WO2013125208A1 - 多結晶シリコン棒の製造方法 - Google Patents

多結晶シリコン棒の製造方法 Download PDF

Info

Publication number
WO2013125208A1
WO2013125208A1 PCT/JP2013/000893 JP2013000893W WO2013125208A1 WO 2013125208 A1 WO2013125208 A1 WO 2013125208A1 JP 2013000893 W JP2013000893 W JP 2013000893W WO 2013125208 A1 WO2013125208 A1 WO 2013125208A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
current
silicon rod
high frequency
frequency
Prior art date
Application number
PCT/JP2013/000893
Other languages
English (en)
French (fr)
Inventor
祢津 茂義
靖志 黒澤
成大 星野
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP13751609.2A priority Critical patent/EP2818449B1/en
Priority to CN201380006277.9A priority patent/CN104066678B/zh
Priority to KR1020147019668A priority patent/KR20140128300A/ko
Priority to US14/379,429 priority patent/US20150037516A1/en
Publication of WO2013125208A1 publication Critical patent/WO2013125208A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a polycrystalline silicon rod manufacturing technique for obtaining high purity polycrystalline silicon.
  • Polycrystalline silicon is a raw material of a single crystal silicon substrate for manufacturing a semiconductor device and a silicon substrate for manufacturing a solar cell.
  • Siemens is contacted with a heated silicon core wire to make a raw material gas containing chlorosilanes, and polycrystalline silicon is deposited on the surface of the silicon core wire by chemical vapor deposition (CVD). It is done by law.
  • the internal space of the dome-shaped reaction container (Bellja) provided in the reaction furnace is sealed with a base plate, and this sealed space becomes a vapor phase growth reaction space of polycrystalline silicon.
  • the metal electrode for energizing the torii type silicon core wire penetrates the base plate with an insulator in between, and is connected to a power source provided below the bell jar or to another toriiary silicon core wire disposed in the bell jar It is connected to the current-carrying metal electrode.
  • the metal electrode, the base plate, and the bell jar are made of water, etc. It is cooled by the refrigerant of The core holder is cooled through the metal electrode.
  • the surface temperature of the silicon core wire is 900 ° C. in order to deposit polycrystalline silicon with a desired diameter on the torii type silicon core wire. It must be in the range of ⁇ 1300 ° C. Therefore, prior to the start of the precipitation reaction of polycrystalline silicon, the surface of the silicon core wire needs to be at a temperature in the range of 900 ° C. to 1300 ° C. For that purpose, generally 0.3 A per cross section of the silicon core wire It is necessary to flow a current of / mm 2 to 4 A / mm 2 .
  • the surface temperature of the polycrystalline silicon rod After the start of the deposition of polycrystalline silicon, it is necessary to maintain the surface temperature of the polycrystalline silicon rod within the range of 900 ° C. to 1300 ° C. by controlling the amount of current flow.
  • the temperature difference between the center portion and the surface side of the polycrystalline silicon rod becomes remarkable as the diameter of the polycrystalline silicon rod becomes larger. This tendency is particularly strong when the diameter of the polycrystalline silicon rod is 80 mm or more, which means that the central portion of the polycrystalline silicon rod is not specially cooled, while the surface side of the polycrystalline silicon rod is supplied into the chamber. To be cooled by contact with the source gas being used.
  • Silicon crystals have the property that the higher the temperature, the lower the electrical resistance. Therefore, the electrical resistance at the central portion of the relatively high temperature polycrystalline silicon rod becomes relatively low, and the electrical resistance on the surface side of the relatively low temperature polycrystalline silicon rod becomes relatively high.
  • the current supplied from the metal electrode is likely to flow to the central portion of the polycrystalline silicon rod, while it is difficult to flow to the surface side.
  • the temperature difference between the central portion and the surface side of the crystalline silicon rod becomes larger and larger.
  • the diameter of the polycrystalline silicon rod continues to grow in such a state and the diameter of the polycrystalline silicon rod is 130 mm or more, the difference between the temperature at the central portion and the temperature on the surface side becomes 150 ° C. or more. If you try to maintain the temperature in the range of 900 ° C to 1300 ° C, the temperature in the central part becomes too high, and in the worst case, the central part may be partially melted and the silicon core wire may collapse. It can.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-74909
  • Patent Document 2 a relatively large amount of current is caused to flow near the surface of a polycrystalline silicon rod by using the skin effect generated by the high frequency current. The method has been proposed.
  • a deposition temperature of polycrystalline silicon is set to about 850 ° C. using monosilane having a reaction temperature lower than chlorosilane as a raw material gas, and a high frequency current of 200 kHz is supplied. Attempts have been reported to reduce the temperature difference between the center and the surface side of the polycrystalline silicon rod by using it for heating, whereby polycrystalline silicon rods up to a diameter of 300 mm having a stress of no more than 11 MP over the entire volume It is supposed to have been obtained.
  • a high frequency current is applied to the electric heating of the polycrystalline silicon rod. It is effective to do it and to use the skin effect.
  • Patent Document 2 monosilane instead of general trichlorosilane is used as a source gas.
  • the deposition temperature in the case of using trichlorosilane as the source gas is 900 ° C. to 1300 ° C. as described above, and it is necessary to electrically heat the polycrystalline silicon rod to a higher temperature.
  • the inventors of the present invention tried experiments using trichlorosilane as a raw material gas and applying current with a frequency of 200 kHz to a polycrystalline silicon rod to make the surface temperature approximately 1000 ° C. according to the method disclosed in Patent Document 2
  • the diameter of the polycrystalline silicon rod exceeds 160 mm, there are many cases where the polycrystalline silicon rod assembled in a torii type collapses.
  • the present invention has been made in view of the problems of the conventional method as described above, and the object of the present invention is to manufacture a large diameter polycrystalline silicon rod using a silane compound such as chlorosilanes, in particular trichlorosilane, as a raw material It is an object of the present invention to provide a technique for manufacturing a large-diameter polycrystalline silicon rod with high efficiency while preventing the collapse of the polycrystalline silicon rod while effectively obtaining the effect of using a high frequency current.
  • a silane compound such as chlorosilanes, in particular trichlorosilane
  • the manufacturing method of the polycrystalline silicon stick concerning the present invention is provided with the following composition.
  • a silicon core wire is disposed in a reactor, a raw material gas containing a silane compound is supplied into the reactor, and polycrystalline silicon is deposited on the silicon core wire heated by energization by the CVD method to obtain a polycrystalline silicon rod
  • a method of producing The method includes a high frequency current application step of heating the polycrystalline silicon rod by supplying a current having a frequency of 2 kHz or more with a variable frequency high frequency power supply.
  • the high-frequency current applying step includes the step of supplying a high-frequency current to polycrystalline silicon rod diameter by precipitation of the polycrystalline silicon connected in series has reached a predetermined value D 0 of the above 80 mm,
  • the frequency of the high frequency current is polycrystalline within a range in which the skin depth when the high frequency current flows in the polycrystalline silicon rod is not less than 13.8 mm and not more than 80.0 mm. It is characterized in that it is selected according to the surface temperature fluctuation of the silicon rod.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under a condition of constant current flow.
  • the frequency of the high frequency current is switched to the low frequency side and the amount of current supplied is increased to maintain the surface temperature of the polycrystalline silicon rod. It is good also as an aspect including a process.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition of constant current quantity.
  • the frequency of the high-frequency current is switched to the high frequency side while maintaining the amount of current supplied to maintain the surface temperature of the polycrystalline silicon rod. It may be an aspect including the step of maintaining.
  • a gas containing trichlorosilane is selected as the source gas, and the surface temperature of the polycrystalline silicon rod is controlled to 900 ° C. or more and 1250 ° C. or less.
  • crystalline silicon may be deposited.
  • the present invention it is possible to prevent the collapse of a polycrystalline silicon rod which is likely to occur when manufacturing a large diameter polycrystalline silicon rod using silane compounds such as chlorosilanes, particularly trichlorosilane as a raw material, and to make a large diameter polycrystalline silicon rod high.
  • silane compounds such as chlorosilanes, particularly trichlorosilane as a raw material
  • Is a diagram for explaining the relationship between I x and I 0 of the current distribution shown in FIG. 10A (I x / I 0). It is a figure which shows the result of having examined the suitable frequency of the high frequency current used by this invention. It is a figure for demonstrating the mode of the crack generation
  • FIG. 9 is a flow chart for explaining an example of the manufacturing process of the polycrystalline silicon rod according to the present invention when the reaction furnace 100 having the configuration shown in FIG. 1 is used. The details of the configuration of the reaction furnace 100 will be described later with reference to FIG.
  • the bell jar (chamber) 1 is closely placed on the base plate 5, and nitrogen gas is supplied from the source gas supply nozzle 9 to replace the air in the chamber 1 with nitrogen (S101). Air and nitrogen in the chamber 1 are exhausted out of the chamber 1 from the exhaust gas outlet 8. After the completion of nitrogen substitution in the chamber 1, hydrogen gas is supplied from the source gas supply nozzle 9 in place of nitrogen gas, and the inside of the chamber 1 is made a hydrogen atmosphere (S102).
  • initial heating (preheating) of the silicon core wire 12 is performed (S103).
  • the carbon heater 13 is used for this initial heating, it may be performed by supplying heated hydrogen gas into the chamber 1.
  • the temperature of the silicon core wire 12 becomes 300 ° C. or higher, and the electrical resistance of the silicon core wire 12 becomes a value at which efficient energization can be obtained.
  • the silicon core wire 12 is energized through the core wire holder 14, and the silicon core wire 12 is heated (mainly heated) to about 900 ° C. to 1300 ° C. by this energization (S104) ).
  • a mixed gas of a carrier gas, hydrogen gas, and a trichlorosilane gas which is a raw material gas containing a silane compound, is supplied into the chamber 1 at a relatively low flow rate (flow velocity), and the gas of polycrystalline silicon on the silicon core 12 is supplied.
  • Phase growth is started (S105). It is also possible to carry out the initial heating of the silicon core wire in a nitrogen atmosphere, but in this case hydrogen substitution is required before supplying trichlorosilane gas.
  • the silicon core wire 12 is thin and it can not be said that mechanical strength is high. For this reason, at the initial stage of the vapor phase growth reaction of polycrystalline silicon, problems such as collapse of the silicon core wire 12 due to the ejection pressure when the supply gas is supplied into the chamber 1 easily occur. Therefore, it is preferable to set the flow rate (flow velocity) of the supplied gas at the initial stage of the vapor deposition reaction relatively small (S106).
  • the deposition rate (reaction rate) of polycrystalline silicon it is necessary to keep the bulk concentration of the source gas supplied to the chamber 1 (the concentration of the source gas in the supplied gas) high. is there. Specifically, it is preferable to set the bulk concentration of the source gas (trichlorosilane) to 15 mol% or more and 40 mol% or less until the diameter of the polycrystalline silicon rod becomes at least 15 mm (preferably 20 mm).
  • the supplied gas flow rate (flow velocity) setting can be performed, for example, when the diameter of the polycrystalline silicon rod 11 reaches 20 mm, but may be 40 mm as a guide.
  • the gas supply at this time is preferably performed so that the pressure in the chamber 1 is 0.3 MPa to 0.9 MPa, and the flow velocity at the outlet of the source gas supply nozzle 9 is 150 m / sec or more. Is preferred.
  • the surface temperature of the polycrystalline silicon rod 11 during this period is preferably kept at a relatively high temperature of 1000 ° C. or higher, and is controlled, for example, in the range of 1000 ° C. to 1250 ° C.
  • the bulk concentration of the source gas in the supply gas is set to a value in the range of 15 mol% to 45 mol% from a value in the range of 30 mol% to 50 mol%.
  • the bulk concentration of trichlorosilane is set to 20 mol% or more and 40 mol% or less.
  • the diameter of the polycrystalline silicon rod is obtained when conducting heating of the polycrystalline silicon rod using a power source of commercial frequency. Becomes constant, the temperature of the central portion of the polycrystalline silicon rod becomes higher than the temperature near the surface due to heating by energization and cooling near the surface. In this case, the electrical resistance at the center of the polycrystalline silicon rod is lower than the electrical resistance at the surface side, and this tendency becomes remarkable as the diameter increases.
  • the current supplied to the polycrystalline silicon rod tends to flow to the central portion showing lower electric resistance, the current density in the central portion is increased while the current density on the surface side is decreased. It will be amplified more and more. For example, when heating is performed so that the surface temperature of the polycrystalline silicon rod is 1000 ° C. or more, if the diameter is 130 mm or more, the temperature difference between the central portion and the surface side becomes 150 ° C. or more.
  • the high frequency current shows a skin effect, and the current density in the vicinity of the surface becomes high when the conductor is energized.
  • the skin effect is more pronounced as the frequency is higher, and current tends to be concentrated on the surface.
  • the current flow depth is referred to as skin depth or current penetration depth.
  • FIGS. 10A and 10B are diagrams for explaining the current distribution in the cross section when current of 80 kHz frequency is applied to the polycrystalline silicon rod having a diameter of 160 mm and the current distribution (I it is a diagram for explaining the relationship between I x and I 0 for x / I 0).
  • the polycrystalline silicon rod is heated by applying a high frequency current, preferential heating near the surface becomes possible, so even if the diameter of the polycrystalline silicon rod is expanded, Since the vicinity of the surface can be heated preferentially, it can be avoided that the temperature distribution inside the polycrystalline silicon becomes as large as a manufacturing obstacle.
  • Energization of such a high-frequency current is preferably carried out with respect to those diameters of polycrystalline silicon rods becomes a predetermined value D 0 of the above 80Faimm.
  • FIG. 11 is a diagram showing a result of examining an appropriate frequency of the high frequency current used in the present invention.
  • the frequency is examined from 2 kHz to 200 kHz. According to the results shown in this figure, when the frequency is 800 kHz, the penetration depth ⁇ is only about 4 mm under the condition that the surface temperature of the polycrystalline silicon rod is 1150 ° C., and even at 900 ° C. It is only about 7 mm. Further, when the frequency is 200 kHz, the penetration depth ⁇ under the condition that the surface temperature of the polycrystalline silicon rod is 1150 ° C. is less than 9 mm, and even at 900 ° C., it is only 13.7 mm.
  • FIG. 12A and FIG. 12B are diagrams for explaining how the above-mentioned polycrystalline silicon rod is cracked, and a portion shown by a broken line is a cracked portion.
  • FIG. 13 is a diagram for explaining current distribution in a cross section when currents of frequencies of 80 kHz and 200 kHz are applied to a polycrystalline silicon rod having a diameter of 160 mm.
  • the calculation of the current distribution (I x / I 0 ) is as shown in FIG. 10B.
  • a high frequency current having a frequency of 200 kHz or more can not be said to be appropriate as a current for electric current heating used in the present invention.
  • the penetration depth (skin depth) ⁇ calculated by the above equation needs to have a value of at least 13.7 mm.
  • the frequency of the high frequency current is set so that the skin depth when flowing through the polycrystalline silicon rod becomes a desired value within the range of 13.8 mm to 80.0 mm.
  • the penetration depth of the high frequency current depends on the temperature of the polycrystalline silicon rod, but at 1200 ° C. 67.2 kHz to 2.0 kHz, at 1100 ° C. 93.7 kHz to 2.8 kHz, 137 ° C. 137
  • the penetration depth in the above range can be obtained by current at a frequency of 8 kHz to 4.1 kHz, 171.1 kHz to 5.1 kHz at 950 ° C., and 216.3 kHz to 6.4 kHz at 900 ° C.
  • the surface temperature is lowered to a range of 950 ° C. or more and less than 1000 ° C. when the diameter reaches about 160 mm, and the surface temperature at the final stage is in the range of 900 to 980 ° C. It is preferable to reduce it.
  • Such an appropriate penetration depth can be obtained from the initial heating stage of the silicon core wire prior to the initiation of the precipitation reaction of the polycrystalline silicon rod, although it is possible to use m pieces (m (m) arranged in the reactor Is a multiple of n (n is an integer not less than 2 and not more than m) series-connected multiple polycrystalline silicon deposited on the silicon core of 2 or more and reaching a predetermined value D 0 of 80 mm or more in diameter
  • a high frequency current may be supplied to the n polycrystalline silicon rods, and a current of a commercial frequency (low frequency current) may be used for heating before that.
  • a variable frequency high frequency power source is used to pass the high frequency current.
  • frequency variable may be continuously variable or may be stepwise variable between multiple levels.
  • variable frequency high frequency power source In order to control the temperature of the polycrystalline silicon rod surface appropriately, it is necessary to increase the amount of current supplied to the polycrystalline silicon rod in accordance with the diameter expansion of the silicon rod accompanying the progress of the precipitation reaction.
  • the temperature control becomes difficult by creating a circulation that the surface temperature is further increased, and an accident such as melting or cracking of the silicon rod in a region having a shape in which the skin effect appears strongly as described above tends to occur.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition of constant current quantity.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition of constant current quantity.
  • a mode including the step of maintaining the surface temperature of the polycrystalline silicon rod by switching the frequency of the high frequency current to the high frequency side while maintaining the amount of current flow when there is a fear that the surface temperature of the polycrystalline silicon rod decreases in the state. It may be
  • variable range of such frequency is preferably 2 kHz to 400 kHz, and more continuous frequency or selectable frequency is more preferable.
  • the surface temperature may be increased to about 1000 ° C. Then, the current frequency is switched to 80 kHz, which is lower than 100 kHz, and the amount of energization is gradually increased by 10 A to 50 A per step to observe a temperature rise.
  • the frequency of the current is raised to 100 kHz while maintaining the amount of energization, and if the surface temperature starts to decrease further, the amount of energization is maintained Do the same to pull up to 120 kHz and observe the temperature rise. If the surface temperature starts to decrease also by the above operation, the frequency is lowered to 80 kHz, and the amount of energization is gradually increased by 10 A to 50 A.
  • FIG. 14 is a flow chart for explaining a process example of a process of expanding the diameter of the polycrystalline silicon rod while changing the frequency of the high frequency current with the change of the amount of energization.
  • S201 the diameter increases
  • the temperature of the surface of the silicon rod decreases.
  • the efficiency decreases as the temperature rises, the penetration depth ⁇ becomes shallow, and the surface temperature may become too high. Therefore, the frequency of the high frequency current is first lowered to deepen the penetration depth ⁇ .
  • Operation (S202) and an operation (S203) to increase the amount of current.
  • the amount of energization can be safely increased, and thereby the surface temperature is raised to expand the diameter (S204).
  • the temperature of the surface of the silicon rod is lowered with the diameter expansion (S205)
  • the frequency of the high frequency current is increased to make the penetration depth ⁇ shallow (S206)
  • the surface temperature is raised (S207).
  • the diameter of the silicon rod is expanded while appropriately controlling the temperature of the surface of the polycrystalline silicon rod (S201).
  • a current having a frequency of 2 kHz or more is flowed until the surface of the polycrystalline silicon rod becomes lower than a predetermined temperature, and only the surface side is slightly It heats, and it cools so that the temperature difference of the surface side and a center part may become as small as possible. It is not necessary to separately prepare a high frequency power supply for such a cooling process, and the single frequency or variable frequency high frequency power supply described above may be used. In addition, it is preferable that the frequency of the high frequency current flowed at a cooling process is 2 kHz or more and 100 kHz or less.
  • the energization in such a cooling step may be ended when the surface temperature of the polycrystalline silicon rod becomes, for example, 500 ° C. or less.
  • the standard of the conduction time of the high frequency current at the time of a cooling process is dependent also on the diameter etc. of a polycrystalline-silicon rod, it is preferable to set it as about 4 hours.
  • a silicon core wire is disposed in a reactor, a raw material gas containing a silane compound is supplied into the reactor, and heating is performed by energization.
  • the polycrystalline silicon rod is heated by applying a current having a frequency of 2 kHz or more to the polycrystalline silicon rod by a variable frequency high frequency power supply. The high frequency current conduction process is provided.
  • the high-frequency current applying step includes the step of supplying a high-frequency current to polycrystalline silicon rod diameter by deposition of polycrystalline silicon which are connected in series has reached a predetermined value D 0 of the above 80 mm, the supply process of the high-frequency current Then, the frequency of the high frequency current is selected according to the surface temperature fluctuation of the polycrystalline silicon rod within the range where the skin depth when the high frequency current flows in the polycrystalline silicon rod is not less than 13.8 mm and not more than 80.0 mm. Be done.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition that the amount of current is constant.
  • the step of maintaining the surface temperature of the polycrystalline silicon rod by switching the frequency of the high frequency current to the low frequency side and increasing the amount of current flow when there is a possibility that the surface temperature of the polycrystalline silicon rod decreases. Good.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition of constant current quantity.
  • the step of switching the frequency of the high frequency current to the high frequency side and maintaining the surface temperature of the polycrystalline silicon rod is performed It is good also as an aspect.
  • FIG. 1 is a schematic sectional view showing an example of the configuration of a reaction furnace 100 when producing a polycrystalline silicon rod according to the present invention.
  • the reaction furnace 100 is an apparatus for obtaining polycrystalline silicon rods 11 by vapor phase growing polycrystalline silicon on the surface of a silicon core wire 12 by the Siemens method, and is constituted by a base plate 5 and a bell jar 1.
  • the base plate 5 has a metal electrode 10 for supplying an electric current to the silicon core wire 12, a source gas supply nozzle 9 for supplying a process gas such as nitrogen gas, hydrogen gas or trichlorosilane gas, and a reaction exhaust gas outlet 8 for discharging exhaust gas. It is arranged.
  • the bell jar 1 is provided with a refrigerant inlet 3 for cooling the same and a refrigerant outlet 4 and a viewing window 2 for visually confirming the inside. Further, the base plate 5 is also provided with a refrigerant inlet 6 and a refrigerant outlet 7 for cooling the same.
  • FIG. 1 shows a state in which two pairs of torii shaped silicon core wires 12 are disposed in the bell jar 1, the number of silicon core wires 12 is not limited to this, and three or more pairs of plural core wires are provided.
  • a silicon core 12 may be disposed. The circuit of such an aspect is mentioned later.
  • a circuit 16 is provided between the two pairs of silicon cores 12 in series or in parallel to connect them.
  • the series / parallel switching of this circuit is performed by the switches S1 to S3. Specifically, when the switch S1 is closed and the switches S2 and 3 are opened, the two pairs of torii silicon core wires 12 are connected in series, and when the switch S1 is opened and the switches S2 and 3 are closed, the two pairs are connected.
  • the torii type silicon core wire 12 is connected in parallel.
  • the low frequency current (for example, a current of 50 Hz to 60 Hz, which is a commercial frequency) is supplied to the circuit 16 from one low frequency power supply 15L, or one high frequency power supply 15H that supplies a high frequency current of 2 kHz or more.
  • Current is supplied.
  • the frequency variable high frequency power supply may be one capable of changing the frequency continuously, or one capable of changing between a plurality of levels.
  • the switching between the low frequency power supply 15L and the high frequency power supply 15H is performed by the switch S4.
  • FIG. 1 illustrates a carbon heater 13 supplied with power from a power source 15C and radiantly heating the surface of the silicon core wire 12 for initial heating of the silicon core wire 12 performed prior to the start of the precipitation reaction of polycrystalline silicon.
  • the carbon heater 13 is provided for the purpose of reducing the voltage applied to the silicon core wire 12 at the time of initial energization by lowering the resistance of the silicon core wire 12 by radiation heating.
  • the low frequency power supply 15L to the high frequency power supply 15H may be used in an alternative or in combination with this.
  • silicon core wires 12 are connected in parallel to supply current from low frequency power supply 15L, or silicon core wires 12 sequentially connected in series are supplied current from low frequency power supply 15L, or further connected in series one after another. It is also possible to conduct electric heating by supplying a current from the high frequency power supply 15H to the silicon core wire 12 to be used.
  • FIG. 2 is a block diagram for explaining a configuration example of such a frequency variable high frequency power supply 15H, and those shown by the reference numerals in the figure are a power receiving unit 151, a low pressure air circuit breaker (ACB) 152, a power supply A transformer 153, an output control unit 154, an output unit 155, an output transformer 156, and a frequency converter 157.
  • ACB low pressure air circuit breaker
  • the frequency of the high frequency current supplied to the polycrystalline silicon rod is changed according to the surface temperature fluctuation of the polycrystalline silicon rod, and the diameter of the polycrystalline silicon rod is changed. This makes it easy to control the skin depth.
  • two pairs of torii shaped silicon core wires 12 are arranged in the bell jar 1, but three or more pairs of silicon core wires 12 may be arranged.
  • FIGS. 3A and 3B are block diagrams showing a first example of a circuit connecting silicon core wires 12 when three pairs of silicon core wires 12A to 12C are arranged.
  • switches S1 to S6 constitute a circuit, switches S1 and S2 are opened, and switches S3, S4 and S5 are closed to form three pairs of silicon.
  • the core wires 12A to 12C are connected in parallel, the switch S6 is switched to the low frequency power supply 15L side, and the current is supplied to the parallel connection circuit. Further, when the switches S1 and S2 are closed and the switches S3, S4 and S5 are opened, the low frequency power supply 15L brings about a state of current supply in series connection.
  • the switches S1 and S2 are closed and the switches S3, S4 and S5 are opened to connect three pairs of silicon cores 12A to C in series, and the switch S6 is on the high frequency power supply 15H side. And the series connected circuit is supplied with current.
  • FIGS. 4A and 4B are block diagrams showing a second example of a circuit connecting silicon core wires 12 with each other when three pairs of silicon core wires 12A to 12C are arranged.
  • a circuit is configured by three switches (S1 to S3), switches S1, S2 and S3 are closed, and three pairs of silicon cores 12A to C are connected in parallel,
  • the switch S4 is switched to the low frequency power supply 15L side, and the current is supplied to the parallel connection circuit. Further, when the switches S1 and S2 are opened from this state, the low frequency power supply 15L brings about a current supply state in series connection.
  • the switches S1 and S2 are opened to connect three pairs of silicon cores 12A to C in series, and the switch S3 is switched to the high frequency power supply 15H side to supply current to the series connection circuit.
  • the silicon core wire (M: M is an integer of 2 or more) may be provided in the same reactor.
  • M silicon cores forming the second group are disposed in the reactor, and the high frequency is provided in association with the first group Separately from the power supply, a high frequency power supply supplying a frequency current of 2 kHz or higher associated with the second group is provided, and deposition of polycrystalline silicon on the M silicon cores forming the second group is performed.
  • the deposition may be performed in the same manner as the deposition of polycrystalline silicon on the silicon core wire forming the first group described above.
  • FIG. Similar to the embodiment shown in FIG. 3A, in any group, six switches (S1 to S6, S1 'to S6') constitute a circuit, and switches S1 and S2, S1 'and S2' The switches S3, S4 and S5, S3 ', S4' and S5 'are closed to connect three pairs of silicon core wires 12A to 12C and 12A' to C 'in parallel, and the switches S6 and S6 are connected. 'Is switched to the low frequency power supply 15L, 15L' side, and current is supplied to the parallel connection circuit.
  • FIG. Similar to the embodiment shown in FIG. 3B, in any group, switches S1 and S2, S1 'and S2' are closed to connect three pairs of silicon core wires 12A to 12C and 12A 'to C' in series.
  • the switches S6 and S6 ' are switched to the high frequency power supplies 15H and 15H', and current is supplied to the series connection circuit.
  • FIG. Similar to the embodiment shown in FIG. 4A, in any group, the switches S1, S2 and S3, S1 ', S2' and S3 'are closed to form three pairs of silicon core wires 12A to C, 12A' to C '. Are connected in parallel, and the switches S4 and S4 'are switched to the low frequency power supplies 15L and 15L' to supply current to the parallel connection circuit.
  • FIG. Similar to the embodiment shown in FIG. 4B, in any group, switches S1 and S2, S1 'and S2' are opened to connect three pairs of silicon core wires 12A to 12C and 12A 'to C' in series. The switches S3 and S3 'are switched to the high frequency power supplies 15H and 15H' to supply current to the series connection circuit.
  • two or more silicon cores are arranged in a reactor using a reaction system having the above-mentioned configuration, a raw material gas containing a silane compound is supplied into the reactor, and the silicon heated by energization is supplied.
  • Polycrystalline silicon is deposited on the core wire by the CVD method to manufacture a polycrystalline silicon rod.
  • a high-frequency current application step of heating a polycrystalline silicon rod by supplying a current having a frequency of 2 kHz or more to the polycrystalline silicon rod during the manufacturing process of polycrystalline silicon, the skin effect by the high-frequency current is appropriately utilized. By suppressing the local abnormal heating of the polycrystalline silicon rod, it is possible to stably manufacture a large diameter polycrystalline silicon rod.
  • the frequency may be able to be changed continuously, and can be changed between a plurality of levels. May be
  • the method for producing a polycrystalline silicon rod according to the present invention using such a variable frequency high frequency power supply can be configured as follows.
  • a silicon core wire is disposed in a reactor, a raw material gas containing a silane compound is supplied into the reactor, and polycrystalline silicon is deposited on the silicon core wire heated by energization by the CVD method to obtain a polycrystalline silicon rod
  • a high frequency current application step is performed in which the polycrystalline silicon rod is supplied with a current having a frequency of 2 kHz or more and heated by a high frequency power supply with variable frequency.
  • the high-frequency current applying step includes the step of supplying a high-frequency current to polycrystalline silicon rod diameter by deposition of polycrystalline silicon which are connected in series has reached a predetermined value D 0 of the above 80 mm, the supply process of the high-frequency current Then, the frequency of the high frequency current is selected according to the surface temperature fluctuation of the polycrystalline silicon rod within the range where the skin depth when the high frequency current flows in the polycrystalline silicon rod is 13.8 mm or more and 80.0 mm or less. Be done.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition that the amount of current is constant.
  • the step of maintaining the surface temperature of the polycrystalline silicon rod by switching the frequency of the high frequency current to the low frequency side and increasing the amount of current flow when there is a possibility that the surface temperature of the polycrystalline silicon rod decreases. Good.
  • the selection of the frequency of the high frequency current is performed between at least two frequencies, and in the step of supplying the high frequency current, the current is supplied under the condition of constant current quantity.
  • the step of switching the frequency of the high frequency current to the high frequency side and maintaining the surface temperature of the polycrystalline silicon rod is performed It is good also as an aspect.
  • a separate low frequency current power supply is provided, heating of the silicon core is started by applying low frequency current or high frequency current, and polycrystalline silicon is obtained after the surface of the silicon core becomes a desired temperature. It is also possible to start precipitation.
  • the heating start of the silicon core wire may be performed by supplying current to the parallel connected silicon core wire from one low frequency power source which connects the m silicon core wires in parallel and supplies a low frequency current.
  • the heating start of the silicon core wire, the m silicon core wires are sequentially connected in series from the first to the mth, and a current to the silicon core wire connected in series from one low frequency power supply or one high frequency power supply It may be performed by supply.
  • m polycrystalline silicon rods are heated until the diameter of the polycrystalline silicon rod reaches a predetermined value D 0 after the start of the deposition of polycrystalline silicon.
  • the silicon rods may be connected in parallel and supplied with current from one low frequency power supply supplying low frequency current to the parallel connected polycrystalline silicon rods.
  • M is an integer of 2 or more
  • silicon cores are further disposed in the reactor, and a high frequency power supply provided separately from one high frequency power supply to supply a single high frequency current of 2 kHz or more Precipitation of polycrystalline silicon on M silicon cores using one high frequency power source or one high frequency power source of variable frequency supplying 2 kHz or higher frequency current Deposition of polycrystalline silicon on m silicon cores It is good also as an aspect performed like.
  • a gas containing trichlorosilane may be selected as the source gas, and the surface temperature of the polycrystalline silicon rod may be controlled to 900 ° C. or more and 1250 ° C. or less to precipitate polycrystalline silicon.
  • the metal electrodes 10 are provided in the same number or less than the same number of pairs of toriri silicon core wires 12 disposed in the chamber 1, but these pairs of metal electrodes 10 flow a high frequency current
  • the torii type silicon core wire 12 held by the metal electrode pair adjacent to each other and the induction magnetic field formed by the polycrystalline silicon rod 11 do not cause a strong resistance to occur.
  • the strong resistance caused by the induction magnetic field may be suppressed by adjusting the phase of the high frequency current.
  • FIGS. 7A to 7C are diagrams as viewed from above for illustrating the arrangement relationship of such metal electrode pairs by way of illustration, wherein the arrows shown in the figure are magnetic fields formed by energization of the silicon core wire. It is a direction.
  • a rectangular surface formed by two pillars of the torii type silicon core wire 12 and a beam portion connecting these pillars is the above-mentioned rectangular shape of the torii type silicon core wire 12 disposed in the vicinity. It is disposed so as not to face the surface partially.
  • the rectangular surface formed by the two pillars of the torii type silicon core wire 12 and the beam portion connecting these pillars is orthogonal to the rectangular surface of the torii type silicon core wire 12 adjacent thereto. It is arranged to be.
  • a rectangular surface formed by two pillars of the torii type silicon core wire 12 and a beam portion connecting these pillars is parallel to the above rectangular surface of the torii type silicon core wire 12 adjacent to each other.
  • These silicon core wires 12 are supplied with currents (i a , i b ) that are phase-adjusted so that the directions of the magnetic fields formed by the silicon core wires 12 are opposite to each other.
  • a silicon core wire concentrically centered on the center of the base plate.
  • FIGS. 8A to 8C illustrate the arrangement of such metal electrode pairs, and the broken lines shown in the drawing are concentric circles centered on the center of the base plate.
  • the rectangular surface of the silicon core wire 12 arranged on the inner concentric circle and the rectangular surface of the adjacent silicon core wire 12 arranged on the outer concentric ring are opposed to each other.
  • currents (i a , i b ) are phase-adjusted such that the direction of the magnetic field formed by each silicon core wire 12 is opposite. Is energized.
  • a silicon core 12 made of high purity polycrystalline silicon was set in the chamber 1 of the reaction furnace 100. After initially heating the silicon core wire 12 to 370 ° C. using the carbon heater 13, application of a low frequency current of 50 Hz, which is a commercial frequency, to the silicon core wire 12 was started.
  • a voltage of 1050 V is applied to the silicon core wire 12 to make the surface temperature 1160 ° C., and supply of mixed gas of hydrogen gas as carrier gas and trichlorosilane as source gas Started by
  • the precipitation reaction is continued under the above current conduction condition until the diameter of the polycrystalline silicon reaches 82 mm, and then the high frequency current of frequency 80 kHz is switched to conduct the reaction until the polycrystalline silicon rod becomes the diameter 163 mm.
  • the supplied electric power was 363 kW at the end of the reaction, that is, when the diameter of the polycrystalline silicon rod became 163 mm.
  • the amount of current supplied is gradually decreased until the surface temperature of the polycrystalline silicon rod falls to 600 ° C. while maintaining the current application of the high frequency current of 80 kHz. While cooling down, then the power was turned off. After leaving in the chamber 1 until the surface temperature of the polycrystalline silicon rod 11 reached 45 ° C., it was taken out.
  • Comparative Example 1 A silicon core 12 made of high purity polycrystalline silicon was set in the chamber 1 of the reaction furnace 100. After initially heating the silicon core wire 12 to 340 ° C. using the carbon heater 13, application of a low frequency current of 50 Hz, which is a commercial frequency, to the silicon core wire 12 was started.
  • the deposition reaction of polycrystalline silicon on the silicon core wire 12 applies a voltage of 1050 V to the silicon core wire 12 to set the surface temperature to 1130 ° C., and supplies a mixed gas of hydrogen gas as a carrier gas and trichlorosilane as a source gas. Started by
  • the deposition reaction is continued under the above-mentioned current conduction condition until the diameter of polycrystalline silicon reaches 80 mm, and then the low frequency current of frequency 50 Hz is continued to make the diameter of polycrystalline silicon rod 156 mm.
  • the reaction continued until.
  • the supplied electric power was 428 kW at the end of the reaction, that is, when the diameter of the polycrystalline silicon rod became 156 mm.
  • the cause of collapse is presumed to be the occurrence of cracks.
  • Comparative Example 2 A silicon core 12 made of high purity polycrystalline silicon was set in the chamber 1 of the reaction furnace 100. After initially heating the silicon core wire 12 to 355 ° C. using the carbon heater 13, application of a low frequency current of 50 Hz, which is a commercial frequency, to the silicon core wire 12 was started.
  • a voltage of 1010 V is applied to the silicon core wire 12 to set the surface temperature to 1100 ° C., and supply of mixed gas of hydrogen gas as carrier gas and trichlorosilane as source gas.
  • the precipitation reaction was continued under the above current conduction condition until the diameter of the polycrystalline silicon became 80 mm, and then the diameter of the low frequency current of 50 Hz was continued to expand the diameter, but the polycrystalline silicon rod was expanded Broke down when it reached 159 mm in diameter.
  • the supplied power was 448 kW when the diameter of the polycrystalline silicon rod reached 159 mm.
  • the collapse cause of the polycrystalline silicon rod 11 is also presumed to be the occurrence of a crack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 ベルジャ1内に配置された2対の鳥居型のシリコン芯線12の間に設けられた回路16の直列/並列の切り替えは、スイッチS1~3により行う。当該回路16には、低周波数電流を供給する1つの低周波電源15L、若しくは、2kHz以上の周波数を有する周波数可変の高周波電流を供給する1つの高周波電源15Hから、電流が供給される。スイッチS1を閉としスイッチS2および3を開として2対の鳥居型のシリコン芯線12(乃至は多結晶シリコン棒11)を直列に連結し、スイッチS4を高周波電源15H側に切り替えると、直列接続された鳥居型のシリコン芯線12(乃至は多結晶シリコン棒11)に2kHz以上の周波数の高周波電流を供給して通電加熱することができる。

Description

多結晶シリコン棒の製造方法
 本発明は、高純度多結晶シリコンを得るための多結晶シリコン棒の製造技術に関する。
 多結晶シリコンは、半導体デバイス製造用単結晶シリコン基板や太陽電池製造用シリコン基板の原料である。一般に、多結晶シリコンの製造は、クロロシランを含む原料ガスを加熱されたシリコン芯線に接触させ、当該シリコン芯線の表面に化学気相反応法(CVD:Chemical Vapor Deposition)により多結晶シリコンを析出させるシーメンス法により行われる。
 シーメンス法により多結晶シリコンを成長する場合、反応炉内に、鉛直方向に2本と水平方向に1本のシリコン芯線を鳥居型に組み立て、この鳥居型シリコン芯線の端部のそれぞれを芯線ホルダに収容し、これらの芯線ホルダをベースプレート上に設けた一対の金属電極に固定する。金属電極を介して鳥居型シリコン芯線に通電することによりシリコン芯線が通電加熱され、このシリコン芯線に原料ガスが接触することにより多結晶シリコンの析出が生じ、多結晶シリコン棒が得られる。なお、一般的な反応炉では、ベースプレート上に複数組の鳥居型シリコン芯線が配置される構成となっている。
 反応炉に設けられたドーム型の反応容器(ベルジャ)の内部空間はベースプレートで密閉され、この密閉空間が多結晶シリコンの気相成長反応空間となる。鳥居型シリコン芯線通電用の金属電極は絶縁物を挟んでベースプレートを貫通し、ベルジャ下方に設けられた電源に接続されるか、若しくは、ベルジャ内に配置されている別の鳥居型シリコン芯線への通電用金属電極に接続される。
 鳥居型シリコン芯線以外の部分への多結晶シリコンの析出防止、並びに、反応炉を構成する部材が過剰な高温となって損傷することを防止するため、金属電極、ベースプレート、およびベルジャは、水などの冷媒により冷却される。なお、芯線ホルダは、金属電極を介して冷却される。
 多結晶シリコン析出用の原料ガスとして、例えばトリクロロシランと水素の混合ガスを用いる場合、鳥居型シリコン芯線上に多結晶シリコンを所望の直径で析出させるためには、シリコン芯線の表面温度は900℃~1300℃の範囲にある必要がある。従って、多結晶シリコンの析出反応開始に先立ち、シリコン芯線の表面を900℃~1300℃の範囲の温度とする必要があり、そのためには、一般的には、シリコン芯線に断面積当たり0.3A/mm~4A/mmの電流を流す必要がある。
 多結晶シリコンの析出開始後は、通電量を制御して多結晶シリコン棒の表面温度を上記900℃~1300℃の範囲に維持する必要がある。このとき、商用電源周波数である50Hz乃至60Hzで通電を行った場合には、多結晶シリコン棒の直径が太くなるにつれて多結晶シリコン棒の中心部と表面側との温度差が顕著になる。この傾向は多結晶シリコン棒の直径が80mm以上で特に強くなるが、これは、多結晶シリコン棒の中心部は特別な冷却がなされない一方で、多結晶シリコン棒の表面側はチャンバ内に供給される原料ガスとの接触によって冷却を受けるためである。
 シリコン結晶は、温度が高いほど電気的抵抗が低くなるという性質を有している。このため、相対的に温度の高い多結晶シリコン棒の中心部の電気抵抗は相対的に低くなり、相対的に温度の低い多結晶シリコン棒の表面側の電気抵抗は相対的に高くなる。このような多結晶シリコン棒内部での電気抵抗の分布が生じると、金属電極から供給された電流は、多結晶シリコン棒の中心部に流れやすくなる一方、表面側へは流れ難くなるから、多結晶シリコン棒の中心部と表面側との温度差は益々大きくなる。
 このような状態で成長を続けて多結晶シリコン棒の直径が130mm以上となると、中心部の温度と表面側の温度の差は150℃以上にもなり、多結晶シリコンの析出面である表面側の温度を900℃~1300℃の範囲に維持しようとすると中心部の温度が高くなり過ぎ、最悪の場合には、中心部が部分的に溶融してシリコン芯線が倒壊してしまうといった事故も発生し得る。
 このような問題に鑑み、特開昭63-74909号公報(特許文献1)では、高周波数の電流により生じる表皮効果を利用して多結晶シリコン棒の表面付近に相対的に多くの電流を流すという方法が提案されている。
 また、特表2002-508294号公報(特許文献2)では、クロロシランよりも反応温度の低いモノシランを原料ガスとして用い、多結晶シリコンの析出温度を850℃程度とし、200kHzの高周波数の電流を通電加熱に用いることで多結晶シリコン棒の中心部と表面側の温度差を小さくする試みが報告されており、これにより、全容積にわたって11MPより多くない応力を有する直径300mmまでの多結晶シリコン棒を得ることができたとされている。
特開昭63-74909号公報 特表2002-508294号公報 特開昭55-15999号公報
 結晶成長中の多結晶シリコン棒の表面側と中心部との間に生じる温度差を抑えるためには、上述の特許文献に開示されているように、多結晶シリコン棒の通電加熱に高周波電流を行い、その表皮効果を利用することが有効である。
 ところが、特許文献2では原料ガスとして一般的なトリクロロシランではなくモノシランが用いられている。トリクロロシランを原料ガスとした場合の析出温度は上述のとおり900℃~1300℃であってより高い温度にまで多結晶シリコン棒を通電加熱する必要がある。
 本発明者らは、特許文献2に開示の手法に則り、トリクロロシランを原料ガスとし、200kHzの周波数の電流を多結晶シリコン棒に通電して表面温度を概ね1000℃として実験を試みたが、多結晶シリコン棒の直径が160mmを超えたあたりから鳥居型に組んだ多結晶シリコン棒が崩壊してしまうといったケースが多発した。
 このような多結晶シリコン棒の崩壊は、表面側と中心部での温度差に起因するものと考えられるため、表皮効果を高めるために電流の周波数を更にあげて実験を行ったが、多結晶シリコン棒の崩壊頻度は寧ろ高くなってしまうという事実が判明した。本発明者らは、この結果につき、高周波数の電流を用いて得た表皮効果が強く出過ぎたことが原因であると考えている。
 本発明は、このような従来手法の問題点に鑑みてなされたもので、その目的とするところは、クロロシラン類などのシラン化合物、特にトリクロロシランを原料として大口径の多結晶シリコン棒を製造する際に、高周波数の電流を用いる効果を有効に得つつ、多結晶シリコン棒の崩壊を防止し、大口径多結晶シリコン棒を高効率で製造するための技術を提供することにある。
 上述の課題を解決するために、本発明に係る多結晶シリコン棒の製造方法は、下記の構成を備えている。
 反応器中にシリコン芯線を配置し、前記反応炉内にシラン化合物を含有する原料ガスを供給し、通電により加熱された前記シリコン芯線上にCVD法により多結晶シリコンを析出させて多結晶シリコン棒を製造する方法であって、
 前記方法は、周波数可変の高周波電源により、前記多結晶シリコン棒に2kHz以上の周波数を有する電流を通電させて加熱する高周波電流通電工程を備えており、
 該高周波電流通電工程は、直列に連結された前記多結晶シリコンの析出により直径が80mm以上の所定値Dに達した多結晶シリコン棒に高周波電流を供給する工程を含み、
 該高周波電流の供給工程では、前記高周波電流が前記多結晶シリコン棒中を流れる際の表皮深さが13.8mm以上で80.0mm以下となる範囲内で、前記高周波電流の周波数が前記多結晶シリコン棒の表面温度変動に応じて選択されること、を特徴とする。
 本発明に係る多結晶シリコン棒の製造方法は、前記高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、前記高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で前記多結晶シリコン棒の表面温度の低下のおそれが生じた際に、前記高周波電流の周波数を低周波数側に切り替えるとともに前記通電量を増加させて前記多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 また、本発明に係る多結晶シリコン棒の製造方法は、前記高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、前記高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で前記多結晶シリコン棒の表面温度の低下のおそれが生じた際に、前記通電量は維持しつつ前記高周波電流の周波数を高周波数側に切り替えて前記多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 さらに、本発明に係る多結晶シリコン棒の製造方法において、前記原料ガスとしてトリクロロシランを含有するガスを選択し、前記多結晶シリコン棒の表面温度を900℃以上で1250℃以下に制御して多結晶シリコンを析出させる態様としてもよい。
 本発明により、クロロシラン類などのシラン化合物、特にトリクロロシランを原料として大口径の多結晶シリコン棒を製造する際に発生し易い多結晶シリコン棒の崩壊を防止し、大口径多結晶シリコン棒を高効率で製造するための技術が提供される。
本発明により多結晶シリコン棒を製造する際の反応炉の構成の一例を示す断面概略説図である。 本発明で用いられる、2kHz以上の周波数電流を供給する周波数可変の高周波電源の構成を説明するためのブロック図である。 3対のシリコン芯線を配置する際のシリコン芯線同士を並列接続する回路の第1例を示したブロック図である。 3対のシリコン芯線を配置する際のシリコン芯線同士を直列接続する回路の第1例を示したブロック図である。 3対のシリコン芯線を配置する際のシリコン芯線同士を並列接続する回路の第2例を示したブロック図である。 3対のシリコン芯線を配置する際のシリコン芯線同士を直列接続する回路の第2例を示したブロック図である。 それぞれが3対のシリコン芯線から成る2つのグループを反応炉内に配置する際のシリコン芯線同士を並列接続する回路の第1例を示したブロック図である。 それぞれが3対のシリコン芯線から成る2つのグループを反応炉内に配置する際のシリコン芯線同士を直列接続する回路の第1例を示したブロック図である。 それぞれが3対のシリコン芯線から成る2つのグループを反応炉内に配置する際のシリコン芯線同士を並列接続する回路の第2例を示したブロック図である。 それぞれが3対のシリコン芯線から成る2つのグループを反応炉内に配置する際のシリコン芯線同士を直列接続する回路の第2例を示したブロック図である。 誘導磁界により生じる強い抵抗を抑制するために好ましい金属電極対の配置関係の第1例である。 誘導磁界により生じる強い抵抗を抑制するために好ましい金属電極対の配置関係の第2例である。 誘導磁界により生じる強い抵抗を抑制するために好ましい金属電極対の配置関係の第3例である。 真円性の高い断面形状の多結晶シリコン棒を得るために好ましい金属電極対の配置関係の第1例である。 真円性の高い断面形状の多結晶シリコン棒を得るために好ましい金属電極対の配置関係の第2例である。 真円性の高い断面形状の多結晶シリコン棒を得るために好ましい金属電極対の配置関係の第3例である。 本発明による多結晶シリコン棒の製造プロセス例を説明するためのフロー図である。 直径が160mmの多結晶シリコン棒に80kHzの周波数の電流を通電した場合の、断面内での電流分布を説明するための図である。 図10Aに示した電流分布(I/I)のIとIの関係を説明するための図である。 本発明で用いる高周波電流の適切な周波数を検討した結果を示す図である。 多結晶シリコン棒の割れ発生の様子を説明するための図である。 多結晶シリコン棒の割れ発生の様子を説明するための拡大図である。 直径が160mmの多結晶シリコン棒に80kHzおよび200kHzの周波数の電流を通電した場合の、断面内での電流分布を説明するための図である。 通電量の変化に伴って高周波電流の周波数を変化させつつ多結晶シリコン棒の径拡大を図る工程のプロセス例を説明するためのフロー図である。
 まず、本発明による多結晶シリコン棒の製造プロセスについて説明する。
 図9は、図1に示した構成の反応炉100を用いた場合の、本発明による多結晶シリコン棒の製造プロセス例を説明するためのフロー図である。反応炉100の構成の詳細については、図1を用いて後述する。
 先ず、ベルジャ(チャンバ)1をベースプレート5上に密着載置し、原料ガス供給ノズル9から窒素ガスを供給してチャンバ1内の空気を窒素に置換する(S101)。チャンバ1内の空気と窒素は、排ガス出口8からチャンバ1外へと排出される。チャンバ1内の窒素置換終了後、窒素ガスに代えて、水素ガスを原料ガス供給ノズル9から供給し、チャンバ1内を水素雰囲気とする(S102)。
 次に、シリコン芯線12の初期加熱(予備加熱)を行う(S103)。図1に示した構成の反応炉100では、この初期加熱にはカーボンヒータ13が用いられるが、加熱した水素ガスをチャンバ1内に供給することにより行ってもよい。この初期加熱によりシリコン芯線12の温度は300℃以上となり、シリコン芯線12の電気抵抗は、効率的な通電が得られる値となる。
 続いて、金属製の電極10から電力供給し、芯線ホルダ14を介して、シリコン芯線12に通電し、この通電によりシリコン芯線12を900℃~1300℃程度にまで加熱(本加熱)する(S104)。そして、キャリアガスである水素ガスとシラン化合物を含有する原料ガスであるトリクロロシランガスの混合ガスを比較的低い流量(流速)でチャンバ1内に供給し、シリコン芯線12上への多結晶シリコンの気相成長を開始する(S105)。またシリコン芯線の初期加熱を窒素雰囲気で行うことも可能であるが この場合はトリクロルシランガスを供給する前に水素置換が必要である。
 シリコン芯線12は細く力学的な強度は高いとは言えない。このため、多結晶シリコンの気相成長反応の初期においては、供給ガスがチャンバ1内に供給される際の噴出圧によってシリコン芯線12が倒壊等するといったトラブルが発生し易い。そこで、気相成長反応の初期段階での供給ガス流量(流速)を比較的小さく設定することが好ましい(S106)。
 一方、多結晶シリコンの析出速度(反応速度)を大きくして収率を高めるためには、チャンバ内1に供給する原料ガスのバルク濃度(供給ガス中の原料ガスの濃度)を高く保つ必要がある。具体的には、多結晶シリコン棒の直径が少なくとも15mm(好ましくは20mm)となるまでの間は、原料ガス(トリクロロシラン)のバルク濃度を15モル%以上40モル%以下とすることが好ましい。
 また、析出速度を大きくするため、シリコン芯線12(多結晶シリコン棒11)の倒壊等のおそれがなくなった後は、供給ガス流量(流速)を最大値近くにまで高めることが好ましい(S107)。このような供給ガス流量(流速)設定は、例えば多結晶シリコン棒11の直径が20mmに達した時点で行うことができるが、40mmを目安としてもよい。また、このときのガス供給は、好ましくはチャンバ1内の圧力が0.3MPa~0.9MPaとなるように行われ、原料ガス供給ノズル9の噴出口での流速は150m/sec以上であることが好ましい。また、この間の多結晶シリコン棒11の表面温度は、1000℃以上の比較的高い温度に保つことが好ましく、例えば1000℃~1250℃の範囲に制御する。
 更に多結晶シリコン棒の直径が大きくなると、チャンバ1内に原料ガスが滞留し易い部位が生じてくる。このような状態で高濃度にシラン化合物を含有する原料ガスを供給するとシリコン微粉末の多量発生の危険があり、これら微粉末が多結晶シリコン棒11の表面に付着して汚染等の原因となる可能性がある。
 そこで、遅くとも多結晶シリコン棒11の直径が130mmになる段階までには、供給ガス中の原料ガスのバルク濃度を下げることが好ましい(S108)。例えば、原料ガス(トリクロロシラン)のバルク濃度を、30モル%以上50モル%以下の範囲の値から、15モル%以上45モル%以下の範囲の値とする。好ましくは、トリクロロシランのバルク濃度を、20モル%以上40モル%以下とする。
 ところで、シリコン結晶は、温度が高いほど電気的抵抗が低くなるという性質を有しているため、商用周波数の電源を用いて多結晶シリコン棒の通電加熱を行った場合、多結晶シリコン棒の直径が一定以上になると、通電による加熱と表面付近での冷却により、多結晶シリコン棒の中心部の温度が表面付近の温度よりも高い状態になる。この場合、多結晶シリコン棒の中心部の電気抵抗は表面側の電気抵抗に比較して低くなり、この傾向は直径が大きくなるにつれて顕著になる。
 そして、多結晶シリコン棒に供給された電流はより低い電気抵抗を示す中心部に流れ易いため、中心部の電流密度は高まる一方で表面側の電流密度は低下するため、上述の温度不均一は益々増幅されることになる。例えば、多結晶シリコン棒の表面温度が1000℃以上となるように加熱を行った場合、直径が130mm以上であれば中心部と表面側の温度差は150℃以上にもなる。
 これに対し、高周波電流は表皮効果(skin effect)を示し、導体に通電した場合には表面近傍の電流密度が高くなることは上述したとおりである。この表皮効果は周波数が高いほど顕著になり、表面に電流が集中し易くなる。なお、その電流の流れる深さを表皮深さ(skin depth)あるいは電流浸透深さと呼ばれる。表皮深さδは、電流の周波数f、多結晶シリコンの透磁率μ、および多結晶シリコンの導電率kと、δ-1=(π・f・μ・k)1/2の関係にある。
 図10Aおよび図10Bはそれぞれ、直径が160mmの多結晶シリコン棒に80kHzの周波数の電流を通電した場合の断面内での電流分布を説明するための様子を説明するための図および電流分布(I/I)のIとIの関係を説明するための図である。電流分布は、多結晶シリコン棒の表面(半径R=80mm)を流れる電流値(I)と多結晶シリコン棒の中心Cから半径Rの部位を流れる電流値(I)との比で規格化している。
 この図に示すように、高周波電流を通電することにより多結晶シリコン棒を加熱することとすれば、表面付近の優先的な加熱が可能となるから、多結晶シリコン棒が径拡大したとしても、表面近傍を優先的に加熱することができるため、多結晶シリコン内部での温度分布が製造上の障害となるほどに大きくなることを回避することができる。
 このような高周波電流の通電は、多結晶シリコン棒の直径が80φmm以上の所定値Dとなったものに対して行うことが好ましい。
 図11は、本発明で用いる高周波電流の適切な周波数を検討した結果を示す図である。周波数は2kHzから200kHzまで検討している。この図に示した結果によれば、周波数が800kHzの場合には、多結晶シリコン棒の表面温度が1150℃の条件下での浸透深さδは僅かに4mm程度であり、900℃の場合でも7mm程度に過ぎない。また、周波数が200kHzの場合、多結晶シリコン棒の表面温度が1150℃の条件下での浸透深さδは9mm弱であり、900℃の場合でも13.7mmに過ぎない。
 このような浅い浸透深さしか得られない場合には、特に、鳥居型のシリコン芯線の屈曲部において電流密度が集中することによる多結晶シリコンの部分的な溶解が生じてしまい、製造上の支障をきたすおそれがある。
 本発明者らが行った実験によっても、200kHzの高周波電流で通電加熱を行ってトリクロロシランを原料ガスとする多結晶シリコン棒の育成を試みたところ、多結晶シリコン棒が直径160mm程度となった段階で崩落してしまうというトラブルが生じた。原因を確認したところ、この多結晶シリコン棒は、鳥居型に組んだシリコン芯線の屈曲部(上端角部)に割れが生じていた。
 図12Aおよび図12Bは、上述の多結晶シリコン棒の割れ発生の様子を説明するための図で、破線で示した部分が割れの発生個所である。
 このような割れの発生原因について、本発明者らはいわゆる「ポップコーン」の発生が関与しているものと考えている。
 トリクロロシランを用いた多結晶シリコン棒の製造を行う場合、棒の表面温度に応じて決まる適切な原料ガス供給がなされないと局所的な過剰結晶成長が起こり、「ポップコーン」と呼ばれるごつごつした表面形状となる(例えば、特許文献3:特開昭55-15999号公報を参照)が、割れが生じた部分にはポップコーンの発達が観察された。また、このポップコーンはクラック状の隙間を伴っていた。
 つまり、このクラック状の隙間の周辺で高周波電流の表皮効果が局所的に強く作用した結果、多結晶シリコンの溶融等が生じて割れ(崩壊)が生じたものと推定される。このような高周波電流による局所的な過剰加熱およびそれが及ぼす製造上の不都合は、これまで知られていなかった知見である。
 図13は、直径が160mmの多結晶シリコン棒に80kHzおよび200kHzの周波数の電流を通電した場合の、断面内での電流分布を説明するための図である。なお、電流分布(I/I)の算出は、図10Bに示したとおりである。
 図13に示したように、200kHzの周波数の電流を通電した場合、多結晶シリコン棒の表面から30mm以上中心側に位置する部位には殆ど電流は流れず、表面側に集中している。
 従って、周波数が200kHz以上の高周波電流は、本発明で用いる通電加熱用の電流として適切なものとは言えない。換言すれば、直径が160mmを超える多結晶シリコン棒を製造するに際しては、上記式により算出される浸透深さ(表皮深さ)δは少なくとも13.7mmを超える値である必要がある。このような理由から、本発明では、高周波電流の周波数を、多結晶シリコン棒を流れる際の表皮深さが13.8mm以上で80.0mm以下の範囲の所望の値となるように設定する。
 高周波電流の浸透深さは多結晶シリコン棒の温度に依存するが、1200℃であれば67.2kHz~2.0kHz、1100℃であれば93.7kHz~2.8kHz、1000℃であれば137.8kHz~4.1kHz、950℃であれば171.1kHz~5.1kHz、900℃であれば216.3kHz~6.4kHz、の周波数の電流により上記範囲の浸透深さを得ることができる。
 なお、上述のポップコーンの発生防止には、多結晶シリコン棒の表面に十分な原料ガスを供給すればよいのであるが、多結晶シリコン棒が径拡大してその表面積が大きくなればなるほど原料ガスの供給が不足の状態となり易い。そこで、多結晶シリコン棒の直径が130φmm以上となった後は、徐々に表面温度を下げてゆくことが好ましい(S109)。例えば、直径が160mm程度になった段階では表面温度を950℃以上1000℃未満の範囲に低下させ、更に径拡大させる場合には最終段階での表面温度が900~980℃の範囲となるように低下させていくことが好ましい。
 このような適切な浸透深さが得られる高周波電流は多結晶シリコン棒の析出反応開始に先立つシリコン芯線の初期加熱段階から用いることも可能であるが、反応器中に配置されたm本(mは2以上の整数)のシリコン芯線上に多結晶シリコンが析出して直径が80mm以上の所定値Dに達したn本(nは2以上でm以下の整数)の直列に連結された多結晶シリコン棒において、このn本の多結晶シリコン棒に高周波電流を供給するようにし、それ以前は商用周波数の電流(低周波数電流)を加熱用として用いるようにしてもよい。
 この高周波電流の通電には、周波数可変の高周波電源が用いられる。ここで、「周波数可変」は、連続的に可変であってもよいし複数レベル間での段階的可変であってもよい。
 周波数可変の高周波電源を用いる利点とは、例えば下記のようなものである。多結晶シリコン棒表面の温度を適切に制御するためには、析出反応の進行に伴うシリコン棒の径拡大に合わせて、多結晶シリコン棒への通電量を高めてゆく必要がある。
 しかし、周波数が単一のものである場合には、周波数の高めのものを使用する方が総電流量の抑制が可能となり経済的となるものの、周波数の高めのものを使用するほど、多結晶シリコン棒の直径に応じて周波数を変えて浸透深さ(表皮深さ)δをより適切に制御することが難しくなる。
 具体的には、ある周波数fの電流の通電量を増やすと表面温度は上がり導電率が上がる(kが大きくなる)ためにδ値は小さくなるが、浸透深さ(表皮深さ)δが小さくなると更に表面温度が上がるという循環を生むことで温度制御が難しくなり、上述のような表皮効果が強く現れる形状を持った領域でのシリコン棒の溶融や割れといった事故が起きやすくなる。
 そこで、2kHz以上の周波数を複数(例えばfとf)選択できるようにしておき、先ず、高周波数fの電流による通電加熱を行い、表面温度維持のために通電量を上げる必要が生じた際には、先の周波数fよりも低めの高周波数fの電流通電に切り替えてその通電量を上げるといった操作を行うことが可能である。このように低めの高周波数fにより通電量を上げることで、表皮効果が強く出過ぎることを防止できる。
 すなわち、本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、高周波電流の周波数を低周波数側に切り替えるとともに通電量を増加させて多結晶シリコン棒の表面温度を維持する工程を含む態様とすることができる。
 また、低めの高周波数fの電流通電を行っている際に表面温度維持のために表面付近における発熱量を上げたい場合には、通電量一定のまま高めの周波数fに切り替えて表皮効果を高めることとすると、通電量を増加させなくても表面付近の発熱量を上げることができる。
 すなわち、本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、通電量は維持しつつ高周波電流の周波数を高周波数側に切り替えて多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 このような周波数の可変範囲は、2kHzから400kHzであることが好ましく、連続的乃至選択可能周波数が多いほど好ましいことは言うまでもない。
 例えば、直径が160mm程度でその表面温度が980℃程度の多結晶シリコン棒の加熱が100kHzの周波数の電流により行われている場合、通電量を上げることにより表面温度を1000℃程度に上げたい場合には、電流の周波数を100kHzより低い80kHzに切り替え、通電量を1ステップ当たり10A~50Aずつ徐々に増加させて温度の上昇を観察する。逆に、80kHzで多結晶シリコン棒の表面温度が下がり始めた場合には、通電量を維持したまま、電流の周波数を100kHzに引き上げ、更に表面温度が低下し始めた場合には通電量を維持したまま120kHzに引き上げるといった操作を行って温度の上昇を観察する。上記操作によっても表面温度が低下し始めた場合には周波数を80kHzに下げ、通電量を10A~50Aずつ徐々に増加させる。このような通電量および電流周波数の制御を交互に行うことにより、強すぎる表皮効果の発生を避けて、多結晶シリコン棒の表面付側と中心部での温度差発生の抑制に加え、使用電力量の抑制も効率的に行うことができる。
 図14は、このような通電量の変化を伴って高周波電流の周波数を変化させつつ多結晶シリコン棒の径拡大を図る工程のプロセス例を説明するためのフロー図である。径拡大が進むと(S201)、シリコン棒表面の温度が下がってくる。ここで通電量を上げると温度上昇に伴い低効率が下がって浸透深さδが浅くなり、表面温度が高くなりすぎる可能性があるため、高周波電流の周波数を先ず下げて浸透深さδを深くする操作(S202)および電流量を増加させる操作(S203)を行う。このように浸透深さδを予め深くすることで安全に通電量をアップさせ、これにより表面温度を上昇させて径拡大させる(S204)。径拡大に伴ってシリコン棒表面の温度が下がった際(S205)、今度は高周波電流の周波数を上げて浸透深さδを浅くする操作を行い(S206)、表面温度を上昇させる(S207)。以降は、多結晶シリコン棒表面の温度を適切に制御しながらシリコン棒の径拡大を図る(S201)。
 これまでの説明は多結晶シリコン棒の育成プロセスについてのものであったが、高周波電流の利用は多結晶シリコン棒の育成が終了した後の冷却工程においても有用である。
 クロロシラン類を原料とした場合のように、析出反応温度が高いプロセスを経て得られる多結晶シリコン棒の内部には、表面側と中心部の温度差に基づく歪みが蓄積し易い。従って、このような多結晶シリコン棒を冷却する際にも、なるべく、表面側と中心部の温度差が小さくなるようなプロセス設計が必要である。
 例えば、多結晶シリコン棒の育成が終了した後の工程において、多結晶シリコン棒の表面が所定の温度以下となるまでの間は、2kHz以上の周波数をもつ電流を流して表面側のみを僅かに加熱し、表面側と中心部の温度差がなるべく小さくなるように冷却する。このような冷却工程用の高周波電源は別途用意する必要はなく、上述した単一周波数の若しくは周波数可変の高周波電源を用いればよい。なお、冷却工程で流す高周波電流の周波数は2kHz以上100kHz以下であることが好ましい。
 このような冷却工程での通電は、多結晶シリコン棒の表面温度が例えば500℃以下となった段階で終了することとしてもよい。なお、冷却工程時の高周波電流の通電時間の目安は、多結晶シリコン棒の直径等にも依存するが、4時間程度とすることが好ましい。
 従来、直径が160mmを超える程度の大口径の多結晶シリコン棒の製造では、育成後に反応炉外に取り出すまでに多結晶シリコン棒が倒壊したり、多結晶シリコン塊に加工する段階においても内部残留歪みによって割れが生じる等の問題があった。しかし、上述したような冷却方法によれば、内部残留歪みの小さな多結晶シリコン棒を得ることができる。
 以上説明したように、本発明に係る多結晶シリコン棒の製造方法では、反応器中にシリコン芯線を配置し、前記反応炉内にシラン化合物を含有する原料ガスを供給し、通電により加熱された前記シリコン芯線上にCVD法により多結晶シリコンを析出させて多結晶シリコン棒を製造するプロセス中に、周波数可変の高周波電源により、多結晶シリコン棒に2kHz以上の周波数を有する電流を通電させて加熱する高周波電流通電工程を設ける。この高周波電流通電工程は、直列に連結された多結晶シリコンの析出により直径が80mm以上の所定値Dに達した多結晶シリコン棒に高周波電流を供給する工程を含み、該高周波電流の供給工程では、高周波電流が多結晶シリコン棒中を流れる際の表皮深さが13.8mm以上で80.0mm以下となる範囲内で、高周波電流の周波数が多結晶シリコン棒の表面温度変動に応じて選択される。
 本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、高周波電流の周波数を低周波数側に切り替えるとともに通電量を増加させて多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 また、本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、通電量は維持しつつ高周波電流の周波数を高周波数側に切り替えて前記多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 次に、図面を参照して、本発明を実施するための好ましい形態について説明する。
 図1は、本発明により多結晶シリコン棒を製造する際の反応炉100の構成の一例を示す断面概略説図である。反応炉100は、シーメンス法によりシリコン芯線12の表面に多結晶シリコンを気相成長させ、多結晶シリコン棒11を得る装置であり、ベースプレート5とベルジャ1により構成される。
 ベースプレート5には、シリコン芯線12に電流を供給する金属電極10と、窒素ガス、水素ガス、トリクロロシランガスなどのプロセスガスを供給する原料ガス供給ノズル9と、排気ガスを排出する反応排ガス出口8が配置されている。
 ベルジャ1には、これを冷却するための冷媒入口3と冷媒出口4および内部を目視確認するためののぞき窓2が設けられている。また、ベースプレート5にも、これを冷却するための冷媒入口6と冷媒出口7が設けられている。
 金属電極10の頂部にはシリコン芯線12を固定するためのカーボン製の芯線ホルダ14を設置する。図1では、ベルジャ1内に2対の鳥居型に組まれたシリコン芯線12を配置した状態を示したが、シリコン芯線12の対数はこれに限定されるものではなく、3対以上の複数のシリコン芯線12を配置してもよい。そのような態様の回路については後述する。
 2対の鳥居型のシリコン芯線12の間には、これらを直列若しくは並列に接続する回路16が設けられている。この回路の直列/並列の切り替えは、スイッチS1~3により行う。具体的には、スイッチS1を閉としスイッチS2および3を開とするとこれら2対の鳥居型シリコン芯線12は直列に接続され、スイッチS1を開としスイッチS2および3を閉とするとこれら2対の鳥居型シリコン芯線12は並列に接続される。
 当該回路16には、低周波数電流(例えば商用周波数である50Hz乃至60Hzの電流)を供給する1つの低周波電源15L、若しくは、2kHz以上の周波数可変の高周波電流を供給する1つの高周波電源15Hから、電流が供給される。この場合、当該周波数可変の高周波電源は、周波数を連続的に変えることができるものであってもよく、複数のレベル間で変化させることができるものであってもよい。なお、この低周波電源15L/高周波電源15Hの切り替えは、スイッチS4により行う。
 従って、スイッチS1を閉としスイッチS2および3を開として2対の鳥居型のシリコン芯線12(乃至は多結晶シリコン棒11)を直列に連結し、スイッチS4を高周波電源15H側に切り替えると、直列接続された鳥居型のシリコン芯線12(乃至は多結晶シリコン棒11)に2kHz以上の単一周波数の高周波電流を供給して通電加熱することができる。
 また、多結晶シリコンの析出開始後から多結晶シリコン棒11の直径が所定値Dに達するまでは並列に接続した多結晶シリコン棒に低周波電源15Lから電流供給し、その後、多結晶シリコン棒11の接続を直列として高周波電源15Hから電流供給するなども可能である。
 なお、鳥居型のシリコン芯線12が3対以上配置されている場合には、鳥居型のシリコン芯線12(乃至は多結晶シリコン棒11)を順次直列に連結してゆくようにすることも可能である。
 図1には、多結晶シリコンの析出反応開始に先立って行われるシリコン芯線12の初期加熱用として、電源15Cから電力供給されシリコン芯線12表面を輻射加熱するためのカーボンヒータ13を図示した。このカーボンヒータ13は、輻射加熱によりシリコン芯線12の抵抗を下げることにより初期通電時のシリコン芯線12への印加電圧を低く抑えるのを目的に設けられているものであるが、かかるカーボンヒータ13に代え若しくはこれと併用する態様で、低周波電源15L乃至高周波電源15Hを利用してもよい。例えば、シリコン芯線12を並列に連結して低周波電源15Lから電流供給したり、或いは、順次直列に接続されるシリコン芯線12に低周波電源15Lから電流供給したり、更にまた、順次直列に接続されるシリコン芯線12に高周波電源15Hから電流供給したりすることにより通電加熱を行うこともできる。
 図2は、このような周波数可変の高周波電源15Hの構成例を説明するためのブロック図で、図中に符号で示したものは、受電部151、低圧気中遮断器(ACB)152、電源変圧器153、出力制御部154、出力部155、出力変圧器156、周波数変換器157である。このような周波数可変の高周波電源15Hを用いることとすれば、多結晶シリコン棒に供給する高周波電流の周波数を多結晶シリコン棒の表面温度変動に応じて変化させ、多結晶シリコン棒の径に応じて表皮深さを制御することが容易となる。
 図1に示した態様では、ベルジャ1内に2対の鳥居型に組まれたシリコン芯線12が配置されているが、3対以上の複数のシリコン芯線12を配置してもよい。
 図3Aおよび図3Bは、3対のシリコン芯線12A~Cを配置する際の、シリコン芯線12同士を接続する回路の第1例を示したブロック図である。
 図3Aに示した態様では、6個のスイッチ(S1~S6)で回路を構成しており、スイッチS1およびS2が開とされ、スイッチS3、S4、およびS5が閉とされて3対のシリコン芯線12A~Cが並列に接続され、スイッチS6が低周波電源15L側に切り替えられて上記並列接続回路に電流が供給される状態にある。また、スイッチS1およびS2を閉とし、スイッチS3、S4、およびS5を開とすると、低周波電源15Lにより直列接続での電流供給状態になる。
 図3Bに示した態様では、スイッチS1およびS2が閉とされ、スイッチS3、S4、およびS5が開とされて3対のシリコン芯線12A~Cが直列に接続され、スイッチS6が高周波電源15H側に切り替えられて上記直列接続回路に電流が供給される状態にある。
 図4Aおよび図4Bは、3対のシリコン芯線12A~Cを配置する際の、シリコン芯線12同士を接続する回路の第2例を示したブロック図である。
 図4Aに示した態様では、3個のスイッチ(S1~S3)で回路を構成しており、スイッチS1、S2及びS3が閉とされて3対のシリコン芯線12A~Cが並列に接続され、スイッチS4が低周波電源15L側に切り替えられて上記並列接続回路に電流が供給される状態にある。また、この状態よりスイッチS1およびS2を開とすると、低周波電源15Lにより直列接続での電流供給状態になる。
 図4Bに示した態様では、スイッチS1およびS2が開とされて3対のシリコン芯線12A~Cが直列に接続され、スイッチS3が高周波電源15H側に切り替えられて上記直列接続回路に電流が供給される状態にある。
 なお、これまで説明してきた接続関係を有する複数(m本:mは2以上の整数)のシリコン芯線のグループ(第1のグループ)と一緒に、別のグループ(第2のグループ)を成す複数(M本:Mは2以上の整数)のシリコン芯線を、同じ反応炉内に設ける態様としてもよい。
 つまり、反応器中に、第1のグループを成すm本のシリコン芯線に加え、さらに第2のグループを成すM本のシリコン芯線を配置し、上記第1のグループに対応付けられて設けられる高周波電源とは別個に、第2のグループに対応付けられる2kHz以上の周波数電流を供給する高周波電源を設けることとし、上記第2のグループを成すM本のシリコン芯線上への多結晶シリコンの析出を、上述の第1のグループを成すシリコン芯線上への多結晶シリコンの析出と同様に行うようにしてもよい。
 図5Aは、それぞれが3対のシリコン芯線から成る2つのグループ(m=3、M=3)を反応炉内に配置する際のシリコン芯線同士を並列接続する回路の第1例を示したブロック図である。図3Aに示した態様と同様に、何れのグループにおいても、6個のスイッチ(S1~S6、S1´~S6´)で回路を構成しており、スイッチS1およびS2、S1´およびS2´が開とされ、スイッチS3、S4、およびS5、S3´、S4´、およびS5´が閉とされて3対のシリコン芯線12A~C、12A´~C´が並列に接続され、スイッチS6、S6´が低周波電源15L、15L´側に切り替えられて上記並列接続回路に電流が供給される状態にある。
 図5Bは、それぞれが3対のシリコン芯線から成る2つのグループ(m=3、M=3)を反応炉内に配置する際のシリコン芯線同士を直列接続する回路の第1例を示したブロック図である。図3Bに示した態様と同様に、何れのグループにおいても、スイッチS1およびS2、S1´およびS2´が閉とされて3対のシリコン芯線12A~C、12A´~C´が直列に接続され、スイッチS6、S6´が高周波電源15H、15H´側に切り替えられて上記直列接続回路に電流が供給される状態にある。
 図6Aは、それぞれが3対のシリコン芯線から成る2つのグループ(m=3、M=3)を反応炉内に配置する際のシリコン芯線同士を並列接続する回路の第2例を示したブロック図である。図4Aに示した態様と同様に、何れのグループにおいても、スイッチS1、S2及びS3、S1´、S2´及びS3´が閉とされて3対のシリコン芯線12A~C、12A´~C´が並列に接続され、スイッチS4、S4´が低周波電源15L、15L´側に切り替えられて上記並列接続回路に電流が供給される状態にある。
 図6Bは、それぞれが3対のシリコン芯線から成る2つのグループ(m=3、M=3)を反応炉内に配置する際のシリコン芯線同士を直列接続する回路の第2例を示したブロック図である。図4Bに示した態様と同様に、何れのグループにおいても、スイッチS1およびS2、S1´およびS2´が開とされて3対のシリコン芯線12A~C、12A´~C´が直列に接続され、スイッチS3、S3´が高周波電源15H、15H´側に切り替えられて上記直列接続回路に電流が供給される状態にある。
 本発明では、上述したような構成の反応システムを用い、反応器中に2本以上のシリコン芯線を配置し、反応炉内にシラン化合物を含有する原料ガスを供給し、通電により加熱されたシリコン芯線上にCVD法により多結晶シリコンを析出させて多結晶シリコン棒を製造する。そして、多結晶シリコンの製造プロセス中に、多結晶シリコン棒に2kHz以上の周波数を有する電流を通電させて加熱する高周波電流通電工程を設けることにより、高周波電流による表皮効果を適切に利用することにより、多結晶シリコン棒の局部的な異常加熱を抑制して、大口径の多結晶シリコン棒を安定的に製造することを可能としている。
 なお、上述したように、2kHz以上の周波数を有する高周波電流の供給電源としては、周波数を連続的に変えることができるものであってもよく、複数のレベル間で変化させることができるものであってもよい。
 このような周波数可変の高周波電源を用いる本発明に係る多結晶シリコン棒の製造方法は、下記の構成とすることができる。
 反応器中にシリコン芯線を配置し、前記反応炉内にシラン化合物を含有する原料ガスを供給し、通電により加熱された前記シリコン芯線上にCVD法により多結晶シリコンを析出させて多結晶シリコン棒を製造するプロセス中に、周波数可変の高周波電源により、多結晶シリコン棒に2kHz以上の周波数を有する電流を通電させて加熱する高周波電流通電工程を設ける。この高周波電流通電工程は、直列に連結された多結晶シリコンの析出により直径が80mm以上の所定値Dに達した多結晶シリコン棒に高周波電流を供給する工程を含み、該高周波電流の供給工程では、高周波電流が多結晶シリコン棒中を流れる際の表皮深さが13.8mm以上で80.0mm以下となる範囲内で、高周波電流の周波数が多結晶シリコン棒の表面温度変動に応じて選択される。
 本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、高周波電流の周波数を低周波数側に切り替えるとともに通電量を増加させて多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 また、本発明に係る多結晶シリコン棒の製造方法は、高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で多結晶シリコン棒の表面温度の低下のおそれが生じた際に、通電量は維持しつつ高周波電流の周波数を高周波数側に切り替えて前記多結晶シリコン棒の表面温度を維持する工程を含む態様としてもよい。
 これらの態様の何れにおいても、別途低周波数電流電源を設け、低周波数電流乃至高周波電流の通電によりシリコン芯線の加熱開始を行い、該シリコン芯線の表面が所望の温度となった後に多結晶シリコンの析出を開始することとしてもよい。
 このとき、シリコン芯線の加熱開始を、m本のシリコン芯線を並列に連結し、低周波数電流を供給する1つの低周波電源からの並列連結されたシリコン芯線への電流供給により行うこととしてもよい。
 また、シリコン芯線の加熱開始を、m本のシリコン芯線同士を1番目からm番目へと順次直列に連結し、1つの低周波電源若しくは1つの高周波電源からの直列連結されたシリコン芯線への電流供給により行うこととしてもよい。
 本発明に係る多結晶シリコン棒の製造方法は、多結晶シリコンの析出開始後から多結晶シリコン棒の直径が所定値Dに達するまでは、多結晶シリコン棒の加熱を、m本の多結晶シリコン棒を並列に連結し、低周波数電流を供給する1つの低周波電源からの並列連結された多結晶シリコン棒への電流供給により行う態様としてもよい。
 また、反応器中にさらにM本(Mは2以上の整数)のシリコン芯線を配置し、1つの高周波電源とは別個に設けられた高周波電源であって2kHz以上の単一高周波電流を供給する1つの高周波電源若しくは2kHz以上の周波数電流を供給する周波数可変の1つの高周波電源を用い、M本のシリコン芯線上への多結晶シリコンの析出をm本のシリコン芯線上への多結晶シリコンの析出と同様に行う態様としてもよい。
 さらに、原料ガスとしてトリクロロシランを含有するガスを選択し、多結晶シリコン棒の表面温度を900℃以上で1250℃以下に制御して多結晶シリコンを析出させる態様としてもよい。
 なお、金属電極10は、チャンバ1内に配置される鳥居型シリコン芯線12の対と同数又は同数未満の対だけ設けられることとなるが、これらの金属電極10の対は、高周波電流を流した際に、近接する金属電極対に保持されている鳥居型シリコン芯線12乃至は多結晶シリコン棒11により形成される誘導磁界によって強い抵抗が生じないような相互配置関係とすることが好ましい。或いは、高周波電流の位相調整により、誘導磁界により生じる強い抵抗を抑制するようにしてもよい。
 図7A~Cは、このような金属電極対の配置関係を例示により説明するための、上方向から眺めた状態の図で、図中に示した矢印はシリコン芯線への通電により形成される磁場方向である。
 図7Aに示した態様では、鳥居型シリコン芯線12の2本の柱部とこれら柱部を繋ぐ梁部で形成される長方形の面が、近隣に配置された鳥居型シリコン芯線12の上記長方形の面と、部分的にも対向しないように配置されている。
 図7Bに示した態様では、鳥居型シリコン芯線12の2本の柱部とこれら柱部を繋ぐ梁部で形成される長方形の面が、近接する鳥居型シリコン芯線12の上記長方形の面と直交するように配置されている。
 図7Cに示した態様では、鳥居型シリコン芯線12の2本の柱部とこれら柱部を繋ぐ梁部で形成される長方形の面が、近接する鳥居型シリコン芯線12の上記長方形の面と平行に配置されており、これらのシリコン芯線12には、各シリコン芯線12が形成する磁場の方向が逆向きとなるように位相調整された電流(i、i)が通電されている。
 また、真円性の高い断面形状の多結晶シリコン棒を得るためには、ベースプレートの中央を中心とする同心円上にシリコン芯線を配置することが好ましい。
 図8A~Cは、このような金属電極対の配置関係を例示するもので、図中に示した破線はベースプレートの中央を中心とする同心円である。
 図8Aに示した態様では、上記同心円上に、例えば4対のシリコン芯線12が配置されている。
 チャンバ内に多数のシリコン芯線12を配置する場合には、例えば8対のシリコン芯線12を異なる直径の2つの同心円上に4対ずつ配置するなどすることが好ましく、図8Bに示した態様では、内側の同心円上に配置されるシリコン芯線12の上記長方形の面と外側の同心円上に配置された近隣のシリコン芯線12の長方形の面とが、部分的にも対向しないように配置されている。
 また、図8Cに示した態様では、内側の同心円上に配置されるシリコン芯線12の上記長方形の面と外側の同心円上に配置された近隣のシリコン芯線12の長方形の面とは対向してはいるが、図7Cで示したのと同様に、これらのシリコン芯線12には、各シリコン芯線12が形成する磁場の方向が逆向きとなるように位相調整された電流(i、i)が通電されている。
 [実施例]
 反応炉100のチャンバ1内に高純度多結晶シリコンからなるシリコン芯線12をセットした。カーボンヒータ13を用い、シリコン芯線12を370℃まで初期加熱した後、シリコン芯線12に、印加電圧2000V、商用周波数である50Hzの低周波電流の通電を開始した。
 シリコン芯線12上への多結晶シリコンの析出反応は、シリコン芯線12に1050Vの電圧を印加して表面温度を1160℃とし、キャリアガスである水素ガスと原料ガスであるトリクロロシランの混合ガスの供給により開始した。
 その後、多結晶シリコンの直径が82mmとなるまでは上記通電条件の下で析出反応を継続し、その後、周波数80kHzの高周波電流に切り替えて通電し、多結晶シリコン棒が直径163mmになるまで反応を継続した。なお、反応終了時点、すなわち多結晶シリコン棒の直径が163mmとなった時点での供給電力は363kWであった。
 混合ガスの供給を停止して析出反応を終了した後、周波数80kHzの高周波電流の通電を維持したまま、多結晶シリコン棒の表面温度が600℃に低下するまでの間、徐々に通電量を下げながら冷却し、その後は通電を停止した。多結晶シリコン棒11の表面温度が45℃となるまでチャンバ1内で放置した後に取り出しを行った。
 得られた多結晶シリコン棒にクラックの発生は認められなかった。
 [比較例1]
 反応炉100のチャンバ1内に高純度多結晶シリコンからなるシリコン芯線12をセットした。カーボンヒータ13を用い、シリコン芯線12を340℃まで初期加熱した後、シリコン芯線12に、印加電圧2000V、商用周波数である50Hzの低周波電流の通電を開始した。
 シリコン芯線12上への多結晶シリコンの析出反応は、シリコン芯線12に1050Vの電圧を印加して表面温度を1130℃とし、キャリアガスである水素ガスと原料ガスであるトリクロロシランの混合ガスの供給により開始した。
 その後、多結晶シリコンの直径が80mmとなるまでは上記通電条件の下で析出反応を継続し、その後も、周波数50Hzの低周波電流の通電を継続させて、多結晶シリコン棒が直径156mmになるまで反応を継続した。なお、反応終了時点、すなわち多結晶シリコン棒の直径が156mmとなった時点での供給電力は428kWであった。
 混合ガスの供給を停止して析出反応を終了した後、周波数50Hzの低周波電流の通電を維持したまま、多結晶シリコン棒の表面温度が600℃に低下するまでの間、徐々に通電量を下げながら冷却し、その後は通電を停止した。
 多結晶シリコン棒11は、この冷却工程中にチャンバ1内で倒壊した。倒壊原因はクラックの発生と推定される。
 [比較例2]
 反応炉100のチャンバ1内に高純度多結晶シリコンからなるシリコン芯線12をセットした。カーボンヒータ13を用い、シリコン芯線12を355℃まで初期加熱した後、シリコン芯線12に、印加電圧2000V、商用周波数である50Hzの低周波電流の通電を開始した。
 シリコン芯線12上への多結晶シリコンの析出反応は、シリコン芯線12に1010Vの電圧を印加して表面温度を1100℃とし、キャリアガスである水素ガスと原料ガスであるトリクロロシランの混合ガスの供給により開始した。
 その後、多結晶シリコンの直径が80mmとなるまでは上記通電条件の下で析出反応を継続し、その後も、周波数50Hzの低周波電流の通電を継続させて径拡大させたが、多結晶シリコン棒は直径159mmになった時点で倒壊してしまった。なお、多結晶シリコン棒の直径が159mmとなった時点での供給電力は448kWであった。
 多結晶シリコン棒11の倒壊原因は、同じくクラックの発生と推定される。
 以上説明したように、本発明によれば、クロロシラン類などのシラン化合物、特にトリクロロシランを原料として大口径の多結晶シリコン棒を製造する際に発生し易い多結晶シリコン棒の崩壊を防止し、大口径多結晶シリコン棒を高効率で製造するための技術が提供される。
1 ベルジャ(チャンバ)
2 のぞき窓
3 冷媒入口(ベルジャー)
4 冷媒出口(ベルジャー)
5 ベースプレート
6 冷媒入口(ベースプレート)
7 冷媒出口(ベースプレート)
8 反応排ガス出口
9 原料ガス供給ノズル
10 電極
11 多結晶シリコン棒
12 シリコン芯線
13 カーボンヒータ
14 芯線ホルダ
15L,H,C 電源
16 直列/接続切り替え回路
100 反応炉
151 受電部
152 低圧気中遮断器(ACB)
153 電源変圧器
154 出力制御部
155 出力部
156 出力変圧器
157 周波数変換器

Claims (4)

  1.  反応器中にシリコン芯線を配置し、前記反応炉内にシラン化合物を含有する原料ガスを供給し、通電により加熱された前記シリコン芯線上にCVD法により多結晶シリコンを析出させて多結晶シリコン棒を製造する方法であって、
     前記方法は、周波数可変の高周波電源により、前記多結晶シリコン棒に2kHz以上の周波数を有する電流を通電させて加熱する高周波電流通電工程を備えており、
     該高周波電流通電工程は、直列に連結された前記多結晶シリコンの析出により直径が80mm以上の所定値Dに達した多結晶シリコン棒に高周波電流を供給する工程を含み、
     該高周波電流の供給工程では、前記高周波電流が前記多結晶シリコン棒中を流れる際の表皮深さが13.8mm以上で80.0mm以下となる範囲内で、前記高周波電流の周波数が前記多結晶シリコン棒の表面温度変動に応じて選択されること、を特徴とする多結晶シリコン棒の製造方法。
  2.  前記高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、
     前記高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で前記多結晶シリコン棒の表面温度の低下のおそれが生じた際に、前記高周波電流の周波数を低周波数側に切り替えるとともに前記通電量を増加させて前記多結晶シリコン棒の表面温度を維持する工程を含む、請求項1に記載の多結晶シリコン棒の製造方法。
  3.  前記高周波電流の周波数の選択は少なくとも2つの周波数間で行われ、
     前記高周波電流の供給工程は、通電量が一定の条件で電流供給している状態で前記多結晶シリコン棒の表面温度の低下のおそれが生じた際に、前記通電量は維持しつつ前記高周波電流の周波数を高周波数側に切り替えて前記多結晶シリコン棒の表面温度を維持する工程を含む、請求項1に記載の多結晶シリコン棒の製造方法。
  4.  前記原料ガスとしてトリクロロシランを含有するガスを選択し、前記多結晶シリコン棒の表面温度を900℃以上で1250℃以下に制御して多結晶シリコンを析出させる、請求項1乃至3の何れか1項に記載の多結晶シリコン棒の製造方法。
PCT/JP2013/000893 2012-02-23 2013-02-19 多結晶シリコン棒の製造方法 WO2013125208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13751609.2A EP2818449B1 (en) 2012-02-23 2013-02-19 Polycrystalline silicon rod manufacturing method
CN201380006277.9A CN104066678B (zh) 2012-02-23 2013-02-19 多晶硅棒的制造方法
KR1020147019668A KR20140128300A (ko) 2012-02-23 2013-02-19 다결정 실리콘 봉의 제조 방법
US14/379,429 US20150037516A1 (en) 2012-02-23 2013-02-19 Polycrystalline silicon rod manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012037161A JP5792658B2 (ja) 2012-02-23 2012-02-23 多結晶シリコン棒の製造方法
JP2012-037161 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125208A1 true WO2013125208A1 (ja) 2013-08-29

Family

ID=49005404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000893 WO2013125208A1 (ja) 2012-02-23 2013-02-19 多結晶シリコン棒の製造方法

Country Status (7)

Country Link
US (1) US20150037516A1 (ja)
EP (1) EP2818449B1 (ja)
JP (1) JP5792658B2 (ja)
KR (1) KR20140128300A (ja)
CN (2) CN104066678B (ja)
MY (1) MY171531A (ja)
WO (1) WO2013125208A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141525A4 (en) * 2014-05-07 2017-11-29 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and monocrystalline silicon
US20180002180A1 (en) * 2015-02-19 2018-01-04 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, production method therefor, and fz silicon single crystal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191780B2 (ja) 2019-06-17 2022-12-19 信越化学工業株式会社 多結晶シリコンロッドの製造方法
CN114150372A (zh) * 2022-02-10 2022-03-08 杭州中欣晶圆半导体股份有限公司 一种横向磁场变频电流控制系统及单晶生长缺陷控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515999A (en) 1978-07-19 1980-02-04 Siemens Ag Depositing particulate silicon crystal
JPS6374909A (ja) 1986-09-19 1988-04-05 Shin Etsu Handotai Co Ltd 大直径多結晶シリコン棒の製造方法
JP2002508294A (ja) 1997-12-15 2002-03-19 アドバンスド シリコン マテリアルズ リミテツド ライアビリテイ カンパニー 多結晶シリコン棒製造用化学的蒸気析着方式

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499768C2 (ru) * 2008-03-10 2013-11-27 Аег Пауэр Солюшнс Б.В. Устройство и способ равномерного электропитания кремниевого стержня

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515999A (en) 1978-07-19 1980-02-04 Siemens Ag Depositing particulate silicon crystal
JPS6374909A (ja) 1986-09-19 1988-04-05 Shin Etsu Handotai Co Ltd 大直径多結晶シリコン棒の製造方法
JP2002508294A (ja) 1997-12-15 2002-03-19 アドバンスド シリコン マテリアルズ リミテツド ライアビリテイ カンパニー 多結晶シリコン棒製造用化学的蒸気析着方式

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141525A4 (en) * 2014-05-07 2017-11-29 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and monocrystalline silicon
EP3613704A1 (en) * 2014-05-07 2020-02-26 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and single-crystalline silicon
US10865498B2 (en) 2014-05-07 2020-12-15 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and single-crystalline silicon
US20180002180A1 (en) * 2015-02-19 2018-01-04 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, production method therefor, and fz silicon single crystal
US10343922B2 (en) * 2015-02-19 2019-07-09 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, production method therefor, and FZ silicon single crystal

Also Published As

Publication number Publication date
EP2818449A4 (en) 2015-08-26
JP5792658B2 (ja) 2015-10-14
CN104066678A (zh) 2014-09-24
CN104066678B (zh) 2018-05-04
JP2013170118A (ja) 2013-09-02
CN106947955A (zh) 2017-07-14
US20150037516A1 (en) 2015-02-05
EP2818449B1 (en) 2021-12-29
KR20140128300A (ko) 2014-11-05
EP2818449A1 (en) 2014-12-31
MY171531A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2013125207A1 (ja) 多結晶シリコン棒の製造方法
JP5158608B2 (ja) 混合されたコア手段を使用した高純度シリコン棒の製造装置及び製造方法
JP5194003B2 (ja) 金属コア手段を使用した高純度多結晶シリコン棒の製造方法
JP5719282B2 (ja) 多結晶シリコンの製造方法
US10870581B2 (en) Reaction furnace for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, method for producing polycrystalline silicon, and polycrystalline silicon rod or polycrystalline silicon ingot
WO2013125208A1 (ja) 多結晶シリコン棒の製造方法
JPWO2006088037A1 (ja) シリコン鋳造装置およびシリコン基板の製造方法
JP5820896B2 (ja) 多結晶シリコンの製造方法
JP2013071856A (ja) 多結晶シリコン製造装置および多結晶シリコンの製造方法
JP7191780B2 (ja) 多結晶シリコンロッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019668

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013751609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14379429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE