WO2013125212A1 - 慣性力センサ及びこれを用いた電子機器 - Google Patents

慣性力センサ及びこれを用いた電子機器 Download PDF

Info

Publication number
WO2013125212A1
WO2013125212A1 PCT/JP2013/000925 JP2013000925W WO2013125212A1 WO 2013125212 A1 WO2013125212 A1 WO 2013125212A1 JP 2013000925 W JP2013000925 W JP 2013000925W WO 2013125212 A1 WO2013125212 A1 WO 2013125212A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial force
sensor
value
signal processing
control unit
Prior art date
Application number
PCT/JP2013/000925
Other languages
English (en)
French (fr)
Inventor
勲 服部
植村 猛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014500918A priority Critical patent/JP6106850B2/ja
Priority to US14/379,535 priority patent/US9464898B2/en
Priority to CN201380010212.1A priority patent/CN104136887B/zh
Publication of WO2013125212A1 publication Critical patent/WO2013125212A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage

Definitions

  • the present invention relates to an inertial force sensor used in a digital camera, a portable terminal, a robot, and other various electronic devices, and an electronic device using the inertial force sensor.
  • FIG. 9 is a block diagram of a conventional inertial force sensor.
  • the inertial force sensor 1 includes a vibrator 2, a self-excited vibration circuit 3 that drives and vibrates the vibrator 2, a detection circuit 4 that is connected to the vibrator 2 and outputs an inertial force value, a self-excited vibration circuit 3, and a detection
  • a power supply control device 5 that controls power supplied to the circuit 4 and a trigger signal input unit 6 connected to the power supply control device 5 are provided.
  • the power supply control device 5 reduces the power supplied to the self-excited vibration circuit 3 or the detection circuit 4 when the detection circuit 4 does not detect the inertia amount. Further, the power supply control device 5 restores the power supplied to the self-excited vibration circuit 3 or the detection circuit 4 where the power supply is reduced to the rated power based on the trigger input from the trigger signal input unit 6.
  • Patent Document 1 is known as a prior art document related to the invention of this application.
  • the inertial force sensor of the present invention includes a sensor element that converts an inertial force into an electrical signal, a sensor signal processing unit that is connected to the sensor element and outputs an inertial force value, and a sensor signal processing unit based on the inertial force value.
  • a power control unit that controls supply power. When the inertial force value is within a predetermined range centered on the reference value for a predetermined time, the power control unit reduces the power supplied to the sensor signal processing unit and sets the reference value to the inertial force when the predetermined time has elapsed. Update to value.
  • FIG. 1 is a block diagram of an inertial force sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the angular velocity sensor according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration example of the power control unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating a control example of the power control unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating a measurement example of a predetermined period using the counter according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram of an inertial force sensor according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram of an inertial force sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the angular velocity sensor according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram
  • FIG. 7 is a block diagram of an inertial force sensor using an acceleration sensor element and an angular velocity sensor element according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram of an electronic device using the inertial force sensor according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram of a conventional inertial force sensor.
  • the power supply control device 5 maintains the power supplied to the self-excited oscillation circuit 3 and the detection circuit 4 even though no inertial force is applied.
  • FIG. 1 is a block diagram of inertial force sensor 10 according to Embodiment 1 of the present invention.
  • the inertial force sensor 10 includes a sensor element 11 that converts an inertial force into an electrical signal, a sensor signal processing unit 12 that is connected to the sensor element 11 and outputs an inertial force value, and an inertial force output from the sensor signal processing unit 12. And a power control unit 13 that controls the power supplied to the sensor signal processing unit 12 based on the value.
  • the power control unit 13 reduces the power supplied to the sensor signal processing unit 12 and sets the reference value at the time when the predetermined time has elapsed. Update to inertial force value.
  • the inertial force sensor 10 can realize highly accurate low power consumption with a simple configuration.
  • FIG. 2 is a block diagram of an angular velocity sensor 10 a that is an example of the inertial force sensor 10.
  • the angular velocity sensor element 11a corresponds to the sensor element 11 of FIG.
  • the angular velocity sensor signal processing unit 12a corresponds to the sensor signal processing unit 12 of FIG.
  • the angular velocity sensor element 11a is connected to the angular velocity sensor signal processing unit 12a.
  • the angular velocity sensor signal processing unit 12a includes a drive unit 12b and a detection unit 12c.
  • the drive unit 12b outputs a drive signal to drive and vibrate the angular velocity sensor element 11a. Furthermore, the drive unit 12b receives a monitor signal from the angular velocity sensor element 11a, and performs feedback control so that the drive vibration of the angular velocity sensor element 11a has a constant amplitude.
  • the detection unit 12c detects the detection signal output from the angular velocity sensor element 11a using the monitor signal input from the drive unit 12b, and integrates it using a low-pass filter (not shown). Is output.
  • the power control unit 13 reduces the power supplied to at least one of the drive unit 12b or the detection unit 12c when the angular velocity value output from the detection unit 12c is within a predetermined range centered on the reference value over a predetermined time. .
  • the supply power to the drive unit 12b is not reduced, but the supply power to the detection unit 12c is reduced. Since the drive unit 12b constantly vibrates the angular velocity sensor element 11a, the startup time when returning to normal power can be increased by an external trigger signal.
  • FIG. 3 is a block diagram of the power control unit 13.
