupling agent, prepare a 2% aqueous solution of coupling agent, impregnate the ramie fabric with it, and dry it.
- the coupled ramie fiber fabric was obtained.
- a flame retardant epoxy resin (commercial brand No. 3233) was selected for prepreg and solidification molding processes to prepare an epoxy resin based prepreg of ramie fabric.
- the tensile properties and bending properties of the ramie fabric were then tested in accordance with the usual material standards mentioned in Example 1 above, while comparing the properties of the unconjugated ramie fabric. Coupling Before the treatment, the tensile strength and bending strength of the ramie fabric were 105 MPa and 178 MPa, respectively. After the coupling treatment, the tensile strength and bending strength of the ramie fabric were increased to 123 MPa and 186 MPa, respectively.
- the ramie fiber-aramid fiber laminate composite according to Example 8 has a laminated structure including a ramie fiber layer and an aramid fiber layer.
- the ramie fiber layer comprises an epoxy resin matrix and continuous ramie fibers distributed in an epoxy resin matrix.
- the aramid fiber layer includes an epoxy resin matrix and aramid fibers distributed in the epoxy resin matrix.
- the ramie fiber was coupled with ethoxylated triethoxysilane.
- the ramie fiber-aramid fiber laminate composite according to Example 8 was prepared by the following method.
- a continuous ramie fiber fabric is prepared, which can be selected from commercially available ramie fiber yarns, for example, ramie fiber yarns are unidirectional.
- a vinyl triethoxysilane (trade name: KH550) was selected as a silane coupling agent to prepare a 2% aqueous solution of a coupling agent, which was impregnated with a ramie fiber fabric, and dried to obtain a conjugated ramie fabric. See Example 1 for the specific properties and advantages of the above continuous ramie fabric.
- an epoxy resin (commercial brand No. SY-14A) was selected, and the above-mentioned conjugated ramie fabric was pre-impregnated with a wet method to obtain a corresponding ramie fiber fabric epoxy prepreg.
- a wet method to obtain a corresponding ramie fiber fabric epoxy prepreg.
- the ramie fiber fabric epoxy prepreg layer and the aramid fiber fabric epoxy prepreg layer are alternately stacked to form a 5-layer layer of aramid fiber/rice fiber/aramid fiber/rice fiber/aramid fiber.
- the structure is such that a laminated preform having an outer surface layer of aramid fibers is obtained. If the ramie fiber fabric is unidirectional, the orientation of the ramie fibers in the two layers of ramie fiber epoxy prepreg can be made orthogonal to each other, thereby increasing the overall strength.
- the ramie fiber-aramid fiber laminated composite material is prepared by the following autoclave curing process.
- the above laminated preform was placed in a can body, and the can was evacuated at room temperature to maintain a vacuum pressure difference of not less than 0.095 MPa.
- the cans are then removed and the cured product is removed.
- Example 9 Jute fiber-phenolic foam-glass fiber laminate composite
- the jute fiber-phenolic foam-glass fiber laminate composite according to Example 9 has a laminated structure including a jute fiber layer, a phenolic foam layer, and a glass fiber layer.
- the jute fiber layer comprises an epoxy resin matrix and continuous jute fibers distributed in an epoxy resin matrix.
- the glass fiber layer includes an epoxy resin matrix and glass fibers distributed in the epoxy resin matrix.
- the jute fiber was subjected to a coupling treatment using ethyl 4-glycolylsilane.
- the jute fiber-phenolic foam-glass fiber laminate composite according to Example 9 was prepared by the following method.
- a continuous jute fabric was first prepared. Selecting a silane coupling agent (for example, selecting a concentration of 2% of ethyl ethoxylated triethoxysilane (trade name KH550) or potassium permanganate aqueous solution to couple the jute fabric, and using a flame retardant (for example, a nitrogen-phosphorus flame retardant is used to flame-treat the jute fabric to obtain a flame retardant jute fabric.
- a silane coupling agent for example, selecting a concentration of 2% of 2% of ethyl ethoxylated triethoxysilane (trade name KH550) or potassium permanganate aqueous solution to couple the jute fabric
- a flame retardant for example, a nitrogen-phosphorus flame retardant is used to flame-treat the jute fabric to obtain a flame retardant jute fabric.
- the flame retardant jute fabric layer/glass fiber fabric/phenolic foam/glass fiber fabric/flame retardant jute fabric is sequentially placed on the mold, placed in a vacuum bag, and epoxy resin is injected (Shop No. 3266) ), and the laminated preform is prepared by the following liquid molding process. Vacuuming the vacuum bag at room temperature, the vacuum pressure difference is not less than 0.1 MPa, and the temperature is raised to about 40 ° C at a temperature increase rate of 1 ° C / min ⁇ 2 ° C / min, thereby immersing the above laminate in the epoxy In the resin.
- a jute fiber-phenolic foam-glass fiber laminate composite was prepared by the following curing molding process.
- the above-mentioned preforms which have been completely impregnated with epoxy resin are solidified under the same vacuum conditions, and are heated to 100 ° C to 120 ° C at a heating rate of rC/min ⁇ 2 ° C / min, kept for 2 hours, and naturally cooled. To room temperature. Open the vacuum bag to remove the cured product.
- Example 10 Sisal Fiber - Silicone Rubber - Carbon Fiber Laminated Composite
- the sisal fiber-silicone rubber-carbon fiber laminate composite according to Example 10 has a laminated structure including a sisal fiber layer, a silicone rubber, and a carbon fiber layer.
- the sisal fiber layer comprises an epoxy resin matrix and continuous sisal fibers distributed in an epoxy resin matrix.
- the sisal fiber was coupled with ethyl 4-methoxysilane or potassium permanganate, and the sisal fiber was flame retarded with a flame retardant.
- the sisal fiber-silicone rubber-carbon fiber laminate composite according to Example 10 was prepared by the following method.
- a continuous sisal fiber fabric was prepared.
- Selecting a silane coupling agent for example, selecting a concentration of 2% of ethyl ethoxylated triethoxysilane (trade name KH550) or potassium permanganate aqueous solution to couple the sisal fiber fabric, and using a flame retardant (for example, a nitrogen-phosphorus flame retardant) to flame retard the sword Hemp fiber fabric, a sisal fiber fabric having flame retardancy is obtained.
- a silane coupling agent for example, selecting a concentration of 2% of ethyl ethoxylated triethoxysilane (trade name KH550) or potassium permanganate aqueous solution to couple the sisal fiber fabric
- a flame retardant for example, a nitrogen-phosphorus flame retardant
- Two layers of flame-retardant sisal fiber fabric layer/carbon fiber fabric/silicone rubber/carbon fiber fabric/two-layer flame-retardant sisal fiber fabric are stacked on the mold in turn, placed in a vacuum bag, and injected with epoxy resin (Shop No. 3266) ), and the laminated preform is prepared by the following liquid molding process. Vacuuming the vacuum bag at room temperature, the vacuum pressure difference is not less than 0.1 MPa, and the temperature is raised to about 40 ° C at a temperature increase rate of 1 ° C / min ⁇ 2 ° C / min, thereby immersing the above laminate in the epoxy In the resin.
- a sisal fiber-silicone rubber-carbon fiber laminated composite material was prepared by the following curing molding process.
- the above-mentioned preforms which have been completely impregnated with epoxy resin are cured under the same vacuum conditions, and are heated to 100 ° C - 120 ° C at a heating rate of rC / min ⁇ 2 ° C / min, kept for 2 hours, and naturally cooled. To room temperature. Open the vacuum bag to remove the cured product.
- the ramie fiber-jute fiber-glass fiber laminate composite according to Example 11 has a laminated structure including a ramie fiber layer, a jute fiber layer, and a glass fiber layer.
- the ramie fiber layer comprises an epoxy resin matrix and continuous ramie fibers distributed in an epoxy resin matrix.
- the jute fiber layer comprises an epoxy resin matrix and continuous jute fibers distributed in an epoxy resin matrix.
- the glass fiber layer comprises an epoxy resin matrix and glass fibers distributed in the epoxy resin matrix.
- the ramie fiber and the jute fiber were respectively subjected to a coupling treatment using an ethyl 4-glycol silane.
- the ramie fiber-jute fiber-glass fiber laminate composite according to Example 11 was prepared by the following method.
- vinyl ethoxysilane (trade name KH550) having a concentration of 2% is selected to be coupled to the ramie fabric and the jute fabric, respectively.
- an epoxy resin (trade name: 3233) was selected, and the above-mentioned coupled ramie fabric and jute fabric and glass fiber were pre-impregnated with a wet method to obtain a corresponding ramie fiber fabric epoxy prepreg and jute. Fiber fabric epoxy prepreg and glass fiber prepreg.
- the above prepreg layers are alternately stacked in a mold to form a 5-layer preform of ramie fiber/jute fiber/glass fiber/jute fiber/rice fiber.
- a ramie fiber-jute fiber-glass fiber laminate composite was prepared by the following molding curing process. Warm the preform to 80 °C ⁇ 2 °C for 10 min, pressurize to 0.7 MPa ⁇ 0.8 MPa for 2 h, then cool to room temperature and remove the cured product.
- Example 12 Flax fiber-polyvinyl chloride foam laminate composite
- the flax fiber-polyvinyl chloride laminate composite according to Example 12 has a laminated structure including a flax fiber layer and a polyvinyl chloride foam layer.
- the flax fiber layer comprises an epoxy resin matrix and continuous flax fibers distributed in an epoxy resin matrix.
- the flax fiber was coupled with vinyl triethoxysilane, and the flax fiber was flame retarded with a flame retardant.
- the flax fiber-polyvinyl chloride laminate composite according to Example 12 was prepared by the following method.
- a continuous linen fiber fabric was first prepared.
- the silane coupling agent is selected (for example, a selected concentration of 2% of ethyl ethoxylated triethoxysilane (trade name: KH550) and a flame retardant, respectively, for coupling treatment and flame retardant treatment of the linen fabric.
- an epoxy resin (commercial brand number 3233) was selected, and the above-mentioned coupling treatment and flame-retardant linen fiber fabric were pre-impregnated with a wet method to obtain a corresponding linen fiber fabric epoxy resin prepreg.
- the above prepreg layer and polyvinyl chloride foam laminate are alternately stacked in a mold to form a 5-layer preform of ramie/polyvinyl chloride/linen fiber/polychloroethylene/linen fiber.
- a linen fiber-polyvinyl chloride laminate composite is prepared by a molding curing process.
- Example 13 Flax Fiber - Rubber Laminated Composite
- the flax fiber-rubber laminate composite according to Example 13 has a laminated structure including a flax fiber layer and a rubber layer.
- the flax fiber layer comprises an epoxy resin matrix and continuous flax fibers distributed in an epoxy resin matrix.
- the flax fiber was coupled with vinyl triethoxysilane, and the flax fiber was flame retarded with a flame retardant.
- the flax fiber-rubber laminate composite according to Example 13 was prepared by the following method.
- a continuous linen fiber fabric was first prepared.
- the silane coupling agent is selected (for example, a selected concentration of 2% of ethyl ethoxylated triethoxysilane (trade name: KH550) and a flame retardant, respectively, for coupling treatment and flame retardant treatment of the linen fabric.
- an epoxy resin (commercial brand number 3233) was selected, and the above-mentioned coupling treatment and flame-retardant linen fiber fabric were pre-impregnated with a wet method to obtain a corresponding linen fiber fabric epoxy resin prepreg.
- the prepreg layer and the rubber layer sheet described above are alternately stacked in a mold to form a 5-layer prefabricated piece of flax fiber/rubber/linen fiber/rubber/linen fiber.
- a flax fiber-rubber laminate composite is prepared by a molding and curing process.
- Example 14 Sisal fiber-polymer foam laminate composite
- the sisal fiber-polymer foam laminate composite according to Example 14 has a laminated structure including a sisal fiber layer and a polymer foam.
- the sisal fiber layer comprises an epoxy resin matrix and continuous sisal fibers distributed in an epoxy resin matrix.
- the sisal fiber was coupled with ethoxylated triethoxysilane, and the sisal fiber was flame retarded with a flame retardant.
- the sisal fiber-polymer foam laminate composite according to Example 14 was prepared by the following method.
- the silane coupling agent is selected by, for example, selecting a concentration of 2% of ethyl ethoxylated triethoxysilane (trade name KH550) and a flame retardant for coupling treatment and flame retardant treatment.
- an epoxy resin (trade name: 3233) was selected, and the above-mentioned coupling treatment and flame-retardant sisal fiber fabric were pre-impregnated with a wet method to obtain a corresponding sisal fiber fabric epoxy prepreg.
- the above prepreg layer and the polymer foam layer are alternately stacked in a mold to form a 5-layer preform of sisal fiber/polymer foam/sisal fiber/polymer foam/sisal fiber.
- the sisal fiber-polymer foam laminated composite material is prepared by a molding curing process.
- the vegetable fiber fabrics as described in Examples 1-7 can be combined with glass fiber, aramid fiber or carbon fiber nonwoven fabric or fabric and/or polymer fiber nonwoven fabric or fabric or polymer foam or rubber material layer, thereby A new plant fiber hybrid composite laminate (HyNaL) capable of damping, sound absorption, noise reduction, flame retardancy and environmental protection is provided.
- HyNaL new plant fiber hybrid composite laminate
- the composite materials of Examples 8-14 described above have a central symmetrical structure for ease of use and transportation.
- the plant fiber hybrid composite according to the present invention may also have other periodic or non-period arrangement to meet the needs of a particular application.
- Example 15 Ramie fiber mesh reinforced rosin-based epoxy resin composite
- the ramie-based mesh reinforced rosin-based epoxy resin composite material includes a rosin-based epoxy resin and a ramie fiber mesh yarn distributed in a rosin-based epoxy resin.
- the ramie-based epoxy resin composite reinforced with a ramie fiber mesh according to Example 15 was prepared by the following method.
- a ramie fiber mesh yarn having an areal density of 20 g/m 2 was prepared, and the ramie fiber mesh yarn was prepared.
- rosin-based epoxy resin 1000 g of rosin-based epoxy resin, 1000 g of mercapto hexahydrophthalic anhydride, 20 g of boron trifluoride monoethylamine complex and 500 g of phenolphthalein-modified polyether ketone were added to the stirred tank, and heated to 50 ° C. The mixture was stirred at high speed for 20 minutes to prepare a rosin-based epoxy structural adhesive. The prepared rosin-based epoxy tree The lipid structure binder can be applied to the release paper after preparation, cooled to room temperature, and then refrigerated for use.
- the prepared rosin-based epoxy resin structural adhesive is uniformly coated on the surface of a release paper, and the surface density of the structural adhesive is controlled to be 180 g/m 2 while being heated and pressurized.
- the roller transfers the rosin-based epoxy structural adhesive to the ramie fiber mesh yarn, and the structural binder has a weight content of about 90% in the composite.
- Both sides of the ramie fiber reinforced rosin-based epoxy resin matrix composite may be protected with release paper. After winding, the composite can be placed at room temperature or refrigerated.
- the thin layer of the ramie fiber reinforced rosin-based epoxy resin-based composite material is laminated with the honeycomb core material to form a composite material.
- the composite material was prepared as follows: A ramie fiber reinforced rosin-based epoxy resin-based composite material and a Nomex honeycomb core having a density of 48 Kg/m 3 were laminated by a vacuum bag forming process, and co-cured at 140 ° C. After 2 hours, after cooling to 40 ° C, the pressure was released and the composite material was finally obtained.
- the flat tensile strength (test standard ASTM C297) and shear strength (test standard ASTM C273) of the article were tested as shown in Table 2.
- the mechanical properties are significantly increased, and the damage of the composite parts is more borne by the Nomex honeycomb core.
- Example 16 Ramie fiber reinforced rosin-based epoxy resin composite material
- the ramie-based non-woven fabric reinforced rosin-based epoxy resin composite material includes a rosin-based epoxy resin and a ramie fiber non-woven fabric distributed in a rosin-based epoxy resin.
- the ramie-based nonwoven fabric reinforced rosin-based epoxy resin composite material according to Example 16 was prepared by the following method.
- a ramie fiber non-woven fabric was prepared, and the surface density of the non-woven fabric was 150 g/m 2 .
- rosin-based epoxy resin 1500 g of rosin-based epoxy resin, 1200 g of quinone diacyl anhydride, 7.5 g of DMP-30 and 270 g of phenolphthalein-modified polyethersulfone were added to a stirred tank, heated to 70 ° C, and stirred at high speed for 30 minutes to prepare Rosin-based epoxy resin structural adhesive.
- the formulated rosin-based epoxy structural adhesive can be applied to the release paper after preparation, cooled to room temperature, and then refrigerated for use.
- the prepared rosin-based epoxy resin structural adhesive is uniformly coated on the surface of a release paper, and the surface density of the structural adhesive is controlled to be 150 g/m 2 , and heated by heating.
- the pressure roller transfers the rosin-based epoxy resin structural adhesive to the ramie fiber non-woven fabric, and the structural adhesive is composited.
- the weight content of the material is about 50%.
- Both sides of the ramie fiber reinforced rosin-based epoxy resin matrix composite may be protected with release paper. After winding, the composite can be placed at room temperature or refrigerated.
- This composite material is used to prepare a ramie fiber reinforced biomass resin composite product.
- the preparation process of the composite material product is as follows: 18 layers of the composite material are stacked in a mold by a press molding process, and then a pressure of 2 MPa is applied, and the temperature is gradually raised to 120 ° C for 3 hours, and then cooled to 40 ° C. Translation pressure. The fiber content of the composite was about 60%.
- the tensile properties (test standard ASTM D3039), compression properties (test standard ASTM D6641) and bending properties (test standard ASTM D790) were tested.
- the mechanical properties are shown in Table 3.
- Example 17 Jute fiber mesh yarn reinforced rosin-based epoxy resin composite
- Jute fiber mesh reinforced rosin-based epoxy resin composites include rosin-based epoxy resins and jute fiber mesh yarns distributed in rosin-based epoxy resins.
- the rosin-based epoxy resin composite reinforced with the jute fiber mesh yarn of Example 17 was prepared by the following method.
- a jute fiber mesh yarn having an areal density of 100 g/m 2 was prepared.
- rosin-based epoxy resin 1000 g of rosin-based epoxy resin, 1000 g of mercaptotetrahydrophthalic anhydride, 10 g of boron trifluoride monoethylamine complex and 300 g of phenolphthalein-modified polyether ketone were added to the stirred tank, and heated to 50 ° C. The mixture was stirred at a high speed for 30 minutes, and uniformly ground on a roll machine to prepare a rosin-based epoxy resin structural adhesive. The prepared rosin-based epoxy resin structural adhesive can be applied to the release paper after preparation, cooled to room temperature, and then refrigerated for use.
- the formulated rosin-based epoxy resin structural adhesive is uniformly coated on the surface of a release paper, and the rosin-based epoxy resin structural adhesive is transferred to jute by a heated pressure roller.
- the structural binder On the fiber mesh yarn, the structural binder has a weight content of about 50% in the composite. Both sides of the jute fiber reinforced rosin-based epoxy resin matrix composite may be protected with release paper. After winding, the composite can be stored at room temperature or refrigerated.
- the thin layer of the jute fiber reinforced rosin-based epoxy resin-based composite material is laminated with the honeycomb core material to form a composite material.
- the preparation process of the composite part is as follows: The ramie fiber reinforced rosin-based epoxy resin matrix composite and the Nomex honeycomb core laminate with a density of 48 Kg/m 3 were co-cured at 140 ° C for 2 hours, then cooled to 40 ° C, and the pressure was released. Finally, the composite part is obtained.
- the flat tensile strength (test standard ASTM C297) and shear strength (test standard ASTM C273) of the article were tested as shown in Table 4.
- the mechanical properties are significantly increased, and the damage of the composite parts is more borne by the Nomex honeycomb core.
- Example 18 Flax fiber non-woven fabric reinforced rosin-based epoxy resin composite material
- the flax-based non-woven fabric reinforced rosin-based epoxy resin composite material includes a rosin-based epoxy resin and a flax fiber non-woven fabric distributed in a rosin-based epoxy resin.
- the flax-based non-woven fabric reinforced rosin-based epoxy resin composite according to Example 18 was prepared by the following method.
- a linen fiber non-woven fabric was prepared, and the surface density of the non-woven fabric was 200 g/m 2 .
- rosin-based epoxy resin 1000 g of rosin-based epoxy resin, 100 g of dicyandiamide, 30 g of 1,1,-dimercapto-3-phenylurea and 200 g of phenolphthalein-modified polyether ketone were added to the stirred kettle and heated to 50 ° After C, the mixture was stirred at a high speed for 20 minutes to prepare a rosin-based epoxy resin structural adhesive.
- the formulated rosin-based epoxy structural adhesive can be applied to the release paper after preparation, cooled to room temperature, and then refrigerated for use.
- the formulated rosin-based epoxy resin structural adhesive is uniformly coated on the surface of the release paper, and the rosin-based epoxy resin structural adhesive is transferred to the flax fiber by heating the pressure roller.
- the structural adhesive On the surface of the weft-free cloth, the structural adhesive has a weight content of about 40% in the composite material, and both sides of the linen fiber-reinforced rosin-based epoxy resin-based composite material can be protected with release paper. After rewinding, the composite can be placed at room temperature or refrigerated.
- This composite material is used to prepare a ramie fiber reinforced biomass resin composite product.
- the preparation process of the composite material product is as follows: 18 layers of the composite material are stacked in a mold by a press molding process, and then a pressure of 2 MPa is applied, and the temperature is gradually raised to 120 ° C for 3 hours, and then cooled to 40 ° C. Translation pressure. The fiber content of the composite was about 70%.
- the tensile properties (test standard ASTM D3039), compression properties (test standard ASTM D6641) and bending properties (test standard ASTM D790) were tested. The mechanical properties are shown in Table 5.
- the ramie fabric reinforced rosin-based epoxy resin composite comprises a rosin-based epoxy resin and a ramie fiber fabric distributed in a rosin-based epoxy resin.
- a ramie fiber reinforced rosin-based epoxy resin composite according to Example 19 was prepared by the following method.
- a ramie fabric having an areal density of 120 g/m 2 was prepared .
- rosin-based epoxy resin II Add 1500 g of rosin-based epoxy resin II, 1000 g of fluorenyl dimethic acid anhydride, 20 g of boron trifluoride monoethylamine complex and 500 g of phenolphthalein-modified polyethersulfone to a stirred kettle and heat to 70 ° C Thereafter, the mixture was stirred at a high speed for 30 minutes to prepare a rosin-based epoxy resin structural adhesive.
- the formulated rosin-based epoxy resin structural adhesive can be applied to the release paper after preparation, cooled to room temperature, and then refrigerated for use.
- the prepared rosin-based epoxy resin structural adhesive is uniformly coated on the surface of the release paper, and the resin film is transferred to the surface of the ramie fabric by a heated pressure roller, and the structure is sticky.
- the weight of the binder in the composite is about 50%, and both sides of the linen fiber reinforced rosin-based epoxy resin matrix composite can be protected with release paper. After the winding, the composite material can be stored at room temperature or refrigerated.
- This composite material is used to prepare a ramie fiber reinforced biomass resin composite product.
- the preparation process of the composite material product is as follows: 18 layers of the composite material are stacked in a mold by a press molding process, and then a pressure of 2 MPa is applied, and the temperature is gradually raised to 120 ° C for 3 hours, and then cooled to 40 ° C. Translation pressure. The fiber content of the composite was about 60%.
- the tensile properties (test standard ASTM D3039), compression properties (test standard ASTM D6641) and bending properties (test standard ASTM D790) were tested.
- the mechanical properties are shown in Table 6.
- Example 20 Continuous plant fiber reinforced composite foam sheet
- the continuous plant fiber reinforced rosin-based epoxy resin composite comprises a rosin-based epoxy resin and a plant fiber fabric distributed in a rosin-based epoxy resin, the plant fiber fabric including sisal, cockroach Hemp, linen, jute, hemp fabric.
- the foam board according to Example 20 was prepared by the following method.
- (1) Commercial plant fibers such as sisal, ramie, flax, jute, hemp, and continuous fiber mat or continuous fiber fabric are used, and the thickness of the plant fiber fabric is between about 0.3 mm and 4 mm.
- Long plant fibers such as plant fibers having a length greater than about 50 mm, may be used, fully dispersed, and then formed into a long fiber mat having a certain thickness by needle punching or bonding.
- the fiber mat may have a thickness of between about 0.3 mm and 4 mm.
- the method described in Examples 1-7 is used for surface flame retardant or/and coupling treatment of all plant fibers, and the coupling agent has the formula R2-Si(ORl)3, such as A coupling agent H2N-(CH2)3-Si(OC2H5:)3 having an amino group as a terminal group, such as a coupling agent having an epoxy group at the terminal group
- the skin of the microcapsules is made of a commercially degradable thermoplastic polylactic acid polymer PLA (PolyLactic Acid).
- PLA PolyLactic Acid
- the volume of the microcapsule will expand rapidly, reaching 50-100 times the original volume; or other commercially available microcapsules of commercial products
- the suede material includes silicone rubber, polyacrylonitrile or polydecyl methacrylate.
- the particle size of the expandable microcapsule can be controlled to be about 5 ⁇ m to 50 ⁇ m.
- Epoxy resin curing agent forming part of the biomass epoxy resin material.
- This partially bio-formed epoxy resin is prepared into a powder having a particle diameter of from ⁇ to ⁇ .
- the plant fiber mat or fabric treated by the step (2) is placed in a water-based suspension and fully impregnated (commonly referred to as slurry impregnation), and suitably dried to obtain a foamed prepreg.
- the above-mentioned foamed prepreg is heated to 100 ° C - 180 ° C, placed for 10 min - 15 min, the micro-gel is heated and expanded, and the foamed prepreg is also thickened to expand to the original thickness. 5-8 times. During the heating process, the thermosetting epoxy resin is also cured and crosslinked, thereby obtaining a continuous plant fiber reinforced biomass resin composite foam sheet.
- a ramie non-woven mat having an areal density of 400 g/m2 was prepared by using a short-cut ramie fiber and using a needle punching apparatus.
- the ramie nonwoven felt was impregnated with a 3% aqueous solution of KH550 silane coupling agent. After the fabric was dried, the nonwoven felt was impregnated with a 10% aqueous solution of nitrogen-phosphorus flame retardant and allowed to dry.
- a microcapsule foaming agent having a particle size of 10 ⁇ m, a skin of a degradable thermoplastic polylactic acid polymer PLA, and a starting temperature of 120 ° C was prepared.
- the partially bio-based epoxy resin is prepared into a powder having a powder particle size of between 10 ⁇ m and 20 ⁇ m.
- sisal fiber non-woven felt having an areal density of 100 g/m2 was prepared by bonding.
- the ramie nonwoven felt was impregnated with a 2% aqueous solution of KH570 silane coupling agent. After the fabric was dried, the nonwoven felt was impregnated with a 10% aqueous solution of nitrogen-phosphorus flame retardant and allowed to dry.
- the partially bio-based epoxy resin is prepared into a powder having a powder particle size of between 10 ⁇ m and 20 ⁇ m.
- the ramie nonwoven felt was impregnated with a 2% aqueous solution of KH570 silane coupling agent. After the fabric was dried, the nonwoven felt was impregnated with a 15% aqueous solution of nitrogen-phosphorus flame retardant and allowed to dry.
- a microcapsule blowing agent having a particle diameter of 10 ⁇ m to 20 ⁇ m is prepared.
- the suede is polyacrylonitrile, microcapsules filled with alkanes, and the initiation temperature is 150 °C.
- the particle size is between 10 ⁇ m and 20 ⁇ m.
- the (3) gum foaming agent is added to the epoxy resin powder according to (4), and the addition ratio is 12%, and the two are sufficiently stirred by a high-speed mixer to obtain a two-component powder. It is expected to be used.
- a jute fiber non-woven felt having an areal density of 260 g/m2 was prepared and used.
- the ramie nonwoven felt was impregnated with a 3% aqueous solution of KH550 silane coupling agent. After the fabric was dried, the nonwoven felt was impregnated with a 12% aqueous solution of nitrogen-phosphorus flame retardant and allowed to dry.
- a microcapsule blowing agent having a particle diameter of 10 ⁇ m to 20 ⁇ m is prepared.
- the molting is a degradable polylactic acid, a microcapsule filled with an alkane, and the initiation temperature is 180 °C.
- the partially bio-based epoxy resin is prepared into a powder having a powder particle size of between 10 ⁇ m and 20 ⁇ m.
- Example 25 A ramie non-woven mat having an areal density of 120 g/m2 was prepared by using a chopped ramie fiber by a bonding method.
- the ramie nonwoven felt was impregnated with a 2% aqueous solution of KH560 silane coupling agent. After the fabric was dried, the nonwoven felt was impregnated with a 10% aqueous solution of nitrogen-phosphorus flame retardant and allowed to air dry.
- microcapsule foaming agent having a particle diameter of 10 ⁇ m, a skin of a degradable thermoplastic polylactic acid polymer PLA, and a starting temperature of 150 °C.
- the partially bio-based epoxy resin is prepared into a powder having a powder particle size of between 10 ⁇ m and 20 ⁇ m.
- a plant fiber fabric comprising a matrix resin and a continuous plant fiber distributed in the matrix resin, wherein: the plant fiber is subjected to surface modification pretreatment, and the surface modification treatment comprises using a coupling agent. Coupling treatment and/or surface flame retardant treatment using a flame retardant.
- the coupling agent comprises a silane coupling agent or a potassium permanganate solution
- the silane coupling agent is preferably selected from the group consisting of vinyl triethoxylate.
- the flame retardant is a nitrogen-phosphorus flame retardant, such as a ZR-PZM type intumescent flame retardant, and a TZ-01 nitrogen-phosphorus system general resistance Fuel, TPU-1, Newray 911.
- a laminate having a laminate structure comprising:
- a plant fiber fabric layer comprising a matrix resin and a continuous plant fiber distributed in the matrix resin, characterized in that: the plant fiber is subjected to surface modification pretreatment, and the surface modification treatment comprises coupling treatment using a coupling agent And/or surface flame retardant treatment using a flame retardant,
- At least one layer selected from the group consisting of:
- a layer of polymeric foam or rubber material is provided.
- the coupling agent comprises a silane a coupling agent or a permanganate solution, preferably selected from the group consisting of ethyl ethoxylated triethoxysilane, ⁇ -(mercapto acryloxy)propyltrimethoxysilane, ⁇ -aminopropyl Triethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane.
- the flame retardant is a nitrogen-phosphorus flame retardant, such as a ZR-PZM type intumescent flame retardant (from Qingzhou Chemical Plant, Shandongzhou), TZ-01 Nitrogen and phosphorus general flame retardant (from Fuyang Tianyang Trading Co., Ltd.), TPU-1 (from Lianyungang Fanghe Chemical Co., Ltd.), Newray 911 (from Changzhou Newley Flame Retardant Factory).
- a nitrogen-phosphorus flame retardant such as a ZR-PZM type intumescent flame retardant (from Qingzhou Chemical Plant, Shandongzhou), TZ-01 Nitrogen and phosphorus general flame retardant (from Fuyang Tianyang Trading Co., Ltd.), TPU-1 (from Lianyungang Fanghe Chemical Co., Ltd.), Newray 911 (from Changzhou Newley Flame Retardant Factory).
- polymer fiber nonwoven fabric or fabric comprises polyimide fiber, polybenzimidazole, polybenzoxazole, polylactic acid, polyethylene, polypropylene Or nylon fiber nonwoven or fiber fabric.
- the polymer foam or rubber material comprises polyimide, polydecyl acrylimide, polyvinyl chloride, polyethylene, polypropylene, Epoxy resin, polyurethane resin, phenolic resin foam or butylbenzene, cyanogen, cis-butyl, polysulfide or silicone rubber.
- a method of preparing a laminate having a plant fiber fabric comprising:
- Plant fiber fabrics and/or glass fiber, aramid fiber or carbon fiber nonwoven fabric or fabric and/or polymer fiber nonwoven fabric or fabric are pre-impregnated in a matrix resin to prepare a plant fiber fabric pre-prepared Dipping and/or glass fiber, aramid fiber or carbon fiber nonwoven prepreg and/or polymer fiber nonwoven fabric or fabric prepreg;
- the vegetable fiber fabric prepreg is laminated with at least one layer to form a laminate structure, the at least one layer being selected from the group consisting of: glass fiber, aramid fiber or carbon fiber nonwoven fabric or fabric prepreg a polymer, a polymer fiber nonwoven fabric or a fabric prepreg or a polymer foam or rubber material layer; and a curing and molding process for the laminate structure to prepare the laminate, the molding process being, for example, hot pressing Can process or molding process.
- the coupling agent comprises a silane coupling agent or a potassium permanganate solution
- the silane coupling agent is preferably selected from the group consisting of vinyltriethoxysilane and ⁇ -(fluorenyl) Acryloyloxy)propyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane.
- the flame retardant is a nitrogen-phosphorus flame retardant, such as a ZR-PZM type intumescent flame retardant (from Qingzhou Chemical Plant, Shandongzhou), TZ-01 nitrogen and phosphorus It is a general-purpose flame retardant (from Fuyang Tianyang Trading Co., Ltd.), TPU-1 (from Lianyungang Fanghe Chemical Co., Ltd.), and Newray 911 (from Changzhou Newley Flame Retardant Factory).
- a nitrogen-phosphorus flame retardant such as a ZR-PZM type intumescent flame retardant (from Qingzhou Chemical Plant, Shandongzhou), TZ-01 nitrogen and phosphorus
- It is a general-purpose flame retardant (from Fuyang Tianyang Trading Co., Ltd.), TPU-1 (from Lianyungang Fanghe Chemical Co., Ltd.), and Newray 911 (from Changzhou Newley Flame Retardant Factory).
- the matrix resin comprises a phenolic resin, an epoxy resin or a polyester.
- the polymer fiber nonwoven fabric or fabric comprises polyimide fiber, polybenzimidazole, polybenzoxazole, polylactic acid, polyethylene , polypropylene or nylon fiber nonwoven or fabric,
- the polymeric foam comprises polyimide, polydecyl acrylimide, polyvinyl chloride, polyethylene, polypropylene, epoxy,
- the polyurethane resin, the phenolic resin foam, or the rubber material includes butylbenzene, cyanogen, cis-butyl, polysulfide or silicone rubber.
- a method of making a laminate having a plant fiber fabric, the laminate comprising a layer of plant fiber fabric comprising an unsaturated polyester matrix and continuous plant fibers distributed in an unsaturated polyester matrix characterized by: The plant fiber is subjected to a surface modification treatment comprising a coupling treatment using a coupling agent and/or a surface flame-retardant treatment using a flame retardant, at least one layer, The at least one layer is selected from the group consisting of: glass fiber, aramid fiber or carbon fiber nonwoven fabric or fabric, preferably distributed in an unsaturated polyester matrix; polymer fiber nonwoven fabric or fabric, preferably Distributed in an unsaturated polyester matrix; or a layer of polymeric foam or rubber material,
- the method includes:
- the surface-modified pre-treated plant fiber fabric and/or glass fiber, aramid fiber or carbon fiber nonwoven fabric or fabric and/or polymer fiber nonwoven fabric or fabric and the unsaturated polyester matrix are formed by direct liquid curing Process, preparing the laminate.
- a plant fiber reinforced biomass resin thin layer material characterized in that: the biomass resin thin layer material is composed of a reinforcing material and a structural binder, and the reinforcing material accounts for the mass fraction of the biomass resin thin layer material. 10 to 70%, the structural binder accounts for 30 to 90% of the mass of the biomass resin thin layer material, and the reinforcing material refers to continuous plant fiber fabric, non-woven fabric, mesh yarn or non-continuous plant fiber non-woven fabric.
- structural binder refers to a biomass rosin-based epoxy resin prepolymer.
- the plant fiber-reinforced biomass resin thin layer material according to Item 31 characterized in that the surface density of the reinforcing material is from 20 g/m 2 to 300 g/m 2 .
- the plant fiber reinforced biomass resin thin layer material according to Item 33, characterized in that: the epoxy resin curing agent is quinone nadic anhydride, mercapto hexahydrophthalic anhydride, mercaptotetrahydrophthalic anhydride, dicyandiamide or
- the product has the noble boron boron heterocyclic boronamine complex of #594.
- the plant fiber reinforced biomass resin thin layer material according to Item 33 characterized in that the curing accelerator is DMP-30, boron trifluoride monoethylamine or 1,1,-dimercapto-3-benzene.
- the curing accelerator is DMP-30, boron trifluoride monoethylamine or 1,1,-dimercapto-3-benzene.
- Base urea is DMP-30, boron trifluoride monoethylamine or 1,1,-dimercapto-3-benzene.
- thermoplastic polymer is a phenolphthalein modified polyether ketone, a phenolphthalein modified polyether sulfone or a phenolphthalein modified polyetherimide, and a particle size For 50 mesh - 100 mesh.
- the prepared biomass rosin-based epoxy resin prepolymer is uniformly coated on the surface of the release paper while being coated on the surface of the release paper by heating the pressure roller
- the biomass rosin-based epoxy resin prepolymer is transferred to the reinforcing material, and the biomass rosin-based epoxy resin prepolymer accounts for 30 to 90% of the total mass of the reinforcing material, and is placed at room temperature after storage or refrigerated.
- a vegetable fiber reinforced biomass resin thin layer material protected on both sides with release paper is obtained.
- a plant fiber reinforced biomass resin-based foam board wherein the foam board is reinforced with ramie, linen, hemp, and jute plant fibers, and is provided with an intumescent biomass resin and a biomass epoxy resin, wherein the weight of the reinforcing fiber The content is 40%-60%.
- a method for producing a plant fiber reinforced biomass resin-based foam sheet comprising:
- the preparation of a plant fiber reinforced biomass resin based foam board according to item 39 The method is characterized in that the fiber mat is a monofilament dispersion felt having a thickness of between 0.3 mm and 4 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本发明提供一种含有植物纤维织物的复合材料及其制备方法。所述复合材料包括基体树脂与分布在所述基体树脂中的植物纤维织物,其中:所述植物纤维织物的植物纤维进行了表面改性预处理,所述表面改性处理包括使用偶联剂的偶联处理和/或使用阻燃剂的表面阻燃处理,所述基体树脂包括生物质基体树脂。所制备的复合材料具有绿色环保、阻燃、吸声等特性,可作为舱内或内饰部件使用,应用于飞机、高速列车、汽车的内饰及家具等领域。
Description
一种含有植物纤维织物的复合材料及其制备方法 技术领域
本发明涉及一种含有植物纤维织物的复合材料及其制备方法。 背景技术
复合材料具有比强度、 比刚度高的优点, 因此作为轻质高强的结构材料 得到广泛应用。但是,某些特定的应用也需要一些功能性的复合材料层合板, 比如螺旋桨飞机中的飞机特定部位的包覆防护层。 一方面, 该复合材料应能 够吸声、 减震、 降噪; 另一方面, 它应能够抗冲击损伤, 比如承受意外的碎 片撞击飞机的机身。 因此该复合材料即具有吸声、 减震、 隔热、 降噪等功能 也能作为弱承力结构。 复合材料的其他典型应用包括航空、 地面交通、 轮船 的内饰等。 作为复合材料的一种, 泡沫材料具有密度低, 力学性能适中而可 调的优点。 取决于选材与结构设计, 这种材料还可以具有减震降噪、 低导热 和隔热、 填充等功能用途, 因此可以应用在舱内或内饰领域, 包括车辆、 船 舶、 列车、 飞机、 家装家具等。 但刚度和强度不够高是这些泡沫材料的共性 特征。
通过纤维、特别是长纤维或连续纤维增强,可以大幅度提高上述泡沫材 料的力学性能, 为此, 产生了一些三组分的复合材料泡沫板材技术。 美国发 明专利 《树脂浸渍纤维复合材料的制备方法》(Method for the production of fiber composite materials impregnated with resin, 专利号 4,483,889 ), 公布了 一种用纤维、可固化热固性树脂和可发性微球三组分材料制备网状复合材料 泡沫的技术;美国发明专利《可发性微球的制备技术〉〉( Process for expandable microspheres, 专利号 4,513,106 ), 公布了一种以可发性高分子包裹热发泡剂 的微球技术; 美国发明专利《可发性空心粒子》( Expandable hollow particles, 专利号 5,834,526 ),公布了一种以可发性高分子为壳包裹发泡剂的微粒技术。 前, 这种板材已实现商品化。
但是,上述发明中所用到的连续纤维均为玻璃纤维、碳纤维或者有机合 成纤维等结构致密的传统纤维材料,不具有优良的减震降噪、吸声隔声性能, 无法用在一些具有明确减震降噪要求的地方, 如发动机室内壁及地板等。
植物纤维来自天然的作物。传统上植物纤维被用于制造纸张、布或绳索 等。 某些植物纤维的中空结构使得其具有显著的吸声、 减震、 隔热、 降噪和 阻尼特性, 具有优越的比强度和比刚度, 且价格相对低廉, 可作为环境友好 绿色材料应用于复合材料中。
但是在复合材料中 ,植物纤维和树脂基体界面相容性差 ,影响了复合材 料的力学性能, 而且易燃, 不利于应用在有防火要求的环境中。
发明专利"植物纤维复合玻璃钢材料及其制备工艺" ( 申请号 200610150159.7 )、发明专利"一种植物纤维聚丙烯复合材料及制备方法 "(申 请号 200410028501.7 )、 发明专利"聚乙烯纤维-植物纤维复合材料的热压制 造方法 "(申请号 200810064906.4 )、 发明专利"一种植物纤维复合人造板及 其生产工艺"(申请号 200610062751.1 ) 中, 植物纤维以粉末或短纤维的方 式填充或增强复合材料,植物纤维并没有经过预处理,因此其界面相容性差, 复合材料制品力学性能较低。
纤维-金属层合板是一类新型的混杂增强结构复合材料, 国际上统称为 FML ( Fiber-Metal Laminate )层合板, 其典型代表是铝合金-芳纶纤维叠层复 合材料层合板, 国际上称为 GLARE ( GLAss-REinforced aluminum )。 美国发 明专利 ( US.5,039,571, US. 5,547,735 和 US. 5,219,629 ) 和参考文献 ( Vogelesang, L., Development of a New Hybrid Material (ARALL) for Aircraft Structure, Ind. Eng. Chem. Prod. Res. Dev., 1983, pp. 492-496 )都详细研究了叠 层复合材料层合板的制备方法。 目前, GLARE 已广泛地应用在 A380飞机 的上机身壳体上。 发明内容
本发明提出了一种含有植物纤维织物的复合材料及其制备方法。
根据本发明的一个方面,提供了一种复合材料, 包括基体树脂和分布在 所述基体树脂中的植物纤维织物, 其中: 所述植物纤维织物的植物纤维进行 了表面改性预处理, 所述表面改性处理包括使用偶联剂的偶联处理和 /或使 用阻燃剂的表面阻燃处理, 所述基体树脂为生物质基体树脂。
在一个示例中, 所述生物质基体树脂为松香基环氧树脂和 /或膨胀型生 物质树脂。
在一个示例中, 所述植物纤维选自苎麻、 黄麻、 红麻、 大麻、 剑麻或亚
麻。 所述植物纤维织物为连续的植物纤维的织物、 无纬布、 网格紗或非连续 植物纤维的无纺布。
在一个示例中, 所述偶联剂选自硅烷偶联剂或高锰酸钾溶液, 所述硅烷 偶联剂选自乙烯基三乙氧基硅烷、 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷或 γ- ( 2, 3-环氧丙氧)丙基三曱氧基硅烷中的一种。 所述阻燃剂为氮磷系阻燃剂, 所述氮磷系阻燃剂选自 ZR-PZM型膨胀阻燃 剂、 TZ-01氮磷系通用阻燃剂、 TPU- 1、 Newray 911。
在一个示例中, 所述复合材料还包括至少一附加层, 所述至少一附加层 选自下述的层构成的组: 所述至少一附加层选自下述的层构成的组: 玻璃纤 维、 芳纶纤维或者碳纤维无纺布或织物, 优选地分布在所述基体树脂中; 高 分子纤维无纺布或织物, 优选地分布在所述基体树脂中, 所述高分子纤维无 纺布或织物包括聚酰亚胺纤维、聚苯并咪唑、聚苯并恶唑、聚乳酸、聚乙烯、 聚丙烯或尼龙纤维无纺布或纤维织物; 以及高分子泡沫或橡胶材料, 所述高 分子泡沫包括聚酰亚胺、 聚曱基丙烯酰亚胺、 聚氯乙烯、 聚乙烯、 聚丙烯、 环氧树脂、聚氨酯树脂、酚醛树脂泡沫材料, 所述橡胶材料包括丁苯、丁氰、 顺丁、 聚硫或硅橡胶。
在一个示例中, 所述植物纤维的面密度为 20 g/m2 ~ 300 g/m2, 所述基 体树脂为生物质松香基环氧树脂,所述植物纤维在所述复合材料中的含量为
10 - 70重量%, 所述基体树脂在复合材料的中所占的含量为 30 ~ 90重量%。
在一个示例中, 所述复合材料是泡沫板材, 所述基体树脂为膨胀型生物 质树脂以及生物质环氧树脂, 所述植物纤维在所述复合材料中的含量为
40%-60重量%。
根据本发明的一个方面,提供了一种具有植物纤维织物的复合材料的制 备方法。 该方法包括: 制备植物纤维织物, 使用偶联剂和 /或阻燃剂对于所 述植物纤维织物的植物纤维表面进行表面改性预处理;制备生物质基体树脂 预聚物;将表面改性预处理后的植物纤维织物预浸渍在所述生物质基体树脂 预聚物中; 以及将浸渍后的植物纤维织物进行固化和成型工艺, 从而制备所 述复合材料。
在使用为高锰酸钾溶液的所述偶联剂进行所述表面改性预处理之后,干 燥所述植物纤维织物,并用水浸渍所述植物纤维织物以去除残留的高锰酸钾 溶液, 再次干燥所述植物纤维织物。
所述制备生物质基体树脂预聚物的步骤包括在预定温度下将松香基环 氧树脂、 环氧树脂固化剂、 固化促进剂和热塑性聚合物混合并冷却, 得到生 物质松香基环氧质树脂预聚物。
所述松香基环氧树脂、环氧树脂固化剂、 固化促进剂和热塑性聚合物的 重量比例为: 松香基环氧树脂: 环氧树脂固化剂: 固化促进剂: 热塑性聚合 物 =100份: 10 ~ 100份 :0.5 ~ 3份: 10 ~ 50份。 环氧树脂固化剂为曱基纳迪克 酸酐、 曱基六氢苯酐、 曱基四氢苯酐或双氰胺或噁硼杂环硼胺络合物。 固化 促进剂为 DMP-30或三氟化硼单乙胺或 1,1, -二曱基 -3-苯基脲。 热塑性聚合 物为酚酞改性聚醚酮、 酚酞改性聚酸砜或酚酞改性聚醚酰亚胺。
所述将表面改性预处理后的植物纤维织物预浸渍在所述基体树脂预聚 物中的步骤包括:将所述生物质 香基环氧质树脂预聚物均勾地涂覆在脱模 纸的表面上;以及通过加热加压辊将涂覆在所述脱模纸表面上的生物质松香 基环氧质树脂预聚物转移到所述植物纤维织物上。
所述制备植物纤维织物的步骤包括制备植物纤维毡,并使用偶联剂和阻 燃剂对于所述植物纤维毡进行表面改性预处理。
所述制备生物质基体树脂预聚物的步骤包括: 制备微胶嚢发泡剂, 包括 制备微胶嚢的嚢皮; 在所述嚢皮内充烷烃并加热, 使得微胶嚢体积膨胀; 将 马来松香基环氧树脂固化剂与环氧树脂混合、碾磨, 制备成部分生物质化的 环氧树脂微粉; 在所述环氧树脂微粉中加入所述微胶嚢发泡剂, 从而配备水 基悬浮液; 以及将经过表面改性预处理的植物纤维毡放置在所述水基悬浮液 中浸渍、 晾干, 制备发泡预浸料。
所述将浸渍后的植物纤维织物进行固化和成型工艺的步骤包括:将所述 发泡预浸料加热并保温, 使所述植物纤维毡膨胀, 形成植物纤维增强的生物 质树脂复合材料形成的泡沫板材。
在上述的示例中, 制备所述植物纤维毡的步骤釆用针刺技术或粘接技 术, 所述植物纤维毡的厚度为 0.1-5mm。 所述微胶嚢的嚢皮由聚乳酸、 硅橡 胶、 聚丙烯腈或聚曱基丙烯酸曱酯制成, 所述微胶嚢发泡剂的粒径为 5μηι-50μηι, 所述微胶嚢的加热温度为 100°C -180°C , 所述微胶嚢体积膨胀了 50-100倍。 所述环氧树脂微粉的粒径为 10μηι-100μηι。 所述微胶嚢发泡剂在 所述环氧树脂微粉中的含量为 5%-15重量%。 将所述发泡预浸料加热到 100 °C -180°C , 保温 10min-15min, 使所述植物纤维毡的厚度膨胀了 5-8倍。
根据本发明,提供了一种植物纤维增强的生物质树脂基的绿色生物质复 合材料, 代替现有的玻璃纤维或其它化学纤维界面增强材料。 可以利用该复 合材料制备绿色复合材料制件,规模化地生产植物纤维增强的生物质树脂基 的绿色复合材料产品, 最大程度地提高复合材料中可再生资源所占的比例。
根据本发明, 以可再生的纯天然植物纤维材料为基本增强材料,通过合 适的阻燃、 抗老化和界面处理, 充分发挥其空心、 轻质的力学和声学特性; 同时又以可再生的生物质树脂作为可发性微胶嚢以及可固化型或可热成型 的树脂材料, 设计制备连续植物纤维增强的生物质树脂基复合材料泡沫板 材。 增强材料全部釆用天然、 可再生的植物资源, 主要使用性能同比现有的 成熟材料, 但具有更优异的比强度和比刚度力学性能。 生物质树脂的可发性 微胶嚢和浸渍树脂主要来自天然的植物资源,基本性能和使用性能可比现有 的成熟材料。 由于大多数植物纤维的多尺度多层次的多孔结构特征、 以及空 心结构特征, 因此这种复合材料泡沫板材具有更优越的阻尼和声学性能, 如 减震、 降噪、 吸声、 隔声等。 植物纤维的隔热性能好, 配合可发性粒子形成 的膨胀多孔结构, 使得这种复合材料泡沫板材的热绝缘性和保温性能好。 由 于天然植物纤维和生物质树脂的应用, 这种复合材料泡沫板材可降解, 而且 其主要原材料可再生, 因而环境友好, 所有这些优点和特点是传统连续纤维 增强的复合材料泡沫板材所没有的。
根据本发明, 利用植物纤维与芳纶纤维、 玻璃纤维、碳纤维或者其他高 分子纤维的无纺布或织物、高分子泡沫或高分子橡胶等薄层材料进行周期性 或非周期的层状化混杂复合, 赋予这种叠层复合材料层合板以吸声、 减震、 隔热、 阻尼、 抗冲击、 降噪等特殊功能, 同时兼顾一定的比强度和比刚度性 质, 可以应用在航空、 轨道交通、 汽车、 建筑等领域的弱承力或非承力的场 合, 包括内饰结构等。 使用该植物纤维织物的新型层合板称为植物纤维混杂 复合材料层合板 ( Hybrid Natural fiber Laminate , 简称为 HyNaL )。 具体实施方式
现将参考其中显示本发明的实施例的附图在其后更加全面地描述本发 明。 然而, 本发明可以以许多不同的形式实现且不应解释为限于这里阐述的 实施例。 而是, 提供这些实施例使得本公开充分和完整, 且向那些本领域的 技术人员全面地传达本发明的范围。下面通过具体的实施例对本发明做进一
步详细说明,
或作为本发明的变形中的任意期望的多个特征的组合实现。 实施例 1 : 酚酸树脂基苎麻纤维织物
根据实施例 1 的酚醛树脂基苎麻纤维织物包括酚醛树脂基体和分布在 酚酸树脂中的连续苎麻纤维。釆用乙烯基三乙氧基硅烷对于苎麻纤维进行了 偶联处理。
根据实施例 1的酚醛树脂基苎麻纤维织物釆用下述的方法制备。
首先制备连续的苎麻纤维织物, 该织物可以选择商品化的苎麻纤维织 物。 选择乙婦基三乙氧基硅烷(商品牌号为 KH550 )作为硅烷偶联剂, 配制 浓度为 2 %的偶联剂水溶液, 用其浸渍苎麻纤维织物, 干燥后得到偶联处理 的苎麻纤维织物。
接着, 选择酚醛树脂 (商品牌号为 GP4141 ), 预浸渍上述的偶联处理的 苎麻纤维织物, 获得相应的苎麻纤维织物酚酸树脂预浸料。
最后, 按照 GP4141酚酸树脂预浸料的固化工艺参数, 进行固化和成型 工艺来制备酚醛树脂基苎麻纤维织物。
按照常用的材料标准(例如 ASTM D3039、 ASTM D6641 , ASTM D790 或 ASTM D2344 等), 测试该酚醛树脂基苎麻纤维织物的层间剪切强度 ( ILSS )、 弯曲强度、 模量性能和饱和吸水率 (在 50°C )。
上述层压板的测试结果表明,酚醛树脂基苎麻纤维织物的性能得到显著 提高。 其 ILSS值从未偶联处理的 10 MPa提高到偶联改性后的 16 MPa; 其 弯曲强度和模量分别从未偶联处理的 100 MPa和 8.5 GPa提高到偶联处理后 的 120 MPa和 9.0 GPa。 而饱和吸水率约等于 5%。
实施例 2: 酚酸树脂基红麻纤维织物
根据实施例 2 的酚醛树脂基红麻纤维织物包括酚醛树脂基体和分布在 酚酸树脂中的连续红麻纤维。 釆用高锰酸钾对于红麻纤维进行了偶联处理。
根据实施例 2的酚醛树脂基红麻纤维织物釆用下述的方法制备。
首先制备连续的红麻 ( Kenaf) 纤维织物, 该织物可以选择商品化的红 麻纤维织物。 用浓度为 1 %的高锰酸钾 ( KMn04 )水溶液浸渍上述的红麻纤 维织物, 在上述织物干燥后, 再用水浸渍以除去残留的高锰酸钾, 再次干燥 后得到偶联处理的红麻纤维织物。
接着, 选择酚醛树脂(商品牌号为 GP4141 ), 预浸渍上述的偶联处理的 植物纤维织物, 获得相应的红麻纤维织物酚酸树脂预浸料。
按照 GP4141酚醛树脂预浸料的固化工艺参数, 进行固化和成型工艺来 制备酚醛树脂基红麻纤维织物。
上述层压板的测试结果表明,酚醛树脂基红麻纤维织物的性能得到显著 提高。 其 ILSS值从未偶联处理的 7 MPa提高到偶联改性后的 10 MPa; 其弯 曲强度偶联处理前后不变, 为 68 MPa, 而其模量从未偶联处理的 7.0 GPa 提高到偶联处理后的 7.2 GPa。 而饱和吸水率约等于 6-7%之间。
实施例 3: 酚酸树脂基植物纤维织物
根据实施例 3 的酚醛树脂基植物纤维织物包括酚醛树脂基体和分别分 布在酚醛树脂中的连续苎麻( Ramie ),黄麻( Jute ),剑麻( Sisal )和红麻( Kenaf) 纤维。釆用乙烯基三乙氧基硅烷和高锰酸钾分别对于上述植物纤维进行了偶 联处理。
根据实施例 3的酚醛树脂基植物纤维织物釆用下述的方法制备。
首先分别制备连续的苎麻(Ramie )、 黄麻(Jute )、 剑麻(Sisal )和红 麻(Kenaf ) 纤维织物, 上述植物纤维织物可以是商品化的。 选择浓度为 2 %的乙婦基三乙氧基硅烷(商品牌号为 KH550 )作为硅烷偶联剂水溶液来分 别浸泡以上植物纤维织物, 并且用浓度为 0.1 %高锰酸钾水溶液分别浸泡以 上植物纤维织物, 在干燥、 洗涤、 再次干燥工艺后, 得到八种不同偶联处理 的植物纤维织物。
接着, 选择酚醛树脂 (商品牌号为 GP4141 ), 浸渍上述八种偶联处理的 植物纤维织物, 分别获得相应的植物纤维酚酸树脂基预浸料。
最后, 按照 GP4141酚酸树脂预浸料的固化工艺参数, 进行固化和成型 工艺来分别制备相应的酚酸树脂基植物纤维织物。
按照上述实施例 1提及的常用的材料标准,测试上述的植物纤维织物的 层间剪切强度( ILSS )。上述的酚醛树脂基植物纤维织物的 ILSS值如下表 1。
表 1 酚酸树脂基植物纤维织物的层间剪切强度
GP4141 酚醛树 未 偶 联 处 理 高锰酸钾处理 KH550硅烷偶联 脂基植物纤维 ( MPa ) ( MPa ) 处理(MPa ) 剑麻 5.79 6.22 7.49
苎麻 9.63 14.95 15.63
红麻 7.20 8.24 9.89
黄麻 8.78 9.57 8.39
测试结果表明, 就上述的植物纤维织物的层间剪切强度(ILSS ) 而言, ILSS值排序为: 酚醛树脂基苎麻纤维织物 > 酚醛树脂基黄麻纤维织物 > 酚酸树脂基红麻纤维织物 >酚醛树脂基剑麻纤维织物,而 KH550硅烷处理 的效果优于高锰酸钾处理的效果。 而且 KH550硅烷处理的酚酸树脂基植物 纤维织物的 ISS值近似或大于传统的酚醛树脂基玻璃纤维织物的 ILSS值 ( 7.84 MPa )。
实施例 4: 具有阻燃性的酚酸树脂基苎麻纤维织物
实施例 4的酚醛树脂基苎麻纤维织物与实施例 1的织物基本相同,其区 别在于对于苎麻纤维进行了阻燃处理,从而提供了一种具有改善的界面相容 性的和阻燃性的双功能的连续植物纤维织物。
根据实施例 4 的具有阻燃性的酚酸树脂基苎麻纤维织物釆用下述的方 法制备。
首先,制备连续的苎麻纤维织物,该织物可以选择商品化的苎麻纤维织 物。 选择乙婦基三乙氧基硅烷(商品牌号为 KH550 )作为硅烷偶联剂, 配制 浓度为 2 %的偶联剂水溶液, 用其浸渍苎麻纤维织物, 干燥后得到偶联处理 的苎麻纤维织物。 然后选择阻燃剂(例如来自上海旭森消烟阻燃剂有限责任 公司的一号液体阻燃剂), 配制 10-20 %的阻燃剂水溶液, 浸渍偶联处理后的 苎麻纤维织物, 干燥后可以得到一种相应的具有阻燃性的苎麻纤维织物。
接着, 根据实施例 1 , 选择酚酸树脂 (商品牌号为 GP4141 )进行预浸 渍和固化成型工艺, 制备具有阻燃性的酚醛树脂基苎麻纤维织物。
对于该阻燃性的酚醛树脂基苎麻纤维织物进行燃烧测试, 测试结果如 下:点燃时间 60秒,火焰温度 840°C ,燃烧时间约 2分钟,燃烧长度约 160mm。 在燃烧测试中, 无燃烧滴落物。
在该阻燃剂质量浓度分数约 10%时, 上述经阻燃处理的苎麻纤维织物 的总热译放达到约 50 kw min/m2, 而峰值热释放达到约 90 kw/m2; 在阻燃剂 质量浓度分数约 20%时,上述经阻燃处理的苎麻纤维织物的总热译放达到约 22 kw min/m2, 而峰值热译放达到约 60 kw/m2。 这两种材料均达到民用飞机 内饰件(例如波音公司 OSU标准) 的阻燃基本要求。
按照上述实施例 1提及的常用的材料标准,测试上述的植物纤维织物的
力学性能。 该具有阻燃性的酚酸树脂基苎麻纤维织物的拉伸强度约 60 MPa, 层间剪切强度约 15 MPa, 压缩强度约 50 MPa, 弯曲强度和模量分别约 100 MPa和 8.5 GPa。
实施例 5: 具有阻燃性的酚醛树脂基苎麻纤维织物和具有阻燃性的酚醛 树脂基黄麻纤维织物
根据实施例 5 的酚醛树脂基苎麻纤维织物包括酚醛树脂基体和分布在 酚酸树脂中的连续苎麻纤维。釆用乙烯基三乙氧基硅烷对于苎麻纤维进行了 偶联处理并釆用氮磷阻燃剂对于苎麻纤维进行了阻燃处理。根据实施例 5的 酚醛树脂基黄麻纤维织物包括酚醛树脂基体和分布在酚醛树脂中的连续黄 麻纤维。釆用乙婦基三乙氧基硅烷对于黄麻纤维进行了偶联处理并釆用氮磷 阻燃剂对于黄麻纤维进行了阻燃处理。
根据实施例 5 的酚醛树脂基苎麻纤维织物和酚酸树脂基黄麻纤维织物 釆用下述的方法制备。
首先分别制备连续的苎麻纤维织物和黄麻纤维织物,上述织物可以选择 商品化的苎麻纤维织物和黄麻纤维织物。 选择乙烯基三乙氧基硅烷 (商品牌 号为 KH550 )作为硅烷偶联剂, 配制浓度为 2 %的偶联剂水溶液, 用其分别 浸渍苎麻纤维织物和黄麻纤维织物,干燥后分别得到偶联处理的苎麻纤维织 物和黄麻纤维织物。
然后选择一种氮磷阻燃剂 (例如商品牌号 Newray 911 ), 配制 7-12 %的 阻燃剂水溶液, 分别浸渍偶联处理后的苎麻纤维织物和黄麻纤维织物, 干燥 后分别得到具有阻燃性的苎麻纤维织物和黄麻纤维织物。
选择酚酸树脂(商品牌号为 Cycom 6070 )进行预浸渍和固化成型工艺, 制备相应的植物纤维织物的酚酸树脂基预浸料。
最后, 按照 Cycom 6070酚醛树脂预浸料的固化工艺参数, 进行固化和 成型工艺来分别制备具有阻燃性的苎麻纤维织物和黄麻纤维织物。
按照 ASTM材料标准, 测试该苎麻纤维织物的垂直燃烧性能。 发现在 该阻燃剂的浓度质量分数约为 11%时,经上述处理的苎麻纤维织物的燃烧时 间短于 15秒, 燃烧长度约 40mm, 无燃滴物; 在该阻燃剂浓度质量分数约 为 12%时, 经上述处理的黄麻纤维织物的燃烧时间短于 15秒, 燃烧长度约 38mm, 也无燃滴物。 这两种材料具有较好的阻燃效果。
实施例 6: 具有阻燃性的聚酯基苎麻纤维织物
根据实施例 6 的聚酯基苎麻纤维织物分别包括聚酯基体和分布在聚酯 中的连续苎麻纤维。 釆用 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷对于苎麻进 行了偶联处理并釆用膨胀性氮磷阻燃剂对于苎麻纤维进行了阻燃处理。
根据实施例 6的聚酯基苎麻纤维织物釆用下述的方法制备。
首先制备连续的苎麻纤维织物,上述织物可以选择商品化的苎麻纤维织 物。 选择 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷(商品牌号 ΚΗ570 )作为硅 烷偶联剂, 配制浓度为 2 %的偶联剂水溶液, 用其分别浸渍苎麻纤维织物, 干燥后得到偶联处理的苎麻纤维织物。
然后选择一种膨胀性氮磷阻燃剂 (商品牌号 ZR-PZM ), 配制 14 %的阻 燃剂水溶液, 浸渍偶联处理后的苎麻纤维织物, 干燥后可以得到一种相应的 具有阻燃性的苎麻纤维织物。
接着, 选择一种阻燃不饱和聚酯 (商品牌号为 Synolite9001 ), 通过与 上述的苎麻纤维织物的直接液态成型工艺 , 制备聚酯基苎麻纤维织物。
然后按照上述实施例 1提及的常用的材料标准,测试该聚酯基苎麻纤维 织物的拉伸性能和弯曲性能, 同时对比了未作偶联和阻燃处理的苎麻纤维织 物的性能, 在偶联处理和阻燃处理前, 该苎麻纤维织物的拉伸强度和弯曲强 度分别为 95 MPa和 156 MPa; 在上述的偶联处理和阻燃处理后, 该苎麻纤 维织物的拉伸强度和弯曲强度分别提高为 103MPa和 176 MPa。
实施例 7: 具有阻燃性的环氧树脂基苎麻纤维织物
根据实施例 7 的环氧树脂基苎麻纤维织物分别包括环氧树脂基体和分 布在环氧树脂中的连续苎麻纤维。 釆用 γ- ( 2, 3-环氧丙氧)丙基三曱氧基硅 烷对于苎麻纤维进行了偶联处理而环氧树脂基体本身具有阻燃性。
根据实施例 7的环氧树脂基苎麻纤维织物釆用下述的方法制备。
首先制备连续的苎麻纤维织物,上述织物可以选择商品化的苎麻纤维织 物。 选择 γ- ( 2, 3-环氧丙氧) 丙基三曱氧基硅烷(商品牌号 ΚΗ560 )作为 硅烷偶联剂, 配制浓度为 2 %的偶联剂水溶液, 用其浸渍苎麻纤维织物, 干 燥后得到偶联处理的苎麻纤维织物。
选择一种阻燃环氧树脂(商品牌号 3233 ),进行预浸渍和固化成型工艺, 制备苎麻纤维织物的环氧树脂基预浸料。
然后按照上述实施例 1提及的常用的材料标准,测试该苎麻纤维织物的 拉伸性能和弯曲性能, 同时对比了未作偶联的苎麻纤维织物的性能。 在偶联
处理前, 苎麻纤维织物的拉伸强度和弯曲强度分别为 105 MPa和 178 MPa; 在偶联处理改性后, 该苎麻纤维织物的拉伸强度和弯曲强度分别提高到 123 MPa和 186 MPa。
实施例 8: 苎麻纤维-芳纶纤维叠层复合材料
根据实施例 8的苎麻纤维 -芳纶纤维叠层复合材料具有叠层结构, 该叠 层结构包括了苎麻纤维层和芳纶纤维层。苎麻纤维层包括环氧树脂基体和分 布在环氧树脂基体中的连续苎麻纤维。芳纶纤维层包括环氧树脂基体和分布 在环氧树脂基体中的芳纶纤维。釆用乙婦基三乙氧基硅烷对于苎麻纤维进行 了偶联处理。
根据实施例 8 的苎麻纤维-芳纶纤维叠层复合材料釆用下述的方法制 备。
首先制备连续的苎麻纤维织物, 该织物可以选择商品化的苎麻纤维紗 线, 例如苎麻纤维紗线为单向的。 选择乙烯基三乙氧基硅烷(商品牌号为 KH550 )作为硅烷偶联剂, 配制浓度为 2 %的偶联剂水溶液, 用其浸渍苎麻 纤维织物, 干燥后得到偶联处理的苎麻纤维织物。 上述连续的苎麻纤维织物 的具体性能和优点请参看实施例 1。
接着, 选择环氧树脂(商品牌号为 SY-14A ), 釆用湿法预浸渍上述的偶 联处理的苎麻纤维织物, 获得相应的苎麻纤维织物环氧树脂预浸料。 釆用该 环氧 Φ ^脂, 湿法预浸渍芳纶纤维织物, 获得相应的芳纶纤维织物环氧 脂预 浸料。
将苎麻纤维织物环氧树脂预浸料层与芳纶纤维织物环氧树脂预浸料层 交替顺序叠置, 形成芳纶纤维 /苎麻纤维 /芳纶纤维 /苎麻纤维 /芳纶纤维的 5 层叠层结构, 从而得到外表面层为芳纶纤维的叠层预制件。 如果苎麻纤维织 物为单向的,则可以使得两层苎麻纤维环氧树脂预浸料中的苎麻纤维的取向 彼此正交, 从而增加整体强度。
釆用下述的热压罐固化成型工艺, 制备苎麻纤维-芳纶纤维叠层复合材 料。 将上述叠层预制件放置在罐体中, 在室温下对于罐体抽真空, 保持真空 压差不氐于 0.095MPa。 以 0.5°C/min ~ 2.0°C/min的速度升温至 80°C 士 2°C , 在接触压 (或抽真空 ) 下保温 10 min; 加压至 0.7MPa ~ 0.8MPa并保持 lh, 然后自然冷却至室温。 然后开罐取出固化的产品。
实施例 9: 黄麻纤维-酚醛泡沫-玻璃纤维叠层复合材料
根据实施例 9的黄麻纤维 -酚醛泡沫-玻璃纤维叠层复合材料具有叠层结 构, 该叠层结构包括了黄麻纤维层、 酚醛泡沫层和玻璃纤维层。 黄麻纤维层 包括环氧树脂基体和分布在环氧树脂基体中的连续黄麻纤维。玻璃纤维层包 括环氧树脂基体和分布在环氧树脂基体中的玻璃纤维。釆用乙婦基三乙氧基 硅烷对于黄麻纤维进行了偶联处理。
根据实施例 9的黄麻纤维 -酚醛泡沫-玻璃纤维叠层复合材料釆用下述的 方法制备。
首先制备连续的黄麻纤维织物。 选择硅烷偶联剂 (例如, 选择浓度为 2 %的乙婦基三乙氧基硅烷(商品牌号为 KH550 )或高锰酸钾水溶液偶联处理 该黄麻纤维织物, 并使用一种阻燃剂 (例如氮磷系阻燃剂)来阻燃处理该黄 麻纤维织物, 得到具有阻燃性的黄麻纤维织物。
将阻燃性的黄麻纤维织物层 /玻璃纤维织物 /酚醛泡沫 /玻璃纤维织物 /阻 燃性的黄麻纤维织物依次叠置于模具上,装入真空袋中,并注入环氧树脂(商 品牌号 3266 ), 并利用下述液态模塑工艺制备叠层预制件。 在室温下对于真 空袋抽真空, 真空压差不低于 O.lMPa, 以 l °C/min ~ 2°C/min的升温速度升 温至 40 °C左右, 从而将上述叠层浸渍在环氧树脂中。
接着, 通过下述固化成型工艺, 制备黄麻纤维 -酚醛泡沫-玻璃纤维叠层 复合材料。 将上述已完全浸渍了环氧树脂的预制件在同样的真空条件下固 化, 以 rC/min ~ 2°C/min的升温速度升温至 100 °C ~ 120 °C , 保温 2小时, 并自然冷却至室温。 打开真空袋去除固化后的产品。
实施例 10: 剑麻纤维-硅橡胶-碳纤维叠层复合材料
根据实施例 10的剑麻纤维 -硅橡胶-碳纤维叠层复合材料具有叠层结构, 该叠层结构包括了剑麻纤维层、硅橡胶和碳纤维层。 剑麻纤维层包括环氧树 脂基体和分布在环氧树脂基体中的连续剑麻纤维。釆用乙婦基三乙氧基硅烷 或高锰酸钾对于剑麻纤维进行了偶联处理,并用阻燃剂对于剑麻纤维进行了 阻燃处理。
根据实施例 10 的剑麻纤维-硅橡胶-碳纤维叠层复合材料釆用下述的方 法制备。
首先制备连续的剑麻纤维织物。 选择硅烷偶联剂 (例如, 选择浓度为 2 %的乙婦基三乙氧基硅烷(商品牌号为 KH550 )或高锰酸钾水溶液偶联处理 该剑麻纤维织物, 并使用一种阻燃剂 (例如氮磷系阻燃剂)来阻燃处理该剑
麻纤维织物, 得到具有阻燃性的剑麻纤维织物。
将两层阻燃剑麻纤维织物层 /碳纤维织物 /硅橡胶 /碳纤维织物 /两层阻燃 剑麻纤维织物依次叠置于模具上, 装入真空袋中, 并注入环氧树脂(商品牌 号 3266 ), 并利用下述液态模塑工艺制备叠层预制件。 在室温下对于真空袋 抽真空, 真空压差不低于 O.lMPa, 以 l °C/min ~ 2°C/min的升温速度升温至 40°C左右, 从而将上述叠层浸渍在环氧树脂中。
接着, 通过下述固化成型工艺, 制备剑麻纤维 -硅橡胶-碳纤维叠层复合 材料。 将上述已完全浸渍了环氧树脂的预制件在同样的真空条件下固化, 以 rC/min ~ 2°C/min的升温速度升温至 100°C - 120 °C ,保温 2小时, 并自然冷 却至室温。 打开真空袋去除固化后的产品。
实施例 11 : 苎麻纤维-黄麻纤维-玻璃纤维叠层复合材料
根据实施例 11 的苎麻纤维-黄麻纤维 -玻璃纤维叠层复合材料具有叠层 结构, 该叠层结构包括了苎麻纤维层、 黄麻纤维层和玻璃纤维层。 苎麻纤维 层包括环氧树脂基体和分布在环氧树脂基体中的连续苎麻纤维。黄麻纤维层 包括环氧树脂基体和分布在环氧树脂基体中的连续黄麻纤维。玻璃纤维层包 括环氧树脂基体和分布在环氧树脂基体中的玻璃纤维。釆用乙婦基三乙氧基 硅烷对于苎麻纤维和黄麻纤维分别进行了偶联处理。
根据实施例 11 的苎麻纤维-黄麻纤维 -玻璃纤维叠层复合材料釆用下述 的方法制备。
首先分别制备连续的苎麻纤维织物和黄麻纤维织物。 选择硅烷偶联剂
(例如, 选择浓度为 2 %的乙烯基三乙氧基硅烷(商品牌号为 KH550 )分别 偶联处理该苎麻纤维织物和黄麻纤维织物。
接着, 选择环氧树脂(商品牌号为 3233 ), 釆用湿法预浸渍上述的偶联 处理的苎麻纤维织物和黄麻纤维织物以及玻璃纤维,获得相应的苎麻纤维织 物环氧树脂预浸料和黄麻纤维织物环氧树脂预浸料以及玻璃纤维预浸料。
将上述的预浸料层交替顺序叠置于模具中 , 形成苎麻纤维 /黄麻纤维 /玻 璃纤维 /黄麻纤维 /苎麻纤维的 5层预制件。
釆用下述的模压固化成型工艺 , 制备苎麻纤维 -黄麻纤维-玻璃纤维叠层 复合材料。将预制件升温至 80 °C ± 2°C保温 lOmin,加压至 0.7MPa ~ 0.8MPa, 保持 2h, 然后自然冷却至室温, 取出固化的产品。
实施例 12: 亚麻纤维-聚氯乙烯泡沫叠层复合材料
根据实施例 12的亚麻纤维 -聚氯乙烯叠层复合材料具有叠层结构,该叠 层结构包括了亚麻纤维层和聚氯乙烯泡沫层。亚麻纤维层包括环氧树脂基体 和分布在环氧树脂基体中的连续亚麻纤维。釆用乙烯基三乙氧基硅烷对于亚 麻纤维进行了偶联处理, 釆用阻燃剂对于亚麻纤维进行了阻燃处理。
根据实施例 12 的亚麻纤维-聚氯乙烯叠层复合材料釆用下述的方法制 备。
首先制备连续的亚麻纤维织物。 选择硅烷偶联剂 (例如, 选择浓度为 2 %的乙婦基三乙氧基硅烷 (商品牌号为 KH550 )和阻燃剂分别偶联处理和阻 燃处理该亚麻纤维织物。
接着, 选择环氧树脂(商品牌号为 3233 ), 釆用湿法预浸渍上述的偶联 处理和阻燃处理的亚麻纤维织物, 获得相应的亚麻纤维织物环氧树脂预浸 料。
将上述的预浸料层和聚氯乙烯泡沫层板交替顺序叠置于模具中,形成亚 麻纤维 /聚氯乙烯 /亚麻纤维 /聚氯乙婦 /亚麻纤维的 5层预制件。
釆用模压固化成型工艺, 制备亚麻纤维 -聚氯乙烯叠层复合材料。
实施例 13: 亚麻纤维 -橡胶叠层复合材料
根据实施例 13的亚麻纤维-橡胶叠层复合材料具有叠层结构,该叠层结 构包括了亚麻纤维层和橡胶层。亚麻纤维层包括环氧树脂基体和分布在环氧 树脂基体中的连续亚麻纤维。釆用乙烯基三乙氧基硅烷对于亚麻纤维进行了 偶联处理, 釆用阻燃剂对于亚麻纤维进行了阻燃处理。
根据实施例 13的亚麻纤维-橡胶叠层复合材料釆用下述的方法制备。 首先制备连续的亚麻纤维织物。 选择硅烷偶联剂 (例如, 选择浓度为 2 %的乙婦基三乙氧基硅烷 (商品牌号为 KH550 )和阻燃剂分别偶联处理和阻 燃处理该亚麻纤维织物。
接着, 选择环氧树脂(商品牌号为 3233 ), 釆用湿法预浸渍上述的偶联 处理和阻燃处理的亚麻纤维织物, 获得相应的亚麻纤维织物环氧树脂预浸 料。
将上述的预浸料层和橡胶层板交替顺序叠置于模具中, 形成亚麻纤维 / 橡 ^/亚麻纤维 /橡胶 /亚麻纤维的 5层预制件。
釆用模压固化成型工艺, 制备亚麻纤维-橡胶叠层复合材料。
实施例 14: 剑麻纤维 -高分子泡沫叠层复合材料
根据实施例 14的剑麻纤维-高分子泡沫叠层复合材料具有叠层结构,该 叠层结构包括了剑麻纤维层和高分子泡沫。剑麻纤维层包括环氧树脂基体和 分布在环氧树脂基体中的连续剑麻纤维。釆用乙婦基三乙氧基硅烷对于剑麻 纤维进行了偶联处理, 釆用阻燃剂对于剑麻纤维进行了阻燃处理。
根据实施例 14 的剑麻纤维-高分子泡沫叠层复合材料釆用下述的方法 制备。
首先制备连续的剑麻纤维织物。 选择硅烷偶联剂 (例如, 选择浓度为 2 %的乙婦基三乙氧基硅烷 (商品牌号为 KH550 )和阻燃剂分别偶联处理和阻 燃处理该剑麻纤维织物。
接着, 选择环氧树脂(商品牌号为 3233 ), 釆用湿法预浸渍上述的偶联 处理和阻燃处理的剑麻纤维织物, 获得相应的剑麻纤维织物环氧树脂预浸 料。
将上述的预浸料层和高分子泡沫层板交替顺序叠置于模具中,形成剑麻 纤维 /高分子泡沫 /剑麻纤维 /高分子泡沫 /剑麻纤维的 5层预制件。
釆用模压固化成型工艺, 制备剑麻纤维-高分子泡沫叠层复合材料。 如实施例 1-7所述的植物纤维织物均可以与玻璃纤维、芳纶纤维或者碳 纤维无纺布或织物和 /或高分子纤维无纺布或织物或高分子泡沫或橡胶材料 层复合, 从而提供了一种能够减震、 吸声、 减噪、 阻燃、 环保的新型植物纤 维混杂复合材料层合板(HyNaL )。
上述的实施例 8-14的复合材料具有中心对称结构, 从而方便使用和运 输。但是根据本发明的植物纤维混杂复合材料也可以具有其他周期性或者非 周期的排布结构, 从而满足特殊的应用场合的需求。
实施例 15: 苎麻纤维网格紗增强的松香基环氧树脂复合材料
苎麻纤维网格紗增强的松香基环氧树脂复合材料包括松香基环氧树脂 和分布在松香基环氧树脂中的苎麻纤维网格紗。
根据实施例 15的苎麻纤维网格紗增强的松香基环氧树脂复合材料釆用 下述的方法制备。
制备面密度为 20 g/m2苎麻纤维网格紗, 并将该苎麻纤维网格紗。
将 1000克松香基环氧树脂、 1000克曱基六氢苯酐、 20克三氟化硼单乙 胺络合物和 500克酚酞改性聚醚酮加入到搅拌釜中, 加热到 50°C后, 高速 搅拌 20分钟, 制备松香基环氧树脂结构粘结剂。 该配制好的松香基环氧树
脂结构粘结剂可以在制备后涂覆在脱膜纸上, 冷却到室温后冷藏备用。
在预浸设备上,将配制好的松香基环氧树脂结构粘结剂均匀地涂覆在一 脱模纸的表面, 控制结构粘结剂的面密度为 180g/m2, 同时通过加热加压辊 将松香基环氧树脂结构粘结剂转移到苎麻纤维网格紗上,结构粘结剂在复合 材料中的重量含量约为 90%。可以将该苎麻纤维增强的松香基环氧树脂基复 合材料的两面均用脱模纸保护。 在收卷后, 该复合材料可以室温放置或冷藏 保存。
将该苎麻纤维增强的松香基环氧树脂基复合材料的薄层与蜂窝芯材料 层叠形成复合材料制件。 该复合材料制件的制备过程如下: 用真空袋成型工 艺将苎麻纤维增强的松香基环氧树脂基复合材料和密度为 48 Kg/m3的 Nomex蜂窝芯叠层,在 140°C下共固化 2小时后,冷却到 40°C后,译放压力, 最终得到该复合材料制件。 测试该制件的平拉强度(测试标准 ASTM C297 ) 和剪切强度 (测试标准 ASTM C273 ), 如表 2所示。
釆用该复合材料后, 力学性能明显变大, 复合材料制件的破坏也更多地 由 Nomex蜂窝芯承担。
实施例 16: 苎麻纤维无纬布增强的松香基环氧树脂复合材料
苎麻纤维无纬布增强的松香基环氧树脂复合材料包括松香基环氧树脂 和分布在松香基环氧树脂中的苎麻纤维无纬布。
根据实施例 16的苎麻纤维无纬布增强的松香基环氧树脂复合材料釆用 下述的方法制备。
制备苎麻纤维无纬布, 无纬布的面密度为 150 g/m2。
将 1500克松香基环氧树脂、 1200克曱基纳迪克酸酐、 7.5克 DMP-30 和 270克酚酞改性聚醚砜加入到搅拌釜中, 加热到 70°C后, 高速搅拌 30分 钟, 制备松香基环氧树脂结构粘结剂。 该配制好的松香基环氧树脂结构粘结 剂可以在制备后涂覆在脱膜纸上, 冷却到室温后冷藏备用。
在预浸设备上,将配制好的松香基环氧树脂结构粘结剂均匀地涂覆在一 脱模纸的表面, 控制结构粘结剂的面密度为 150 g/m2, 同时通过加热加压辊 将松香基环氧树脂结构粘结剂转移到苎麻纤维无纬布上,结构粘结剂在复合
材料中的重量含量约为 50%。可以将该苎麻纤维增强的松香基环氧树脂基复 合材料的两面均用脱模纸保护。 在收卷后, 该复合材料可以室温放置或冷藏 保存。
将此复合材料用于制备苎麻纤维增强生物质树脂复合材料制品。复合材 料制品的制备过程如下: 用模压成型工艺将 18层的该复合材料叠放在模具 内, 然后加压力 2 MPa,逐渐升温到 120°C下固化 3小时后,冷却到 40°C后, 译放压力。 复合材料中纤维质量含量约为 60%, 测试其拉伸性能(测试标准 ASTM D3039 )、 压缩性能(测试标准 ASTM D6641 )和弯曲性能(测试标准 ASTM D790 ), 其力学性能如表 3所示。
表 3
实施例 17: 黄麻纤维网格紗增强的松香基环氧树脂复合材料
黄麻纤维网格紗增强的松香基环氧树脂复合材料包括松香基环氧树脂 和分布在松香基环氧树脂中的黄麻纤维网格紗。
根据实施例 17的黄麻纤维网格紗增强的松香基环氧树脂复合材料釆用 下述的方法制备。
制备面密度为 100 g/m2黄麻纤维网格紗。
将 1000克松香基环氧树脂、 1000克曱基四氢苯酐、 10克三氟化硼单乙 胺络合物和 300克酚酞改性聚醚酮加入到搅拌釜中, 加热到 50°C后, 高速 搅拌 30分钟, 在辊机上碾磨均匀, 制备松香基环氧树脂结构粘结剂。 该配 制好的松香基环氧树脂结构粘结剂可以在制备后涂覆在脱膜纸上,冷却到室 温后冷藏备用。
在预浸设备上,将配制好的松香基环氧树脂结构粘结剂均匀地涂覆在一 脱模纸的表面 , 同时通过加热加压辊将松香基环氧树脂结构粘结剂转移到黄 麻纤维网格紗上, 结构粘结剂在复合材料中的重量含量约为 50%。 可以将该 黄麻纤维增强的松香基环氧树脂基复合材料的两面均用脱模纸保护。在收卷 后, 该复合材料可以室温放置或冷藏保存。
将该黄麻纤维增强的松香基环氧树脂基复合材料的薄层与蜂窝芯材料 层叠形成复合材料制件。 该复合材料制件的制备过程如下: 用真空袋成型工
艺将苎麻纤维增强的松香基环氧树脂基复合材料和密度为 48 Kg/m3的 Nomex蜂窝芯叠层,在 140°C下共固化 2小时后,冷却到 40°C后,译放压力, 最终得到该复合材料制件。 测试该制件的平拉强度(测试标准 ASTM C297 ) 和剪切强度 (测试标准 ASTM C273 ), 如表 4所示。
釆用该复合材料后, 力学性能明显变大, 复合材料制件的破坏也更多地 由 Nomex蜂窝芯承担。
实施例 18: 亚麻纤维无纬布增强的松香基环氧树脂复合材料
亚麻纤维无纬布增强的松香基环氧树脂复合材料包括松香基环氧树脂 和分布在松香基环氧树脂中的亚麻纤维无纬布。
根据实施例 18的亚麻纤维无纬布增强的松香基环氧树脂复合材料釆用 下述的方法制备。
制备亚麻纤维无纬布, 无纬布的面密度为 200 g/m2。
将 1000克松香基环氧树脂、 100克双氰胺、 30克 1,1,-二曱基 -3-苯基脲 和 200克酚酞改性聚醚酮加入到搅拌釜中, 加热到 50°C后, 高速搅拌 20分 钟, 制备松香基环氧树脂结构粘结剂。 该配制好的松香基环氧树脂结构粘结 剂可以在制备后涂覆在脱膜纸上, 冷却到室温后冷藏备用。
在预浸设备上,将配制好的松香基环氧树脂结构粘接剂均匀地涂覆在脱 模纸的表面, 同时通过加热加压辊将松香基环氧树脂结构粘结剂转移到亚麻 纤维无纬布表面上, 结构粘结剂在复合材料中的重量含量约为 40%, 可以将 该亚麻纤维增强的松香基环氧树脂基复合材料的两面均用脱模纸保护。在收 卷后, 该复合材料可以室温放置或冷藏保存。
将此复合材料用于制备苎麻纤维增强生物质树脂复合材料制品。复合材 料制品的制备过程如下: 用模压成型工艺将 18层的该复合材料叠放在模具 内, 然后加压力 2 MPa,逐渐升温到 120°C下固化 3小时后,冷却到 40°C后, 译放压力。 复合材料中纤维质量含量约为 70%, 测试其拉伸性能(测试标准 ASTM D3039 )、 压缩性能(测试标准 ASTM D6641 )和弯曲性能(测试标准 ASTM D790 ), 其力学性能如表 5所示。
表 5
拉伸性能 压缩性能 弯曲性能
强度 /MPa 模量 /GPa 强度 /MPa 模量 /GPa 强度 /MPa 模量 /GPa
204.5 25.4 156.7 19.4 220.4 20.4 实施例 19: 苎麻纤维织物增强的松香基环氧树脂复合材料
苎麻纤维织物增强的松香基环氧树脂复合材料包括松香基环氧树脂和 分布在松香基环氧树脂中的苎麻纤维织物。
根据实施例 19的苎麻纤维织物增强的松香基环氧树脂复合材料釆用下 述的方法制备。
制备苎麻纤维织物, 该织物的面密度为 120 g/m2。
将 1500克松香基环氧树脂 II、 1000克曱基纳迪克酸酐、 20克三氟化硼 单乙胺络合物和 500克酚酞改性聚醚砜加入到搅拌釜中, 加热到 70°C后, 高速搅拌 30分钟, 制备松香基环氧树脂结构粘结剂。 该配制好的松香基环 氧树脂结构粘结剂可以在制备后涂覆在脱膜纸上, 冷却到室温后冷藏备用。
在预浸设备上,将配制好的松香基环氧树脂结构粘接剂均匀地涂覆在脱 模纸的表面, 同时通过加热加压辊将树脂薄膜转移到苎麻纤维织物的表面 上, 结构粘结剂在复合材料中的重量含量约为 50%, 可以将该亚麻纤维增强 的松香基环氧树脂基复合材料的两面均用脱模纸保护。 在收卷后, 该复合材 料可以室温放置或冷藏保存。
将此复合材料用于制备苎麻纤维增强生物质树脂复合材料制品。复合材 料制品的制备过程如下: 用模压成型工艺将 18层的该复合材料叠放在模具 内, 然后加压力 2 MPa,逐渐升温到 120°C下固化 3小时后,冷却到 40°C后, 译放压力。 复合材料中纤维质量含量约为 60%, 测试其拉伸性能(测试标准 ASTM D3039 )、 压缩性能(测试标准 ASTM D6641 )和弯曲性能(测试标准 ASTM D790 ), 其力学性能如表 6所示。
表 6
实施例 20: 连续植物纤维增强复合材料泡沫板材
连续植物纤维增强的松香基环氧树脂复合材料包括松香基环氧树脂和 分布在松香基环氧树脂中的植物纤维织物, 所述植物纤维织物包括剑麻、 苎
麻、 亚麻、 黄麻、 大麻纤维织物。
根据实施例 20的泡沫板釆用下述的方法制备。
( 1 )选用商用的剑麻、 苎麻、 亚麻、 黄麻、 大麻等天然植物纤维及其 连续纤维毡或连续纤维织物等, 该植物纤维织物的厚度在约 0.3mm-4mm之 间。 可选用长植物纤维, 例如长度大于约 50mm的植物纤维, 充分打散, 再 通过针刺或粘接的方法, 制成具有一定厚度的长纤维毡。 纤维毡的厚度可为 约 0.3mm-4mm之间。
( 2 )按照前述实施例, 例如实施例 1-7所述的方法, 对所有植物纤维 进行表面阻燃或 /和偶联处理, 偶联剂的通式为 R2-Si(ORl)3 , 如端基为氨基 的偶联剂 H2N-(CH2)3-Si(OC2H5:)3 , 如端基为环氧基的偶联剂
,〇、
CH2CHCH2〇(CH2)3Si(〇CH3)3
( 3 )制备可发性微胶嚢作为发泡剂, 其中微胶嚢的嚢皮由商用可降解 热塑性聚乳酸高分子 PLA ( PolyLactic Acid )制成。 在 胶嚢内充烷烃, 将 其加热到 100°C-180°C后,微胶嚢的体积会迅速膨胀,达到原来体积的 50-100 倍; 也或选用商业产品的其他可发性微胶嚢作为发泡剂, 其嚢皮材料包括硅 橡胶、 聚丙烯腈或聚曱基丙烯酸曱酯。 可发性微胶嚢的粒径可控制为约 5μηι-50μηι。
( 4 ) 配制马来松香 ( ΜΡΑ )基环氧树脂固化剂
3234 环氧树脂的固化剂, 形成部分生物质的环氧树脂材料。 将这种部分生 物质化的环氧树脂制备成粉体, 粉体粒径在 ΙΟμιη至 ΙΟΟμιη之间。
( 5 )根据所要制备的纤维增强泡沫板的密度, 将所述微胶嚢发泡剂混 入树脂中, 调整 胶嚢发泡剂在环氧树脂中的添加比例在 5%-15%之间, 通 过高速搅拌机将两者充分搅拌均勾, 并配置得到水基悬浮液。
( 6 )将经步骤( 2 )处理的植物纤维毡或织物放置在水基悬浮液中充分 浸渍(俗称淤浆浸渍), 适当干燥, 得到发泡预浸料。
(7)将上述的发泡预浸料加热到 100°C-180°C, 放置 10min-15min, 微 胶嚢随之加热膨胀, 发泡预浸料也随之变厚, 膨胀为最初厚度的 5-8倍。 在 加热的过程中, 热固性环氧树脂也同时固化交联, 由此得到连续植物纤维增 强的生物质树脂复合材料泡沫板材。
实施例 21:
(1)釆用短切的苎麻纤维, 利用针刺设备, 制得面密度为 400g/m2的 苎麻无纺毡, 备用。
(2)釆用 3%的 KH550硅烷偶联剂水溶液浸渍苎麻无纺毡, 待织物干 燥后, 再用 10%的氮磷阻燃剂水溶液浸渍无纺毡, 晾干。
(3)制备粒径为 10μηι、 嚢皮为可降解热塑性聚乳酸高分子 PLA、 起 发温度为 120 °C的微胶嚢发泡剂。
( 4 ) 配制 MPA型松
(5)将(3) 所述 胶嚢发泡剂添加到 (4)所述的环氧树脂粉体中, 添加比例为 15%, 通过高速搅拌机将两者充分搅拌均匀,得到双组分粉料待 用。
( 6 )将( 5 ) 所述双组分粉料配置制备成水基悬浮液, 将经步骤 ( 2 ) 处理的植物纤维毡或织物放置在这种悬浮液中充分浸渍, 挤掉多余胶液。
(7)将挤掉多余胶液的苎麻无纺布垂直放置在 120°C的烘箱中加热固 化 15min后取出。
实施例 22:
( 1 )釆用连续的剑麻纤维, 釆用粘接方式, 制得面密度为 100g/m2的 剑麻纤维无纺毡, 备用。
(2)釆用 2%的 KH570硅烷偶联剂水溶液浸渍苎麻无纺毡, 待织物干 燥后, 再用 10%的氮磷阻燃剂水溶液浸渍无纺毡, 晾干。
(3)制备粒径为 10μηι、 嚢皮为可降解热塑性聚乳酸高分子 PLA、 起 发温度为 120 °C的微胶嚢发泡剂。
( 4 ) 配制 MPA型松香基环氧树脂固化剂
(5)将(3) 所述 胶嚢发泡剂添加到 (4)所述的环氧树脂粉体中, 添加比例为 10%, 通过高速搅拌机将两者充分搅拌均匀,得到双组分粉料待 用。
(6)将(5) 所述双组分粉料配置制备成水基悬浮液, 将经步骤(2) 处理的植物纤维毡或织物放置在这种悬浮液中充分浸渍, 挤掉多余胶液。
(7)将挤掉多余胶液的剑麻无纺布垂直放置在 120°C的烘箱中加热固 化 lOmin后取出。
实施例 23:
( 1 )釆用连续的亚麻纤维, 釆用粘接方式, 制得面密度为 80g/m2的亚 麻纤维无纺毡, 备用。
(2)釆用 2%的 KH570硅烷偶联剂水溶液浸渍苎麻无纺毡, 待织物干 燥后, 再用 15%的氮磷阻燃剂水溶液浸渍无纺毡, 晾干。
(3)制备粒径为 10μηι-20μηι的微胶嚢发泡剂。 嚢皮为聚丙烯腈、微胶 嚢内填充烷烃, 起发温度为 150°C。
( 4 ) 配制 MPA型松香基环氧树脂固化剂
(5)将(3) 所述 胶嚢发泡剂添加到 (4)所述的环氧树脂粉体中, 添加比例为 12%, 通过高速搅拌机将两者充分搅拌均匀,得到双组分粉料待 用。
( 6 )将( 5 ) 所述双组分粉料配置制备成水基悬浮液, 将经步骤( 2 ) 处理的植物纤维毡或织物放置在这种悬浮液中充分浸渍, 挤掉多余胶液。
(7)将挤掉多余胶液的亚麻无纺布垂直放置在 150°C的烘箱中加热固 化 lOmin后取出。
实施例 24:
( 1 )釆用连续的黄麻纤维, 釆用针刺方法, 制得面密度为 260g/m2的 黄麻纤维无纺毡, 备用。
(2)釆用 3%的 KH550硅烷偶联剂水溶液浸渍苎麻无纺毡, 待织物干 燥后, 再用 12%的氮磷阻燃剂水溶液浸渍无纺毡, 晾干。
( 3 )制备粒径为 10μηι-20μηι的微胶嚢发泡剂。嚢皮为可降解的聚乳酸、 微胶嚢内填充烷烃, 起发温度为 180°C。
( 4 ) 配制 MPA型松香基环氧树脂固化剂
(5)将(3) 所述 胶嚢发泡剂添加到 (4)所述的环氧树脂粉体中, 添加比例为 15%, 通过高速搅拌机将两者充分搅拌均匀,得到双组分粉料待 用。
(6)将(5) 所述双组分粉料配置制备成水基悬浮液, 将经步骤(2) 处理的植物纤维毡或织物放置在这种悬浮液中充分浸渍, 挤掉多余胶液。
(7)将挤掉多余胶液的黄麻无纺布垂直放置在 180°C的烘箱中加热固 化 13min后取出。
实施例 25:
( 1 )釆用短切的苎麻纤维, 利用粘接方法, 制得面密度为 120g/m2的 苎麻无纺毡, 备用。
( 2 )釆用 2%的 KH560硅烷偶联剂水溶液浸渍苎麻无纺毡, 待织物干 燥后, 再用 10%的氮磷阻燃剂水溶液浸渍无纺毡, 晾干。
( 3 )制备粒径为 10μηι、 嚢皮为可降解热塑性聚乳酸高分子 PLA、 起 发温度为 150°C的微胶嚢发泡剂。
( 4 ) 配制 MPA型松香基环氧树脂固化剂
( 5 )将(3 ) 所述 胶嚢发泡剂添加到 (4 )所述的环氧树脂粉体中, 添加比例为 10%, 通过高速搅拌机将两者充分搅拌均匀,得到双组分粉料待 用。
( 6 )将(5 ) 所述双组分粉料配置制备成水基悬浮液, 将经步骤(2 ) 处理的植物纤维毡或织物放置在这种悬浮液中充分浸渍, 挤掉多余胶液。
( 7 )将挤掉多余胶液的苎麻无纺布垂直放置在 150°C的烘箱中加热固 化 12min后取出。 根据欧洲专利局上诉委员会的决议 J15/88, 以下连续编号的 41个条款 构成本发明的其他实施例。 特别地, 这同样适用于与本发明的专利权利要求 组合。
1、 一种植物纤维织物, 包括基体树脂和分布在基体树脂中的连续植物 纤维, 其特征在于: 所述植物纤维进行了表面改性预处理, 所述表面改性处 理包括使用偶联剂的偶联处理和 /或使用阻燃剂的表面阻燃处理。
2、根据条款 1所述的植物纤维织物,其中所述基体树脂包括酚酸树脂、 环氧树脂或聚酯。
3、根据条款 1或 2所述的植物纤维织物,其中所述植物纤维选自苎麻、
黄麻、 红麻、 大麻、 剑麻或亚麻。
4、 根据条款 1-3 中的一种所述的植物纤维织物, 其中所述偶联剂包括 硅烷偶联剂或高锰酸钾溶液, 所述硅烷偶联剂优选选自乙烯基三乙氧基硅 烷、 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷、 γ- ( 2, 3-环氧丙氧) 丙基三曱氧基硅烷。
5、 根据条款 1-4中的一种所述的植物纤维织物, 其中所述阻燃剂为氮 磷系阻燃剂,例如 ZR-PZM型膨胀阻燃剂、 TZ-01氮磷系通用阻燃剂、 TPU-1、 Newray 911。
6、 根据条款 1-5 中的一种所述的植物纤维织物, 其中上述植物纤维织 物中的植物纤维为单向的。
7、 根据条款 1-6中的一种所述的植物纤维织物, 其中上述植物纤维织 物中的植物纤维为不定向的。
8、 根据条款 1-7中的一种所述的植物纤维织物, 其中上述偶联处理的 植物纤维织物与基体树脂的结合力高于未经上述偶联处理的植物纤维织物 与基体树脂的结合力。
9、 根据条款 1-8 中的一种所述的植物纤维织物, 其中上述基体树脂具 有阻燃性。
10、 一种层合板, 具有叠层结构, 该叠层结构包括:
植物纤维织物层 , 包括基体树脂和分布在基体树脂中的连续植物纤维 , 其特征在于: 所述植物纤维进行了表面改性预处理, 所述表面改性处理包括 使用偶联剂的偶联处理和 /或使用阻燃剂的表面阻燃处理,
至少一层, 所述至少一层选自下述的层构成的组:
玻璃纤维、芳纶纤维或者碳纤维无纺布或织物,优选地分布在基体树脂 中;
高分子纤维无纺布或织物, 优选地分布在基体树脂中; 或
高分子泡沫或橡胶材料层。
11、 根据条款 10所述的层合板, 其中所述基体树脂包括酚醛树脂、 环 氧树脂或聚酯。
12、 根据条款 10或 11所述的层合板, 其中所述植物纤维选自苎麻、 黄 麻、 红麻、 大麻、 剑麻或亚麻。
13、 根据条款 10-12中的一种所述的层合板, 其中所述偶联剂包括硅烷
偶联剂或高锰酸钟溶液, 所述硅烷偶联剂优选选自乙婦基三乙氧基硅烷、 γ- (曱基丙烯酰氧) 丙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷、 γ- ( 2, 3- 环氧丙氧) 丙基三曱氧基硅烷。
14、 根据条款 10-13中的一种所述的层合板, 其中所述阻燃剂为氮磷系 阻燃剂, 例如 ZR-PZM型膨胀阻燃剂 (来自山东省青州市化工厂)、 TZ-01 氮磷系通用阻燃剂 (来自富阳天扬贸易有限公司)、 TPU-1 (来自连云港方 和化工有限公司)、 Newray 911 (来自常州市纽雷阻燃剂厂)。
15、 根据条款 10-14所述的层合板, 其中所述高分子纤维无纺布或织物 包括聚酰亚胺纤维、 聚苯并咪唑、 聚苯并恶唑、 聚乳酸、 聚乙烯、 聚丙烯或 尼龙纤维无纺布或纤维织物。
16、 根据条款 10-15中的一种所述的层合板, 其中所述高分子泡沫或橡 胶材料包括聚酰亚胺、 聚曱基丙烯酰亚胺、 聚氯乙烯、 聚乙烯、 聚丙烯、 环 氧树脂、 聚氨酯树脂、 酚酸树脂泡沫材料或丁苯、 丁氰、 顺丁、 聚硫或硅橡 胶。
17、 根据条款 10-16中的一种所述的层合板, 其中所述叠层结构具有周 期性或非周期性。
18、 根据条款 10-17中的一种所述的层合板, 其中所述叠层结构具有中 心对称的结构。
19、 根据条款 10-18中的一种所述的层合板, 其中上述基体树脂具有阻 燃性。
20、 根据条款 10-19中的一种所述的层合板, 其中所述植物纤维织物层 位于层合板的最外层。
21、 根据条款 10-20中的一种所述的层合板, 其中所述高分子泡沫或橡 胶材料位于层合板的内层。
22、 一种具有植物纤维织物的层合板的制备方法, 包括:
制备连续的植物纤维织物, 使用偶联剂和 /或阻燃剂对于所述植物纤维 表面进行表面改性预处理;
将表面改性预处理后的植物纤维织物和 /或玻璃纤维、 芳纶纤维或者碳 纤维无纺布或织物和 /或高分子纤维无纺布或织物预浸渍在基体树脂中, 制 备植物纤维织物预浸料和 /或玻璃纤维、 芳纶纤维或者碳纤维无纺布预浸料 和 /或高分子纤维无纺布或织物预浸料;
将所述植物纤维织物预浸料与至少一层叠置以形成叠层结构,所述至少 一层选自下述的层构成的组: 玻璃纤维、 芳纶纤维或者碳纤维无纺布或织物 预浸料、 高分子纤维无纺布或织物预浸料或高分子泡沫或橡胶材料层; 以及 对于所述叠层结构进行固化和成型工艺,从而制备所述层合板, 所述成 型工艺例如为热压罐工艺或模压工艺。
23、 根据条款 22所述的方法, 其中所述偶联剂包括硅烷偶联剂或高锰 酸钾溶液, 所述硅烷偶联剂优选选自乙烯基三乙氧基硅烷、 γ- (曱基丙烯酰 氧) 丙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷、 γ- ( 2, 3-环氧丙氧) 丙 基三曱氧基硅烷。
24、 根据条款 22或 23所述的方法, 其中所述阻燃剂为氮磷系阻燃剂, 例如 ZR-PZM型膨胀阻燃剂 (来自山东省青州市化工厂)、 TZ-01氮磷系通 用阻燃剂 (来自富阳天扬贸易有限公司)、 TPU-1 (来自连云港方和化工有 限公司)、 Newray 911 (来自常州市纽雷阻燃剂厂)。
25、 根据条款 22-24所述的方法, 其中在使用所述偶联剂进行所述表面 改性预处理之后, 干燥所述植物纤维织物, 并用水浸渍所述植物纤维织物以 去除多余的高锰酸钾溶液, 再次干燥所述植物纤维织物。
26、 根据条款 22-25中的一种所述的方法, 其中所述基体树脂包括酚醛 树脂、 环氧树脂或聚酯,
27、根据条款 22-26中的一种所述的方法,其中所述植物纤维选自苎麻、 黄麻、 红麻、 大麻、 剑麻或亚麻,
28、 根据条款 22-27中的一种所述的方法, 其中所述高分子纤维无纺布 或织物包括聚酰亚胺纤维、 聚苯并咪唑、 聚苯并恶唑、 聚乳酸、 聚乙烯、 聚 丙烯或尼龙纤维无纺布或纤维织物,
29、 根据条款 22-28中的一种所述的方法, 其中所述高分子泡沫包括聚 酰亚胺、 聚曱基丙烯酰亚胺、 聚氯乙烯、 聚乙烯、 聚丙烯、 环氧树脂、 聚氨 酯树脂、 酚醛树脂泡沫材料, 或橡胶材料包括丁苯、 丁氰、 顺丁、 聚硫或硅 橡胶。
30、一种具有植物纤维织物的层合板的制备方法, 所述层合板包括植物 纤维织物层, 包括不饱和聚酯基体和分布在不饱和聚酯基体中的连续植物纤 维, 其特征在于: 所述植物纤维进行了表面改性预处理, 所述表面改性处理 包括使用偶联剂的偶联处理和 /或使用阻燃剂的表面阻燃处理, 至少一层,
所述至少一层选自下述的层构成的组: 玻璃纤维、 芳纶纤维或者碳纤维无纺 布或织物, 优选地分布在不饱和聚酯基体中; 高分子纤维无纺布或织物, 优 选地分布在不饱和聚酯基体中; 或高分子泡沫或橡胶材料层,
所述方法包括:
制备连续的植物纤维织物, 使用偶联剂和 /或阻燃剂对于所述植物纤维 表面进行表面改性预处理;
将表面改性预处理后的植物纤维织物和 /或玻璃纤维、 芳纶纤维或者碳 纤维无纺布或织物和 /或高分子纤维无纺布或织物与该不饱和聚酯基体通过 直接液态固化成型工艺, 制备所述层合板。
31、 一种植物纤维增强生物质树脂薄层材料, 其特征在于: 该种生物质 树脂薄层材料是由增强材料和结构粘结剂组成,增强材料占生物质树脂薄层 材料的质量份数为 10 ~ 70%,结构粘结剂占生物质树脂薄层材料的质量份数 为 30 ~ 90%, 增强材料是指连续植物纤维织物、 无纬布、 网格紗或非连续植 物纤维无纺布, 结构粘结剂是指生物质松香基环氧树脂预聚物。
32、 根据条款 31所述的植物纤维增强生物质树脂薄层材料, 其特征在 于: 增强材料的面密度为 20 g/m2 ~ 300 g/m2。
33、 根据条款 31所述的植物纤维增强生物质树脂薄层材料, 其特征在 于:结构粘结剂所指的生物质松香基环氧树脂预聚物的化学组成和质量份数 为: 松香基环氧树脂 100份; 环氧树脂固化剂 10 ~ 100份固化促进剂 0.5 ~ 3 份; 热塑性聚合物 10 ~ 50份。
34、 根据条款 33所述的植物纤维增强生物质树脂薄层材料, 其特征在 于: 环氧树脂固化剂为曱基纳迪克酸酐、 曱基六氢苯酐、 曱基四氢苯酐、 双 氰胺或商品牌号为 # 594的噁硼杂环硼胺络合物。
35、 根据条款 33所述的植物纤维增强生物质树脂薄层材料, 其特征在 于: 固化促进剂为 DMP-30、 三氟化硼单乙胺或 1,1,-二曱基 -3-苯基脲。
36、 根据条款 33所述的植物纤维增强生物质树脂薄层材料, 其特征在 于: 热塑性聚合物为酚酞改性聚醚酮、 酚酞改性聚醚砜或酚酞改性聚醚酰亚 胺, 粒度为 50目 - 100目。
37、 一种用于上述条款 31所述的植物纤维增强生物质树脂薄层材料的 制备方法, 其特征在于: 该方法的步骤是:
(1) 制备增强材料
以苎麻、 亚麻、 黄麻、 大麻、 剑麻或红麻为原料, 通过现有纺织技术制 备连续植物纤维织物、 无纬布、 网格紗或非连续植物纤维无纺布, 面密度为
20 g/m2 ~ 300 g/m2, 收卷后作为增强材料备用;
(2) 制备结构粘结剂
将按比例称取的松香基环氧树脂、环氧树脂固化剂、 固化促进剂和热塑 性聚合物混合后, 在一定的温度下, 通过高速剪切力使混合物混合均匀, 冷 却后得到生物质松香基环氧质树脂预聚物; 以及
(3) 在预浸设备上, 将制备好的生物质松香基环氧质树脂预聚物均匀地 涂覆在脱模纸的表面 , 同时通过加热加压辊将涂覆在脱模纸表面的生物质松 香基环氧质树脂预聚物转移到增强材料上,生物质松香基环氧质树脂预聚物 占它与增强材料质量总和的 30 ~ 90%, 收卷后室温放置或冷藏保存, 这样就 得到两面用脱模纸保护的植物纤维增强生物质树脂薄层材料。
38、 一种植物纤维增强生物质树脂基泡沫板材, 所述泡沫板材以苎麻、 亚麻、 大麻、 黄麻植物纤维为增强体, 附载膨胀型生物质树脂以及生物质环 氧树脂, 其中增强纤维的重量含量为 40%-60%。
39、 一种植物纤维增强生物质树脂基泡沫板材的制作方法, 包括:
( 1 )选用苎麻、 亚麻、 大麻或黄麻天然纤维作为原料, 釆用工业上成 熟的植物纤维毡制备技术,制备出 0.1-5mm厚的纤维毡, 并对植物纤维毡进 行阻燃增容处理;
( 2 )釆用聚乳酸为嚢皮, 嚢皮内充烷烃, 制备 胶嚢发泡剂, 胶嚢 发泡剂的粒径在 5μηι-50μηι, 烷烃的充入量以将其加热到 100°C -180°C , 微 胶嚢体积变到原来体积的 50-100倍为准;
( 3 ) 配制马来松香基环氧树脂固化剂并与环氧树脂混合、 碾磨, 制备 成部分生物质化的环氧树脂微粉, 微粉粒径在 ΙΟμιη至 ΙΟΟμιη之间;
( 4 )在环氧树脂微粉中加入 5%-15%的微胶嚢发泡剂, 并配备成水基 悬浮液;
( 5 )将经过阻燃增容处理的植物纤维毡放置在悬浮液中充分浸渍, 晾 干, 得到发泡预浸料待用; 以及
( 6 ) 将如 (5 ) 所述干态纤维毡预浸料加热到 100°C-180°C , 保温 10min-15min, 使植物纤维毡膨胀为最初厚度的 5-8倍, 由此得到连续植物 纤维增强生物质树脂复合材料泡沫板材。
40、 根据条款 39所述的植物纤维增强生物质树脂基泡沫板材的制备方
法, 其特征是, 所述的纤维毡为单丝分散毡, 厚度在 0.3mm-4mm之间。
41、 根据条款 40所述的植物纤维增强生物质树脂基泡沫板材的制备方 法, 其特征是, 所述纤维毡制备技术是针刺技术或粘接技术。
通过以上优选具体实施例的详述,希望能更加清楚描述本发明的特征与 相反地,其目的是希望能将各种改变及等同的安排涵盖于本发明的权利要求 的范围内。
Claims
1、 一种复合材料, 包括基体树脂和分布在所述基体树脂中的植物纤维 织物, 其中: 所述植物纤维织物的植物纤维进行了表面改性预处理, 所述表 面改性处理包括使用偶联剂的偶联处理和 /或使用阻燃剂的表面阻燃处理, 所述基体树脂为生物质基体树脂。
2、 根据权利要求 1所述的复合材料, 其中所述生物质基体树脂为松香 基环氧树脂和 /或膨胀型生物质树脂。
3、根据权利要求 1或 2所述的复合材料,其中所述植物纤维选自苎麻、 黄麻、 红麻、 大麻、 剑麻或亚麻,
所述植物纤维织物为连续的植物纤维的织物、无纬布、 网格紗或非连续 植物纤维的无纺布。
4、 根据权利要求 1-3 中的一种所述的复合材料, 其中所述偶联剂选自 硅烷偶联剂或高锰酸 4甲溶液, 所述硅烷偶联剂选自乙婦基三乙氧基硅烷、 γ-
(曱基丙烯酰氧) 丙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷或 γ- ( 2, 3- 环氧丙氧) 丙基三曱氧基硅烷中的一种,
所述阻燃剂为氮磷系阻燃剂, 所述氮磷系阻燃剂选自 ZR-PZM型膨胀 阻燃剂、 TZ-01氮磷系通用阻燃剂、 TPU- 1、 Newray 911。
5、根据权利要求 1-4中的一种所述的复合材料, 还包括至少一附加层, 所述至少一附加层选自下述的层构成的组:
玻璃纤维、芳纶纤维或者碳纤维无纺布或织物,优选地分布在所述基体 树脂中;
高分子纤维无纺布或织物,优选地分布在所述基体树脂中, 所述高分子 纤维无纺布或织物包括聚酰亚胺纤维、 聚苯并咪唑、 聚苯并恶唑、 聚乳酸、 聚乙烯、 聚丙烯或尼龙纤维无纺布或纤维织物; 以及
高分子泡沫或橡胶材料, 所述高分子泡沫包括聚酰亚胺、聚曱基丙烯酰 亚胺、 聚氯乙烯、 聚乙烯、 聚丙烯、 环氧树脂、 聚氨酯树脂、 酚醛树脂泡沫 材料, 所述橡胶材料包括丁苯、 丁氰、 顺丁、 聚硫或硅橡胶。
6、 根据权利要求 1-4中的一种所述的复合材料, 其中所述植物纤维的 面密度为 20 g/m2 ~ 300 g/m2, 所述基体树脂为生物质松香基环氧树脂, 所 述植物纤维在所述复合材料中的含量为 10 ~ 70重量%, 所述基体树脂在复 合材料的中所占的含量为 30 ~ 90重量%。
7、 根据权利要求 1-4中的一种所述的复合材料, 其中所述复合材料是 泡沫板材, 所述基体树脂为膨胀型生物质树脂以及生物质环氧树脂, 所述植 物纤维在所述复合材料中的含量为 40%-60重量%。
8、 一种具有植物纤维织物的复合材料的制备方法, 包括:
制备植物纤维织物, 使用偶联剂和 /或阻燃剂对于所述植物纤维织物的 植物纤维表面进行表面改性预处理;
制备生物质基体树脂预聚物; 以及
将表面改性预处理后的植物纤维织物预浸渍在所述生物质基体树脂预 聚物中; 以及
将浸渍后的植物纤维织物进行固化和成型工艺以制备所述复合材料。
9、 根据权利要求 8所述的方法, 其中所述植物纤维织物的植物纤维选 自苎麻、 黄麻、 红麻、 大麻、 剑麻或亚麻,
所述植物纤维织物为连续的植物纤维的织物、无纬布、 网格紗或非连续 的植物纤维的无纺布。
10、根据权利要求 8或 9所述的方法, 其中在使用为高锰酸钾溶液的所 述偶联剂进行所述表面改性预处理之后, 干燥所述植物纤维织物, 并用水浸 渍所述植物纤维织物以去除残留的高锰酸钾溶液,再次干燥所述植物纤维织 物。
11、根据权利要求 8或 9所述的方法, 其中所述制备生物质基体树脂预 聚物的步骤包括在预定温度下将松香基环氧树脂、 环氧树脂固化剂、 固化促 进剂和热塑性聚合物混合并冷却, 得到生物质 香基环氧质树脂预聚物。
12、 根据权利要求 11所述的方法, 其中
所述松香基环氧树脂、环氧树脂固化剂、 固化促进剂和热塑性聚合物的 重量比例为: 松香基环氧树脂: 环氧树脂固化剂: 固化促进剂: 热塑性聚合 物 =謂份: 10 ~ 100份 :0.5 ~ 3份: 10 ~ 50份,
环氧树脂固化剂为曱基纳迪克酸酐、 曱基六氢苯酐、 曱基四氢苯酐或双 氰胺或噁硼杂环硼胺络合物,
固化促进剂为 DMP-30或三氟化硼单乙胺或 1,1, -二曱基 -3-苯基脲, 热塑性聚合物为酚酞改性聚醚酮、酚酞改性聚醚砜或酚酞改性聚醚酰亚 胺。
13、 根据权利要求 12所述的方法, 其中所述将表面改性预处理后的植 物纤维织物预浸渍在所述基体树脂预聚物中的步骤包括:
将所述生物质松香基环氧质树脂预聚物均勾地涂覆在脱模纸的表面上; 以及
通过加热加压辊将涂覆在所述脱模纸表面上的生物质松香基环氧质树 脂预聚物转移到所述植物纤维织物上。
14、 根据权利要求 8或 9所述的方法, 其中
所述制备植物纤维织物的步骤包括制备植物纤维毡,并使用偶联剂和阻 燃剂对于所述植物纤维毡进行表面改性预处理;
所述制备生物质基体树脂预聚物的步骤包括:
制备 胶嚢发泡剂, 包括制备 胶嚢的嚢皮; 在所述嚢皮内充烷烃 并加热, 使得微胶嚢体积膨胀;
将马来松香基环氧树脂固化剂与环氧树脂混合、 碾磨, 制备成部分 生物质化的环氧树脂微粉;
在所述环氧树脂微粉中加入所述微胶嚢发泡剂, 从而配备水基悬浮 液; 以及
将经过表面改性预处理的植物纤维毡放置在所述水基悬浮液中浸 渍、 晾干, 制备发泡预浸料;
所述将浸渍后的植物纤维织物进行固化和成型工艺的步骤包括:
将所述发泡预浸料加热并保温, 使所述植物纤维毡膨胀, 形成植物 纤维增强的生物质树脂复合材料形成的泡沫板材。
15、 根据权利要求 14所述的方法, 其中
制备所述植物纤维毡的步骤釆用针刺技术或粘接技术,所述植物纤维毡 的厚度为 0.1 -5mm,
所述微胶嚢的嚢皮由聚乳酸、硅橡胶、聚丙烯腈或聚曱基丙烯酸曱酯制 成, 所述微胶嚢发泡剂的粒径为 5μηι-50μηι, 所述微胶嚢的加热温度为 100 °C -180°C , 所述微胶嚢体积膨胀了 50-100倍,
所述环氧树脂微粉的粒径为 ΙΟμιη-ΙΟΟμηι,
所述微胶嚢发泡剂在所述环氧树脂微粉中的含量为 5%-15重量%, 将所述发泡预浸料加热到 100°C -180°C , 保温 10min-15min, 使所述植 物纤维毡的厚度膨胀了 5-8倍。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/382,414 US10711394B2 (en) | 2012-03-02 | 2013-03-01 | Composite having plant fiber textile and fabricating method thereof |
EP13755688.2A EP2821226B1 (en) | 2012-03-02 | 2013-03-01 | Composite material containing plant fibre fabrics and preparation method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210054309.X | 2012-03-02 | ||
CN201210054309XA CN102582207A (zh) | 2012-03-02 | 2012-03-02 | 一种植物纤维叠层混杂功能性复合材料层合板的制备方法 |
CN201210356586.6A CN102838844B (zh) | 2012-09-21 | 2012-09-21 | 一种植物纤维增强生物质树脂基泡沫板材及其制备方法 |
CN201210356586.6 | 2012-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013127368A1 true WO2013127368A1 (zh) | 2013-09-06 |
Family
ID=49081659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/072087 WO2013127368A1 (zh) | 2012-03-02 | 2013-03-01 | 一种含有植物纤维织物的复合材料及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10711394B2 (zh) |
EP (1) | EP2821226B1 (zh) |
WO (1) | WO2013127368A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2529571A (en) * | 2014-10-21 | 2016-02-24 | Eco Technilin Ltd | Laminated composite material and method for manufacturing laminated composite material |
EP3085526A4 (en) * | 2013-12-19 | 2017-09-06 | Hyundai Motor Company | Sound-absorbing/insulating material having excellent exterior and moldability, and method for producing same |
CN114059384A (zh) * | 2020-08-01 | 2022-02-18 | 杭州特种纸业有限公司 | 一种纳米空气滤纸及其制备方法 |
CN115478439A (zh) * | 2022-08-26 | 2022-12-16 | 东华大学 | 具有仿羊毛卷曲结构的多孔纤维及其制备方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3325703T3 (pl) | 2016-08-02 | 2020-03-31 | Fitesa Germany Gmbh | Układ i sposób wytwarzania materiałów włókninowych z poli(kwasu mlekowego) |
US11441251B2 (en) | 2016-08-16 | 2022-09-13 | Fitesa Germany Gmbh | Nonwoven fabrics comprising polylactic acid having improved strength and toughness |
CN106317870A (zh) * | 2016-08-22 | 2017-01-11 | 曹蕊 | 一种耐高温共混纤维织物层压结构板及其制备方法与应用 |
CN108018665A (zh) * | 2018-01-05 | 2018-05-11 | 长春博超汽车零部件股份有限公司 | 一种天然麻纤维增强聚合物基复合毡材除甲醛和乙醛处理方法和装置 |
WO2019165440A1 (en) * | 2018-02-26 | 2019-08-29 | Stuart Earnest Dwice | Biofiber film |
CN108530824A (zh) * | 2018-04-13 | 2018-09-14 | 武汉工程大学 | 一种植物纤维增韧酚醛泡沫的制备方法 |
EP3565091A1 (de) * | 2018-05-04 | 2019-11-06 | Siemens Aktiengesellschaft | Elektrisches isolationssystem eines elektromotors und herstellungsverfahren dazu |
CN109177395A (zh) * | 2018-09-08 | 2019-01-11 | 佛山朝鸿新材料科技有限公司 | 一种汽车用降噪轮罩内衬材料的制备方法 |
CN110938285A (zh) * | 2018-09-21 | 2020-03-31 | 广西大学 | 一种甘蔗渣与玻璃纤维复合增强环氧树脂材料及其制备方法 |
IT201800009487A1 (it) * | 2018-10-16 | 2020-04-16 | Cdz Compositi Srl | Manufatto con profilo tridimensionale realizzato con un materiale composito, metodo di realizzazione e intermedio di lavorazione di tale manufatto. |
FR3093669B1 (fr) * | 2019-03-12 | 2021-03-19 | Lineo | Procédé de fabrication d’un renfort fibreux pré-imprégné à partir d’un non-tissé thermoplastique et d’un renfort de fibres naturelles |
CN112048150A (zh) * | 2019-06-06 | 2020-12-08 | 广西大学 | 一种碳纤维布与麻纤维布增强不饱和树脂材料及其制备方法 |
WO2021041310A1 (en) * | 2019-08-24 | 2021-03-04 | Biofilmax | Biofilm |
CN110590186B (zh) * | 2019-09-25 | 2021-11-02 | 暨南大学 | 一种胺基化玻璃纤维及其制备方法与应用 |
CN112680956A (zh) * | 2019-10-18 | 2021-04-20 | 南京理工大学 | 一种提高纤维金属层板界面性能的方法 |
CN111087777A (zh) * | 2020-02-10 | 2020-05-01 | 贵州富斯特化工材料科技有限公司 | 一种高效无卤阻燃pla复合材料及制备方法 |
CN111376426B (zh) * | 2020-04-01 | 2021-10-22 | 浙江省林业科学研究院 | 一种植物纤维增强复合轻质保温风管的制备方法 |
CN111576048A (zh) * | 2020-04-09 | 2020-08-25 | 安徽福斯特渔具有限公司 | 用于军用防护服的复合材料制备方法 |
CN112457555A (zh) * | 2020-11-18 | 2021-03-09 | 湖南省爱意缘家居有限公司 | 一种抗菌防螨复合床垫及其制备方法 |
CN112458753A (zh) * | 2020-11-26 | 2021-03-09 | 中国林业科学研究院林产化学工业研究所 | 一种木质纤维材料的制备方法及应用 |
CN113321901A (zh) * | 2021-06-25 | 2021-08-31 | 上海方乾科技有限公司 | 一种树脂发泡复合材料 |
CN113831601A (zh) * | 2021-09-13 | 2021-12-24 | 安徽省宏忆新型材料有限公司 | 一种阻燃smc复合材料及其制备方法 |
CN114474566A (zh) * | 2022-01-07 | 2022-05-13 | 同济大学 | 一种植物纤维复合地板及其制备方法 |
CN114559577A (zh) * | 2022-03-03 | 2022-05-31 | 威海鸿宇复合材料有限责任公司 | 一种中低温快速固化的大厚度立体织物预浸料及制备方法 |
CN114656719B (zh) * | 2022-03-31 | 2024-01-23 | 宁波信泰机械有限公司 | 一种长植物纤维改性增强的聚丙烯复合材料及其制备方法和应用 |
CN114606772B (zh) * | 2022-04-13 | 2024-01-26 | 国际竹藤中心 | 一种界面增强连续植物纤维单元的制备方法 |
WO2023222244A1 (en) * | 2022-05-20 | 2023-11-23 | F. List Gmbh | Fiber-reinforced composite material, component, vehicle and method for manufacturing a fiber-reinforced composite material |
CN114940014A (zh) * | 2022-06-14 | 2022-08-26 | 郴州湘南麻业有限公司 | 条带状黄麻纤维树脂预浸复合材料加工方法 |
CN114874513B (zh) * | 2022-06-17 | 2023-07-14 | 东莞市龙际家居服饰有限公司 | 一种橡胶生物机大底及其制备方法 |
CN115368707A (zh) * | 2022-09-20 | 2022-11-22 | 国际竹藤中心 | 一种植物纤维增强发泡复合材料及其制备方法和应用 |
CN115536942B (zh) * | 2022-10-25 | 2023-06-02 | 苏州旭光聚合物有限公司 | 一种植物纤维增强聚丙烯复合材料及其制备方法 |
GB2624405A (en) * | 2022-11-16 | 2024-05-22 | Advanced Innergy Ltd | Thermal insulating structures |
CN115648376A (zh) * | 2022-11-16 | 2023-01-31 | 佛山市美盈森绿谷科技有限公司 | 植物纤维灯罩的制造方法及植物纤维灯罩 |
CN117511135B (zh) * | 2023-11-29 | 2024-06-18 | 佛山市杰品智能科技集团有限公司 | 一种植物纤维基复合材料及其制备方法和应用 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483889A (en) | 1982-08-05 | 1984-11-20 | Kemanord Ab | Method for the production of fibre composite materials impregnated with resin |
US4513106A (en) | 1982-11-26 | 1985-04-23 | Kemanord Ab | Process for expanding microspheres |
US5039571A (en) | 1987-10-14 | 1991-08-13 | Akzo Nv | Metal-resin laminate reinforced with S2-glass fibres |
US5219629A (en) | 1988-11-23 | 1993-06-15 | Chemical & Polymer Technology, Inc. | Laminates, panels and methods for making them |
US5547735A (en) | 1994-10-26 | 1996-08-20 | Structural Laminates Company | Impact resistant laminate |
US5834526A (en) | 1997-07-11 | 1998-11-10 | Wu; Huey S. | Expandable hollow particles |
JPH11144010A (ja) * | 1997-11-10 | 1999-05-28 | Aguro Techno:Kk | 生分解性プラスチックカード |
CN1308364C (zh) * | 2005-07-12 | 2007-04-04 | 武汉理工大学 | 植物纤维增强硬质聚氨酯结构泡沫复合材料及其制备工艺 |
DE10251518B4 (de) * | 2002-11-04 | 2009-10-01 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Kontinuierliches Fertigungsverfahren zur Herstellung von Gegenständen aus Faserverbundwerkstoffen aus nachwachsenden Rohstoffen |
CN102352089A (zh) * | 2011-07-01 | 2012-02-15 | 中航复合材料有限责任公司 | 一种植物纤维增强生物质树脂薄层材料及其制备方法 |
CN102582207A (zh) * | 2012-03-02 | 2012-07-18 | 中国航空工业集团公司北京航空材料研究院 | 一种植物纤维叠层混杂功能性复合材料层合板的制备方法 |
CN102838844A (zh) * | 2012-09-21 | 2012-12-26 | 中国航空工业集团公司北京航空材料研究院 | 一种植物纤维增强生物质树脂基泡沫板材及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4408855B4 (de) * | 1994-03-16 | 2007-05-10 | Emda Foundation For Development Aid Acp-Eec Asbl | Faserverstärkter, zelliger Kunststoff und Verwendung desselben |
CN1923506B (zh) | 2006-07-19 | 2010-08-04 | 中国航空工业第一集团公司北京航空材料研究院 | 一种增韧的复合材料层合板及其制备方法 |
SE532271C2 (sv) * | 2007-09-11 | 2009-11-24 | Mats Dalborg | En återvinningsbar komposit och ett förfarande och en materialsats för att producera denna |
CN101220561B (zh) | 2008-01-04 | 2010-09-08 | 中国航空工业第一集团公司北京航空材料研究院 | 一种液态成型复合材料用预制织物及其制备方法 |
CN101260228B (zh) | 2008-04-24 | 2010-08-18 | 同济大学 | 一种具有阻燃功能的天然纤维/聚乳酸复合材料的制备方法 |
CN101294439B (zh) * | 2008-06-16 | 2011-12-21 | 吴绍元 | 一种多功能节能保温装饰板 |
CN101713151A (zh) | 2008-10-06 | 2010-05-26 | E.I.内穆尔杜邦公司 | 复合增强材料及其制造方法和用途 |
JP5585072B2 (ja) * | 2009-12-22 | 2014-09-10 | 株式会社ジェイエスピー | 混合樹脂発泡粒子の製造方法 |
CN102173153A (zh) | 2010-12-13 | 2011-09-07 | 中国航空工业集团公司北京航空材料研究院 | 一种纤维增强复合材料的制备方法 |
CN102321977A (zh) | 2011-07-01 | 2012-01-18 | 中航复合材料有限责任公司 | 一种界面增容、阻燃的植物纤维增强织物的处理方法 |
-
2013
- 2013-03-01 EP EP13755688.2A patent/EP2821226B1/en active Active
- 2013-03-01 US US14/382,414 patent/US10711394B2/en active Active
- 2013-03-01 WO PCT/CN2013/072087 patent/WO2013127368A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483889A (en) | 1982-08-05 | 1984-11-20 | Kemanord Ab | Method for the production of fibre composite materials impregnated with resin |
US4513106A (en) | 1982-11-26 | 1985-04-23 | Kemanord Ab | Process for expanding microspheres |
US5039571A (en) | 1987-10-14 | 1991-08-13 | Akzo Nv | Metal-resin laminate reinforced with S2-glass fibres |
US5219629A (en) | 1988-11-23 | 1993-06-15 | Chemical & Polymer Technology, Inc. | Laminates, panels and methods for making them |
US5547735A (en) | 1994-10-26 | 1996-08-20 | Structural Laminates Company | Impact resistant laminate |
US5834526A (en) | 1997-07-11 | 1998-11-10 | Wu; Huey S. | Expandable hollow particles |
JPH11144010A (ja) * | 1997-11-10 | 1999-05-28 | Aguro Techno:Kk | 生分解性プラスチックカード |
DE10251518B4 (de) * | 2002-11-04 | 2009-10-01 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Kontinuierliches Fertigungsverfahren zur Herstellung von Gegenständen aus Faserverbundwerkstoffen aus nachwachsenden Rohstoffen |
CN1308364C (zh) * | 2005-07-12 | 2007-04-04 | 武汉理工大学 | 植物纤维增强硬质聚氨酯结构泡沫复合材料及其制备工艺 |
CN102352089A (zh) * | 2011-07-01 | 2012-02-15 | 中航复合材料有限责任公司 | 一种植物纤维增强生物质树脂薄层材料及其制备方法 |
CN102582207A (zh) * | 2012-03-02 | 2012-07-18 | 中国航空工业集团公司北京航空材料研究院 | 一种植物纤维叠层混杂功能性复合材料层合板的制备方法 |
CN102838844A (zh) * | 2012-09-21 | 2012-12-26 | 中国航空工业集团公司北京航空材料研究院 | 一种植物纤维增强生物质树脂基泡沫板材及其制备方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2821226A4 |
VOGELESANG, L.: "Development of a New Hybrid Material (ARALL) for Aircraft Structure", IND. ENG. CHEM. PROD. RES. DEV., 1983, pages 492 - 496 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3085526A4 (en) * | 2013-12-19 | 2017-09-06 | Hyundai Motor Company | Sound-absorbing/insulating material having excellent exterior and moldability, and method for producing same |
US9805708B2 (en) | 2013-12-19 | 2017-10-31 | Hyundai Motor Company | Sound absorbing and insulating material with superior moldability and appearance and method for manufacturing the same |
US10304437B2 (en) | 2013-12-19 | 2019-05-28 | Hyundai Motor Company | Sound absorbing and insulating material with superior moldability and appearance and method for manufacturing the same |
GB2529571A (en) * | 2014-10-21 | 2016-02-24 | Eco Technilin Ltd | Laminated composite material and method for manufacturing laminated composite material |
GB2529571B (en) * | 2014-10-21 | 2017-01-04 | Eco Technilin Ltd | Laminated composite material and method for manufacturing laminated composite material |
CN114059384A (zh) * | 2020-08-01 | 2022-02-18 | 杭州特种纸业有限公司 | 一种纳米空气滤纸及其制备方法 |
CN114059384B (zh) * | 2020-08-01 | 2023-11-28 | 杭州特种纸业有限公司 | 一种纳米空气滤纸及其制备方法 |
CN115478439A (zh) * | 2022-08-26 | 2022-12-16 | 东华大学 | 具有仿羊毛卷曲结构的多孔纤维及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2821226A4 (en) | 2015-12-02 |
US10711394B2 (en) | 2020-07-14 |
EP2821226B1 (en) | 2018-12-26 |
US20150044924A1 (en) | 2015-02-12 |
EP2821226A1 (en) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013127368A1 (zh) | 一种含有植物纤维织物的复合材料及其制备方法 | |
CN102838844B (zh) | 一种植物纤维增强生物质树脂基泡沫板材及其制备方法 | |
CA2759976C (en) | Improved, green aircraft interior panels | |
TWI697398B (zh) | 構造體之製造方法 | |
CN104379640B (zh) | 一种耐火的人工制品及其制造方法 | |
CN102582207A (zh) | 一种植物纤维叠层混杂功能性复合材料层合板的制备方法 | |
US9925728B2 (en) | Method of making fire resistant sustainable aircraft interior panels | |
JP2935682B2 (ja) | 繊維複合材料、その製造方法、その使用、サンドイッチ状構造部品、構造部材およびその製造方法 | |
US20150190987A1 (en) | Fire resistant sustainable aircraft interior panels | |
Akay | An introduction to polymer-matrix composites | |
CN113072795A (zh) | 一种芳纶纤维/石墨烯复合增强碳纤维树脂预浸料 | |
JP2004518834A (ja) | かさ高加工した繊維を用いた補強材 | |
Kumar et al. | Jute fibers, their composites and applications | |
CN111320841B (zh) | 一种芳纶纤维/碳纳米管复合增强碳纤维树脂预浸料 | |
WO2019118965A1 (en) | Composition and method to form a composite core material | |
US11772357B2 (en) | Surface veil and surface film integrated prepreg layer and processes for making the same | |
CN112677602A (zh) | 一种用于预浸料的增韧材料、高韧性复合材料及其制备方法 | |
YI et al. | BIO-COMPOSITES: Development of Bio-Composites for Green Aviation and Ground Vehicles. | |
John et al. | Design and manufacturing of bio-based sandwich structures | |
KR101159932B1 (ko) | 열가소성 프리프레그의 제조방법 및 그에 의하여 제조된 열가소성 프리프레그 | |
Ramesh et al. | Green Composites from Renewable Feedstocks | |
JPH04310726A (ja) | 軽量複合成形物の製造法 | |
US20220388274A1 (en) | Moulding material | |
Nassir et al. | Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs | |
Elseify et al. | Natural Fiber Composite Fabrication for the Automotive Industry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13755688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013755688 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14382414 Country of ref document: US |