WO2013125597A1 - 圧縮機制御装置及びその制御方法、圧縮機システム - Google Patents
圧縮機制御装置及びその制御方法、圧縮機システム Download PDFInfo
- Publication number
- WO2013125597A1 WO2013125597A1 PCT/JP2013/054221 JP2013054221W WO2013125597A1 WO 2013125597 A1 WO2013125597 A1 WO 2013125597A1 JP 2013054221 W JP2013054221 W JP 2013054221W WO 2013125597 A1 WO2013125597 A1 WO 2013125597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- value
- upstream
- flow rate
- guide vane
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/002—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0246—Surge control by varying geometry within the pumps, e.g. by adjusting vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/009—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by bleeding, by passing or recycling fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0223—Control schemes therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0269—Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
Definitions
- the present invention relates to a compressor control device including a plurality of compressor bodies, a control method therefor, and a compressor system.
- the present application claims priority based on Japanese Patent Application No. 2012-037335 filed in Japan on February 23, 2012, the contents of which are incorporated herein by reference.
- Compressors that compress gas and supply compressed gas to machines connected downstream are known.
- a compressor there is an compressor in which an inlet guide vane is disposed on the upstream side, and gas is allowed to flow from the inlet to the compressor body through the inlet guide vane.
- the flow rate of the gas flowing into the compressor body is controlled by adjusting the opening of the inlet guide vane.
- a plurality of stages of compressor bodies may be provided from the upstream side to the downstream side of the gas flow.
- a compressor in which a plurality of compressor main bodies are provided on the most upstream side, and the compressed gas is combined in each of the plurality of compressor main bodies and then flows into the downstream compressor main body.
- there is a method for controlling the state of the discharged gas by controlling the opening degree of the inlet guide vane provided at the inlet of each of the plurality of compressor bodies on the most upstream side in synchronization. is there.
- the present invention relates to a compressor control device capable of appropriately controlling the opening degree of an inlet guide vane and performing an optimum operation even when a performance difference occurs between a plurality of compressor bodies, and its An object is to provide a control method and a compressor system.
- the compressor control device includes a plurality of most upstream compressor bodies arranged on the most upstream side, and a downstream side of the plurality of most upstream compressor bodies. Arranged in the vicinity of the inlets of at least one downstream compressor body and the plurality of most upstream compressor bodies into which the plurality of the most upstream compressor bodies flow out and then merged gas flows.
- An inlet guide vane for controlling the flow rate of the gas flowing into the corresponding most upstream compressor body, and provided in the vicinity of an inlet or an outlet of each of the plurality of most upstream compressor bodies, the corresponding most upstream side A plurality of most upstream flow rate detectors that generate a most upstream flow rate detection value by detecting a flow rate that flows through the compressor body, and a pressure after merging of the gases that have flowed out of each of the plurality of most upstream compressor bodies detection
- a post-merging pressure detector that generates a post-merging pressure detection value, and an outlet pressure by detecting an outlet pressure of a most downstream compressor body arranged on the most downstream side of the downstream compressor body
- the inlet guide vane opening control unit has an inlet guide vane opening command value generation unit that generates an inlet guide vane opening command value from an outlet pressure detection value, and each of the plurality of most upstream compressor bodies A plurality of inlet guide vane opening commands for correcting the inlet guide vane opening command value based on the detected most upstream flow rate detection value and the post-merging pressure detection value It is characterized by having a correction unit.
- the opening degree of each inlet guide vane provided in each of the plurality of most upstream compressor bodies is based on the corresponding upstream flow rate detection value and post-merging pressure detection value.
- the inlet guide vane opening command value can be corrected.
- the opening degree of each inlet guide vane can be controlled in consideration of the performance difference among the plurality of most upstream compressors.
- the inlet guide vane opening command value correcting unit corrects the inlet guide vane opening by dividing the most upstream flow rate detection value by the post-merging pressure detection value. A value may be generated, and the inlet guide vane opening command value may be corrected based on the inlet guide vane opening command correction value.
- the inlet guide vane opening command value can be corrected according to the operation state of each of the plurality of most upstream compressor bodies. Accordingly, the opening degree of the inlet guide vane can be controlled in consideration of the performance difference between the plurality of most upstream compressors, and so-called surging can be prevented.
- the inlet guide vane opening command value correction unit may open an inlet guide vane provided in the compressor to detect the opening of the inlet guide vane.
- a flow rate estimated value is generated from the inlet guide vane opening detection value generated by the degree detector and the post-merging pressure detection value, and the inlet guide vane opening command correction is performed from the difference between the flow rate estimated value and the most upstream flow rate detection value.
- a value may be generated, and the inlet guide vane opening command value may be corrected based on the inlet guide vane opening command correction value.
- the inlet guide vane opening command value correction unit outputs a signal for canceling the inlet guide vane opening correction value.
- a correction cancellation signal generation unit may be included.
- the inlet guide vane opening command value correction unit includes a performance difference between the plurality of most upstream compressor bodies.
- a performance difference correction coefficient generating unit for generating a performance difference correction coefficient representing the inlet flow target value for calculating the inlet flow target value from the detected upstream flow rate value and the performance difference correction coefficient of each of the plurality of most upstream compressors
- a generation unit and the inlet guide vane opening command correction value may be calculated from the inlet flow rate target value and the most upstream flow rate detection value.
- the inlet guide vane opening command value can be corrected by a coefficient representing the performance difference between the plurality of most upstream compressors inputted in advance. This makes it possible to adjust the correction amount due to the performance difference between the plurality of most upstream compressor bodies according to the situation.
- the air discharge for controlling the opening degree of the air discharge valve provided near the outlet of the most downstream compressor body
- An upstream anti-surge control that calculates a first discharge valve opening command value based on the most upstream flow rate detection value and the combined pressure detection value
- An outlet pressure control unit that calculates a second vent valve opening command value based on the detected outlet pressure value, and an outlet flow rate detected by an outlet flow rate detector provided near the outlet of the most downstream compressor body
- a first anti-surge valve opening command value and a second air discharge valve opening command value having a downstream anti-surge control unit that calculates a third air discharge valve opening command value from the detected value and the outlet pressure detection value
- Command value selection unit that selects the command value that maximizes the vent valve opening from among the third vent valve opening command value and controls the vent valve opening It may have.
- the upstream anti-surge control unit calculates an inlet flow rate target value from the post-merging pressure detection value, and at the inlet of the most upstream compressor body.
- a first air discharge valve opening command value for controlling the air discharge valve opening so that the flow rate becomes the inlet flow rate target value may be output.
- the opening degree of the air discharge valve can be controlled so that the flow rate at the inlet of the most upstream compressor body becomes the inlet flow rate target value. As a result, it is possible to reliably prevent surging from occurring in the most upstream compressor body.
- the command value selection unit includes a first discharge valve opening command value, a second discharge valve opening command value, and a third release valve.
- a low selector that selects the smallest value among the wind valve opening command values may be used.
- the air release valve opening command value is expressed as a value such that the smaller the value is, the larger the air opening is, and the smallest value is selected by the low selector.
- a compressor system is controlled by the compressor control device according to any one of (1) to (8) above and the compressor control device.
- the compressor is provided.
- the compression control method includes a plurality of most upstream compressor bodies arranged on the most upstream side, and a downstream side of the plurality of most upstream compressor bodies. Are provided in the vicinity of the respective inlets of at least one downstream compressor body and the plurality of most upstream compressor bodies into which the gas that flows out from each of the plurality of most upstream compressor bodies and then merges flows.
- An inlet guide vane for controlling the flow rate of the gas flowing into the corresponding most upstream compressor body, and the corresponding most upstream compressor body provided near each inlet of the plurality of most upstream compressor bodies.
- a post-merging pressure detector that generates a post-pressure detection value, and an outlet pressure detection value is generated by detecting an outlet pressure of the most downstream compressor body arranged on the most downstream side of the downstream compressor body
- a compressor control method for controlling a compressor comprising an outlet pressure detector that performs an outlet pressure detection value in an inlet guide vane opening control unit that controls an opening of the inlet guide vane.
- An inlet guide vane opening command value is generated from each of the plurality of most upstream compressor bodies, and the inlet guide vane opening command value is corrected by the corresponding most upstream flow rate detection value and post-merging pressure detection value. It is characterized by that.
- the inlet guide vanes provided in each of the plurality of most upstream compressor bodies are individually opened based on the corresponding upstream flow rate detection value and post-merging pressure detection value.
- the vane opening command value can be corrected.
- the opening degree of each inlet guide vane can be controlled in consideration of the performance difference among the plurality of most upstream compressors.
- the compressor control device the compressor control method, and the compressor system of each aspect of the present invention, as described above, even when there is a difference in performance among a plurality of compressors, optimal operation is performed. Can do.
- FIG. 1 shows a compressor system 1 according to a first embodiment of the present invention.
- the compressor system 1 includes a compressor 2 and a compressor control device 201.
- the compressor 2 is composed of a plurality of compressor bodies.
- the compressor main body is provided in a plurality of stages from the upstream side to the downstream side of the flow of gas (including air).
- the most upstream compressor body 21 arranged on the most upstream side is composed of two compressor bodies provided in parallel (first most upstream compressor body 21a, second most upstream compressor body 21b). .
- a downstream compressor body is provided in two stages on the downstream side of the most upstream compressor body 21.
- the downstream compressor body is provided between the most downstream compressor body 24 provided on the most downstream side, and between the most upstream compressor body 21 and the most downstream compressor body 24.
- Intermediate compressor main body 23 is provided.
- Each compressor body is coupled to a motor 26 as a drive source via a shaft 25.
- a plurality of most upstream compressor bodies 21 are arranged in parallel with the shaft 25.
- an intermediate compressor body 23 and a most downstream compressor body 24 are arranged in parallel to the shaft 25 at the other end of the shaft 25.
- the motor 26 is connected to the middle of the shaft 25.
- Each compressor body and motor 26 are connected to the shaft 25 via a gear box 28.
- Compressed gas is generated at each outlet of the plurality of most upstream compressor bodies 21 by sucking and compressing gas via a supply line 27.
- the supply line 27 includes a first supply line 27 a and a second supply line 27 b and is a pipe for supplying gas to the most upstream compressor body 21.
- the first supply line 27a is connected to the inlet of the first most upstream compressor body 21a
- the second supply line 27b is connected to the inlet of the second most upstream compressor body 21b.
- a first connection line 30 is connected to the outlet of each of the plurality of most upstream compressor bodies 21.
- the first connection line 30 is connected to the inlet of the intermediate compressor body 23.
- the first connection line 30 is a pipe for supplying the compressed gas generated in the most upstream compressor body 21 to the intermediate compressor body 23.
- the first connection line 30 has a merging portion, and after the compressed gases discharged from the first most upstream compressor body 21a and the second most upstream compressor body 21b are merged, compression after merging is performed. Gas is supplied to the intermediate compressor body 23.
- the intermediate compressor main body 23 sucks the compressed gas compressed by each uppermost stream compressor main body 21 via the first connection line 30 connected to the outlet of each uppermost stream compressor main body 21, and further compresses the compressed gas.
- a second connection line 31 is connected to the outlet of the intermediate compressor body 23, and the second connection line 31 is connected to the inlet of the most downstream compressor body 24.
- the second connection line 31 is a pipe for supplying the compressed gas generated in the intermediate compressor body 23 to the most downstream compressor body 24.
- the most downstream compressor body 24 sucks the compressed gas compressed by the intermediate compressor body 23 via the second connection line 31 connected to the outlet of the intermediate compressor body 23 and further compresses it.
- a discharge line 29 is connected to the outlet of the most downstream compressor body 24.
- the compressed gas compressed by the most downstream compressor body 24 is supplied to the downstream process via the discharge line 29.
- the discharge line 29 is a pipe for supplying compressed gas to the downstream process.
- the gas is supplied to the first most upstream compressor body 21 a and the second most upstream compressor body 21 b via the supply line 27.
- the gas is compressed and flows into the first connection line 30.
- the compressed gas merges at the merge portion of the first connection line 30 and then is supplied to the intermediate compressor body 23.
- the gas is further compressed and supplied to the most downstream compressor body 24 through the second connection line 31.
- the gas is further compressed and discharged to the downstream process via the discharge line 29.
- an inlet guide vane (IGV) 32 (hereinafter referred to as “IGV”) 32 for controlling the flow rate of the gas supplied to the most upstream compressor body 21 is provided near the inlet of each of the most upstream compressor bodies 21. 32a, 32b).
- the first supply line 27a is provided with a first IGV 32a
- the second supply line 27b is provided with a second IGV 32b, each controlling the flow rate of the gas flowing into the corresponding most upstream compressor body 21. is doing.
- the discharge line 29 is provided with an air discharge valve 38 that can discharge gas from the discharge line 29.
- the air discharge valve 38 releases air to the atmosphere.