  • the window unit 13a receives the angular velocity value 15 output from the detection unit 12c.
  • the window unit 13a outputs a still signal 14b when the angular velocity value 15 is within a predetermined range centered on a reference value set inside the window unit 13a.
  • the time measuring unit 13b outputs a supply power reduction signal 14c for reducing the supply power to the sensor signal processing unit 12 when the stationary signal 14b is continuously input for a predetermined time set inside.
  • the reference value update signal 14d is output. When the reference value update signal 14d is input, the reference value update unit 13c outputs the angular velocity value 15 as a new reference value 14e to the window unit 13a.
  • FIG. 4 is a diagram illustrating a control example of the power control unit 13.
  • the horizontal axis represents time, and the vertical axis represents angular velocity.
  • the window unit 13a uses the stationary signal 14b (see FIG. 3) as a time measurement unit. It outputs to 13b (refer FIG. 3).
  • the stationary signal 14b is output between times t1 and t2 and between times t3 and t4.
  • the time measuring unit 13b outputs a supply power decrease signal 14c and a reference value update signal 14d when the stationary signal 14b continues for a predetermined time T.
  • the stationary signal 14b is input to the time measurement unit 13b between the time t1 and the time t2, but since the period T1 from the time t1 to the time t2 is shorter than the predetermined time T, the supply power decrease signal 14c and The reference value update signal 14d is not output. Thereafter, the stationary signal 14b is input again from time t3, and since the period T2 from time t3 reaches the predetermined time T at time t4, the supply power decrease signal 14c and the reference value update signal 14d are output.
  • the reference value 16 in the window unit 13a is updated to a new reference value 16a that is an angular velocity value at time t4. That is, the reference value 16 is updated to the inertial force value (new reference value 16a) when the predetermined time T has elapsed.
  • the inertial force value at time t4 when the predetermined time T has elapsed is set as a new reference value, but it is not necessary to strictly use the inertial force value at the time t4. That is, before and after the power supplied to the sensor signal processing unit 12 is decreased, the inertial force value is substantially the same. Therefore, the inertia immediately before the lapse (between times t3 and t4) or immediately after the lapse (immediately after the time t4).
  • the force value may be a new reference value.
  • the power control unit 13 may increase the predetermined time T when the angular velocity value 15 exceeds the range R between the upper limit threshold 17 and the lower limit threshold 18 centered on the reference value 16. Thereby, for example, after the angular velocity is applied to the electronic device on which the angular velocity sensor 10a is mounted, it is possible to make it difficult for the power supplied to the sensor signal processing unit 12 to decrease.
  • FIG. 5 is a diagram illustrating a measurement example of a predetermined period using the counter according to the first embodiment of the present invention.
  • the power control unit 13 confirms the angular velocity value 15 at a predetermined cycle T0 and measures the predetermined time T by the product of the predetermined cycle T0 and the counter value. Specifically, the time measuring unit 13b (see FIG. 3) counts up the counter value at a predetermined cycle T0 while the stationary signal 14b (see FIG. 3) is input. When the counter value exceeds the counter threshold, the time measuring unit 13b determines that the predetermined time T has been reached, and supplies the supply power reduction signal 14c (see FIG. 3) and the reference value update signal 14d (see FIG. 3). Output.
  • the power control unit 13 confirms the angular velocity value 15 for each predetermined period T0 and stores the number of times of the predetermined period T0.
  • the power control unit 13 calculates time by the product of the predetermined period T0 and the number of times, and determines whether or not the time is the predetermined time T. Then, the power control unit 13 outputs the supply power decrease signal 14c and the reference value update signal 14d when the inertial force value is within a predetermined range centered on the reference value over a predetermined time.
  • the counter threshold is 9.
  • the counter value is counted up every predetermined period T0. From time t1 to time t2, the angular velocity value 15 exceeds the upper threshold 17 before the counter threshold reaches 9, so the counter value is reset to zero.
  • the counter value is counted up again after time t3. Since the counter threshold value reaches 9 at time t4, the time measurement unit 13b outputs the supply power reduction signal 14c and the reference value update signal 14d.
  • the power control unit 13 may increase the counter threshold when the angular velocity value 15 exceeds the range R between the upper limit threshold 17 and the lower limit threshold 18 centered on the reference value 16. That is, the power control unit 13 may increase the number of times of the predetermined period T0 when the angular velocity value 15 exceeds a predetermined range centered on the reference value 16. Thereby, for example, after the electronic device on which the angular velocity sensor 10a is mounted is driven and the angular velocity is applied, it is possible to make it difficult for the power supplied to the sensor signal processing unit 12 to decrease.
  • the power control unit 13 increases the upper limit threshold 17 or decreases the lower limit threshold 18.
  • the range R may be expanded.
  • the angular velocity sensor 10a has been described as a specific example of the inertial force sensor 10, but the present invention can be applied to other inertial force sensors such as an acceleration sensor, a pressure sensor, and a geomagnetic sensor.
  • FIG. 6 is a block diagram of the inertial force sensor 20 according to the second embodiment of the present invention.
  • the inertial force sensor 20 includes a first sensor element 21, a second sensor element 22, a first sensor signal processing unit 23, a second sensor signal processing unit 24, and a power control unit 25. is doing.
  • the first sensor element 21 converts the first inertial force into an electric signal.
  • the second sensor element 22 converts a second inertial force different from the first inertial force into an electrical signal.
  • the first sensor signal processing unit 23 is connected to the first sensor element 21 and the power control unit 25.
  • the first sensor signal processing unit 23 receives an electrical signal from the first sensor element 21 and outputs a first inertial force value.
  • the second sensor signal processing unit 24 is connected to the second sensor element 22 and the power control unit 25.
  • the second sensor signal processing unit 24 receives an electrical signal from the second sensor element 22 and outputs a second inertial force value.
  • the power control unit 25 is connected to the first sensor signal processing unit 23 and the second sensor signal processing unit 24.
  • the power control unit 25 controls the power supplied to the second sensor signal processing unit 24 based on the first inertial force value.
  • the power control unit 25 reduces the supply power to the second sensor signal processing unit 24 and reduces the reference value when the first inertial force value is within a predetermined range centered on the reference value over a predetermined time. Update to the first inertial force value.
  • the low power consumption control of the second sensor signal processing unit 24 can be performed with high accuracy based on the first inertial force value.
  • the smaller one of the two sensor signal processing units is the first sensor signal processing unit 23.
  • FIG. 7 is a block diagram of an inertial force sensor 20a using an acceleration sensor element 21a and an angular velocity sensor element 22a, which is an example of the inertial force sensor 20.
  • An acceleration sensor element 21 a is used as the first sensor element 21, and an angular velocity sensor element 22 a is used as the second sensor element 22.
  • the acceleration sensor element 21a has a flexible part (not shown), and converts the displacement of the flexible part due to acceleration into an electrical signal.
  • the acceleration sensor signal processing unit 23a detects the electrical signal.
  • the angular velocity sensor element 22a has a flexible portion (not shown).
  • the flexible portion is driven to vibrate, and the flexible portion is displaced by the Coriolis force generated in the axial direction perpendicular to the drive vibration axis and the angular velocity application axis. Is converted into an electrical signal.
  • the angular velocity sensor signal processing unit 24a detects the electrical signal.
  • the angular velocity sensor signal processing unit 24a has a drive unit and a detection unit, and the drive unit vibrates the angular velocity sensor element 22a. Therefore, the power consumption of the angular velocity sensor signal processing unit 24a is larger than that of the acceleration sensor signal processing unit 23a.
  • the power control unit 25 reduces the power supplied to the angular velocity sensor signal processing unit 24a when the acceleration value output from the acceleration sensor signal processing unit 23a is within a predetermined range centered on the reference value over a predetermined time. In this manner, in the inertial force sensor that detects two different types of inertial forces, the power consumption of the signal processing unit with the higher power consumption can be reduced.
  • the return processing of the angular velocity sensor signal processing unit 24a can be performed using the acceleration sensor signal processing unit 23a.
  • the power control unit 25 returns the power supplied to the angular velocity sensor signal processing unit 24a to a normal value.
  • the acceleration sensor element 21a is used as the first sensor element 21, but a geomagnetic sensor element or an atmospheric pressure sensor element may be used. Further, although the angular velocity sensor element 22a is used as the second sensor element 22, a vibration type acceleration sensor element or a vibration type strain sensor element may be used.
  • FIG. 8 is a block diagram of an electronic device 33 using the inertial force sensor 30 according to the second embodiment of the present invention.
  • the difference between the inertial force sensor 30 and the inertial force sensor 20 shown in FIG. 6 is that the inertial force sensor 30 has an interface control unit 31.
  • the interface control unit 31 is connected to the first sensor signal processing unit 23, the second sensor signal processing unit 24, and the power control unit 25.
  • the first inertial force value output from the first sensor signal processing unit 23 is input to the interface control unit 31 and the power control unit 25.
  • the second inertial force value output from the second sensor signal processing unit 24 is input to the interface control unit 31.
  • the interface control unit 31 is connected to a CPU 32 provided outside the inertial force sensor 30 and can transmit and receive signals. Further, the interface control unit 31 can transmit a signal to the power control unit 25.
  • the rest of the configuration is the same as that of the inertial force sensor 20, and the description thereof is omitted.
  • the CPU 32 changes the polling cycle for transmitting and receiving signals to and from the interface control unit 31 during normal operation (during operation) and during sleep (during non-operation). Specifically, the CPU 32 lengthens the polling cycle during sleep (non-operation) compared to the polling cycle during normal operation (operation). That is, the CPU 32 lengthens the signal transmission / reception cycle while the power supplied to the second sensor signal processing unit 24 is reduced.
  • the CPU 32 that controls the electronic device 33 has a large circuit scale, and thus power consumption is large. By increasing the polling cycle during sleep (non-operation), the processing load on the CPU 32 can be reduced, and the power consumption of the electronic device 33 can be reduced.
  • the normal time is a state where the inertial force sensor 30 is operating
  • the sleep time is a state where the inertial force sensor 30 is not operating.
  • the interface control unit 31 may be added to the inertial force sensor 10 shown in FIG.
  • the CPU 32 lengthens the signal transmission / reception cycle while the power supplied to the sensor signal processing unit 12 is reduced.
  • an acceleration sensor element a geomagnetic sensor element, an atmospheric pressure sensor element, or the like is used as the first sensor element 21.
  • an angular velocity sensor element a vibration type acceleration sensor element, a vibration type strain sensor element, or the like is used as the second sensor element 22.
  • the inertial force sensor of the present invention can achieve high-precision and low power consumption with a simple configuration, it is useful as an inertial force sensor used in digital cameras, portable terminals, robots, and other various electronic devices.

Abstract

 慣性力センサは、慣性力を電気信号に変換するセンサ素子と、センサ素子に接続されて慣性力値を出力するセンサ信号処理部と、慣性力値に基づいてセンサ信号処理部への供給電力を制御する電力制御部と、を有する。電力制御部は、所定時間にわたって、慣性力値が基準値を中心とした所定範囲内の場合に、センサ信号処理部への供給電力を低下させるとともに、基準値を所定時間が経過時の慣性力値に更新する。

Description

慣性力センサ及びこれを用いた電子機器
 本発明は、デジタルカメラ、携帯端末、ロボット、その他各種電子機器に用いられる慣性力センサ及びこの慣性力センサを用いた電子機器に関する。
 図9は、従来の慣性力センサのブロック図である。慣性力センサ1は、振動子2と、振動子2を駆動振動させる自励振動回路3と、振動子2に接続されて慣性力値を出力する検出回路4と、自励振動回路3及び検出回路4への供給電力を制御する電源制御装置5と、電源制御装置5に接続されたトリガー信号入力部6と、を有している。
 電源制御装置5は、検出回路4が慣性量の検出を行わないときに自励振動回路3又は検出回路4への供給電力を低下させる。また、電源制御装置5は、トリガー信号入力部6からのトリガー入力に基づいて、供給電力が低下している自励振動回路3又は検出回路4への供給電力を定格電力へと復元させる。
 なお、この出願の発明に関連する先行技術文献としては、例えば、特許文献1が知られている。
特開2002-350139号公報
 本発明の慣性力センサは、慣性力を電気信号に変換するセンサ素子と、センサ素子に接続されて慣性力値を出力するセンサ信号処理部と、慣性力値に基づいてセンサ信号処理部への供給電力を制御する電力制御部と、を有する。電力制御部は、所定時間にわたって、慣性力値が基準値を中心とした所定範囲内の場合に、センサ信号処理部への供給電力を低下させるとともに、基準値を所定時間が経過時の慣性力値に更新する。
図1は、本発明の実施の形態1における慣性力センサのブロック図である。 図2は、本発明の実施の形態1における角速度センサのブロック図である。 図3は、本発明の実施の形態1における電力制御部の構成例を示すブロック図である。 図4は、本発明の実施の形態1における電力制御部の制御例を示す図である。 図5は、本発明の実施の形態1におけるカウンターを用いた所定期間の計測例を示す図である。 図6は、本発明の実施の形態2における慣性力センサのブロック図である。 図7は、本発明の実施の形態2における加速度センサ素子と角速度センサ素子を用いた慣性力センサのブロック図である。 図8は、本発明の実施の形態2における慣性力センサを用いた電子機器のブロック図である。 図9は、従来の慣性力センサのブロック図である。
 従来の慣性力センサ1において、振動子2が大きな温度特性をもつ場合、温度変化により慣性量値が変動する。そのため、慣性力が加えられていないにもかかわらず電源制御装置5は自励振動回路3及び検出回路4への供給電力が維持されている。
 (実施の形態1)
 図1は、本発明の実施の形態1における慣性力センサ10のブロック図である。慣性力センサ10は、慣性力を電気信号に変換するセンサ素子11と、センサ素子11に接続されて慣性力値を出力するセンサ信号処理部12と、センサ信号処理部12から出力される慣性力値に基づいてセンサ信号処理部12への供給電力を制御する電力制御部13と、を有している。電力制御部13は、所定時間にわたって、慣性力値が基準値を中心とした所定範囲内の場合に、センサ信号処理部12への供給電力を低下させるとともに、基準値を所定時間が経過時の慣性力値に更新する。以上の構成により、慣性力センサ10は、簡易な構成で高精度な低消費電力化を実現できる。
 以下、慣性力センサ10の具体構成例及び動作例について、図2~図4を用いて説明する。
 図2は、慣性力センサ10の一例である角速度センサ10aのブロック図である。角速度センサ素子11aは、図1のセンサ素子11に対応している。角速度センサ信号処理部12aは、図1のセンサ信号処理部12に対応している。
 角速度センサ素子11aは角速度センサ信号処理部12aと接続されている。角速度センサ信号処理部12aは駆動部12bと検出部12cとで構成されている。駆動部12bは駆動信号を出力して角速度センサ素子11aを駆動振動させる。さらに、駆動部12bは、角速度センサ素子11aからモニタ信号を入力し、角速度センサ素子11aの駆動振動が一定振幅となるようにフィードバック制御を行なう。検出部12cは、角速度センサ素子11aから出力された検出信号に対し、駆動部12bから入力されたモニタ信号を用いて検波し、ローパスフィルタ(図示せず)を用いて積分して得た角速度値を出力する。
 電力制御部13は、所定時間にわたって、検出部12cから出力された角速度値が基準値を中心とした所定範囲内の場合に、駆動部12b又は検出部12cの少なくとも一方への供給電力を低下させる。好ましくは、駆動部12bへの供給電力は低下させず、検出部12cへの供給電力を低下させる。駆動部12bは角速度センサ素子11aを常に駆動振動させているため、外部からのトリガー信号により通常電力に復帰する際の起動時間を高速化できる。
 図3は、電力制御部13のブロック図である。Window部13aは、検出部12cから出力された角速度値15を受け付ける。そしてWindow部13aは、角速度値15がWindow部13aの内部に設定された基準値を中心とした所定範囲内である場合に静止信号14bを出力する。時間計測部13bは、内部に設定された所定時間の間、継続して静止信号14bが入力された場合に、センサ信号処理部12への供給電力を低下させる供給電力低下信号14cを出力するとともに、基準値更新信号14dを出力する。基準値更新部13cは、基準値更新信号14dが入力されると、角速度値15を新たな基準値14eとしてWindow部13aに出力する。
 図4は、電力制御部13の制御例を示す図である。横軸が時間であり、縦軸が角速度を示している。Window部13a(図3参照)は、角速度値15が基準値16を中心とした上限閾値17と下限閾値18との範囲Rに含まれる場合に、静止信号14b(図3参照)を時間計測部13b(図3参照)に出力する。図4においては、時刻t1からt2の間、及び時刻t3からt4の間に静止信号14bを出力する。
 時間計測部13bは静止信号14bが所定時間Tだけ継続した場合に供給電力低下信号14cおよび基準値更新信号14dを出力する。図4においては、時刻t1から時刻t2の間に静止信号14bが時間計測部13bに入力されるが、時刻t1から時刻t2の期間T1は所定時間Tよりも短いため、供給電力低下信号14cおよび基準値更新信号14dは出力されない。その後、時刻t3から再び静止信号14bが入力され、時刻t4において、時刻t3からの期間T2が所定時間Tに達するため、供給電力低下信号14cおよび基準値更新信号14dが出力される。この結果、時刻t4において、センサ信号処理部12への供給電力が低下されるとともに、Window部13a内の基準値16が、時刻t4における角速度値である新たな基準値16aに更新される。すなわち基準値16は、所定時間Tが経過時の慣性力値(新たな基準値16a)に更新される。なお、本実施の形態では、所定時間Tが経過した時刻t4における慣性力値を新たな基準値としたが、厳密に時刻t4の時点の慣性力値を用いる必要はない。すなわち、センサ信号処理部12への供給電力を低下させる前後は、実質的に同等の慣性力値であるため、経過直前(時刻t3~t4の間)や経過直後(時刻t4の直後)の慣性力値を新たな基準値としてもよい。
 図4においては、角速度センサ10aに角速度が加えられていないが、角速度センサ素子11aの周囲温度の変化により、角速度値15が徐々に上昇している。このため、検出部12cから出力される角速度値が上限閾値17を超える可能性が高くなる。しかし、本実施の形態においては、時刻t4において、Window部13a内の基準値16を時刻t4における角速度値に更新し、新たな基準値16aとしている。したがって、外部からのトリガー信号によりセンサ信号処理部12への供給電力を通常値に戻した後は新たな基準値16aを基準としてWindow部13aが作動する。このように、角速度センサ10aの温度特性が大きい場合であっても、高精度な低消費電力制御を実現できる。
 なお、電力制御部13は、角速度値15が基準値16を中心とした上限閾値17と下限閾値18との範囲Rを超えた場合、所定時間Tを長くしてもよい。これにより、例えば、角速度センサ10aが搭載された電子機器に、角速度が印加された後は、センサ信号処理部12への供給電力の低下を起こりにくくできる。
 図5は、本発明の実施の形態1におけるカウンターを用いた所定期間の計測例を示す図である。電力制御部13(図3参照)は所定周期T0で角速度値15を確認するとともに、所定周期T0とカウンター値との積により所定時間Tを計測する。具体的には、時間計測部13b(図3参照)は、静止信号14b(図3参照)が入力されている間、所定周期T0でカウンター値をカウントアップする。このカウンター値がカウンター閾値を超えた場合に、時間計測部13bは、所定時間Tに達したと判断し、供給電力低下信号14c(図3参照)および基準値更新信号14d(図3参照)を出力する。
 すなわち、電力制御部13は、所定周期T0ごとに角速度値15を確認し、所定周期T0の回数を記憶する。電力制御部13は、所定周期T0と回数との積により時間を算出し、その時間が所定時間Tかどうかを判定する。そして、電力制御部13は、所定時間にわたって、慣性力値が基準値を中心とした所定範囲内の場合に、供給電力低下信号14cおよび基準値更新信号14dを出力する。
 図5の例では、カウンター閾値は9である。所定周期T0毎にカウンター値がカウントアップされている。時刻t1~t2ではカウンター閾値が9に達する前に角速度値15が上限閾値17を超えるため、カウンター値は0にリセットされる。時刻t3以降は再びカウンター値がカウントアップされる。時刻t4においてカウンター閾値が9に達するため、時間計測部13bは、供給電力低下信号14cおよび基準値更新信号14dを出力する。このように、カウンターを用いて所定時間を計測することにより、簡易な構成で低消費電力のための制御ができる。
 なお、電力制御部13は、角速度値15が基準値16を中心とした上限閾値17と下限閾値18との範囲Rを超えた場合、カウンター閾値を大きくしてもよい。すなわち、電力制御部13は、角速度値15が基準値16を中心とした所定範囲を超えた場合、所定周期T0の回数を多くしてもよい。これにより、例えば、角速度センサ10aが搭載された電子機器が駆動され、角速度が印加された後は、センサ信号処理部12への供給電力の低下を起こりにくくできる。
 また、電力制御部13は、角速度値15が基準値16を中心とした上限閾値17と下限閾値18との範囲Rを超えた場合、上限閾値17を上げる、又は下限閾値18を下げることにより、範囲Rを広げてもよい。これにより、例えば、角速度センサ10aが搭載された電子機器に、角速度が印加された後は、センサ信号処理部12への供給電力の低下を起こりにくくできる。
 なお、本実施の形態においては慣性力センサ10の具体例として角速度センサ10aを用いて説明したが、加速度センサや圧力センサ、地磁気センサ等の他の慣性力センサにも適用できる。
 (実施の形態2)
 以下に、実施の形態2の特徴部分について、実施の形態1との相違点を中心に説明する。
 図6は、本発明の実施の形態2における慣性力センサ20のブロック図である。慣性力センサ20は、第一のセンサ素子21と、第二のセンサ素子22と、第一のセンサ信号処理部23と、第二のセンサ信号処理部24と、電力制御部25と、を有している。第一のセンサ素子21は、第一の慣性力を電気信号に変換する。第二のセンサ素子22は、第一の慣性力とは異なる第二の慣性力を電気信号に変換する。第一のセンサ信号処理部23は、第一のセンサ素子21と電力制御部25に接続されている。第一のセンサ信号処理部23は、第一のセンサ素子21からの電気信号を入力し、第一の慣性力値を出力する。第二のセンサ信号処理部24は、第二のセンサ素子22と電力制御部25に接続されている。第二のセンサ信号処理部24は、第二のセンサ素子22からの電気信号を入力し、第二の慣性力値を出力する。電力制御部25は、第一のセンサ信号処理部23と第二のセンサ信号処理部24に接続されている。電力制御部25は、第一の慣性力値に基づいて第二のセンサ信号処理部24への供給電力を制御する。電力制御部25は、所定時間にわたって、第一の慣性力値が基準値を中心とした所定範囲内の場合に、第二のセンサ信号処理部24への供給電力を低下させるとともに、基準値を第一の慣性力値に更新する。
 この構成により、第一の慣性力値に基づいて第二のセンサ信号処理部24の低消費電力制御を高精度に行うことができる。望ましくは、2つのセンサ信号処理部のうち、消費電力の小さい方を第一のセンサ信号処理部23とする。これにより、小さな消費電力で検出できる第一の慣性力を用いて、大きな消費電力を要する第二のセンサ信号処理部24の消費電力を低減することができる。
 図7は、慣性力センサ20の一例である、加速度センサ素子21aと角速度センサ素子22aを用いた慣性力センサ20aのブロック図である。第一のセンサ素子21として加速度センサ素子21aを用い、第二のセンサ素子22として角速度センサ素子22aを用いている。
 加速度センサ素子21aは可撓部(図示せず)を有し、加速度による可撓部の変位を電気信号に変換する。加速度センサ信号処理部23aが、その電気信号を検出する。
 角速度センサ素子22aは可撓部(図示せず)を有し、その可撓部を駆動振動させ、駆動振動軸および角速度の印加軸と直交する軸方向に発生するコリオリ力による可撓部の変位を電気信号に変換する。角速度センサ信号処理部24aが、その電気信号を検出する。
 ここで、角速度センサ信号処理部24aは図2に示すように、駆動部と検出部とを有し、駆動部により角速度センサ素子22aを駆動振動させる。そのため、角速度センサ信号処理部24aの消費電力は加速度センサ信号処理部23aよりも大きい。
 電力制御部25は、所定時間にわたって、加速度センサ信号処理部23aから出力された加速度値が基準値を中心とした所定範囲内の場合に、角速度センサ信号処理部24aへの供給電力を低下させる。このように、異なる2種類の慣性力を検出する慣性力センサにおいて、消費電力が大きい方の信号処理部の消費電力を低減できる。
 さらに、加速度センサ信号処理部23aを用いて角速度センサ信号処理部24aの復帰処理が行える。例えば、加速度センサ信号処理部23aから出力された加速度値が所定の閾値を超えた場合に、電力制御部25は、角速度センサ信号処理部24aへの供給電力を通常値に戻す。これにより、外部トリガーに基づかずに、慣性力センサ20a内で完結して、低消費電力化制御と復帰制御を行える。
 なお、本実施の形態においては、第一のセンサ素子21として加速度センサ素子21aを用いたが、地磁気センサ素子や気圧センサ素子を用いてもよい。また、第二のセンサ素子22として角速度センサ素子22aを用いたが、振動型加速度センサ素子や振動型歪センサ素子を用いてもよい。
 図8は、本発明の実施の形態2における慣性力センサ30を用いた電子機器33のブロック図である。
 慣性力センサ30と図6に示す慣性力センサ20との違いは、慣性力センサ30が、インターフェース制御部31を有している点である。インターフェース制御部31は、第一のセンサ信号処理部23と第二のセンサ信号処理部24と電力制御部25に接続されている。
 第一のセンサ信号処理部23から出力された第一の慣性力値は、インターフェース制御部31と電力制御部25に入力される。第二のセンサ信号処理部24から出力された第二の慣性力値は、インターフェース制御部31に入力される。
 インターフェース制御部31は、慣性力センサ30の外部に設けられたCPU32に接続されており、信号を送受信できる。また、インターフェース制御部31は、電力制御部25に信号を送信できる。それ以外は、慣性力センサ20と同じであるので、その説明は省略する。
 CPU32は、通常時(動作時)とスリープ時(非動作時)でインターフェース制御部31と信号を送受信するためのポーリング周期を変える。具体的には、CPU32は、通常時(動作時)のポーリング周期に比べて、スリープ時(非動作時)のポーリング周期を長くする。すなわち、CPU32は、第二のセンサ信号処理部24への供給電力が低下している間は、信号の送受信周期を長くする。電子機器33を制御するCPU32は回路規模が大きく、そのため消費電力が大きい。スリープ時(非動作時)のポーリング周期を長くすることにより、CPU32の処理負荷を軽減でき、電子機器33の消費電力を低減できる。ここで、通常時とは慣性力センサ30が動作している状態であり、スリープ時とは慣性力センサ30が動作していない状態である。
 なお、本実施の形態では、慣性力センサ20にインターフェース制御部31を加えた構成について説明したが、図1に示す慣性力センサ10にインターフェース制御部31を加え、CPU32と接続してもよい。この場合、CPU32は、センサ信号処理部12への供給電力が低下している間は、信号の送受信周期を長くする。
 なお、本実施の形態においても、第一のセンサ素子21として、加速度センサ素子や地磁気センサ素子や気圧センサ素子などが用いられる。また、第二のセンサ素子22として、角速度センサ素子や振動型加速度センサ素子や振動型歪センサ素子などが用いられる。
 本発明の慣性力センサは、簡易な構成で高精度な低消費電力化を実現することができるため、デジタルカメラ、携帯端末、ロボット、その他各種電子機器に用いられる慣性力センサとして有用である。
 1,10,20,20a,30 慣性力センサ
 10a 角速度センサ
 11 センサ素子
 11a 角速度センサ素子
 12 センサ信号処理部
 12a 角速度センサ信号処理部
 13 電力制御部
 13a Window部
 13b 時間計測部
 13c 基準値更新部
 14b 静止信号
 14c 供給電力低下信号
 14d 基準値更新信号
 14e,16a 新たな基準値
 15 角速度値
 16 基準値
 17 上限閾値
 18 下限閾値
 21 第一のセンサ素子
 21a 加速度センサ素子
 22 第二のセンサ素子
 22a 角速度センサ素子
 23 第一のセンサ信号処理部
 23a 加速度センサ信号処理部
 24 第二のセンサ信号処理部
 24a 角速度センサ信号処理部
 25 電力制御部
 31 インターフェース制御部
 32 CPU
 33 電子機器

Claims (12)

  1. 慣性力を電気信号に変換するセンサ素子と、
    前記センサ素子に接続されて慣性力値を出力するセンサ信号処理部と、
    前記慣性力値に基づいて前記センサ信号処理部への供給電力を制御する電力制御部と、
    を有し、
    前記電力制御部は、所定時間にわたって、前記慣性力値が基準値を中心とした所定範囲内の場合に、前記センサ信号処理部への供給電力を低下させるとともに、前記基準値を前記所定時間が経過時の慣性力値に更新する
    慣性力センサ。
  2. 前記電力制御部は、前記慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定時間を長くする
    請求項1に記載の慣性力センサ。
  3. 前記電力制御部は、前記慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定範囲を広げる
    請求項1に記載の慣性力センサ。
  4. 前記電力制御部は、所定周期で前記慣性力値を確認するとともに、前記所定周期と所定回数との積により前記所定時間を判定する
    請求項1に記載の慣性力センサ。
  5. 前記電力制御部は、前記慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定回数を増加させる
    請求項4に記載の慣性力センサ。
  6. 第一の慣性力を電気信号に変換する第一のセンサ素子と、
    前記第一の慣性力とは異なる第二の慣性力を電気信号に変換する第二のセンサ素子と、
    前記第一のセンサ素子に接続されて第一の慣性力値を出力する第一のセンサ信号処理部と、
    前記第二のセンサ素子に接続されて第二の慣性力値を出力する第二のセンサ信号処理部と、
    前記第一の慣性力値に基づいて前記第二のセンサ信号処理部への供給電力を制御する電力制御部と、
    を有し、
    前記電力制御部は、所定時間にわたって、前記第一の慣性力値が基準値を中心とした所定範囲内の場合に、前記第二のセンサ信号処理部への供給電力を低下させるとともに、前記基準値を前記所定時間が経過時の第一の慣性力値に更新する
    慣性力センサ。
  7. 前記電力制御部は、前記第一の慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定時間を長くする
    請求項6に記載の慣性力センサ。
  8. 前記電力制御部は、前記第一の慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定範囲を広げる
    請求項6に記載の慣性力センサ。
  9. 前記電力制御部は、所定周期で前記第一の慣性力値を確認するとともに、前記所定周期と所定回数との積により前記所定時間を判定する
    請求項6に記載の慣性力センサ。
  10. 前記電力制御部は、前記第一の慣性力値が基準値を中心とした所定範囲を超えた場合、前記所定回数を増加させる
    請求項9に記載の慣性力センサ。
  11. 請求項1に記載の慣性力センサと、
    前記慣性力センサと周期的に信号を送受信するCPUと、
    を備え
    前記CPUは、前記センサ信号処理部への供給電力が低下している間は、前記信号の送受信周期を長くする電子機器。
  12. 請求項6に記載の慣性力センサと、
    前記慣性力センサと周期的に信号を送受信するCPUと、
    を備え
    前記CPUは、前記第二のセンサ信号処理部への供給電力が低下している間は、前記信号の送受信周期を長くする電子機器。
PCT/JP2013/000925 2012-02-21 2013-02-20 慣性力センサ及びこれを用いた電子機器 WO2013125212A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014500918A JP6106850B2 (ja) 2012-02-21 2013-02-20 慣性力センサ及びこれを用いた電子機器
US14/379,535 US9464898B2 (en) 2012-02-21 2013-02-20 Inertial force sensor and electronic device using same
CN201380010212.1A CN104136887B (zh) 2012-02-21 2013-02-20 惯性力传感器以及使用其的电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-034615 2012-02-21
JP2012034615 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013125212A1 true WO2013125212A1 (ja) 2013-08-29

Family

ID=49005408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000925 WO2013125212A1 (ja) 2012-02-21 2013-02-20 慣性力センサ及びこれを用いた電子機器

Country Status (3)

Country Link
US (1) US9464898B2 (ja)
JP (1) JP6106850B2 (ja)
WO (1) WO2013125212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170585A1 (ja) * 2014-05-09 2015-11-12 アルプス電気株式会社 電子機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150370310A1 (en) * 2013-02-08 2015-12-24 Panasonic Intellectual Property Management Co., Ltd. Electronic device
JP6326274B2 (ja) * 2014-04-25 2018-05-16 日立オートモティブシステムズ株式会社 角速度検出装置
TWI650558B (zh) * 2015-05-20 2019-02-11 美商路梅戴尼科技公司 用於決定慣性參數之方法及系統
US10621008B2 (en) * 2016-01-25 2020-04-14 Htc Corporation Electronic device with multi-core processor and management method for multi-core processor
US10234477B2 (en) 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256372A (ja) * 1985-05-09 1986-11-13 オセ−ネ−デルランド・ベ−・ヴエ− 掃除部材上の粘性材料層の更新時期を決定する方法及びこの方法実施のための装置
WO2005019790A1 (ja) * 2003-08-26 2005-03-03 Matsushita Electric Works, Ltd. センサ装置
JP2006155505A (ja) * 2004-12-01 2006-06-15 Seiko Epson Corp 状態監視システムおよびこれに用いるネットワーク装置、状態監視装置
JP2009040225A (ja) * 2007-08-09 2009-02-26 Nsk Ltd 電動パワーステアリング装置
JP2009194741A (ja) * 2008-02-15 2009-08-27 Nec Corp パルス位相調整方法および装置
WO2011005634A1 (en) * 2009-07-06 2011-01-13 Carefusion 303, Inc. Systems and methods for delivery a fluid to a patient having wireless communication
JP2011099833A (ja) * 2009-11-09 2011-05-19 Denso Corp 力学量検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573017B2 (ja) 2001-05-30 2010-11-04 セイコーエプソン株式会社 振動子を用いた検出方法および検出装置
US8886298B2 (en) * 2004-03-01 2014-11-11 Microsoft Corporation Recall device
US7216053B2 (en) * 2004-12-30 2007-05-08 Nokia Corporation Low power motion detector
KR101261176B1 (ko) * 2007-03-23 2013-05-09 퀄컴 인코포레이티드 멀티-센서 데이터 수집 및/또는 프로세싱
JP2012026824A (ja) * 2010-07-22 2012-02-09 Seiko Epson Corp センシング装置、電子機器
US9037433B2 (en) * 2011-09-06 2015-05-19 Htc Corporation Portable device and orientation detection method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256372A (ja) * 1985-05-09 1986-11-13 オセ−ネ−デルランド・ベ−・ヴエ− 掃除部材上の粘性材料層の更新時期を決定する方法及びこの方法実施のための装置
WO2005019790A1 (ja) * 2003-08-26 2005-03-03 Matsushita Electric Works, Ltd. センサ装置
JP2006155505A (ja) * 2004-12-01 2006-06-15 Seiko Epson Corp 状態監視システムおよびこれに用いるネットワーク装置、状態監視装置
JP2009040225A (ja) * 2007-08-09 2009-02-26 Nsk Ltd 電動パワーステアリング装置
JP2009194741A (ja) * 2008-02-15 2009-08-27 Nec Corp パルス位相調整方法および装置
WO2011005634A1 (en) * 2009-07-06 2011-01-13 Carefusion 303, Inc. Systems and methods for delivery a fluid to a patient having wireless communication
JP2011099833A (ja) * 2009-11-09 2011-05-19 Denso Corp 力学量検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170585A1 (ja) * 2014-05-09 2015-11-12 アルプス電気株式会社 電子機器
JPWO2015170585A1 (ja) * 2014-05-09 2017-04-20 アルプス電気株式会社 電子機器

Also Published As

Publication number Publication date
CN104136887A (zh) 2014-11-05
US20150046737A1 (en) 2015-02-12
US9464898B2 (en) 2016-10-11
JP6106850B2 (ja) 2017-04-05
JPWO2013125212A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6106850B2 (ja) 慣性力センサ及びこれを用いた電子機器
JP6149262B2 (ja) 慣性力センサ、これを用いた携帯端末
JP4633058B2 (ja) 振動型慣性力センサ
JP6641712B2 (ja) 回路装置、電子機器及び移動体
JP2009162645A (ja) 慣性速度センサ信号処理回路およびそれを備える慣性速度センサ装置
JP5251667B2 (ja) 電子部品
EP2762893A1 (en) Mems resonant accelerometer
KR20140026149A (ko) 관성 센서의 자동이득제어 장치 및 방법
KR20150011247A (ko) 관성센서의 구동장치 및 그 제어방법
WO2014122903A1 (ja) 電子機器
KR102172631B1 (ko) 디지털 촬영시스템 및 그 제어방법
US20120167680A1 (en) Apparatus for driving multi-axial angular velocity sensor
KR20160061814A (ko) 관성 센서 모듈
KR20150015932A (ko) 자이로 센서의 구동장치 및 그 제어방법
CN104136887B (zh) 惯性力传感器以及使用其的电子设备
WO2023127277A1 (ja) アクチュエータユニット、触覚提示装置および筐体モジュール
CN116147756A (zh) 一种线性马达谐振频率的检测方法及检测装置
JP2009244019A (ja) 角速度検出装置
KR20060097856A (ko) 각속도 측정에 의한 볼륨 조절 기능을 가지는 무선통신단말기 및 그 방법
KR101331653B1 (ko) 관성센서 및 이의 폴링방법
JP2008157767A (ja) 加速度検出装置
JP2016213958A (ja) 振動検出装置及び方法
KR20130108859A (ko) 관성센서 제어모듈 및 그 제어방법
KR20150034481A (ko) 자이로 센서의 구동장치
JP2008256581A (ja) 加速度検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751451

Country of ref document: EP

Kind code of ref document: A1