WO2013123788A1 - 彩膜基板及其制作方法 - Google Patents

彩膜基板及其制作方法 Download PDF

Info

Publication number
WO2013123788A1
WO2013123788A1 PCT/CN2012/085202 CN2012085202W WO2013123788A1 WO 2013123788 A1 WO2013123788 A1 WO 2013123788A1 CN 2012085202 W CN2012085202 W CN 2012085202W WO 2013123788 A1 WO2013123788 A1 WO 2013123788A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat conductive
conductive layer
color filter
filter substrate
Prior art date
Application number
PCT/CN2012/085202
Other languages
English (en)
French (fr)
Inventor
陆金波
薛建设
赵吉生
李琳
刘宸
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/994,738 priority Critical patent/US9753321B2/en
Publication of WO2013123788A1 publication Critical patent/WO2013123788A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Definitions

  • Embodiments of the present invention relate to a color film substrate and a method of fabricating the same. Background technique
  • the TFT to LCD is formed by pairing a color film substrate and an array substrate, and the color film substrate mainly provides color to the TFT to the LCD.
  • the formation process of the black matrix and the pixel resin layer is the same: First, a corresponding resin material is coated on the entire substrate, and the resin material contains a color pigment, a photoinitiator, a resin, a solvent, etc., and the solvent is in the resin material. It acts to dissolve other materials and can be volatilized under high temperature. After forming the black matrix and color pixel resin layer, the solvent needs to be removed to avoid affecting the black matrix and the color pixel resin layer on the glass substrate. Adhesion; secondly, the substrate coated with the resin material is pre-baked and cured; then mask exposure and development treatment are performed, excess resin material is removed to form a black matrix and a pixel resin layer pattern; and finally cured by post-baking.
  • the formed pattern wherein the pixel resin layer includes a red pixel resin layer, a green pixel resin layer, and a blue pixel resin layer.
  • An embodiment of the present invention provides a color filter substrate including a substrate; a black matrix and a color pixel layer formed on the substrate, and a transparent heat conductive layer, wherein the transparent heat conductive layer is located on the black matrix and the color pixel layer and the substrate between.
  • Another embodiment of the present invention provides a method for fabricating a color filter substrate, comprising: forming on a substrate Forming a transparent thermally conductive layer; forming a black matrix pattern and a color pixel layer on the transparent thermally conductive layer by a patterning process.
  • FIG. 1 is a schematic structural view of a color filter substrate in which a transparent heat conductive layer is completed according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view showing a structure of a color filter substrate in which a transparent heat conductive layer and a black matrix are completed according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a color filter substrate completing a transparent heat conductive layer, a black matrix, and a color pixel layer according to an embodiment of the invention
  • FIG. 4 is a schematic structural view of a color filter substrate completing a transparent heat conductive layer, a black matrix, a color pixel layer, and a protective layer according to an embodiment of the invention
  • FIG. 5 is a schematic structural view of a color filter substrate in which a transparent heat conductive layer, a black matrix, a color pixel layer, a protective layer, and a conductive layer are completed according to an embodiment of the present invention
  • FIG. 6 is a schematic overall structural view of a color filter substrate according to an embodiment of the invention.
  • FIG. 7 is a flow chart of a method of fabricating a color filter substrate according to an embodiment of the invention. detailed description
  • One of the technical problems to be solved by the embodiments of the present invention is to provide a color film substrate and a manufacturing method thereof, which overcome the existing resin material of the color film substrate structure which is easy to produce a black matrix and a color pixel layer due to insufficient temperature in the baking stage.
  • the solvent in the medium is not sufficiently removed, and the gelation phenomenon occurs in the developing stage, thereby affecting defects such as product quality.
  • a color filter substrate includes: a glass substrate 1 on which a transparent heat conductive layer 2, a black matrix 3, a color pixel layer, a protective layer 7, a conductive layer 8 and The spacer 9, wherein the color pixel layer includes a red pixel layer 4, a green pixel layer 5, and a blue pixel layer 6.
  • the thickness of the transparent heat conductive layer 2 is 1 to 5 ⁇ m, which ensures the heat conduction effect of the transparent heat conductive layer is optimized under the premise of ensuring the thinning of the color film substrate.
  • the thickness of the black matrix is 1 to 5 ⁇ ⁇
  • the thickness of the color pixel layer is 1 to 5 ⁇
  • the thickness of the protective layer is 1 to 5 ⁇
  • the conductive layer is a ruthenium film having a thickness of 500 to 2000 ⁇ .
  • the mat has a trapezoidal columnar cross section with a cross-sectional diameter of 15 to 20 ⁇ m at the bottom end and a cross-sectional diameter of 5 to 10 ⁇ m.
  • the transparent heat conductive layer 2 is made of a heat conductive material having a thermal conductivity of, for example, 2 to 4 w/mk.
  • the thermal conductivity of the heat conductive material can be set to 4 w/mk,
  • the thermally conductive material has a good thermal conductivity.
  • the thermal conductivity coefficient selected in practice is determined by the degree of equipment and process technology in the actual environment.
  • the heat conductive material of the transparent heat conductive layer 2 is made of a high molecular polymer containing heat conductive particles.
  • the heat conductive particles are one or more of a metal, a metal oxide, and a nonmetal.
  • the thermally conductive particles may be selected from the group consisting of gold, silver, copper, aluminum, calcium, magnesium, iron, aluminum oxide, magnesium oxide, cerium oxide, calcium oxide, nickel oxide, aluminum nitride, silicon nitride, carbonization.
  • One or more of silicon, carbon fiber, diamond and quartz, and the polymer composite is composed of one or more of epoxy resin, silica gel, phenolic resin and polyimide.
  • the method for fabricating the color film substrate provided by the present invention includes, for example:
  • Step 1 Form a transparent heat conductive layer on the substrate.
  • a transparent heat conductive material is coated on the glass substrate 1 and baked to form a transparent heat conductive layer 2, and the baking temperature ranges from 80 to 100 ° C. In this temperature range, the heat conductive layer can be compared. Fast curing, if the temperature is too low, will affect the curing effect of the thermal layer, if it is too high, it will increase energy loss, increase cost, and is not conducive to environmental protection.
  • the optimal temperature is 90 ° C, which ensures the best curing effect under the premise of saving energy.
  • the heat conductive material is made of, for example, a high molecular polymer containing heat conductive particles.
  • thermally conductive particles are metals, metal oxides and non-metals
  • metals, metal oxides and non-metals One or more of, for example, gold, silver, copper, aluminum, calcium, magnesium, iron, aluminum oxide, magnesium oxide, cerium oxide, calcium oxide, nickel oxide, aluminum nitride, silicon nitride, silicon carbide, carbon fiber
  • the polymer composite is epoxy resin, silica gel, phenolic resin or polyimide.
  • the thickness of the transparent heat conductive layer is, for example, 1 to 5 ⁇ m.
  • the heat in the prebaking stage can be transferred to the black matrix and the color pixel layer to be formed to the maximum extent, so that the solvent in the black matrix and the color pixel layer made of the resin material is most volatilized. When it is removed, the solvent is removed to the utmost extent, thereby avoiding the problem that the color pixel layer is easily broken in the subsequent steps, and improving the efficiency and precision of the manufacturing process.
  • a black matrix pattern 3 is formed on the glass substrate 1 of the step 1 by a patterning process.
  • a resin material of a black matrix is coated on the glass substrate on which the step 1 is completed, and is exposed and developed by a patterned mask to obtain a black matrix pattern 3 having a thickness of 1 to 5 ⁇ m.
  • a color pixel layer is formed on the glass substrate 1 of the step 2 by a patterning process, and the color pixel layer includes a red pixel layer 4, a green pixel layer 5, and a blue pixel layer 6.
  • the red pixel resin material is first coated on the glass substrate of step 2, and exposed and developed by a patterned mask to obtain a red pixel layer 4.
  • a green resin layer 5 and a blue resin layer 6 were obtained by a similar process.
  • the thickness of the red pixel layer 4, the green pixel layer 5, and the blue pixel layer 6 is, for example, 1 to 5 ⁇ m.
  • the color pixel layer is a color pixel resin layer.
  • a protective layer 7 is formed on the glass substrate 1 on which the step 3 is completed.
  • a protective layer of photoresist is applied on the glass substrate 1 on which the step 3 is completed, and a transparent protective layer 7 is formed by thermal curing.
  • the transparent protective layer 7 has a thickness of, for example, 1 to 5 ⁇ m.
  • a transparent conductive layer 8 is formed on the glass substrate 1 on which step 4 is completed.
  • the transparent conductive layer 8 is formed by electroplating on the glass substrate 1 of the step 4, and the transparent conductive layer has a thickness of, for example, 500 to 2,000.
  • a spacer 9 is formed on the glass substrate 1 on which step 5 is completed.
  • a photoresist for a spacer is coated on the glass substrate 1 on which the step 5 is completed, and a spacer 9 is finally formed by an exposure and development process.
  • the spacer has a trapezoidal column shape in cross section, and has a cross-sectional diameter of, for example, 15 to 20 ⁇ m, and a cross-sectional diameter of the tip end thereof is, for example, 5 to 10 ⁇ m.
  • a transparent heat conductive layer on the substrate by providing a transparent heat conductive layer on the substrate, heat conduction inside the color filter substrate can be improved, and the maximum heat in the baking stage can be made.
  • the degree of transmission to the black matrix and the color pixel layer on the upper portion of the transparent heat conducting layer allows the solvent in the resin material to be sufficiently removed in the pre-baking stage, thereby avoiding the subsequent occurrence of the glue drop and ensuring the product quality of the color film substrate.
  • a color filter substrate comprising: a substrate; a black matrix and a color pixel layer formed on the substrate; and a transparent heat conductive layer, the transparent heat conductive layer being located between the black matrix and the color pixel layer and the substrate .
  • the color filter substrate according to (1) further comprising a protective layer, a conductive layer, and a spacer which are sequentially formed on the black matrix and the color pixel layer.
  • thermally conductive particles are gold, silver, copper, aluminum, calcium, magnesium, iron, aluminum oxide, magnesium oxide, cerium oxide, calcium oxide, nickel oxide, nitriding
  • the thermally conductive particles are gold, silver, copper, aluminum, calcium, magnesium, iron, aluminum oxide, magnesium oxide, cerium oxide, calcium oxide, nickel oxide, nitriding
  • aluminum, silicon nitride, silicon carbide, carbon fiber, diamond, and quartz are gold, silver, copper, aluminum, calcium, magnesium, iron, aluminum oxide, magnesium oxide, cerium oxide, calcium oxide, nickel oxide, nitriding
  • a method for manufacturing a color film substrate comprising:
  • a black matrix pattern and a color pixel layer are formed on the transparent thermally conductive layer by a patterning process.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

一种彩膜基板及其制作方法。彩膜基板包括:基板(1);形成在基板(1)上的黑矩阵(3)和彩色像素(4、5、6)层;以及透明导热层(2),所述透明导热层(2)位于所述黑矩阵(3)和彩色像素(4、5、6)层与所述基板(1)之间。

Description

彩膜基板及其制作方法 技术领域
本发明的实施例涉及彩膜基板及其制作方法。 背景技术
随着薄膜场效应晶体管液晶显示器至(Thin Film Transistor 至 Liquid Crystal Display, TFT至 LCD )技术的发展, 其成本的降低和制造工艺的进 一步完善, 使其成为平板显示领域的主流技术。 TFT至 LCD由彩膜基板和 阵列基板对盒而成, 彩膜基板主要为 TFT至 LCD提供色彩。
现有技术中黑矩阵和像素树脂层的形成流程相同: 首先, 在整张基板上 涂布相应树脂材料, 该树脂材料中包含颜色颜料、光引发剂、树脂和溶剂等, 该溶剂在树脂材料中起到溶合其他材料的作用, 在高温作用下可挥发, 该溶 剂在形成黑矩阵和彩色像素树脂层后, 需要将其去除掉, 以免影响黑矩阵和 彩色像素树脂层在玻璃基板上的附着力; 其次对涂布了树脂材料的基板进行 预烘烤, 使其固化; 然后进行掩模曝光及显影处理, 去除多余的树脂材料形 成黑矩阵和像素树脂层图形; 最后通过后烘进一步固化所形成图形, 其中, 像素树脂层包括红色像素树脂层、 绿色像素树脂层和蓝色像素树脂层。
在实际的生产过程中, 由于在预烘烤阶段由于温度不够导致溶剂未能去 除充分导致黑矩阵和像素树脂层在显影阶段发生掉胶现象, 进而影响彩膜基 板的生产效率和产品质量。 为了解决上述问题, 现有技术在工艺上主要是通 过提高预烘烤的温度和时间来解决这类问题, 但釆用提高烘烤温度和时间手 段, 极大的加重了能耗量, 使得加工成本进一步增加。 发明内容
本发明的一个实施例提供彩膜基板, 包括基板; 形成在所述基板上黑矩 阵和彩色像素层, 以及透明导热层, 所述透明导热层位于所述黑矩阵和彩色 像素层与所述基板之间。
本发明的另一实施例提供用于制作彩膜基板的方法, 包括: 在基板上形 成透明导热层; 在所述透明导热层上通过构图工艺形成黑矩阵图形和彩色像 素层。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅涉及本发明的一些实施例, 并非对本发明的限制。
图 1为根据本发明实施例的完成透明导热层的彩膜基板结构示意图; 图 2为根据本发明实施例的完成透明导热层和黑矩阵的彩膜基板结构结 构示意图;
图 3为根据本发明实施例的完成透明导热层、 黑矩阵和彩色像素层的彩 膜基板结构示意图;
图 4为根据本发明实施例的完成透明导热层、 黑矩阵、 彩色像素层和保 护层的彩膜基板结构示意图;
图 5为根据本发明实施例完成透明导热层、 黑矩阵、 彩色像素层、 保护 层和导电层的彩膜基板结构示意图;
图 6为根据本发明实施例的彩膜基板的整体结构示意图;
图 7为根据本发明实施例的彩膜基板的制作方法流程图。 具体实施方式
本发明实施例要解决的技术问题之一是提供一种彩膜基板及其制作方 法, 以克服现有的彩膜基板结构由于烘烤阶段温度不够容易导致制作黑矩阵 和彩色像素层的树脂材料中的溶剂未能充分去除而在显影阶段发生掉胶现象 进而影响产品质量等缺陷。
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
