WO2013123706A1 - 一种移相滤波方法 - Google Patents

一种移相滤波方法 Download PDF

Info

Publication number
WO2013123706A1
WO2013123706A1 PCT/CN2012/074131 CN2012074131W WO2013123706A1 WO 2013123706 A1 WO2013123706 A1 WO 2013123706A1 CN 2012074131 W CN2012074131 W CN 2012074131W WO 2013123706 A1 WO2013123706 A1 WO 2013123706A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
phase
specified frequency
signal
degrees
Prior art date
Application number
PCT/CN2012/074131
Other languages
English (en)
French (fr)
Inventor
何文卿
何经纬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013123706A1 publication Critical patent/WO2013123706A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means

Definitions

  • the present invention relates to the field of electromagnetic signal filtering technologies, and in particular, to a phase shift filtering method. Background technique
  • Fig. 1 is a structural example of a transmission and reception scheme of a communication system in the prior art.
  • the first filter is a band pass filter
  • the signal that can be filtered is a frequency band other than the receiving frequency band occupied by the whole system, that is, an electromagnetic signal of the out-of-band frequency band, and the filtered frequency band range It is a fairly wide frequency band. If there are multiple communication channels in the band, adjacent channel interference will occur between the communication channels, and the electromagnetic interference noise in this communication band needs a very narrow band filter to filter out. There is no solution in the prior art that can be filtered out.
  • the resulting problem is that the demodulation of the radio frequency signal of the current communication channel may be severely affected once there is significant interference near the frequencies occupied by other communication channels in the frequency band.
  • This interference is generally referred to as adjacent channel interference.
  • the source of the interference may be a mobile terminal, a base station, a signal generator, or the like. Summary of the invention
  • the main object of the present invention is to provide a phase shift filtering method for solving the problem of frequency interference communication channel communication adjacent to a communication channel, and achieving high immunity of the communication channel to adjacent frequency interference.
  • the present invention provides a phase shifting filtering method for suppressing electromagnetic interference in a specified frequency band in a receiving/transmitting circuit of a communication system, the method comprising:
  • the phase difference module adjusts the phase difference between the two input signals so that the phase difference between the two signals in the specified frequency band is 0 degrees, and the phase difference outside the specified frequency band is 180 degrees; or within the specified frequency band.
  • the phase difference is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees.
  • the present invention provides another phase shifting filtering method for suppressing electromagnetic interference in a specified frequency band in a communication system connection/transmitting circuit, the method comprising:
  • phase adjustment module Adjusting, by the phase adjustment module, a phase difference of the dual port signal received/transmitted by the dual port signal receiving/transmitting module, so that the two-way signal between the phase adjusting module and the dual port signal generating module is
  • the phase difference in the specified frequency band is 0 degrees, the phase difference outside the specified frequency band is 180 degrees; or the phase difference in the specified frequency band is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees.
  • the method further includes:
  • the two signals output by the phase adjustment module are converted into a single port signal by a power synthesis solution module, and the signals outside the specified frequency band are filtered out;
  • the single port signal is converted to a dual signal by a power split module and input to the phase adjustment module.
  • the present invention provides another phase shifting filtering method for suppressing electromagnetic interference in a specified frequency band in a communication system connection/transmitting circuit, the method comprising:
  • the phase adjustment module performs phase adjustment on the two signals output by the power decomposition module, so that the phase difference between the two signals output after the adjustment is 0 degree in the specified frequency band, and the phase difference outside the designated frequency band is 180 degrees; or The phase difference in the specified frequency band is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees.
  • the present invention provides another phase shift filtering method, which is used in The electromagnetic interference of the specified frequency band is suppressed in the communication system/transmitting circuit, and the method comprises: adjusting the phase of the input two signals by the phase adjustment module, so that the phase difference of the output two signals in the specified frequency band is 0 degree , the phase difference outside the specified frequency band is 180 degrees; or the phase difference in the specified frequency band is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees;
  • the present invention provides another phase shifting filtering method for suppressing electromagnetic interference in a specified frequency band in a communication system connection/transmitting circuit, the method comprising:
  • the phase adjustment module performs phase adjustment on the two signals output by the power decomposition module, so that the phase difference between the two signals output after the adjustment is 0 degree in the specified frequency band, and the phase difference outside the designated frequency band is 180 degrees; or The phase difference in the specified frequency band is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees;
  • the two signals output by the phase adjustment module are converted into single-port signals by a power synthesis module to filter out signals outside the specified frequency band.
  • the power splitting module is implemented by using a power splitter or a balun.
  • the power combining module is implemented by using a power combiner, a balun or a differential low noise amplifier, wherein:
  • the power synthesizer is selected to filter out the signal outside the specified frequency band, and the signal in the specified frequency band is reserved;
  • the phase difference in the specified frequency band is 0 degrees.
  • the balun or differential low noise amplifier is selected to retain the signal outside the specified frequency band, and the signal in the specified frequency band is filtered out; or
  • the phase difference in the specified frequency band is 180 degrees.
  • the power synthesizer is selected to retain the signal outside the specified frequency band, and the signal in the specified frequency band is filtered out; or
  • the phase difference in the specified frequency band is 180 degrees.
  • the balun or differential low noise amplifier is used to filter out the signal outside the specified frequency band, and the signal in the specified frequency band is reserved.
  • the first input signal is sampled by the signal sampling module, and the sampling signal is output to the phase control module;
  • the digital phase filter is controlled by the phase control module, the phase of the specified frequency band signal is adjusted by controlling the order of the digital phase filter, and the signal phase of the specified frequency band is compensated by 180 degrees; the second input signal is directly outputted as an output signal Port output.
  • the inverse filter compensates the signal phase of the specified frequency band by 180 degrees;
  • the second input signal of the phase shifting filter device is directly output as an output signal from the output port.
  • the present invention provides another method capable of suppressing adjacent frequency interference, the method comprising:
  • phase shifting filtering on the signal output by the first filter by using a phase shifting filtering device to filter out electromagnetic signals outside the specified frequency band
  • the phase adjustment module adjusts the phase difference between the signals in the two input ports in the specified frequency band and outside the designated frequency band, so that the phase difference between the signals output by the two output ports in the specified frequency band is 0 degrees, the phase difference outside the specified frequency band is 180 degrees; or, the phase difference between the two signals output by the phase adjustment module is 180 degrees in the specified frequency band, and the phase difference outside the specified frequency band is 0 degrees And then filtering the electromagnetic signals outside the frequency band occupied by the designated communication channel or the frequency band occupied by the power synthesis module, thereby filtering out electromagnetic noise in the band, improving the capability of the receiving system to resist electromagnetic interference, and electromagnetic of the channel adjacent to the communication channel. The noise will be greatly suppressed. The robustness of communication systems in complex electromagnetic environments will be greatly enhanced.
  • Figure 1 is a block diagram of a prior art communication system
  • FIG. 2 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a communication system according to FIG. 4, which includes the balanced antenna and phase adjustment module shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of another phase shifting filtering apparatus according to FIG. 3 according to the present invention
  • FIG. 7 is a schematic diagram of a dual port communication system based on FIG. 6 according to the present invention.
  • FIG. 8 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 11 is a block diagram of a communication system according to an embodiment of the present invention, and a phase shifting filtering device is added.
  • FIG. 12 is a phase shifting filtering device (group) implemented by a digital filtering method according to an embodiment of the present invention. Implementation block diagram;
  • FIG. 13 is a block diagram of an implementation of a phase shifting filtering apparatus (group) implemented by an inverse filter and a variable capacitor (inductance) method according to an embodiment of the present invention
  • FIG. 14 is a frequency response of a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 15 is an optimal result of amplitude response of a single differential output signal in a phase shifting filtering apparatus according to an embodiment of the present invention
  • FIG. 16 is a result of directly converting a differential signal outputted by a phase shifting filter device into a single-ended signal according to an embodiment of the present invention. detailed description
  • FIG. 2 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a receiving/transmitting circuit of a communication system for suppressing adjacent channel interference in a specified frequency band, and the apparatus includes: a phase adjusting module;
  • the phase adjustment module is configured to adjust a phase difference between the two signals input from the input port, such that the phase difference between the two signals output by the module in the specified frequency band is 0 degrees, and the phase difference outside the specified frequency band is 180 degrees; Or the phase difference in the specified frequency band is 180 degrees, and the phase difference outside the specified frequency band is 0 degrees.
  • the phase adjustment module has a dual input port and a dual output port, and the two sets of dual ports are respectively used for connection with other components to realize phase adjustment.
  • the signal outputted by the phase shifting filtering device can achieve a corresponding filtering effect through a power combining module.
  • the phase shifting filtering device may include a set of phase adjusting modules to select which phase adjusting module the signal passes by adding a radio frequency switch.
  • the connection method is as follows: All the phase adjustment modules are connected at one end, and the other end selects the flow direction of the signal through an RF switch.
  • FIG. 3 is a schematic structural diagram of another phase shifting filtering apparatus according to an embodiment of the present invention.
  • the apparatus includes: a dual port signal receiving/transmitting module and a phase adjusting module, where:
  • Dual port signal receiving/transmitting module for receiving/transmitting dual port signals
  • phase adjustment module configured to adjust a phase difference of signals of two output ports of the dual port signal receiving/transmitting module, so that the two signals that are output after being adjusted are equal to or close to 180 degrees in a specified frequency band, in the specified frequency band Or equal to or close to 0 degrees; or adjust the phase difference of the signals of the two output ports of the dual port signal receiving/transmitting module to be equal to or close to 0 degrees in the specified frequency band, equal to or close to 180 degrees outside the specified frequency band .
  • the dual port signal receiving/transmitting module is a balanced antenna
  • the differential signal output from the balanced antenna is input to the phase adjusting module
  • the phase adjusting module adjusts the phase of the input signal, so that the two phases of the phase adjusting module
  • the phase difference of the signals output by the output ports is inverted in the specified frequency band and outside the specified frequency band (the phase difference is equal to or close to 180 degrees).
  • FIG 5 is a block diagram of a communication system provided in Figure 4, including the balanced antenna and phase adjustment module shown in Figure 4.
  • the system is a receiving/transmitting system.
  • the receiving path is: After the balanced antenna receives the signal of the free space, the phase adjustment module performs phase adjustment, and the filtering effect of the phase shifting filtering module is implemented by the power synthesis module, after which the signal enters the first filter for filtering, and then passes the RF The switch enters the reception demodulation module to complete the reception of the signal.
  • the transmission path is: After the transmitting modulation module generates a signal, the RF filter is used to enter the first filter for filtering.
  • the power synthesis module of the receiving circuit becomes the power decomposition module of the transmitting module, and the signal enters the phase.
  • the adjustment module realizes the filtering effect, and the filtering effect is realized by the balanced antenna combination (the filtering of the phase adjustment module and the balanced antenna)
  • the effect is achieved as follows: The electromagnetic signal of the specified frequency band that needs to be filtered by the phase adjustment module is changed by the phase adjustment module, so it cannot be transmitted by balancing the antenna).
  • the communication system is a system that includes the receiving path and the transmitting path.
  • FIG. 6 is another preferred example of the embodiment.
  • the dual port signal receiving/transmitting module is a dual port signal receiving/transmitting chip, and the signal output by the phase adjusting module needs to be guaranteed in a specified frequency band.
  • the phase and the phase difference outside the specified band are 180 degrees.
  • the signal outputted by the phase shifting filtering device can achieve a corresponding filtering effect through a power combining module.
  • FIG. 7 is a schematic diagram of a dual port communication system based on Figure 6 of the present invention.
  • the dual port signal transmitting module generates a dual port signal, which is received by the dual port signal receiving module after phase shifting by the phase adjusting module, and the filtering effect is achieved after the dual port signal passes through the phase adjusting module.
  • Embodiments of the dual port communication system are generally used in the case of long distance communication of dual port signals.
  • FIG. 8 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention, where the apparatus includes: a power splitting module and a phase adjusting module, where:
  • the power splitting module is configured to divide the received single signal into two signals of equal power, and the present invention does not require the phase of the two signals.
  • the device used as the power splitting module can be a power splitter, a balun, or other device that can equally divide power.
  • phase adjustment module configured to receive two signals output by the power decomposition module, and adjust a phase difference of the two signals to be equal to or close to 180 degrees in a specified frequency band, equal to or close to 0 degrees outside the specified frequency band; Or adjust the phase difference of the two signals to be equal to or close to 0 degrees in the specified frequency band, equal to or close to 180 degrees outside the specified frequency band. That is, the phase difference of the signals output from the two ports of the phase adjustment module is opposite to the phase difference outside the specified frequency band;
  • One external connection port of the phase shifting filtering device of this embodiment is a single end of the power splitting module At the mouth, the dual port of the power splitting module is connected to one dual port of the phase adjusting module, and the other set of dual ports of the phase adjusting module is used as the external connecting port of the phase shifting filtering device.
  • phase shifting filtering device in this embodiment, the signal is a single-ended signal.
  • the phase shifting module needs to be phase-shifted to achieve the filtering effect, and the power-decomposing module is first used to convert the single-ended signal.
  • the dual port signal is input to the phase adjustment module for phase adjustment, and the signal is received by the dual port signal receiving chip shown in FIG. 7, the phase shift filter device of the present embodiment is applied.
  • Example 4
  • FIG. 9 is a phase shifting filtering apparatus according to an embodiment of the present invention, including: a phase adjustment module and a power synthesis module, where:
  • phase adjustment module configured to receive an external differential input signal, and adjust a phase difference between the two input signals such that a phase difference of the two signals output by the module is equal to or close to 180 degrees in a specified frequency band, in the designating
  • the frequency band is equal to or close to 0 degrees outside the frequency band; or the phase difference of the two input signals is adjusted to be equal to or close to 0 degrees in the specified frequency band, equal to or close to 180 degrees outside the specified frequency band. That is, the phase difference of the signals output from the two ports of the phase adjustment module is inverted within a specified frequency band and outside the designated frequency band (the phase difference is 180 degrees);
  • a power synthesis module configured to receive two signals outputted from the phase adjustment module, convert the dual port signal transmitted between the phase adjustment module and the power synthesis module into a single port signal, and when the power synthesis module uses two signal energy additions In the same way, the specified frequency band will be filtered out, leaving the signal of the frequency band outside the specified frequency band; when the power synthesis module uses the subtraction of the two signals, the specified frequency band will be left, and the frequency band outside the specified frequency band will be filtered out. signal.
  • phase shifting filtering device is as follows: the input signal is a dual port signal. In this case, phase shifting is required to perform phase shifting and filtering effect, and the phase shifted filtered signal is converted into a single-ended signal. In the case where the entire filtering process is completed, the phase shifting filtering device of the present embodiment is applied.
  • Example 5 the phase shifting filtering device of the present embodiment is applied.
  • FIG. 10 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention, where the apparatus includes: a power splitting module, a phase adjusting module, and a power combining module, where:
  • the input port of the device is a single port of the power splitting module, the dual port of the power splitting module is connected to one dual port of the phase adjusting module, and the other set of dual port of the phase adjusting module is connected to the dual port of the signal synthesizing module, and the power is synthesized.
  • the single port of the module is the external connection port.
  • the power splitting module is used to divide the power into two equal parts and transmit them through two channels, which does not require phase.
  • Devices that can be used as power split modules can be power splitters, baluns, or other devices that can divide power equally.
  • phase adjustment module wherein a phase difference of a signal for adjusting two output ports of the power splitting module is equal to or close to 180 degrees in a specified frequency band, equal to or close to 0 degrees outside the specified frequency band; or within a specified frequency band Equal to or close to 0 degrees, equal to or close to 180 degrees outside the specified frequency band. That is, the phase difference of the signals output from the two ports of the phase adjustment module is inverted outside the specified frequency band and outside the specified frequency band (the phase difference is equal to or close to 180 degrees).
  • the power synthesis module is configured to convert the dual port signal transmitted between the phase adjustment module and the power synthesis module into a single port signal, so that the energy of the frequency band to be filtered is subtracted, and the energy of the frequency band to be reserved is added, thereby achieving a filtering effect.
  • phase adjustment module uses the two signal energy addition methods, the designation is filtered out. Frequency band, leaving signals for the remaining bands.
  • Devices with such functions are, for example, power combiners (actually the power splitter is used in reverse).
  • phase adjustment module uses the two signal energy subtraction methods, the designation will be left.
  • the frequency band filters out the signals of the remaining bands.
  • Devices with such functions are, for example, differential signal synthesizers (actually baluns are used in reverse).
  • FIG. 11 is a schematic structural diagram of a system for filtering out electromagnetic interference noise in an adjacent channel in a communication frequency band implemented by the phase shifting filtering apparatus provided in FIG. 10 according to an embodiment of the present invention, where the system includes:
  • An antenna switch or duplexer for distinguishing between the state of the communication system and for strobing the transmit loop and the receive loop;
  • the frequency band selected by the first filter (referred to as a passband) is the entire receiving frequency band of the communication system, and includes one or more communication channels (or may also be referred to as channels) within the frequency band;
  • the phase shifting filtering device is configured to perform phase shift filtering on the signal output by the first filter to filter out frequency bands outside the specified frequency band.
  • the receiving demodulating device is configured to perform demodulation processing on the single-ended signal output by the phase shifting filtering device.
  • the structure of the phase shifting filtering device used is as shown in FIG. 7, which includes: a power decomposition module, a phase adjustment module, and a power synthesis module, where:
  • the single-ended signal outputted by the first filter is input to the power decomposition module, and is decomposed by the power decomposition module into two equal-amplitude signals whose differential phase difference is inverted. If the power decomposition module is implemented by a power divider, the decomposed The differential phase difference is 0 degrees. If the power decomposition module is implemented in balun, the differential phase difference after decomposition is 180 degrees;
  • the power synthesis module adopts a signal subtraction mode, that is, a balun or a differential low noise amplifier is used to filter out signals outside the specified frequency band. That is, the signal outputted by the power decomposition module has a phase difference of 0 degrees, and the phase adjustment module (group) adjusts the phase difference between the frequency band of the current communication channel and the frequency band other than the current communication channel frequency band to 180 degrees, and then at the power. After the synthesis module adds the two signals, the current communication channel frequency is The signal on the frequency band outside the segment is filtered out.
  • the power combining module adopts a signal addition manner, that is, a power synthesizer is selected (the input and output of the power splitter are used in reverse) Signals other than the specified frequency band.
  • the signal outputted by the power decomposition module with a phase difference of 180 degrees passes through the phase adjustment module (group), and the differential phase difference of the current communication channel is changed to 0 degrees; then, after the power synthesis module subtracts the two signals, the current communication channel is Signals in bands outside the band are filtered out.
  • FIG. 12 is a schematic structural diagram of a phase shifting filtering apparatus according to an embodiment of the present invention.
  • a power splitting module uses a power splitter
  • a power combining module uses a differential low noise amplifier (DLNA).
  • DLNA differential low noise amplifier
  • the phase adjustment module only processes one signal output by the power decomposition module, and the other signal directly outputs.
  • the module specifically includes: a signal sampling module, a digital phase filter, and a phase control module;
  • the signal sampling module is configured to sample one output signal of the power decomposition module, one end of which is connected with the power decomposition module, and the other end is connected with the phase control module; obtaining the sampling result of the signal is a prerequisite for digital filtering.
  • the digital phase filter is used to compensate the signal phase of the specified frequency band by 180 degrees under the control of the phase control circuit, and one end of the signal is connected to the power decomposition module, one end is connected to the power synthesis module, and the other end is connected to the phase control module.
  • the invention chooses to control the phase of the digital filter instead of controlling the amplitude. That is, the reason for direct filtering is: Direct filtering requires digital filters to be designed in many stages, resulting in unstable phase information, and also a large delay in signal processing. Therefore, the method adopted by the present invention is to compensate the phase of the channel frequency of one output of the power splitter by 180 degrees, so that the filtering can be completed using the minimum digital filter order, and the complexity of the digital filter can be reduced.
  • the phase control module is configured to control the order of the digital phase filter to adjust the phase of the signal in the specified frequency band, one end of which is connected to the signal sampling module, and the other end is connected to the digital phase filter; through the digital phase filter, the phase change information is loaded into the function
  • the splitter outputs a signal path.
  • the digital phase filter can be selected, for example, a 1st to 2nd order Butterworth filter, plus a linear phase filter for fine adjustment of the delay. Other digital filter implementations are also possible, as long as the phase of the signal of the channel is inverted by 180 degrees.
  • FIG. 13 is a schematic structural diagram of another phase shifting filtering apparatus according to an embodiment of the present invention.
  • the difference between the embodiment and the seventh embodiment is that the phase adjustment module is implemented differently.
  • This embodiment is a phase adjustment device (group) realized by a reverse capacitance filter plus a variable capacitance/inductance method.
  • the digital filter is easy to implement the filter (group) and can cover a wide frequency range, and the filter bank directly composed of hardware faces bandwidth coverage.
  • the present invention proposes to use a variable capacitor/inductor to adjust the operating frequency band of the inverting filter so that it coincides with the current receiving channel.
  • the implementation principle of the phase adjustment module in this embodiment is the same as that of the phase adjustment module in the embodiment 7.
  • the phase adjustment module in this embodiment includes:
  • variable capacitance/inductance control circuit is used for adjusting the capacitance value of the variable capacitor, one end of which is connected to the power splitting module, and the other end is connected to the variable capacitor/inductor;
  • a variable capacitor/inductor is used to adjust the center frequency of the filtering of the inverting filter
  • Inverting filter for compensating the signal phase of the specified frequency band under the control of the variable capacitor/inductor It is 180 degrees, one end is connected to the power splitting module, one end is connected to the power synthesis module, and one end is connected to the variable capacitor/inductor.
  • a 1st to 2nd order Butterworth filter can be selected, and a linear phase filter is added to perform the fine adjustment of the delay to obtain the differential phase difference of the final filter change signal.
  • Figure 14 illustrates the optimum case of the differential phase of the phase-shifted dual-port differential signal output by the phase-shifting filter module, where / 2 is the highest frequency and lowest frequency of the current communication channel, and the channel is only the entire communication
  • the system receives a portion of the portion of the bandwidth.
  • the phase difference of the differential channel remains 180 degrees past the balun, and the signals of the remaining frequencies are set to 0 degrees (if the power divider is used, the band between /, The phase difference of the differential channel is set to 180 degrees, while the signals of the remaining frequencies are set to maintain 0 degrees of the original pass through the splitter.
  • the absolute value of the differential phase difference between / p / 2 can be accepted from 90 degrees to 180 degrees (the angle range needs to be limited to 0-180 degrees, and the negative angle plus 180 degrees can be converted to a positive angle).
  • the absolute value of the differential phase difference in the bands other than /i and / 2 is acceptable from 0 to 90 degrees (the angle range needs to be limited to 0-180 degrees, and the negative angle plus 180 degrees can be converted to positive angle).
  • Fig. 16 shows an optimum case of the combined result of the differential signals having the characteristics of Figs. 14 and 15.
  • the power synthesis formula is: where the phase information of the differential mode S 123 required by the present invention is as shown in FIG. 14, and the amplitude information is as shown in FIG. 16, where S 12 carries The amplitude and phase information of a differential line, S 13 carries another way The amplitude and phase information of the differential line.
  • the signal of the frequency within the current communication channel is a differential mode signal, according to the formula of the differential mode signal, it can be seen that there is no attenuation, and the signals below / / 2 are common.
  • the mode signal according to the formula of the common mode signal, decays to a negative infinity. Considering the actual situation, there will be some attenuation between / after synthesis, for example, -0.5dB or so, which has little effect on the actual reception of the signal (acceptable range from OdB to -10dB).
  • the attenuation of the signal below / / and above 2 will not really be negative infinity, but the rate penalty will also be a larger value, for example, around -20dB, which is already fully achievable in practical applications. It has a beneficial effect (acceptable range from -5dB to - ⁇ dB).
  • phase adjustment device may be implemented by using a lumped device, a resonator filter, a digital filter, or by delaying one of the differential lines (but not limited to the method described above) to implement the phase adjustment device.
  • the realization principle is that the amplitude information of the single differential line realized by the final phase adjusting device (group) conforms to that shown in FIG. 15, and the differential phase information conforms to FIG. 14, and the amplitude information of the synthesized single-ended signal conforms to FIG. Show.
  • non-single channel communication systems having a certain communication band. These include, but are not limited to, digital television systems, analog television systems, FM broadcast systems, GSM communication systems, CDMA communication systems, WCDMA communication systems, TD-SCDMA communication systems, TD-LTE communication systems, FDD-LTE communication systems, and the like.
  • the present invention relates to the problem of filtering the in-band signal by changing the signal phase information, and breaks through the effects that cannot be achieved in the prior art, and the implementation case is not limited to the part involved in the present invention, and the implementation manner similar to the above design method is Within the scope of protection of the present invention.
  • the invention can filter the electromagnetic noise in the belt, improve the anti-electromagnetic interference capability of the receiving system of the device, improve the electromagnetic noise suppression capability of the channel adjacent to the communication channel, and improve the robustness of the communication system in the complex electromagnetic environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种移相滤波方法,用于解决通信信道临近的频率干扰通信信道通信的问题。本发明在信号接收系统中,使用相位调节模块对两个输入端口中的信号在指定频段内和指定频段外的相位差进行调节,使得两个输出端口输出的信号在指定的频段内的相位差为0度,在指定频段外的相位差为180度;或者相位调节模块输出的两路信号的相位差在指定的频段内的相位差为180度,在指定频段外的相位差为0度,再通过功率合成模块滤除指定通信信道所占频段或者所占频段之外的电磁信号,从而滤除带内的电磁噪声,提高设备接收系统抗电磁干扰的能力,通信信道邻近的信道的电磁噪声将被大大抑制。通信系统在复杂电磁环境下的鲁棒性将会大大加强。

Description

一种移相滤波方法 技术领域
本发明涉及电磁信号滤波技术领域, 尤其涉及一种移相滤波方法。 背景技术
当前的通信系统, 对射频噪声的滤除范围仅仅限于对通信频段通带内 的射频噪声的滤除。 图 1 为现有技术中的一种通信系统的发射和接收方案 结构示例。 其中, 该系统的接收回路中, 第一滤波器为一带通滤波器, 其 所能滤除的信号为整个系统占用的接收频段之外的频段即带外频段的电磁 信号, 滤除的频段范围是一个相当宽频的频段, 对于带内包含多个通信信 道的情况下, 通信信道之间会产生邻频干扰, 而在此通信频段内的电磁干 扰噪声需要极窄带的滤波器才能滤除, 目前的现有技术中没有可以进行滤 除的方案。 由此造成的问题是, 一旦频段内的其他通信信道所占据的频率 附近有较大的干扰, 则当前的通信信道的射频信号的解调将可能会受到严 重的影响。 此干扰一般称作邻频干扰。 干扰的来源可能是移动终端、 基站、 信号发生器等。 发明内容
有鉴于此, 本发明的主要目的在于提供一种移相滤波方法, 用于解决 通信信道临近的频率干扰通信信道通信的问题, 实现通信信道对临近的频 率干扰的高抗扰度。
为达到上述目的, 本发明的技术方案是这样实现的:
基于本发明实施例, 本发明提供一种移相滤波方法, 该方法用于在通 信系统接收 /发射电路中抑制指定频段的电磁干扰, 该方法包括: 通过相位调节模块对两路输入信号的相位差进行调节, 使得输出的两 路信号在指定的频段内的相位差为 0度, 在指定频段外的相位差为 180度; 或在指定的频段内的相位差为 180度, 在指定频段外的相位差为 0度。 基于本发明实施例, 本发明提供另一种移相滤波方法, 该方法用于在 通信系统接^ /发射电路中抑制指定频段的电磁干扰, 该方法包括:
通过双端口信号^/发模块接^/发射双端口信号;
通过相位调节模块对所述双端口信号收 /发模块接收 /发射的双端口信 号的相位差进行调节, 使得所述相位调节模块与所述双端口信号^ /发模块 之间的双路信号在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度;或在指定频段内的相位差为 180度,在指定频段外的相位差为 0度。
进一步地, 所述方法还包括:
在接收通路中, 通过功率合成解模块将所述相位调节模块输出的两路 信号转化为单端口信号, 滤除指定频段外的信号;
在发射通路中, 通过功率分解模块将单端口信号转化为双路信号, 输 入到所述相位调节模块。 基于本发明实施例, 本发明提供另一种移相滤波方法, 该方法用于在 通信系统接^ /发射电路中抑制指定频段的电磁干扰, 该方法包括:
通过功率分解模块将单路信号分成功率相等的两路信号;
通过相位调节模块对所述功率分解模块输出的两路信号进行相位调 节, 使调节后输出的两路信号在指定频段内的相位差为 0度, 在指定频段 外的相位差为 180度; 或在指定频段内的相位差为 180度, 在指定频段外 的相位差为 0度。 基于本发明实施例, 本发明提供另一种移相滤波方法, 该方法用于在 通信系统接^ /发射电路中抑制指定频段的电磁干扰, 该方法包括: 通过相位调节模块对输入的两路信号的相位进行调节, 使输出的两路 信号在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度; 或 在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度;
通过功率合成模块将所述相位调节模块输出的两路信号转化为单端口 信号, 滤除指定频段外的信号。 基于本发明实施例, 本发明提供另一种移相滤波方法, 该方法用于在 通信系统接^ /发射电路中抑制指定频段的电磁干扰, 该方法包括:
通过功率分解模块将单路信号分成功率相等的两路信号;
通过相位调节模块对所述功率分解模块输出的两路信号进行相位调 节, 使调节后输出的两路信号在指定频段内的相位差为 0度, 在指定频段 外的相位差为 180度; 或在指定频段内的相位差为 180度, 在指定频段外 的相位差为 0度;
通过功率合成模块将所述相位调节模块输出的两路信号转化为单端口 信号, 滤除指定频段外的信号。 进一步地, 上述移相滤波方法中, 所述功率分解模块采用功分器或巴 仑实现。
进一步地, 上述移相滤波方法中, 所述功率合成模块采用功率合成器、 巴伦或差动低噪声放大器实现, 其中:
在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度时, 选用功率合成器滤除指定频段外的信号, 保留指定频段内的信号; 或
在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度时, 选用巴仑或差动低噪声放大器保留指定频段外的信号, 滤除指定频段内的 信号; 或 在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度时, 选用功率合成器保留指定频段外的信号, 滤除指定频段内的信号; 或
在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度时, 选用巴仑或差动低噪声放大器滤除指定频段外的信号, 保留指定频段内的 信号。
进一步地, 所述相位调节模块执行所述相位调节的方法为:
通过信号采样模块对第一路输入信号进行采样 , 将采样信号输出给相 位控制模块;
通过相位控制模块控制数字相位滤波器, 通过控制数字相位滤波器的 阶数调节指定频段信号的相位, 对所述指定频段的信号相位补偿 180度; 将第二路输入信号直接作为输出信号从输出端口输出。
进一步地, 所述相位调节模块执行所述相位调节的方法为:
通过可变电容 /电感控制电路对可变电容器 /电感的电容 /电感值进行调 通过可变电容器 /电感调节反相滤波器的滤波的中心频点;
在所述可变电容器 /电感的控制下, 反相滤波器对指定频段的信号相位 补偿 180度;
所述移相滤波装置的第二路输入信号直接作为输出信号从输出端口输 出。 基于本发明实施例, 本发明提供另一种能够抑制邻频干扰的方法, 该 方法包括:
使用第一滤波器滤除通信系统接收频带之外的电磁信号;
使用移相滤波装置对第一滤波器输出的信号进行移相滤波, 滤除指定 频段之外的电磁信号;
对移相滤波装置输出的单端信号进行解调处理。 本发明在信号接收系统中, 使用相位调节模块对两个输入端口中的信 号在指定频段内和指定频段外的相位差进行调节, 使得两个输出端口输出 的信号在指定的频段内的相位差为 0度, 在指定频段外的相位差为 180度; 或者, 相位调节模块输出的两路信号的相位差在指定的频段内的相位差为 180度, 在指定频段外的相位差为 0度, 再通过功率合成模块滤除指定通信 信道所占频段或者所占频段之外的电磁信号 , 从而滤除带内的电磁噪声 , 提高设备接收系统抗电磁干扰的能力, 通信信道邻近的信道的电磁噪声将 被大大抑制。 通信系统在复杂电磁环境下的鲁棒性将会大大加强。 附图说明
图 1是现有技术的通信系统的框图;
图 2为本发明实施例提供的一种移相滤波装置的结构示意图; 图 3为本发明实施例提供的一种移相滤波装置的结构示意图; 图 4为本发明基于图 3提供的一种移相滤波装置的结构示意图; 图 5为本发明基于图 4提供的一种通信系统框图, 包括了图 4所示的 平衡天线和相位调节模块;
图 6为本发明基于图 3提供的另一种移相滤波装置的结构示意图; 图 7为本发明基于图 6的双端口通信系统的示意图;
图 8为本发明实施例提供的一种移相滤波装置的结构示意图; 图 9为本发明实施例提供的一种移相滤波装置的结构示意图; 图 10为本发明实施例提供的一种移相滤波装置的结构示意图; 图 11为本发明实施例提供的通信系统的框图, 增加了移相滤波装置; 图 12为本发明实施例提供的通过数字滤波法实现的移相滤波装置(组 ) 的实现框图;
图 13为本发明实施例提供的通过反相滤波器加可变电容(电感)法实 现的移相滤波装置 (组) 的实现框图; 图 14 为本发明实施例提供的移相滤波装置的频率响应; 图 15 为本发明实施例提供的移相滤波装置中单个差分输出的信号的 幅度响应的最优结果;
图 16 为本发明实施例提供的移相滤波装置中输出的差分信号直接转 换为单端信号后的结果。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
实施例 1
图 2为本发明实施例提供的一种移相滤波装置的结构示意图, 该装置 应用于通信系统接收 /发射电路中, 用于抑制对指定频段的邻频干扰, 该装 置包括: 相位调节模块;
所述相位调节模块用于调节从输入端口输入的两路信号相位差, 使得 该模块输出的两路信号在指定的频段内的相位差为 0度, 在指定频段外的 相位差为 180度; 或在指定的频段内的相位差为 180度, 在指定频段外的 相位差为 0度。
所述相位调节模块具有双输入端口和双输出端口, 两组双端口分别用 于和其它组件的连接, 实现相位调节的作用。
所述移相滤波装置的输出的信号经过一功率合成模块就可以实现相应 的滤波效果。
优选地, 所述移相滤波装置中可包括一组相位调节模块, 通过添加射 频开关来选定信号通过哪个相位调节模块。 连接方式为: 所有相位调节模 块的一端都连接在一起, 另一端通过一个射频开关选择信号的流向。 实施例 2 图 3 为本发明实施例提供的另一种移相滤波装置的结构示意图, 该装 置包括: 包含双端口信号收 /发模块和相位调节模块, 其中:
双端口信号收 /发模块, 用于接收 /发射双端口信号;
相位调节模块, 用于调节双端口信号收 /发模块的两个输出端口的信号 的相位差, 使经调节后输出的两路信号在指定的频段内等于或接近 180度, 在所述指定频段之外等于或接近 0度; 或者调节双端口信号收 /发模块的两 个输出端口的信号的相位差在指定的频段内等于或接近 0度, 在所述指定 频段之外等于或接近 180度。
所述双端口信号收 /发模块的双端口和相位调节模块的一个双端口连 接; 所述相位调节模块的另一组双端口作为移相滤波装置的对外连接端口; 图 4为该实施例优选实例, 在该实例中, 所述的双端口信号收 /发模块 为平衡天线, 平衡天线输出的差分信号输入到相位调节模块中, 相位调节 模块调节输入的信号的相位, 使得相位调节模块的两个输出端口输出的信 号的相位差在指定频段内和指定频段外的反相 (相位差为等于或接近 180 度)。
图 5为图 4提供的一种通信系统框图, 包括了图 4所示的平衡天线和 相位调节模块。 该系统是一个收 /发系统。
接收通路为: 平衡天线接收到自由空间的信号之后, 通过相位调节模 块进行相位的调整, 通过功率合成模块实现移相滤波模块的滤波效果, 之 后, 信号进入第一滤波器进行滤波, 再通过射频开关进入接收解调模块完 成信号的接收。
发射通路为: 发射调制模块产生信号之后, 通过射频开关, 进入第一 滤波器进行滤波, 对于发射而言, 在接收回路的功率合成模块就成了发射 模块的功率分解模块, 信号接下来进入相位调节模块实现滤波效果, 该滤 波效果通过平衡天线联合实现(相位调节模块和平衡天线联合实现的滤波 效果的实现方式为: 相位调节模块需要滤除的指定频段的电磁信号由于被 相位调节模块改变了相位信息, 因此通过平衡天线就无法发射出去)。
所述通信系统就是包括了所述接收通路和发射通路的系统。
图 6为该实施例的另一优选实例, 在该实例中, 所述的双端口信号收 / 发模块为一个双端口信号收 /发芯片, 相位调节模块输出的信号需要保证在 指定频段内的相位和在指定频段外的相位差为 180度。
所述移相滤波装置的输出的信号经过一功率合成模块就可以实现相应 的滤波效果。
图 7为本发明基于图 6的双端口通信系统的示意图。 其中, 双端口信 号发射模块产生双端口信号, 经过相位调节模块移相之后, 被双端口信号 接收模块接收, 双端口信号通过相位调节模块之后, 就实现了滤波效果。 该双端口通信系统的实施例一般应用在双端口信号的长距离通信的场合。 实施例 3
图 8 为本发明实施例提供的一种移相滤波装置的结构示意图, 该装置 包括: 功率分解模块和相位调节模块, 其中:
功率分解模块, 用于将接收到的单路信号分成功率相等的两路信号, 本发明对两路信号的相位不作要求。 用作功率分解模块的器件可以是功分 器、 巴仑(Balun, 平衡 -不平衡变换器)、 或者其它可以将功率等分的器件。
相位调节模块, 用于接收所述功率分解模块输出的两路信号, 并调节 两路信号的相位差在指定的频段内等于或接近 180度, 在所述指定频段之 外等于或接近 0度;或调节两路信号的相位差在指定的频段内等于或接近 0 度, 在所述指定频段之外等于或接近 180度。 即使得从所述相位调节模块 两个端口输出的信号的相位差在指定频段内和指定频段之外的相位差为反 相;
该实施例的移相滤波装置的一个对外连接端口为功率分解模块的单端 口处, 功率分解模块的双端口处连接相位调节模块的一个双端口, 相位调 节模块的另一组双端口作为移相滤波装置的对外连接端口。
该实施例中的移相滤波装置的应用场合为所述信号为单端信号, 此时, 需要通过移相滤波模块进行移相并实现滤波效果, 就需要先使用功率分解 模块将单端信号转化为双端口信号, 再将该双端口信号输入相位调节模块 进行相位调节, 并且该信号通过图 7所示双端口信号接收芯片进行接收的 情况下, 适用本实施例的移相滤波装置。 实施例 4
图 9为本发明实施例提供的一种移相滤波装置包括: 相位调节模块和 功率合成模块, 其中:
相位调节模块, 用于接收外部的差分输入信号, 对两路输入信号的相 位差进行调节, 使得该模块输出的两路信号的相位差在指定的频段内等于 或接近 180度, 在所述指定频段之外等于或接近 0度; 或调节两路输入信 号的相位差在指定的频段内等于或接近 0度, 在所述指定频段之外等于或 接近 180度。 即使得从所述相位调节模块两个端口输出的信号的相位差在 指定频段内和指定频段之外反相 (相位差为 180度);
功率合成模块, 用于接收从相位调节模块输出的两路信号, 将相位调 节模块与功率合成模块之间传送的双端口信号转化为单端口信号, 且当功 率合成模块使用两路信号能量相加的方式, 则会滤除指定频段, 留下指定 频段之外的频段的信号; 当功率合成模块使用两路信号能量相减的方式, 则会留下指定频段, 滤除指定频段之外的频段信号。
该移相滤波装置的应用场合为: 所述输入信号为双端口信号, 此时, 需要通过移相滤波模块进行移相并实现滤波效果, 并且在将移相滤波后的 信号转化为单端信号完成整个滤波过程的情况下, 适用本实施例的移相滤 波装置。 实施例 5
图 10为本发明实施例提供的一种移相滤波装置结构示意图, 该装置包 括: 功率分解模块、 相位调节模块、 功率合成模块, 其中:
该装置的输入端口为功率分解模块的单端口, 功率分解模块的双端口 处连接相位调节模块的一个双端口, 相位调节模块的另一组双端口连接所 述信号合成模块的双端口, 功率合成模块的单端口为对外连接端口。
功率分解模块用于将功率分为相等的两份, 通过两路进行传输, 对相 位不作要求。 可以用作功率分解模块的器件可以是功分器、 巴仑、 或者其 它可以将功率等分的器件。
相位调节模块, 用于调节功率分解模块的两个输出端口的信号的相位 差在指定的频段内等于或接近 180度, 在所述指定频段之外等于或接近 0 度; 或在指定的频段内等于或接近 0度, 在所述指定频段之外等于或接近 180度。即使得从所述相位调节模块两个端口输出的信号的相位差在指定频 段内和指定频段之外反相 (相位差等于或接近 180度)。
功率合成模块, 用于将相位调节模块与功率合成模块之间传送的双端 口信号转化为单端口信号, 使需要滤波的频段的能量相减, 需要保留的频 段的能量相加, 从而实现滤波效果。
当相位调节模块输出的两路信号的相位差在指定的频段内等于 180度, 在指定频段之外等于 0度时, 如果功率合成模块使用两路信号能量相加的 方式, 则会滤除指定频段, 留下其余频段的信号。 具有此类功能的器件例 如功率合成器(实际上就是功分器反过来使用)。
当相位调节模块输出的两路信号的相位差在指定的频段内等于 180度, 在指定频段之外等于 0度时, 如果功率合成模块使用两路信号能量相减的 方式, 则会留下指定频段, 滤除其余频段的信号。 具有此类功能的器件例 如差分信号合成器(实际上就是巴仑反过来使用)。 实施例 6
图 11为本发明实施例提供的一种基于图 10所提供的移相滤波装置实 现的可滤除通信频段带内临近信道出现电磁干扰噪声的系统结构图, 该系 统包括:
天线, 用于发射或者接收无线电磁信号;
天线开关或双工器, 用于区分通信系统所处的状态, 用来选通发射回 路和接收回路;
第一滤波器, 用于接收由天线传送的无线电信号, 并从所接收的信号 中滤除通信系统接收频带之外的干扰信号。该第一滤波器所选通的频带(简 称为通带) 为通信系统的整个接收频段, 在该频带范围内包含一个或多个 通信信道(或者也可以称之为频道);
移相滤波装置, 用于对第一滤波器输出的信号进行移相滤波, 滤除指 定频段之外的频段。
接收解调装置, 用于对移相滤波装置输出的单端信号进行解调处理。 该系统实例中, 所使用的移相滤波装置的结构如图 7所示, 其中包括: 功率分解模块、 相位调节模块、 功率合成模块, 其中:
第一滤波器输出的单端信号输入到功率分解模块, 由功率分解模块分 解为差分相位差为反相的两路等幅信号, 如果所述功率分解模块采用功分 器实现, 则分解后的差分相位差为 0度, 如果所述功率分解模块采用巴仑 实现, 则分解后的差分相位差为 180度;
在所述功率分解模块采用功分器实现的情况下, 功率合成模块采用信 号相减的方式, 即选用巴仑或者差动低噪声放大器滤除指定频段之外的信 号。 即功率分解模块输出的相位差为 0度的信号, 通过相位调节模块(组) 将当前通信信道的频段与当前通信信道频段之外的频段的之间的相位差调 整为 180度, 然后在功率合成模块将两路信号相加后, 将当前通信信道频 段之外的频段上的信号滤除掉。
在所述功率分解模块采用巴伦或者差动低噪声放大器实现的情况下, 功率合成模块采用信号相加的方式, 即选用功率合成器(功分器的输入和 输出反过来使用即可) 滤除指定频段之外的信号。 功率分解模块输出的相 位差为 180度的信号通过相位调节模块(组), 将当前通信信道的差分相位 差变为 0度; 然后在功率合成模块将两路信号相减后, 将当前通信信道频 段之外的频段上的信号滤除掉。 实施例 7
图 12为本发明实施例提供的一种移相滤波装置的实现结构图, 该实施 例中功率分解模块使用功分器, 功率合成模块使用差动低噪声放大器 ( Differential Low Noise Amplifier, DLNA )。 该实施例选择功分器而不是巴 仑的原因是: 选择巴仑, 则要求信道之外的信号的差分相位需要转化为 0 度, 这个范围较宽, 较难控制, 因此本案例中选择的是功分器。 选择功分 器则只需要将该信道的差分相位变为 180度即可, 需要处理的频段更窄, 更易于实现。
该实施例中, 相位调节模块只对功率分解模块输出的一路信号进行处 理, 另一路信号直接输出, 该模块具体包含: 信号采样模块、 数字相位滤 波器、 相位控制模块;
信号采样模块用于对功率分解模块的一路输出信号进行采样, 其一端 与功率分解模块连接, 另一端与相位控制模块连接; 得到信号的采样结果 是进行数字滤波的前提。
数字相位滤波器用于在相位控制电路的控制下对指定频段的信号相位 补偿 180度, 其一端与功率分解模块的连接, 一端与功率合成模块连接, 另一端与相位控制模块连接。
本发明选择对数字滤波器的相位进行控制, 而不是对幅度进行控制, 即直接进行滤波的原因是: 直接进行滤波, 则需要数字滤波器设计成很多 阶, 造成相位信息的不稳定, 另外还会产生信号处理的很大延时。 因此, 本发明采取的做法是将功分器输出的一路的信道频率内相位补偿 180度, 这样可以使用最小的数字滤波器阶数就可以完成滤波, 降低数字滤波器的 复杂度。
相位控制模块用于控制数字相位滤波器的阶数以调节指定频段信号的 相位, 其一端与信号采样模块连接, 另一端与数字相位滤波器连接; 通过 数字相位滤波器, 相位变化信息加载到功分器输出的一路信号通路上。 数 字相位滤波器可以选用, 例如 1至 2阶巴特沃斯滤波器, 加上线性相位滤 波器进行时延的微调。 其他的数字滤波器实现形式也是可以的, 只要信道 的信号的相位进行 180度反相即可。 实施例 8
图 13为本发明实施例提供的另一种移相滤波装置的实现结构图, 该实 施例与实施例 7 的不同在于相位调节模块的实现方式不同。 该实施例通过 反相滤波器加可变电容 /电感法实现的相位调节装置(组)。和移相滤波装置 的数字滤波法的实现方式相比, 数字滤波器易于实现滤波器(组), 并且能 够覆盖较宽的频率范围, 而直接使用由硬件构成的滤波器组就会面临带宽 覆盖范围小的问题, 因此, 本发明提出使用可变电容 /电感来调节反相滤波 器工作频段, 使之恰好和当前接收信道重合。 该实施例中相位调节模块的 实现原理和实施例 7 中相位调节模块的实现原理相同, 该实施例中相位调 节模块包括:
可变电容 /电感控制电路用于对可变电容器的电容值进行调节, 其一端 与功率分解模块连接, 另一端与可变电容器 /电感连接;
可变电容器 /电感用于调节反相滤波器的滤波的中心频点;
反相滤波器用于在可变电容器 /电感的控制下对指定频段的信号相位补 偿 180度, 其一端与功率分解模块的连接, 一端与功率合成模块连接, 一 端与可变电容器 /电感连接。 可选用 1至 2阶巴特沃斯滤波器, 加上线性相 位滤波器进行时延的微调, 得到最终的滤波器改变信号的差分相位差。 实施例 9
图 14描述的是移相滤波模块输出的已经经过移相的双端口差分信号的 差分相位的最优情况,其中, 和/2是当前通信信道的最高频率和最低频率, 该信道仅仅是整个通信系统接收部分带宽的一部分。 在/和 /2之间的频带, 差分信道的相位差保持原先通过巴仑的 180度, 而其余频率的信号, 被设 置为 0度(如果使用功分器, 则在/ 之间的频带, 差分信道的相位差 被设置为 180度, 而其余频率的信号, 被设置为保持原先通过功分器的 0 度)。 可以接受范围为/ p /2之间的差分相位差的绝对值从 90度到 180度 (角度范围需要限制在 0-180度之间,负角度加上 180度就可以转化为正角 度), /i和 /2之外的频段的差分相位差的绝对值可以接受的范围是 0度到 90 度(角度范围需要限制在 0-180度之间, 负角度加上 180度就可以转化为正 角度)。
图 15所示的差分信号的能量衰减的最优情况, 因为是差分线, 能量平 分在两个线上, 因此, 两根线上的衰减相对于原单端信号而言, 都是 -3dB。
图 16所示的是具有图 14和图 15的特性的差分信号的合成后的结果的 最优情况。
合成公式为:
对于 2端口和 3端口信号相位反相的情况, 功率合成公式为: 其中, 本发明要求的差模 S123的相位信息如图 14所示, 幅度信息如图 16所示, S12承载了其中一路差分线的幅度和相位信息, S13承载了另一路 差分线的幅度和相位信息。
对于 2端口和 3端口信号相位相同的情况, 功率合成公式为:
Figure imgf000017_0001
其中, 由于共模信号而言 S12和 S13的幅度很接近和差分相位为 0度, 由共模信号的公式可以看出共模 S123将会极大地衰减。
可以看到, 和/2, 也就是当前通信信道的内的频率的信号因为是差模 信号, 根据差模信号的公式可以看出不会有衰减, 而/以下和 /2以上的信 号为共模信号, 根据共模信号的公式, 衰减为负无穷大。 考虑到实际情况, 合成后/ 之间会有一定的衰减, 例如, -0.5dB左右, 这对信号的实际 接收影响不大(可以接受的范围从 OdB到 -10dB )。 而/以下和 /2以上的信 号的衰减也不会真的为负无穷大, 但是率减值也会是一个较大的值, 例如, -20dB左右, 而这在实际的应用中已经是完全可以起到有益效果了(可以接 受的范围从 -5dB到-∞dB )。
另外, 相位调节装置(组) 的实现可以是用集总器件, 谐振器滤波器, 数字滤波器或者采取对差分线的其中一根进行延时 (但不限于以上所述方 法) 实现相位调节装置(组), 实现原则是最终相位调节装置(组) 实现的 单个差分线的幅度信息符合图 15所示, 差分相位信息符合图 14所示, 合 成后的单端信号的幅度信息符合图 16所示。
本发明应用的范围包括所有具有一定通信频段的非单一信道的通信系 统。 包括但不限于数字电视系统, 模拟电视系统, FM广播系统, GSM通 信系统, CDMA通信系统, WCDMA通信系统, TD-SCDMA通信系统, TD-LTE通信系统 , FDD-LTE通信系统等等。
本发明涉及通过改变信号相位信息进行带内信号的滤波的问题, 突破 了现有技术中无法实现的效果, 其实施案例不限于本发明所涉及的部分, 与上述设计方式类似的实现方式均在本发明的保护范围内。 工业实用性
本发明能够滤除带内的电磁噪声, 提高设备接收系统抗电磁干扰的能 力, 提高对通信信道邻近的信道的电磁噪的抑制能力, 提高通信系统在复 杂电磁环境下的鲁棒性。

Claims

权利要求书
1、一种移相滤波方法, 该方法用于在通信系统接收 /发射电路中抑制指 定频段的电磁干扰, 该方法包括:
通过相位调节模块对两路输入信号的相位差进行调节, 使得输出的两 路信号在指定的频段内的相位差为 0度, 在指定频段外的相位差为 180度; 或在指定的频段内的相位差为 180度, 在指定频段外的相位差为 0度。
2、一种移相滤波方法, 该方法用于在通信系统接收 /发射电路中抑制指 定频段的电磁干扰, 该方法包括:
通过双端口信号^/发模块接^/发射双端口信号;
通过相位调节模块对所述双端口信号收 /发模块接收 /发射的双端口信 号的相位差进行调节, 使得所述相位调节模块与所述双端口信号^ /发模块 之间的双路信号在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度;或在指定频段内的相位差为 180度,在指定频段外的相位差为 0度。
3、 根据权利要求 2所述的移相滤波方法, 其中, 所述方法还包括: 在接收通路中, 通过功率合成解模块将所述相位调节模块输出的两路 信号转化为单端口信号, 滤除指定频段外的信号;
在发射通路中, 通过功率分解模块将单端口信号转化为双路信号, 输 入到所述相位调节模块。
4、一种移相滤波方法, 该方法用于在通信系统接收 /发射电路中抑制指 定频段的电磁干扰, 该方法包括:
通过功率分解模块将单路信号分成功率相等的两路信号;
通过相位调节模块对所述功率分解模块输出的两路信号进行相位调 节, 使调节后输出的两路信号在指定频段内的相位差为 0度, 在指定频段 外的相位差为 180度; 或在指定频段内的相位差为 180度, 在指定频段外 的相位差为 0度。
5、一种移相滤波方法, 该方法用于在通信系统接收 /发射电路中抑制指 定频段的电磁干扰, 该方法包括:
通过相位调节模块对输入的两路信号的相位进行调节, 使输出的两路 信号在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度; 或 在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度;
通过功率合成模块将所述相位调节模块输出的两路信号转化为单端口 信号, 滤除指定频段外的信号。
6、一种移相滤波方法, 该方法用于在通信系统接收 /发射电路中抑制指 定频段的电磁干扰, 该方法包括:
通过功率分解模块将单路信号分成功率相等的两路信号;
通过相位调节模块对所述功率分解模块输出的两路信号进行相位调 节, 使调节后输出的两路信号在指定频段内的相位差为 0度, 在指定频段 外的相位差为 180度; 或在指定频段内的相位差为 180度, 在指定频段外 的相位差为 0度;
通过功率合成模块将所述相位调节模块输出的两路信号转化为单端口 信号, 滤除指定频段外的信号。
7、 根据权利要求 4或 6所述的移相滤波方法, 其中, 所述功率分解模 块采用功分器或巴仑实现。
8、 根据权利要求 5或 6所述的移相滤波方法, 其中, 所述功率合成模 块采用功率合成器、 巴伦或差动低噪声放大器实现, 其中:
在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度时, 选用功率合成器滤除指定频段外的信号, 保留指定频段内的信号; 或
在指定频段内的相位差为 0度, 在指定频段外的相位差为 180度时, 选用巴仑或差动低噪声放大器保留指定频段外的信号, 滤除指定频段内的 信号; 或
在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度时, 选用功率合成器保留指定频段外的信号, 滤除指定频段内的信号; 或
在指定频段内的相位差为 180度, 在指定频段外的相位差为 0度时, 选用巴仑或差动低噪声放大器滤除指定频段外的信号, 保留指定频段内的 信号。
9、 根据权利要求 1至 6任一项所述的移相滤波方法, 其中, 所述相位 调节模块执行所述相位调节的方法为:
通过信号采样模块对第一路输入信号进行采样 , 将采样信号输出给相 位控制模块;
通过相位控制模块控制数字相位滤波器, 通过控制数字相位滤波器的 阶数调节指定频段信号的相位, 对所述指定频段的信号相位补偿 180度; 将第二路输入信号直接作为输出信号从输出端口输出。
10、 根据权利要求 1至 6任一项所述的移相滤波方法, 其中, 所述相 位调节模块执行所述相位调节的方法为:
通过可变电容 /电感控制电路对可变电容器 /电感的电容 /电感值进行调 通过可变电容器 /电感调节反相滤波器的滤波的中心频点;
在所述可变电容器 /电感的控制下, 反相滤波器对指定频段的信号相位 补偿 180度;
所述移相滤波装置的第二路输入信号直接作为输出信号从输出端口输 出。
11、 一种能够抑制邻频干扰的方法, 该方法包括:
使用第一滤波器滤除通信系统接收频带之外的电磁信号;
使用移相滤波装置对第一滤波器输出的信号进行移相滤波, 滤除指定 频段之外的电磁信号;
对移相滤波装置输出的单端信号进行解调处理。
12、 根据权利要求 11所述的一种能够抑制邻频干扰的方法, 其中, 所 述使用的移相滤波装置为权利要求 6所述的移相滤波装置。
PCT/CN2012/074131 2012-02-21 2012-04-16 一种移相滤波方法 WO2013123706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210039511.5A CN102611469B (zh) 2012-02-21 2012-02-21 一种移相滤波方法
CN201210039511.5 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013123706A1 true WO2013123706A1 (zh) 2013-08-29

Family

ID=46528657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074131 WO2013123706A1 (zh) 2012-02-21 2012-04-16 一种移相滤波方法

Country Status (2)

Country Link
CN (1) CN102611469B (zh)
WO (1) WO2013123706A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095444B2 (ja) 2013-03-29 2017-03-15 富士通テン株式会社 アンテナ装置およびレーダ装置
CN103595366B (zh) * 2013-10-17 2016-05-11 天津大学 一种0.6~1.2GHz CMOS二阶点阵巴伦
CN104122273B (zh) * 2014-07-11 2017-08-25 电子科技大学 基于多通道频带合成的辐射计
CN106911197A (zh) * 2017-05-02 2017-06-30 佛山职业技术学院 一种简单的环境电磁信号接收方法
CN108400774B (zh) * 2018-03-22 2020-06-02 上海唯捷创芯电子技术有限公司 一种平衡式射频功率放大器、芯片及通信终端
CN111064482B (zh) * 2018-10-16 2021-08-10 青岛海信移动通信技术股份有限公司 一种抑制干扰的设备及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596503A1 (fr) * 2004-04-21 2005-11-16 Sagem S.A. Dispositif et procédé rejecteurs de brouilleur de signal à spectre étale
CN1787363A (zh) * 2004-12-07 2006-06-14 Lg电子株式会社 移动通信终端内的频率直接转换接收装置及其方法
US7656964B1 (en) * 2007-01-24 2010-02-02 Rf Micro Devices, Inc. Forward and reverse VSWR insensitive power detection using phase shifting and harmonic filtering
CN102594379A (zh) * 2012-02-21 2012-07-18 中兴通讯股份有限公司 一种移相滤波装置及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578652A (en) * 1984-05-14 1986-03-25 Itt Corporation Broadband four-port TEM mode 180° printed circuit microwave hybrid
JP2712923B2 (ja) * 1991-09-10 1998-02-16 富士通株式会社 Sat移相回路
US6137353A (en) * 1998-06-29 2000-10-24 Philips Electronics North America Corporation Linearized integrated FM demodulator using a plurality of cascaded all-pass filters or a bessel filter
KR100744913B1 (ko) * 2006-05-16 2007-08-01 삼성전기주식회사 휴대 단말기 및 그 간섭 위상잡음 제거방법
WO2009025057A1 (ja) * 2007-08-23 2009-02-26 Fujitsu Limited 分波器、および分波器を含むモジュール、通信機器
CN101651646B (zh) * 2009-09-02 2013-07-03 中兴通讯股份有限公司 蜂窝接收机的差分接收系统及其实现信号接收的方法
CN102148633A (zh) * 2010-02-05 2011-08-10 松下电器产业株式会社 一种利用分集天线降低接收噪声的无线接收装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596503A1 (fr) * 2004-04-21 2005-11-16 Sagem S.A. Dispositif et procédé rejecteurs de brouilleur de signal à spectre étale
CN1787363A (zh) * 2004-12-07 2006-06-14 Lg电子株式会社 移动通信终端内的频率直接转换接收装置及其方法
US7656964B1 (en) * 2007-01-24 2010-02-02 Rf Micro Devices, Inc. Forward and reverse VSWR insensitive power detection using phase shifting and harmonic filtering
CN102594379A (zh) * 2012-02-21 2012-07-18 中兴通讯股份有限公司 一种移相滤波装置及其应用

Also Published As

Publication number Publication date
CN102611469A (zh) 2012-07-25
CN102611469B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN106301516B (zh) 一种分集接收机及终端
US10128872B2 (en) Enabling radio frequency multiplexing in a wireless system
WO2013123706A1 (zh) 一种移相滤波方法
WO2013123705A1 (zh) 一种移相滤波装置及其应用
JP2003520549A (ja) 受信機帯域幅内の送信信号スペクトラムを打消す方法および装置
US8224260B2 (en) Radio frequency signal transmission/reception apparatus and radio frequency signal transmission/reception method
US20130225099A1 (en) Methods, systems, and non-transitory computer readable media for wideband frequency and bandwidth tunable filtering
KR20150097391A (ko) 쿼드래처 수신 신호의 광 대역폭 아날로그-디지털 변환을 위한 장치 및 방법
KR100255364B1 (ko) 저주파신호 감쇄특성의 억제를 위한 무선수신기 및 그 억제방법
US20230275609A1 (en) Radio-frequency front-end circuit and communication apparatus
CN116470924A (zh) 一种共享干扰消除电路的宽带全双工接收机
KR101723233B1 (ko) 송수신 분리도를 개선한 무선 통신 장치
JP5214018B2 (ja) 受信装置
US9136893B2 (en) Receiver
US11251822B1 (en) Software defined radio (SDR) filter relaxation technique for multiple-input and multiple-output (MIMO) and large antenna array (LAA) applications
CN111130747B (zh) 一种兼容语音通道的宽带接收机
JP5708139B2 (ja) ノイズキャンセル装置
US20230063118A1 (en) Radio frequency module and communication device
WO2021131223A1 (ja) 高周波モジュール及び通信装置
CN105337720A (zh) 一种模拟自干扰抑制电路及自干扰抑制方法
JP2007013839A (ja) 無線通信装置
JP2009536792A (ja) フィルタ装置
JPH02285725A (ja) 送受信干渉の改善方法
JPH01503108A (ja) I―qチャネル適応ラインエンハンサ
KR20080019097A (ko) Rf 신호 송수신장치 및 rf 신호 송수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869452

Country of ref document: EP

Kind code of ref document: A1