WO2013123731A1 - 基材表面的铜膜、其制备方法及应用 - Google Patents

基材表面的铜膜、其制备方法及应用 Download PDF

Info

Publication number
WO2013123731A1
WO2013123731A1 PCT/CN2012/075594 CN2012075594W WO2013123731A1 WO 2013123731 A1 WO2013123731 A1 WO 2013123731A1 CN 2012075594 W CN2012075594 W CN 2012075594W WO 2013123731 A1 WO2013123731 A1 WO 2013123731A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
substrate
salt
photoinitiator
film
Prior art date
Application number
PCT/CN2012/075594
Other languages
English (en)
French (fr)
Inventor
聂俊
朱晓群
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2013123731A1 publication Critical patent/WO2013123731A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Definitions

  • the present invention relates to a method for preparing a metal film on a surface of a substrate, and more particularly to a method for preparing a copper metal on a surface of a substrate, particularly a patterned film.
  • Photopolymerization technology is the key technology for the preparation of chips, circuit boards and liquid crystal panels. It is irreplaceable.
  • the traditional printed circuit board process is to use a photocurable molding gel on a copper clad laminate to form a pattern by mask exposure and development.
  • the copper circuit is prepared by etching, and various steps such as coating, exposure, development, etching, etc. are required in the process, and a large amount of solvent discharge and pollution liquid are generated, and the preparation process is complicated, the preparation cycle is long, and the investment is large.
  • Metallic copper has good electrical conductivity and low cost, so it is very common in circuit boards.
  • the development of a copper film preparation method with simple process, environmental friendliness and stable performance is a demand for social development and has significant economic significance and market value.
  • the object of the present invention is to provide a copper film on the surface of a substrate, a preparation method thereof and an application thereof.
  • the technology has simple manufacturing process and environmental friendliness, and can replace the traditional circuit board printing technology.
  • the present invention adopts the following technical solutions.
  • a method for preparing a metal copper film on a surface of a substrate comprises the following steps:
  • a patterned light-shielding film may be attached on the outer surface of the light-transmitting substrate (ie, the surface not in contact with the reaction solution), and then through the steps (3) and (4), the substrate may be A patterned copper film corresponding to the opaque of the light-shielding film is obtained on the surface.
  • step (3) is carried out under closed conditions, and the copper film thus obtained is more pure and has better conductivity.
  • the copper salt is a combination of one or more of an inorganic salt, an organic salt and a complex salt, preferably copper chloride, copper sulfate, copper nitrate, copper bromide, copper perchlorate, acetic acid. Copper, copper formate, copper stearate and copper linoleate; the complex salt of copper is of the formula Cu(R) n 2+ , wherein R is a nitrogen-containing compound, a carbonyl compound, a sulfonic acid group compound or a citric acid compound.
  • the auxiliary agent is a compound which can form a complex with a copper salt, and its function is mainly to promote dissolution of the copper salt.
  • the chemical formula of the auxiliary is: N (R) n , wherein R is an alkyl group, n is 1-3; - C-R 1 ; 3 ⁇ 4 is an alkyl group, an alkoxy group, a hydroxyl group or R ⁇ S H.
  • the molar ratio of the auxiliary agent to the copper ion is 1-6, and an increase in the amount of the auxiliary agent in the ratio range may result in a corresponding increase in the reaction speed under illumination. If the molar ratio exceeds 6, it will cause an excess of the additive; if the ratio is less than 1, the reaction is difficult to proceed smoothly. Further, if the copper salt used is itself a complex salt of copper and can be completely dissolved in an organic solvent, the auxiliary agent may not be added, and the reaction proceeds at this time.
  • the solvent is used as a carrier of the reaction system, and the solvent in the preparation method of the present invention is preferably water, an alcohol solvent, a ketone solvent, N,N-dimethylformamide or dimethyl amide.
  • the solvent in the preparation method of the present invention is preferably water, an alcohol solvent, a ketone solvent, N,N-dimethylformamide or dimethyl amide.
  • the alcohol solvent is one or more of methanol, ethanol, ethylene glycol, propanol, propylene glycol, glycerin, 1, 2-propanediol, butanol and butanediol.
  • the photoinitiator may be a free radical cleavage photoinitiator, a hydrogen abstraction photoinitiator, or a cationic photoinitiator, preferably benzoin and its derivatives, benzil derivatives, dialkyloxybenzenes Ethyl ketone, ⁇ -hydroxyalkylphenone, ⁇ -aminoalkylphenone, benzophenone/tertiary amine, guanidine/tertiary amine, thioxanthone/tertiary amine or camphorquinone/tertiary amine, aryl weight One or more of a nitrogen salt, a diaryl iodine salt, a triaryl sulfide salt, and an aryl iron salt.
  • the molar ratio of photoinitiator to copper ion is 1-3, and the increase of the amount of photoinitiator in the ratio range can accelerate the reaction rate, but if the ratio is greater than 3, the photoinitiator is excessive, and if the ratio is less than 1, then the ratio is less than 1 Influence the reaction to proceed smoothly.
  • the surface light source has a wavelength range of 200-900 nm, including a visible light source, an ultraviolet light source, and an LED light source; the illumination time is less than 1 hour, and the reaction temperature is 10-40 °C.
  • the hot pressing temperature is 100-300 ° C
  • the pressure is 1- lOMPa
  • the hot pressing time is not more than 5 minutes.
  • the generated copper metal is attached to the surface of the substrate in the form of nanoparticles, The hot pressing treatment not only makes the electrical conductivity more stable, but also improves its adhesion on the substrate, ensuring stability during operation.
  • the substrate comprises plastic, glass, or other light transmissive material, and the applicable types thereof are easily conceivable to those skilled in the art.
  • the invention also discloses a metal copper film on the surface of the substrate, which is prepared by the above preparation method.
  • the invention further relates to the use of a metal copper film on the surface of the above substrate for the preparation of a conductive composite, a conductive ink or a flexible wiring board.
  • the process principle of the present invention is:
  • the photoinitiator decomposes into a radical under the irradiation of light, and the copper ion recovers the electron on the free radical and is reduced to the copper nanoparticle.
  • the reaction uses light as a reaction switch, and the reaction proceeds in the direction of illumination.
  • the first solution of the light is first subjected to a reduction reaction of copper ions, so that the upper liquid surface close to the surface of the light-transmitting substrate first reacts to form copper nanoparticles. Since the copper nanoparticles have a high surface energy and are highly absorbing, the nanoparticles are adsorbed to the surface of the substrate after formation, and finally a nano copper film is formed on the surface.
  • a complete copper film can be formed on the surface of the substrate, and since the initiation of the reaction depends on the cleavage of the photoinitiator and the limitation of the light conditions, the use of the pattern light-shielding film can be prepared by selective exposure.
  • a copper film (such as a copper wire) with a patterned pattern.
  • the preparation method of the invention can copper metallize the surface of the non-conductor substrate, and the film can be patterned by selective exposure, and the copper wire can be directly prepared, and the steps of exposure, development, etching, etc. are omitted; the prepared copper film High purity, good electrical conductivity, and film thickness can be controlled by illumination time.
  • the method has the advantages of simple process, high operability, low processing cost and environmental friendliness, and can replace the traditional circuit board printing technology.
  • Fig. 1 is an X-ray diffraction pattern of a copper film prepared in Example 1.
  • the copper chloride and the auxiliary diethanolamine were dissolved in ethylene glycol, and the molar ratio of the auxiliary agent to the copper ion was 3.
  • a photoinitiator 1173 (2-hydroxy-2-methyl-1-phenylacetone) was added in the dark, and the molar ratio of the photoinitiator to the copper ion was 1, and the mixture was uniformly mixed.
  • the reaction solution was poured into a groove made of polytetrafluoroethylene, and the entire groove was filled, and then the solution was coated with a light-transmitting PET film.
  • the surface light source was irradiated for 5 minutes, and a layer of metallic copper film was attached to the PET film on the liquid surface side.
  • X-ray diffraction analysis of the copper film supported on the polyester film showed that the elemental metal copper was obtained, as shown in Fig. 1, and referred to the XRD card PDF 00-001-1242.
  • the substrate with the copper metal film described above was heat-pressed by a hot press at 100 ° C and a pressure of 3 MPa for 5 seconds.
  • Product was measured by conductivity meter resistivity was 1.57X10- 8 Q m, measured by atomic force microscopy thickness of 90nm.
  • the copper formate and the auxiliary ethanolamine were dissolved in a mixed solution of methanol and water (the volume ratio of methanol to water was 6:1), and the molar ratio of the auxiliary agent to the copper ion was 6.
  • a photoinitiator 184 (1-hydroxy-cyclohexyl benzophenone) was added in the dark, and the molar ratio of the photoinitiator to the copper ion was 1, and the mixture was uniform.
  • the reaction solution was poured into a groove made of polytetrafluoroethylene, and the entire groove was filled, and then the solution was coated with a light-transmitting PET film.
  • the copper perchlorate was dissolved in a mixed solvent of ethanol and acetone (the volume ratio of ethanol to acetone was 5:1), and after sufficiently dissolved, ethylenediamine was added, and the molar ratio of ethylenediamine to copper ion was 4:1. After the mixture was uniformly mixed, a photoinitiator 651 ( ⁇ , ⁇ '-dimethylbenzyl ketal) was added in the dark, and the molar ratio of the photoinitiator to the copper ion was 2, and the mixture was sufficiently mixed.
  • a photoinitiator 651 ⁇ , ⁇ '-dimethylbenzyl ketal
  • the reaction solution was poured into a groove made of polytetrafluoroethylene and filled with the entire groove, and then the solution was covered with a light-transmitting glass, and a patterned light-shielding film was attached to the outer surface of the glass.
  • a drying machine SBK-III
  • a pattern of metallic copper was attached to the glass on the liquid surface side in accordance with the pattern of the light shielding film.
  • the substrate having the copper metal pattern described above was heat-pressed by a hot press at 150 ° C and a pressure of 2 MPa for 10 seconds.
  • Product was measured by conductivity meter resistivity was 1.66X10- 8 ⁇ , measured by atomic force microscopy thickness of 100nm.
  • Copper chloride and diethanolamine were dissolved in butanol, and the molar ratio of diethanolamine to copper ion was 2:1.
  • the photoinitiator thioxanthone was added in the dark, and the molar ratio of the photoinitiator to the copper ion was 3, and the mixture was well mixed.
  • the reaction solution was poured into a groove made of polytetrafluoroethylene to fill the entire groove, and then the solution was coated with a light-transmissive polyimide film, and a patterned light-shielding film was attached on the polyimide film.
  • the LED surface light source of the wavelength was irradiated for 15 minutes, and a pattern of metallic copper was attached to the polyimide film on the liquid surface side in accordance with the pattern of the light shielding film.
  • the substrate having the copper metal pattern described above was heat-pressed by a hot press at 200 ° C and a pressure of 2 MPa for 10 seconds.
  • the product resistivity measured by a conductivity meter was 1. 7 X 10 - 8 Q m , and the film thickness was 80 nm as measured by an atomic force microscope.
  • the copper bromide and copper chloride and the auxiliary sulfamic acid were dissolved in 1,2-propanediol, and the molar ratio of the sulfamic acid to the copper ion was 4.
  • the photoinitiator triaryltetrafluorosulfonium salt was added in the dark, and the molar ratio of the photoinitiator to the copper ion was 3, and the mixture was well mixed.
  • the reaction solution was poured into a groove made of polytetrafluoroethylene, and the entire groove was filled, and then the solution was coated with a light-transmitting polyamideimine film, and a patterned light-shielding film was attached on the polyimide film.
  • the mercury lamp (RW-UVAC 301-40bh) was irradiated for 20 minutes at room temperature, and a pattern of metallic copper was attached to the polyimide film on the liquid surface side in accordance with the pattern of the light shielding film.
  • the substrate having the copper metal pattern described above was heat-pressed by a hot press at 150 ° C and a pressure of 3 MPa for 10 seconds.
  • the product resistivity measured by a conductivity meter was 2 X 10 - 8 ⁇ ⁇ , and the film thickness was 60 nm as measured by an atomic force microscope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

一种基材表面金属铜膜,其制备方法和应用。其制备方法包括如下步骤:将铜盐和助剂加入溶剂中,使其完全溶解;在避光条件下,将光引发剂加入所得溶液中,混合均匀,然后将此反应溶液注入容器中,使透光基材与反应溶液相接触;用与光引发剂吸收波长相适应的面光源照射透光基材,促使反应进行从而生成金属铜粒子,所述金属铜粒子附着于基材表面;将表面附有金属铜粒子的基材在热压机上隔氧热压从而得到金属铜膜。所述金属铜膜用于制备导电复合材料、导电油膜或柔性线路板。

Description

基材表面的铜膜、 其制备方法及应用
技术领域
本发明涉及一种基材表面金属膜的制备方法,尤其涉及铜金属在基材表面覆 膜特别是图案化膜的制备方法。
背景技术
光聚合技术是目前制备芯片、线路板、液晶板的关键技术且有不可取代性, 传统印制线路板的工艺是先在覆铜板上用光固化成型胶通过掩膜曝光显影制备 图案, 然后刻蚀制备铜质线路, 在此过程中需要涂布、 曝光、 显影、 刻蚀等多个 步骤,并产生大量的溶剂排放及污染液,且制备过程复杂,制备周期长,投资大。 随着社会的进步和电子科技信息的发展, 突破传统线路板的印制技术, 寻找简便 快捷环境友好的新技术是该行业的一项核心问题。
金属铜具有良好的导电性, 且价格低, 因而在线路板中应用非常普遍。 开 发一种工艺简单、环境友好、性能稳定的铜膜制备方法, 是社会发展的需求并且 具有显著的经济意义与市场价值。
发明内容
本发明的目的是提供一种基材表面的铜膜、其制备方法及应用,此技术制作 工艺简单, 环境友好, 可替代传统的线路板印制技术。
为实现上述目的, 本发明采用如下技术方案。
一种基材表面金属铜膜的制备方法, 包括如下步骤:
( 1 ) 将铜盐和助剂加入溶剂中, 使其完全溶解;
( 2 ) 在避光条件下, 将光引发剂加入步骤 (1 ) 所得溶液中, 混合均匀, 然后 将此反应溶液注入容器中, 使透光基材与反应溶液相接触;
( 3 ) 用与光引发剂吸收波长相适应的面光源照射透光基材,促使反应进行从而 生成金属铜粒子, 所述金属铜粒子附着于基材表面;
( 4) 将表面附有金属铜粒子的基材在热压机上隔氧热压。
上述制备方法的步骤 (2 ) 中, 可以在透光基材外表面 (即不与反应溶液接 触的表面) 附一层图案遮光膜, 然后经过步骤 (3 ) 和 (4), 可在基材表面得到 与遮光膜空位对应的图案化的铜膜。 优选步骤 (3 ) 在密闭条件下进行, 由此制得的铜膜纯度更高, 具有更好的 导电性。
上述制备方法中,所述铜盐为无机盐、有机盐和络合盐中的一种或多种的组 合, 优选氯化铜、 硫酸铜、 硝酸铜、 溴化铜、 高氯酸铜、 乙酸铜、 甲酸铜、 硬脂 酸铜和亚油酸铜; 铜的络合盐通式为 Cu (R) n 2+, 其中 R为含氮化合物、 羰基化合 物、 磺酸基化合物或柠檬酸化合物。
所述助剂是可以和铜盐形成络合物的化合物,其作用主要在于促进铜盐的溶
〇 解。优选地,助剂的化学通式为: N (R) n,其中 R为烷基, n为 1-3; —— C— R1 ; ¾和 为烷基、 烷氧基、羟基或 R ^ S H。助剂与铜离子的摩尔比为 1-6, 该比 值范围内助剂用量的增加可导致光照下反应速度相应提高。 如果摩尔比超出 6, 将会造成助剂过量; 若比值小于 1, 则反应难以顺利进行。 另外, 如果使用的铜 盐本身就是铜的络合盐且能够完全溶于有机溶剂中, 则可以不加入助剂, 此时反 应仍会进行。
所述溶剂作为反应体系的载体, 只要能够有效溶解反应原料即可, 本发明的 制备方法中溶剂优选水、 醇类溶剂、 酮类溶剂、 N,N-二甲基甲酰胺、 二甲基亚砜 中的一种或几种。其中醇类溶剂为甲醇、乙醇、乙二醇、丙醇、丙二醇、丙三醇、 1, 2-丙二醇、 丁醇、 丁二醇中的一种或几种。
所述光引发剂可以是自由基裂解型光引发剂、夺氢型光引发剂、或阳离子型 光引发剂, 优选苯偶姻及其衍生物、 苯偶酰衍生物、 二烷基氧基苯乙酮、 α _羟 烷基苯酮、 α -胺烷基苯酮、 二苯甲酮 /叔胺、 蒽醌 /叔胺、硫杂蒽酮 /叔胺或樟脑 醌 /叔胺、 芳基重氮盐、 二芳基碘鑰盐、 三芳基硫鑰盐、 芳茂铁盐中的一种或多 种。 光引发剂与铜离子的摩尔比为 1-3, 在该比值范围内光引发剂用量的增加可 以加快反应速度, 但如果比值大于 3 则会造成光引发剂过量, 而若比值小于 1 则会影响反应顺利进行。
步骤 (3 ) 中, 所述面光源波长范围为 200-900 nm, 包括可见光源、 紫外光 源、 LED光源; 光照时间不超过 1小时, 反应温度为 10-40°C。
步骤 (4) 中, 所述热压温度为 100-300°C, 压力为 1- lOMPa, 热压时间不 超过 5分钟。 步骤 (3 ) 生成的铜金属以纳米粒子的形式附着于基体表面, 通过 热压处理, 不仅使其导电性能更稳定, 而且还提高了其在基体上的附着力, 保证 了工作时的稳定性。
本发明的制备方法中, 所述基材包括塑料、 玻璃、 或其他透光材料, 其适用 种类对本领域技术人员而言是容易想到的。
本发明还公开一种基材表面的金属铜膜, 是利用上述制备方法制备而成。 本发明还涉及上述基材表面金属铜膜在制备导电复合材料、导电油墨或柔性 线路板印制中的用途。
本发明的工艺原理是: 光引发剂在光的照射下分解成自由基, 铜离子夺取自 由基上的电子而被还原成铜纳米粒子。此反应以光照作为反应开关, 并且反应沿 光照方向进行,先受光的溶液先发生铜离子的还原反应, 因此靠近透光基材表面 的上层液面首先反应生成铜纳米粒子。 由于铜纳米粒子具有很高的表面能, 其吸 附性很强, 因而纳米粒子形成后吸附到基材表面, 最终在表面形成纳米铜膜。
利用该技术可以在基材表面形成完整的铜膜,同时由于该反应的启动依赖于 光引发剂的裂解, 受光照条件的限制, 因此配合图案遮光膜的使用, 通过选择性 曝光, 可制备出具有设定图案的铜膜 (如铜导线)。
本发明的制备方法可以使非导体基材表面铜金属化,并且通过选择性曝光可 以使膜图案化, 可直接制备出铜导线, 省略了曝光、 显影、 刻蚀等步骤; 所制备 的铜膜纯度高、 导电性好, 并且膜厚可通过光照时间控制。 该方法工艺简单、 可 操作性强、 加工成本低、 且环境友好, 可替代传统的线路板印制技术。
说明书附图
图 1为实施例 1制备铜膜的 X射线衍射图谱。
具体实施方式
下面通过优选实施例对本发明的技术方案做进一步说明,但不应将其理解为 对本发明保护范围的限制。
实施例 1 :
将氯化铜和助剂二乙醇胺溶解于乙二醇中, 助剂与铜离子的摩尔比为 3。 混 合均匀后, 避光条件下加入光引发剂 1173 ( 2-羟基 -2甲基 -1-苯基丙酮), 光引 发剂与铜离子的摩尔比为 1,混合均匀。将反应溶液注入聚四氟乙烯制的凹槽中, 并充满整个凹槽, 随后紧贴溶液覆上透光 PET膜。 在室温下用 365nm波长的 LED 面光源照射 5min, 紧贴液面侧的 PET膜上附上了一层金属铜膜。 把负载在聚酯 膜上的铜膜做 X射线衍射分析,表明得到的是单质金属铜, 见图 1,并参照 XRD卡 片 PDF 00-001-1242。 把上述带有铜金属膜的基材用热压机在 100°C、 压力 3MPa 下隔氧热压 5秒钟。 经导电仪测得产物电阻率为 1.57X10— 8Qm, 原子力显微镜 测得膜厚为 90nm。
实施例 2:
将甲酸铜和助剂乙醇胺溶解于甲醇与水的混合溶液中(甲醇与水的体积比为 6: 1), 助剂与铜离子的摩尔比为 6。 混合均匀后, 避光条件下加入光引发剂 184 (1-羟基 -环己基苯甲酮), 光引发剂与铜离子的摩尔比为 1, 混合均匀。 将反应 溶液注入聚四氟乙烯制的凹槽中, 并充满整个凹槽, 随后紧贴溶液覆上透光 PET 膜。 在室温下用 385nm波长的 LED面光源照射 5min, 紧贴液面侧的 PET膜上附 上了一层金属铜膜。 将上述带有铜金属膜的基材用热压机在 100°C、 压力 3MPa 下隔氧热压 5秒钟。 经导电仪测得产物电阻率为 1.57X10— 8Qm, 原子力显微镜 测得膜厚为 70nm。
实施例 3:
将高氯酸铜溶解于乙醇和丙酮的混合溶剂中(乙醇和丙酮的体积比为 5: 1) 中, 充分溶解后加入乙二胺, 乙二胺与铜离子的摩尔比为 4: 1。 混合均匀后, 避光条件下加入光引发剂 651 (α, α' -二甲基苯偶酰縮酮), 光引发剂与铜离子 的摩尔比为 2, 充分混合均匀。 将反应溶液注入聚四氟乙烯制的凹槽中, 并充满 整个凹槽, 随后紧贴溶液覆上透光玻璃, 并在玻璃外表面附一层图案遮光膜。在 室温下用晒板机 (SBK-III) 照射 10min, 紧贴液面侧的玻璃上按照遮光膜的图 案附上了金属铜的图案。 把上述带有铜金属图案的基材用热压机在 150°C、 压力 2MPa下隔氧热压 10秒钟。经导电仪测得产物电阻率为 1.66X10— 8Ωπι, 原子力显 微镜测得膜厚为 100nm。
实施例 4:
将氯化铜和二乙醇胺溶解于丁醇中, 二乙醇胺与铜离子的摩尔比为 2:1。 避 光条件下加入光引发剂硫杂蒽酮, 光引发剂与铜离子的摩尔比为 3, 充分混合均 匀。将该反应溶液注入聚四氟乙烯制的凹槽中, 充满整个凹槽, 随后紧贴溶液覆 上透光聚酰亚胺膜, 并在聚酰亚胺膜上面附一层图案遮光膜。 在室温下用 385nm 波长的 LED面光源照射 15min, 紧贴液面侧的聚酰亚胺膜上按照遮光膜的图案附 上了金属铜的图案。把上述带有铜金属图案的基材用热压机在 200°C、压力 2MPa 下隔氧热压 10秒钟。 经导电仪测得产物电阻率为 1. 7 X 10— 8 Q m, 原子力显微镜 测得膜厚为 80nm。
实施例 5:
将溴化铜和氯化铜以及助剂氨基磺酸溶解于 1, 2-丙二醇中, 氨基磺酸与铜 离子的摩尔比为 4。 混合均匀后, 避光条件下加入光引发剂三芳基四氟硫鑰盐, 光引发剂与铜离子的摩尔比为 3, 充分混合均匀。 将该反应溶液注入聚四氟乙烯 制的凹槽中, 充满整个凹槽, 随后紧贴溶液覆上透光聚酰胺亚胺膜, 并在聚酰亚 胺膜上面附一层图案遮光膜。 在室温下汞灯 (RW-UVAC301-40bh) 照射 20min, 紧贴液面侧的聚酰亚胺膜上按照遮光膜的图案附上了金属铜的图案。把上述带有 铜金属图案的基材用热压机在 150°C、 压力 3MPa下隔氧热压 10秒钟。 经导电仪 测得产物电阻率为 2 X 10— 8 Ω πι, 原子力显微镜测得膜厚为 60nm。

Claims

权 利 要 求 书
1、 一种基材表面金属铜膜的制备方法, 包括如下步骤:
(5 ) 将铜盐和助剂加入溶剂中, 使其完全溶解;
(6 ) 在避光条件下, 将光引发剂加入步骤 (1 ) 所得溶液中, 混合均匀, 然后 将此反应溶液注入容器中, 使透光基材与反应溶液相接触;
(7 ) 用与光引发剂吸收波长相适应的面光源照射透光基材,促使反应进行从而 生成金属铜粒子, 所述金属铜粒子附着于基材表面;
(8 ) 将表面附有金属铜粒子的基材在热压机上隔氧热压。
2、 根据权利要求 1所述的制备方法, 其特征在于, 歩骤 〔2) 中, 在将透光基材 与反应溶液相接触后, 在基材外表面附一层图案遮光膜。
3、 根据权利要求 1所述的制备方法, 其特征在于, 步骤(3)在密闭的条件下进 行。
4、 根据权利要求 1所述的制备方法, 其特征在于, 所述铜盐为无机盐、 有机盐 和络合盐中的一种或多种的组合, 优选氯化铜、 硫酸铜、 硝酸铜、 溴化铜、 高氯 酸铜、 乙酸铜、 甲酸铜、 硬脂酸铜和亚油酸铜; 铜的络合盐通式为 Cu (R) n 2t, 其 中 R为含氮化合物、 羰基化合物、 磺酸基化合物或柠檬酸化合物。
5、 根据权利要求 1所述的制备方法, 其特征在于, 所述助剂是可以和铜盐形成 络合物的化合物, 且助剂与铜离子的摩尔比为 1-6。
6、 根据权利要求 1所述的制备方法, 其特征在于, 所述溶剂是水、 醇类溶剂、 酮类溶剂、 N,N-二甲基甲酰胺、 二甲基亚砜中的一种或几种。。
7、 根据权利要求 1所述的制备方法, 其特征在于, 所述光引发剂是自由基裂解 型光引发剂、 夺氢型光引发剂、 或阳离子型光引发剂, 优选苯偶姻及其衍生物、 苯偶酰衍生物、 二烧基氧基苯乙酮、 α -羟垸基苯酮、 α -胺垸基苯酮、 二苯甲酮 /叔胺、蒽醌 /叔胺、硫杂蒽酮 /叔胺或樟脑醌 Ζ叔胺、芳基重氮盐、二芳基碘鎩盐、 三芳基硫緇盐、芳茂铁盐中的一种或多种;且光引发剂与铜离子的摩尔比为 1-3。
8、根据权利要求 1所述的制备方法,其特征在于,所述热压温度为 100-300°C, 压力为 l-10MPa, 热压时间不超过 5分钟。
9、一种基材表面金属铜膜,通过权利要求 1-8中任一项所述制备方法制备而成。
10、权利要求 9所述基材表面金属铜膜在制备导电复合材料、导电油墨或柔性线 路板印制中的用途。
PCT/CN2012/075594 2012-02-21 2012-05-16 基材表面的铜膜、其制备方法及应用 WO2013123731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210041508.7 2012-02-21
CN201210041508.7A CN102605355B (zh) 2012-02-21 2012-02-21 基材表面的铜膜、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2013123731A1 true WO2013123731A1 (zh) 2013-08-29

Family

ID=46523106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075594 WO2013123731A1 (zh) 2012-02-21 2012-05-16 基材表面的铜膜、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN102605355B (zh)
WO (1) WO2013123731A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923351B2 (ja) * 2012-03-16 2016-05-24 株式会社Adeka 銅膜形成用組成物及び該組成物を用いた銅膜の製造方法
CN104005009B (zh) * 2014-06-16 2016-08-17 北京化工大学 一种一体化成型制备具有超薄铜层的聚酰亚胺挠性无胶覆铜板的方法
CN104754875B (zh) * 2015-03-08 2018-01-23 北京化工大学 铜@银金属导电膜的制备方法及其在印制电路板上的应用
CN107614481B (zh) * 2015-06-11 2021-05-07 加拿大国家研究委员会 高导电性铜膜的制备
CN105178020A (zh) * 2015-09-18 2015-12-23 浙江理工大学 一种导电纯棉面料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997997A (en) * 1997-06-13 1999-12-07 International Business Machines Corp. Method for reducing seed deposition in electroless plating
JP2000315850A (ja) * 1999-04-30 2000-11-14 Mitsubishi Gas Chem Co Inc 貴金属メッキ前の銅箔処理方法
CN101509130A (zh) * 2009-03-12 2009-08-19 浙江大学 一种在pdms表面制备薄膜型金属微器件的方法
CN102121101A (zh) * 2011-02-23 2011-07-13 广东工业大学 一种在聚酯膜上进行无钯化学镀铜的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063334U (zh) * 1989-09-04 1990-10-03 南开大学 金属印制板
CN1053713C (zh) * 1997-12-08 2000-06-21 中国科学院感光化学研究所 光诱导绝缘体表面金属化方法
WO2010059174A1 (en) * 2008-08-07 2010-05-27 Pryog, Llc Metal compositions and methods of making same
JP2007070723A (ja) * 2005-08-10 2007-03-22 Osaka Univ 媒体中に金属ナノ粒子を形成する方法
WO2010026571A2 (en) * 2008-09-02 2010-03-11 Ramot At Tel-Aviv University Ltd. Metal nanowire thin-films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997997A (en) * 1997-06-13 1999-12-07 International Business Machines Corp. Method for reducing seed deposition in electroless plating
JP2000315850A (ja) * 1999-04-30 2000-11-14 Mitsubishi Gas Chem Co Inc 貴金属メッキ前の銅箔処理方法
CN101509130A (zh) * 2009-03-12 2009-08-19 浙江大学 一种在pdms表面制备薄膜型金属微器件的方法
CN102121101A (zh) * 2011-02-23 2011-07-13 广东工业大学 一种在聚酯膜上进行无钯化学镀铜的方法

Also Published As

Publication number Publication date
CN102605355B (zh) 2014-07-02
CN102605355A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2013123731A1 (zh) 基材表面的铜膜、其制备方法及应用
JP5334777B2 (ja) 被めっき層形成用組成物、金属パターン材料の作製方法、及び、新規ポリマー
CN106229036B (zh) 一种透明导电薄膜及其制备方法
US20110240482A1 (en) Plating catalyst liquid, plating method, and method for producing laminate having metal film
JPH01219168A (ja) 非導電性基板の無電解メツキのための前処理方法
JP2007182547A (ja) 高導電性インク組成物および金属導電パターンの作製方法
CN102400115A (zh) 一种微米级线宽的柔性铜电极图形的制备方法
CN102300414A (zh) 一种印制电路的加成制备方法
CN102833941B (zh) 一种新型载片及其制备方法
CN105131897B (zh) 高导热绝缘胶黏剂组合物、高导热铝基板及其制备工艺
WO2013038891A1 (ja) 導電性部材、導電性部材の製造方法、タッチパネル及び太陽電池
Cheng et al. In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent
JP2011506775A (ja) 導電性トラックの製造方法
JPWO2010119787A1 (ja) 導体層形成用組成物及び導体基板、並びに導体基板の製造方法
Wang et al. Direct surface in-situ activation for electroless deposition of robust conductive copper patterns on polyimide film
TW213532B (zh)
JP2011054683A (ja) 金属配線基板の製造方法、及び金属配線基板
JP6385181B2 (ja) 骨見えが十分に抑制された透明導電膜
CN208459988U (zh) 触控面板
JP2012097296A (ja) 金属膜形成方法
JP7093156B2 (ja) 透明導電膜
WO2016141632A1 (zh) 铜@银金属导电膜的制备方法及其在印制电路板上的应用
CN101488461A (zh) 不用光刻胶和贵金属活化剂的线路板及其种子层制作方法
KR100964962B1 (ko) 그라비아 인쇄법을 이용한 촉매 패턴 형성에 사용되는 촉매전구체 수지 조성물, 이를 이용한 금속패턴 형성방법 및이에 따라 형성된 금속패턴
KR20150033497A (ko) 투명 도전층 형성용 조성물 및 이를 이용한 투명 도전체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869017

Country of ref document: EP

Kind code of ref document: A1