WO2013125435A1 - 発光システム及び有機el装置 - Google Patents

発光システム及び有機el装置 Download PDF

Info

Publication number
WO2013125435A1
WO2013125435A1 PCT/JP2013/053520 JP2013053520W WO2013125435A1 WO 2013125435 A1 WO2013125435 A1 WO 2013125435A1 JP 2013053520 W JP2013053520 W JP 2013053520W WO 2013125435 A1 WO2013125435 A1 WO 2013125435A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
conductive member
electrode
layer
Prior art date
Application number
PCT/JP2013/053520
Other languages
English (en)
French (fr)
Inventor
敏明 田中
伸仁 三浦
林 克彦
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP13751583.9A priority Critical patent/EP2819485A4/en
Priority to US14/379,727 priority patent/US9386656B2/en
Priority to JP2014500680A priority patent/JP6271414B2/ja
Publication of WO2013125435A1 publication Critical patent/WO2013125435A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a light emitting system and an organic EL device, and more particularly to a light emitting system and an organic EL device that can supply power in a non-contact manner.
  • An organic EL device is obtained by laminating an organic EL element composed of an organic compound or the like on a glass substrate or a base material of a transparent resin film.
  • An organic EL element is a light emitting element in which an organic light emitting layer is provided between an anode and a cathode.
  • the organic light emitting layer includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the organic light emitting layer and each electrode layer constituting the organic EL element are formed in a thin film shape by a vacuum vapor deposition apparatus or a CVD (Chemical Vapor Deposition) apparatus. Therefore, the organic EL device is much thinner and lighter than a liquid crystal display device or an LED lighting device. For example, a light and thin organic EL device can be easily attached to a ceiling or a wall surface, and various usages can be considered as a light emitting device having a high degree of freedom.
  • the wiring for supplying power to the organic EL device is often embedded in the ceiling or wall surface, and the installation location of the organic EL device is limited by the position of the wiring.
  • Patent Document 1 describes a power transmission circuit capable of supplying AC power to a flat display panel in a contactless manner.
  • Patent Document 1 a transmission substrate on the side of transmitting AC power and a reception substrate including a display panel are used.
  • Two planar electrodes are provided on the surface of each of the transmission substrate and the reception substrate. Capacitance is generated between the respective planar electrodes by arranging the planar electrodes of the transmitting substrate and the receiving substrate to face each other with the insulating substrate interposed therebetween.
  • the capacitance is a capacitor, and it can be said that the transmission board and the reception board are electrically connected via the capacitor (hereinafter referred to as an electrostatic coupling method).
  • an electrostatic coupling method As a result, AC power can be supplied from the transmission board to the reception board even though they are not connected by wiring or the like.
  • Patent Documents 2 and 3 disclose an electric energy transfer device capable of supplying electric power by another electrostatic coupling method.
  • JP 2009-169327 A JP-T 2009-531009 Special table 2010-537613
  • the display panel and the planar electrode are on the same plane and do not overlap.
  • the planar electrode provided on the receiving substrate is provided at a position sandwiching the display panel in a plan view. That is, when the receiving substrate is viewed in plan, the area where the display panel is provided and the area where the planar electrode is provided are separate, and there is no area where the display panel and the planar electrode overlap.
  • an object of the present invention is to provide a light emitting system that can supply power in a non-contact manner, has a high ratio of a light emitting region, and can secure a desired amount of light. It is another object of the present invention to provide an organic EL device that can solve the same problem.
  • the invention for solving the above problems is a light-emitting system including a fixed side wall surface and an organic EL device, wherein the fixed side wall surface is provided with a wall-side conductive member, and the organic EL device is planar.
  • a base material having a wide spread is formed by laminating two electrode layers and an organic light emitting layer sandwiched between the electrode layers, and at least one plane is a light emitting surface.
  • a panel-side conductive member having a planar extension is buried or exposed in a region overlapping with the organic light emitting layer, and the panel-side conductive member is electrically connected to the electrode layer, and the organic EL device Is a light-emitting system that is installed on the fixed side wall surface and supplies power indirectly to the organic EL device by passing an alternating current through the wall-side conductive member.
  • the wall side conductive member is embedded in the fixed side wall surface.
  • the fixed side wall surface is a ceiling, an inner wall of a room, a floor surface, a counter surface, a desk surface, or the like.
  • the fixed side wall surface is a part of a building or a part of furniture, and is a member that does not move in a normal use state.
  • the light emitting system of the present invention employs an organic EL device having a characteristic configuration. That is, the organic EL device employed by the present invention has a panel-side conductive member.
  • the panel-side conductive member is electrically connected to an electrode layer that supplies power to the organic light emitting layer.
  • a wall-side conductive member is provided on the side where the organic EL device is installed (fixed side wall surface).
  • the wall side conductive member is embedded in the fixed side wall surface.
  • an alternating current is passed through the wall-side conductive member, electrons move between the wall-side conductive member and the panel-side conductive member, and are indirectly supplied to the organic EL device.
  • the above-described panel-side conductive member is arranged with a planar spread in a region overlapping with the organic light emitting layer. Therefore, in the organic EL device adopted by the present invention, the area occupied by the panel-side conductive member is wide, and a sufficient amount of power can be supplied from the fixed side wall surface.
  • the organic EL device employed by the present invention also has a high area ratio occupied by the light emitting region. Therefore, according to the light emitting system of the present invention, a wider area can be made to emit light brighter.
  • the invention of the organic EL device recommended to be employed in the above-described light emitting system is an organic EL device installed on a fixed side wall surface in which a wall-side conductive member through which an alternating current is passed is embedded.
  • a panel-side conductive member having a planar extension in a region overlapping with the organic light-emitting layer is embedded or exposed, and the panel-side conductive member is electrically connected to the electrode layer and is electrically connected to the wall-side conductive layer.
  • the organic EL device is characterized in that the organic light emitting layer emits light by being indirectly supplied with electricity from the conductive member.
  • the organic EL device of the present invention can supply power in a non-contact manner and can obtain a desired amount of power.
  • the organic EL device of the present invention has a high area ratio contributing to light emission and is bright.
  • the organic EL device used in the above-described light emitting system adopt a configuration in which a panel-side conductive member is provided on the side facing the substrate.
  • an organic EL device having a structure in which a panel-side conductive member is provided on the side where the organic light emitting layer of the substrate is not laminated.
  • the organic EL device may be one in which one of the two electrode layers functions as a panel-side conductive member.
  • an electrode layer that feeds power to the organic light emitting layer is used as a panel-side conductive member. That is, the organic EL device has two electrode layers, and the organic light emitting layer is located between the two electrode layers. Electric power is supplied from the two electrode layers to the organic light emitting layer.
  • the electrode layer that supplies power to the organic light emitting layer is used as the panel side conductive member, it is not necessary to provide a separate member as the panel side conductive member.
  • the organic EL device may be a top emission type organic EL device in which two electrode layers and an organic light emitting layer are laminated on a base material, and a surface side facing the base material side is a light emitting surface.
  • the organic EL device may be a bottom emission type organic EL device in which two electrode layers and an organic light emitting layer are laminated on a transparent base material, and the base material side is a light emitting surface.
  • the alternating current supplied to the fixed wall side conductive member has a high voltage and a high frequency.
  • the wall-side conductive member has a passive electrode larger than the wall-side conductive member and a high-voltage high-frequency generator, and the high-voltage high-frequency generator is connected to the wall-side conductive member and the passive electrode.
  • a counter electrode larger than the conductive member, the counter electrode is provided at a position different from the position where the panel side conductive member is provided, and the organic light emitting layer is electrically connected to the panel side conductive member and the counter electrode. It is also possible to adopt a light emitting system connected to the.
  • the organic EL device employed in the above configuration has a counter electrode larger than the panel-side conductive member, and the counter electrode is provided at a position different from the position where the panel-side conductive member is provided.
  • the light emitting layer is electrically connected to the panel side conductive member and the counter electrode.
  • a high impedance load may be connected between the panel-side conductive member and the counter electrode.
  • the base material of the organic EL device has a member or part constituting a rectifier circuit.
  • the organic EL device is a substrate in which two electrode layers and an organic light emitting layer having a PN bond are laminated, and the surface of the substrate is divided into a main light emitting portion and a diode portion, and the diode portion is the organic portion. It is recommended that energization is allowed only in one direction using the PN coupling of the light emitting layer, and that the diode portion is connected to the main light emitting portion.
  • the organic EL device has diode portions at four locations, and a full-wave rectifier circuit including the diode portions is formed.
  • the structure of the organic EL device is such that at least one electrode layer is provided with an electrode layer dividing portion that divides and insulates the electrode layer, and the organic light emitting layer divides the organic light emitting layer.
  • a dividing portion is provided, and one electrode layer enters the organic light emitting layer dividing portion to form a conducting portion that conducts the two electrode layers, and the diode portion includes two adjacent electrode layers separated from each other.
  • the region includes a diode forming portion that conducts through a part of the organic light emitting layer and the conducting portion.
  • the organic EL device of the present invention According to the light emitting system and the organic EL device of the present invention, power can be supplied in a non-contact manner and a desired amount of power can be obtained.
  • the organic EL device of the present invention has a high area ratio contributing to light emission and is bright.
  • FIG. 2 is a perspective view showing a state where an organic EL device is moved on a power supply device in the light emitting system of FIG.
  • the light emitting system 1 includes an organic EL device 2 that is a light emitting device, and a fixed side wall surface 7 that supplies AC power to the organic EL device 2. .
  • the organic EL device 2 is provided with an organic EL element 110 (see FIG. 2) on one surface (upper surface in the figure) 10a of a substrate 10 (base material) having a planar spread. That is, in the organic EL device 2, a cathode (cathode) side electrode layer 11, an organic light emitting layer 12 also called a functional layer, and an anode (anode) side transparent electrode layer 13 are laminated on a substrate 10 (base material). These are sealed by the transparent sealing portion 14.
  • the organic EL device 2 applies light between the electrode layer 11 and the transparent electrode layer 13 to cause the organic light emitting layer 12 to emit light and extract light from the transparent electrode layer 13.
  • the organic EL device 2 has a configuration called a top emission type, and an upper surface (a surface side facing the substrate 10 side) 4 is a light emitting surface with reference to FIG.
  • the organic light emitting layer 12 is formed by laminating a plurality of thin films of organic compounds.
  • the detailed layer structure of the organic light emitting layer 12 is as shown in FIG. 2 and includes a hole injection layer 101, a hole transport layer 102, a light emitting layer 103, an electron transport layer 104, and an electron injection layer 105.
  • electrodes (panel-side conductive members) 15 and 16 are provided on the other surface of the substrate 10 (base material). That is, as shown in FIGS. 1, 2, and 3, an electrode (panel-side conductive member) 15 having a planar extension is formed on a surface (lower surface in the drawing) 10 b on the fixed sidewall surface 7 side of the substrate 10 (base material). , 16 are stacked. The electrodes 15 and 16 are located on the lower surface (base material side) 5 of the organic EL device 2 and are disposed so as to overlap the light emitting region A where the organic light emitting layer 12 is provided. That is, when the organic EL device 2 is observed from the back side as shown in FIG.
  • the light emitting area A where the electrodes (panel side conductive members) 15 and 16 and the organic light emitting layer 12 are provided overlaps.
  • the electrodes 15 and 16 each have a large area on the back surface 10b of the substrate 10, and both divide the area on the back surface 10b substantially.
  • a gap 67 is provided between the electrodes 15 and 16 and both are electrically insulated.
  • the fixed side wall surface 7 serves as a ceiling, wall, or floor surface 6, and electrodes (wall side conductive members) 8 and 9 having a planar extension as shown in FIG.
  • the electrodes 8 and 9 are electrically insulated from each other.
  • a power supply device 3 is electrically connected between the electrodes 8 and 9.
  • the power supply device 3 can generate an alternating current (alternating current power), and supplies a current by applying a voltage between the electrodes 8 and 9.
  • the organic EL device 2 and the fixed side wall surface 7 are connected by capacitances C ⁇ b> 1 and C ⁇ b> 2.
  • the electrostatic capacitance C1 is composed of the electrode 15 of the organic EL device 2 and the electrode 8 of the fixed sidewall surface 7
  • the electrostatic capacitance C2 is composed of the electrode 16 of the organic EL device 2 and the electrode 9 of the fixed sidewall surface 7.
  • the organic EL device 2 is provided with a full-wave rectifier circuit 90 and a constant voltage circuit 100.
  • the full wave rectifier circuit 90 includes diodes 17 to 20. More specifically, the full-wave rectifier circuit 90 is a bridge rectifier circuit.
  • the diode 17 is connected between the electrode 15 and the transparent electrode layer 13 that is the anode of the organic EL element 110, and the diode 18 is connected between the electrode 15 and the electrode layer 11 that is the cathode of the organic EL element 110. That is, the diode 17 has a cathode side connected to the transparent electrode layer 13, and the diode 18 has an anode side connected to the electrode layer 11.
  • the diode 19 is connected between the electrode 16 and the electrode layer 11 serving as the cathode of the organic EL element 110, and the diode 20 is connected between the electrode 16 and the transparent electrode layer 13 serving as the anode of the organic EL element 110. . That is, the anode of the diode 19 is connected to the electrode layer 11, and the diode 20 is connected to the transparent electrode layer 13 on the cathode side.
  • the full-wave rectification circuit 90 rectifies the alternating current supplied to the electrodes 15 and 16 from the fixed side wall surface 7 and is constant from the transparent electrode layer 13 on the anode (anode) side to the electrode layer 11 on the cathode (cathode) side. It only flows in the direction.
  • the constant voltage circuit 100 employed in this embodiment is a shunt type constant voltage circuit.
  • This circuit includes a series resistor R1 (for example, 1 k ⁇ ), a diode D that determines an output voltage, and a capacitor C (for example, 1 ⁇ F).
  • the series resistor R1 is branched from the internal resistor R2 of the organic EL element 110 and the diode D is connected to form a shunt regulator circuit.
  • this shunt type regulator circuit does not have an explicit feedback loop or operation amplification circuit in order to stabilize the voltage.
  • the advantage is that the circuit scale can be made very small and the circuit element (for example, a thin film element on the organic EL device 2) whose operation amplifier circuit is difficult to configure can be realized.
  • the disadvantage is that when the power consumption of the load is large, the power loss in the constant voltage circuit itself becomes large, and as a result, it becomes difficult to stabilize the output voltage.
  • a chip-shaped semiconductor element including an operational amplifier circuit is mounted on the organic EL device 2.
  • the constant voltage circuit 100 is preferably configured.
  • the organic EL device 2 is placed on the fixed side wall surface 7.
  • the electrodes 15 and 16 belonging to the organic EL device 2 are opposed to the electrodes 8 and 9 embedded in the fixed side wall surface 7 with a predetermined interval.
  • the electrode 15 and the electrode 8, and the electrode 16 and the electrode 9 are disposed to face each other with a floor material (not shown) interposed therebetween, and capacitance is generated between the electrodes.
  • the organic EL device 2 having the electrodes 15 and 16 and the power supply device 3 connected to the electrodes 8 and 9 are electrically connected by an electrostatic coupling method.
  • the alternating current supplied from the power supply device 3 flows from the transparent electrode layer 13 serving as the anode of the organic EL element 110 to the electrode layer 11 serving as the cathode, and the organic light emitting layer 12 emits light. Then, light is emitted from the upper surface 4 of the organic EL device 2.
  • one electrode 15 provided in the organic EL device 2 is disposed to face the electrode 8 in the fixed side wall surface 7 with a part of the flooring interposed therebetween.
  • most of the electrode 15 on the organic EL device 2 side is in a position overlapping the electrode 8 in the fixed side wall surface 7.
  • most of the other electrode 16 provided in the organic EL device 2 is also in a position overlapping the electrode 9 in the fixed side wall surface 7.
  • the electrodes 15 and 16 on the organic EL device 2 side each secure a large area on the back surface 10b of the substrate 10, and both divide the area on the back surface 10b substantially.
  • the organic EL device 2 can ensure sufficient luminance and light quantity.
  • FIG. 6 is a schematic view of the organic EL device 2 in plan view, and shows a state where the full-wave rectifier circuit 90 and the constant voltage circuit 100 shown in FIG. 4 are mounted.
  • the entire surface 10a is sealed by the sealing portion 14 (see FIG. 5). .
  • the electronic elements in the circuit diagram shown in FIG. 6 are all normal independent electronic components. That is, in the organic EL device 2, the diodes 17 to 20, the resistor R 1, the diode D, and the capacitor C are placed on the substrate 10, and these are connected on the substrate 10 to form the full-wave rectifier circuit 90 and the constant voltage circuit 100. Is formed.
  • FIG. 6 shows an example in which a member constituting the full-wave rectifier circuit 90 is provided on the base material (substrate 10) of the organic EL device 2.
  • the full-wave rectifier circuit 90 is connected to the electrodes 15 and 16 through the through holes 15H and 16H.
  • the through holes 15H and 16H are foil-shaped conductors connected to the electrodes 15 and 16, respectively, and are formed inside holes provided in the substrate 10.
  • the full-wave rectifier circuit 90 is connected between the electrode layers 11 serving as the cathodes of the organic EL elements 110 at the contact portions 11C.
  • the contact portion 11 ⁇ / b> C is a contact provided on the electrode layer 11 that is the cathode of the organic EL element 110.
  • a part of the full-wave rectifier circuit 90 is connected to the contact portion 13 ⁇ / b> C via a series resistor R ⁇ b> 1 constituting the constant voltage circuit 100.
  • the contact portion 13 ⁇ / b> C is a contact provided on the transparent electrode layer 13 that is an anode of the organic EL element 110.
  • the capacitor C and the series diode D constituting the constant voltage circuit 100 are connected to the electrode layer 11 serving as the cathode of the organic EL element 110 via the contact portion 11C, and the transparent electrode layer serving as the anode via the contact portion 13C. 13 is connected.
  • the capacitor C and the series diode D are indirectly connected to the transparent electrode layer 13 via the electrode layer 11). That is, the full-wave rectifier circuit 90 and the constant voltage circuit 100 shown in FIG. 4 are constructed on one surface of the substrate 10 as shown in FIG. 6, and the electrode layer 11 serving as the cathode and the transparent serving as the anode on the organic EL element 110 side. It is connected to the electrode layer 13.
  • the full-wave rectifier circuit 90 and the constant voltage circuit 100 are also connected to electrodes (panel-side conductive members) 15 and 16 provided on the other surface of the substrate 10. Therefore, in the organic EL device 2, the power applied to the electrodes 15 and 16 passes through the through holes 15H and 16H, and passes through the diodes 17 to 20 of the full-wave rectifier circuit 90 and the constant voltage circuit 100, so that the transparent electrode layer 13 Added between the electrode layers 11.
  • the full-wave rectifier circuit 90 and the constant voltage circuit 100 are preferably used through holes or sealed on the entire surface after mounting from the viewpoint of improving reliability and appearance.
  • the invention is not limited to this.
  • the full-wave rectifier circuit 90 and the constant voltage circuit 100 may be mounted on the back surface 10b of the substrate 10 or the outer periphery of the substrate 10, or may be mounted on the sealed organic EL device 2.
  • the organic EL device 2 is only in contact with the fixed side wall surface 7 and is indirectly supplied with power from the power supply device 3 to emit light although it is not physically connected. Therefore, as shown in FIG. 7, the organic EL device 2 can move on the fixed side wall surface 7 while emitting light.
  • the electrodes 15 and 16 belonging to the organic EL device 2 and the electrodes 8 and 9 embedded in the fixed side wall surface 7 are used. It is necessary to be arranged to face each other on a one-to-one basis. Therefore, the organic EL device 2 has a high degree of freedom in position in the longitudinal direction x of the fixed side wall surface 7. However, in the short direction y, the degree of freedom of position is limited.
  • the top emission type organic EL device 2 is used.
  • the present invention is not limited to this.
  • the present invention is applied to a bottom emission type organic EL device 22.
  • symbol and description is abbreviate
  • the organic EL device 22 has a transparent electrode layer 24 on the anode (anode) side and an organic layer called a functional layer on one surface 23 a of a glass substrate 23 (base material) having a planar spread.
  • the light emitting layer 25 and the electrode layer 26 on the cathode (cathode) side are laminated, and these are sealed by the sealing portion 27.
  • the arrows indicate the flow of current.
  • the organic EL device 22 will be briefly described. By applying a voltage between the transparent electrode layer 24 and the electrode layer 26, the organic light emitting layer 25 emits light, and light is emitted from the glass substrate 23 through the transparent electrode layer 24. It is something to take out. That is, the organic EL device 22 has a configuration called a bottom emission type, and a lower surface (base material side) 31 in the drawing serves as a light emitting surface.
  • electrodes (panel-side conductive members) 28 and 29 are stacked on the electrode layer 26 serving as the cathode of the organic EL element 110 with a gap from the electrode layer 26.
  • the electrodes 28 and 29 are located on the surface side 30 facing the glass substrate 23 of the organic EL device 22, and are disposed so as to overlap the region B overlapping the organic light emitting layer 25.
  • the electrodes 28 and 29 each have a large area on the surface 23a of the glass substrate 23, and the area on the surface 23a is substantially bisected by both. A gap is provided between the electrodes 28 and 29, and both are electrically insulated. In FIG. 9, the electrodes 28 and 29 are depicted as being exposed from the sealing portion 27 for convenience of explanation.
  • the electrodes 28 and 29 are not merely electrodes, but also have a function as a sealing member or a heat equalizing member.
  • the organic EL device 22 has a full-wave rectifier circuit 90 composed of diodes 17 to 20, similarly to the organic EL device 2 described above. Also in the organic EL device 22, the alternating current supplied from the fixed side wall surface 7 is rectified and used.
  • the diodes 17 to 20 constituting the full-wave rectifier circuit 90 can be formed using the organic light emitting layer 25 as a rectifier. That is, the organic light emitting layer 12 constituting the organic EL element 110 has a PN bond and has a rectifying action. More specifically, the organic light emitting layer 12 allows a current to flow only from the transparent electrode layer 24 serving as the anode toward the electrode layer 26 serving as the cathode. Therefore, the full-wave rectifier circuit 90 can also be constructed using the rectifying action of the organic light emitting layer 12.
  • the full-wave rectifier circuit 90 described above is preferably formed using the edge portion of the organic EL element 110.
  • FIG. 12 shows a layout when the full-wave rectifier circuit 90 is formed by using the edge portion of the organic EL element 110.
  • the organic EL device 22 shown in FIG. 12 there is a light emitting region Z that is a main light emitting portion at the center of the substrate 10, and a region V that constitutes a diode 17, a region X that constitutes a diode 19, and a diode 18 are arranged around it.
  • the region W and the region Y constituting the diode 20 are surrounded.
  • the organic EL device 22 shown in FIG. 12 there is a light emitting region Z that is a main light emitting portion at the center of the base of the organic EL device, and regions V, X, W, and Y that are diode portions are formed around it.
  • the organic EL device 22 shown in FIG. 13 includes the transparent electrode layer 24 on the anode (anode) side, the organic light emitting layer 25 having a rectifying function, on one surface 23a of the glass substrate 23 (base material).
  • the electrode layer 26 on the cathode (cathode) side is laminated, and these are sealed by the sealing portion 27.
  • Electrodes (panel-side conductive members) 28 and 29 are stacked on the sealing portion 27.
  • the electrodes 28 and 29 are both electrodes that are spread out in a substantially “L” shape. Specifically, the electrode 28 is stacked over the region V and the region Y, and the electrode 29 is stacked over the region X and the region W.
  • a plurality of grooves are provided in each layer, each layer is divided, and upper and lower layers are connected via the grooves. That is, in the organic EL device 22 shown in FIG. 13, the first groove 120 and the second groove 121 are provided in the transparent electrode layer 24 from the left side of the drawing, and the transparent electrode layer 24 includes the first area 122, the second area 123, and the third area 124. It is divided into two. The first groove 120 and the second groove 121 provided in the transparent electrode layer 24 divide and insulate the transparent electrode layer 24 and correspond to an electrode layer dividing portion.
  • the organic light emitting layer 25 and the cathode electrode layer 26 are divided into a first area 135, a second area 136, a third area 137, a fourth area 138, and a fifth area 139.
  • the communication grooves 130, 131, 132, and 133 divide and insulate the electrode layer 26 that is a cathode, and correspond to an electrode layer dividing portion.
  • a first groove 140, a second groove 141, a third groove 142, and a fourth groove 143 are separately formed.
  • the electrode layer 26 as the cathode on the upper layer side of the drawing enters the grooves 140, 141, 142, and 143, passes through the organic light emitting layer 25, and the electrode layer 26 and the transparent electrode layer 24 are electrically connected. Therefore, the organic light emitting layer 25 is divided into a first area 150, a second area 151, a third area 152, a fourth area 153, and a fifth area 154.
  • the first groove 140, the second groove 141, the third groove 142, and the fourth groove 143 provided in the organic light emitting layer 25 correspond to an organic light emitting layer dividing portion that divides the organic light emitting layer 25, and the organic light emitting layer dividing One electrode layer 26 has entered the portion, and the electrode layer 26 and the transparent electrode layer 24 are electrically connected by the electrode layer 26 in the first groove 140, the second groove 141, the third groove 142, and the fourth groove 143. A conduction part is formed.
  • the electrodes (panel-side conductive members) 28 and 29, the transparent electrode layer 24, and the electrode layer 26 are conductors.
  • the sealing portion 27 is an insulator.
  • the organic light emitting layer 25 has a PN bond, is a semiconductor, and has a rectifying action.
  • the distribution of the conductors, insulators, and semiconductors in the region is shown by hatching as shown in FIG. 13B. That is, the electrode (panel-side conductive member) 28 is electrically connected to the first area 135 of the electrode layer 26 as the lower cathode at the left end portion of the drawing, and further, the transparent electrode layer 24 in the lower layer is further connected through the first groove 140.
  • the first area 122 is electrically connected. Therefore, the electrode (panel-side conductive member) 28 is electrically connected to the first area 122 of the transparent electrode layer 24 with a conductor.
  • a second area 151 of the organic light emitting layer 25 as a semiconductor layer is provided above the first area 122 of the transparent electrode layer 24, and a second area 136 of the electrode layer 26 is further provided thereon. That is, the first area 122 of the transparent electrode layer 24 serving as a conductor and the second area 136 of the electrode layer 26 serving as a conductor are opposed to each other with the second area 151 of the organic light emitting layer 25 serving as a semiconductor interposed therebetween.
  • the second area 151 of the organic light emitting layer 25 is a semiconductor that conducts electricity only from the transparent electrode layer 24 side toward the electrode layer 26 side.
  • the second area 136 of the electrode layer 26 is further electrically connected to the second area 123 of the transparent electrode layer 24 via the second groove 141 of the organic light emitting layer 25 and is electrically connected to the light emitting region Z. Therefore, in this embodiment, before reaching the transparent electrode layer 24 (second area 123) of the light emitting region Z from the electrode (panel side conductive member) 28, the semiconductor layer (second area 151 of the organic light emitting layer 25). The semiconductor layer (second area 151 of the organic light emitting layer 25) is energized only in the direction from the electrode (panel-side conductive member) 28 toward the transparent electrode layer 24 (second area 123) of the light emitting region Z. forgive. Accordingly, the second area 151 of the organic light emitting layer 25 performs the same function as the diode 17 of FIG.
  • the electrode (panel-side conductive member) 29 is electrically connected to the fifth area 154 of the lower electrode layer 26 at the right end portion of the drawing, and further the fourth groove 143. Is further conducted to the third area 124 of the transparent electrode layer 24 in the lower layer. Therefore, the electrode (panel-side conductive member) 29 is electrically connected to the third area 124 of the transparent electrode layer 24 with a conductor.
  • the electrode (panel-side conductive member) 29 is electrically connected to the third area 124 of the transparent electrode layer 24 with a conductor.
  • there is a fifth area 154 of the organic light emitting layer 25 as a semiconductor layer there is a fourth area 138 of the electrode layer 26 in the upper layer.
  • the third area 124 of the transparent electrode layer 24 that is a conductor and the fourth area 138 of the electrode layer 26 that is a conductor are opposed to each other with the fifth area 154 of the organic light emitting layer 25 that is a semiconductor interposed therebetween.
  • the fifth area 154 of the organic light emitting layer 25 is a semiconductor that conducts electricity only from the transparent electrode layer 24 side toward the electrode layer 26 side.
  • the fourth area 138 of the electrode layer 26 is further connected to the second area 123 of the transparent electrode layer 24 via the third groove 142 of the organic light emitting layer 25 and is connected to the light emitting region Z. Therefore, in the present embodiment, the semiconductor layer (the fifth area 154 of the organic light emitting layer 25) is provided before reaching the transparent electrode layer 24 (second area 123) of the light emitting region Z from the electrode (panel side conductive member) 29. The semiconductor layer (the fifth area 154 of the organic light emitting layer 25) is energized only in the direction from the electrode (panel-side conductive member) 28 toward the transparent electrode layer 24 (second area 123) of the light emitting region Z. forgive. Therefore, the fifth area 154 of the organic light emitting layer 25 performs the same function as the diode 20 of FIG.
  • FIG. 14 is an enlarged cross-sectional view of the edge portion of the BB cross-sectional view of the substrate 10 shown in FIG. 12, where (a) shows the stacked state of each layer, and (b) shows the conductor portion and the semiconductor portion. In addition, the insulator portion is applied separately and the current flow is illustrated. Even when the substrate 10 is observed by cutting along the BB cross section, as shown in FIG. 14, a plurality of grooves are provided in each layer, each layer is divided, and upper and lower layers are connected via the grooves. It is.
  • a first groove 220, a second groove 221, a third groove 222, and a fourth groove 223 are provided on the transparent electrode layer 24 from the left side of the drawing, and the transparent electrode layer 24 has a first area 225, a second area 226, and a third area 227.
  • the fourth area 228 and the fifth area 229 are divided.
  • two communication grooves 230 and 231 for communicating the organic light emitting layer 25 and the electrode layer 26 serving as the cathode are provided.
  • a sealing portion 27 that is an insulator enters the communication grooves 230 and 231. Therefore, the organic light emitting layer 25 and the cathode electrode layer 26 are divided into a first area 235, a second area 236, and a third area 237.
  • a first groove 240, a second groove 241, a third groove 242, and a fourth groove 243 are separately formed. Then, the electrode layer 26 which is the cathode on the upper layer side of the drawing enters the grooves 240, 241, 242 and 243, passes through the organic light emitting layer 25, and the electrode layer 26 and the transparent electrode layer 24 are electrically connected.
  • the organic light emitting layer 25 is divided into areas from the first area 270 to the fifth area 274 by the grooves described above.
  • the electrodes (panel-side conductive members) 28 and 29, the transparent electrode layer 24, and the electrode layer 26 are conductors.
  • the sealing portion 27 is an insulator.
  • the organic light emitting layer 25 is a semiconductor and has a rectifying action.
  • the electrode (panel-side conductive member) 28 is electrically connected to the first area 235 of the electrode layer 26 which is the lower cathode at the left end of the drawing.
  • the second area 271 of the organic light emitting layer 25 that is a semiconductor layer, and in the lower layer, there is a second area 226 of the transparent electrode layer 24. Therefore, the second area 226 of the transparent electrode layer 24 serving as a conductor and the first area 235 of the electrode layer 26 serving as a conductor are opposed to each other with the second area 271 of the organic light emitting layer 25 serving as a semiconductor interposed therebetween.
  • the second area 271 of the organic light emitting layer 25 is a semiconductor that conducts electricity only from the transparent electrode layer 24 side toward the electrode layer 26 side.
  • the second area 226 of the transparent electrode layer 24 further reaches the second area 236 of the electrode layer 26 via the second groove 241 of the organic light emitting layer 25 and is electrically connected to the light emitting region Z. Therefore, in this embodiment, before reaching the electrode layer 26 (second area 236) of the light emitting region Z from the electrode (panel-side conductive member) 28, the semiconductor layer (second area 271 of the organic light emitting layer 25) is disposed.
  • the sandwiched semiconductor layer (second area 271 of the organic light emitting layer 25) permits energization only in the direction from the transparent electrode layer 24 (second area 226) of the light emitting region Z toward the electrode (panel-side conductive member) 28. . Therefore, the second area 271 of the organic light emitting layer 25 performs the same function as the diode 18 of FIG.
  • the electrode (panel-side conductive member) 29 is electrically connected to the third area 237 of the electrode layer 26 as the lower cathode at the right end portion of the drawing.
  • the electrode (panel-side conductive member) 29 is electrically connected to the third area 237 of the electrode layer 26 as the lower cathode at the right end portion of the drawing.
  • the electrode (panel-side conductive member) 29 is electrically connected to the third area 237 of the electrode layer 26 as the lower cathode at the right end portion of the drawing.
  • the electrode (panel-side conductive member) 29 is electrically connected to the third area 237 of the electrode layer 26 as the lower cathode at the right end portion of the drawing.
  • the fourth area 228 of the transparent electrode layer 24 as a conductor and the third area 237 of the electrode layer 26 as a conductor are opposed to each other with the fifth area 274 of the organic light emitting layer 25 as a semiconductor interposed therebetween.
  • the fifth area 274 of the organic light emitting layer 25 is a
  • the fourth area 228 of the transparent electrode layer 24 further reaches the second area 236 of the electrode layer 26 via the third groove 242 of the organic light emitting layer 25 and is electrically connected to the light emitting region Z. Therefore, in this embodiment, before reaching the electrode layer 26 (second area 236) in the light emitting region Z from the electrode (panel side conductive member) 28, the semiconductor layer (fourth area 273 of the organic light emitting layer 25) is formed.
  • the sandwiched semiconductor layer (second area 271 of the organic light emitting layer 25) permits energization only in the direction from the transparent electrode layer 24 (fourth area 228) of the light emitting region Z toward the electrode (panel-side conductive member) 29. . Accordingly, the sixth area 275 of the organic light emitting layer 25 performs the same function as the diode 19 of FIG.
  • the diodes 17 and 20 have a structure as shown in FIG.
  • the diodes 18 and 19 have a structure as shown in FIG.
  • the first groove 120 provided in the transparent electrode layer 24 forms an electrode layer dividing portion, and the transparent layer adjacent to the electrode layer dividing portion as a boundary.
  • the first area 122 and the second area 123 which are two regions of the electrode layer 24 are electrically connected to the second area 136 which is a part of the organic light emitting layer via the second groove 141 which is a conductive portion, and the diode forming portion is It is composed.
  • the first groove 140 provided in the electrode layer 26 forms an electrode layer dividing portion, and the electrode layer 26 adjacent to the electrode layer dividing portion as a boundary.
  • the first area 135 and the second area 136 which are the two regions, are electrically connected to the second area 136, which is a part of the organic light emitting layer, via the first groove 140, which is a conductive part, thereby forming a diode forming part.
  • These relationships also exist in the other regions X, W, and Y.
  • the full-wave rectifier circuit 90 including the diodes 17 to 20 can be arranged around the main light emitting region Z (the organic light emitting layer 25 that always emits light) of the organic EL device 22.
  • the organic light emitting layer 25 having PN coupling for example, a chip-shaped diode that is a surface-mounted component can be obtained. No need to install. As a result, the organic EL device 22 can be made thinner.
  • the diodes 17 to 20 constituting the full-wave rectifier circuit 90 each function as a check diode. However, when a voltage is applied in the forward direction, the diodes 17 to 20 are regions that contribute to light emission. Therefore, as shown in FIG. 12, in the organic EL device 22, the areas V to Y forming the diodes 17 to 20 are the main light emitting area Z located in the center (the organic light emitting layer 25 that always emits light, the main light emission). Part).
  • the color tones of the regions V and W (diodes 17 and 18) that emit light only in the forward direction and the regions X and Y (diodes 19 and 20) that emit light only in the reverse direction are the main light emitting regions.
  • the color tone can be controlled by an alternating waveform. Specifically, it is preferable that the main light emitting region Z located in the center emits white light, and the regions V to Y emitting light only in the forward and reverse directions are bluish white and reddish white, respectively.
  • the organic EL device 22 which is a device in which the cells are connected in series, for example, a commercial power source such as AC 100V can be applied.
  • the organic EL device 22 is placed on the fixed side wall surface 7 with the glass substrate 23 facing upward.
  • the organic EL device 22 is disposed so as to face upside down.
  • the electrodes 28 and 29 included in the organic EL device 22 are opposed to the electrodes 8 and 9 embedded in the fixed side wall surface 7 with a predetermined interval.
  • the electrode 28 on the organic EL device 22 side and the electrode 8 on the fixed sidewall surface 7 side, and the electrode 29 on the organic EL device 22 side and the electrode 9 on the fixed sidewall surface 7 side sandwich the sealing portion 27 and part of the flooring. And an electrostatic capacitance is generated between the electrodes.
  • the organic EL device 22 having the electrodes 28 and 29 and the power supply device 3 connected to the electrodes 8 and 9 are electrically connected by an electrostatic coupling method.
  • the alternating current supplied from the power supply device 3 flows from the transparent electrode layer 24 to the electrode layer 26, whereby light is emitted from the glass substrate 23 of the organic EL device 22.
  • the electrodes 28 of the organic EL device 22 are in a position overlapping the electrodes 8 on the fixed side wall surface 7 side.
  • most of the electrodes 29 included in the organic EL device 22 are in positions where they overlap with the electrodes 9 on the fixed sidewall surface 7 side.
  • the electrodes 28 and 29 of the organic EL device 22 ensure a large area on the surface 23a of the glass substrate 23, respectively, and both divide the area on the surface 23a substantially. That is, most of the electrodes 28 and 29 overlap with the electrodes 8 and 9 on the fixed side wall surface 7 side, respectively, so that the light emitting system 21 according to the second embodiment also includes the light emitting system 1 according to the first embodiment.
  • a desired amount of power can be supplied from the power supply device 3 to the organic EL device 22. Therefore, sufficient brightness and light quantity can be secured for the organic EL device 22 as well.
  • the organic EL devices 2 and 22 are electrodes (panel side conductive members) 15 and 16 and electrodes (panel side conductive).
  • the example provided with (members) 28 and 29 was shown. That is, in the first embodiment described above, the organic EL device 2 has two electrodes (panel-side conductive members) 15 and 16. Similarly, the organic EL device 22 of the second embodiment has two electrodes (panel-side conductive members) 28 and 29. As described above, in the first and second embodiments, both have two panel-side conductive members. However, it is also possible to supply power using only one panel-side conductive member. That is, by adopting the electric energy transfer device described in Patent Document 2 (Japanese Patent Publication No. 2009-531209), it is possible to emit light by supplying power to the organic light emitting layer 12 with a single panel side conductive member. .
  • FIG. 15 is an operation principle diagram of the electric energy transfer device 40 disclosed in Patent Document 2.
  • the electric energy transfer device 40 includes a high-voltage high-frequency generator (HTHF generator) 41 positioned between the passive electrode 42 and the active electrode 43, and a high impedance positioned between the electrode (electromotive electrode) 46 and the electrode (passive electrode) 47.
  • HTHF generator high-voltage high-frequency generator
  • a load 45 is provided.
  • the high-voltage and high-frequency generator 41 is an energy generating device, and the high impedance load 45 is an energy consuming device.
  • the high-voltage and high-frequency generator 41 and the high impedance load 45 are arranged such that the active electrode 43 and the electrode 46 face each other. Capacitive coupling exists between the active electrode 43 and the electrode 46, and a potential is generated between these electrodes. As a result, a strong field zone 44 where energy is concentrated is generated in the space where the active electrode 43 and the electrode 46 are located, so that electric energy is conveyed from the high-voltage and high-frequency generator 41 to the high impedance load 45. Is done.
  • the passive electrode 42 is a large size electrode, and the active electrode 43 is a small size electrode.
  • the passive electrode 42 may be a ground (reservoir electrode).
  • the electrode 46 is a small size electrode, and the electrode 47 is a large size electrode.
  • the electrode 47 is preferably placed in a zone where the field is weak.
  • the electrical energy transfer device 40 is based on the use of Coulomb interaction, also called electrical influence, and is used in rapid temporal order to utilize Maxwell's displacement current, which is usually extremely small in a dielectric medium outside the conductor. A strong electric field with fluctuations is used. It should be noted that the frequency used in the electrical energy transport device 40 is much higher than the frequency normally used for transporting electrical energy, but remains low enough to neglect electromagnetic radiation.
  • the electrical energy transfer device 40 is attributed to considering the interaction between two asymmetric oscillating electric dipoles. For that reason, the two electric dipoles interact in a manner similar to the interaction obtained between two magnetic self-inductances penetrated by an alternating current. Thus, the electrical energy transport device 40 is equivalent to a partially coupled transformer in terms of influence. This coupling takes place through the dielectric inductive medium instead of the magnetically inductive medium in the transformer case.
  • FIG. 16 shows a light emitting system 51 according to a third embodiment of the present invention to which the electric energy transfer device 40 disclosed in Patent Document 2 is applied.
  • the light emitting system 51 includes an organic EL device 52 and a fixed side wall surface 57.
  • the fixed side wall surface 57 constitutes the floor 56.
  • the organic EL device 52 has substantially the same configuration as that of the top emission type organic EL device 2.
  • an electrode layer 11 on the cathode (cathode) side, an organic light emitting layer 12 also called a functional layer, and an anode A transparent electrode layer 13 on the (anode) side is laminated, and these are sealed by a transparent sealing portion 14.
  • the cathode-side electrode layer 11 in the organic EL device 52 functions as a panel-side conductive member.
  • the organic EL device 52 is provided with a half-wave rectifier circuit, and rectifies and uses an alternating current supplied from the fixed side wall surface 57 (illustration of an electric circuit diagram is omitted).
  • the fixed side wall surface 57 is embedded with a high-pressure and high-frequency generator (HTHF generator) 41 used in the electric energy transfer device 40.
  • HTHF generator high-pressure and high-frequency generator
  • a passive electrode 42 and an active electrode 43 are provided.
  • the organic EL device 52 is placed on the fixed side wall surface 57 using the substrate 10 as a base.
  • the electrode layer (panel-side conductive member) 11 included in the organic EL device 52 faces the active electrode 43 embedded in the fixed side wall surface 7 with a predetermined interval.
  • the active electrode 43 and the electrode layer 11 are arranged to face each other with the substrate 10 and a part of the flooring interposed therebetween, and a capacitance is generated between the electrodes.
  • the top emission type organic EL device 52 is used in the light emitting system 51 according to the third embodiment.
  • the present invention is not limited to this.
  • a bottom emission type organic EL device may be employed.
  • FIG. 17 is a conceptual diagram of a light emitting system 60 according to the fourth embodiment, in which a bottom emission type organic EL device 65 is employed instead of the top emission type organic EL device 52 employed in the third embodiment.
  • the organic EL device 65 has substantially the same configuration as the bottom emission type organic EL device 22, and a transparent electrode on the anode (anode) side is formed on one surface 23a of a glass substrate 23 (base material) having a planar spread.
  • a layer 24, an organic light emitting layer 25, also called a functional layer, and an electrode layer 26 on the cathode (cathode) side are laminated, and these are sealed by a sealing portion 27.
  • the cathode-side electrode layer 26 in the organic EL device 65 functions as a panel-side conductive member.
  • the organic EL device 65 is provided with a half-wave rectifier circuit, and rectifies and uses an alternating current supplied from the fixed side wall surface 57 (illustration of an electric circuit diagram is omitted).
  • the electrode layer 11 or 26 in the organic EL device 52 has a function of a panel side conductive member.
  • a sex member may be provided separately.
  • FIG. 18 shows an example in which the top emission type organic EL device 52 is adopted as in the third embodiment, and a panel-side conductive member 61 is separately provided outside the substrate 10. And the panel side electroconductive member 61 and the inner side of the board
  • FIG. 19 shows an example in which a bottom emission type organic EL device 65 is employed as in the fourth embodiment.
  • a panel-side conductive member 66 is separately provided on the surface facing the glass substrate 23. And the panel side electroconductive member 66 and the inner side of the glass substrate 23 are connected by the power line which is not illustrated.
  • the organic EL device 65 is provided with a half-wave rectifier circuit, and rectifies and uses the alternating current supplied from the fixed side wall surface 57.
  • FIGS. 16 to 19 is an application of the electric energy transfer device disclosed in Patent Document 2, and the organic light emitting layer 25 and the like of the organic EL devices 52 and 63 are used as the high impedance load 45.
  • a high impedance load may be connected separately from the organic light emitting layer 25.
  • FIG. 20 includes the diodes 37 and 38 that are components of the half-wave rectifier circuit and the panel-side conductive member 66 provided separately, so that the organic EL shown in FIG. 19 has the same positional relationship as FIG. 6 is a schematic cross-sectional view schematically illustrating the device 65.
  • FIG. 21 As shown in the cross-sectional view of FIG. 21, the diodes 37 and 38 constituting the half-wave rectifier circuit can be formed using the organic light emitting layer 25 as a rectifier.
  • An organic EL device in which a two-layer electrode layer and an organic light-emitting layer having a PN bond sandwiched between the electrode layers are laminated on a substrate having a planar spread, and at least one plane serves as a light-emitting surface
  • the surface of the substrate is divided into a main light emitting part and a diode part, and the diode part allows energization only in one direction using the PN coupling of the organic light emitting layer, and the diode part is the main light emitting element.
  • An organic EL device characterized by being connected to a part.
  • An organic EL device according to the invention that is dependent on the above-described invention has a diode portion at four locations, and a full-wave rectifier circuit including the diode portion is formed.
  • An organic EL device according to the invention which is dependent on the above-described invention wherein a main light emitting portion is provided at a central portion of a substrate, and a diode portion is formed around the main light emitting portion.
  • a light emitting layer dividing portion is provided, and a conductive portion is formed in which one electrode layer enters the organic light emitting layer dividing portion and conducts two electrode layers, and the diode portion is adjacent to the electrode layer dividing portion as a boundary.
  • An organic EL device comprising a diode forming portion that conducts two regions through a part of an organic light emitting layer and a conducting portion.
  • Electrode (wall-side conductive member) 10 Substrate (base material) 11, 26 Electrode layer (Panel side conductive member) 12, 25 Organic light emitting layer 13, 24 Transparent electrode layer 15, 16, 28, 29, 61, 66 Electrode (Panel side conductive member) 23 Glass substrate (base material) 120, 121, 220, 221, 222, 233 Electrode layer dividing portion 130, 131, 132, 133, 230, 231 Communication groove (electrode layer dividing portion) 140, 141, 142 Organic light-emitting layer dividing part 143, 240, 241, 242, 243 Organic light-emitting layer dividing part V, X, W, Y Diode part area Z Main light-emitting part light-emitting area

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 非接触で給電可能であり、且つ発光領域の割合が高く、さら所望の光量を確保することが可能な発光システムを提供することである。 発光システム1は、有機EL装置2と固定側壁面7によって構成されている。有機EL装置2は、基板10(基材)に、陽極側の電極層11と有機発光層12と陰極側の透明電極層13とが積層され、封止部14によって封止されたものである。基板10(基材)の固定側壁面7側の面10bには、平面的な広がりを有する電極(パネル側導電性部材)15,16が積層されている。電極15,16は、有機発光層12が設けられた発光領域Aに重ねて配置されている。固定側壁面7は、平面的な広がりを有する電極(壁側導電性部材)8,9が埋め込まれている。電極8,9間には電源装置3が電気的に接続されている。有機EL装置2の電極15,16と、固定側壁面7の電極8,9とは床材を挟んで対向配置されている。

Description

発光システム及び有機EL装置
 本発明は発光システム及び有機EL装置に関し、さらに詳細には、非接触で給電可能な発光システム及び有機EL装置に関するものである。
 蛍光灯やLEDを用いた発光装置に代わる発光デバイスとして、有機EL(Electro Luminescence)装置が注目され、多くの研究がなされている。
 有機EL装置は、ガラス基板や透明樹脂フィルムの基材に、有機化合物等で構成される有機EL素子を積層したものである。有機EL素子は、陽極と陰極間に有機発光層を設けた発光素子である。有機発光層は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等から構成されている。
 有機EL素子を構成する有機発光層や各電極層は、真空蒸着装置やCVD(Chemical Vapor Deposition ;化学気相成長法)装置等で薄膜状に形成される。そのため、有機EL装置は、液晶表示装置やLED照明装置に比べて、格段に薄く、軽い。軽薄な有機EL装置は、例えば、天井や壁面に貼付することも容易であり、自由度の高い発光デバイスとして様々な使い方が考えられる。しかし、有機EL装置に電源を供給するための配線は、天井や壁面に埋設されていることが多く、配線の位置によって有機EL装置の設置場所が制限されてしまう。特許文献1には、平板型の表示パネルへ非接触で交流電力を供給可能な電力伝送回路が記載されている。
 特許文献1に開示された電力伝送回路では、交流電力を送信する側の送信基板と、表示パネルを備えた受信基板が用いられている。送信基板と受信基板のそれぞれの基板の表面には、面状電極が二つずつ設けられている。送信基板と受信基板の各面状電極同士は、絶縁基板を挟んで対向配置することで、各面状電極間に静電容量が生じる。静電容量は、コンデンサであり、送信基板と受信基板とはコンデンサを介して電気的に接続されていると言える(以下、静電結合方法と称する)。その結果、配線等で接続していないにも関わらず、送信基板から受信基板へ交流電力を供給することができる。
 その他、特許文献2,3には、別の静電結合方法で電力を供給可能な電気エネルギー搬送装置が開示されている。
特開2009-169327号公報 特表2009-531009号公報 特表2010-537613号公報
 ところで特許文献1に記載された電力伝送回路では、表示パネルと面状電極とは同一平面上にあり、重ならない。特許文献1に記載された電力伝送回路では、受信基板に設けられた面状電極は、平面的に見て、表示パネルを間に挟んだ位置に設けられている。即ち受信基板を平面視したとき、表示パネルが設けられた領域と、面状電極が設けられた領域は別々であり、表示パネルと面状電極とが重なる領域は無い。
 そのため特許文献1に記載された電力伝送回路を採用すると、基板表面に発光しない領域ができてしまう。即ち基板表面の相当割合の面積は、発光に寄与しない。
 また発光する領域の割合を増大させると、面状電極が小さくなり、受電面積が減少して必要な電力の送電を受けることができない。そのため発光領域の面積は増大するものの、光量が不足する事態となる。
 上記した現状に鑑み、本発明は、非接触で給電可能であり、且つ発光領域の割合が高く、さら所望の光量を確保することが可能な発光システムの提供を目的とする。
 また同様の課題を解決することができる有機EL装置の提供を目的とする。
 上記課題を解決するための発明は、固定側壁面と、有機EL装置によって構成される発光システムにおいて、固定側壁面には、壁側導電性部材が設けられており、有機EL装置は、平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれた有機発光層が積層され、少なくとも一方の平面が発光面となるものであり、発光面と対向する面側であって、有機発光層と重なる領域に平面的な広がりを有するパネル側導電性部材が埋設又は露出し、当該パネル側導電性部材は前記電極層に電気的に接続されており、前記有機EL装置は前記固定側壁面に設置され、前記壁側導電性部材に交流電流を通電して有機EL装置に間接的に給電することを特徴とする発光システムである。
 また壁側導電性部材は、固定側壁面の内部に埋め込まれていることが望ましい。
 固定側壁面は、具体的には、天井、部屋の内壁、床面、カウンター面、机上面等である。固定側壁面は、建屋の一部や家具の一部であり、通常の使用状態においては移動することの無い部材である。
 本発明の発光システムでは、特徴的な構成を有する有機EL装置を採用している。即ち本発明が採用する有機EL装置は、パネル側導電性部材を有している。そしてパネル側導電性部材は、有機発光層に給電する電極層と電気的に接続されている。
 一方、有機EL装置が設置される側(固定側壁面)には、壁側導電性部材が設けられている。また好ましくは壁側導電性部材は、固定側壁面に埋め込まれている。そして壁側導電性部材に交流電流を通電すると、壁側導電性部材とパネル側導電性部材との間で、電子が移動し、有機EL装置に間接的に給電される。
 また本発明が採用する有機EL装置では、前記したパネル側導電性部材が、有機発光層と重なる領域に平面的な広がりをもって配されている。
 そのため本発明が採用する有機EL装置では、パネル側導電性部材が占める領域が広く、固定側壁面から十分な量の電力供給を受けることができる。また本発明が採用する有機EL装置は、発光領域が占める面積割合も高い。
 そのため本発明の発光システムによると、より広い面積をより明るく発光させることができる。
 また上記した発光システムに採用することが推奨される有機EL装置の発明は、交流電流が通電される壁側導電性部材が埋め込まれた固定側壁面に設置される有機EL装置であって、平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれた有機発光層が積層され、少なくとも一方の平面が発光面となるものであり、発光面と対向する面側であって、有機発光層と重なる領域に平面的な広がりを有するパネル側導電性部材が埋設又は露出し、当該パネル側導電性部材は前記電極層に電気的に接続されており、壁側導電性部材から間接的に給電されて有機発光層が発光することを特徴とする有機EL装置である。
 本発明の有機EL装置は、前述と同様に、非接触で給電でき、且つ所望する電力量を得ることができる。また本発明の有機EL装置は、発光に寄与する面積の割合が高く、明るい。
 上記した発光システムで使用する有機EL装置は、基材と対向する面側にパネル側導電性部材が設けられた構成のものを採用することが推奨される。
 もちろん前記基材の有機発光層が積層されていない側にパネル側導電性部材が設けられた構造の有機EL装置を利用することもできる。
 有機EL装置は、2層の電極層の一方がパネル側導電性部材として機能するものであってもよい。
 本有機EL装置を採用した、本発明の発光システムでは、有機発光層に給電する電極層をパネル側導電性部材として利用する。
 即ち有機EL装置は、2層の電極層を有し、この2層の電極層に挟まれた位置に有機発光層がある。そして2層の電極層から有機発光層に電力を供給している。
 本発明の発光システムでは、有機発光層に給電する電極層をパネル側導電性部材として利用するから、パネル側導電性部材として別途の部材を設ける必要がない。
 有機EL装置は、基材に2層の電極層と有機発光層が積層され、前記基材側と対向する面側が発光面となるトップエミッション型の有機EL装置であってもよい。
 また有機EL装置は、透明な基材に2層の電極層と有機発光層が積層され、前記基材側が発光面となるボトムエミッション型の有機EL装置であってもよい。
 前記固定壁側導電性部材に通電する交流電流は、高圧且つ高周波であることが望ましい。
 また壁側導電性部材よりも大きい受動電極と、高圧高周波発生器とを有し、高圧高周波発生器は前記壁側導電性部材と受動電極とに接続されており、有機EL装置にはパネル側導電性部材よりも大きい対向電極があり、当該対向電極はパネル側導電性部材が設けられた位置とは異なる位置に設けられており、有機発光層はパネル側導電性部材と対向電極に電気的に接続された発光システム採用することもできる。
 上記した構成で採用される有機EL装置は、パネル側導電性部材よりも大きい対向電極があり、当該対向電極はパネル側導電性部材が設けられた位置とは異なる位置に設けられており、有機発光層はパネル側導電性部材と対向電極に電気的に接続されている。
 さらにパネル側導電性部材と対向電極の間に高インピーダンス負荷が接続されていてもよい。
 有機EL装置の基材に、整流回路を構成する部材又は部位があることが推奨される。
 有機EL装置は、基材に2層の電極層とPN結合を有する有機発光層が積層されたものであり、基材の面は主発光部とダイオード部に区分され、前記ダイオード部は前記有機発光層のPN結合を利用して一方向にのみ通電を許容するものであり、前記ダイオード部が主発光部に接続されたものであることが推奨される。
 また有機EL装置は、4か所にダイオード部を有し、前記ダイオード部を含む全波整流回路が形成されていることが望ましい。
 有機EL装置の基材の中央部に主発光部があり、その周囲にダイオード部が形成されていることが望ましい。
 より具体的な有機EL装置の構造は、少なくとも一方の電極層に、当該電極層を分断して絶縁する電極層分断部が設けられ、有機発光層には当該有機発光層を分断する有機発光層分断部が設けられ、有機発光層分断部に一方の電極層が進入して2層の電極層を導通する導通部が形成され、前記ダイオード部は、電極層分断部を境として隣接する二つの領域を、有機発光層の一部と導通部とを経由して導通するダイオード形成部を備えていることを特徴とする。
 本発明の発光システム及び有機EL装置によれば、非接触で給電でき、且つ所望する電力量を得ることができる。また本発明の有機EL装置は、発光に寄与する面積の割合が高く、明るい。
本発明の第1実施形態に係る発光システムの概念図であり、有機EL装置と、固定側壁面を示す断面斜視図である。 図1の有機EL装置の詳細な層構成を示す断面図である。 図1の有機EL装置の底面図である。 図1の発光システムを示す電気回路図である。 図1の発光システムの動作状態を示す断面図である。 有機EL装置に全波整流回路と定電圧回路が接続された状態を示す平面概略図である。 図1の発光システムにおいて、電源供給装置上で有機EL装置を移動させた状態を示す斜視図である。 本発明の第2実施形態に係る発光システムに用いる有機EL装置を示す断面図である。 図10の有機EL装置の平面図である。 第2実施形態に係る発光システムの動作状態を示す断面図である。 図10の有機EL装置に全波整流回路が接続された状態を示す断面概略図である。 全波整流回路を有機EL装置の周囲に配置した状態を示す平面図である。 有機発光層で形成した全波整流回路を有機EL装置に隣接させた状態を示す断面図であり、(a)は各領域を示す説明図であり、(b)は(a)の電流の流れを表す説明図である。 有機発光層で形成した全波整流回路を有機EL装置に隣接させた状態を示す断面図であり、(a)は各領域を示す説明図であり、(b)は(a)の電流の流れを表す説明図である。 特許文献2に開示された電気エネルギー搬送装置の作動原理図である。 第3実施形態に係る発光システムの概念図であり、有機EL装置と、電源供給装置を示す断面図である。 第4実施形態に係る発光システムの概念図であり、有機EL装置と、電源供給装置を示す断面図である。 第5実施形態に係る発光システムの概念図であり、有機EL装置と、電源供給装置を示す断面図である。 第6実施形態に係る発光システムの概念図であり、有機EL装置と、電源供給装置を示す断面図である。 図13の有機EL装置に半波整流回路が接続された状態を示す断面概略図である。 有機発光層で形成した半波整流回路を有機EL装置に隣接させた状態を示す断面図である。
 以下、本発明の発光システム及び有機EL装置の実施形態について、図面を参照しながら詳細に説明する。なお、以下の説明は、実施形態の理解を容易にするためのものであり、これによって、本発明が制限して理解されるべきではない。
 また各図は、発明の理解を容易にするため、各層の厚さを誇張して描いている。
 本発明の第1実施形態に係る発光システム1は、図1に示すように、発光デバイスである有機EL装置2と、有機EL装置2に交流電源を供給する固定側壁面7によって構成されている。
 有機EL装置2は、平面的な広がりを有する基板10(基材)の一方の面(図では上面)10aに、有機EL素子110(図2参照)が設けられたものである。即ち有機EL装置2は、基板10(基材)に、陰極(カソード)側の電極層11と、機能層とも呼ばれる有機発光層12と、陽極(アノード)側の透明電極層13とが積層され、これらが透明の封止部14によって封止されたものである。有機EL装置2は、電極層11と透明電極層13との間に電圧を印加することで、有機発光層12を発光させ、透明電極層13から光を取り出すものである。有機EL装置2は、トップエミッション型と称される構成であり、図1を基準として上面(基板10側と対向する面側)4が発光面となる。
 ここで、有機発光層12は、複数の有機化合物の薄膜が積層されたものである。有機発光層12の詳細な層構成は、図2の通りであり、正孔注入層101、正孔輸送層102、発光層103、電子輸送層104、電子注入層105を有している。
 また本実施形態の有機EL装置2に特有の構成として、基板10(基材)の他方の面に、電極(パネル側導電性部材)15,16が設けられている。
 即ち図1,2,3に示すように、基板10(基材)の固定側壁面7側の面(図では下面)10bには、平面的な広がりを有する電極(パネル側導電性部材)15,16が積層されている。電極15,16は、有機EL装置2の下面(基材側)5に位置するものであり、有機発光層12が設けられた発光領域Aに、重ねて配置されている。即ち有機EL装置2を図3の様に裏面側から観察すると、電極(パネル側導電性部材)15,16と有機発光層12が設けられた発光領域Aが重なっている。
 そのため電極15,16は、それぞれ基板10の裏面10b上に大きな面積を確保しており、両者で裏面10b上の面積を略二分している。電極15,16同士の間には隙間67が設けられており、両者は電気的に絶縁されている。
 固定側壁面7は、天井、壁又は床面6となるものであり、内部には図1の様に平面的な広がりを有する電極(壁側導電性部材)8,9が埋め込まれている。電極8,9同士の間は、電気的に絶縁されている。
 電極8,9間には電源装置3が電気的に接続されている。電源装置3は、交流電流(交流電力)を発生可能なものであり、電極8,9間に電圧を印加して電流を供給するものである。
 ここで、本発明の第1実施形態に係る発光システム1の電気回路について、図4を用いて説明する。
 図4に示すように、発光システム1において、有機EL装置2と固定側壁面7とは、静電容量C1,C2によって接続されている。静電容量C1は、有機EL装置2の電極15と固定側壁面7の電極8とで構成され、静電容量C2は、有機EL装置2の電極16と固定側壁面7の電極9とで構成されている。
 有機EL装置2には、全波整流回路90と定電圧回路100が設けられている。全波整流回路90は、ダイオード17~20を有している。全波整流回路90は、より詳細にはブリッジ整流回路である。
 ダイオード17は、電極15と有機EL素子110のアノードたる透明電極層13間に接続されており、ダイオード18は、電極15と有機EL素子110のカソードたる電極層11間に接続されている。即ちダイオード17は、カソード側が透明電極層13に接続されており、ダイオード18は、アノード側が電極層11に接続されている。
 また、ダイオード19は、電極16と有機EL素子110のカソードたる電極層11間に接続されており、ダイオード20は、電極16と有機EL素子110のアノードたる透明電極層13間に接続されている。即ちダイオード19は、アノード側が電極層11に接続されており、ダイオード20は、カソード側が透明電極層13に接続されている。
 全波整流回路90は、固定側壁面7から電極15,16に供給される交流電流を整流して、陽極(アノード)側の透明電極層13から陰極(カソード)側の電極層11へと一定方向にしか流さないものである。
 また、本実施形態で採用する定電圧回路100は、シャント方式の定電圧回路である。この回路は、直列抵抗R1(例えば、1kΩ)と、出力電圧を決定するダイオードD、およびコンデンサC(例えば、1μF)で構成される。本実施形態では、直列抵抗R1と、有機EL素子110の内部抵抗R2との間が分岐されてダイオードDが接続された回路であり、シャント方式レギュレータ回路を構成している。
 このシャント方式レギュレータ回路の特徴は、電圧を安定化させるために、明示的なフィードバックループ、作動増幅回路を持たないことである。その長所は、回路規模を非常に小さくでき、作動増幅回路の構成が困難な回路素子(例えば、有機EL装置2上の薄膜素子)でも実現できることである。一方、その短所は、負荷の消費電力が大きい場合に定電圧回路自体での電力損失が大きくなり、結果として出力電圧の安定化が困難になることである。但し、本実施形態のように照明用の有機EL装置2であって、面積が大きく消費電力が大きい場合は、作動増幅回路を含むチップ形状の半導体素子を、有機EL装置2に実装することで定電圧回路100を構成することが好ましい。
 つぎに、本発明の第1実施形態に係る発光システム1の動作状態について、図5を用いて説明する。
 図5に示すように、有機EL装置2は、固定側壁面7上に載置される。この状態において、有機EL装置2に属する電極15,16は、それぞれ固定側壁面7に埋設されている電極8,9と所定の間隔をあけて対峙している。電極15と電極8、及び電極16と電極9は、図示を省略した床材を挟んで対向配置されており、各電極間に静電容量が生じている。
 つまり、電極15,16を有する有機EL装置2と、電極8,9に接続された電源装置3とは、静電結合方法によって電気的に接続されている。その結果、電源装置3から供給した交流電流が有機EL素子110のアノードたる透明電極層13からカソードたる電極層11へと流れ、有機発光層12が発光する。そして有機EL装置2の上面4から光が発せられる。
 ここで各電極同士の位置関係について説明する。
 有機EL装置2に設けられた一方の電極15は、図5に示すように、床材の一部を挟んで固定側壁面7内の電極8に対向配置されている。図5においては、有機EL装置2側の電極15の大部分は、固定側壁面7内の電極8と重なる位置にある。同じく、有機EL装置2に設けられた他方の電極16の大部分も、固定側壁面7内の電極9と重なる位置にある。前述の通り、有機EL装置2側の電極15,16は、それぞれ基板10の裏面10b上に大きな面積を確保しており、両者で裏面10b上の面積を略二分している。つまり、有機EL装置2側の電極15,16の大部分は、それぞれ固定側壁面7内の電極8,9と重なっており、電源装置3から所望する電力量を得ることができる。そのため、有機EL装置2は、十分な輝度や光量を確保することができる。
 図6は、有機EL装置2を平面視した概略図であり、図4に示した全波整流回路90と定電圧回路100が実装された状態を示している。なお、有機EL装置2では、基板10の表面10aに全波整流回路90および定電圧回路100が実装された後、表面10aの全面が封止部14(図5参照)により封止されている。
 図6に示す回路図の電子素子は、いずれも通常の独立した電子部品である。即ち有機EL装置2では、基板10上にダイオード17~20、抵抗R1、ダイオードD、およびコンデンサCが載置され、基板10上でこれらが結線されて全波整流回路90および定電圧回路100が形成されている。
 図6は、有機EL装置2の基材(基板10)に、全波整流回路90を構成する部材が設けられた例を示すものである。
 そして図6の様に、全波整流回路90は、スルーホール15H、16Hを介して電極15、16に接続されている。ここでスルーホール15H,16Hは、それぞれ電極15,16に接続されている箔状の導体であり、基板10に設けられた孔の内側に形成されている。
 また全波整流回路90は、コンタクト部11Cで有機EL素子110のカソードたる電極層11間に接続されている。ここでコンタクト部11Cは、有機EL素子110のカソードたる電極層11に設けられた接点である。また、全波整流回路90の一部は、定電圧回路100を構成する直列抵抗R1を介してコンタクト部13Cに接続されている。コンタクト部13Cは、有機EL素子110のアノードたる透明電極層13に設けられた接点である。
 一方、定電圧回路100を構成するコンデンサCと直列ダイオードDは、コンタクト部11Cを介して有機EL素子110のカソードたる電極層11と接続されており、コンタクト部13Cを介してアノードたる透明電極層13に接続されている。(正確には、コンデンサCと直列ダイオードDは、電極層11を経由して間接的に透明電極層13と接続されている。)
 即ち、前記した図4に示した全波整流回路90と定電圧回路100が図6の様に基板10の一方の面に構築され、有機EL素子110側のカソードたる電極層11とアノードたる透明電極層13と接続されている。また全波整流回路90と定電圧回路100は、基板10の他方の面に設けられた電極(パネル側導電性部材)15,16にも接続されている。
 そのため、有機EL装置2において、電極15,16に印加される電力は、スルーホール15H,16Hを通り、全波整流回路90のダイオード17~20と定電圧回路100を介して、透明電極層13~電極層11間に加えられる。
 なお、有機EL装置2において全波整流回路90や定電圧回路100は、信頼性の向上と外観上の観点から、スルーホールを用いることや、実装後に全面を封止することが好ましいが、本発明はこれに限定されるわけではない。例えば、全波整流回路90および定電圧回路100は、基板10の裏面10bや基板10の外周に実装しても良く、或いは、封止後の有機EL装置2に実装しても構わない。
 また、有機EL装置2は、固定側壁面7と当接しているだけであり、物理的には接続されていないにも関わらず、電源装置3から間接的に給電されて発光する。そのため、図7に示すように、有機EL装置2は、発光させたまま、固定側壁面7上を移動させることができる。ただし、有機EL装置2と固定側壁面7との間には、静電容量が必須であるため、有機EL装置2に属する電極15,16と、固定側壁面7に埋設された電極8,9とは、1対1で対向配置されている必要がある。そのため、有機EL装置2は、固定側壁面7の長手方向xにおいては位置の自由度は高い。しかし、短手方向yにおいては、位置の自由度には制限が生じる。
 上記の第1実施形態に係る発光システム1では、トップエミッション型の有機EL装置2を用いたが、本発明はこれに限定されるものではない。
 図8,9,10に示す第2実施形態に係る発光システム21では、ボトムエミッション型の有機EL装置22に本発明を適用している。なお、第1実施形態に係る発光システム1で用いたものと同一の構成については、同符号とし、説明を省略する。
 有機EL装置22は、図8に示すように、平面的な広がりを有するガラス基板23(基材)の一方の面23aに、陽極(アノード)側の透明電極層24と、機能層とも呼ばれる有機発光層25と、陰極(カソード)側の電極層26とが積層され、これらが封止部27によって封止されたものである。なお図8において矢印は、電流の流れを示している。有機EL装置22について簡単に説明すると、透明電極層24と電極層26との間に電圧を印加することで、有機発光層25を発光させ、透明電極層24を介してガラス基板23から光を取り出すものである。つまり、有機EL装置22は、ボトムエミッション型と称される構成であり、図面の下面(基材側)31が発光面となる。
 図8,9に示すように、有機EL素子110のカソードたる電極層26の上には、電極層26と隙間をあけて電極(パネル側導電性部材)28,29が積層されている。電極28,29は、有機EL装置22のガラス基板23と対向する面側30に位置するものであり、有機発光層25と重なる領域Bに、重ねて配置されている。
 電極28,29は、それぞれガラス基板23の面23a上に大きな面積を確保しており、両者で表面23a上の面積を略二分している。電極28,29同士の間には隙間が設けられており、両者は電気的に絶縁されている。図9においては、説明の都合上、電極28,29を封止部27から露出させた状態で描写している。なお、電極28,29は、単なる電極ではなく、封止部材や均熱部材としての機能も有している。
 また、図11の断面概略図に示す通り、有機EL装置22は、前述の有機EL装置2と同様に、ダイオード17~20から成る全波整流回路90を有している。有機EL装置22においても、固定側壁面7から供給される交流電流を整流して使用する。
 なお、全波整流回路90を構成するダイオード17~20は、有機発光層25を整流素子として用いて形成することができる。
 即ち有機EL素子110を構成する有機発光層12は、PN結合を有するものであり、整流作用を持つ。より具体的等は、有機発光層12は、アノードたる透明電極層24からカソードたる電極層26に向かってのみ電流を流す。そこで有機発光層12の整流作用を利用して全波整流回路90を構築することもできる。
 前記した全波整流回路90は、有機EL素子110の縁の部分を利用して形成することが望ましい。
 図12は、有機EL素子110の縁の部分を利用して全波整流回路90を形成した場合のレイアウトを示している。
 図12に示す有機EL装置22では、基板10の中央部に主発光部たる発光領域Zがあり、その周囲にダイオード17を構成する領域V、ダイオード19を構成する領域X、ダイオード18を構成する領域W、ダイオード20を構成する領域Yが取り巻いている。
 図12に示す有機EL装置22では、有機EL装置の基材の中央部に主発光部たる発光領域Zがあり、その周囲にダイオード部たる領域V,X,W,Yが形成されている。
 図13は、図12に示される基板10のA-A断面図の縁の部位の拡大断面図であり、(a)は、各層の積層状態を示し、(b)は、導体部分、半導体部分、及び絶縁体部分を塗り分けるとともに電流の流れを図示したものである。
 図13に示す有機EL装置22は、前記した様に、ガラス基板23(基材)の一方の面23aに、陽極(アノード)側の透明電極層24と、整流作用のある有機発光層25と、陰極(カソード)側の電極層26とが積層され、これらが封止部27によって封止されたものである。そして封止部27の上に電極(パネル側導電性部材)28,29が積層されている。
 なお、電極28,29は、共に略「L」字状に面状に広がった電極である。具体的には、電極28は、領域V及び領域Yに跨がって積層されており、電極29は、領域X及び領域Wに跨がって積層されている。
 また図13に示す有機EL装置22では、各層に複数の溝が設けられ、各層が分断されたり、上下の層が当該溝を介して接続されたりしている。
 即ち図13に示す有機EL装置22では、透明電極層24に図面左側から第1溝120と第2溝121が設けられ透明電極層24が第1エリア122、第2エリア123、第3エリア124に分断されている。
 透明電極層24に設けられた第1溝120、第2溝121は、透明電極層24を分断して絶縁するものであり、電極層分断部に相当する。
 また有機発光層25とカソードたる電極層26とを連通する連通溝130,131,132,133が4条設けられている。
 連通溝130,131,132,133には、絶縁体たる封止部27が進入している。そのため有機発光層25とカソードたる電極層26は、第1エリア135、第2エリア136、第3エリア137、第4エリア138、第5エリア139に分割されている。
 連通溝130,131,132,133は、カソードたる電極層26を分断して絶縁するものであり、電極層分断部に相当する。
 さらに、有機発光層25には、別途、第1溝140、第2溝141、第3溝142、第4溝143が形成されている。そして図面上層側のカソードたる電極層26が前記溝140,141,142,143に進入し、有機発光層25をスルーして電極層26と透明電極層24とが導通している。
 そのため有機発光層25は、第1エリア150、第2エリア151、第3エリア152、第4エリア153、第5エリア154に分割されている。
 なお有機発光層25に設けられた第1溝140、第2溝141、第3溝142、第4溝143は、有機発光層25を分断する有機発光層分断部に相当し、有機発光層分断部に一方の電極層26が進入しており、第1溝140、第2溝141、第3溝142、第4溝143内の電極層26によって、電極層26と透明電極層24を導通する導通部が形成されている。
 図13に示す有機EL装置22では、電極(パネル側導電性部材)28,29、透明電極層24及び電極層26が導体である。また封止部27は絶縁体である。そして有機発光層25はPN結合を有するものであって半導体であり、整流作用がある。
 ここで有機EL装置22の両端部に注目し、当該領域の導体、絶縁体、半導体の分布をハッチングで塗り分けると図13(b)の様である。
 即ち電極(パネル側導電性部材)28は、図面の左端部で下層のカソードたる電極層26の第1エリア135と導通し、さらに第1溝140を介してさらに下層にある透明電極層24の第1エリア122に導通している。
 そのため電極(パネル側導電性部材)28は、導体で透明電極層24の第1エリア122と導通している。
 そして透明電極層24の第1エリア122の上層には、半導体層たる有機発光層25の第2エリア151があり、さらにその上層には電極層26の第2エリア136がある。即ち導体たる透明電極層24の第1エリア122と、導体たる電極層26の第2エリア136は、半導体たる有機発光層25の第2エリア151を挟んで対峙している。
 また有機発光層25の第2エリア151は、透明電極層24側から電極層26側に向かってのみ通電する半導体である。
 そして電極層26の第2エリア136は、さらに有機発光層25の第2溝141を介して,透明電極層24の第2エリア123と導通し、発光領域Zに導通している。
 従って、本実施形態では、電極(パネル側導電性部材)28から発光領域Zの透明電極層24(第2エリア123)に到る前に、半導体層(有機発光層25の第2エリア151)を挟み、且つ半導体層(有機発光層25の第2エリア151)は、電極(パネル側導電性部材)28から発光領域Zの透明電極層24(第2エリア123)に向かう方向にのみ通電を許す。
 従って、有機発光層25の第2エリア151は、前記した図11のダイオード17と同一の機能を果たす。
 同様に、図13の右端部側に注目すると、電極(パネル側導電性部材)29は、図面の右端部で下層のカソードたる電極層26の第5エリア154と導通し、さらに第4溝143を介してさらに下層にある透明電極層24の第3エリア124に導通している。
 そのため電極(パネル側導電性部材)29は、導体で透明電極層24の第3エリア124と導通している。
 そして透明電極層24の第3エリア124の上層には、半導体層たる有機発光層25の第5エリア154があり、さらにその上層には電極層26の第4エリア138がある。即ち導体たる透明電極層24の第3エリア124と、導体たる電極層26の第4エリア138は、半導体たる有機発光層25の第5エリア154を挟んで対峙している。
 また有機発光層25の第5エリア154は、透明電極層24側から電極層26側に向かってのみ通電する半導体である。
 そして電極層26の第4エリア138は、さらに有機発光層25の第3溝142を介して、透明電極層24の第2エリア123と導通し、発光領域Zに導通している。
 従って、本実施形態では、電極(パネル側導電性部材)29から発光領域Zの透明電極層24(第2エリア123)に到る前に、半導体層(有機発光層25の第5エリア154)を挟み、且つ半導体層(有機発光層25の第5エリア154)は、電極(パネル側導電性部材)28から発光領域Zの透明電極層24(第2エリア123)に向かう方向にのみ通電を許す。
 従って、有機発光層25の第5エリア154は、前記した図11のダイオード20と同一の機能を果たす。
 図14は、図12で示される基板10のB-B断面図の縁の部位の拡大断面図であり、(a)は、各層の積層状態を示し、(b)は、導体部分、半導体部分、及び絶縁体部分を塗り分けるとともに電流の流れを図示したものである。
 基板10をB-B断面で切断して観察した場合にも、図14に示す様に、各層に複数の溝が設けられ、各層が分断されたり、上下の層が当該溝を介して接続されたりしている。
 即ち透明電極層24に図面左側から第1溝220、第2溝221、第3溝222、第4溝223が設けられ透明電極層24が第1エリア225、第2エリア226、第3エリア227、第4エリア228、第5エリア229に分断されている。
 また有機発光層25とカソードたる電極層26とを連通する連通溝230,231が2条設けられている。
 連通溝230,231には、絶縁体たる封止部27が進入している。そのため有機発光層25とカソードたる電極層26は、第1エリア235、第2エリア236、第3エリア237に分割されている。
 さらに、有機発光層25には、別途、第1溝240、第2溝241、第3溝242、第4溝243が形成されている。そして図面上層側のカソードたる電極層26が前記溝240,241,242,243に進入し、有機発光層25をスルーして電極層26と透明電極層24とが導通している。
 有機発光層25は、上記した各溝によって、第1エリア270から第5エリア274までのエリアに区分されている。
 前記した様に、図14に示す有機EL装置22では、電極(パネル側導電性部材)28,29、透明電極層24及び電極層26が導体である。また封止部27は絶縁体である。そして有機発光層25は半導体であり、整流作用がある。
 ここで有機EL装置22の両端部(Y,W部)に注目し、当該領域の導体、絶縁体、半導体の分布をハッチングで塗り分けると図14(b)の様である。
 即ち電極(パネル側導電性部材)28は、図面の左端部で下層のカソードたる電極層26の第1エリア235と導通する。
 そして電極層26の第1エリア235の下層側には、半導体層たる有機発光層25の第2エリア271があり、さらにその下層には、透明電極層24の第2エリア226がある。
 そのため導体たる透明電極層24の第2エリア226と、導体たる電極層26の第1エリア235は、半導体たる有機発光層25の第2エリア271を挟んで対峙している。
 また有機発光層25の第2エリア271は、透明電極層24側から電極層26側に向かってのみ通電する半導体である。
 そして透明電極層24の第2エリア226は、さらに有機発光層25の第2溝241を介して電極層26の第2エリア236に至り、発光領域Zに導通している。
 従って、本実施形態では、電極(パネル側導電性部材)28から発光領域Zの電極層26(第2エリア236)に到る前に、半導体層(有機発光層25の第2エリア271)を挟み、且つ半導体層(有機発光層25の第2エリア271)は、発光領域Zの透明電極層24(第2エリア226)から電極(パネル側導電性部材)28に向かう方向にのみ通電を許す。
 従って、有機発光層25の第2エリア271は、前記した図11のダイオード18と同一の機能を果たす。
 同様に、図14の右端部側に注目すると、電極(パネル側導電性部材)29は、図面の右端部で下層のカソードたる電極層26の第3エリア237と導通する。
 そして電極層26の第3エリア237の下層側には、半導体層たる有機発光層25の第5エリア274があり、さらにその下層には、透明電極層24の第4エリア228がある。
 そのため導体たる透明電極層24の第4エリア228と、導体たる電極層26の第3エリア237は、半導体たる有機発光層25の第5エリア274を挟んで対峙している。
 また有機発光層25の第5エリア274は、透明電極層24側から電極層26側に向かってのみ通電する半導体である。
 そして透明電極層24の第4エリア228は、さらに有機発光層25の第3溝242を介して電極層26の第2エリア236に至り、発光領域Zに導通している。
 従って、本実施形態では、電極(パネル側導電性部材)28から発光領域Zの電極層26(第2エリア236)に到る前に、半導体層(有機発光層25の第4エリア273)を挟み、且つ半導体層(有機発光層25の第2エリア271)は、発光領域Zの透明電極層24(第4エリア228)から電極(パネル側導電性部材)29に向かう方向にのみ通電を許す。
 従って、有機発光層25の第6エリア275は、前記した図11のダイオード19と同一の機能を果たす。
 この様にダイオード17および20は、図13に示すような構造となる。同様に、ダイオード18および19は、図14に示すような構造となる。
 これらの関係をより簡単に説明すると、本実施形態では、領域Vにおいて、透明電極層24に設けられた第1溝120が電極層分断部を構成し、電極層分断部を境として隣接する透明電極層24の二つの領域たる第1エリア122と第2エリア123とが、有機発光層の一部たる第2エリア136と導通部たる第2溝141を経由して導通し、ダイオード形成部を構成している。
 領域Vにおいては電極層26の側から観察しても同様であり、電極層26に設けられた第1溝140が電極層分断部を構成し、電極層分断部を境として隣接する電極層26の二つの領域たる第1エリア135と第2エリア136とが、有機発光層の一部たる第2エリア136と導通部たる第1溝140を経由して導通し、ダイオード形成部を構成している。
 これらの関係は、他の領域X,W,Yにも存在する。
 前記した図12の様に、ダイオード17~20から成る全波整流回路90は、有機EL装置22の主要な発光領域Z(常に発光する有機発光層25)の周囲に配置することができる。
 このように全波整流回路90の構成要素であるダイオード17~20の全てを、PN結合を備えた有機発光層25を用いて形成することで、例えば、表面実装部品であるチップ形状のダイオードを搭載する必要がなくなる。その結果、有機EL装置22をより薄型とすることができる。
 なお、全波整流回路90を成すダイオード17~20は、各々逆止ダイオードとして機能するが、順方向に電圧が印加される場合には、発光に寄与する領域となる。そのため、図12に示すように、有機EL装置22において、ダイオード17~20を成す領域V~Yの面積は、中央に位置している主要な発光領域Z(常に発光する有機発光層25 主発光部)と、同程度とすることが好ましい。
 さらに、有機EL装置22において、順方向のみで発光する領域V,W(ダイオード17,18)と、逆方向のみで発光する領域X,Y(ダイオード19,20)の色調を、主要な発光領域Zに対し短波長側と長波長側に割り振ることで、交流の波形により色調を制御可能となる。具体的には、中央に位置している主要な発光領域Zを白色に発光させ、順・逆方向のみで発光する領域V~Yを各々青みがかった白色、赤みがかった白色とすることが好ましい。このように、主要な発光領域Zや順・逆方向のみで発光する領域V~Yを、それぞれセルと呼ばれる小さな単位に分割し、各セルを横方向及び縦方向に直列接続することが好ましい。各セルが直列接続されたデバイスである有機EL装置22では、例えば、AC100V等の商用電源を印加することが可能となる。
 つぎに、本発明の第2実施形態に係る発光システム21の動作状態について、図10を用いて説明する。
 図10に示すように、有機EL装置22はガラス基板23が上向きとなり、固定側壁面7に載置されている。発光システム21では、図5に示した発光システム1と違い、有機EL装置22が天地逆向きとなるように配置されている。この状態において、有機EL装置22が有する電極28,29は、それぞれ固定側壁面7に埋設されている電極8,9と所定の間隔をあけて対峙している。有機EL装置22側の電極28と固定側壁面7側の電極8、及び有機EL装置22側の電極29と固定側壁面7側の電極9は、封止部27及び床材の一部を挟んで対向配置されており、各電極間に静電容量が生じている。
 つまり、電極28,29を有する有機EL装置22と、電極8,9に接続された電源装置3とは、静電結合方法によって電気的に接続されている。その結果、電源装置3から供給した交流電流が透明電極層24から電極層26へと流れることで、有機EL装置22のガラス基板23から光が発散される。
 また、図10に示すように、有機EL装置22が有する電極28の大部分は、固定側壁面7側の電極8と重なる位置にある。同じく、有機EL装置22が有する電極29の大部分も固定側壁面7側の電極9と重なる位置にある。前述の通り、有機EL装置22の電極28,29は、それぞれガラス基板23の表面23a上に大きな面積を確保しており、両者で表面23a上の面積を略二分している。つまり、電極28,29の大部分は、それぞれ固定側壁面7側の電極8,9と重なっているため、第2実施形態に係る発光システム21においても、第1実施形態に係る発光システム1と同様に、所望する電力量を電源装置3から有機EL装置22へ供給することができる。そのため、有機EL装置22についても、十分な輝度や光量を確保することができる。
 上記の第1実施形態に係る発光システム1、並びに第2実施形態に係る発光システム21では、有機EL装置2,22が電極(パネル側導電性部材)15,16、並びに電極(パネル側導電性部材)28,29を備えた例を示した。即ち前記した第1実施形態では、有機EL装置2は、2枚の電極(パネル側導電性部材)15,16を持つ。同様に第2実施形態の有機EL装置22でも、2枚の電極(パネル側導電性部材)28,29を持つ。この様に上記した第1,2実施形態ではいずれも2枚のパネル側導電性部材を持つものであったが、一枚のパネル側導電性部材だけで給電することも可能である。
 即ち特許文献2(特表2009-531009号公報)に記載の電気エネルギー搬送装置を採用することにより、一枚のパネル側導電性部材で有機発光層12に給電して発光させることが可能である。
 図15は、特許文献2に開示された電気エネルギー搬送装置40の作動原理図である。
 電気エネルギー搬送装置40は、受動電極42と能動電極43間に位置する高圧高周波発生器(HTHF発生器)41と、電極(起電電極)46と電極(受動電極)47間に位置する高インピーダンス負荷45を有している。
 高圧高周波発生器41はエネルギー生成装置であり、高インピーダンス負荷45はエネルギー消費装置である。高圧高周波発生器41と高インピーダンス負荷45とは、能動電極43と電極46とが対向する形で配されている。能動電極43と電極46間には容量結合が存在しており、これらの電極間に電位が発生する。その結果、能動電極43と電極46が位置している空間に、エネルギーが集中する強い場のゾーン44が生成されることにより、高圧高周波発生器41から高インピーダンス負荷45へと、電気エネルギーが搬送される。
 受動電極42は大きいサイズの電極であり、能動電極43は小さいサイズの電極である。受動電極42は、アース(リザーバ電極)を用いてもよい。
 また、電極46は小さいサイズの電極であり、電極47は大きいサイズの電極である。電極47は、場が弱いゾーン中に置かれることが好ましい。
 電気エネルギー搬送装置40は、電気インフルエンスとも呼ばれるクーロン相互作用の利用に基づいたものであり、導体外部の誘電性媒質中で通常極端に小さいマクスウェルの変位電流を利用するために、急速な時間的変動を呈する強い電場を用いている。
 なお、電気エネルギー搬送装置40で利用される周波数は、電気エネルギーの搬送に通常に利用される周波数よりずっと高いが、電磁放射を無視できるのに十分低いままである。
 電気エネルギー搬送装置40は、二つの非対称な発振電気双極子間の相互作用を考慮することに帰している。そのような理由で、二つの電気双極子は、交流電流により貫通される二つの磁気自己インダクタンスの間で得られる相互作用に類似したやり方で相互に作用する。従って、電気エネルギー搬送装置40は、インフルエンスについて、部分結合変圧器の同等物である。この結合は、変圧器の事例における透磁率の誘導性媒質の代わりに、誘電率の誘導性媒質を通って行われる。
 図16は、特許文献2に開示された電気エネルギー搬送装置40を応用した本発明の第3実施形態に係る発光システム51である。
 図16に示すように、発光システム51は、有機EL装置52と、固定側壁面57から構成されている。固定側壁面57は、床56を構成するものである。
 有機EL装置52は、トップエミッション型の有機EL装置2とほぼ同様の構成であり、基板10の上に、陰極(カソード)側の電極層11と、機能層とも呼ばれる有機発光層12と、陽極(アノード)側の透明電極層13とが積層され、これらが透明の封止部14によって封止されたものである。
 なお、本実施形態では、有機EL装置52内の陰極側の電極層11が、パネル側導電性部材の機能を果たす。
 また、有機EL装置52には、半波整流回路が設けられており、固定側壁面57から供給される交流電流を整流して使用する(電気回路図の図示は省略する)。
 固定側壁面57は、電気エネルギー搬送装置40で用いられている高圧高周波発生器(HTHF発生器)41が埋設されている。高圧高周波発生器41の両端には、受動電極42と能動電極43が設けられている。
 つぎに、本発明の第3実施形態に係る発光システム51の動作について説明する。
 有機EL装置52は、基板10を土台として、固定側壁面57上に載置されている。この状態において、有機EL装置52が有する電極層(パネル側導電性部材)11は、固定側壁面7に埋設されている能動電極43と所定の間隔をあけて対峙している。能動電極43と電極層11は、基板10及び床材の一部を挟んで対向配置されており、各電極間に静電容量が生じている。
 つまり、能動電極43と電極層11間には容量結合が存在している。この状態において、高圧高周波発生器41から電気エネルギーを供給すると、特許文献2に開示された電気エネルギー搬送装置40と同様に、能動電極43と電極層11との間に電位が生じる。
 その結果、能動電極43と電極層11が位置している空間に、エネルギーが集中する強い場のゾーン54が生成され、高圧高周波発生器41から有機EL装置52へと、電気エネルギーが搬送される。よって、有機EL装置52の上面が発光する。
 以上の通り、第3実施形態に係る発光システム51において、特許文献2に開示された電気エネルギー搬送装置40を応用したことにより、有機EL装置52にパネル側導電性部材を備えなくても、非接触で電力供給ができる。
 上記の第3実施形態に係る発光システム51では、トップエミッション型の有機EL装置52を採用する例を示したが、本発明はこれに限定されるものではない。ボトムエミッション型の有機EL装置を採用しても構わない。
 図17は、第4実施形態に係る発光システム60の概念図であり、第3実施形態で採用するトップエミッション型の有機EL装置52に代わってボトムエミッション型の有機EL装置65を採用している。
 有機EL装置65は、ボトムエミッション型の有機EL装置22とほぼ同様の構成であり、平面的な広がりを有するガラス基板23(基材)の一方の面23aに、陽極(アノード)側の透明電極層24と、機能層とも呼ばれる有機発光層25と、陰極(カソード)側の電極層26とが積層され、これらが封止部27によって封止されたものである。
 なお、本実施形態では、有機EL装置65内の陰極側の電極層26が、パネル側導電性部材の機能を果たす。
 また、有機EL装置65には、半波整流回路が設けられており、固定側壁面57から供給される交流電流を整流して使用する(電気回路図の図示は省略する)。
 また第3実施形態に係る発光システム51及び第4実施形態に係る発光システム60では、有機EL装置52内の電極層11又は26にパネル側導電性部材の機能を持たせたが、パネル側導電性部材を別途設けてもよい。
 図18は、第3実施形態と同様にトップエミッション型の有機EL装置52を採用する例であり、基板10の外側に、別途、パネル側導電性部材61を設けている。そして図示しない電力線によって、パネル側導電性部材61と基板10の内側とが接続されている。
 また、有機EL装置52には、半波整流回路が設けられており、固定側壁面57から供給される交流電流を整流して使用する。
 図19は、第4実施形態と同様にボトムエミッション型の有機EL装置65を採用する例であり、ガラス基板23と対向する面に、別途、パネル側導電性部材66を設けている。そして図示しない電力線によって、パネル側導電性部材66とガラス基板23の内側とが接続されている。
 また、有機EL装置65には、半波整流回路が設けられており、固定側壁面57から供給される交流電流を整流して使用する。
 図16乃至図19に示した実施形態は、特許文献2に開示された電気エネルギー搬送装置を応用したものであり、有機EL装置52,63の有機発光層25等を高インピーダンス負荷45とするものであるが、有機発光層25とは別に高インピーダンス負荷を接続してもよい。
 図20は、半波整流回路の構成要素であるダイオード37,38と、別に設けたパネル側導電性部材66を含めて、図4と同様の位置関係となるように図19に示した有機EL装置65を模式的に描写した断面概略図である。
 図21の断面図に示すように、半波整流回路を構成するダイオード37,38は、有機発光層25を整流素子として用いて形成することもできる。
 上記した実施形態には、次の発明も開示されている。
(1)平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれた有機発光層が積層され、少なくとも一方の平面が発光面となる有機EL装置において、基材に整流回路を構成する部材又は部位があることを特徴とする有機EL装置。
(2)平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれたPN結合を有する有機発光層が積層され、少なくとも一方の平面が発光面となる有機EL装置において、基材の面は主発光部とダイオード部に区分され、前記ダイオード部は前記有機発光層のPN結合を利用して一方向にのみ通電を許容するものであり、前記ダイオード部が主発光部に接続されていることを特徴とする有機EL装置。
(3)上記した発明に従属する発明であり、4か所にダイオード部を有し、前記ダイオード部を含む全波整流回路が形成されていることを特徴とする有機EL装置。
(4)上記した発明に従属する発明であり、基板の中央部に主発光部があり、その周囲にダイオード部が形成されていることを特徴とする有機EL装置。
(5)上記した発明に従属する発明であり、少なくとも一方の電極層に、当該電極層を分断して絶縁する電極層分断部が設けられ、有機発光層には当該有機発光層を分断する有機発光層分断部が設けられ、有機発光層分断部に一方の電極層が進入して2層の電極層を導通する導通部が形成され、前記ダイオード部は、電極層分断部を境として隣接する二つの領域を、有機発光層の一部と導通部とを経由して導通するダイオード形成部を備えていることを特徴とする有機EL装置。
  1,21,51,60   発光システム
  2,22,52,65 有機EL装置
  6,56   床面
  7,57   固定側壁面
  8,9   電極(壁側導電性部材)
 10   基板(基材)
 11,26   電極層(パネル側導電性部材)
 12,25   有機発光層
 13,24   透明電極層
 15,16,28,29,61,66  電極(パネル側導電性部材)
 23   ガラス基板(基材)
 120,121,220,221,222,233 電極層分断部
 130,131,132,133,230,231 連通溝(電極層分断部)
 140,141,142 有機発光層分断部
 143,240,241,242,243 有機発光層分断部
 V,X,W,Y ダイオード部たる領域
 Z 主発光部たる発光領域

Claims (28)

  1.  固定側壁面と、有機EL装置によって構成される発光システムにおいて、
     固定側壁面には、壁側導電性部材が設けられており、
     有機EL装置は、平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれた有機発光層が積層され、少なくとも一方の平面が発光面となるものであり、発光面と対向する面側であって、有機発光層と重なる領域に平面的な広がりを有するパネル側導電性部材が埋設又は露出し、当該パネル側導電性部材は前記電極層に電気的に接続されており、
     前記有機EL装置は前記固定側壁面に設置され、前記壁側導電性部材に交流電流を通電して有機EL装置に間接的に給電することを特徴とする発光システム。
  2.  壁側導電性部材は、固定側壁面の内部に埋め込まれていることを特徴とする請求項1に記載の発光システム。
  3.  前記基材と対向する面側にパネル側導電性部材が設けられていることを特徴とする請求項1又は2に記載の発光システム。
  4.  前記基材の有機発光層が積層されていない側にパネル側導電性部材が設けられていることを特徴とする請求項1又は2に記載の発光システム。
  5.  前記2層の電極層の一方がパネル側導電性部材として機能することを特徴とする請求項1乃至4のいずれかに記載の発光システム。
  6.  有機EL装置は、基材に2層の電極層と有機発光層が積層され、前記基材側と対向する面側が発光面となるトップエミッション型の有機EL装置であることを特徴とする請求項1乃至5のいずれかに記載の発光システム。
  7.  有機EL装置は、透明な基材に2層の電極層と有機発光層が積層され、前記基材側が発光面となるボトムエミッション型の有機EL装置であることを特徴とする1乃至5のいずれかに記載の発光システム。
  8.  前記壁側導電性部材に通電する交流電流は、高圧且つ高周波であることを特徴とする請求項1乃至7のいずれかに記載の発光システム。
  9.  壁側導電性部材よりも大きい受動電極と、高圧高周波発生器とを有し、高圧高周波発生器は前記壁側導電性部材と受動電極とに接続されており、
     有機EL装置にはパネル側導電性部材よりも大きい対向電極があり、当該対向電極はパネル側導電性部材が設けられた位置とは異なる位置に設けられており、有機発光層はパネル側導電性部材と対向電極に電気的に接続されていることを特徴とする請求項1乃至8のいずれかに記載の発光システム。
  10.  パネル側導電性部材と対向電極の間に高インピーダンス負荷が接続されていることを特徴とする請求項9に記載の発光システム。
  11.  有機EL装置の基材に、整流回路を構成する部材又は部位があることを特徴とする請求項1乃至10のいずれかに記載の発光システム。
  12.  有機EL装置は、基材に2層の電極層とPN結合を有する有機発光層が積層されたものであり、基材の面は主発光部とダイオード部に区分され、前記ダイオード部は前記有機発光層のPN結合を利用して一方向にのみ通電を許容するものであり、前記ダイオード部が主発光部に接続されていることを特徴とする請求項1乃至11のいずれかに記載の発光システム。
  13.  4か所にダイオード部を有し、前記ダイオード部を含む全波整流回路が形成されていることを特徴とする請求項12に記載の発光システム。
  14.  有機EL装置の基材の中央部に主発光部があり、その周囲にダイオード部が形成されていることを特徴とする請求項12又は13に記載の発光システム。
  15.  有機EL装置は、少なくとも一方の電極層に、当該電極層を分断して絶縁する電極層分断部が設けられ、
     有機発光層には当該有機発光層を分断する有機発光層分断部が設けられ、有機発光層分断部に一方の電極層が進入して2層の電極層を導通する導通部が形成され、
     前記ダイオード部は、電極層分断部を境として隣接する二つの領域を、有機発光層の一部と導通部とを経由して導通するダイオード形成部を備えていることを特徴とする請求項12乃至14のいずれかに記載の発光システム。
  16.  交流電流が通電される壁側導電性部材が埋め込まれた固定側壁面に設置される有機EL装置であって、平面的な広がりを有する基材に、2層の電極層と、前記電極層に挟まれた有機発光層が積層され、少なくとも一方の平面が発光面となるものであり、発光面と対向する面側であって、有機発光層と重なる領域に平面的な広がりを有するパネル側導電性部材が埋設又は露出し、当該パネル側導電性部材は前記電極層に電気的に接続されており、壁側導電性部材から間接的に給電されて有機発光層が発光することを特徴とする有機EL装置。
  17.  前記基材と対向する面側にパネル側導電性部材が設けられていることを特徴とする請求項16に記載の有機EL装置。
  18.  前記基材の有機発光層が積層されていない側にパネル側導電性部材が設けられていることを特徴とする請求項16に記載の有機EL装置。
  19.  前記2層の電極層の一方がパネル側導電性部材として機能することを特徴とする請求項16乃至18のいずれかに記載の有機EL装置。
  20.  有機EL装置は、基材に2層の電極層と有機発光層が積層され、前記基材側と対向する面側が発光面となるトップエミッション型の有機EL装置であることを特徴とする請求項16乃至19のいずれかに記載の有機EL装置。
  21.  有機EL装置は、透明な基材に2層の電極層と有機発光層が積層され、前記基材側が発光面となるボトムエミッション型の有機EL装置であることを特徴とする請求項16乃至19のいずれかに記載の有機EL装置。
  22.  有機EL装置にはパネル側導電性部材よりも大きい対向電極があり、当該対向電極はパネル側導電性部材が設けられた位置とは異なる位置に設けられており、有機発光層はパネル側導電性部材と対向電極に電気的に接続されていることを特徴とする請求項16乃至21のいずれかに記載の有機EL装置。
  23.  パネル側導電性部材と対向電極の間に高インピーダンス負荷が接続されていることを特徴とする請求項22に記載の有機EL装置。
  24.  基材に整流回路を構成する部材又は部位があることを特徴とする請求項16乃至23のいずれかに記載の有機EL装置。
  25.  有機EL装置は基材に2層の電極層とPN結合を有する有機発光層が積層されたものであり、基材の面は主発光部とダイオード部に区分され、前記ダイオード部は前記有機発光層のPN結合を利用して一方向にのみ通電を許容するものであり、前記ダイオード部が主発光部に接続されていることを特徴とする請求項16乃至24のいずれかに記載の有機EL装置。
  26.  4か所にダイオード部を有し、前記ダイオード部を含む全波整流回路が形成されていることを特徴とする請求項25に記載の有機EL装置。
  27.  基板の中央部に主発光部があり、その周囲にダイオード部が形成されていることを特徴とする請求項25又は26に記載の有機EL装置。
  28.  少なくとも一方の電極層に、当該電極層を分断して絶縁する電極層分断部が設けられ、
     有機発光層には当該有機発光層を分断する有機発光層分断部が設けられ、有機発光層分断部に一方の電極層が進入して2層の電極層を導通する導通部が形成され、
     前記ダイオード部は、電極層分断部を境として隣接する二つの領域を、有機発光層の一部と導通部とを経由して導通するダイオード形成部を備えていることを特徴とする請求項25乃至27のいずれかに記載の有機EL装置。
PCT/JP2013/053520 2012-02-20 2013-02-14 発光システム及び有機el装置 WO2013125435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13751583.9A EP2819485A4 (en) 2012-02-20 2013-02-14 ELECTROLUMINESCENT SYSTEM AND ORGANIC EL APPARATUS
US14/379,727 US9386656B2 (en) 2012-02-20 2013-02-14 Luminescent system and organic EL device
JP2014500680A JP6271414B2 (ja) 2012-02-20 2013-02-14 発光システム及び有機el装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012034089 2012-02-20
JP2012-034089 2012-02-20

Publications (1)

Publication Number Publication Date
WO2013125435A1 true WO2013125435A1 (ja) 2013-08-29

Family

ID=49005622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053520 WO2013125435A1 (ja) 2012-02-20 2013-02-14 発光システム及び有機el装置

Country Status (4)

Country Link
US (1) US9386656B2 (ja)
EP (1) EP2819485A4 (ja)
JP (1) JP6271414B2 (ja)
WO (1) WO2013125435A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094816A1 (ja) * 2015-12-04 2017-06-08 コニカミノルタ株式会社 給電発光システム、発光素子パネル、および給電装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020116B1 (en) * 2013-07-11 2017-04-26 Philips Lighting Holding B.V. Capacitive powering system with increased efficiency
WO2016190648A1 (en) * 2015-05-27 2016-12-01 Samsung Electronics Co., Ltd. Display device
JP6701383B2 (ja) 2016-12-13 2020-05-27 パイオニア株式会社 発光装置
CN110148593B (zh) * 2019-05-08 2020-09-08 深圳市华星光电半导体显示技术有限公司 有机电致发光器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289355A (ja) * 2001-03-26 2002-10-04 Pioneer Electronic Corp 有機半導体ダイオード及び有機エレクトロルミネセンス素子表示装置
JP2003059649A (ja) * 2001-08-13 2003-02-28 Pioneer Electronic Corp 静電誘導駆動型有機エレクトロルミネッセンス表示パネル
JP2004511078A (ja) * 2000-10-13 2004-04-08 フラット ホワイト ライティング ピーティーワイ リミテッド 照明システム
JP2007220624A (ja) * 2006-02-20 2007-08-30 Matsushita Electric Works Ltd 照明パネル、照明パネル用電源供給装置、及び照明装置
JP2009169327A (ja) 2008-01-21 2009-07-30 Hitachi Displays Ltd 電力伝送回路
JP2009531009A (ja) 2006-03-21 2009-08-27 Tmms株式会社 誘電性媒質を介した部分的インフルエンスによるエネルギー搬送装置
JP2010032826A (ja) * 2008-07-30 2010-02-12 Hitachi Displays Ltd 画像表示装置
JP2010537613A (ja) 2007-08-17 2010-12-02 Tmms株式会社 電気双極子間の近接場における遠隔縦結合によって電気エネルギを伝達し、分配し、かつ管理するための方法および装置
JP2011509645A (ja) * 2007-12-20 2011-03-24 ゼネラル・エレクトリック・カンパニイ 非接触電力およびデータ伝送システムならびに方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797905B2 (ja) * 1993-06-25 1998-09-17 凸版印刷株式会社 有機薄膜el素子
JP2003345308A (ja) * 2002-05-29 2003-12-03 Pioneer Electronic Corp 表示パネル及び表示装置
US6693296B1 (en) * 2002-08-07 2004-02-17 Eastman Kodak Company OLED apparatus including a series of OLED devices
US8288951B2 (en) * 2008-08-19 2012-10-16 Plextronics, Inc. Organic light emitting diode lighting systems
US9018835B2 (en) * 2010-05-31 2015-04-28 Sharp Kabushiki Kaisha Organic EL device, electronic device, and process for production of organic EL device
DE102010023550B4 (de) 2010-06-03 2015-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beleuchtungselement
US9210762B2 (en) * 2011-03-07 2015-12-08 Koninklijke Philips N.V. Electroluminescent device
EP2745421B1 (en) * 2011-08-16 2019-10-09 Signify Holding B.V. A conductive layer of a large surface for distribution of power using capacitive power transfer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511078A (ja) * 2000-10-13 2004-04-08 フラット ホワイト ライティング ピーティーワイ リミテッド 照明システム
JP2002289355A (ja) * 2001-03-26 2002-10-04 Pioneer Electronic Corp 有機半導体ダイオード及び有機エレクトロルミネセンス素子表示装置
JP2003059649A (ja) * 2001-08-13 2003-02-28 Pioneer Electronic Corp 静電誘導駆動型有機エレクトロルミネッセンス表示パネル
JP2007220624A (ja) * 2006-02-20 2007-08-30 Matsushita Electric Works Ltd 照明パネル、照明パネル用電源供給装置、及び照明装置
JP2009531009A (ja) 2006-03-21 2009-08-27 Tmms株式会社 誘電性媒質を介した部分的インフルエンスによるエネルギー搬送装置
JP2010537613A (ja) 2007-08-17 2010-12-02 Tmms株式会社 電気双極子間の近接場における遠隔縦結合によって電気エネルギを伝達し、分配し、かつ管理するための方法および装置
JP2011509645A (ja) * 2007-12-20 2011-03-24 ゼネラル・エレクトリック・カンパニイ 非接触電力およびデータ伝送システムならびに方法
JP2009169327A (ja) 2008-01-21 2009-07-30 Hitachi Displays Ltd 電力伝送回路
JP2010032826A (ja) * 2008-07-30 2010-02-12 Hitachi Displays Ltd 画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819485A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094816A1 (ja) * 2015-12-04 2017-06-08 コニカミノルタ株式会社 給電発光システム、発光素子パネル、および給電装置
JPWO2017094816A1 (ja) * 2015-12-04 2018-09-20 コニカミノルタ株式会社 給電発光システム、発光素子パネル、および給電装置

Also Published As

Publication number Publication date
EP2819485A4 (en) 2016-01-06
US20150035445A1 (en) 2015-02-05
EP2819485A1 (en) 2014-12-31
US9386656B2 (en) 2016-07-05
JP6271414B2 (ja) 2018-01-31
JPWO2013125435A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6271414B2 (ja) 発光システム及び有機el装置
RU2604890C2 (ru) Электролюминесцентное устройство
US8786188B2 (en) Wireless electroluminescent device
WO2014007322A1 (ja) 有機elモジュール及び有機elモジュールの給電構造
US9307585B2 (en) Organic electroluminescence module and organic-electroluminescence- module feeding structure
RU2456704C1 (ru) Устройство освещения
US9653671B2 (en) Light emitting device and method for operating a plurality of light emitting arrangements
JP2012519932A (ja) 有機発光ダイオードデバイス及びその製造方法
JP5308274B2 (ja) 発光装置
US9374866B2 (en) Organic EL illumination module and illumination apparatus including same
JP2014022177A (ja) 有機elモジュール、並びに、有機elモジュールの給電構造
CN102939794A (zh) 发光二极管装置和尤其带有这种发光二极管装置的发光机构
US8653748B2 (en) Isolated capacitor drive circuit for thin-film solid-state lighting
JP6760608B2 (ja) 給電発光システム
JP2014192050A (ja) 有機el装置及び有機el装置の製造方法
WO2011040633A1 (ja) 発光モジュール
JP2011142022A (ja) 有機el発光パネル
JP2021125350A (ja) 帯状発光体、発光装置および帯状発光体の製造方法
JP6190606B2 (ja) 有機el装置及び有機el装置の製造方法
JP2020135927A (ja) 照明器具
JP2013186980A (ja) 有機電界発光素子、照明装置及び有機電界発光素子の製造方法
JP2017045535A (ja) 照明装置およびそれを備えた照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500680

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013751583

Country of ref document: EP