- the gas which a compressor compresses is nitrogen etc., it can be set as a recycle valve. In that case, the gas can also be returned to the supply line 27 via a recycle line connected from the recycle valve to the supply line 27.
- the opening degrees of the IGV 32 and the air discharge valve 38 are controlled in order to control the outlet pressure of the compressor or to avoid surging.
- an inlet flow rate detector 33 (most upstream flow rate detector) that generates an inlet flow rate detection value by detecting the inlet flow rate flowing into the most upstream compressor body 21 is disposed.
- a first inlet flow rate detector 33a is arranged in the first supply line 27a, and a second inlet flow rate detector 33b is arranged in the second supply line 27b.
- a post-merging pressure detector 34 is provided that generates a post-merging pressure detection value.
- an outlet pressure detector 35 that generates an outlet pressure detection value by detecting the pressure of the gas flowing out from the outlet of the most downstream compressor body 24 is disposed.
- an outlet flow rate detector 36 that generates an outlet flow rate detection value by detecting the flow rate of the gas flowing out from the outlet of the most downstream compressor body 24 is disposed in the discharge line 29.
- a cooler 39 for cooling the gas flowing in the first connection line 30 and the second connection line 31 is arranged.
- the compressor control device 201 includes an IGV opening degree control unit 40 and a vent valve opening degree control unit 50.
- the IGV opening degree control unit 40 controls the opening degree of the IGV 32.
- the IGV opening degree control part 40 is comprised from the 1st IGV opening degree control part 40a and the 2nd IGV opening degree control part 40b.
- the first IGV opening degree control unit 40a controls the opening degree of the first IGV 32a
- the second IGV opening degree control unit 40b controls the opening degree of the second IGV 32b.
- the IGV opening control unit 40 (40a, 40b) includes an IGV opening command value generation unit 41 and an IGV opening command value correction unit 42 (42a, 42b).
- the IGV opening command value generation unit 41 is common to the first IGV opening control unit 40a and the second IGV opening control unit 40b.
- the IGV opening command value correction unit 42 includes a first IGV opening command value correction unit 42a and a second IGV opening command value correction unit 42b.
- the IGV opening command value generation unit 41 generates and outputs an IGV opening command value indicating the opening of the IGV 32.
- the IGV opening command value generation unit 41 includes a pressure controller 91 and a function generator 61.
- Each IGV opening command value correction unit 42 corrects the IGV opening command value output by the IGV opening command value generation unit 41.
- Each IGV opening command value correction unit 42 includes a flow indicator 81 (81a, 81b) that outputs the input inlet flow detection value as it is, a pressure indicator 82 that outputs the input post-merging pressure detection value as it is, A divider 71 (71a, 71b) that divides and outputs the detected flow rate value by the detected pressure value after merging, and a function generator 62 (62a, 62b) that outputs an IGV opening correction value are provided.
- the flow rate indicator 81 includes a first flow rate indicator 81a corresponding to the first IGV opening command value correction unit 42a and a second flow rate indicator 81b corresponding to the second IGV opening command value correction unit 42b.
- the divider 71 includes a first divider 71a corresponding to the first IGV opening command value correction unit 42a and a second divider 71b corresponding to the second IGV opening command value correction unit 42b.
- the function generator 62 includes a first function generator 62a corresponding to the first IGV opening command value correction unit 42a and a second function generator 62b corresponding to the second IGV opening command value correction unit 42b.
- the pressure indicator 82 is common to the first IGV opening command value correcting unit 42a and the second IGV opening command value correcting unit 42b, but is not limited thereto.
- the vent valve opening degree control unit 50 controls the opening degree of the vent valve 38.
- the discharge valve opening degree control unit 50 includes an upstream anti-surge control unit 51, an outlet pressure control unit 52, a downstream anti-surge control unit 53, and a command value selection unit 101.
- the anti-surge control is control that keeps the flow rate at a certain value or higher in order to prevent the compressor from being damaged by so-called surging that occurs when the flow rate in the compressor decreases.
- the upstream antisurge control unit 51 controls the opening degree of the discharge valve 38 in order to prevent surging from occurring in the most upstream compressor body 21.
- the upstream anti-surge control unit 51 includes a first upstream anti-surge control unit 51a and a second upstream anti-surge control unit 51b.
- the first upstream antisurge control unit 51a controls the opening degree of the discharge valve 38 in order to prevent surging from occurring in the first most upstream compressor body 21a.
- the second upstream side antisurge control unit 51b controls the opening degree of the air discharge valve 38 in order to prevent surging from occurring in the second most upstream compressor body 21b.
- the upstream anti-surge control unit 51 includes a pressure indicator 82 that outputs the input post-merging outlet pressure detection value as it is, a function generator 63 (63a, 63b) that outputs an inlet flow rate target value, A flow rate indicator 81 (81a, 81b) that outputs the input inlet flow rate detection value as it is, and a flow rate controller 92 (92a, 92b) that outputs a first discharge valve opening command value based on the inlet flow rate target value; Is provided.
- the function generator 63 includes a first function generator 63a corresponding to the first upstream anti-surge control unit 51a and a second function generator 63b corresponding to the second upstream anti-surge control unit 51b.
- the flow indicator 81 includes a first flow indicator 81a corresponding to the first upstream anti-surge controller 51a and a second flow indicator 81b corresponding to the second upstream anti-surge controller 51b.
- the flow rate controller 92 includes a first flow rate controller 92a corresponding to the first upstream anti-surge control unit 51a and a second flow rate controller 92b corresponding to the second upstream anti-surge control unit 51b.
- the pressure indicator 82 is common to the first upstream anti-surge control unit 51a and the second upstream anti-surge control rear part 51b, but is not limited thereto.
- the outlet pressure control unit 52 includes a pressure controller 91 that outputs an operation value such that the input outlet pressure detection value becomes a set value, and a function generator 64 that outputs a second vent valve opening command value. Prepare.
- the downstream anti-surge control unit 53 includes a function generator 65 that outputs an outlet flow rate target value, and a flow rate controller 93 that outputs a third vent valve opening command value based on the outlet flow rate target value.
- the outlet pressure detection value generated by the outlet pressure detector 35 is input to the pressure controller 91.
- the pressure controller 91 generates and outputs an operation value so that the input outlet pressure detection value becomes a set value.
- the function generator 61 receives the operation value generated and output by the pressure controller 91.
- the function generator 61 generates and outputs an IGV opening command value from the input operation value by a predetermined function FX61 set in advance.
- the function FX61 has an IGV opening command value that is a constant value X%, and the operation value exceeds 50%.
- the IGV opening command value is 100%.
- the IGV is a throttle-type control valve, and due to its structure, control accuracy at a certain opening or less is lowered. Therefore, the opening degree is set as the minimum opening degree ⁇ , and the opening degree is not set to the fully closed state, but is controlled from the minimum opening degree ⁇ to the fully opened opening degree. Therefore, when controlling, the operation amount corresponding to the minimum opening ⁇ is X%, and the operation amount corresponding to the fully opened state is 100%.
- each IGV opening command value correction unit 42 (42a, 42b) in each IGV opening control unit 40 will be described.
- Each flow rate indicator 81 (81a, 81b) receives the inlet flow rate detection value generated by the corresponding inlet flow rate detector 33 (33a, 33b) and outputs the inlet flow rate detection value as it is.
- the post-merging pressure detection value generated by the post-merging pressure detector 34 is input to the pressure indicator 82, and the post-merging pressure detection value is output as it is.
- Each divider 71 receives the inlet flow rate detection value output from the corresponding flow rate indicator 81 and the post-merging pressure detection value output from the pressure indicator 82. Each divider 71 generates and outputs an IGV opening command correction value by dividing the detected inlet flow rate value by the post-merging pressure detection value.
- the IGV opening command correction value is a value used to correct the IGV opening command value.
- the output IGV opening command correction value is input to the corresponding function generator 62 (62a, 62b).
- a flow rate detector is provided in the vicinity of the outlet of each of the most upstream side compressor body 21, and the most upstream side compressor detected by the flow rate detector (most upstream flow rate detector).
- the outlet flow rate detection value may be input to the divider.
- Each function generator 62 receives the IGV opening command correction value output from the corresponding divider 71 and the IGV opening command value output from the function generator 61 in the IGV opening command value generation unit 41.
- the Each function generator 62 corrects the IGV opening command value with the IGV opening command correction value, and generates and outputs an IGV opening correction value.
- the output IGV opening correction value is input to the corresponding IGV 32 (32a, 32b). The opening of the IGV 32 is controlled by the input IGV opening correction value.
- each function generator 62 a function is set in advance such that the larger the IGV opening command correction value is, the larger the IGV opening command value is corrected. This is to secure as much margin as possible from the surge line.
- each function generator 62 is set with a function that takes into account individual differences between the first most upstream compressor body 21a and the second most upstream compressor body 21b that are known in advance.
- Each function generator 62 may be set with a function that takes into account aging degradation.
- Each function generator 62 corrects the IGV opening command value based on the following concept.
- lines A1, A2, and A3 are pressure P-flow rate F curves at each opening of the IGV.
- line A3 is a pressure P-flow rate F curve when the IGV is at the maximum opening (fully open). It is.
- the line L1 is a surge line, and the region on the left side of this is a region where surging occurs. Therefore, normally, the pressure and flow rate of the compressor are controlled in a region on the right side of the surge control line L2 having a margin of about 10% with respect to the surge line L1.
- the value obtained by dividing the inlet flow rate detection value F1 by the post-merging pressure detection value P1 is the slope of the straight line S1. Corresponds to the reciprocal. It is considered that the smaller this value is, the closer to the surge line L1 and the more likely the surge is generated.
- each function generator 62 is set with a function FX62 that corrects the IGV opening command value in the direction away from the surge line as the IGV opening command correction value decreases.
- the IGV opening command value is corrected based on the function FX62, and an IGV opening correction value is generated and output.
- the function generator 62 may correct the difference based on the difference between the predetermined value derived from the IGV opening command correction value and the IGV opening command value, or the predetermined value as a ratio and the IGV opening command. Correction may be performed by multiplying the value by the predetermined value.
- the first IGV opening degree control unit 40a and the second IGV opening degree control unit 40b perform the above operations, respectively, and the opening degrees of the first IGV 32a and the second IGV 32b are controlled.
- the control operation in the vent valve opening control unit 50 will be described.
- the control operation of the upstream antisurge control unit 51 (51a, 51b) will be described.
- the post-merging pressure detection value generated by the post-merging pressure detector 34 is input to the pressure indicator 82.
- the pressure indicator 82 outputs the input post-merging pressure detection value as it is.
- the post-merging pressure detection value output from the pressure indicator 82 is input to each function generator 63 (63a, 63b).
- Each function generator 63 calculates and outputs an inlet flow rate target value from the input post-merging pressure detection value by a preset function.
- the inlet flow rate target value is a predetermined flow rate necessary for preventing the occurrence of surging in the corresponding upstreammost compressor body 21 (21a, 21b).
- the inlet flow rate detection value generated by the corresponding inlet flow rate detector 33 (33a, 33b) is input to each flow rate indicator 81 (81a, 81b).
- Each flow indicator 81 outputs the detected inlet flow rate as it is.
- the flow rate indicator 81 is common to the IGV opening command value correction unit 42 in the IGV opening control unit 40, but is not limited thereto.
- the inlet flow target value output from the corresponding function generator 63 and the inlet flow detection value output from the corresponding flow indicator 81 are input to each flow controller 92 (92a, 92b).
- Each flow controller 92 outputs a first air discharge valve opening command value such that the detected inlet flow rate becomes the inlet flow target value.
- the first vent valve opening is output from each of the first upstream anti-surge control unit 51a and the second upstream anti-surge control unit 51b.
- the detected pressure value generated by the outlet pressure detector 35 is input to the pressure controller 91.
- the pressure controller 91 generates and outputs an operation value such that the input outlet pressure detection value becomes a set value.
- the pressure controller 91 is common to the IGV opening command value generation unit 41 in the IGV opening control unit 40, but is not limited thereto. That is, the operation value is input to the function generator 61 and the function generator 64.
- the configuration input to the function generator 61 and the configuration input to the function generator 64 may be different from each other.
- the function generator 64 receives the operation value generated by the pressure controller 91.
- the function generator 64 produces
- the function FX64 monotonically increases the discharge valve opening command value in proportion to the magnitude of the operation value. If the size exceeds 50%, the second vent valve opening command value is a constant value of 100%. This is to control the IGV opening with the minimum opening of the IGV and a constant operating value based on the opening of the discharge valve, and with the discharge valve fully closed (opening command value 100%). This is because the amount of gas discharged from the compressor can be minimized and the operation efficiency can be increased.
- the function generator 65 receives the detected outlet pressure value generated by the outlet pressure detector 35.
- the function generator 65 generates and outputs an outlet flow rate target value from the input outlet pressure detection value by a preset function.
- the function FX65 is a function that represents the relationship between the outlet pressure detection value and the outlet flow rate target value.
- the outlet flow rate target value is a predetermined flow rate necessary for preventing the occurrence of surging at the compressor outlet.
- the flow rate controller 93 receives the outlet flow rate target value output from the function generator 65 and the outlet flow rate detection value generated by the outlet flow rate detector 36.
- the flow controller 93 outputs a third air discharge valve opening command value such that the outlet flow detection value becomes the outlet flow target value output from the function generator 65.
- the command value selection unit 101 receives each ventilator opening command value.
- the command value selection unit 101 selects a command value that maximizes the opening degree of the discharge valve, and outputs it to the discharge valve 38. This is because it can be controlled to be safer against surging by controlling the opening of the discharge valve 38 to be larger.
- the discharge valve opening command value output from the command value selection unit 101 is input to the discharge valve 38, and the opening thereof is controlled.
- each IGV opening degree control part 40 based on the outlet pressure detection value, the IGV opening degree command value calculated by the pressure controller 91 and the function generator 61 is used as the inlet flow rate detection value in each of the plurality of most upstream compressors. Is corrected by the IGV opening command correction value generated by dividing by the post-merging pressure detection value, and then input to the corresponding IGV 32.
- the detected inlet flow rate in each of the plurality of most upstream compressor bodies 21 is taken into account in controlling the opening degree of the IGV 32.
- the IGV opening correction value can be output to the corresponding IGV 32 in consideration of the performance difference between the plurality of most upstream compressor bodies 21. Thereby, the opening degree of each of the first IGV 32a and the second IGV 32b can be appropriately controlled.
- the anti-surge control is performed by using the outlet flow rate detection value, that is, the entire flow rate of the compressor, when there is a performance difference between the plurality of most upstream compressor bodies 21 due to individual differences or aging deterioration.
- the antisurge control is performed using the inlet flow rate detection value of each of the most upstream compressor bodies 21.
- each discharge valve opening command value is set to be smaller as the opening of the commanded discharge valve is larger, and the command value selection unit 101 selects the smallest one of the input values. It is good to be a low selector that outputs. As a result, when the input signal is lost, the opening degree of the air discharge valve 38 is controlled to be fully opened, so that it can be controlled on the safe side against surging.
- each IGV opening command value correction unit 42 (42a, 42b) is a function generator.
- the function generator 66 includes a first function generator 66a corresponding to the first IGV opening command value correction unit 42a and a second function generator 66b corresponding to the second IGV opening command value correction unit 42b.
- Each function generator 66 includes a post-merging pressure detection value generated by the post-merging pressure detector 34 and output via the pressure indicator 82, and an IGV opening degree detection provided in the corresponding IGV 32 (32a, 32b).
- the IGV opening detection value generated by the device 37 (37a, 37b) and the inlet flow detection value generated by the inlet flow detector 33 and output through the flow indicator 81 are input.
- Each function generator 66 calculates an inlet flow rate estimated value from the post-merging pressure detection value and the IGV opening detection value by a preset function FX66, and from the difference between the inlet flow rate estimated value and the inlet flow rate detected value,
- the IGV opening correction command value is calculated and output to the corresponding function generator 62 (62a, 62b).
- Each function generator 62 performs the same processing as in the first embodiment.
- FIG. 7 is a graph showing the performance curve of the corresponding most upstream compressor body 21 set in each function generator 66.
- the symbols in the graph are the same as those in FIG.
- the estimated flow rate calculated from the IGV opening detection value A2 and the post-merging pressure detection value P2 is F2.
- the inlet flow rate detection value is F
- the opening degree of the corresponding IGV 32 is controlled so as to increase so that the detected inlet flow rate becomes the estimated inlet flow rate.
- the opening degree of the IGV 32 is controlled so that the detected inlet flow rate value becomes the estimated inlet flow rate value from the actual opening degree of the corresponding IGV 32. Therefore, even if the performance of each of the most upstream compressors changes from the beginning, surging can be prevented appropriately, and performance deterioration of the entire compressor can be prevented.
- the IGV opening command value correction unit 42 (42a, 42b) in the IGV opening control unit 40 (40a, 40b) includes a correction cancellation signal generation unit 102 (102a, 102b) and a command value selection unit 120 (120a). 120b).
- the correction cancellation signal generation unit 102 generates a first correction cancellation signal generation unit 102a corresponding to the first IGV opening command value correction unit 42a and a second correction cancellation signal generation corresponding to the second IGV opening command value correction unit 42b. Part 102b.
- the command value selection unit 120 includes a command value selection unit 120a corresponding to the first IGV opening command value correction unit 42a and a second command value selection unit 120b corresponding to the second IGV opening command value correction unit 42b. Is done.
- Each correction cancellation signal generation unit 102 generates and outputs a correction cancellation signal.
- Each output correction cancellation signal is input to the corresponding command value selection unit 120.
- the corresponding correction cancellation signal and the IGV opening command correction value are input to each command value selection unit 120.
- the correction cancellation signal is a signal that cancels the IGV opening command correction value input to the corresponding command value selection unit 120.
- the no correction signal is a signal having a value set to zero. Further, if the IGV opening command correction value is a value having a property of correcting the IGV opening command value by a ratio, the no correction signal is a signal whose value is set to 1.
- an alarm 110 is installed in the compressor of this embodiment.
- the alarm 110 is provided in devices such as a flow rate detector, a pressure detector, and an actuator.
- each command value selection unit 120 selects a correction cancellation signal when an alarm signal is input, and selects an IGV opening command correction value when no alarm signal is input, to the corresponding function generator 62. Is output.
- Each function generator 62 performs the same processing as in the first embodiment.
- each command value selection unit 120 can select a corresponding correction cancellation signal. Accordingly, it is possible to switch whether or not to perform correction, and it is possible to prevent unnecessary correction from being performed.
- the IGV opening command value correction unit 42 (42a, 42b) in the IGV opening control unit 40 (40a, 40b) includes a performance difference correction coefficient generation unit 104, an inlet flow rate target value generation unit 105, and a function generator. 67 (67a, 67b).
- the function generator 67 includes a function generator 67a corresponding to the first IGV opening command value correction unit 42a and a function generator 67b corresponding to the second IGV opening command value correction unit 42b.
- the performance difference correction coefficient generation unit 104 and the inlet flow rate target value generation unit 105 are common to the first IGV opening command value correction unit 42a and the second IGV opening command value correction unit 42b.
- the performance difference correction coefficient generation unit 104 generates and outputs a performance difference correction coefficient representing a performance difference between the plurality of most upstream compressor bodies 21.
- the inlet flow rate target value generation unit 105 receives the performance difference correction coefficient and the corresponding inlet flow rate detection value in each of the plurality of most upstream compressor bodies 21, and the inlet flow rate for each of the plurality of most upstream compressor bodies 21. Generate a target value.
- the inlet flow rate target value is input to the corresponding function generator 67.
- Each function generator 67 is provided corresponding to each command value selection unit 120.
- Each function generator 67 receives an inlet flow rate target value and an inlet flow rate detection value output from the corresponding flow rate indicator 81 (81a, 81b). Each function generator 67 generates and outputs an IGV opening command correction value proportional to the difference between the inlet flow rate target value and the inlet flow rate detection value. Here, each function generator 67 may generate and output the IGV opening command correction value in consideration of the integration of the difference between the inlet flow rate target value and the inlet flow rate detection value.
- C ⁇ b> 1 is a plot representing the performance of the first most upstream compressor body 21.
- C2 is a plot representing the performance of the second most upstream compressor body 21.
- the inlet flow rate target value generation unit 105 detects the inlet flow rate detected value in each of the first most upstream compressor body 21 and the second most upstream compressor body 21, and the performance difference correction generated by the performance difference correction coefficient generation unit 104.
- the inlet flow rate target value F3 is calculated by Equation 1 using the coefficient ⁇ .
- F3 is the flow rate indicated by the plot of C3 in FIG. Therefore, when it is desired to set an intermediate value between F1 and F2 as the flow rate target value, ⁇ is set to 0.5. Note that ⁇ may be generated manually or may be automatically generated.
- the performance difference correction coefficient generation unit 104 can adjust and generate a correction coefficient representing a performance difference between the plurality of most upstream compressor bodies 21, and the plurality of most upstream compressor bodies 21 can be generated by the correction coefficient.
- the opening degree of IGV32 provided in each can be controlled. Thereby, the correction amount due to the performance difference between the most upstream compressor bodies 21 can be adjusted according to the situation. For example, when it is desired to operate in a region farther from surging, it is possible to realize such operation by generating a smaller ⁇ .
- the inlet flow rate detector 33 is disposed in each of the most upstream compressor bodies 21 (21a, 21b), detects the inlet flow rate, and generates the detected inlet flow rate.
- the IGV opening command value calculation unit obtains an IGV opening correction value using the generated inlet flow rate detection value.
- an outlet flow rate detector (most upstream flow rate detector) that detects an outlet flow rate and generates an outlet flow rate detection value in each of the most upstream compressor bodies 21 is provided. It is good also as what calculates
- the upstream anti-surge control unit outputs a first air discharge valve opening command value such that the inlet flow rate becomes the inlet flow rate target value, using the generated inlet flow rate detection value.
- a first air discharge valve opening command value such that the inlet flow rate becomes the inlet flow rate target value, using the generated inlet flow rate detection value.
- the most upstream flow rate detection value (inlet flow rate detection value or outlet flow rate detection value) is generated by detecting the inlet flow rate or the outlet flow rate as the most upstream flow rate flowing through each of the most upstream compressor bodies.
- the IGV opening correction value may be obtained based on the most upstream flow rate detection value, and the first discharge valve opening command value may be output.
- the above-described compressor control device, control method thereof, and compressor system can be applied to a compressor control device including a plurality of compressor bodies, a control method thereof, and a compressor system.
- the compressor control device, the control method thereof, and the compressor system described above are suitable for controlling the opening of the inlet guide vane appropriately, even when there is a performance difference among a plurality of compressor bodies. It is suitable for a compressor control device, a control method thereof, and a compressor system that enable operation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
この圧縮機制御装置は、インレットガイドベーンの開度を制御するインレットガイドベーン開度制御部を有し、インレットガイドベーン開度制御部は、出口圧力検出値からインレットガイドベーン開度指令値を算出するインレットガイドベーン開度指令値算出部と、複数の最上流側圧縮機本体毎に、対応する入口流量検出値と合流後圧力検出値により前記インレットガイドベーン開度指令値を補正する複数のインレットガイドベーン開度補正部とを有する。
Description
本発明は、複数の圧縮機本体を備えた圧縮機制御装置及びその制御方法、圧縮機システムに関する。
本願は、2012年2月23日に、日本に出願された特願2012-037335号に基づき優先権を主張し、その内容をここに援用する。
本願は、2012年2月23日に、日本に出願された特願2012-037335号に基づき優先権を主張し、その内容をここに援用する。
ガスを圧縮し、下流側に接続された機械等に圧縮ガスを供給する圧縮機が知られている。そのような圧縮機として、インレットガイドベーンを上流側に配置して、インレットガイドベーンを介してガスを入口から圧縮機本体へと流入させるものがある。インレットガイドベーンの開度を調整することによって、圧縮機本体に流入するガスの流量を制御する。
このような圧縮機において、ガスの流れの上流側から下流側に向かって、複数段の圧縮機本体を設けることがある。(例えば、特許文献1参照)。また、流量を増加させるために、最も上流側に複数の圧縮機本体を設け、複数の圧縮機本体それぞれにおいて圧縮したガスを合流させた後、下流側の圧縮機本体に流入させる圧縮機がある。このような圧縮機において、最も上流側の複数の圧縮機本体それぞれの入口に設けられたインレットガイドベーンの開度を、同期して制御することによって、吐出されるガスの状態を制御する方式がある。
しかし、そのような制御方式においては、最も上流側に設けられた複数の圧縮機本体間で、個体差や経年劣化等によって、性能に差が生じる場合がある。そのような場合、性能が劣っている方の圧縮機本体に合わせて、他方の圧縮機本体のインレットガイドベーンの開度も制御されてしまうため、運転可能な範囲が狭まってしまう可能性があった。
本発明は、複数の圧縮機本体間に性能差が生じた場合であっても、適切にインレットガイドベーンの開度を制御し、最適な運転を行うことを可能とする圧縮機制御装置及びその制御方法、圧縮機システムを提供することを目的とする。
(1)本発明の第1の態様によれば、圧縮機制御装置は、最も上流側に配置された複数の最上流側圧縮機本体と、前記複数の最上流側圧縮機本体の下流側に配置され、前記複数の最上流側圧縮機本体それぞれから流出し、その後に合流したガスが流入する、少なくとも一段の下流側圧縮機本体と、複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体に流入するガスの流量を制御するインレットガイドベーンと、前記複数の最上流側圧縮機本体それぞれの入口または出口付近に設けられ、前記対応する最上流側圧縮機本体を流通する流量を検出することにより最上流流量検出値を生成する複数の最上流流量検出器と、前記複数の最上流側圧縮機本体それぞれから流出したガスの、合流後の圧力を検出することにより合流後圧力検出値を生成する合流後圧力検出器と、前記下流側圧縮機本体のうち、最も下流側に配置される最下流側圧縮機本体の出口圧力を検出することにより出口圧力検出値を生成する出口圧力検出器とを備える圧縮機を制御する圧縮機制御装置であって、該圧縮機制御装置は、前記インレットガイドベーンの開度を制御するインレットガイドベーン開度制御部を有し、該インレットガイドベーン開度制御部は、出口圧力検出値からインレットガイドベーン開度指令値を生成するインレットガイドベーン開度指令値生成部と、 前記複数の最上流側圧縮機本体それぞれについて、対応する最上流流量検出値と合流後圧力検出値により前記インレットガイドベーン開度指令値を補正する複数のインレットガイドベーン開度指令値補正部とを有することを特徴としている。
本発明の第1の態様によれば、複数の最上流側圧縮機本体それぞれに設けられたインレットガイドベーンそれぞれの開度について、対応する最上流流量検出値と合流後圧力検出値とに基づいて、インレットガイドベーン開度指令値を補正することができる。これによって、複数の最上流側圧縮機間の性能差を考慮し、インレットガイドベーンそれぞれの開度を制御することができる。
(2)上記(1)に記載の圧縮機制御装置において、上記インレットガイドベーン開度指令値補正部は、最上流流量検出値を合流後圧力検出値で除算することでインレットガイドベーン開度補正値を生成し、前記インレットガイドベーン開度指令値を前記インレットガイドベーン開度指令補正値に基づいて補正してもよい。
このような構成によれば、複数の最上流側圧縮機本体それぞれの運転状態に応じて、インレットガイドベーン開度指令値を補正することができる。これによって、複数の最上流側圧縮機間の性能差を考慮し、インレットガイドベーンの開度を制御することができ、いわゆるサージングの発生を防ぐことができる。
(3)上記(1)に記載の圧縮機制御装置において、上記インレットガイドベーン開度指令値補正部は、前記インレットガイドベーンの開度を検出するために圧縮機に備えられたインレットガイドベーン開度検出器が生成するインレットガイドベーン開度検出値と、合流後圧力検出値とから流量推定値を生成し、該流量推定値と最上流流量検出値との差分からインレットガイドベーン開度指令補正値を生成し、前記インレットガイドベーン開度指令値を前記インレットガイドベーン開度指令補正値に基づいて補正してもよい。
このような構成によれば、複数の最上流側圧縮機本体が、当初と比較して大きく性能が異なっている場合であっても、推定される流量に基づいて、適切な補正を行うことができる。
(4)上記(1)~(3)のいずれか1つに記載の圧縮機制御装置において、上記インレットガイドベーン開度指令値補正部は、インレットガイドベーン開度補正値を取り消す信号を出力する補正取消信号生成部を有してもよい。
このような構成によれば、アラームが発生した場合等、複数の最上流側圧縮機本体間の性能差によってインレットガイドベーン開度指令値を補正すべきでない場合、補正を行うか否かの切り替えを行うことができる。
(5)上記(1)~(4)のいずれか1つに記載の圧縮機制御装置において、上記インレットガイドベーン開度指令値補正部は、前記複数の最上流側圧縮機本体間の性能差を表す性能差補正係数を生成する性能差補正係数生成部と、前記複数の最上流側圧縮機それぞれの最上流流量検出値と前記性能差補正係数から入口流量目標値を算出する入口流量目標値生成部とを有し、入口流量目標値と最上流流量検出値からインレットガイドベーン開度指令補正値を算出してもよい。
このような構成によれば、予め入力された複数の最上流側圧縮機間の性能差を表す係数によって、インレットガイドベーン開度指令値を補正することができる。これによって、複数の最上流側圧縮機本体間の性能差による補正量を、状況に応じて調整することが可能となる。
(6)上記(1)~(5)のいずれか1つに記載の圧縮機制御装置において、上記最下流側圧縮機本体の出口付近に設けられた放風弁の開度を制御する放風弁開度制御部を有し、該放風弁開度制御部は、最上流流量検出値と合流後圧力検出値に基づいて第一放風弁開度指令値を算出する上流側アンチサージ制御部と、出口圧力検出値に基づいて第二放風弁開度指令値を算出する出口圧力制御部と、最下流側圧縮機本体の出口付近に設けられた出口流量検出器が検出する出口流量検出値と出口圧力検出値から第三放風弁開度指令値を算出する下流側アンチサージ制御部とを有し、第一放風弁開度指令値と第二放風弁開度指令値と第三放風弁開度指令値のうち、放風弁開度が最も大きくなる指令値を選択し、放風弁開度を制御する指令値選択部を有してもよい。
このような構成によれば、最上流側圧縮機本体におけるサージングを考慮した放風弁の開度の制御を行うことができる。これによって、最上流側圧縮機本体でサージングが発生してしまうことを防ぐことが可能となる。
(7)上記(6)に記載の圧縮機制御装置において、上記上流側アンチサージ制御部は、合流後圧力検出値から入口流量目標値を算出し、前記最上流側圧縮機本体の入口での流量が入口流量目標値となるように放風弁開度を制御する第一放風弁開度指令値を出力してもよい。
このような構成によれば、最上流側圧縮機本体の入口での流量が入口流量目標値になるように放風弁の開度を制御することができる。これによって、最上流側圧縮機本体においてサージングが発生することを確実に防止することができる。
(8)上記(6)又は(7)に記載の圧縮機制御装置において、上記指令値選択部は、第一放風弁開度指令値と第二放風弁開度指令値と第三放風弁開度指令値とのうち、最も値の小さいものを選択するローセレクターであってもよい。
このような構成によれば、放風弁開度指令値は、小さい値であるほど放風弁の開度が大きくなるような値として表され、最も小さい値がローセレクターにより選択される。これによって、放風弁開度指令値の信号がない場合でも、サージングに対して安全側に放風弁の開度を制御することができる。
(9)本発明の第2の態様によれば、圧縮機システムは、上記(1)~(8)のいずれか1つに記載の圧縮機制御装置と、前記圧縮機制御装置によって制御される前記圧縮機とを備えることを特徴としている。
このような構成によれば、上記のような作用効果を奏する圧縮機システムを提供することができる。
(10)本発明の第3の態様によれば、圧縮制御方法は、最も上流側に配置された複数の最上流側圧縮機本体と、前記複数の最上流側圧縮機本体の下流側に配置され、前記複数の最上流側圧縮機本体それぞれから流出し、その後に合流したガスが流入する、少なくとも一段の下流側圧縮機本体と、複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体に流入するガスの流量を制御するインレットガイドベーンと、前記複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体の入口流量を検出することにより最上流流量検出値を生成する複数の最上流流量検出器と、前記複数の最上流側圧縮機本体それぞれから流出したガスの、合流後圧力を検出することにより合流後圧力検出値を生成する合流後圧力検出器と、前記下流側圧縮機本体のうち、最も下流側に配置される最下流側圧縮機本体の出口圧力を検出することにより出口圧力検出値を生成する出口圧力検出器とを備える圧縮機を制御する圧縮機制御方法であって、該圧縮機制御方法は、前記インレットガイドベーンの開度を制御するインレットガイドベーン開度制御部において出口圧力検出値からインレットガイドベーン開度指令値を生成し、前記複数の最上流側圧縮機本体それぞれについて、対応する最上流流量検出値と合流後圧力検出値とにより前記インレットガイドベーン開度指令値を補正することを特徴としている。
このような構成によれば、複数の最上流側圧縮機本体それぞれに設けられたインレットガイドベーンそれぞれの開度について、対応する最上流流量検出値と合流後圧力検出値とに基づいて、インレットガイドベーン開度指令値を補正することができる。これによって、複数の最上流側圧縮機間の性能差を考慮し、インレットガイドベーンそれぞれの開度を制御することができる。
本発明の上記各態様の圧縮機制御装置及び圧縮機制御方法、圧縮機システムによれば、上記の通り、複数の圧縮機に性能差が生じた場合であっても、最適な運転を行うことができる。
以下、図面を参照して本発明の第一実施形態について説明する。図1は、本発明の第一実施形態における圧縮機システム1を示す。圧縮機システム1は、圧縮機2と圧縮機制御装置201とから構成されている。圧縮機2は、複数の圧縮機本体から構成されている。圧縮機本体は、圧縮機システム1において、ガス(空気を含む)の流れの上流側から下流側に複数段にわたって設けられている。最も上流側に配置されている最上流側圧縮機本体21は、並列に設けられた二つの圧縮機本体からなる(第一最上流側圧縮機本体21a、第二最上流側圧縮機本体21b)。最上流側圧縮機本体21の下流側には、下流側圧縮機本体が二段にわたって設けられている。本実施形態では、下流側圧縮機本体は、最も下流側に設けられている最下流側圧縮機本体24と、最上流側圧縮機本体21と最下流側圧縮機本体24との中間に設けられている中間圧縮機本体23とからなる。
各圧縮機本体は、シャフト25を介して駆動源であるモータ26と結合されている。シャフト25の一端には、複数の最上流側圧縮機本体21が、シャフト25に対して並列に配置される。また、シャフト25の他端には、中間圧縮機本体23及び最下流側圧縮機本体24が、シャフト25に対して並列に配置される。モータ26は、シャフト25の中間に接続される。各圧縮機本体及びモータ26は、ギアボックス28を介してシャフト25と接続される。
複数の最上流側圧縮機本体21それぞれの出口には、供給ライン27を介して、ガスを吸い込んで圧縮することにより圧縮ガスを生成する。供給ライン27は、第一供給ライン27a及び第二供給ライン27bからなり、ガスを最上流側圧縮機本体21に供給するための配管である。第一供給ライン27aは第一最上流側圧縮機本体21aの入口に接続され、第二供給ライン27bは第二最上流側圧縮機本体21bの入口に接続されている。
複数の最上流側圧縮機本体21それぞれの出口には、第一接続ライン30が接続されている。当該第一接続ライン30は中間圧縮機本体23の入口と接続されている。第一接続ライン30は、最上流側圧縮機本体21で生成された圧縮ガスを、中間圧縮機本体23へと供給するための配管である。第一接続ライン30は、合流部を有し、第一最上流側圧縮機本体21aと第二最上流側圧縮機本体21bとからそれぞれ吐出された圧縮ガスを合流させた後、合流後の圧縮ガスを中間圧縮機本体23へと供給する。
中間圧縮機本体23は、各最上流側圧縮機本体21の出口に接続された第一接続ライン30を介して、各最上流側圧縮機本体21により圧縮された圧縮ガスを吸い込み、さらに圧縮する。中間圧縮機本体23の出口には、第二接続ライン31が接続され、当該第二接続ライン31は最下流側圧縮機本体24の入口と接続される。第二接続ライン31は、中間圧縮機本体23で生成された圧縮ガスを最下流側圧縮機本体24へと供給するための配管である。
最下流側圧縮機本体24は、中間圧縮機本体23の出口に接続された第二接続ライン31を介して、中間圧縮機本体23により圧縮された圧縮ガスを吸い込み、さらに圧縮する。
また、最下流側圧縮機本体24の出口には、吐出ライン29が接続されている。最下流側圧縮機本体24で圧縮された圧縮ガスは、吐出ライン29を介して、下流側プロセスへと供給される。吐出ライン29は、下流側プロセスに圧縮ガスを供給するための配管である。
以上のように、この圧縮機システム1において、ガスは、供給ライン27を介して第一最上流側圧縮機本体21a及び第二最上流側圧縮機本体21bそれぞれに供給される。第一最上流側圧縮機本体21a及び第二最上流側圧縮機本体21bそれぞれにおいて、ガスは圧縮され、第一接続ライン30に流入する。圧縮ガスは、第一接続ライン30の合流部において合流した後、中間圧縮機本体23へと供給される。中間圧縮機本体23においても同様に、ガスはさらに圧縮され、第二接続ライン31を介して最下流側圧縮機本体24へと供給される。最下流側圧縮機本体24においても同様に、ガスがさらに圧縮され、吐出ライン29を介して、下流側プロセスへ吐出される。
供給ライン27における、各最上流側圧縮機本体21それぞれの入口付近には、最上流側圧縮機本体21へ供給されるガスの流量を制御するインレットガイドベーン(Inlet Guide Vane、以下IGV)32(32a、32b)が設けられている。第一供給ライン27aには、第一IGV32aが設けられ、第二供給ライン27bには、第二IGV32bが設けられており、それぞれ対応する最上流側圧縮機本体21に流入するガスの流量を制御している。
吐出ライン29には、吐出ライン29からガスを放出することができる放風弁38が設けられている。放風弁38は、圧縮機が、圧縮するガスが空気である空気圧縮機である場合は、空気を大気に放出する。また、圧縮機が圧縮するガスが窒素等の場合は、リサイクル弁とすることができる。その場合、ガスは、リサイクル弁から供給ライン27まで接続されたリサイクルラインを介して、供給ライン27に戻すことも可能である。
IGV32及び放風弁38は、圧縮機の出口圧力を制御したり、サージングを回避したりするために、その開度が制御される。
IGV32及び放風弁38は、圧縮機の出口圧力を制御したり、サージングを回避したりするために、その開度が制御される。
供給ライン27には、最上流側圧縮機本体21に流入する入口流量を検出することにより、入口流量検出値を生成する、入口流量検出器33(最上流流量検出器)が配置される。第一供給ライン27aには第一入口流量検出器33aが配置され、第二供給ライン27bには第二入口流量検出器33bが配置される。
第一接続ライン30における合流部より下流側には、第一最上流側圧縮機本体21a及び第二最上流側圧縮機本体21bそれぞれから流出したガスが合流した後の圧力を検出することにより、合流後圧力検出値を生成する、合流後圧力検出器34が配置される。
吐出ライン29には、最下流側圧縮機本体24の出口から流出するガスの圧力を検出することにより、出口圧力検出値を生成する出口圧力検出器35が配置されている。
また、吐出ライン29には、最下流側圧縮機本体24の出口から流出するガスの流量を検出することにより、出口流量検出値を生成する出口流量検出器36が配置される。
加えて、第一接続ライン30及び第二接続ライン31には、内部を流れるガスを冷却するためのクーラ39が配置される。
次に、圧縮機制御装置201の構成について、説明する。
図2に示すように、圧縮機制御装置201は、IGV開度制御部40と放風弁開度制御部50とを備える。IGV開度制御部40は、IGV32の開度の制御を行う。IGV開度制御部40は、第一IGV開度制御部40aと第二IGV開度制御部40bとから構成されている。第一IGV開度制御部40aは、第一IGV32aの開度の制御を行い、第二IGV開度制御部40bは、第二IGV32bの開度の制御を行う。第一IGV開度制御部40aと第二IGV開度制御部40bとの構成は等しいため、以下、符号末尾のa、bを省略して表示するものとして、合わせて説明するとともに、個別の説明とする場合には各構成の符号末尾にa、bを表示して区別するものとする。
図2に示すように、圧縮機制御装置201は、IGV開度制御部40と放風弁開度制御部50とを備える。IGV開度制御部40は、IGV32の開度の制御を行う。IGV開度制御部40は、第一IGV開度制御部40aと第二IGV開度制御部40bとから構成されている。第一IGV開度制御部40aは、第一IGV32aの開度の制御を行い、第二IGV開度制御部40bは、第二IGV32bの開度の制御を行う。第一IGV開度制御部40aと第二IGV開度制御部40bとの構成は等しいため、以下、符号末尾のa、bを省略して表示するものとして、合わせて説明するとともに、個別の説明とする場合には各構成の符号末尾にa、bを表示して区別するものとする。
IGV開度制御部40(40a、40b)は、IGV開度指令値生成部41とIGV開度指令値補正部42(42a、42b)とを備える。IGV開度指令値生成部41は、第一IGV開度制御部40aと、第二IGV開度制御部40bとで共通のものである。IGV開度指令値補正部42は、第一IGV開度指令値補正部42aと第二IGV開度指令値補正部42bとから構成されている。
IGV開度指令値生成部41は、IGV32の開度を示すIGV開度指令値を生成し、出力する。IGV開度指令値生成部41は、圧力制御器91と、関数発生器61とを備える。
IGV開度指令値生成部41は、IGV32の開度を示すIGV開度指令値を生成し、出力する。IGV開度指令値生成部41は、圧力制御器91と、関数発生器61とを備える。
各IGV開度指令値補正部42は、IGV開度指令値生成部41が出力したIGV開度指令値の補正を行う。
各IGV開度指令値補正部42は、入力された入口流量検出値をそのまま出力する流量インジケータ81(81a、81b)と、入力された合流後圧力検出値をそのまま出力する圧力インジケータ82と、入口流量検出値を合流後圧力検出値で除算し出力する除算器71(71a、71b)と、IGV開度補正値を出力する関数発生器62(62a、62b)とを備える。流量インジケータ81は、第一IGV開度指令値補正部42aに対応する第一流量インジケータ81aと、第二IGV開度指令値補正部42bに対応する第二流量インジケータ81bとから構成される。除算器71は、第一IGV開度指令値補正部42aに対応する第一除算器71aと、第二IGV開度指令値補正部42bに対応する第二除算器71bとから構成される。関数発生器62は、第一IGV開度指令値補正部42aに対応する第一関数発生器62aと、第二IGV開度指令値補正部42bに対応する第二関数発生器62bとから構成される。また、圧力インジケータ82は、第一IGV開度指令値補正部42aと第二IGV開度指令値補正部42bとで共通のものとしているが、これに限るものではない。
各IGV開度指令値補正部42は、入力された入口流量検出値をそのまま出力する流量インジケータ81(81a、81b)と、入力された合流後圧力検出値をそのまま出力する圧力インジケータ82と、入口流量検出値を合流後圧力検出値で除算し出力する除算器71(71a、71b)と、IGV開度補正値を出力する関数発生器62(62a、62b)とを備える。流量インジケータ81は、第一IGV開度指令値補正部42aに対応する第一流量インジケータ81aと、第二IGV開度指令値補正部42bに対応する第二流量インジケータ81bとから構成される。除算器71は、第一IGV開度指令値補正部42aに対応する第一除算器71aと、第二IGV開度指令値補正部42bに対応する第二除算器71bとから構成される。関数発生器62は、第一IGV開度指令値補正部42aに対応する第一関数発生器62aと、第二IGV開度指令値補正部42bに対応する第二関数発生器62bとから構成される。また、圧力インジケータ82は、第一IGV開度指令値補正部42aと第二IGV開度指令値補正部42bとで共通のものとしているが、これに限るものではない。
放風弁開度制御部50は、放風弁38の開度の制御を行う。図2に示すように、放風弁開度制御部50は、上流側アンチサージ制御部51と、出口圧力制御部52と、下流側アンチサージ制御部53と、指令値選択部101とを備える。ここで、アンチサージ制御とは、圧縮機における流量が少なくなることで発生するいわゆるサージングにより、圧縮機が損傷することを防止するために、流量を一定値以上に保つ制御である。
上流側アンチサージ制御部51は、最上流側圧縮機本体21においてサージングが発生するのを防ぐために、放風弁38の開度を制御する。上流側アンチサージ制御部51は、第一上流側アンチサージ制御部51aと、第二上流側アンチサージ制御部51bとを備える。第一上流側アンチサージ制御部51aは、第一最上流側圧縮機本体21aにおいてサージングが発生することを防ぐために、放風弁38の開度を制御する。第二上流側アンチサージ制御部51bは、第二最上流側圧縮機本体21bにおいてサージングが発生することを防ぐために、放風弁38の開度を制御する。ここで、第一最上流側アンチサージ制御部51aと第二上流側アンチサージ制御部51bの構成は等しいため、以下、符号末尾のa、bを省略して表示するものとして合わせて説明するとともに、個別の説明とする場合には各構成に符号末尾にa、bを表示して区別するものとする。
上流側アンチサージ制御部51(51a、51b)は、入力された合流後出口圧力検出値をそのまま出力する圧力インジケータ82と、入口流量目標値を出力する関数発生器63(63a、63b)と、入力された入口流量検出値をそのまま出力する流量インジケータ81(81a、81b)と、入口流量目標値に基づいて第一放風弁開度指令値を出力する流量制御器92(92a、92b)とを備える。関数発生器63は、第一上流側アンチサージ制御部51aに対応する第一関数発生器63aと、第二上流側アンチサージ制御部51bに対応する第二関数発生器63bとから構成される。流量インジケータ81は、第一上流側アンチサージ制御部51aに対応する第一流量インジケータ81aと、第二上流側アンチサージ制御部51bに対応する第二流量インジケータ81bとから構成される。流量制御器92は、第一上流側アンチサージ制御部51aに対応する第一流量制御器92aと、第二上流側アンチサージ制御部51bに対応する第二流量制御器92bとから構成される。また、圧力インジケータ82は、第一上流側アンチサージ制御部51aと第二上流側アンチサージ生後部51bとで共通のものとしているが、これに限るものではない。
出口圧力制御部52は、入力された出口圧力検出値が設定値となるような操作値を出力する圧力制御器91と、第二放風弁開度指令値を出力する関数発生器64とを備える。
下流側アンチサージ制御部53は、出口流量目標値を出力する関数発生器65と、出口流量目標値に基づいて第三放風弁開度指令値を出力する流量制御器93とを備える。
次に、圧縮機制御装置201による制御の動作について、説明する。まず、IGV開度制御部40(40a、40b)の制御の動作について説明する。
IGV開度制御部40におけるIGV開度指令値生成部41の制御の動作について説明する。
図1に示すように、圧力制御器91には、出口圧力検出器35にて生成された出口圧力検出値が入力される。圧力制御器91は、入力された出口圧力検出値が設定値となるように、操作値を生成し、出力する。
図1に示すように、圧力制御器91には、出口圧力検出器35にて生成された出口圧力検出値が入力される。圧力制御器91は、入力された出口圧力検出値が設定値となるように、操作値を生成し、出力する。
関数発生器61には、圧力制御器91にて生成、出力された操作値が入力される。関数発生器61は、入力された操作値を、予め設定された所定の関数FX61によって、IGV開度指令値を生成し、出力する。
関数FX61は、本実施形態では図3に示すように、操作値が0%~50%のとき、IGV開度指令値が一定値X%であり、操作値の大きさが50%を越えると、その大きさに比例して単調増加していき、操作が100%のとき、IGV開度指令値が100%となるものである。
一般に、IGVは、スロットル式の制御弁であり、その構造に起因して、ある開度以下での制御精度が低くなる。そのため、その開度を最小開度θと設定し、全閉状態とはせず、最小開度θ~全開開度に制御して使用する。したがって、制御する際には、最小開度θに該当する操作量をX%とし、全開状態に該当する操作量を100%としている。
一般に、IGVは、スロットル式の制御弁であり、その構造に起因して、ある開度以下での制御精度が低くなる。そのため、その開度を最小開度θと設定し、全閉状態とはせず、最小開度θ~全開開度に制御して使用する。したがって、制御する際には、最小開度θに該当する操作量をX%とし、全開状態に該当する操作量を100%としている。
各IGV開度制御部40における各IGV開度指令値補正部42(42a、42b)の制御の動作について説明する。
各流量インジケータ81(81a、81b)には、対応する入口流量検出器33(33a、33b)にて生成された入口流量検出値が入力され、そのまま入口流量検出値が出力される。
圧力インジケータ82には、合流後圧力検出器34にて生成された合流後圧力検出値が入力され、合流後圧力検出値がそのまま出力される。
各流量インジケータ81(81a、81b)には、対応する入口流量検出器33(33a、33b)にて生成された入口流量検出値が入力され、そのまま入口流量検出値が出力される。
圧力インジケータ82には、合流後圧力検出器34にて生成された合流後圧力検出値が入力され、合流後圧力検出値がそのまま出力される。
各除算器71(71a、71b)には、対応する流量インジケータ81より出力された入口流量検出値と、圧力インジケータ82より出力された合流後圧力検出値が入力される。各除算器71は、入口流量検出値を合流後圧力検出値で除算することによって、IGV開度指令補正値を生成し、出力する。IGV開度指令補正値は、IGV開度指令値を補正するために用いる値である。出力されたIGV開度指令補正値は、対応する関数発生器62(62a、62b)へと入力される。
ここで、各入口流量検出器33のかわりに、最上流側圧縮機本体21それぞれの出口付近に流量検出器を設け、該流量検出器(最上流流量検出器)において検出した最上流側圧縮機出口流量検出値を除算器に入力しても良い。
ここで、各入口流量検出器33のかわりに、最上流側圧縮機本体21それぞれの出口付近に流量検出器を設け、該流量検出器(最上流流量検出器)において検出した最上流側圧縮機出口流量検出値を除算器に入力しても良い。
各関数発生器62には、対応する除算器71から出力されたIGV開度指令補正値と、IGV開度指令値生成部41における関数発生器61から出力されたIGV開度指令値が入力される。各関数発生器62は、IGV開度指令値をIGV開度指令補正値によって補正し、IGV開度補正値を生成し、出力する。出力されたIGV開度補正値は、対応するIGV32(32a、32b)に入力される。IGV32の開度は、入力されたIGV開度補正値によって制御される。
各関数発生器62では、IGV開度指令補正値が大きい値であるほど、IGV開度指令値を大きく補正するような関数が予め設定されている。これは、サージラインからのマージンをなるべく多く確保するためである。ここで、各関数発生器62には、予めわかっている第一最上流側圧縮機本体21aと第二最上流側圧縮機本体21bとの個体差を考慮した関数が設定される。また、各関数発生器62には、経年劣化を考慮した関数が設定されても良い。
各関数発生器62においては、以下のような考え方に基づいて、IGV開度指令値の補正が行われる。図5において、ラインA1、A2、A3は、IGVの各開度における圧力P-流量F曲線であり、特に、ラインA3は、IGVが最大開度(全開)のときの圧力P-流量F曲線である。また、ラインL1は、サージラインであり、これより左側の領域は、サージングが発生する領域である。そのため、通常、サージラインL1に対して10%程度のマージンをとったサージコントロールラインL2より右側の領域において、圧縮機の圧力、流量が制御される。
入口流量検出値がF1、合流後圧力検出値がP1であった場合、入口流量検出値F1を合流後圧力検出値P1で除算した値、つまりIGV開度指令補正値は、直線S1の傾きの逆数に相当する。この値が小さいほど、サージラインL1に近く、サージが発生しやすい状態であると考えられる。
そのため、各関数発生器62には、IGV開度指令補正値が小さいほど、IGV開度指令値をサージラインから離れる方向に補正するような関数FX62が設定されている。その関数FX62に基づいてIGV開度指令値を補正し、IGV開度補正値を生成、出力する。この場合、関数発生器62は、IGV開度指令補正値から導き出した所定の値とIGV開度指令値との差分によって補正を行っても良いし、所定の値を比率とし、IGV開度指令値に該所定の値を掛けることによって補正を行っても良い。
以上の動作を、第一IGV開度制御部40a及び第二IGV開度制御部40bがそれぞれ行い、第一IGV32a及び第二IGV32bの開度がそれぞれ制御される。
続いて、放風弁開度制御部50における制御の動作について説明する。まず、上流側アンチサージ制御部51(51a、51b)の制御の動作について説明する。
図1に示すように、圧力インジケータ82には、合流後圧力検出器34にて生成された合流後圧力検出値が入力される。圧力インジケータ82は、入力された合流後圧力検出値を、そのまま出力する。
図1に示すように、圧力インジケータ82には、合流後圧力検出器34にて生成された合流後圧力検出値が入力される。圧力インジケータ82は、入力された合流後圧力検出値を、そのまま出力する。
各関数発生器63(63a、63b)には、圧力インジケータ82から出力された合流後圧力検出値が入力される。各関数発生器63は、入力された合流後圧力検出値から、予め設定された関数によって、入口流量目標値を算出し、出力する。入口流量目標値は、対応する最上流側圧縮機本体21(21a、21b)においてサージングの発生を防止するために必要な所定の流量である。
各流量インジケータ81(81a、81b)には、対応する入口流量検出器33(33a、33b)にて生成された入口流量検出値が入力される。各流量インジケータ81は、入口流量検出値をそのまま出力する。なお、流量インジケータ81は、IGV開度制御部40におけるIGV開度指令値補正部42と共通のものとしているが、これに限るものではない。
各流量制御器92(92a、92b)には、対応する関数発生器63から出力された入口流量目標値と、対応する流量インジケータ81から出力された入口流量検出値が入力される。各流量制御器92は、入口流量検出値が入口流量目標値になるような第一放風弁開度指令値を出力する。この第一放風弁開度は、第一上流側アンチサージ制御部51aと第二上流側アンチサージ制御部51bのそれぞれから出力される。
次に、出口圧力制御部52における制御の動作について説明する。
圧力制御器91には、出口圧力検出器35にて生成された出口圧力検出値が入力される。圧力制御器91は、入力された出口圧力検出値が設定値となるような操作値を生成し、出力する。この圧力制御器91は、IGV開度制御部40におけるIGV開度指令値生成部41と共通のものとしているが、これに限るものではない。つまり、操作値は、関数発生器61と、関数発生器64に入力される。なお、これに限らず、関数発生器61に入力する構成と、関数発生器64に入力する構成とを別のものとしても良い。
圧力制御器91には、出口圧力検出器35にて生成された出口圧力検出値が入力される。圧力制御器91は、入力された出口圧力検出値が設定値となるような操作値を生成し、出力する。この圧力制御器91は、IGV開度制御部40におけるIGV開度指令値生成部41と共通のものとしているが、これに限るものではない。つまり、操作値は、関数発生器61と、関数発生器64に入力される。なお、これに限らず、関数発生器61に入力する構成と、関数発生器64に入力する構成とを別のものとしても良い。
関数発生器64には、圧力制御器91にて生成された操作値が入力される。関数発生器64は、入力された放風弁開度指令値を予め設定された関数FX64によって、第二放風弁開度指令値を生成し、出力する。図4に示すように、本実施形態において関数FX64は、操作値が0%~50%のとき、放風弁開度指令値がその大きさに比例して単調増加していき、操作値の大きさが50%を越えると、第二放風弁開度指令値が一定値100%であるものである。これは、IGV最小開度で一定の操作値では放風弁開度により制御を行い,放風弁が全閉(開度指令値100%)になった状態で、IGV開度を制御することで,圧縮機から放風されるガス量を最小にすることができ、運転効率を高めることができるためである。
次に、下流側アンチサージ制御部53における制御の動作について説明する。関数発生器65には、出口圧力検出器35にて生成された出口圧力検出値が入力される。関数発生器65は、入力された出口圧力検出値から、予め設定された関数によって、出口流量目標値を生成し、出力する。関数FX65は、出口圧力検出値と出口流量目標値との関係を表す関数である。出口流量目標値は、圧縮機の出口において、サージングの発生を防止するために必要な所定の流量である。
流量制御器93には、関数発生器65から出力された出口流量目標値と、出口流量検出器36にて生成された出口流量検出値が入力される。流量制御器93は、出口流量検出値が、関数発生器65から出力された出口流量目標値となるような第三放風弁開度指令値を出力する。
指令値選択部101には、各放風弁開度指令値が入力される。指令値選択部101は、そのうち放風弁開度が最も大きくなる指令値を選択し、放風弁38へ出力する。これは、放風弁38の開度が大きくなる方に制御することにより、サージングに対してより安全な方に制御することができるためである。指令値選択部101から出力された放風弁開度指令値は、放風弁38に入力され、その開度が制御される。
次いで、第1実施形態の作用について説明する。
各IGV開度制御部40では、出口圧力検出値に基づいて、圧力制御器91及び関数発生器61によって算出されたIGV開度指令値を、複数の最上流側圧縮機それぞれにおける入口流量検出値を合流後圧力検出値によって除算することで生成されたIGV開度指令補正値によって補正してから、対応するIGV32へ入力することができる。これによって、複数の最上流側圧縮機本体21それぞれにおける入口流量検出値がIGV32の開度の制御に考慮される。従って、複数の最上流側圧縮機本体21間の性能差を考慮して、対応するIGV32へとIGV開度補正値を出力することができる。これによって第一IGV32aと第二IGV32bそれぞれの開度を適切に制御することができる。
各IGV開度制御部40では、出口圧力検出値に基づいて、圧力制御器91及び関数発生器61によって算出されたIGV開度指令値を、複数の最上流側圧縮機それぞれにおける入口流量検出値を合流後圧力検出値によって除算することで生成されたIGV開度指令補正値によって補正してから、対応するIGV32へ入力することができる。これによって、複数の最上流側圧縮機本体21それぞれにおける入口流量検出値がIGV32の開度の制御に考慮される。従って、複数の最上流側圧縮機本体21間の性能差を考慮して、対応するIGV32へとIGV開度補正値を出力することができる。これによって第一IGV32aと第二IGV32bそれぞれの開度を適切に制御することができる。
また、従来は、出口流量検出値、つまり圧縮機の全体流量を用いてアンチサージ制御していたため、複数の最上流側圧縮機本体21間において、固体差や経年劣化により性能差が生じた場合や、IGV32において動作不良が発生した場合は、適切にアンチサージ制御を行うことができない可能性があった。しかし、本実施形態における放風弁開度制御部50では、出口流量検出値によるアンチサージ制御に加え、最上流側圧縮機本体21それぞれの入口流量検出値を用いてアンチサージ制御が行われる。これによって、複数の最上流側圧縮機本体21間において、固体差や経年劣化により性能差が生じた場合や、IGV32の動作不良が発生した場合であっても、確実にサージングが発生することを防止することができ、サージングによって、圧縮機が損傷することを防止することが可能となる。
なお、各放風弁開度指令値は、指令する放風弁の開度が大きいほど小さい値になるようにし、指令値選択部101は、入力された値のうち、最も小さいものを選択し、出力するローセレクターであると良い。これによって、入力信号がなくなった場合に、放風弁38の開度が全開になるように制御されるため、サージングに対して安全側に制御されるようにすることができる。
次に、第二実施形態の圧縮機制御装置202について、説明する。この第二実施形態については、第一実施形態と同様の構成要素については同様の符号を付して詳細な説明を省略する。以下の実施形態でも同様である。
図6に示すように、本実施形態にかかる圧縮機制御装置202のIGV開度制御部40(40a、40b)において、各IGV開度指令値補正部42(42a、42b)は、関数発生器66(66a、66b)を備える。関数発生器66は、第一IGV開度指令値補正部42aに対応する第一関数発生器66aと、第二IGV開度指令値補正部42bに対応する第二関数発生器66bとからなる。各関数発生器66には、合流後圧力検出器34によって生成され、圧力インジケータ82を介して出力された合流後圧力検出値と、対応するIGV32(32a、32b)に設けられたIGV開度検出器37(37a、37b)によって生成されたIGV開度検出値、更には入口流量検出器33により生成され、流量インジケータ81を介して出力された入口流量検出値が入力される。各関数発生器66は、予め設定された関数FX66によって、合流後圧力検出値とIGV開度検出値から、入口流量推定値を算出し、入口流量推定値と入口流量検出値との差分から、IGV開度補正指令値を算出し、対応する関数発生器62(62a、62b)へと出力する。各関数発生器62は、第一実施形態と同様の処理を行う。
図6に示すように、本実施形態にかかる圧縮機制御装置202のIGV開度制御部40(40a、40b)において、各IGV開度指令値補正部42(42a、42b)は、関数発生器66(66a、66b)を備える。関数発生器66は、第一IGV開度指令値補正部42aに対応する第一関数発生器66aと、第二IGV開度指令値補正部42bに対応する第二関数発生器66bとからなる。各関数発生器66には、合流後圧力検出器34によって生成され、圧力インジケータ82を介して出力された合流後圧力検出値と、対応するIGV32(32a、32b)に設けられたIGV開度検出器37(37a、37b)によって生成されたIGV開度検出値、更には入口流量検出器33により生成され、流量インジケータ81を介して出力された入口流量検出値が入力される。各関数発生器66は、予め設定された関数FX66によって、合流後圧力検出値とIGV開度検出値から、入口流量推定値を算出し、入口流量推定値と入口流量検出値との差分から、IGV開度補正指令値を算出し、対応する関数発生器62(62a、62b)へと出力する。各関数発生器62は、第一実施形態と同様の処理を行う。
第2実施形態における圧縮機制御装置202の制御の動作について説明する。
図7は、各関数発生器66に設定されている、対応する最上流側圧縮機本体21の性能カーブを示したグラフである。グラフ中の記号は、図5と同様である。IGV開度検出値A2と合流後圧力検出値P2から算出される流量推定値がF2であるとする。ここで、入口流量検出値がFであった場合、最上流側圧縮機本体21の性能カーブは、A2からA2´へと変化していると考えられる。そのため、入口流量検出値が入口流量推定値となるように、対応するIGV32の開度を大きくなるように制御する。
図7は、各関数発生器66に設定されている、対応する最上流側圧縮機本体21の性能カーブを示したグラフである。グラフ中の記号は、図5と同様である。IGV開度検出値A2と合流後圧力検出値P2から算出される流量推定値がF2であるとする。ここで、入口流量検出値がFであった場合、最上流側圧縮機本体21の性能カーブは、A2からA2´へと変化していると考えられる。そのため、入口流量検出値が入口流量推定値となるように、対応するIGV32の開度を大きくなるように制御する。
第2実施形態の作用について説明する。本実施形態では、入口流量検出値が、対応するIGV32の実際の開度から推定される入口流量推定値になるように、IGV32の開度が制御される。そのため、各最上流側圧縮機の性能が当初から変化しても、適切にサージングを防ぐことができ、圧縮機全体の性能劣化を防ぐことができる。
次に、第3実施形態の圧縮機制御装置203について、説明する。
図8において、IGV開度制御部40(40a、40b)におけるIGV開度指令値補正部42(42a、42b)は、補正取消信号生成部102(102a、102b)と指令値選択部120(120a、120b)とを備える。補正取消信号生成部102は、第一IGV開度指令値補正部42aに対応する第一補正取消信号生成部102aと、第二IGV開度指令値補正部42bに対応する第二補正取消信号生成部102bとから構成される。指令値選択部120は、第一IGV開度指令値補正部42aに対応する指令値選択部120aと、第二IGV開度指令値補正部42bに対応する第二指令値選択部120bとから構成される。各補正取消信号生成部102は、補正取消信号を生成し、出力する。出力された各補正取消信号は、対応する指令値選択部120へ入力される。各指令値選択部120には、対応する補正取消信号とIGV開度指令補正値が入力される。ここで、補正取消信号とは、対応する指令値選択部120に入力されるIGV開度指令補正値を打ち消す信号である。具体的には、IGV開度指令補正値がIGV開度指令値を差分により補正する性質の値であれば、補正なし信号は値が0に設定された信号である。また、IGV開度指令補正値が、IGV開度指令値を比率により補正する性質の値であれば、補正なし信号は値が1に設定された信号である。
図8において、IGV開度制御部40(40a、40b)におけるIGV開度指令値補正部42(42a、42b)は、補正取消信号生成部102(102a、102b)と指令値選択部120(120a、120b)とを備える。補正取消信号生成部102は、第一IGV開度指令値補正部42aに対応する第一補正取消信号生成部102aと、第二IGV開度指令値補正部42bに対応する第二補正取消信号生成部102bとから構成される。指令値選択部120は、第一IGV開度指令値補正部42aに対応する指令値選択部120aと、第二IGV開度指令値補正部42bに対応する第二指令値選択部120bとから構成される。各補正取消信号生成部102は、補正取消信号を生成し、出力する。出力された各補正取消信号は、対応する指令値選択部120へ入力される。各指令値選択部120には、対応する補正取消信号とIGV開度指令補正値が入力される。ここで、補正取消信号とは、対応する指令値選択部120に入力されるIGV開度指令補正値を打ち消す信号である。具体的には、IGV開度指令補正値がIGV開度指令値を差分により補正する性質の値であれば、補正なし信号は値が0に設定された信号である。また、IGV開度指令補正値が、IGV開度指令値を比率により補正する性質の値であれば、補正なし信号は値が1に設定された信号である。
加えて、本実施形態の圧縮機には、アラーム110が設置されている。アラーム110は、流量検出器や圧力検出器、アクチュエータ等の機器に設けられる。
第3実施形態における圧縮機制御装置203の制御の動作について説明する。
アクチュエータの故障等の異常が発生し、アラーム110が異常を検知した場合、アラーム110はアラーム信号を各指令値選択部120へと出力する。各指令値選択部120は、アラーム信号が入力された場合は、補正取消信号を選択し、アラーム信号が入力されていない場合はIGV開度指令補正値を選択し、対応する関数発生器62へと出力する。
各関数発生器62は、第一実施形態と同様の処理を行う。
アクチュエータの故障等の異常が発生し、アラーム110が異常を検知した場合、アラーム110はアラーム信号を各指令値選択部120へと出力する。各指令値選択部120は、アラーム信号が入力された場合は、補正取消信号を選択し、アラーム信号が入力されていない場合はIGV開度指令補正値を選択し、対応する関数発生器62へと出力する。
各関数発生器62は、第一実施形態と同様の処理を行う。
第3実施形態の作用について説明する。アクチュエータや流量計、圧力計の異常や、劣化異常が発生した場合には、各最上流側圧縮機本体21の性能差の補正を行うべきでない場合がある。そのような場合、アラーム信号を各指令値選択部120へと入力し、各指令値選択部120が対応する補正取消信号を選択することができる。これによって、補正を行うか否かの切り替えを行うことが可能となり、不要な補正を行なってしまうことを防止することができる。
次に、第4実施形態の圧縮機制御装置204について、説明する。
図9において、IGV開度制御部40(40a、40b)におけるIGV開度指令値補正部42(42a、42b)は、性能差補正係数生成部104と入口流量目標値生成部105と関数発生器67(67a、67b)とを備える。関数発生器67は、第一IGV開度指令値補正部42aに対応する関数発生器67aと、第二IGV開度指令値補正部42bに対応する関数発生器67bとから構成される。また、性能差補正係数生成部104及び入口流量目標値生成部105は、第一IGV開度指令値補正部42a及び第二IGV開度指令値補正部42bとで共通のものである。性能差補正係数生成部104は、複数の最上流側圧縮機本体21間の性能差を表す性能差補正係数を生成し、出力する。入口流量目標値生成部105には、性能差補正係数と、対応する複数の最上流側圧縮機本体21それぞれにおける入口流量検出値が入力され、複数の最上流側圧縮機本体21それぞれについて入口流量目標値を生成する。入口流量目標値は、対応する関数発生器67へと入力される。各関数発生器67は、各指令値選択部120と対応して設けられている。
図9において、IGV開度制御部40(40a、40b)におけるIGV開度指令値補正部42(42a、42b)は、性能差補正係数生成部104と入口流量目標値生成部105と関数発生器67(67a、67b)とを備える。関数発生器67は、第一IGV開度指令値補正部42aに対応する関数発生器67aと、第二IGV開度指令値補正部42bに対応する関数発生器67bとから構成される。また、性能差補正係数生成部104及び入口流量目標値生成部105は、第一IGV開度指令値補正部42a及び第二IGV開度指令値補正部42bとで共通のものである。性能差補正係数生成部104は、複数の最上流側圧縮機本体21間の性能差を表す性能差補正係数を生成し、出力する。入口流量目標値生成部105には、性能差補正係数と、対応する複数の最上流側圧縮機本体21それぞれにおける入口流量検出値が入力され、複数の最上流側圧縮機本体21それぞれについて入口流量目標値を生成する。入口流量目標値は、対応する関数発生器67へと入力される。各関数発生器67は、各指令値選択部120と対応して設けられている。
各関数発生器67には、入口流量目標値と、対応する流量インジケータ81(81a、81b)から出力された入口流量検出値が入力される。各関数発生器67は、入口流量目標値と入口流量検出値の差分に比例したIGV開度指令補正値を生成し、出力する。ここで、各関数発生器67は、入口流量目標値と入口流量検出値とを差分したものの積分を考慮し、IGV開度指令補正値を生成、出力しても良い。
第4実施形態における圧縮機制御装置204の制御の動作について、説明する。
図10において、C1は、第一最上流側圧縮機本体21の性能を表すプロットである。
また、C2は、第二最上流側圧縮機本体21の性能を表すプロットである。入口流量目標値生成部105は、第一最上流側圧縮機本体21及び第二最上流側圧縮機本体21それぞれにおける入口流量検出値と、性能差補正係数生成部104で生成された性能差補正係数αによって、入口流量目標値F3を数1によって算出する。F3は、図10においては、C3のプロットが示す流量である。したがって、F1とF2との中間値を流量目標値としたい場合は、αを0.5として生成する。なお、αは、手動で入力されることで生成されても良く、自動で生成されても良い。
図10において、C1は、第一最上流側圧縮機本体21の性能を表すプロットである。
また、C2は、第二最上流側圧縮機本体21の性能を表すプロットである。入口流量目標値生成部105は、第一最上流側圧縮機本体21及び第二最上流側圧縮機本体21それぞれにおける入口流量検出値と、性能差補正係数生成部104で生成された性能差補正係数αによって、入口流量目標値F3を数1によって算出する。F3は、図10においては、C3のプロットが示す流量である。したがって、F1とF2との中間値を流量目標値としたい場合は、αを0.5として生成する。なお、αは、手動で入力されることで生成されても良く、自動で生成されても良い。
第4実施形態の作用について、説明する。
性能差補正係数生成部104において、複数の最上流側圧縮機本体21間の性能差を表す補正係数を調整して生成することができ、その補正係数によって、複数の最上流側圧縮機本体21それぞれに設けられたIGV32の開度を制御することができる。これによって、各最上流側圧縮機本体21間の性能差による補正量を、状況に応じて調整することができる。例えば、よりサージングから遠い領域で運転させたい場合には、より小さいαを生成させることで、そのような運転を実現することが可能となる。
性能差補正係数生成部104において、複数の最上流側圧縮機本体21間の性能差を表す補正係数を調整して生成することができ、その補正係数によって、複数の最上流側圧縮機本体21それぞれに設けられたIGV32の開度を制御することができる。これによって、各最上流側圧縮機本体21間の性能差による補正量を、状況に応じて調整することができる。例えば、よりサージングから遠い領域で運転させたい場合には、より小さいαを生成させることで、そのような運転を実現することが可能となる。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上記各実施形態では、最上流側圧縮機本体21(21a、21b)それぞれにおいて、入口流量検出器33が配置され、入口流量を検出し、入口流量検出値を生成している。そして、各実施形態では、IGV開度指令値演算部は、生成された入口流量検出値を用いて、IGV開度補正値を求めている。しかしながら、入口流量検出器33に代えて、最上流側圧縮機本体21それぞれにおいて出口流量を検出して出口流量検出値を生成する出口流量検出器(最上流流量検出器)が設けられて、入口流量検出値に代えて出口流量検出値に基づいてIGV開度補正値を求めるものとしても良い。同様に、各実施形態では、上流側アンチサージ制御部は、生成された入口流量検出値を用いて、入口流量が入口流量目標値となるような第一放風弁開度指令値を出力している。しかしながら、入口流量検出器33に代えて、最上流側圧縮機本体21それぞれにおいて出口流量を検出して出口流量検出値を生成する出口流量検出器(最上流流量検出器)が設けられて、入口流量検出値に代えて出口流量検出値から入口流量を推定し、当該入口流量が入口流量目標値となるような第一放風弁開度指令値を出力するものとしても良い。すなわち、各実施形態においては、各最上流側圧縮機本体を流通する最上流流量として入口流量または出口流量を検出して最上流流量検出値(入口流量検出値または出口流量検出値)を生成し、最上流流量検出値に基づいてIGV開度補正値を求め、また、第一放風弁開度指令値を出力するものとすれば良い。
上記した圧縮機制御装置及びその制御方法、圧縮機システムは、複数の圧縮機本体を備えた圧縮機制御装置及びその制御方法、圧縮機システムに適用可能である。上記した圧縮機制御装置及びその制御方法、圧縮機システムは、特に、複数の圧縮機本体間に性能差が生じた場合であっても、適切にインレットガイドベーンの開度を制御し、最適な運転を行うことを可能とする圧縮機制御装置及びその制御方法、圧縮機システムに適している。
1 圧縮機システム
2 圧縮機
21 最上流側圧縮機本体
22 下流側圧縮機本体
32 インレットガイドベーン(IGV)
33 入口流量検出器
34 合流後圧力検出器
35 出口圧力検出器
36 出口流量検出器
37 インレットガイドベーン開度検出器
38 放風弁
40 インレットガイドベーン開度制御部
41 インレットガイドベーン開度指令値生成部
42 インレットガイドベーン開度指令値補正部
50 放風弁開度制御部
51 上流側アンチサージ制御部
52 出口圧力制御部
53 下流側アンチサージ制御部
101、120 指令値選択部
102 補正取消信号生成部
104 性能差補正係数生成部
105 入口流量目標生成部
110 アラーム
201、202、203、204 圧縮機制御装置
2 圧縮機
21 最上流側圧縮機本体
22 下流側圧縮機本体
32 インレットガイドベーン(IGV)
33 入口流量検出器
34 合流後圧力検出器
35 出口圧力検出器
36 出口流量検出器
37 インレットガイドベーン開度検出器
38 放風弁
40 インレットガイドベーン開度制御部
41 インレットガイドベーン開度指令値生成部
42 インレットガイドベーン開度指令値補正部
50 放風弁開度制御部
51 上流側アンチサージ制御部
52 出口圧力制御部
53 下流側アンチサージ制御部
101、120 指令値選択部
102 補正取消信号生成部
104 性能差補正係数生成部
105 入口流量目標生成部
110 アラーム
201、202、203、204 圧縮機制御装置
Claims (10)
- 最も上流側に配置された複数の最上流側圧縮機本体と、
前記複数の最上流側圧縮機本体の下流側に配置され、前記複数の最上流側圧縮機本体それぞれから流出し、その後に合流したガスが流入する、少なくとも一段の下流側圧縮機本体と、
複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体に流入するガスの流量を制御するインレットガイドベーンと、
前記複数の最上流側圧縮機本体それぞれの入口または出口付近に設けられ、前記対応する最上流側圧縮機本体を流通する流量を検出することにより最上流流量検出値を生成する複数の最上流流量検出器と、
前記複数の最上流側圧縮機本体それぞれから流出したガスの、合流後の圧力を検出することにより合流後圧力検出値を生成する合流後圧力検出器と、
前記下流側圧縮機本体のうち、最も下流側に配置される最下流側圧縮機本体の出口圧力を検出することにより出口圧力検出値を生成する出口圧力検出器とを備える圧縮機を制御する圧縮機制御装置であって、
該圧縮機制御装置は、前記インレットガイドベーンの開度を制御するインレットガイドベーン開度制御部を有し、
該インレットガイドベーン開度制御部は、出口圧力検出値からインレットガイドベーン開度指令値を生成するインレットガイドベーン開度指令値生成部と、
前記複数の最上流側圧縮機本体それぞれについて、対応する最上流流量検出値と合流後圧力検出値により前記インレットガイドベーン開度指令値を補正する複数のインレットガイドベーン開度指令値補正部とを有することを特徴とする圧縮機制御装置。 - 前記インレットガイドベーン開度指令値補正部は、
最上流流量検出値を合流後圧力検出値で除算することでインレットガイドベーン開度補正値を生成し、前記インレットガイドベーン開度指令値を前記インレットガイドベーン開度指令補正値に基づいて補正すること
を特徴とする請求項1に記載の圧縮機制御装置。 - 前記インレットガイドベーン開度指令値補正部は、
前記インレットガイドベーンの開度を検出するために圧縮機に備えられたインレットガイドベーン開度検出器が生成するインレットガイドベーン開度検出値と、合流後圧力検出値とから流量推定値を生成し、該流量推定値と最上流流量検出値との差分からインレットガイドベーン開度指令補正値を生成し、前記インレットガイドベーン開度指令値を前記インレットガイドベーン開度指令補正値に基づいて補正すること
を特徴とする請求項1に記載の圧縮機制御装置。 - 前記インレットガイドベーン開度指令値補正部は、
インレットガイドベーン開度補正値を取り消す信号を出力する補正取消信号生成部を有すること
を特徴とする請求項1から3のいずれか一項に記載の圧縮機制御装置。 - 前記インレットガイドベーン開度指令値補正部は、
前記複数の最上流側圧縮機本体間の性能差を表す性能差補正係数を生成する性能差補正係数生成部と、
前記複数の最上流側圧縮機それぞれの最上流流量検出値と前記性能差補正係数から入口流量目標値を算出する入口流量目標値生成部とを有し、
入口流量目標値と最上流流量検出値からインレットガイドベーン開度指令補正値を算出すること
を特徴とする請求項1から4のいずれか一項に記載の圧縮機制御装置。 - 前記最下流側圧縮機本体の出口付近に設けられた放風弁の開度を制御する放風弁開度制御部を有し、
該放風弁開度制御部は、最上流流量検出値と合流後圧力検出値に基づいて第一放風弁開度指令値を算出する上流側アンチサージ制御部と、
出口圧力検出値に基づいて第二放風弁開度指令値を算出する出口圧力制御部と、
最下流側圧縮機本体の出口付近に設けられた出口流量検出器が検出する出口流量検出値と出口圧力検出値から第三放風弁開度指令値を算出する下流側アンチサージ制御部とを有し、
第一放風弁開度指令値と第二放風弁開度指令値と第三放風弁開度指令値のうち、放風弁開度が最も大きくなる指令値を選択し、放風弁開度を制御する指令値選択部を有することを特徴とする請求項1から5のいずれか一項に記載の圧縮機制御装置。 - 前記上流側アンチサージ制御部は、
合流後圧力検出値から入口流量目標値を算出し、前記最上流側圧縮機本体の入口での流量が入口流量目標値となるように放風弁開度を制御する第一放風弁開度指令値を出力すること
を特徴とする請求項6に記載の圧縮機制御装置。 - 前記指令値選択部は、
第一放風弁開度指令値と第二放風弁開度指令値と第三放風弁開度指令値のうち、最も値の小さいものを選択するローセレクターであること
を特徴とする請求項6又は7に記載の圧縮機制御装置。 - 請求項1から8のいずれか一項に記載の圧縮機制御装置と、
前記圧縮機制御装置によって制御される前記圧縮機とを備えること
を特徴とする圧縮機システム。 - 最も上流側に配置された複数の最上流側圧縮機本体と、前記複数の最上流側圧縮機本体の下流側に配置され、前記複数の最上流側圧縮機本体それぞれから流出し、その後に合流したガスが流入する、少なくとも一段の下流側圧縮機本体と、複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体に流入するガスの流量を制御するインレットガイドベーンと、前記複数の最上流側圧縮機本体それぞれの入口付近に設けられ、前記対応する最上流側圧縮機本体の入口流量を検出することにより最上流流量検出値を生成する複数の最上流流量検出器と、前記複数の最上流側圧縮機本体それぞれから流出したガスの、合流後圧力を検出することにより合流後圧力検出値を生成する合流後圧力検出器と、前記下流側圧縮機本体のうち、最も下流側に配置される最下流側圧縮機本体の出口圧力を検出することにより出口圧力検出値を生成する出口圧力検出器とを備える圧縮機を制御する圧縮機制御方法であって、
該圧縮機制御方法は、前記インレットガイドベーンの開度を制御するインレットガイドベーン開度制御部において出口圧力検出値からインレットガイドベーン開度指令値を生成し、
前記複数の最上流側圧縮機本体それぞれについて、対応する最上流流量検出値と合流後圧力検出値とにより前記インレットガイドベーン開度指令値を補正すること
を特徴とする圧縮機制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380007137.3A CN104081057B (zh) | 2012-02-23 | 2013-02-20 | 压缩机控制装置及其控制方法、压缩机系统 |
EP13752272.8A EP2818723B1 (en) | 2012-02-23 | 2013-02-20 | Compressor control device and control method therefor, and compressor system |
US14/373,429 US10036395B2 (en) | 2012-02-23 | 2013-02-20 | Compressor control device and control method therefor, and compressor system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-037335 | 2012-02-23 | ||
JP2012037335A JP5611253B2 (ja) | 2012-02-23 | 2012-02-23 | 圧縮機制御装置及びその制御方法、圧縮機システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125597A1 true WO2013125597A1 (ja) | 2013-08-29 |
Family
ID=49005779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054221 WO2013125597A1 (ja) | 2012-02-23 | 2013-02-20 | 圧縮機制御装置及びその制御方法、圧縮機システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10036395B2 (ja) |
EP (1) | EP2818723B1 (ja) |
JP (1) | JP5611253B2 (ja) |
CN (1) | CN104081057B (ja) |
WO (1) | WO2013125597A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5738262B2 (ja) | 2012-12-04 | 2015-06-17 | 三菱重工コンプレッサ株式会社 | 圧縮機制御装置、圧縮機システムおよび圧縮機制御方法 |
KR102247596B1 (ko) * | 2014-01-24 | 2021-05-03 | 한화파워시스템 주식회사 | 압축기 시스템 및 그 제어 방법 |
JP2016014336A (ja) * | 2014-07-01 | 2016-01-28 | 三菱重工業株式会社 | 多段圧縮システム、制御装置、制御方法及びプログラム |
JP6501380B2 (ja) | 2014-07-01 | 2019-04-17 | 三菱重工コンプレッサ株式会社 | 多段圧縮機システム、制御装置、異常判定方法及びプログラム |
KR102279918B1 (ko) * | 2015-11-12 | 2021-07-23 | 한국조선해양 주식회사 | 가스 압축기 시스템 |
KR102153768B1 (ko) * | 2016-05-11 | 2020-09-09 | 한국조선해양 주식회사 | 병렬식 가스 압축기 시스템 |
KR102551338B1 (ko) * | 2016-07-07 | 2023-07-05 | 한화에어로스페이스 주식회사 | 압축기 제어 시스템 및 압축기의 제어 방법 |
US10584719B2 (en) * | 2017-09-11 | 2020-03-10 | Ford Global Technologies, Llc | Systems and method for a variable inlet device of a compressor |
US10578124B2 (en) * | 2017-09-11 | 2020-03-03 | Ford Global Technologies, Llc | Systems and method for a variable inlet device of a compressor |
CN109281824A (zh) * | 2018-09-29 | 2019-01-29 | 四川德胜集团钒钛有限公司 | 钒钛炼钢生产线的制氧机空压机零排空系统及方法 |
CN110735669B (zh) * | 2019-10-08 | 2021-12-28 | 中国航发沈阳发动机研究所 | 一种航空燃气涡轮发动机旋转失速判断方法及装置 |
TWI737323B (zh) * | 2020-05-29 | 2021-08-21 | 中國鋼鐵股份有限公司 | 多台空壓機節能操作調控方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0688597A (ja) | 1992-06-22 | 1994-03-29 | Compressor Controls Corp | 負荷分割方法及び複数コンプレッサーを備えたコンプレッサー基地の主要ガスパラメータ制御装置 |
JP2008075477A (ja) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | ガス供給用圧縮機の運転方法 |
JP2011111950A (ja) * | 2009-11-25 | 2011-06-09 | Kobe Steel Ltd | 多段遠心圧縮機の容量制御方法 |
JP2012037335A (ja) | 2010-08-05 | 2012-02-23 | Fulta Electric Machinery Co Ltd | 屋外設置形風力検出スイッチ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE788368A (fr) * | 1971-09-10 | 1973-01-02 | D M Weatherly Cy | Procede et appareil pour la compression en plusieurs etages d'un premier courant de gaz avec l'energie derivee d'un second courant de gaz |
JPS61201900A (ja) * | 1985-03-05 | 1986-09-06 | Hitachi Ltd | 圧縮機の容量制御装置 |
US5306116A (en) * | 1992-04-10 | 1994-04-26 | Ingersoll-Rand Company | Surge control and recovery for a centrifugal compressor |
JP4699130B2 (ja) * | 2005-08-03 | 2011-06-08 | 三菱重工業株式会社 | ガスタービンの入口案内翼制御装置 |
DE102009038786A1 (de) * | 2009-08-25 | 2011-05-05 | Siemens Aktiengesellschaft | Verdichter |
FR2950927B1 (fr) * | 2009-10-06 | 2016-01-29 | Snecma | Systeme de commande de la position angulaire d'aubes de stator et procede d'optimisation de ladite position angulaire |
-
2012
- 2012-02-23 JP JP2012037335A patent/JP5611253B2/ja active Active
-
2013
- 2013-02-20 WO PCT/JP2013/054221 patent/WO2013125597A1/ja active Application Filing
- 2013-02-20 US US14/373,429 patent/US10036395B2/en active Active
- 2013-02-20 EP EP13752272.8A patent/EP2818723B1/en not_active Not-in-force
- 2013-02-20 CN CN201380007137.3A patent/CN104081057B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0688597A (ja) | 1992-06-22 | 1994-03-29 | Compressor Controls Corp | 負荷分割方法及び複数コンプレッサーを備えたコンプレッサー基地の主要ガスパラメータ制御装置 |
JP2008075477A (ja) * | 2006-09-19 | 2008-04-03 | Nippon Steel Corp | ガス供給用圧縮機の運転方法 |
JP2011111950A (ja) * | 2009-11-25 | 2011-06-09 | Kobe Steel Ltd | 多段遠心圧縮機の容量制御方法 |
JP2012037335A (ja) | 2010-08-05 | 2012-02-23 | Fulta Electric Machinery Co Ltd | 屋外設置形風力検出スイッチ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2818723A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2818723B1 (en) | 2016-09-21 |
CN104081057B (zh) | 2016-08-24 |
EP2818723A1 (en) | 2014-12-31 |
JP5611253B2 (ja) | 2014-10-22 |
CN104081057A (zh) | 2014-10-01 |
JP2013170573A (ja) | 2013-09-02 |
US10036395B2 (en) | 2018-07-31 |
US20140363269A1 (en) | 2014-12-11 |
EP2818723A4 (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013125597A1 (ja) | 圧縮機制御装置及びその制御方法、圧縮機システム | |
US11421596B2 (en) | Gas turbine control device and method, non-transitory storage medium, and gas turbine | |
US20160047392A1 (en) | Methods and systems for controlling turbocompressors | |
JP6637434B2 (ja) | サイドストリームを伴うバックトゥバック型圧縮機を動作させるための方法及びシステム | |
JP5738262B2 (ja) | 圧縮機制御装置、圧縮機システムおよび圧縮機制御方法 | |
JP5595232B2 (ja) | ガスタービンおよび冷却方法 | |
JP5535772B2 (ja) | 燃料供給システム | |
US10400774B2 (en) | Multi-stage compression system, control device, control method, and program | |
US10746182B2 (en) | Multi-stage compressor system, control device, malfunction determination method, and program | |
JP4332740B2 (ja) | 航空機用抽気システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13752272 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14373429 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013752272 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013752272 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |