WO2013125268A1 - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
WO2013125268A1
WO2013125268A1 PCT/JP2013/050841 JP2013050841W WO2013125268A1 WO 2013125268 A1 WO2013125268 A1 WO 2013125268A1 JP 2013050841 W JP2013050841 W JP 2013050841W WO 2013125268 A1 WO2013125268 A1 WO 2013125268A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
insertion portion
illumination light
intensity
Prior art date
Application number
PCT/JP2013/050841
Other languages
English (en)
French (fr)
Inventor
大輔 秋山
鵜澤 勉
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP13751922.9A priority Critical patent/EP2818096B1/en
Priority to CN201380001554.7A priority patent/CN103582447B/zh
Priority to JP2013537711A priority patent/JP5385493B1/ja
Priority to US13/966,343 priority patent/US8872907B2/en
Publication of WO2013125268A1 publication Critical patent/WO2013125268A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope

Definitions

  • the present invention relates to an endoscope apparatus, and more particularly, to an endoscope apparatus capable of adjusting illumination light applied to an observation target.
  • a so-called scanning type endoscope apparatus the tip of a light guide fiber provided in an insertion portion is vibrated by an actuator or the like, so that illumination light guided from a light source is emitted from a ride guide fiber and is observed on an observation target. Scanned. Then, desired observation is performed by acquiring an image of the observation target based on the scanning position on the observation target and the intensity of the light reflected at the scanning position.
  • the intensity of illumination light applied to an observation target is always constant within a frame forming one image, dark portions, halation, and the like are likely to occur in the acquired image.
  • Patent Document 1 describes an endoscope apparatus that adjusts the amount of illumination light in an arbitrary area according to the scanning position of illumination light, based on the brightness information of the acquired frame image.
  • the present invention has been made in view of the above-described circumstances, and suppresses partial light and darkness and halation in an observation image, and accurately displays a partial shadow of an observation target to perform good observation.
  • an endoscope apparatus capable of
  • One aspect of the present invention is a light guide unit configured to guide illumination light emitted from a light source to a distal end of an insertion unit, and the illumination light emitted from the insertion unit by vibrating the light guide unit at a predetermined period.
  • Scanning means for two-dimensional scanning with respect to the observation target, and return light from the observation target of the illumination light is received, and an image signal is generated based on a scanning position by the scanning means and the intensity of the return light.
  • a light source that controls the light source so as to change the intensity of illumination light emitted from the insertion unit according to an angle formed by an imaging unit and a longitudinal direction of the insertion unit and an emission direction of the illumination light to the observation target And a control means.
  • the endoscope apparatus when the illumination light emitted from the insertion unit by the scanning unit is vibrated two-dimensionally with respect to the observation target by vibrating the light guide unit, The emission angle of the illumination light emitted from the insertion portion changes.
  • the scanning unit scans illumination light in a spiral shape, there is a change in the angle between the longitudinal direction of the insertion portion and the emission direction of the illumination light to the observation target in a unit scan period in which one frame of image signal is acquired. This is large, and this becomes more prominent as the distance between the insertion portion and the observation target increases.
  • the intensity of the illumination light emitted from the insertion part is constant, a difference in brightness occurs in the acquired observation image due to a change in the emission angle of the illumination light emitted from the insertion part, and the length of the insertion part.
  • the illumination light emitted from the insertion portion has a small emission angle, and the illumination light does not reach the center image of the observation image.
  • the illumination light is excessively distributed around the distal end portion of the insertion portion where the emission angle of the illumination light is large, causing halation.
  • the light source control means controls the light source so as to change the intensity of the illumination light emitted from the insertion portion according to the angle formed by the longitudinal direction of the insertion portion and the emission direction of the illumination light to the observation target, thereby scanning.
  • Light distribution spots in the period can be suppressed, partial brightness and halation in the observation image can be suppressed, and a partial shadow of the observation target can be accurately depicted to obtain a good observation image.
  • the light source control unit controls the light source so that the intensity of illumination light emitted from the insertion portion decreases as the angle increases.
  • the emission angle of the illumination light emitted from the insertion portion is small, and the intensity of the illumination light is relatively increased with respect to the image that is the center of the observation image.
  • the light source control unit is configured such that the intensity I1 ( ⁇ ) of illumination light emitted from the light source satisfies the following expressions (1) and (2): It is preferable to control the light source.
  • is an angle formed by the longitudinal direction of the insertion portion and the emission direction of the illumination light emitted from the insertion portion
  • the light source includes an optical member that is disposed on a distal end side of the insertion portion of the light guide unit and that has been subjected to an antireflection treatment or an optical member that expands an observation angle.
  • the control unit controls the light source so that the intensity of illumination light emitted from the light source to the light guide unit increases as the angle increases.
  • optical members that have been subjected to antireflection treatment or an optical member that enlarges the observation angle are arranged on the distal end side of the insertion portion of the light guide means, these optical members increase the light distribution loss around the distal end of the insertion portion. The amount of illumination light distributed to the peripheral portion is reduced. Therefore, for example, when an optical member that has been subjected to antireflection processing such as AR coating, or an optical member that expands the observation angle, such as a wide-angle lens, is arranged on the distal end side of the insertion portion of the light guide means, it is emitted from the insertion portion.
  • the light source is controlled so that the intensity of the illumination light emitted from the light source to the light guide means increases as the emission angle of the illumination light increases.
  • these optical members result in a small emission angle of the illumination light emitted from the insertion portion, and a relatively high intensity of the illumination light with respect to the image that becomes the center of the observation image. Therefore, the intensity of the illumination light is relatively small with respect to the periphery of the distal end of the insertion portion where the emission angle of the illumination light emitted from the insertion portion is large, thereby suppressing partial brightness differences and halation in the acquired observation image. Can do.
  • the light source control unit is configured so that the intensity I2 ( ⁇ ) of illumination light emitted from the light source satisfies the following expressions (3) and (4): It is preferable to control the light source.
  • is an angle formed by the longitudinal direction of the insertion portion and the emission direction of the illumination light emitted from the insertion portion
  • the endoscope apparatus includes a luminance detection unit that detects luminance information that is the intensity of the return light based on the image signal, and the light source control unit includes a luminance by the luminance detection unit. It is preferable to control the light source based on information. In this way, for example, when the entire observation image is dark or bright due to the characteristics of the imaging means or the imaging environment, the brightness of the entire observation image is suppressed while suppressing partial contrast or halation in the observation image. It can be adjusted, and a good observation image can be acquired.
  • the present invention it is possible to suppress partial brightness and darkness and halation in an observation image, and to accurately depict a partial shadow of an observation target and perform an excellent observation.
  • FIG. 1 is a schematic configuration diagram of an endoscope apparatus according to an embodiment of the present invention. It is a schematic block diagram of the insertion part of the endoscope apparatus which concerns on embodiment of this invention. It is a graph which shows the relationship between the intensity
  • emitted from an insertion part makes. 5 is a graph showing the balance of brightness of the entire observation image in the endoscope apparatus according to the embodiment of the present invention. It is a graph which shows the relationship between the intensity
  • FIG. 1 is a schematic configuration diagram of an endoscope apparatus according to the present embodiment.
  • the endoscope apparatus 1 includes an insertion portion 2 and a main body 3.
  • the insertion section 2 includes a light guide fiber (light guide means) 11, an actuator (scanning means) 12, a lens 13, and a light receiving fiber 14.
  • the main body 3 includes light sources 20R, 20G, and 20B, a light source control unit (light source control unit) 21, a multiplexer 22, a duplexer 23, light receivers 24R, 24G, and 24B, an image processing unit 25 (imaging unit), and a monitor 26.
  • a luminance detection unit 27, a scanning control unit 28, and an overall control unit 29 is a luminance detection unit 27, a scanning control unit 28, and an overall control unit 29.
  • the light guide fiber 11 guides illumination light emitted from a light source, which will be described later, to the distal end of the insertion portion, and a lens 13 provided on the distal end side of the insertion portion of the light guide fiber 11 transmits illumination light from the light guide fiber 11.
  • the illumination light is emitted to the observation target after being diffused.
  • the actuator 12 causes the illumination light emitted from the insertion portion to scan the observation target two-dimensionally by vibrating the light guide fiber 11 at a predetermined cycle.
  • a piezo element can be applied, and the direction of the tip of the light guide fiber 11 is made by resonating the tip of the light guide fiber 11 in two orthogonal directions in accordance with a command from a scanning control unit 28 described later.
  • the illumination light draws a spiral scanning locus on the observation target.
  • the light receiving fiber 14 receives the return light from the observation target of the illumination light.
  • the light sources 20R, 20G, and 20B emit R, G, and B light, respectively, and are driven and controlled by the light source control unit 21.
  • the light source control unit 21 drives and controls the light sources 20R, 20G, and 20B, and the illumination light emitted from the insertion unit according to the angle ⁇ between the longitudinal direction of the insertion unit and the emission direction of the illumination light to the observation target.
  • the light sources 20R, 20G, and 20B are controlled so as to change the intensity (see FIG. 2).
  • the light source control unit 21 controls the light sources 20R, 20G, and 20B so that the intensity of illumination light emitted from the insertion unit decreases as the angle ⁇ increases. More specifically, the light sources 20R, 20G, and 20B are controlled so that the intensity I ( ⁇ ) of illumination light emitted from the light source satisfies the following expressions (5) and (6).
  • the light sources 20R, 20G, and 20B are controlled so as to satisfy the following expression (7).
  • is an angle formed by the longitudinal direction of the insertion portion and the emission direction of the illumination light emitted from the insertion portion
  • the value of ⁇ can be changed according to the size of A.
  • is a coefficient corresponding to the viewing angle of the endoscope apparatus, and is determined in consideration of the light amount ratio between the center and the peripheral portion in the observation image obtained by the viewing angle.
  • the light source control unit 21 controls the light sources 20R, 20G, and 20B based on the luminance information of the image signal obtained by the luminance detection unit 27 described later. That is, for example, when the entire observation image is dark or bright due to the characteristics of the light receiving fiber 14 or the image processing unit 25 or the imaging environment, the brightness of the entire observation image is adjusted as shown in the graph of FIG. Therefore, it is good to adjust the absolute brightness of the entire image without changing the relative illumination light intensity change in the acquired observation image, that is, while maintaining the illumination light intensity change for each angle ⁇ .
  • An observation image can be acquired. This can be realized by changing the value of A described above, and is determined from the average value of the luminance information for a plurality of frames in addition to the luminance information for one frame obtained by the luminance detector 27. Can do.
  • the multiplexer 22 combines the light emitted from the light sources 20R, 20G, and 20B, and supplies the illumination light that is white light to the light guide fiber 11.
  • the demultiplexer 23 demultiplexes the return light from the observation target incident via the light receiving fiber 14 into R, G, and B light, and the demultiplexed R, G, and B lights are received by the light receiver 24R. , 24G, 24B.
  • the light receivers 24R, 24G, and 24B generate pixel signals corresponding to the intensities of the R, G, and B lights from the demultiplexer 23, and output the generated pixel signals to the image processing unit 25.
  • the image processing unit 25 generates an image signal for one frame based on the pixel signals from the light receivers 24R, 24G, and 24B and the scanning position of the illumination light.
  • the monitor 26 displays an image to be observed based on the generated image signal.
  • the luminance detection unit 27 detects luminance information that is the intensity of the return light based on the image signal generated by the image processing unit 25.
  • the scanning control unit 28 drives and controls the actuator 12 by outputting a predetermined command signal to the actuator 12 in order to vibrate the light guide fiber 11 at a predetermined period.
  • the overall control unit 29 includes a CPU, ROM, and RAM (not shown), and controls the operation of the main body 3 according to a program for operating and controlling the endoscope apparatus 1 stored in the ROM.
  • the light sources 20R, 20G, and 20B when acquiring an observation image, the light sources 20R, 20G, and 20B emit R, G, and B light based on commands from the light source control unit 21, respectively. Each emitted light is combined by the multiplexer 22 to be white illumination light and supplied to the light guide fiber 11. The supplied illumination light is scanned spirally on the observation target by the light guide fiber 11. At this time, the light emitted from the light sources 20R, 20G, and 20B has an intensity according to the angle ⁇ with respect to the longitudinal direction of the insertion portion of the illumination light emitted from the light guide fiber 11 and emitted from the insertion portion via the lens 13. It has become. For this reason, in the observation target, uniform illumination light is distributed regardless of the position in the observation target.
  • the return light reflected on the observation target is transmitted to the demultiplexer 23 via the light receiving fiber 14, and is demultiplexed into R, G, and B lights by the demultiplexer 23, and the light receivers 24R, 24G, In 24B, it is converted into a pixel signal corresponding to the intensity of each light.
  • the converted pixel signal is output to the image processing unit 25, and the image processing unit 25 generates an image signal for one frame based on the pixel signal and the scanning position of the illumination light.
  • the emission angle of the illumination light emitted from the insertion portion is small, and the illumination light is relatively relative to the image that becomes the center of the observation image.
  • the lens 13 does not have special optical characteristics, and for example, a cover glass or the like can be applied.
  • a cover glass or the like can be applied.
  • an AR coating process or a wide-angle lens may be applied to the lens 13.
  • the control of the light sources 20R, 20G, and 20B by the light source controller 21 is as follows. It is necessary to do so.
  • the peripheral portion of the distal end of the insertion portion is arranged by these lenses.
  • the light distribution loss increases and the amount of illumination light distributed to the peripheral portion decreases. Therefore, in such a case, the light source is controlled so that the intensity of the illumination light supplied from the light sources 20R, 20G, and 20B to the light guide fiber 11 increases as the emission angle ⁇ of the illumination light emitted from the insertion portion increases. .
  • the light source control unit 21 controls the light source so that the intensity I ( ⁇ ) of illumination light emitted from the light sources 20R, 20G, and 20B satisfies the following expressions (8) and (9). It is preferable.
  • is an angle formed by the longitudinal direction of the insertion portion and the emission direction of the illumination light emitted from the insertion portion
  • the relationship between the intensity I1 ( ⁇ ) of the illumination light and the angle ⁇ is shown in FIG.
  • these lenses result in a small emission angle of the illumination light emitted from the insertion portion, and the intensity of the illumination light is relatively increased with respect to the image that is the center of the observation image.
  • the intensity of the illumination light is relatively small with respect to the periphery of the distal end of the insertion portion where the emission angle of the illumination light emitted from the insertion portion is large, thereby suppressing partial brightness differences and halation in the observation image to be acquired. it can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 観察画像における部分的な明暗やハレーションを抑制し、観察対象の部分的な陰影をも的確に描出して良好な観察を行う。光源から射出された照明光を挿入部(2)先端に導光する導光手段(11)と、該導光手段を所定周期で振動させることにより、前記挿入部から射出する前記照明光を観察対象に対して二次元走査させる走査手段(12)と、前記照明光の前記観察対象からの戻り光を受光して、前記走査手段による走査位置と前記戻り光の強度とに基づいて画像信号を生成する撮像手段(25)と、前記挿入部の長手方向と前記照明光の前記観察対象への射出方向とのなす角度に応じて前記挿入部から射出する照明光の強度を変化させるように前記光源を制御する光源制御手段(21)と、を備えた内視鏡装置(1)を提供する。

Description

内視鏡装置
 本発明は、内視鏡装置、特に、観察対象に照射する照明光を調節可能な内視鏡装置に関する。
 所謂走査型の内視鏡装置においては、挿入部内に設けられたライトガイドファイバの先端がアクチュエータなどによって振動させられ、これにより光源から導光された照明光がライドガイドファイバから射出され観察対象上に走査される。そして、観察対象上での走査位置と、走査位置において反射した光の強度とに基づいて観察対象の画像を取得することで所望の観察を行う。
 このような内視鏡装置において、観察対象に照射される照明光の強度が1つの画像をなすフレーム内で常に一定である場合には、取得した画像中に暗部やハレーション等が生じやすい。特に、観察対象が消化管等の管腔状構造である場合には画像中心が極端に暗くなる一方、周辺部分が過度に明るくなり、ハレーションが生じやすい。
 このため特許文献1には、取得済みのフレーム像の明暗情報に基づいて、照明光の走査位置に応じた任意のエリアの照明光量を調整する内視鏡装置が記載されている。
特開2010-115391号公報
 しかしながら、特許文献1に記載の内視鏡装置では、取得した画像における明暗が、距離に起因するのか、又は、観察対象の凹凸に起因するのかを区別することができないため、単に明暗に基づいて光量調節を行うこととなる。このため光量調節が適切に行われない虞があり、結果的に、襞や陥没部等の観察対象の特徴的構造を描出することができない場合があるという問題があった。
 本発明は、上述した事情に鑑みてなされたものであって、観察画像における部分的な明暗やハレーションを抑制し、観察対象の部分的な陰影をも的確に描出して良好な観察を行うことができる内視鏡装置を提供する。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、光源から射出された照明光を挿入部先端に導光する導光手段と、該導光手段を所定周期で振動させることにより、前記挿入部から射出する前記照明光を観察対象に対して二次元走査させる走査手段と、前記照明光の前記観察対象からの戻り光を受光して、前記走査手段による走査位置と前記戻り光の強度とに基づいて画像信号を生成する撮像手段と、前記挿入部の長手方向と前記照明光の前記観察対象への射出方向とのなす角度に応じて前記挿入部から射出する照明光の強度を変化させるように前記光源を制御する光源制御手段と、を備えた内視鏡装置である。
 上記本発明の一態様に係る内視鏡装置によれば、導光手段を振動させて走査手段により挿入部から射出する照明光を観察対象に対して二次元走査させると、走査位置に応じて挿入部から射出する照明光の射出角度が変化する。特に、走査手段が螺旋状に照明光を走査させる場合、1フレームの画像信号を取得する単位走査期間において、挿入部の長手方向と照明光の観察対象への射出方向とのなす角度の変化が大きく、これは挿入部と観察対象との距離が大きいほど顕著となる。
 そして、挿入部から射出される照明光の強度を一定とすると、挿入部から射出する照明光の射出角度の変化に起因して、取得される観察画像中に明暗差が生じ、挿入部の長手方向と照明光の観察対象への射出方向とのなす角度の変化が大きいほど取得する観察画像中の明暗差が大きくなる。例えば、観察対象が消化管等の管腔状構造である場合には、挿入部から射出する照明光の射出角度が小さく観察画像の中心となる像に照明光が届かない一方、挿入部から射出する照明光の射出角度が大きい挿入部先端周辺部分に過度に照明光が配光されて、ハレーションの原因となる。
 そこで、光源制御手段により挿入部の長手方向と照明光の観察対象への射出方向とのなす角度に応じて挿入部から射出する照明光の強度を変化させるように光源を制御することで、走査期間における配光斑を抑制し、観察画像における部分的な明暗やハレーションを抑制し、観察対象の部分的な陰影をも的確に描出して良好な観察画像を取得することができる。
 上記本発明の一態様に係る内視鏡装置において、前記光源制御手段は、前記角度が大きくなるほど前記挿入部から射出する照明光の強度が小さくなるように前記光源を制御することが好ましい。
 このようにすることで、単位走査期間において、挿入部から射出する照明光の射出角度が小さく、観察画像の中心となる像に対しては相対的に照明光の強度を大きくし、挿入部から射出する照明光の射出角度が大きい挿入部先端周辺部分に対しては相対的に照明光の強度を小さくすることで、取得する観察画像における部分的な明暗差やハレーションを抑制することができる。
 上記本発明の一態様に係る内視鏡装置において、前記光源制御手段は、前記光源から射出される照明光の強度I1(θ)が、以下の(1)式及び(2)式を満たすよう前記光源を制御することが好ましい。
Figure JPOXMLDOC01-appb-M000003
 ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度である。
 このようにすることで、取得する観察画像における明暗差やハレーションを抑制することができる。
 上記本発明の一態様に係る内視鏡装置において、前記導光手段の前記挿入部先端側に配置され、反射防止処理が施された光学部材又は観察角を拡大させる光学部材を備え、前記光源制御手段は、前記角度が大きくなるほど前記光源から前記導光手段へ射出する照明光の強度が大きくなるように前記光源を制御することが好ましい。
 導光手段の挿入部先端側に反射防止処理が施された光学部材又は観察角を拡大させる光学部材を配置した場合には、これらの光学部材により挿入部先端周辺部分の配光ロスが大きくなり周辺部分に配光される照明光の光量が低下する。そこで、例えば、ARコーティング等の反射防止処理が施された光学部材や広角レンズ等の観察角を拡大させる光学部材を導光手段の挿入部先端側に配置した場合には、挿入部から射出する照明光の射出角度が大きくなるほど光源から導光手段へ射出する照明光の強度が大きくなるように光源を制御する。
 このようにすることで、これらの光学部材によって、結果的に、挿入部から射出する照明光の射出角度が小さく、観察画像の中心となる像に対しては相対的に照明光の強度を大きくなり、挿入部から射出する照明光の射出角度が大きい挿入部先端周辺部分に対しては相対的に照明光の強度が小さくなり、取得する観察画像における部分的な明暗差やハレーションを抑制することができる。
 上記本発明の一態様に係る内視鏡装置において、前記光源制御手段は、前記光源から射出される照明光の強度I2(θ)が、以下の(3)式及び(4)式を満たすよう前記光源を制御することが好ましい。
Figure JPOXMLDOC01-appb-M000004
 ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度である。
 このようにすることで、取得する観察画像における明暗差やハレーションを抑制することができる。
 上記本発明の一態様に係る内視鏡装置において、前記画像信号に基づいて前記戻り光の強度である輝度情報を検出する輝度検出手段を備え、前記光源制御手段が、前記輝度検出手段による輝度情報に基づいて前記光源を制御することが好ましい。
 このようにすることで、例えば、撮像手段の特性や撮像環境により観察画像全体が暗い場合乃至は明るい場合において、観察画像における部分的な明暗差やハレーションを抑制しながら、観察画像全体の明るさも調節することができ、良好な観察画像を取得することができる。
 本発明によれば、観察画像における部分的な明暗やハレーションを抑制し、観察対象の部分的な陰影をも的確に描出して良好な観察を行うことができるという効果を奏する。
本発明の実施形態に係る内視鏡装置の概略構成図である。 本発明の実施形態に係る内視鏡装置の挿入部の概略構成図である。 照明光の強度I(θ)と挿入部から射出される照明光の射出方向とのなす角度θとの関係を示すグラフである。 本発明の実施形態に係る内視鏡装置において、観察画像全体の明るさのバランスを示すグラフである。 照明光の強度I(θ)と挿入部から射出される照明光の射出方向とのなす角度θとの関係を示すグラフである。
 以下に、本発明の一実施形態に係る内視鏡装置について図面を参照して説明する。
 図1は、本実施形態に係る内視鏡装置の概略構成図を示しており、図1に示すように、内視鏡装置1は、挿入部2及び本体3を備えている。挿入部2は、ライトガイドファイバ(導光手段)11、アクチュエータ(走査手段)12、レンズ13、及び受光用ファイバ14を備えている。
 本体3は、光源20R,20G,20B、光源制御部(光源制御手段)21、合波器22、分波器23、受光器24R,24G,24B、画像処理部25(撮像手段)、モニタ26、輝度検出部27、走査制御部28、及び全体制御部29を備えている。
 ライトガイドファイバ11は、後述する光源から出射された照明光を挿入部先端に導光し、ライトガイドファイバ11の挿入部先端側に設けられたレンズ13は、ライトガイドファイバ11からの照明光を拡散させて照明光を観察対象に出射する。アクチュエータ12は、ライトガイドファイバ11を所定の周期で振動させることにより、挿入部から射出する照明光を観察対象に対して二次元走査させる。アクチュエータ12としては、例えばピエゾ素子を適用することができ、後述する走査制御部28からの指令に従って、直交する2方向にライトガイドファイバ11の先端を共振させることによりライトガイドファイバ11の先端の向きを変更させ、これにより照明光が観察対象上で螺旋状の走査軌跡を描くようになっている。受光用ファイバ14は、照明光の観察対象における戻り光を受光する。
 光源20R,20G,20Bは、R,G,Bの光を夫々出射するものであり、光源制御部21によって駆動し制御される。光源制御部21は、光源20R,20G,20Bを駆動し制御するほか、挿入部の長手方向と照明光の観察対象への射出方向とのなす角度θに応じて挿入部から射出する照明光の強度を変化させるように光源20R,20G,20Bを制御する(図2参照)。
 特に、光源制御部21は、角度θが大きくなるほど挿入部から射出する照明光の強度が小さくなるように光源20R,20G,20Bを制御する。より具体的には、光源から射出される照明光の強度I(θ)が、以下の(5)式及び(6)式を満たすよう光源20R,20G,20Bを制御する。
Figure JPOXMLDOC01-appb-M000005
 またより好ましくは、以下の(7)式を満たすように光源20R,20G,20Bを制御する。
Figure JPOXMLDOC01-appb-M000006
 ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度であり、従前に取得した画像信号の輝度情報に基づいて決定することができる。
 αは、配光の相対的な形を示す係数であり、観察対象によって定めることが好ましい。例えば、膵管等の管腔を観察対象とする場合にはα=2.5、胃等の広い空間や近接観察等平面的な観察対象である場合にはα=4~5が好ましい。Aの大きさによってαの値を変更することもできる。βは、内視鏡装置の視野角に応じた係数であり、視野角によって得られる観察画像において、中心と周辺部との光量比が異なるので、これを考慮して定められる。βは、視野角の最大角をΘとすると、β=Θ/70が好ましい。照明光の強度I(θ)と角度θとの関係を図3に示した。
 また、光源制御部21は、後述する輝度検出部27によって得られた画像信号の輝度情報に基づいて光源20R,20G,20Bを制御する。すなわち、例えば、受光用ファイバ14や画像処理部25の特性や撮像環境により観察画像全体が暗い場合乃至は明るい場合において、図4に示すグラフに示すように、観察画像全体の明るさを調節することで、取得する観察画像における相対的な照明光の強度変化を変えずに、すなわち、角度θ毎の照明光の強度変化を維持したまま画像全体の絶対的な明るさを調節することで良好な観察画像を取得することができる。これは、先に述べたAの値を変更することで実現することができ、輝度検出部27によって得られた1フレーム分の輝度情報のほか、複数フレーム分の輝度情報の平均値から定めることができる。
 合波器22は、光源20R,20G,20Bから射出された光を合波して、白色光とした照明光をライトガイドファイバ11に供給する。分波器23は、受光用ファイバ14を介して入射した観察対象からの戻り光をR,G,Bの光に分波し、分波されたR,G,Bの各光を受光器24R,24G,24Bに伝送する。受光器24R,24G,24Bは、分波器23からのR,G,Bの各光の強度に応じた画素信号を生成し、生成した各画素信号を画像処理部25に出力する。画像処理部25では、受光器24R,24G,24Bによる画素信号と照明光の走査位置とに基づいて1フレーム分の画像信号を生成する。モニタ26は、生成された画像信号に基づいて観察対象の画像を表示する。
 輝度検出部27は、画像処理部25で生成された画像信号に基づいて戻り光の強度である輝度情報を検出する。走査制御部28は、ライトガイドファイバ11を所定周期で振動させるためにアクチュエータ12に所定の指令信号を出力することにより、アクチュエータ12を駆動し制御する。全体制御部29は、図示しないCPU,ROM,RAMを含み、ROMに格納された内視鏡装置1を動作し制御するためのプログラムに従って本体3の動作を制御する。
 このように構成された内視鏡装置において、観察画像を取得する場合、光源20R,20G,20Bは、光源制御部21からの指令に基づいて、夫々R,G,Bの光を射出し、射出した各光は合波器22において合波され白色光の照明光とされ、ライトガイドファイバ11に供給される。供給された照明光は、ライトガイドファイバ11によって観察対象上で螺旋状に走査される。このとき、光源20R,20G,20Bから射出される光は、ライトガイドファイバ11から射出されレンズ13を介して挿入部から射出される照明光の挿入部の長手方向に対する角度θに応じた強度となっている。このため、観察対象においては、観察対象中の位置によらず均一な照明光が配光される。
 観察対象上で反射された戻り光は、受光用ファイバ14を介して分波器23に伝送され、分波器23においてR,G,Bの各光に分波され、受光器24R,24G,24Bで各光の強度に応じた画素信号に変換される。変換された画素信号は画像処理部25に出力され、画像処理部25において画素信号と照明光の走査位置とに基づいて1フレーム分の画像信号が生成される。
 このようにすることで、1フレームの画像信号を取得する単位走査期間において、挿入部から射出する照明光の射出角度が小さく、観察画像の中心となる像に対しては相対的に照明光の強度を大きくし、挿入部から射出する照明光の射出角度が大きい挿入部先端周辺部分に対しては相対的に照明光の強度を小さくすることで、取得する観察画像における部分的な明暗差やハレーションを抑制することができる。
 (変形例)
 上記した実施形態において、レンズ13には特段の光学特性がなく、例えばカバーガラス等を適用することができる。しかしながら、レンズ13に例えば、ARコーティング処理が施されたものや、広角レンズ等が適用される場合もあり、このような場合には、光源制御部21による光源20R,20G,20Bの制御を以下のようにする必要がある。
 すなわち、ライトガイドファイバ11の挿入部先端側にARコーティング(反射防止)処理が施されたレンズ乃至は観察角を拡大させる広角レンズを配置した場合には、これらのレンズにより挿入部先端周辺部分の配光ロスが大きくなり周辺部分に配光される照明光の光量が低下する。
 そこで、このような場合には、挿入部から射出する照明光の射出角度θが大きくなるほど光源20R,20G,20Bからライトガイドファイバ11へ供給する照明光の強度が大きくなるように光源を制御する。
 具体的には、光源制御部21は、光源20R,20G,20Bから射出される照明光の強度I(θ)が、以下の(8)式及び(9)式を満たすよう前記光源を制御することが好ましい。
Figure JPOXMLDOC01-appb-M000007
 ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度である。照明光の強度I1(θ)と角度θとの関係を図5に示した。
 このようにすることで、これらのレンズによって、結果的に、挿入部から射出する照明光の射出角度が小さく、観察画像の中心となる像に対しては相対的に照明光の強度を大きくなり、挿入部から射出する照明光の射出角度が大きい挿入部先端周辺部分に対しては相対的に照明光の強度が小さくなり、取得する観察画像における部分的な明暗差やハレーションを抑制することができる。
 1 内視鏡装置
 2 挿入部
 11 ライトガイドファイバ
 12 アクチュエータ
 13 レンズ
 14 受光用ファイバ
 20R,20G,20B 光源R,光源G,光源B
 21 光源制御部
 22 合波器
 23 分波器
 24R,24G,24B 受光器R,受光器G,受光器B
 25 画像処理部
 26 モニタ
 27 輝度検出部
 28 走査制御部
 29 全体制御部

Claims (6)

  1.  光源から射出された照明光を挿入部先端に導光する導光手段と、
     該導光手段を所定周期で振動させることにより、前記挿入部から射出する前記照明光を観察対象に対して二次元走査させる走査手段と、
     前記照明光の前記観察対象からの戻り光を受光して、前記走査手段による走査位置と前記戻り光の強度とに基づいて画像信号を生成する撮像手段と、
     前記挿入部の長手方向と前記照明光の前記観察対象への射出方向とのなす角度に応じて前記挿入部から射出する照明光の強度を変化させるように前記光源を制御する光源制御手段と、
    を備えた内視鏡装置。
  2.  前記光源制御手段は、前記角度が大きくなるほど前記挿入部から射出する照明光の強度が小さくなるように前記光源を制御する請求項1記載の内視鏡装置。
  3.  前記光源制御手段は、前記光源から射出される照明光の強度I1(θ)が、以下の(1)式及び(2)式を満たすよう前記光源を制御する請求項1又は請求項2に記載の内視鏡装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度である。
  4.  前記導光手段の前記挿入部先端側に配置され、反射防止処理が施された光学部材又は観察角を拡大させる光学部材を備え、
     前記光源制御手段は、前記角度が大きくなるほど前記光源から前記導光手段へ射出する照明光の強度が大きくなるように前記光源を制御する請求項1又は請求項2に記載の内視鏡装置。
  5.  前記光源制御手段は、前記光源から射出される照明光の強度I2(θ)が、以下の(3)式及び(4)式を満たすよう前記光源を制御する請求項4に記載の内視鏡装置。
    Figure JPOXMLDOC01-appb-M000002
     ここで、θは、前記挿入部の長手方向と前記挿入部から射出される前記照明光の射出方向とのなす角度であり、Aは、θ=0のときの前記挿入部から射出される照明光の強度である。
  6.  前記画像信号に基づいて前記戻り光の強度である輝度情報を検出する輝度検出手段を備え、
     前記光源制御手段が、前記輝度検出手段による輝度情報に基づいて前記光源を制御する請求項1乃至請求項5の何れか1項に記載の内視鏡装置。
PCT/JP2013/050841 2012-02-21 2013-01-17 内視鏡装置 WO2013125268A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13751922.9A EP2818096B1 (en) 2012-02-21 2013-01-17 Endoscope device
CN201380001554.7A CN103582447B (zh) 2012-02-21 2013-01-17 内窥镜装置
JP2013537711A JP5385493B1 (ja) 2012-02-21 2013-01-17 内視鏡装置
US13/966,343 US8872907B2 (en) 2012-02-21 2013-08-14 Endoscope apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-035201 2012-02-21
JP2012035201 2012-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/966,343 Continuation US8872907B2 (en) 2012-02-21 2013-08-14 Endoscope apparatus

Publications (1)

Publication Number Publication Date
WO2013125268A1 true WO2013125268A1 (ja) 2013-08-29

Family

ID=49005462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050841 WO2013125268A1 (ja) 2012-02-21 2013-01-17 内視鏡装置

Country Status (5)

Country Link
US (1) US8872907B2 (ja)
EP (1) EP2818096B1 (ja)
JP (1) JP5385493B1 (ja)
CN (1) CN103582447B (ja)
WO (1) WO2013125268A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102521A (ko) * 2013-02-14 2014-08-22 삼성전자주식회사 내시경 장치 및 그 제어 방법
CN103955052A (zh) * 2014-05-06 2014-07-30 深圳市道通科技有限公司 工业内窥镜照明自动调节的方法及装置
WO2016116967A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 内視鏡用照明システム
CN107105996B (zh) * 2015-01-30 2018-11-20 奥林巴斯株式会社 照明装置、内窥镜系统及色调修正装置
JP6420230B2 (ja) * 2015-12-22 2018-11-07 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
WO2018138828A1 (ja) * 2017-01-26 2018-08-02 オリンパス株式会社 画像処理装置、動作方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124100A (ja) * 1993-11-01 1995-05-16 Olympus Optical Co Ltd 内視鏡用保護装置
JPH07275192A (ja) * 1994-04-14 1995-10-24 Toshiba Corp 内視鏡装置
JP2010115391A (ja) 2008-11-14 2010-05-27 Hoya Corp 内視鏡装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161041A (ja) 1996-11-26 1998-06-19 Fuji Photo Film Co Ltd 内視鏡用光源装置
US6294775B1 (en) 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
US6663560B2 (en) * 1999-12-17 2003-12-16 Digital Optical Imaging Corporation Methods and apparatus for imaging using a light guide bundle and a spatial light modulator
CN101065051A (zh) * 2004-09-03 2007-10-31 斯特赖克Gi有限公司 用于向内窥镜供给流体介质的控制系统
JP4741032B2 (ja) * 2008-11-11 2011-08-03 オリンパスメディカルシステムズ株式会社 内視鏡用照明光学系
JP2010268961A (ja) 2009-05-21 2010-12-02 Hoya Corp 医療用観察システム
JP2011000258A (ja) * 2009-06-18 2011-01-06 Fujifilm Corp 内視鏡システム、内視鏡、並びに距離・照射角度測定方法
JP2011101665A (ja) 2009-11-10 2011-05-26 Hoya Corp 電子内視鏡システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124100A (ja) * 1993-11-01 1995-05-16 Olympus Optical Co Ltd 内視鏡用保護装置
JPH07275192A (ja) * 1994-04-14 1995-10-24 Toshiba Corp 内視鏡装置
JP2010115391A (ja) 2008-11-14 2010-05-27 Hoya Corp 内視鏡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818096A4

Also Published As

Publication number Publication date
US20140055585A1 (en) 2014-02-27
EP2818096A1 (en) 2014-12-31
CN103582447B (zh) 2015-12-30
US8872907B2 (en) 2014-10-28
EP2818096A4 (en) 2015-10-21
JPWO2013125268A1 (ja) 2015-07-30
JP5385493B1 (ja) 2014-01-08
EP2818096B1 (en) 2017-03-01
CN103582447A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5385493B1 (ja) 内視鏡装置
JP5467756B2 (ja) 内視鏡装置
JP5877289B1 (ja) 内視鏡システム
US20140210974A1 (en) Imaging device, endoscope apparatus, and method for controlling imaging device
JP2004147924A (ja) 内視鏡用自動調光装置および電子内視鏡装置
JP6072374B2 (ja) 観察装置
US20140092215A1 (en) Endoscopic system
JP6121058B2 (ja) 内視鏡システム、内視鏡システムの作動方法
US20210153719A1 (en) Medical observation device
US20120053421A1 (en) Light guide for an endoscope, endoscope equipped with the light guide, and method for producing the light guide for an endoscope
US20140063201A1 (en) Stereoscopic endoscope system
WO2018131257A1 (ja) 光源装置、光源制御方法および画像取得システム
JP7224985B2 (ja) 医療用光源装置及び医療用観察システム
JPH03109515A (ja) 自動調光装置
US20130335544A1 (en) Endoscopic system
JP2019162165A (ja) 内視鏡システム
JP6118095B2 (ja) 内視鏡装置
US11648080B2 (en) Medical observation control device and medical observation system that correct brightness differences between images acquired at different timings
JP2011041754A (ja) 光走査型内視鏡
US20220225857A1 (en) Medical control device and medical observation system
US11071444B2 (en) Medical endoscope system providing enhanced illumination
WO2019244336A1 (ja) 照明光学系および内視鏡システム
US20210281820A1 (en) Imaging device
JP2015134110A (ja) 内視鏡装置及び色ムラ低減方法
JP2014226196A (ja) 内視鏡用光源装置および電子内視鏡システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013751922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751922

Country of ref document: EP