例如, 如图 6所示, 根据本发明实施例的彩膜基板包括: 玻璃基板 1 , 其上依次设置透明导热层 2、 黑矩阵 3、 彩色像素层、 保护层 7、 导电层 8和 隔垫物 9,其中彩色像素层包括红色像素层 4、绿色像素层 5和蓝色像素层 6。 其中, 该透明导热层 2的厚度为 1至 5 μ πι, 可确保彩膜基板轻薄化的 前提下使得该透明导热层的导热效果达到最佳。 若太薄, 则影响了透明导热 层的导热性能, 使得透明导热层不能将热量进行有效的传导; 若太厚, 虽然 透明导热层的导热性能得以提高, 但会加重彩膜基板的厚度, 最终加重液晶 面板的厚度, 使得产品容易造成厚重化。 黑矩阵的厚度为 1 至 5 μ πι, 彩色 像素层的厚度为 1至 5 μ πι,该保护层的厚度为 1至 5 μ πι,导电层为 ΙΤΟ膜, 其厚度为 500至 2000Α, 该隔垫物的截面为梯形柱状, 其底端的横截面直径 为 15至 20 μ πι, 其顶端的横截面直径为 5至 10 μ πι。
透明导热层 2由导热材料制成, 其导热系数例如为 2至 4w/mk, 在一个 实施例中, 为了适应当前设备和工艺技术程度, 可设定导热材料的导热系数 为 4w/mk, 使得该导热材料具有良好的导热功能。 需要实际中选定的导热系 数, 可根据实际环境中的设备和工艺技术程度而定。 例如, 该透明导热层 2 的导热材料由含有导热粒子的高分子聚合物制成。 其中, 导热粒子为金属、 金属氧化物和非金属的一种或几种。在一个实施例中,该导热粒子可选自金、 银、 铜、 铝、 钙、 镁、 铁、 氧化铝、 氧化镁、 氧化铍、 氧化钙、 氧化镍、 氮 化铝、 氮化硅、 碳化硅、 碳纤维、 金刚石和石英的一种或几种, 而高分子复 合物由环氧树脂、 硅胶、 酚醛树脂和聚酰亚胺的一种或几种组成。 通过设置 透明导热层 2, 可提高彩膜基板内部的热传导, 可以将工艺步骤中烘烤阶段 的热量最大程度的传递给黑矩阵和彩色像素层, 使得由树脂材料制成的黑矩 阵和彩色像素层中的溶剂完全挥发掉, 进而将溶剂完全去除掉, 从而避免了 后续步骤中彩色像素层容易掉胶的问题, 提高制作工艺效率和精度。
如图 7所示, 本发明提供的彩膜基板的制作方法例如包括:
步骤 1、 在基板上形成透明导热层。
例如, 参见图 1 , 在玻璃基板 1上涂覆透明导热材料, 经烘烤固化形成 透明导热层 2, 烘烤温度范围为 80至 100°C , 在该温度范围下, 使得该导热 层可以较快的进行固化作用, 若温度太低, 将会影响导热层的固化作用, 若 太高, 将加重能量损耗, 加大成本, 并且不利于环保。 较优的温度为 90°C , 在保证节约能量的前提下, 使得固化效果达到最佳。 导热材料例如由含有导 热粒子的高分子聚合物制成。 其中, 导热粒子为金属、 金属氧化物和非金属 的一种或几种, 例如为金、 银、 铜、 铝、 钙、 镁、 铁、 氧化铝、 氧化镁、 氧 化铍、 氧化钙、 氧化镍、 氮化铝、 氮化硅、 碳化硅、 碳纤维、 金刚石和石英 的一种或几种, 而高分子复合物为环氧树脂、 硅胶、 酚醛树脂或聚酰亚胺。 该透明导热层的的厚度为例如 1至 5 μ πι。
通过设置透明导热层, 可以将预烘烤阶段的热量最大程度的传递给后续 要形成的黑矩阵和彩色像素层, 使得由树脂材料制成的黑矩阵和彩色像素层 中的溶剂最大程度地挥发掉, 进而将溶剂最大程度地去除掉, 从而避免了后 续步骤中彩色像素层容易掉胶的问题, 提高制作工艺效率和精度。
步骤 2、参见图 2,在完成步骤 1的玻璃基板 1上通过构图工艺形成黑矩 阵图形 3。 例如为: 在完成步骤 1的玻璃基板上涂覆黑矩阵用树脂材料, 并 通过刻画有图形的掩膜版曝光并显影而得到黑矩阵图形 3 , 所形成黑矩阵图 形的厚度为 1至 5μπι。
步骤 3、参见图 3 ,在完成步骤 2的玻璃基板 1上通过构图工艺形成彩色 像素层,彩色像素层包括红色像素层 4、绿色像素层 5和蓝色像素层 6。例如: 完成步骤 2的玻璃基板上首先涂覆红色像素树脂材料, 并通过刻画有图形的 掩膜版曝光并显影而得到红色像素层 4。 然后通过类似的工艺得到绿色树脂 层 5和蓝色树脂层 6。红色像素层 4、绿色像素层 5和蓝色像素层 6的厚度例 如均为 1至 5μπι。 在一个实施例中, 彩色像素层为彩色像素树脂层。
步骤 4、参见图 4,在完成步骤 3的玻璃基板 1上形成保护层 7。例如为: 在完成步骤 3的玻璃基板 1上涂覆保护层光刻胶, 通过热固化形成透明保护 层 7。 该透明保护层 7厚度例如为 1至 5μπι。
步骤 5、 参见图 5 , 在完成步骤 4的玻璃基板 1上形成透明导电层 8。 例 如: 在完成步骤 4的玻璃基板 1上釆用电镀的方式形成透明导电层 8, 该透 明导电层的厚度例如为 500至 2000人。
步骤 6、参见图 6,在完成步骤 5的玻璃基板 1上形成隔垫物 9。例如为: 在完成步骤 5的玻璃基板 1上涂覆隔垫物用光刻胶, 通过曝光、 显影工艺, 最终形成隔垫物 9。 该隔垫物的截面为梯形柱状, 其底端的横截面直径例如 为 15至 20 μ πι, 其顶端的横截面直径例如为 5至 10 μ πι。
在本发明实施例提供的彩膜基板及其制作方法中, 通过在基板上设置透 明导热层, 可提高彩膜基板内部的热传导, 可使得烘烤阶段中的热量最大程 度的传递给位于透明导热层上部的黑矩阵和彩色像素层, 使得树脂材料中的 溶剂在预烘烤阶段充分去除, 避免后续发生掉胶情况, 确保彩膜基板的产品 质量。 ( 1 )彩膜基板, 包括:基板;形成在所述基板上的黑矩阵和彩色像素层; 以及透明导热层, 所述透明导热层位于所述黑矩阵和彩色像素层与所述基板 之间。
(2)根据 (1 ) 的彩膜基板, 还包括依次形成在所述黑矩阵和彩色像素 层上的保护层、 导电层和隔垫物。
(3)根据(1 ) 的彩膜基板, 其中, 所述透明导热层由导热材料制成, 其导热系数为 2-4w/mk。
(4)根据(3) 的彩膜基板, 其中, 所述透明导热层的导热材料由含有 导热粒子的高分子聚合物制成。
(5)根据(4) 的彩膜基板, 其中, 所述高分子复合物由环氧树脂、 硅 胶、 酚醛树脂和聚酰亚胺一种或几种组成。
(6)根据(4) 的彩膜基板, 其中, 所述导热粒子为金、 银、 铜、 铝、 钙、 镁、 铁、 氧化铝、 氧化镁、 氧化铍、 氧化钙、 氧化镍、 氮化铝、 氮化硅、 碳化硅、 碳纤维、 金刚石和石英的一种或几种。
( 7 )根据( 1 )至( 6 )中任一项的彩膜基板, 其中, 所述透明导热层的 厚度为 1至 5μπι。
( 8 )根据( 1 )至( 7 )中任一项的彩膜基板, 其中, 所述彩色像素层为 彩色像素树脂层。
(9)彩膜基板的制作方法, 包括:
在基板上形成透明导热层;
在所述透明导热层上通过构图工艺形成黑矩阵图形和彩色像素层。
( 10 )根据 ( 9 )的彩膜基板的制作方法, 还包括在所述黑矩阵图形和彩 色像素层上依次形成保护层、 导电层和隔垫物。
(11)根据 ( 9 )的彩膜基板的制作方法, 包括: 所述形成透明导热层的 步骤执行为在基板上涂覆透明导热材料, 经烘烤固化工艺形成透明导热层, 所述烘烤温度为 80-100 °C。 虽然上文中已经用一般性说明及具体实施方式, 对本发明作了详尽的描 述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本领域技术人员 而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些修改或 改进, 均属于本发明要求保护的范围。

Claims

权利要求书
1、 彩膜基板, 包括: 基板; 形成在所述基板上的黑矩阵和彩色像素层; 以及透明导热层, 所述透明导热层位于所述黑矩阵和彩色像素层与所述基板 之间。
2、如权利要求 1所述的彩膜基板,还包括依次形成在所述黑矩阵和彩色 像素层上的保护层、 导电层和隔垫物。
3、如权利要求 1所述的彩膜基板, 其中, 所述透明导热层由导热材料制 成, 其导热系数为 2-4w/mk。
4、如权利要求 3所述的彩膜基板, 其中, 所述透明导热层的导热材料由 含有导热粒子的高分子聚合物制成。
5、如权利要求 4所述的彩膜基板,其中,所述高分子复合物由环氧树脂、 硅胶、 酚醛树脂和聚酰亚胺一种或几种组成。
6、 如权利要求 4所述的彩膜基板, 其中, 所述导热粒子为金、 银、 铜、 铝、 钙、 镁、 铁、 氧化铝、 氧化镁、 氧化铍、 氧化钙、 氧化镍、 氮化铝、 氮 化硅、 碳化硅、 碳纤维、 金刚石和石英的一种或几种。
7、如权利要求 1至 6任一项所述的彩膜基板, 其中, 所述透明导热层的 厚度为 1-5 μ πι。
8、如权利要求 1至 7中任一项所述的彩膜基板, 其中, 所述彩色像素层 为彩色像素树脂层。
9、 彩膜基板的制作方法, 包括:
在基板上形成透明导热层;
在所述透明导热层上通过构图工艺形成黑矩阵图形和彩色像素层。
10、 如权利要求 9所述的彩膜基板的制作方法, 还包括, 在所述黑矩阵 图形和彩色像素层上依次形成保护层、 导电层和隔垫物。
11、 如权利要求 9所述的彩膜基板的制作方法, 包括: 所述形成透明导 热层的步骤执行为在基板上涂覆透明导热材料, 经烘烤固化工艺形成透明导 热层, 所述烘烤温度为 80-100 °C。
PCT/CN2012/085202 2012-02-24 2012-11-23 彩膜基板及其制作方法 WO2013123788A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/994,738 US9753321B2 (en) 2012-02-24 2012-11-23 Color filter substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210044709.2A CN102645785B (zh) 2012-02-24 2012-02-24 一种彩膜基板及其制作方法
CN201210044709.2 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013123788A1 true WO2013123788A1 (zh) 2013-08-29

Family

ID=46658692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085202 WO2013123788A1 (zh) 2012-02-24 2012-11-23 彩膜基板及其制作方法

Country Status (3)

Country Link
US (1) US9753321B2 (zh)
CN (1) CN102645785B (zh)
WO (1) WO2013123788A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645785B (zh) * 2012-02-24 2014-08-13 京东方科技集团股份有限公司 一种彩膜基板及其制作方法
CN105807473B (zh) * 2014-12-31 2019-06-28 上海仪电显示材料有限公司 滤色片的制作方法、滤色片和液晶面板
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
EP3351852B1 (en) * 2017-01-24 2019-10-30 OSRAM GmbH A lighting device and corresponding manufacturing method
CN106773425B (zh) * 2017-02-28 2019-09-24 厦门天马微电子有限公司 显示面板及显示装置
WO2019065359A1 (ja) * 2017-09-28 2019-04-04 東レ株式会社 有機el表示装置、ならびに画素分割層および平坦化層の形成方法
CN108333830B (zh) * 2018-02-08 2021-03-26 Tcl华星光电技术有限公司 彩膜基板及其制造方法、遮光层及其制造方法
CN113253510B (zh) * 2021-05-19 2022-11-04 惠科股份有限公司 一种彩膜基板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862557A (ja) * 1994-08-26 1996-03-08 Rohm Co Ltd 液晶セルの製造方法
CN1491984A (zh) * 2002-10-22 2004-04-28 中国科学院化学研究所 一种酚醛树脂纳米复合材料的制法及由其制备的产品
CN1611994A (zh) * 2003-10-30 2005-05-04 Lg.菲利浦Lcd株式会社 液晶显示装置及其制造方法
KR20070072140A (ko) * 2005-12-30 2007-07-04 엘지.필립스 엘시디 주식회사 액정표시장치용 박막 트랜지스터 기판 및 이의 제조 방법
CN102645785A (zh) * 2012-02-24 2012-08-22 京东方科技集团股份有限公司 一种彩膜基板及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344271B1 (en) * 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
JP3568862B2 (ja) * 1999-02-08 2004-09-22 大日本印刷株式会社 カラー液晶表示装置
JP2002124652A (ja) * 2000-10-16 2002-04-26 Seiko Epson Corp 半導体基板の製造方法、半導体基板、電気光学装置並びに電子機器
JP2002303841A (ja) * 2001-04-03 2002-10-18 Matsushita Electric Ind Co Ltd 液晶表示装置の製造方法および製造装置
JP2003109773A (ja) * 2001-07-27 2003-04-11 Semiconductor Energy Lab Co Ltd 発光装置、半導体装置およびそれらの作製方法
JP2005043677A (ja) * 2003-07-22 2005-02-17 Toppan Printing Co Ltd カラーフィルタの製造方法及び製造装置
KR100601950B1 (ko) * 2004-04-08 2006-07-14 삼성전자주식회사 전자소자 및 그 제조방법
WO2007026907A1 (en) * 2005-08-29 2007-03-08 Fujifilm Corporation Transfer material, process for producing a laminated structure having a patterned optically anisotropic layer and photosensitive polymer layer, and liquid crystal display device
US8741998B2 (en) * 2011-02-25 2014-06-03 Sabic Innovative Plastics Ip B.V. Thermally conductive and electrically insulative polymer compositions containing a thermally insulative filler and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862557A (ja) * 1994-08-26 1996-03-08 Rohm Co Ltd 液晶セルの製造方法
CN1491984A (zh) * 2002-10-22 2004-04-28 中国科学院化学研究所 一种酚醛树脂纳米复合材料的制法及由其制备的产品
CN1611994A (zh) * 2003-10-30 2005-05-04 Lg.菲利浦Lcd株式会社 液晶显示装置及其制造方法
KR20070072140A (ko) * 2005-12-30 2007-07-04 엘지.필립스 엘시디 주식회사 액정표시장치용 박막 트랜지스터 기판 및 이의 제조 방법
CN102645785A (zh) * 2012-02-24 2012-08-22 京东方科技集团股份有限公司 一种彩膜基板及其制作方法

Also Published As

Publication number Publication date
US9753321B2 (en) 2017-09-05
CN102645785A (zh) 2012-08-22
CN102645785B (zh) 2014-08-13
US20140063631A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2013123788A1 (zh) 彩膜基板及其制作方法
WO2018210167A1 (zh) 阵列基板的制备方法、阵列基板及显示装置
KR20110021374A (ko) 액정 표시 소자의 배향막 제조 장치 및 방법
WO2016011712A1 (zh) 柔性显示面板的制造方法和柔性显示装置
TW201609403A (zh) 顯示面板的製造方法
TWI390286B (zh) 可撓式液晶顯示面板及其製造方法
WO2021134878A1 (zh) 液晶显示面板及其制备方法
JP2007206352A (ja) 液晶表示装置用素子基板の製造方法と液晶表示装置及びその製造方法
KR102250491B1 (ko) 표시 패널 및 편광 소자의 제조 방법
JP2007069098A (ja) 塗膜の減圧乾燥方法
US11342358B2 (en) Display panel and method for manufacturing same
US20180284535A1 (en) Display panels, wire grid polarizers, and the manufacturing methods thereof
TW201624082A (zh) 薄膜電晶體基板、其製作方法及顯示面板
WO2012086159A1 (ja) 表示装置並びに薄膜トランジスタ基板及びその製造方法
CN110767806A (zh) 一种有机薄膜晶体管及其制备方法和显示器件
WO2018040265A1 (zh) 一种coa型液晶面板及制作方法
JP4647434B2 (ja) 液晶表示装置用電極基板とその製造方法及び液晶表示装置
WO2020192150A1 (zh) 一种柔性lcd制作工艺
JP5245443B2 (ja) カラーフィルタ、及びそれを用いた液晶表示装置
CN110888266A (zh) 液晶显示面板制造方法
JP2010286774A (ja) 液晶パネル、その製造方法、マイクロレンズ基板、液晶パネル用対向基板
CN111474754B (zh) 显示面板及其制备方法
JP4365016B2 (ja) 液晶表示装置、液晶表示装置の電極基材、液晶表示装置の電極基材の製造方法及び液晶表示装置の製造方法
US11327367B2 (en) Display panel and fabricating method thereof
WO2021142893A1 (zh) 显示面板、显示面板制备方法及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13994738

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.01.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12869194

Country of ref document: EP

Kind code of ref document: A1