WO2013125022A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013125022A1
WO2013125022A1 PCT/JP2012/054525 JP2012054525W WO2013125022A1 WO 2013125022 A1 WO2013125022 A1 WO 2013125022A1 JP 2012054525 W JP2012054525 W JP 2012054525W WO 2013125022 A1 WO2013125022 A1 WO 2013125022A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
bonding
semiconductor device
electrode
density
Prior art date
Application number
PCT/JP2012/054525
Other languages
English (en)
French (fr)
Inventor
俊章 守田
雄亮 保田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/054525 priority Critical patent/WO2013125022A1/ja
Publication of WO2013125022A1 publication Critical patent/WO2013125022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04034Bonding areas specifically adapted for strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/276Manufacturing methods by patterning a pre-deposited material
    • H01L2224/27618Manufacturing methods by patterning a pre-deposited material with selective exposure, development and removal of a photosensitive layer material, e.g. of a photosensitive conductive resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • H01L2224/83204Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/84447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/84455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85455Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/858Bonding techniques
    • H01L2224/8584Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a semiconductor device in which wirings and electrodes of semiconductor elements are electrically bonded by a bonding material containing metal particles as a base material, and in particular, electrodes of wirings and semiconductor elements by a bonding material suitable for electrodes using nickel or copper.
  • the present invention relates to a semiconductor device in which these are electrically joined.
  • semiconductor devices are often used in power conversion devices, and control devices such as trains, wind power generation devices, and hybrid vehicles equipped with the power conversion devices.
  • semiconductor device for example, “solder” or “solder alloy” is mainly used for electrical connection between the electrode terminals of electronic components and the electrode terminals of the circuit pattern on the circuit board.
  • the ratio of the surface area to the volume of the particles increases rapidly, and the melting point and sintering temperature are in a bulk state. It is known that it is significantly reduced compared to (a state larger than nanoparticles).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-107728
  • an organic compound is decomposed by heating using a bonding material in which a core made of silver particles having an average particle diameter of 100 nm or less is coated with an organic compound. It is described that bonding is performed by sintering silver particles.
  • the silver particles after bonding change to bulk metal solid metal larger than nanoparticles
  • metal bonding at the bonding interface so they have very high heat resistance and high heat dissipation. become.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-212976 is a mixture of particles coated with an organic compound around a nucleus composed of silver particles having an average particle size of 100 nm or less and silver particles having a particle size of 100 nm or more.
  • bonding of electrodes and the like is performed by decomposing an organic compound by heating and sintering silver particles using a bonding material.
  • this patent document 2 when this joining method is adopted, the joining reliability can be improved by improving the sintered density of silver after joining.
  • FIG. 9 shows the result of bonding strength evaluation performed on an electrode made of copper (Cu), nickel (Ni), gold (Au), or silver (Ag). This is because the bonding temperature is constant at 250 ° C. and the applied pressure is 1.0 MPa, and silver particles having an average particle diameter of 10 nm coated with an amine-based organic material are used as the bonding material. Bonding to an electrode made of nickel and copper was performed.
  • the vertical axis in FIG. 9 indicates the shear strength and is normalized by the value of the silver electrode.
  • silver particles coated with an amine-based organic material have a large amount of residue from the coating material remaining between the electrodes, particularly at a temperature of 300 ° C. or lower, and there is a problem in joining electrodes of semiconductor elements that are electronic components. found.
  • FIG. 10 shows the result of evaluating the corrosion resistance using the material described in Patent Document 2, but the electrode to be bonded is a silver electrode having good initial bonding strength, and the initial bonding strength is inferior to that of the silver electrode.
  • the copper electrode was evaluated.
  • the joining process was made by the same joining process as shown in FIG.
  • an electrode sample is naturally left in a sealed container filled with heated air at a temperature of 85 ° C. and a humidity of 85%, and after a predetermined time has elapsed, the electrode sample is taken out and subjected to a shear test to deteriorate its shear strength.
  • the evaluation is based on the degree.
  • the vertical axis in FIG. 10 indicates the shear strength and is normalized by the value of the silver electrode.
  • the semiconductor element junction is also required to have thermal fatigue resistance due to repeated temperature cycles corresponding to energization and environmental temperature changes.
  • FIG. 11 shows the bonding strength with respect to the number of repetitions of the temperature cycle from ⁇ 55 ° C. to 150 ° C. using the materials described in Patent Document 1 and making a test specimen for the silver electrode and the copper electrode as in FIG. It shows the transition (shear strength).
  • the joining process was made by the same joining process as shown in FIG. In the temperature cycle, heating and cooling from ⁇ 55 ° C. to 150 ° C. are defined as one cycle, and the number of repetitions of this temperature cycle is shown.
  • the shear strength value on the vertical axis was normalized with the initial value for silver. As a result, the strength deterioration of the silver electrode and the copper electrode increased from a small number of times, and the copper electrode was 100 times in strength, that is, completely broken.
  • copper and nickel are electrode materials often used in power semiconductor modules and the like.
  • reliable bonding performance with respect to these copper electrodes and nickel electrodes could not be secured, and it remained as a big problem.
  • An object of the present invention is to provide a semiconductor device capable of securing the bonding reliability of a bonded portion over a long period of time using a bonding material mainly composed of metal particles suitable for bonding of a copper electrode or a nickel electrode.
  • a feature of the present invention is that a surface of a semiconductor element formed of copper or nickel is bonded to another electrode such as a wiring using a bonding material mainly composed of copper oxide particles.
  • the copper particles obtained by reducing copper oxide are heated and pressed to form a high-density copper high-density bonding layer at the bonding interface between the electrodes and the copper particles, thereby forming a bonding portion between the electrodes to be bonded. It is in place.
  • a high-density bonding layer of copper is formed at the bonding interface between copper and nickel or copper electrode formed by reducing copper oxide, which is the main component of the bonding material, and the high-density bonding layer is connected to the counterpart electrode.
  • Metallic diffusion bonding is performed to provide high bonding strength. As a result, it is possible to ensure the bonding reliability of the bonded portion over a long period of time.
  • FIG. 2 is a cross-sectional view of the insulated semiconductor device shown in FIG. 1 taken along the line AA. It is the expanded sectional view which expanded some semiconductor devices which become other examples of the present invention.
  • It is a structure state explanatory drawing which shows the structure state of the junction part by this invention. It is explanatory drawing which shows the test result of the joint strength of the junction part by this invention. It is explanatory drawing which shows the corrosion resistance test result of the junction part by this invention. It is explanatory drawing which shows the temperature cycle test result of the junction part by this invention. It is explanatory drawing which shows the extension state of the crack which arises in the junction part by this invention, and the conventional junction part.
  • the oxide layer on the surface of the copper electrode or nickel electrode and the bonding material may not be strongly bonded. found.
  • excellent bonding strength can be obtained for copper electrodes and nickel electrodes by bonding copper electrodes and nickel electrodes using a specific bonding material. I found.
  • the specific method is a method in which copper oxide particles are heated and reduced to produce copper particles in the copper oxide, and the copper particles are sintered and joined together.
  • Copper oxide is chemically stable as a metallic copper source and can be obtained at a low price. Further, since it becomes pure copper after reduction and sintering, it can be expected to have higher migration resistance than silver. On the other hand, however, copper oxide has a characteristic that it has a high affinity with oxygen and is not easily reduced because copper oxide is more stable with respect to bulk copper at the temperature applied in the mounting process. Incidentally, in order to decompose copper oxide at atmospheric pressure, it must be heated to about 1800 ° C. For this reason, a reducing agent having a strong reducing power is required to form electrode joints with copper oxide particles.
  • the reducing agent used for forming the joint is in a solid state at room temperature and is required to have a property of evaporating and disappearing after the joint is formed. It is generally an organic compound that satisfies this property. Therefore, it is important to determine whether such a reducing agent exists or not in judging the feasibility of an approach using copper oxide particles as a bonding material.
  • cuprous oxide Cu 2 O
  • cupric oxide CuO
  • cupric oxide particles having an average particle diameter of 1 nm to 5 ⁇ m which are metal particle precursors, and acetic acid compounds, formic acid compounds, or citric acid compounds
  • a bonding material in which a compound and an organic solvent are mixed is prepared, this bonding material is applied to a copper electrode or a nickel electrode, and heating and pressurization are applied for a predetermined time to perform bonding.
  • a copper electrode or a nickel electrode is bonded.
  • it has been found that excellent bonding strength can be obtained.
  • cupric oxide was used because cupric oxide is easier to reduce than cuprous oxide, but cuprous oxide can also be used.
  • cupric oxide particles having an average particle diameter of 1 nm to 5 ⁇ m, which is a metal particle precursor, and a lower carboxylic acid having an action of reducing the cupric oxide particles, for example, acetic acid type Bonding is performed by heating and pressurizing the electrode in a nitrogen atmosphere using a bonding material in which a compound, a formic acid compound, or a citric acid compound is added and a glycol or ether organic solvent is mixed.
  • a bonding material in which a compound, a formic acid compound, or a citric acid compound is added and a glycol or ether organic solvent is mixed.
  • the cupric oxide particles are not coated with an organic material as described in Patent Document 1 and Patent Document 2. This can be expected to suppress the phenomenon that the residue derived from the coating material remains on the electrode due to heating at a low temperature.
  • the copper particle precursor is reduced at a lower temperature than by thermally decomposing the copper particle precursor alone by adding a reducing agent made of an organic compound to the copper particle precursor. At this time, copper particles having an average particle diameter of 100 nm or less are generated, and the phenomenon that the bonding is firmly performed by fusion of the copper particles to each other is utilized.
  • the copper particles having an average particle diameter of 100 nm or less are generated, and the mechanism that the copper particles are fused to each other is assumed as follows. That means (1) A thin film layer (copper high-density bonding layer) is formed on the surface (interface) of the mating electrode to which the generated copper particles of 100 nm or less are bonded, (2) This thin-film layer grows in the substantially same direction as the crystal growth direction of the counter electrode to be joined, that is, the copper electrode or the nickel electrode, (3) Further, a sintered layer is formed by fusion of copper particles that did not contribute to the formation of the thin film layer by heat, Finally, a high density bonding layer and a sintered layer of copper are formed to achieve bonding.
  • a major feature is that a thin layer of copper with crystals grown at a high density is formed at the interface of the joint, that is, the electrode surface.
  • This state is shown in FIG. 4, and a high-density copper bonding layer grows in a direction substantially the same as the crystal growth direction of the electrode at the interface between the copper electrode and the mating electrode made of a nickel electrode.
  • a joining layer is formed at the joint interface. Therefore, the high-density bonding layer of copper has a structure in which the existence ratio of the cavity portion is smaller than that of the copper sintered layer on the inner side (in the direction away from the electrode surface).
  • this bonding layer has a diffusion bonding structure, and is heated and pressed without melting and sintering copper or nickel as an electrode material and reduced copper of cupric oxide as a bonding material.
  • a bonding layer is obtained by diffusing atoms at the bonding interface across the bonding surface.
  • the high-density copper bonding layer can be formed by heating and pressurizing the electrode surface and the bonding material in contact with the electrode surface.
  • the high-density copper bonding layer is formed with a thickness of about 1 ⁇ m, but can be appropriately adjusted by heating time, heating temperature, and pressure.
  • the inner side (the direction away from the electrode surface) from the high-density copper bonding layer is a sintered layer made of copper particles in which a cavity is formed.
  • a high-density bonding layer and sintered layer can be understood by observing a cavity formed at the bonding interface, that is, a sintered defect, as shown in FIG. That is, since a thin copper layer is formed between the sintered defect portion and the counterpart electrode, this can be confirmed.
  • cupric oxide particles begin to produce copper particles at 200 ° C. or less and 100 nm or less, so that bonding can be achieved even at a low temperature of 250 ° C. or less, which has been difficult in the past. Is possible.
  • FIG. 5 shows the test results of the joint strength evaluation performed on the joint portion of the joint material mainly composed of the copper electrode or the nickel electrode and cupric oxide according to the present embodiment.
  • the process (1) is a process for forming a copper high-density bonding layer
  • the process (2) is a process for forming a copper sintered layer.
  • the vertical axis in FIG. 5 indicates the shear strength, which is normalized by the shear strength value for the copper electrode.
  • FIG. 6 shows the test results of the corrosion resistance evaluation performed on the joint portion of the joining material mainly composed of the copper electrode or nickel electrode and cupric oxide according to this example.
  • the material of the mating electrode to be joined is nickel and copper.
  • the joining material is cupric oxide particles having an average particle diameter of 2 ⁇ m containing 0.2 wt% of copper acetate as a reducing agent, and diethylene glycol monoethyl as an organic solvent.
  • a mixed material of an ether solvent was used.
  • the bonding process is as follows: (1) Heat at 60 ° C. is applied for about 10 minutes, and at the same time a pressure of 1.0 MPa is applied in a nitrogen atmosphere. (2) The temperature is kept at 250 while maintaining this pressure. The process was raised to 0 ° C. and held for 5 minutes.
  • an electrode sample was naturally left in a sealed container filled with heated air at a temperature of 85 ° C. and a humidity of 85%, and when it reached a predetermined time thereafter, a shear test was performed and the strength deterioration was evaluated.
  • an electrode sample bonded using the bonding material described in Patent Document 1 was also evaluated in the same manner.
  • the joining material described in Patent Document 1 the material of the mating electrode to be joined was silver, and the joining process was performed in the atmosphere at a temperature of 250 ° C. and a pressure of 5 MPa to prepare an electrode sample.
  • the vertical axis in FIG. 6 indicates the shear strength and is normalized by the value of the copper electrode. As a result, it was confirmed that neither the copper electrode nor the nickel electrode was deteriorated in strength until 1000 hours. In the bonding material described in Patent Document 1, the initial strength was the same, but the strength deteriorated rapidly after the test. This indicates that silver is inferior in corrosion resistance compared to copper. As shown in FIG. 4, since there is a thin film layer grown in substantially the same crystal orientation as the electrode surface at the bonding interface, it is considered that high bonding strength could be maintained.
  • FIG. 7 shows a 12 mm ⁇ 12 mm bonding material prepared by mixing cupric oxide particles having an average particle diameter of 2 ⁇ m containing 0.5 wt% of copper formate as a reducing agent and diethylene glycol monobutyl ether as an organic solvent.
  • the crack extension rate after implementing a temperature cycle test is shown with respect to the electrode sample which joined the IGBT (insulated gate bipolar transistor) chip
  • the vertical axis is the crack extension rate, which is the ratio to the length of the joint surface, and the horizontal axis indicates the number of temperature cycles.
  • cooling and heating from ⁇ 55 ° C. to 150 ° C. are defined as one cycle, and the number of repetitions of this temperature cycle is shown.
  • the joining process of the IGBT chip is as follows: (1) Heat at 60 ° C. is applied for about 10 minutes under a nitrogen atmosphere, and simultaneously pressure of 1.0 MPa is applied. (2) The temperature is kept at 250 ° C. while maintaining this pressure. The process was raised and maintained for only 5 minutes.
  • the electrode structure on the junction side (collector side) of this IGBT chip is Al / Ti / Ni, and the outermost surface is covered with nickel. Moreover, the copper electrode formation silicon nitride circuit board which has the electrode which gave nickel plating on the surface was used for the other party electrode joined.
  • a similar joining test sample was prepared using the material described in Patent Document 2 and subjected to the same test.
  • silver plating was given to the joint surface electrode of this comparative electrode sample, and it joined in air
  • the electrode structure on the junction side (collector side) of the IGBT chip is Al / Ti / Ni / Au and the outermost surface is covered with gold.
  • FIG. 8 shows a schematic view of a cross section of the comparative electrode sample after the temperature cycle test described in FIG. 7 and the electrode sample according to this example.
  • (A) has shown the cross section of the comparative electrode sample
  • (b) has shown the cross section of the electrode sample which becomes a present Example.
  • the cracks are generated after being generated at the end of the bonded portion, and eventually extend substantially linearly along the chip-side electrode interface or the electrode-side interface.
  • the bonding state breaks down at a stroke, and a break occurs between the bonding material and the electrode. It is presumed that this state is progressing in the process where the number of repetitions of the temperature cycle shown in FIG.
  • the end of the joint is the starting point of the crack, but at the junction part side of the IGBT chip or the joint interface with the electrode side. It can be seen that cracks do not extend, but extend in a complicated direction rather than a fixed direction in the sintered copper layer.
  • this is a very strong bonding form in which a high density bonding layer of copper grows in the same direction as the counterpart electrode at the bonding interface between the electrode and the bonding material.
  • a major factor is the joined state. This is because the copper high-density bonding layer is in the state of metal diffusion bonding as described above, and an extremely strong bonding state can be created.
  • cracks cannot penetrate into the copper high-density bonding layer for the reason described above, and progress through the copper sintered layer, but this is one of the causes of crack growth due to the cavity existing in the sintered layer. Since the stress is relieved, the growth of cracks can be suppressed. For these reasons, it is presumed that crack growth did not occur at the bonding interface, but extended within the sintered layer and stopped growing. It is presumed that this state is maintained because the crack progress rate does not change in the process of repeating the temperature cycle shown in FIG. 7 from 400 times to 1000 times.
  • the present embodiment can provide a joining structure with less risk of breakage of the joining interface, so that the reliability design can be facilitated, which is preferable from the viewpoint of product manufacture.
  • cupric oxide is used as the main component of the bonding material, and the mating electrode is coated with nickel. Therefore, the bonding interface has a clear interface structure as described above, but the mating electrode material is copper. In some cases, it is difficult to observe the bonding interface position. However, there are particles grown in substantially the same crystal orientation at the interface between the sintered layer with many voids or cavities and the layer without or few voids or cavities, which is the same as when nickel is used. You can think that the phenomenon has occurred.
  • cupric oxide particles having an average particle diameter of 1 nm to 5 ⁇ m that produce copper particles of 100 nm or less were defined as the copper particle precursor because of the high copper content in the copper particle precursor, This is because the volumetric shrinkage is small and oxygen is generated during decomposition to promote oxidative decomposition of organic substances.
  • the cupric oxide particles used here have an average particle size of 1 nm to 5 ⁇ m.
  • the average particle size is larger than 5 ⁇ m, copper particles having a particle size of 100 nm or less are generated in the joining process. This is because it becomes difficult to increase the gap between the copper particles, and it becomes difficult to obtain a dense bonding layer.
  • the reason why the thickness is 1 nm or more is because it is technically difficult to actually produce a copper particle precursor of cupric oxide having an average particle size of 1 nm or less.
  • cupric oxide as the copper oxide particles
  • cuprous oxide is also included, and at least one kind or two kinds of copper oxides are selected from these groups.
  • a bonding material containing as a main component.
  • metal oxide particles made of copper oxide generate only oxygen during reduction, residues after bonding hardly remain, and the volume reduction rate is small, which is suitable as a bonding material for semiconductor modules.
  • the reducing agent composed of organic substances mixed in the copper oxide particles one or more mixtures selected from alcohols, carboxylic acids and amines can be used.
  • the combination of the reducing agent composed of the copper particle precursor and the organic substance is not particularly limited as long as it can produce copper particles by mixing them, but from the viewpoint of storage stability as a bonding material, copper is used at room temperature. A combination that does not generate particles is desirable.
  • copper particles having a relatively large average particle diameter of 50 ⁇ m to 100 ⁇ m can be mixed and used. This is because the copper particles of 100 nm or less produced in the joining process play a role of sintering copper particles having an average particle diameter of 50 ⁇ m to 100 ⁇ m.
  • this copper particle precursor is the main agent, but other metal particles can be added to this, and the types of metal particles to be added include gold, silver, copper, nickel, etc.
  • the ratio of the added metal is practically about 3 wt%.
  • the copper electrode or nickel electrode referred to in the present invention is not only an electrode formed entirely of copper or nickel, but also an electrode plated with copper or nickel on the surface, an electrode made of clad material with copper or nickel exposed on the surface, etc. In short, it means an electrode in which copper or nickel is present on the electrode surface.
  • the bonding material used in the present invention is in the form of a paste dissolved in an organic solvent, and there are various application methods to the electrodes, but typical methods will be described below.
  • Method of applying only to the required part using a metal mask or mesh mask with an opening on the application method Method of applying to the required part using a dispenser Metal with an opening only on the required part of a water-repellent resin containing silicone or fluorine Apply with a mask or mesh-like mask, or apply a photosensitive water-repellent resin on a substrate or electronic component, and then expose and develop to remove the portion where the paste of the bonding material is applied.
  • Method of applying paste to the opening Method of applying a water-repellent resin to a substrate or electronic component, removing the applied portion of the bonding material paste with a laser, and then applying the bonding material paste to the opening Etc.
  • These coating methods can be implemented in combination according to the area and shape of the electrodes to be joined.
  • copper particles having a particle size of 100 nm or less are generated from the copper particle precursor in the bonding process, and the particle size is 100 nm or less while discharging organic substances in the high-density bonding layer.
  • the main component of the joining material is cupric oxide fine particles, so it is only necessary to heat at a low temperature in the joining process, and pure copper particles are generated by the reducing action of the reducing agent at this time.
  • the pure copper particles are fused with each other to form a bulk state.
  • the melting temperature of copper after entering the bulk state is the same as the melting temperature of copper in the normal bulk state, the copper particles are melted by low-temperature heating, and after melting, the melting temperature in the bulk state is reached. It has the feature of not remelting until heated.
  • This feature is that when nanoparticles are used as described above, bonding can be performed at a low temperature, and the melting temperature becomes high after bonding. Therefore, when other electronic components are subsequently bonded, This provides the advantage that the part does not remelt.
  • the heat conductivity of the high-density bonding layer and sintered layer after bonding can be 50 to 390 W / mK, and the heat dissipation is excellent. Furthermore, since the precursor is a copper oxide, there is also an advantage that the cost can be reduced.
  • the process atmosphere of the bonding process described as the embodiment of the present invention is a nitrogen atmosphere
  • the bonding process may be performed under a hydrogen atmosphere, a reducing atmosphere containing formic acid, or a non-oxidizing atmosphere.
  • the bonding structure in which the nickel electrode and the copper electrode of the semiconductor device according to the present invention are bonded with the bonding material mainly containing copper oxide the copper oxide which is the main material of the bonding material is reduced.
  • a copper high-density bonding layer is formed at the bonding interface between copper and nickel or an electrode made of copper, and a copper sintered layer having cavities is formed in addition to this. For this reason, the generated high-density bonding layer is diffusion-bonded metallically with the counterpart electrode and has high bonding strength.
  • a bonding material mainly composed of copper oxide particles suitable for bonding a copper electrode or a nickel electrode is used.
  • a semiconductor device in which a bonding structure composed of a high-density copper bonding layer and a copper sintered layer is formed and the bonding reliability of the bonding portion can be secured over a long period of time can be obtained.
  • FIG. 1 and 2 show a semiconductor device mounted with an insulated gate bipolar transistor to which the present invention is applied.
  • FIG. 1 is a plan view thereof
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. It is.
  • one surface of the semiconductor element 101 is a collector electrode (copper or nickel used) (not shown), and 88 wt% cupric oxide particles to which 0.5 wt% copper formate as a reducing agent is added.
  • a pure copper after reduction and a bonding material mixed with 12 wt% diethylene glycol monobutyl ether as an organic solvent are bonded to the wiring layer 102 on the ceramic insulating substrate 103 by the bonding layer 105 formed according to the bonding process described above. ing.
  • the ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109.
  • the ceramic insulating substrate 103 and the wiring layer 102 are referred to as a wiring substrate.
  • the wiring layer 102 is a copper wiring
  • the bonding layer 105 has a thickness of 80 ⁇ m.
  • the other surface of the semiconductor element 101 has an emitter electrode (copper or nickel used) connecting aluminum wire 201, a bonding material made of cupric oxide particles containing copper formate and an organic solvent (the same material as 105) Further, the aluminum wire 201 is bonded using a bonding material (the same material as 105) made of an Al wiring 104 on the ceramic insulating substrate 103, cupric oxide particles containing copper formate, and an organic solvent.
  • a bonding material (the same material as 105) made of an Al wiring 104 on the ceramic insulating substrate 103, cupric oxide particles containing copper formate, and an organic solvent.
  • Has been. 1 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114.
  • joining methods are as follows. First, a joining material composed of cupric oxide particles containing copper formate and an organic solvent is printed on a necessary portion of an electrode to be joined with a metal mask, and a semiconductor element is placed thereon. At this time, ultrasonic bonding is applied to the semiconductor element to increase the wetting of the bonding material, so that bonding can be performed better.
  • the temperature is then raised to 250 ° C. in a nitrogen atmosphere to maintain this state for 5 minutes in order to fuse the copper in the bulk state.
  • This process sinters the copper particles, and the pressure is kept applied in this embodiment.
  • it is not necessary to apply pressure only by heating. The reason for applying the pressure is that it is necessary when performing diffusion bonding to form a high-density bonding layer.
  • the bonding material can be made by using a mixture of cupric oxide particles and an organic solvent.
  • the bonding material in which 90 wt% of cupric oxide particles and 10 wt% of ⁇ -terpineol solvent are mixed is a copper electrode or nickel electrode to be bonded. Print on the coated area with a metal mask.
  • the bonding material applied at 40 ° C. for 10 minutes may be dried and solidified, and then the above-mentioned bonding material may be applied again with a metal mask having a different thickness.
  • a semiconductor element is disposed thereon. At this time, it is possible to perform better bonding by applying ultrasonic vibration to the semiconductor element to increase the wetting of the bonding material.
  • the pressure was maintained at 0.1 MPa, and the temperature was maintained, and the temperature was increased from room temperature to 5 ° C./min in a reducing atmosphere in which 95 vol% nitrogen and 5 vol% formic acid were mixed. By raising the temperature to 250 ° C. and maintaining this state for 10 minutes, a good bonding state can be obtained.
  • a high-density bonding layer is formed between the copper electrode or nickel electrode and copper particles obtained by reducing cupric oxide in a reducing atmosphere, and the temperature is further increased in the reducing atmosphere. The temperature is raised to 250 ° C. to fuse copper in a bulk state to sinter copper particles to form a copper sintered layer.
  • the above bonding process shows a bonding process in a reducing atmosphere with formic acid added, but a good bonding can be obtained even in a hydrogen atmosphere.
  • the bonding material may be a mixture of cupric oxide particles and an organic solvent.
  • Printing is performed on the coated portion of the electrode with a metal mask, and a semiconductor element is disposed thereon.
  • the temperature is increased from room temperature to 250 ° C. at a temperature increase rate of 30 ° C./min in a hydrogen atmosphere, and this state is maintained for 10 minutes. By maintaining this, a good bonding state can be obtained.
  • a high-density bonding layer is formed between the copper electrode or nickel electrode and the copper particles obtained by reducing cupric oxide in a reducing atmosphere, and further reduced.
  • the temperature is raised to 250 ° C. to fuse copper in a bulk state to sinter copper particles to form a copper sintered layer.
  • This embodiment is an example of a semiconductor device connected by a metal plate such as copper instead of wire bonding.
  • the collector electrode 106A (formed of copper or nickel) of the semiconductor element 101 and the wiring layer 102 are joined by a joining layer 105.
  • the wiring layer 102 is a copper wiring.
  • the bonding layer 105 is formed using a bonding material in which 90 wt% of cupric oxide particles and 10 wt% of triethylene glycol are mixed.
  • the emitter electrode 106B (consisting of copper or nickel) of the semiconductor element 101, the bonding layer 105 of the connection terminal 201 formed of copper or copper alloy, and the bonding layer 105 of the connection terminal 201 and the wiring layer 104 are also described above. The same joining structure is formed.
  • a bonding material in which 90 wt% of cupric oxide particles and 10 wt% of triethylene glycol are mixed is printed on the electrodes to be bonded using a metal mask.
  • each bonding layer 105 may be bonded individually or simultaneously.
  • the semiconductor element 101 and the insulating wiring board having a thermal expansion coefficient of about 9 ppm / ° C. Is bonded through a bonding material of about 16 ppm / ° C., so that the thermal stress caused by the difference in thermal expansion of each member that becomes remarkable in a high temperature environment can be reduced.
  • the thermal expansion coefficient of the bonding material it is expected that the thermal stress generated in the bonding material is minimized and long-term reliability is improved.
  • the semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, it can be mounted in a place of a high temperature environment and does not have a dedicated cooler. Even long-term reliability can be ensured.
  • SYMBOLS 101 Semiconductor element, 102 ... Wiring layer, 103 ... Ceramics insulating substrate, 104 ... Wiring layer, 105 ... Bonding layer, 106 ... Emitter electrode, 110 ... Support member, 201 ... Terminal for connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

 銅、ニッケルはパワー半導体モジュール等で多く用いられる電極材料であるが、これらの銅電極やニッケル電極に対して信頼性の高い接合性能が確保できず大きな課題として残っていた。本発明は、銅、或いはニッケルによって形成された半導体素子や配線等の電極を酸化銅の粒子を主剤とする接合材料を用いて接合するようにし、接合材料中の酸化銅を還元することによって得られる銅粒子を加熱及び加圧することによって電極と銅粒子の接合界面に銅の高密度接合層を形成するものである。これによれば、長期に亘って接合部の接合信頼性が確保できる。

Description

半導体装置
 本発明は金属粒子を主剤とする接合材料によって配線や半導体素子の電極等を電気的に接合した半導体装置に係り、特にニッケルや銅を使用した電極に好適な接合材料によって配線や半導体素子の電極等を電気的に接合した半導体装置に関するものである。
 一般に半導体装置は電力変換装置、その電力変換装置を搭載した電車、風力発電装置、ハイブリッド自動車等の制御装置に多く使用されている。この半導体装置においては、例えば電子部品の電極端子と回路基板上の回路パターンの電極端子との電気的接合には「はんだ」や「はんだ合金」によるものが主流であった。
 ところが、地球環境保全の観点から鉛の使用が厳しく制限されており、鉛の使用を制限して鉛を含まない材料で電極等の接合を行なう開発が進められている。特に、「高温はんだ」に関してはその代替となる有効な材料がまだ見出されていない。実装においては「階層はんだ」を用いることが必要不可欠なため、この「高温はんだ」に代わる材料の出現が望まれている。
 このような背景から、その開発の一環として金属粒子と有機化合物の複合材料を用いて電極を接合する接合材料が提案されている。
 例えば、金属粒子の粒径が100nm以下のサイズまで小さくなったナノ粒子のように構成原子数が少なくなると、粒子の体積に対する表面積比は急激に増大し、その融点や焼結温度がバルクの状態(ナノ粒子より大きい状態)に比較して大幅に低下することが知られている。
 そして、この焼結温度が低下する低温焼成機能を利用して、有機化合物で被覆した粒径が100nm以下の銀粒子を接合材料として用いることが検討されている。例えば、特開2004-107728号公報(特許文献1)には、平均粒径100nm以下の銀粒子からなる核の周囲に有機化合物の被覆を施した接合材料を用いて、加熱により有機化合物を分解させて銀粒子同士を焼結させることで接合を行うことが記載されている。
 この接合方法では、接合後の銀粒子はバルク金属(ナノ粒子より大きい個体金属)へと変化すると同時に接合界面では金属結合により接合されているため、非常に高い耐熱性と高放熱性を有するようになる。
 また、特開2008-212976号公報(特許文献2)には、平均粒径100nm以下の銀粒子からなる核の周囲に有機化合物の被覆を施した粒子と100nm以上の銀粒子単体を混合させた接合材料を用いて、特許文献1と同様に加熱によって有機化合物を分解させて銀粒子同士を焼結させることで電極等の接合を行うことが記載されている。この特許文献2においては、この接合方法を採用すると接合後の銀の焼結密度を向上させることにより接合信頼性を向上できるとしている。
特開2004-107728号公報 特開2008-212976号公報
 ところで、最近の半導体装置においては価格の低減要請や希少金属の確保の困難性等の理由から金、銀、パラジウム等の貴金属を使用した電極に代えて、ニッケルや銅を電極材料として用いる半導体装置の開発が行われている。このような背景からニッケルや銅からなる電極に好適な接合材料の探索、開発が要請されている。
 そして、上記した特許文献1、及び特許文献2に記載の平均粒径100nm以下の金属粒子、特に銀粒子を接合の主剤として用いた接合材料について、本発明者らが検討したところ、被接合部材として金、銀、及びパラジウム等を用いた貴金属電極に対しては良好な接合強度が得られるものの、銅やニッケルを使用した電極に対しては十分な接合強度が得られないことが判明した。特に最近では銅電極やニッケル電極を使用した半導体装置が多く適用される傾向にある。
 例えば、図9に銅(Cu)やニッケル(Ni)と金(Au)や銀(Ag)を材料にした電極に対して行った接合強度評価の結果を示している。これは接合温度を250℃、加圧力を1.0MPaにして一定とし、接合材料としてアミン系有機材料を被覆した平均粒径10nmの銀粒子を用いて、大気中で金及び銀よりなる電極と、ニッケル及び銅よりなる電極への接合を行った。
 図9の縦軸はせん断強度を示し、銀電極の値で規格化したものである。この結果、大気中での接合では、金電極及び銀電極に対して良好な接合強度が得られているが、ニッケル電極及び銅電極に対して接合力がかなり低いことが判明した。
 このニッケル電極及び銅電極に対して接合力が低い理由としては、特許文献1及び特許文献2に記載の銀粒子に被覆されている有機材料が大気中での加熱でのみ消失する材料であることで、酸化されにくい金電極及び銀電極に対しては有効であるが、酸化されやすいニッケル電極及び銅電極の接合には適さないことが判明した。
 また、アミン系有機材料を被覆した銀粒子では、特に300℃以下の温度では被覆材料由来の残渣が電極間に大量に残り、電子部品である半導体素子の電極の接合には課題があることも判明した。
 また、半導体装置を構成する電子部品の電極を金属粒子よりなる接合材料を用いて接合する場合には、電気的導通を確保することは言うに及ばず、熱伝導性及び耐食性も接合材料として要求される課題である。
 図10は特許文献2に記載の材料を用いて耐食性を評価した結果を示したものであるが、接合する電極は初期接合強度が良好であった銀電極と、初期接合強度が銀電極より劣る銅電極に対して評価を行った。接合プロセスは図9に示すものと同じ接合プロセスにより作成した。
 耐食性試験は温度85℃、湿度85%の加熱空気で満たされた密閉容器に電極サンプルを自然放置し、その後の所定時間経過した時点で電極サンプルを取り出してせん断試験を行い、そのせん断強度の劣化度合いで評価を行なったものである。
 図10の縦軸はせん断強度を示し、銀電極の値で規格化したものである。この結果、銀電極や銅電極の両方とも100時間を越えると強度劣化が始まり、銅電個では200時間、銀電極では500時間ではほとんど接合していない破断状態となった。
 この強度劣化の要因は接合層の腐食であり、その機序は相互の接合される電極との接合部界面に存在している空洞部に水分などの腐食物質が外部から侵入して空洞部に溜まり、これが腐食の起点となっていたことによるものと推測される。通常、1000時間は強度劣化のないようにすることが必要であり、特許文献2等に記載の接合材料では接合信頼性に課題があることも判明した。尚、特許文献1に記載の接合材料でも同様の結果になったことを確認している。
 更に、半導体素子接合部には通電や環境温度変化に対応した、繰り返し温度サイクルによる耐熱疲労性も要求される。
 図11は特許文献1に記載の材料を用いて、図10と同様に銀電極、及び銅電極に対して接合試験片を作製し、-55℃から150℃の温度サイクルの繰り返し回数に対する接合強度推移(せん断強度)を示したものである。接合プロセスは図9に示すものと同じ接合プロセスにより作成した。温度サイクルは-55℃から150℃の加熱と冷却を1サイクルとし、この温度サイクルの繰り返し回数を示している。
 縦軸のせん断強度値は銀に対する初期値で規格化した。その結果、銀電極、及び銅電極とも少ない回数から強度劣化が大きくなり、銅電極に関しては100回で強度が「0」すなわち完全に破断した状態となった。
 上前述した通り、銅、ニッケルはパワー半導体モジュール等で多く用いられる電極材料である。しかしながらこれまで述べた通り、これらの銅電極やニッケル電極に対して信頼性の高い接合性能が確保できず大きな課題として残っていた。
 本発明の目的は、銅電極やニッケル電極の接合に適した金属粒子を主剤とする接合材料を用いて長期に亘って接合部の接合信頼性が確保できる半導体装置を提供することにある。
 本発明の特徴は、表面を銅、或いはニッケルによって形成された半導体素子の電極や配線等の他の電極を酸化銅の粒子を主剤とする接合材料を用いて接合するようにし、接合材料中の酸化銅を還元することによって得られる銅粒子を加熱及び加圧することによって電極と銅粒子の接合界面に密度が高い銅の高密度接合層を形成して接合される電極の間に接合部を構成した、ところにある。
 本発明によれば、接合材料の主剤である酸化銅が還元された銅とニッケル或いは銅よりなる電極の接合界面には銅の高密度接合層が形成され、この高密度接合層は相手電極と金属的に拡散接合されて高い接合強度を備えるようになる。この結果、長期に亘って接合部の接合信頼性が確保できるようになる。
本発明の一実施例になる絶縁型半導体装置の平面図である。 図1に示す絶縁型半導体装置のA-A断面図である。 本発明の他の実施例になる半導体装置の一部を拡大した拡大断面図である。 本発明による接合部の組織状態を示す組織状態説明図である。 本発明による接合部の接合強度の試験結果を示す説明図である。 本発明による接合部の耐食性の試験結果を示す説明図である。 本発明による接合部の温度サイクル試験結果を示す説明図である。 本発明による接合部及び従来の接合部に生ずるクラックの伸展状態をしめす説明図である。 従来材による接合部の接合強度の試験結果を示す説明図である。 従来材による接合部の耐食性の試験結果を示す説明図である。 従来材による接合部の温度サイクルの試験結果を示す説明図である。
 以下、本発明の一実施例になる半導体装置について詳細に説明する。上述したように粒径が100nm以下の金属粒子、特に銀粒子を接合の主剤とする接合材料を用いた場合では、銅電極やニッケル電極表面の酸化物層と接合材料とが強く接合されないことが判明した。これに対して、本発明者等が鋭意検討した結果、特定の接合材料を用いて銅電極やニッケル電極の接合を行うことにより、銅電極やニッケル電極に対して優れた接合強度が得られることを見出した。
 本発明者等は特定の接合材料の探索を行なうにあたり、材料価格やマイグレーションの問題に対して有効な接合材料である酸化銅の粒子を用いるアプローチを行った。その具体的な方法は、酸化銅の粒子を加熱、還元して酸化銅の中の銅粒子を生成させ、銅粒子同士を焼結させて接合する方法である。
 酸化銅は金属銅源として化学的に安定で、かつ低価格で求めることができ、更に還元、焼結後は純銅となるため、銀に比べ高い耐マイグレーション性能が期待できる。しかしながらその反面、酸化銅は酸素との親和性が高く実装プロセスに適用される温度程度ではバルク銅に対して酸化銅がより安定であるため容易には還元し難いという特性を有している。ちなみに大気圧で酸化銅を分解するには約1800℃程度まで加熱しなければならず、このため酸化銅の粒子で電極の接合部を形成するには還元力が強い還元剤が必要である。
 接合部の形成に用いる還元剤は室温では個体状態で、接合形成後には蒸発して消失する特性が要求され、この特性を満たすのは一般的には有機化合物である。したがって、このような還元剤が存在するか否かを明らかにすることが、酸化銅の粒子を接合材料として用いるアプローチの実施可能性を判断する上で重要であった。
 酸化銅の粒子を接合材料として用いるため、接合材料としての素材を酸化銅である酸化第一銅(CuO)、及び酸化第二銅(CuO)とし、先ず酸化銅の還元作用を示す有機化合物の探索を目的として第一原理計算による還元反応経路の計算を行った。
 この結果を基に、本発明者等が鋭意検討した結果、金属粒子前駆体である平均粒径が1nm~5μmの酸化第二銅粒子と、酢酸系化合物、またはギ酸系化合物、またはクエン酸系化合物、及び有機溶剤を混合した接合材料を作製し、銅電極或いはニッケル電極にこの接合材料を塗布して加熱と加圧を所定時間加えて接合を行うことで、結果として銅電極やニッケル電極に対して優れた接合強度が得られることを見出した。ここで、酸化第二銅を使用したのは酸化第一銅よりも酸化第二銅の方がより還元し易いからであるが、酸化第一銅を使用することも可能である。
 更に具体的に説明すると、金属粒子前駆体である平均粒径が1nm~5μmの酸化第二銅の粒子と、これに酸化第二銅の粒子を還元する作用を有する低級カルボン酸、例えば酢酸系化合物、またはギ酸系化合物、またはクエン酸系化合物を添加し、更にグリコール系やエーテル系の有機溶剤を混合した接合材料を用いて、窒素雰囲気下で電極の加熱及び加圧を行って接合を行うことで銅電極やニッケル電極に対して優れた接合状態を得ることができるようになった。尚、酸化第二銅の粒子には特許文献1や特許文献2にあるような有機材料による被覆は施されていないものである。これによって、低い温度での加熱による被覆材料由来の残渣が電極に残るといった現象を抑制することが期待できるものである。
 このような接合材料を用いた接合方法は、銅粒子前駆体に対して有機化合物からなる還元剤を添加することによって、銅粒子前駆体単体を加熱分解するよりも低温で銅粒子前駆体が還元され、その際に平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合することで接合が強固に行なわれるという現象を利用しているものである。
 この平均粒径が100nm以下の銅粒子が生成され、銅粒子同士が相互に融合して接合に至る機序は以下の通りと推測される。つまり、
(1)生成した100nm以下の銅粒子が接合される相手電極表面(界面)に薄膜層(銅  の高密度接合層)を形成し、
(2)この薄膜層は接合される相手電極、すなわち銅電極、或いはニッケル電極の結晶成長方向と略同一方向に結晶成長し、
(3)更に薄膜層の形成に寄与しなかった銅粒子同士の熱による融合によって焼結層が形成され、
最終的に銅の高密度接合層と焼結層を形成して接合が達成されるものである。
 本実施例においては、上述した機序に示したように、接合部界面、すなわち電極表面に高密度に結晶が成長した銅の薄層が形成されていることが大きな特徴である。図4にこの状態を示しており、銅電極、或いはニッケル電極からなる相手電極との接合部界面に銅の高密度接合層が電極の結晶成長方向と略同一方向に結晶成長し、この結晶による接合層を接合部界面に形成している。したがって、この銅の高密度接合層は内側(電極表面から遠ざかる方向)の銅の焼結層に比べて空洞部の存在割合が少ない構成となっている。
 また、この接合層は拡散接合の構成を有しており、電極材料である銅やニッケル及び接合材料である酸化第二銅の還元された銅を溶融焼結させることなく、加熱、加圧によって接合面を横切って接合界面の原子を拡散させて接合層を得るようにしている。
 つまり、銅やニッケル及び接合材料である酸化第二銅の還元された銅を加熱、加圧すると、接触界面に塑性変形が生じると同時に酸化皮膜が破壊され、加熱、加圧状態を所定時間だけ保持することにより接合界面近傍のクリープ変形と原子の拡散により酸化皮膜の破壊、分解が進み、その結果清浄な銅やニッケル及び接合材料である酸化第二銅の還元された銅の表面が増加し、接合界面の原子配列は、結晶粒界に近づき時間の経過とともに接合界面を横切って結晶粒が成長していくようになって接合層が得られるものである。
 このように銅の高密度接合層は電極表面及びこれに接する接合材料を加熱、加圧することで形成することができるものである。そして、この実施例では銅の高密度接合層は約1μm程度の厚さを持って形成されているが、加熱時間や加熱温度、加圧力によって適宜調整可能である。
 また、銅の高密度接合層から内側(電極表面から遠ざかる方向)は内部に空洞部が形成された銅粒子による焼結層となっている。このような高密度接合層と焼結層は図4に示すように接合界面に形成した空洞、すなわち焼結欠損部を観察することで判るようになる。つまり、焼結欠損部と相手電極間に銅の薄層が形成しているので、これを確認すれば良いことになる。
 そして、酸化第二銅の粒子は還元剤の存在下では、200℃以下で100nm以下の銅粒子が生成され始めることから、従来では困難であった250℃以下の低温でも接合を達成することが可能である。特に接合の機序で説明した電極表面に銅の薄層を形成させるには、銅粒子が生成される温度以下で所定時間だけ加圧を維持し、その後に銅粒子を焼結するのに必要な温度に昇温して所定時間だけ加圧を維持する多段階加熱方式を採用することによってより促進されるようになる。
 また、接合の進行過程において粒径が100nm以下の銅粒子が生成されるため、上述したように、有機化合物で表面を被覆した銅粒子の作製が不要であり、接合用材料の製造や接合プロセスの簡易化、接合材料の大幅なコストダウンを達成することが可能である。
 図5は本実施例による銅電極やニッケル電極と酸化第二銅を主剤とする接合材料の接合部に対して行った接合強度評価の試験結果を示したものである。
 接合プロセスとしては、(1)60℃の熱を約10分間だけ加え、同時に1.0MPaの圧力を窒素雰囲気下で加える、(2)この圧力を維持した状態のまま温度を250℃に上昇させて5分間だけ維持するプロセスとした。ここで、プロセス(1)は銅の高密度接合層を形成するためのプロセスであり、プロセス(2)は銅の焼結層を形成するためのプロセスである。
 この評価では接合材料として、還元剤としてギ酸銅0.5wt%を含んだ平均粒径2μmの酸化第二銅粒子と、有機溶剤としてジエチレングリコールモノブチルエーテル溶剤の混合材料を用いて、窒素雰囲気下で夫々ニッケル電極、銅電極への接合を行った。
 図5の縦軸はせん断強度を示し、銅電極に対するせん断強度値で規格化したものである。その結果、ニッケル電極、銅電極に対する接合強度はほぼ同等の接合強度が得られており、強固な接合状態が獲得されていることが判明した。尚、還元剤としてギ酸銅を使用したが、これ以外に酢酸銅、クエン酸銅、アルデヒド基をもつ銅化合物も選択でき、同様の効果があることを確認している。
 図6は本実施例による銅電極やニッケル電極と酸化第二銅を主剤とする接合材料の接合部に対して行った耐食性評価の試験結果を示したものである。
 接合する相手電極の材料はニッケル、及び銅を使用しており、接合材料は還元剤として酢酸銅0.2wt%を含んだ平均粒径2μmの酸化第二銅粒子と、有機溶剤としてジエチレングリコールモノエチルエーテル溶剤の混合材料を用いた。尚、接合プロセスは上述したように(1)60℃の熱を約10分間だけ加え、同時に1.0MPaの圧力を窒素雰囲気下で加える、(2)この圧力を保持した状態のまま温度を250℃に上昇させて5分間だけ保持するプロセスとした。
 耐食性試験は温度85℃、湿度85%の加熱空気で満たされた密閉容器に電極サンプルを自然放置し、その後の所定時間に到達した時にせん断試験を行ってその強度劣化で評価した。本実施例との比較のため特許文献1に記載された接合材料を用いて接合した電極サンプルについても同様に評価した。尚、この特許文献1に記載の接合材料に対しては、接合される相手電極の材料を銀とし、接合プロセスを大気中で温度を250℃、圧力を5MPaとして電極サンプルを作製した。
 図6の縦軸はせん断強度を示し、銅電極の値で規格化したものである。この結果、銅電極、及びニッケル電極とも1000時間まで強度劣化がないことが確認できた。特許文献1に記載の接合材料では初期強度は同等であったが試験後には急激に強度劣化した。このことは銅に比べ銀は耐食性に劣ることを示している。図4のように接合界面に電極表面と略同一結晶方位に成長した薄膜層があるため、高い接合強度を維持できていたと考えられる。
 図7はニッケル電極に対して、還元剤としてギ酸銅0.5wt%を含んだ平均粒径2μmの酸化第二銅粒子と、有機溶剤としてジエチレングリコールモノブチルエーテルを混合した接合材料を用いて12mm×12mmのIGBT(絶縁ゲート型バイポーラトランジスタ)チップを接合した電極サンプルに対して、温度サイクル試験を実施した後のクラック伸展率を示したものである。
 縦軸はクラック伸展率で、これは接合面の長さに対する比であり、横軸は温度サイクルの回数を示している。温度サイクルは-55℃から150℃の冷却と加熱を1サイクルとし、この温度サイクルの繰り返し回数を示している。
 IGBTチップの接合プロセスは、窒素雰囲気下において(1)60℃の熱を約10分間だけ加え、同時に1.0MPaの圧力を加える、(2)この圧力を維持した状態のまま温度を250℃に上昇させて5分間だけ維持するプロセスとした。
 このIGBTチップの接合部側(コレクタ側)の電極構造はAl/Ti/Niで、最表面はニッケルで被覆されている。また、接合される相手電極は表面にニッケルめっきを施した電極を有した銅配線形成窒化珪素回路基板を用いた。
 比較例して特許文献2に記載の材料を用いて同様の接合試験サンプルを作製して同様の試験に供した。尚、この比較電極サンプルの接合面電極には銀めっきを施し、大気中で接合した。またIGBTチップの接合部側(コレクタ側)の電極構造はAl/Ti/Ni/Auで最表面は金で被覆されている。
 図7において、温度サイクル回数に対してクラックの伸展が特許文献2に記載の材料を用いて作製した比較電極サンプルより少ないことが判った。比較電極サンプルは温度サイクルが400回を超えると急激にクラックが増加し、1000回で進展率が80%以上になり破断した。これに対して本実施例の電極サンプルでは温度サイクルが1000回を越えてもクラックの増加は400回の時からさほど変化しなかった。比較電極サンプルでは400回を境にクラックが大きく成長しているのに対して、本実施例の電極サンプルではクラックの成長が実質停止していることが理解できる。
 図8は図7で説明した温度サイクル試験後の比較電極サンプルと本実施例になる電極サンプルの断面の模式図を示したものである。(a)は比較電極サンプルの断面を示し、(b)は本実施例になる電極サンプルの断面を示している。
 比較電極サンプルにおいては、クラックは接合部端部で発生してから伸展していき、やがてチップ側電極界面、あるいは電極側界面に沿ってほぼ一直線に伸展していることが理解できる。この接合界面に沿ってクラックが発生して成長すると、これを境に接合状態が一気に破綻して接合材料と電極の間に破断が生じるようになる。図7に示す温度サイクルの繰り返し回数が400回から1000回に至る過程でこの状態が進行しているものと推測される。
 一方、酸化第二銅の粒子を使用した本実施例の電極サンプルの場合は、接合部の端部がクラックの発生起点ではあるが、IGBTチップの接続部側、或いは電極側との接合界面にはクラックは伸展せずに銅の焼結層中で定まった方向では無く複雑な方向に伸展していることがわかる。
 このことは図4に示す構造からも明らかなように、電極と接合材料の接合界面には銅の高密度接合層が相手電極と略同一方向に結晶が成長する接合形態となって非常に強い接合状態であることが大きな要因となっている。先に述べたように、この銅の高密度接合層は金属の拡散接合の状態となっており、極めて強い接合状態を作り出すことができるからである。
 また、クラックは上述した理由から銅の高密度接合層には侵入できずに銅の焼結層を進展していくが、焼結層に存在する空洞部によってクラックの成長原因の一つであるストレス(応力)が緩和されることからクラックの成長を抑制できるようになる。このような理由からクラックの伸展が接合界面に生じることなく、焼結層内で伸展して成長が停止されていったものと推測される。図7に示す温度サイクルの繰り返し回数が400回から1000回に至る過程でクラックの進展率が変わらないのはこの状態が維持されているからと推測される。
 そして、このような接合界面の破断の恐れが少ない接合構造は半導体モジュールの設計に欠かすことのできない指標である。接合界面の破断が支配的であると寿命策定ができず、信頼性設計が困難となって製品製造の観点から好ましいものではない。これに対して本実施例では接合界面の破断の恐れが少ない接合構造を提供できるので、信頼性設計が容易にでき製品製造の観点から好ましいものとなる。
 本実施例では接合材料の主剤に酸化第二銅を使用し、相手電極がニッケルで被覆されているため、その接合界面は上述の通り界面構造が明確であるが、相手電極の材料が銅の場合は接合界面位置を観察するのは困難である。ただ、空隙或いは空洞の多い焼結層と、空隙或いは空洞の無い、或いは少ない層との接合界面は結晶方位が略同一方位に成長した粒子が存在しており、ニッケルを使用した場合と同様の現象が生じていると考えて差し支えない。
 本実施例において、100nm以下の銅粒子を生成する平均粒径が1nm~5μmの酸化第二銅粒子を銅粒子前駆体として規定したのは銅粒子前駆体中における銅含有量が高く、接合時における体積収縮が小さく、かつ分解時に酸素を発生して有機物の酸化分解を促進するからである。
 また、ここで用いた酸化第二銅粒子の粒径を平均粒径が1nm~5μmとしたのは、平均粒径が5μmより大きくなると、接合過程において粒径が100nm以下の銅粒子が生成されにくくなり、これによって銅粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。一方、1nm以上としたのは、平均粒子が1nm以下の酸化第二銅の銅粒子前駆体を実際に作製することが技術的に困難なためである。
 本発明においては銅酸化物粒子としては酸化第二銅を使用した実施例を説明したが、この他に酸化第一銅も挙げられ、これらの群から少なくとも1種類、あるいは2種類の銅酸化物を主剤とする接合材料を用いることも可能である。また、酸化銅からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も小さいので半導体モジュールの接合材料として好適である。
 また、酸化銅の粒子中に混合される有機物からなる還元剤としては、アルコール類、カルボン酸類、アミン類から選ばれた1種以上の混合物を用いることができる。
 銅粒子前駆体と有機物からなる還元剤の組み合わせとしては、これらを混合することにより銅粒子を生成可能なものであれば特に限定されないが、接合用材料としての保存性の観点から、常温で銅粒子を生成しない組み合わせとすることが望ましい。
 また、接合材料中には比較的粒径の大きい平均粒径50μm~100μmの銅粒子を混合して用いることも可能である。これは接合過程において生成された100nm以下の銅粒子が、平均粒径50μm~100μmの銅粒子同士を焼結させる役割を果たすからである。
 また、粒径が100nm以下の他の金属粒子を予め混合しておいても良い。例えば、この銅粒子前駆体が主剤であることは変わりないが、これに他の金属粒子を添加することも可能であり、添加する金属粒子の種類としては、金、銀、銅、ニッケル等があげられ、その添加金属の割合は3wt%程度が実際的である。
 更に本発明でいう銅電極やニッケル電極は、全体を銅やニッケルで形成した電極はもちろんのこと、表面に銅やニッケルをメッキした電極や、表面に銅やニッケルが露出したクラッド材による電極等を意味し、要は電極表面に銅やニッケルが存在している電極を意味するものである。
 本発明で使用する接合材料は有機溶剤に溶けたペースト状の態様を呈しており、電極への塗布方法は種々あるが以下にその代表的な方法を説明する。例えば、
塗布部分を開口したメタルマスクやメッシュ状マスクを用いて必要部分にのみ 塗布を行う方法
ディスペンサを用いて必要部分に塗布する方法
シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布したり、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより接合材料のペーストを塗布する部分を除去し、その後に接合材料のペーストをその開口部に塗布する方法
撥水性樹脂を基板あるいは電子部品に塗布後、接合材料のペーストを塗布した塗布部分をレーザーにより除去し、その後に接合材料のペーストをその開口部に塗布する方法
等がある。これらの塗布方法は接合する電極の面積や形状に応じて組み合わせて実施することが可能である。
 本発明になる接合材料で電極を接合する場合では、接合過程で銅粒子前駆体から粒径が100nm以下の銅粒子を生成し、高密度接合層における有機物を排出しながら粒径が100nm以下の銅粒子の拡散接合による金属結合を行うため、所定の温度に保つための加熱と、0.01~5MPaの圧力を加えて接合することが望ましい。
 ニッケル電極や銅電極の接合過程においては、接合材料の主剤が酸化第二銅の微粒子であるため接合過程では低い温度で加熱すれば良く、この時の還元剤の還元作用によって純銅の粒子を生成させ、この純銅の粒子同士は相互に融合してバルク状態となる。
 バルク状態になった後の銅の溶融温度は通常のバルクの状態での銅の溶融温度と同じであるので、銅粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。
 この特徴は、上述したようにナノ粒子を用いた場合に低い温度で接合を行うことができ、接合後は溶融温度が高くなることから、その後の他の電子部品を接合している際に接合部が再溶融しないという長所をもたらすことになる。
 また、接合後の高密度接合層及び焼結層の熱伝導率は50~390W/mKとすることが可能であり放熱性にも優れている。さらに前駆体が銅酸化物であるため低価格にできるという長所もある。
 尚、本発明の実施例として説明した接合過程のプロセス雰囲気は窒素雰囲気であったが、水素雰囲気、ギ酸を含んだ還元雰囲気、非酸化雰囲気のもとで接合プロセスを実行しても良い。
 以上の説明にある通り、本発明による半導体装置のニッケル電極や銅電極を、酸化銅を主剤とする接合材料で接合した場合の接合構造によれば、接合材料の主剤である酸化銅が還元された銅とニッケル或いは銅よりなる電極の接合界面には銅の高密度接合層が形成され、これ以外は空洞を有する銅の焼結層とが形成される。このため生成した高密度接合層は相手電極と金属的に拡散接合されて高い接合強度を備えるようになる。
 したがって、仮にクラックが生じても、このクラックはこの高密度接合層によって接合界面まで侵入できず、またクラックは焼結層の空洞部によってその成長が抑制されて長期にわたって強い接合状態を維持することが可能となる。
 以上の通り、本発明によれば銅電極やニッケル電極の接合に適した酸化銅粒子を主剤とする接合材料を用いて。銅の高密度接合層と銅の焼結層よりなる接合構造を形成して長期に亘って接合部の接合信頼性が確保できる半導体装置が得られるようになる。
 次に、本発明の一実施例になる半導体装置を図面に従い詳細に説明するが、本発明は以下の実施形態に限定されるものではない。
 図1、及び図2は本発明を適用した絶縁ゲート型バイポーラトランジスタを実装した半導体装置を示したものであり、図1はその平面図、図2は図1のA-A断面を示したものである。
 本実施例において、半導体素子101の一方の面は図示しないコレクタ電極(銅やニッケルが使用されている)が、還元剤としてのギ酸銅0.5wt%を添加した88wt%の酸化第二銅粒子(還元後は純銅化)と、有機溶剤として12wt%のジエチレングリコールモノブチルエーテルを混合した接合材料を、上述の接合プロセスにしたがって形成された接合層105によってセラミックス絶縁基板103上の配線層102に接合されている。セラミックス絶縁基板103は支持部材110にはんだ層109を介して接合されている。(セラミックス絶縁基板103と配線層102をもって配線基板という)ここで、配線層102は銅配線であり、接合層105は厚さ80μmである。
 半導体素子101の他方の面は、エミッタ電極(銅やニッケルが使用されている)が接続用アルミワイヤ201と、ギ酸銅を含む酸化第二銅粒子と有機溶剤からなる接合材料(105と同一材料)を用いて接合されており、更にアルミワイヤ201はセラミックス絶縁基板103上のAl配線104とギ酸銅を含む酸化第二銅粒子と有機溶剤からなる接合材料(105と同一材料)を用いて接合されている。尚、図1における他の符号は、ケース111、外部端子112、ボンディングワイヤ113、封止材114を示している。
 そして、これらの接合方法は以下の通りである。
まず、ギ酸銅を含む酸化第二銅粒子と有機溶剤からなる接合材料を接合すべき電極の必要個所にメタルマスクによって印刷し、その上に半導体素子を配置する。この時に半導体素子に超音波振動を加え、接合材料の濡れを増加させるとより良好に接合できる。
 この後、0.5MPaで加圧状態を維持しながら、窒素雰囲気中で60℃の熱を約10分間加える。この状態で相手側の銅電極やニッケル電極と酸化第二銅が還元された銅粒子との間に高密度接合層を形成する。この高密度接合層は上述したように相手電極との接合部界面に相手電極の結晶成長方向と略同一方向に結晶が成長して得られるものである。この状態で高密度接合層以外の銅粒子はバルク状態となっている。
 10分が経過すると、次に窒素雰囲気中で温度を250℃に上昇させてバルク状態の銅を融合させるため5分間に亘りこの状態を維持する。この過程が銅粒子を焼結させるものであり本実施例では圧力は加えたままとしたが、この過程では加熱だけして加圧を加えなくても良い。圧力を加えるのは拡散接合を実行して高密度接合層を形成する時に必要となるからである。
 以上の接合プロセスはギ酸銅のような還元剤を使用した例を示したが、還元剤を使用せずに還元雰囲気で同様の接合プロセスを実行することもできる。
 次にこの還元雰囲気を用いた接合方法を述べる。接合材料は酸化第二銅粒子と有機溶剤の混合物を用いて行うことができ、酸化第二銅粒子90wt%と10wt%のαテルピネオール溶剤を混合した接合材料を接合すべき銅電極やニッケル電極の塗布部分にメタルマスクによって印刷する。
 このとき40℃で10分に亘り塗布した接合材料を乾燥、固化させ、更にその上に厚さの異なるメタルマスクで再び上述の接合材料を塗布する2度塗りを行っても良い。その上に半導体素子を配置する。このとき半導体素子に超音波振動を加え、接合材料の濡れを増加させるとより良好に接合できる。
 この後、0.1MPaで加圧状態にした後にその状態を維持したままで、95vol%の窒素と、5vol%のギ酸を混合した還元雰囲気下で常温から5℃/minの昇温速度で温度を250℃まで上昇させて10分間に亘りこの状態を維持することで良好な接合状態を得ることができる。
 この様な接合プロセスを実行することにより、銅電極やニッケル電極と還元雰囲気中で酸化第二銅が還元された銅粒子との間に高密度接合層を形成し、更に還元雰囲気中で温度を250℃に上昇させてバルク状態の銅を融合して銅粒子を焼結させて銅の焼結層を形成するものである。
 以上の接合プロセスはギ酸を加えた還元雰囲気での接合プロセスを示したものであるが、水素雰囲気を用いても良好な接合が得られるものである。
 次にこの水素雰囲気を用いた接合方法を述べる。接合材料は酸化第二銅粒子と有機溶剤の混合物を用いて行うことができ、酸化第二銅粒子85wt%と、15wt%のトリエチレングリコール溶剤を混合した接合材料を接合すべき銅電極やニッケル電極の塗布部分にメタルマスクによって印刷して、その上に半導体素子を配置する。
 この後、0.1MPaで加圧状態にした後にその状態を維持したままで、水素雰囲気下で常温から30℃/minの昇温速度で温度を250℃まで上昇させて10分間に亘りこの状態を維持することで良好な接合状態を得ることができる。
 この実施例においても、上記した接合プロセスを実行することにより、銅電極やニッケル電極と還元雰囲気中で酸化第二銅が還元された銅粒子との間に高密度接合層を形成し、更に還元雰囲気中で温度を250℃に上昇させてバルク状態の銅を融合して銅粒子を焼結させて銅の焼結層を形成するものである。
 次に、半導体装置の別の実施例について図3を用いて詳細に説明するが、この実施例はワイヤボンディングではなく、銅などの金属板で結線した半導体装置の例である。
 半導体素子101のコレクタ電極106A(銅やニッケルで形成)と配線層102が接合層105で接合されている。ここで配線層102は銅配線である。
 接合層105は、酸化第二銅粒子90wt%とトリエチレングリコール10wt%を混合した接合材料を用いて形成している。
 半導体素子101のエミッタ電極106B(銅やニッケルで構成)と銅や銅合金で形成された接続用端子201の接合層105、及び接続用端子201と配線層104の接合層105も、上述した構造と同様の接合構造が形成されている。
 接合プロセスは、まず酸化第二銅粒子90wt%とトリエチレングリコール10wt%を混合した接合材料を接合すべき電極にメタルマスクを用いて印刷する。
 この後、1.0MPaで加圧状態を維持しながら、水素雰囲気中で60℃の熱を約10分間加える。この状態で相手側の銅電極やニッケル電極と酸化第二銅が還元された銅粒子との間に高密度接合層を形成する。この高密度接合層は上述したように相手電極との接合部界面に相手電極の結晶成長方向と略同一方向に結晶が成長して得られるものである。この状態で高密度接合層以外の銅粒子はバルク状態となっている。
 10分が経過すると、次に水素雰囲気中で温度を250℃に上昇させてバルク状態の銅を融合させるため5分間に亘りこの状態を維持する。この過程が銅粒子を焼結させるものであり本実施例では圧力は加えたままとしたが、この過程では加熱だけして加圧を加えなくても良い。圧力を加えるのは拡散接合を実行して高密度接合層を形成する時に必要である。尚、それぞれの接合層105は個別に接合してもよいし、同時に接合しても良いものである。
 また、銅やニッケルの電極に対して酸化銅の粒子を主剤とする接合材料で接合するようにしたので、半導体素子101と熱膨張係数が約9ppm/℃の絶縁配線基板とが、熱膨張係数が約16ppm/℃の接合材料を介して接合されるようになるため、高温環境で顕著になる各部材の熱膨張差に起因する熱応力を小さくすることができる。理想的には接合材料の熱膨張係数を配線基板のそれに一致させることで、接合材料に生じる熱応力が最小になり長期信頼性が向上することが期待できる。
 本発明の半導体装置は各種の電力変換装置に適用することができ、電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。
 101…半導体素子、102…配線層、103…セラミックス絶縁基板、104…配線層、105…接合層、106…エミッタ電極、110…支持部材、201…接続用端子。

Claims (14)

  1.  少なくとも電極の表面が銅、或いはニッケルによって形成された半導体素子の電極や配線等の他の電極を、金属粒子を主剤とする接合材料で接合して前記電極間に接合部を形成した半導体装置において、
     前記接合材料は酸化銅の粒子を主剤とする接合材料であり、前記酸化銅を還元することによって得られる銅粒子と前記電極の接合界面に、少なくとも密度が高い銅の高密度接合層を形成して前記接合部を構成したことを特徴とする半導体装置。
  2.  少なくとも電極の表面が銅、或いはニッケルによって形成された半導体素子の電極や配線等の他の電極を、金属粒子を主剤とする接合材料で接合して前記電極間に接合部を形成した半導体装置において、
     前記接合材料は酸化銅の粒子を主剤とする接合材料であり、前記酸化銅を還元することによって得られる銅粒子と前記電極の接合界面に密度が高い銅の高密度接合層を形成すると共に、前記銅の高密度接合層より内側に前記高密度層より密度が小さい銅の焼結層を形成して前記接合部を構成したことを特徴とする半導体装置。
  3.  少なくとも電極の表面が銅、或いはニッケルによって形成された半導体素子の電極や配線等の他の電極を、金属粒子を主剤とする接合材料で接合して前記電極間に接合部を形成した半導体装置において、
     前記接合材料は酸化銅の粒子を主剤とする接合材料であり、前記酸化銅を還元することによって得られる銅粒子を加熱及び加圧することによって前記電極と前記銅粒子の接合界面に密度が高い銅の高密度接合層を形成すると共に、前記銅の高密度接合層より内側に前記高密度層より密度が小さい銅の焼結層を形成して前記接合部を構成したことを特徴とする半導体装置。
  4.  少なくとも電極の表面が銅、或いはニッケルによって形成された半導体素子の電極や配線等の他の電極を、金属粒子を主剤とする接合材料で接合して前記電極間に接合部を形成した半導体装置において、
     前記接合材料は酸化銅の粒子を主剤とする接合材料であり、前記酸化銅を還元することによって得られる銅粒子を第1の温度で加熱及び加圧することによって前記電極と前記銅粒子の接合界面に密度が高い銅の高密度接合層を形成すると共に、前記第1の温度より高い第2の温度で加熱して前記銅の高密度接合層より内側に前記高密度層より密度が小さい銅の焼結層を形成して前記接合部を構成したことを特徴とする半導体装置。
  5.  請求項2乃至請求項4のいずれかに記載の半導体装置において、
     前記銅の高密度接合層は前記銅の焼結層の空隙率よりも小さい空隙率を有するものであることを特徴とする半導体装置。
  6.  請求項1乃至請求項5のいずれかに記載の半導体装置において、
     前記銅の高密度接合層は前記電極の結晶成長方向と略同一方向に結晶が成長した層であることを特徴とする半導体装置。
  7.  請求項1乃至請求項5のいずれかに記載の半導体装置において、
     前記銅の高密度接合層は前記電極の表面と前記銅粒子とが拡散接合されて形成されていることを特徴とする半導体装置。
  8.  請求項7に記載の半導体装置において、
     前記接合材料の主剤となる酸化銅の粒子は酸化第二銅の粒子であることを特徴とする半導体装置。
  9.  請求項1乃至請求項7のいずれかに記載の半導体装置において、
     前記接合材料は、酸化銅の粒子を主剤とし、これに還元剤と有機溶剤とを混合した接合材料であることを特徴とする半導体装置。
  10.  請求項9に記載の半導体装置において、
     前記酸化銅の粒子は酸化第二銅の粒子であることを特徴とする半導体装置。
  11.  請求項9に記載の半導体装置において、
     前記還元剤は低級カルボン酸であり、好ましくは酢酸系化合物、ギ酸系化合物、またはクエン酸系化合物から選ばれていることを特徴とする半導体装置。
  12.  請求項11に記載の半導体装置において、
     前記接合材料は窒素雰囲気中で加熱及び加圧されて前記接合部を形成することを特徴とする半導体装置。
  13.  請求項1乃至請求項7のいずれかに記載の半導体装置において、
     前記接合材料は、酸化銅の微粒子を主剤とし、これに有機溶剤とを混合した接合材料であることを特徴とする半導体装置。
  14.  請求項13に記載の半導体装置において、
     前記接合材料は還元雰囲気、或いは水素雰囲気中で加熱及び加圧されて前記接合部を形成することを特徴とする半導体装置。
PCT/JP2012/054525 2012-02-24 2012-02-24 半導体装置 WO2013125022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054525 WO2013125022A1 (ja) 2012-02-24 2012-02-24 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054525 WO2013125022A1 (ja) 2012-02-24 2012-02-24 半導体装置

Publications (1)

Publication Number Publication Date
WO2013125022A1 true WO2013125022A1 (ja) 2013-08-29

Family

ID=49005241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054525 WO2013125022A1 (ja) 2012-02-24 2012-02-24 半導体装置

Country Status (1)

Country Link
WO (1) WO2013125022A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090900A (ja) * 2013-11-05 2015-05-11 古河電気工業株式会社 加熱接合材料を用いた電子部品の接合方法および接続構造体
WO2017043540A1 (ja) * 2015-09-07 2017-03-16 日立化成株式会社 接合体及び半導体装置
JP2017074598A (ja) * 2015-10-14 2017-04-20 国立大学法人大阪大学 銅粒子を用いた低温接合方法
CN109075086A (zh) * 2016-04-19 2018-12-21 罗姆股份有限公司 半导体装置、功率模块及其制造方法
CN110431657A (zh) * 2017-03-24 2019-11-08 三菱电机株式会社 半导体装置及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071467A (ja) * 2002-08-08 2004-03-04 Asahi Kasei Corp 接続材料
JP2010010502A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 半導体装置及び接合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071467A (ja) * 2002-08-08 2004-03-04 Asahi Kasei Corp 接続材料
JP2010010502A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 半導体装置及び接合材料

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090900A (ja) * 2013-11-05 2015-05-11 古河電気工業株式会社 加熱接合材料を用いた電子部品の接合方法および接続構造体
US10566304B2 (en) 2015-09-07 2020-02-18 Hitachi Chemical Company, Ltd. Assembly and semiconductor device
CN111360270A (zh) * 2015-09-07 2020-07-03 日立化成株式会社 接合体及半导体装置
CN107921541A (zh) * 2015-09-07 2018-04-17 日立化成株式会社 接合体及半导体装置
JPWO2017043540A1 (ja) * 2015-09-07 2018-08-09 日立化成株式会社 接合体及び半導体装置
CN107921541B (zh) * 2015-09-07 2020-04-28 日立化成株式会社 接合体及半导体装置
EP3348336A4 (en) * 2015-09-07 2019-06-19 Hitachi Chemical Company, Ltd. ARRANGEMENT AND SEMICONDUCTOR COMPONENT
JP7056724B2 (ja) 2015-09-07 2022-04-19 昭和電工マテリアルズ株式会社 接合体及び半導体装置
JP2021063300A (ja) * 2015-09-07 2021-04-22 昭和電工マテリアルズ株式会社 接合体及び半導体装置
EP3689511A1 (en) * 2015-09-07 2020-08-05 Hitachi Chemical Company, Ltd. Joined body and semiconductor device
TWI694558B (zh) * 2015-09-07 2020-05-21 日商日立化成股份有限公司 接合體及半導體裝置
WO2017043540A1 (ja) * 2015-09-07 2017-03-16 日立化成株式会社 接合体及び半導体装置
JP2017074598A (ja) * 2015-10-14 2017-04-20 国立大学法人大阪大学 銅粒子を用いた低温接合方法
CN109075086A (zh) * 2016-04-19 2018-12-21 罗姆股份有限公司 半导体装置、功率模块及其制造方法
CN109075086B (zh) * 2016-04-19 2022-07-15 罗姆股份有限公司 半导体装置、功率模块及其制造方法
CN110431657A (zh) * 2017-03-24 2019-11-08 三菱电机株式会社 半导体装置及其制造方法
US11569169B2 (en) 2017-03-24 2023-01-31 Mitsubishi Electric Corporation Semiconductor device comprising electronic components electrically joined to each other via metal nanoparticle sintered layer and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4895994B2 (ja) 金属粒子を用いた接合方法及び接合材料
JP5286115B2 (ja) 半導体装置及び接合材料
JP5135079B2 (ja) 半導体装置及び接合材料
JP5006081B2 (ja) 半導体装置、その製造方法、複合金属体及びその製造方法
JP5156658B2 (ja) Lsi用電子部材
KR101755749B1 (ko) 도전 접속부재, 및 도전 접속부재의 제작방법
JP5151150B2 (ja) 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP5718536B2 (ja) 接続構造体、及び半導体装置
JP4737116B2 (ja) 接合方法
JP5023710B2 (ja) 半導体装置及びその製造方法
US8592996B2 (en) Semiconductor device and method of manufacturing the same
US20130216848A1 (en) Starting material and process for producing a sintered join
WO2013125022A1 (ja) 半導体装置
WO2015029152A1 (ja) 半導体装置
JP2014127537A (ja) 導電性接合材料を用いた半導体装置及びその半導体装置の製造方法。
JP5375343B2 (ja) 接合材料及びその製造方法、並びにそれを用いた実装方法
WO2019088285A1 (ja) ヒートシンク付パワーモジュール用基板およびヒートシンク付パワーモジュール用基板の製造方法
JP2016167527A (ja) 半導体モジュール及びその製造方法
JP2012191238A (ja) 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP2012038790A (ja) 電子部材ならびに電子部品とその製造方法
CN108305838B (zh) 一种不含有机物的低温芯片贴装方法及芯片贴装结构
JP2016039223A (ja) 焼結接合用材料、焼結接合用材料を備えた電子部材、及び、半導体モジュール
JP5677685B2 (ja) 回路基板、及びそれを用いた半導体装置
JP2013197436A (ja) 高熱伝導低熱膨張接合材料及び半導体装置
JP5331929B2 (ja) 電子部材ならびに電子部品とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP