WO2013122131A1 - 透明電極および電子デバイス - Google Patents
透明電極および電子デバイス Download PDFInfo
- Publication number
- WO2013122131A1 WO2013122131A1 PCT/JP2013/053501 JP2013053501W WO2013122131A1 WO 2013122131 A1 WO2013122131 A1 WO 2013122131A1 JP 2013053501 W JP2013053501 W JP 2013053501W WO 2013122131 A1 WO2013122131 A1 WO 2013122131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- layer
- electrode
- transparent electrode
- Prior art date
Links
- 229910052709 silver Inorganic materials 0.000 claims abstract description 61
- 239000004332 silver Substances 0.000 claims abstract description 61
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000001000 micrograph Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 457
- -1 silver aluminum Chemical compound 0.000 description 214
- 150000001875 compounds Chemical class 0.000 description 172
- 239000000463 material Substances 0.000 description 120
- 239000010408 film Substances 0.000 description 108
- 238000000034 method Methods 0.000 description 95
- 239000000758 substrate Substances 0.000 description 94
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 88
- 229910052757 nitrogen Inorganic materials 0.000 description 62
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 60
- 239000002346 layers by function Substances 0.000 description 60
- 125000004433 nitrogen atom Chemical group N* 0.000 description 60
- 125000001424 substituent group Chemical group 0.000 description 59
- 238000002347 injection Methods 0.000 description 44
- 239000007924 injection Substances 0.000 description 44
- 239000003566 sealing material Substances 0.000 description 38
- 239000000523 sample Substances 0.000 description 33
- 238000002834 transmittance Methods 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 31
- 230000000903 blocking effect Effects 0.000 description 30
- 230000005525 hole transport Effects 0.000 description 29
- 125000005647 linker group Chemical group 0.000 description 26
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 238000004544 sputter deposition Methods 0.000 description 21
- 238000007740 vapor deposition Methods 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 19
- 239000002356 single layer Substances 0.000 description 19
- 238000005401 electroluminescence Methods 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- 238000001771 vacuum deposition Methods 0.000 description 16
- 239000011521 glass Substances 0.000 description 15
- 239000011368 organic material Substances 0.000 description 15
- 239000010409 thin film Substances 0.000 description 15
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 14
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 14
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 14
- 230000009471 action Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000000975 dye Substances 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 13
- 125000003373 pyrazinyl group Chemical group 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 12
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- 238000000605 extraction Methods 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 12
- 230000001681 protective effect Effects 0.000 description 12
- 125000000168 pyrrolyl group Chemical group 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 125000002883 imidazolyl group Chemical group 0.000 description 11
- 125000003226 pyrazolyl group Chemical group 0.000 description 11
- 125000000714 pyrimidinyl group Chemical group 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 125000002971 oxazolyl group Chemical group 0.000 description 10
- 230000000737 periodic effect Effects 0.000 description 10
- 238000007789 sealing Methods 0.000 description 10
- 150000003852 triazoles Chemical group 0.000 description 10
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 9
- 150000001721 carbon Chemical group 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 9
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 8
- 125000001041 indolyl group Chemical group 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 125000001624 naphthyl group Chemical group 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000011698 potassium fluoride Substances 0.000 description 7
- 235000003270 potassium fluoride Nutrition 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 125000003828 azulenyl group Chemical group 0.000 description 6
- 125000004623 carbolinyl group Chemical group 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 229940125773 compound 10 Drugs 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 125000005549 heteroarylene group Chemical group 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 239000011147 inorganic material Substances 0.000 description 6
- 125000000842 isoxazolyl group Chemical group 0.000 description 6
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 125000005581 pyrene group Chemical group 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 6
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical group N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 125000000732 arylene group Chemical group 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical group C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 5
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 5
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 150000002504 iridium compounds Chemical class 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 4
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 4
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000004776 molecular orbital Methods 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 4
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical group C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 4
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000307 polymer substrate Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 3
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 3
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 3
- 125000005577 anthracene group Chemical group 0.000 description 3
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000005578 chrysene group Chemical group 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 125000005583 coronene group Chemical group 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical group C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 3
- 125000005582 pentacene group Chemical group 0.000 description 3
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical group C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 125000005561 phenanthryl group Chemical group 0.000 description 3
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 3
- 125000001388 picenyl group Chemical group C1(=CC=CC2=CC=C3C4=CC=C5C=CC=CC5=C4C=CC3=C21)* 0.000 description 3
- 125000003386 piperidinyl group Chemical group 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical group C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 3
- 125000001725 pyrenyl group Chemical group 0.000 description 3
- 125000002098 pyridazinyl group Chemical group 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 125000000335 thiazolyl group Chemical group 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 125000004306 triazinyl group Chemical group 0.000 description 3
- 125000005580 triphenylene group Chemical group 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 125000005023 xylyl group Chemical group 0.000 description 3
- 125000001607 1,2,3-triazol-1-yl group Chemical group [*]N1N=NC([H])=C1[H] 0.000 description 2
- 125000003626 1,2,4-triazol-1-yl group Chemical group [*]N1N=C([H])N=C1[H] 0.000 description 2
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical group C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 2
- 125000002030 1,2-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 description 2
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical group C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 2
- DKYBVKMIZODYKL-UHFFFAOYSA-N 1,3-diazinane Chemical group C1CNCNC1 DKYBVKMIZODYKL-UHFFFAOYSA-N 0.000 description 2
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical group C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical group C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical group C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical group N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 2
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical compound C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 2
- LUEYUHCBBXWTQT-UHFFFAOYSA-N 4-phenyl-2h-triazole Chemical compound C1=NNN=C1C1=CC=CC=C1 LUEYUHCBBXWTQT-UHFFFAOYSA-N 0.000 description 2
- OEDUIFSDODUDRK-UHFFFAOYSA-N 5-phenyl-1h-pyrazole Chemical compound N1N=CC=C1C1=CC=CC=C1 OEDUIFSDODUDRK-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical group C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical group C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical group C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 125000002393 azetidinyl group Chemical group 0.000 description 2
- 125000004069 aziridinyl group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- LJOLGGXHRVADAA-UHFFFAOYSA-N benzo[e][1]benzothiole Chemical group C1=CC=C2C(C=CS3)=C3C=CC2=C1 LJOLGGXHRVADAA-UHFFFAOYSA-N 0.000 description 2
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- HTFFABIIOAKIBH-UHFFFAOYSA-N diazinane Chemical group C1CCNNC1 HTFFABIIOAKIBH-UHFFFAOYSA-N 0.000 description 2
- 125000005331 diazinyl group Chemical group N1=NC(=CC=C1)* 0.000 description 2
- 125000004987 dibenzofuryl group Chemical group C1(=CC=CC=2OC3=C(C21)C=CC=C3)* 0.000 description 2
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical group O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 125000003838 furazanyl group Chemical group 0.000 description 2
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 2
- 125000002632 imidazolidinyl group Chemical group 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 238000001182 laser chemical vapour deposition Methods 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 150000002908 osmium compounds Chemical class 0.000 description 2
- CQDAMYNQINDRQC-UHFFFAOYSA-N oxatriazole Chemical group C1=NN=NO1 CQDAMYNQINDRQC-UHFFFAOYSA-N 0.000 description 2
- 125000000160 oxazolidinyl group Chemical group 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229940081066 picolinic acid Drugs 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 150000003058 platinum compounds Chemical class 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 150000003112 potassium compounds Chemical class 0.000 description 2
- 150000003214 pyranose derivatives Chemical group 0.000 description 2
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical group O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical group C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 150000003536 tetrazoles Chemical group 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- YGNGABUJMXJPIJ-UHFFFAOYSA-N thiatriazole Chemical group C1=NN=NS1 YGNGABUJMXJPIJ-UHFFFAOYSA-N 0.000 description 2
- 125000001984 thiazolidinyl group Chemical group 0.000 description 2
- 125000002053 thietanyl group Chemical group 0.000 description 2
- 125000001730 thiiranyl group Chemical group 0.000 description 2
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical group C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- FVGQTQCPMNPSLU-UHFFFAOYSA-N 1,3-oxazole;1h-pyrazole Chemical compound C=1C=NNC=1.C1=COC=N1 FVGQTQCPMNPSLU-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- ZHKJHQBOAJQXQR-UHFFFAOYSA-N 1H-azirine Chemical compound N1C=C1 ZHKJHQBOAJQXQR-UHFFFAOYSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- UFCZRCPQBWIXTR-UHFFFAOYSA-N 2,8-dibromodibenzofuran Chemical compound C1=C(Br)C=C2C3=CC(Br)=CC=C3OC2=C1 UFCZRCPQBWIXTR-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical class OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- MPMKMQHJHDHPBE-RUZDIDTESA-N 4-[[(2r)-1-(1-benzothiophene-3-carbonyl)-2-methylazetidine-2-carbonyl]-[(3-chlorophenyl)methyl]amino]butanoic acid Chemical compound O=C([C@@]1(N(CC1)C(=O)C=1C2=CC=CC=C2SC=1)C)N(CCCC(O)=O)CC1=CC=CC(Cl)=C1 MPMKMQHJHDHPBE-RUZDIDTESA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- 229910002695 AgAu Inorganic materials 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ISMDILRWKSYCOD-GNKBHMEESA-N C(C1=CC=CC=C1)[C@@H]1NC(OCCCCCCCCCCCNC([C@@H](NC(C[C@@H]1O)=O)C(C)C)=O)=O Chemical compound C(C1=CC=CC=C1)[C@@H]1NC(OCCCCCCCCCCCNC([C@@H](NC(C[C@@H]1O)=O)C(C)C)=O)=O ISMDILRWKSYCOD-GNKBHMEESA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 229940126639 Compound 33 Drugs 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001115903 Raphus cucullatus Species 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- AHWXCYJGJOLNFA-UHFFFAOYSA-N [1,4]benzoxazino[2,3-b]phenoxazine Chemical group O1C2=CC=CC=C2N=C2C1=CC1=NC3=CC=CC=C3OC1=C2 AHWXCYJGJOLNFA-UHFFFAOYSA-N 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- XYOVOXDWRFGKEX-UHFFFAOYSA-N azepine Chemical compound N1C=CC=CC=C1 XYOVOXDWRFGKEX-UHFFFAOYSA-N 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- SGUXGJPBTNFBAD-UHFFFAOYSA-L barium iodide Chemical compound [I-].[I-].[Ba+2] SGUXGJPBTNFBAD-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- 229940075444 barium iodide Drugs 0.000 description 1
- MFMVRILBADIIJO-UHFFFAOYSA-N benzo[e][1]benzofuran Chemical group C1=CC=C2C(C=CO3)=C3C=CC2=C1 MFMVRILBADIIJO-UHFFFAOYSA-N 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical group C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical group CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- 125000006309 butyl amino group Chemical group 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- MOOUSOJAOQPDEH-UHFFFAOYSA-K cerium(iii) bromide Chemical compound [Br-].[Br-].[Br-].[Ce+3] MOOUSOJAOQPDEH-UHFFFAOYSA-K 0.000 description 1
- 150000001787 chalcogens Chemical group 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229940125877 compound 31 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- NXYLTUWDTBZQGX-UHFFFAOYSA-N ctk8h6630 Chemical group C1=CC=C2C=C3C(N=C4C=CC=5C(C4=N4)=CC6=CC=CC=C6C=5)=C4C=CC3=CC2=C1 NXYLTUWDTBZQGX-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000006312 cyclopentyl amino group Chemical group [H]N(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000006263 dimethyl aminosulfonyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 1
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000005143 heteroarylsulfonyl group Chemical group 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000006261 methyl amino sulfonyl group Chemical group [H]N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000006216 methylsulfinyl group Chemical group [H]C([H])([H])S(*)=O 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- RRYCIULTIFONEQ-UHFFFAOYSA-N naphtho[2,3-e][1]benzofuran Chemical group C1=CC=C2C=C3C(C=CO4)=C4C=CC3=CC2=C1 RRYCIULTIFONEQ-UHFFFAOYSA-N 0.000 description 1
- PAYSBLPSJQBEJR-UHFFFAOYSA-N naphtho[2,3-e][1]benzothiole Chemical group C1=CC=C2C=C3C(C=CS4)=C4C=CC3=CC2=C1 PAYSBLPSJQBEJR-UHFFFAOYSA-N 0.000 description 1
- 125000005184 naphthylamino group Chemical group C1(=CC=CC2=CC=CC=C12)N* 0.000 description 1
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 125000005146 naphthylsulfonyl group Chemical group C1(=CC=CC2=CC=CC=C12)S(=O)(=O)* 0.000 description 1
- 125000005029 naphthylthio group Chemical group C1(=CC=CC2=CC=CC=C12)S* 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical group C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000004675 pentylcarbonyl group Chemical group C(CCCC)C(=O)* 0.000 description 1
- 125000005327 perimidinyl group Chemical group N1C(=NC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000005107 phenanthrazines Chemical group 0.000 description 1
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical group C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- GJSGGHOYGKMUPT-UHFFFAOYSA-N phenoxathiine Chemical group C1=CC=C2OC3=CC=CC=C3SC2=C1 GJSGGHOYGKMUPT-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 150000008301 phosphite esters Chemical group 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000006410 propenylene group Chemical group 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004673 propylcarbonyl group Chemical group 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- VEPOUCHBIJXQFI-UHFFFAOYSA-N pyrazabole Chemical compound [B-]1N2C=CC=[N+]2[B-][N+]2=CC=CN12 VEPOUCHBIJXQFI-UHFFFAOYSA-N 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000005400 pyridylcarbonyl group Chemical group N1=C(C=CC=C1)C(=O)* 0.000 description 1
- DTPOQEUUHFQKSS-UHFFFAOYSA-N pyrrolo[2,1,5-cd]indolizine Chemical group C1=CC(N23)=CC=C3C=CC2=C1 DTPOQEUUHFQKSS-UHFFFAOYSA-N 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- GVIJJXMXTUZIOD-UHFFFAOYSA-N thianthrene Chemical group C1=CC=C2SC3=CC=CC=C3SC2=C1 GVIJJXMXTUZIOD-UHFFFAOYSA-N 0.000 description 1
- CRUIOQJBPNKOJG-UHFFFAOYSA-N thieno[3,2-e][1]benzothiole Chemical group C1=C2SC=CC2=C2C=CSC2=C1 CRUIOQJBPNKOJG-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/814—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/816—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80516—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80517—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80524—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/824—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/18—Tiled displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80522—Cathodes combined with auxiliary electrodes
Definitions
- the present invention relates to a transparent electrode and an electronic device, and more particularly to a transparent electrode having both conductivity and light transmittance, and further to an electronic device using the transparent electrode.
- An organic electroluminescence device (so-called organic EL device) using electroluminescence (hereinafter referred to as EL) of an organic material is a thin-film type completely solid device capable of emitting light at a low voltage of several V to several tens V. It has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
- Such an organic electroluminescent element has a configuration in which a light emitting layer composed of an organic material is sandwiched between two electrodes, and emitted light generated in the light emitting layer passes through the electrode and is extracted outside. For this reason, at least one of the two electrodes is configured as a transparent electrode.
- an oxide semiconductor material such as indium tin oxide (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) is generally used. Studies aiming at resistance have also been made (for example, see Patent Documents 1 and 2 below).
- ITO indium tin oxide
- the material cost is high, and it is necessary to anneal at about 300 ° C. after film formation in order to reduce resistance. Therefore, a configuration in which a metal material such as silver having high electrical conductivity is thinned, and a configuration in which conductivity is ensured with a thinner film thickness than silver alone by mixing aluminum with silver (for example, the following patent documents) 3).
- an object of the present invention is to provide a transparent electrode having sufficient conductivity and light transmittance, and to provide an electronic device whose performance is improved by using this transparent electrode.
- the film has a film thickness of 12 nm or less capable of measuring the sheet resistance, and the perimeter of the opening obtained by processing the scanning electron microscope image for the surface area of 500 nm ⁇ 500 nm is a total of 3000 nm or less of silver.
- the transparent electrode of the present invention configured as described above has practicality as a film for an electrode because the electrode layer constituting the transparent electrode has a film thickness of 12 nm or less capable of measuring sheet resistance. While securing, the light absorption component or the reflection component is kept low. Further, in particular, the electrode layer is 12 nm as described above because the total circumference of the openings a obtained by processing the image of the surface area of 500 nm ⁇ 500 nm obtained with a scanning electron microscope is 3000 nm or less. Although it is an ultrathin film as described below, sheet resistance can be reliably measured and conductivity is ensured.
- the transparent electrode having such an electrode layer has a thin electrode layer that functions substantially as an electrode, while ensuring light transmission and ensuring conductivity. Therefore, both the improvement of conductivity and the improvement of light transmittance are achieved.
- FIG. 1 is a cross-sectional configuration diagram showing a first example of an organic electroluminescent element using a transparent electrode of the present invention. It is a cross-sectional block diagram which shows the 2nd example of the organic electroluminescent element using the transparent electrode of this invention. It is a cross-sectional block diagram which shows the 3rd example of the organic electroluminescent element using the transparent electrode of this invention. It is a cross-sectional block diagram which shows the 4th example of the organic electroluminescent element using the transparent electrode of this invention.
- FIG. 5 is a cross-sectional configuration diagram illustrating a configuration of an organic electroluminescent element manufactured in Example 3.
- FIG. 1 is a schematic plan view for explaining the configuration of the transparent electrode of the present invention.
- FIG. 2 is a schematic cross-sectional view showing one structural example of the transparent electrode of the present invention.
- the transparent electrode 1 has an electrode layer 1b provided adjacent to the nitrogen-containing layer 1a, and only the electrode layer 1b may be the transparent electrode 1, and the nitrogen-containing layer 1a A laminated structure with the electrode layer 1b may be a transparent electrode.
- Such a transparent electrode 1 is provided in the order of, for example, a nitrogen-containing layer 1a and an electrode layer 1b on the base 11.
- the electrode layer 1b constituting the electrode portion in the transparent electrode 1 is characterized in that it has a predetermined film thickness and film formation state, as will be described in detail later.
- the nitrogen-containing layer 1a provided adjacent to the electrode layer 1b is a layer formed using a material having a specific relationship with the electrode material constituting the electrode layer 1b, for example.
- the transparency of the transparent electrode 1 of the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
- the electrode layer 1b is a layer formed using a conductive material, for example, a layer formed on the nitrogen-containing layer 1a.
- This electrode layer 1b has a film thickness of 12 nm or less capable of measuring the sheet resistance.
- the electrode layer 1b has a two-dimensional continuity in the in-plane direction of the conductive material constituting the electrode layer 1b by setting the film thickness so that the sheet resistance can be measured. As a practicality, it is ensured.
- the electrode layer 1b has a film thickness of 12 nm or less, the light absorption or reflection component in the electrode layer 1b is kept low, and the light transmittance of the transparent electrode 1 is ensured.
- the perimeter of the opening a obtained by processing the image of the scanning electron microscope for the surface region S of 500 nm ⁇ 500 nm is 3000 nm or less in total.
- the scanning electron microscope is a microscope suitable for observing the surface region S having a size of about 500 nm ⁇ 500 nm.
- the surface region S is a region arbitrarily set on the surface of the electrode layer 1b.
- the electrode layer 1b is an extremely thin film of 12 nm or less. For this reason, depending on the film formation state, as shown in the schematic plan view of FIG. 1, an opening a where the conductive material cannot be completely formed may remain. Even in such a case, the peripheral lengths of all the openings a remaining in the surface region S of 500 nm ⁇ 500 nm are totaled, and the total is 3000 nm or less and used as the electrode layer 1b.
- the total perimeter of the openings a is preferably 1000 nm or less.
- the electrode layer 1b is most preferably a complete continuous film having no opening a, and the total peripheral length of the opening a in that case is 0 nm.
- the image processing is performed by binarizing the contrast of a secondary electron image or a reflected electron image obtained by, for example, a scanning electron microscope. Then, the boundary portion of the binarized contrast is recognized as the circumference of the opening a, and the length of the boundary portion is totaled in the range of the surface region S of 500 nm ⁇ 500 nm, so that the total circumference of the opening a Get the length.
- the conductive material constituting the electrode layer 1b as described above is silver (Ag) or an alloy containing silver as a main component.
- the alloy include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), silver aluminum (AgAl), and silver gold (AgAu). ) And the like.
- a method for forming the electrode layer 1b as described above a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. And a method using a dry process such as a method.
- the vapor deposition method is preferably applied.
- a sputter target in which the concentration of the additive element is adjusted in advance with respect to silver (Ag) as the main material is prepared, and the sputter formation using this sputter target is performed.
- the electrode layer 1b is formed by applying the sputtering method.
- sputtering is performed.
- the electrode layer 1b to which the method is applied is formed.
- In (indium), magnesium (Mg), or aluminum (Al) is used as the additive element
- the electrode layer 1b to which the vapor deposition method is applied is also formed. In this case, these additive elements and silver (Ag) are co-evaporated.
- the vapor deposition film which adjusted the addition density
- the electrode layer 1b is formed on the nitrogen-containing layer 1a, so that the electrode layer 1b is sufficiently conductive even without high-temperature annealing after the film formation.
- the film may be subjected to a high temperature annealing treatment after the film.
- the electrode layer 1b as described above may have a structure in which silver or an alloy layer mainly composed of silver is divided into a plurality of layers as necessary.
- the nitrogen-containing layer 1a is a layer provided as a base for the electrode layer 1b.
- the nitrogen-containing layer 1a is a layer made of, for example, an organic material, on which an electrode layer 1b is formed by single-layer growth type (Frank-van der Merwe: FM type) film growth. It may be composed of materials.
- the electrode layer 1b is made of silver or an alloy containing silver as a main component
- the nitrogen-containing layer 1a is exemplified by a configuration using an organic material containing nitrogen atoms (N).
- N organic material containing nitrogen atoms
- the nitrogen-containing layer 1a is a compound having a specific relationship with silver (Ag), which is the main material constituting the electrode layer 1b, among compounds containing a heterocycle having a nitrogen atom (N) as a hetero atom. It is the layer comprised using.
- the effective action energy ⁇ Eef represented by the following formula (1) is defined as the energy that interacts between the compound and silver.
- this effective action energy (DELTA) Eef comprises the nitrogen-containing layer 1a using the compound which has the specific relationship which satisfy
- the number [n] of nitrogen atoms in the compound that stably binds to silver is the only nitrogen atom that stably bonds to silver among the nitrogen atoms contained in the compound. , The number selected and counted as a specific nitrogen atom.
- the nitrogen atoms to be selected are all nitrogen atoms contained in the compound, and are not limited to the nitrogen atoms constituting the heterocyclic ring.
- the selection of a specific nitrogen atom out of all the nitrogen atoms contained in such a compound is, for example, the bond distance [r (Ag ⁇ Ag ⁇ N)], or the angle between the nitrogen atom and silver, that is, the dihedral angle [D], relative to the ring containing the nitrogen atom in the compound, is performed as follows.
- the molecular orbital calculation is performed using, for example, Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003).
- the bond distance [r (Ag ⁇ N)] is used as an index, considering the steric structure of each compound, the distance at which the nitrogen atom and silver are stably bonded in the compound is expressed as “stable bond distance”. ”Is set. Then, for each nitrogen atom contained in the compound, a bond distance [r (Ag ⁇ N)] is calculated using a molecular orbital calculation method. A nitrogen atom having a calculated bond distance [r (Ag ⁇ N)] close to the “stable bond distance” is selected as a specific nitrogen atom. Such selection of a nitrogen atom is applied to a compound containing many nitrogen atoms constituting a heterocyclic ring and a compound containing many nitrogen atoms not constituting a heterocyclic ring.
- the above-mentioned dihedral angle [D] is calculated using a molecular orbital calculation method. Then, a nitrogen atom whose calculated dihedral angle [D] satisfies D ⁇ 10 degrees is selected as a specific nitrogen atom. Such selection of a nitrogen atom is applied to a compound containing a large number of nitrogen atoms constituting a heterocyclic ring.
- the interaction energy [ ⁇ E] between silver (Ag) and nitrogen (N) in the compound can be calculated by a molecular orbital calculation method, and the mutual energy between nitrogen and silver selected as described above. The energy of action.
- the surface area [s] is calculated for the structure of each compound using Tencube / WM (manufactured by Tencube Co., Ltd.).
- the effective action energy ⁇ Eef defined as described above is in a range satisfying the following formula (3).
- heterocycle having a nitrogen atom (N) contained in the compound constituting the nitrogen-containing layer 1a as a hetero atom aziridine, azirine, azetidine, azeto, azolidine, azole, azinane, pyridine, azepan, azepine, imidazole, pyrazole Oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, isoindole, benzimidazole, purine, quinoline, isoquinoline, quinoxaline, cinnoline, pteridine, acridine, carbazole, benzo-C-cinnoline, porphyrin, chlorin, choline, etc. Can be mentioned.
- the compound preferably used is, for example, a compound represented by the following general formula (1) or a compound represented by the following general formula (2). Is done.
- the nitrogen-containing layer 1a constituting the transparent electrode 1 of the present invention is a compound represented by the general formula (1) or the general formula (2) among the compounds applicable to the formula (1) or the formula (2) described above. Is selected and used.
- Y5 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
- E51 to E66 and E71 to E88 each represent —C (R3) ⁇ or —N ⁇ , and R3 represents a hydrogen atom or a substituent.
- R3 represents a hydrogen atom or a substituent.
- n3 and n4 represent an integer of 0 to 4
- n3 + n4 is an integer of 2 or more.
- examples of the arylene group represented by Y5 include an o-phenylene group, a p-phenylene group, a naphthalenediyl group, an anthracenediyl group, a naphthacenediyl group, a pyrenediyl group, a naphthylnaphthalenediyl group, and a biphenyldiyl group.
- examples of the heteroarylene group represented by Y5 include a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, and one of the carbon atoms constituting the carboline ring is nitrogen.
- the ring structure is replaced by an atom), a triazole ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzofuran ring, a dibenzothiophene ring, and an indole ring.
- a triazole ring such as a pyrrole ring, a pyridine ring, a pyrazine ring, a quinoxaline ring, a thiophene ring, an oxadiazole ring, a dibenzo
- the divalent linking group comprising an arylene group, a heteroarylene group or a combination thereof represented by Y5
- a condensed aromatic heterocycle formed by condensation of three or more rings among the heteroarylene groups, a condensed aromatic heterocycle formed by condensation of three or more rings.
- a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is preferably included, and the group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
- Y5 a condensed aromatic heterocycle formed by condensation of three or more rings.
- a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings is preferably included, and the group derived from a dibenzofuran ring or a dibenzothiophene ring is preferable.
- examples of the substituent represented by R3 of —C (R3) ⁇ represented by E51 to E66 and E71 to E88, respectively, include an alkyl group (for example, methyl group, ethyl group, propyl group) Group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chloroph
- substituents may be further substituted with the above substituents.
- a plurality of these substituents may be bonded to each other to form a ring.
- E71 to E74 and E80 to E83 are each represented by —C (R3) ⁇ .
- E53 is represented by —C (R3) ⁇ and R3 represents a linking site
- E61 is also represented by —C (R3) ⁇ .
- R3 preferably represents a linking site.
- R21 represents a substituent.
- R22 represents a hydrogen atom (H) or a substituent.
- examples of the substituents represented by R21 and R22 include those similar to R3 in the general formula (1). Some of these substituents may be further substituted with the above substituents.
- the film forming method includes a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, Examples include a method using a dry process such as a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, or the like. Of these, the vapor deposition method is preferably applied.
- Specific examples of compounds Specific examples of the compounds constituting the nitrogen-containing layer 1a (1 to 134) are shown below, but are not limited thereto. In addition, the compound which is not contained in the said General formula (1) and General formula (2) here is illustrated here. In addition, the nitrogen-containing layer 1a constituting the transparent electrode 1 of the present invention is selected from compounds (1) to (134) exemplified below and selected from the compounds corresponding to the above formula (1) or (2). It is done.
- Step 1 (Synthesis of Intermediate 1) Under a nitrogen atmosphere, 2,8-dibromodibenzofuran (1.0 mol), carbazole (2.0 mol), copper powder (3.0 mol), potassium carbonate (1.5 mol), DMAc (dimethylacetamide) 300 ml Mixed in and stirred at 130 ° C. for 24 hours.
- Step 2 (Synthesis of Intermediate 2)
- Intermediate 1 (0.5 mol) was dissolved in 100 ml of DMF (dimethylformamide) at room temperature in the atmosphere, NBS (N-bromosuccinimide) (2.0 mol) was added, and the mixture was stirred overnight at room temperature. The resulting precipitate was filtered and washed with methanol, yielding intermediate 2 in 92% yield.
- Step 3 (Synthesis of Compound 5) Under a nitrogen atmosphere, intermediate 2 (0.25 mol), 2-phenylpyridine (1.0 mol), ruthenium complex [( ⁇ 6 -C 6 H 6 ) RuCl 2 ] 2 (0.05 mol), triphenyl Phosphine (0.2 mol) and potassium carbonate (12 mol) were mixed in 3 L of NMP (N-methyl-2-pyrrolidone) and stirred at 140 ° C. overnight.
- NMP N-methyl-2-pyrrolidone
- the substrate 11 on which the transparent electrode 1 as described above is formed examples include, but are not limited to, glass and plastic. Further, the substrate 11 may be transparent or opaque. When the transparent electrode 1 of the present invention is used in an electronic device that extracts light from the substrate 11 side, the substrate 11 is preferably transparent. Examples of the transparent substrate 11 that is preferably used include glass, quartz, and a transparent resin film.
- the glass examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. From the viewpoints of adhesion, durability, and smoothness with the nitrogen-containing layer 1a, the surface of these glass materials is subjected to physical treatment such as polishing, a coating made of an inorganic material or an organic material, if necessary, A hybrid film combining these films is formed.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name JSR) or Appel (trade name Mits
- a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film.
- Such coatings and hybrid coatings have a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% RH) of 0.01 g / (measured by a method in accordance with JIS-K-7129-1992. m 2 ⁇ 24 hours) or less of a barrier film (also referred to as a barrier film or the like) is preferable.
- the oxygen permeability measured by a method according to JIS-K-7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 hours ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less high barrier film is preferable.
- the material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like is used. be able to.
- the method for forming the barrier film is not particularly limited.
- the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weighting can be used, but an atmospheric pressure plasma polymerization method described in JP-A No. 2004-68143 is particularly preferable.
- the base material 11 is opaque, for example, a metal substrate such as aluminum or stainless steel, a film, an opaque resin substrate, a ceramic substrate, or the like can be used.
- the transparent electrode 1 which has the above electrode layers 1b
- the upper part of the electrode layer 1b may be covered with the protective film, or another electroconductive layer may be laminated
- the protective film and the conductive layer have light transmittance so as not to impair the light transmittance of the electrode layer 1b.
- the transparent electrode 1 has been described as a laminated structure of the nitrogen-containing layer 1a and the electrode layer 1b.
- the transparent electrode 1 may have a single-layer structure including only the electrode layer 1b.
- the transparent electrode 1 as described above has practicality as a film for an electrode because the electrode layer 1b constituting the transparent electrode 1 has a film thickness of 12 nm or less capable of measuring the sheet resistance. Also, the light absorption component or the reflection component is suppressed to a low level. Further, in particular, the electrode layer 1b has a peripheral length of openings a obtained by processing an image of a surface area of 500 nm ⁇ 500 nm obtained with a scanning electron microscope, as described above. Even though it is an extremely thin film of 12 nm or less, it has conductivity that enables reliable sheet resistance measurement. Moreover, if the perimeter of the opening a is 1000 nm or less in total, the sheet resistance can be further suppressed to a low value.
- the electrode layer 1b that substantially functions as an electrode has a thin film thickness, while ensuring light transmission, Since it is ensured, it becomes possible to achieve both improvement in conductivity and improvement in light transmission.
- Such a transparent electrode 1 is low in cost because it does not use indium (In), which is a rare metal, and has excellent long-term reliability because it does not use a chemically unstable material such as ZnO. Yes.
- an electrode layer 1b is made of silver or an alloy containing silver as a main component, and is provided adjacent to the nitrogen-containing layer 1a formed using a compound having a nitrogen atom.
- the electrode layer 1b is formed on the nitrogen-containing layer 1a, silver atoms constituting the electrode layer 1b interact with the compound containing nitrogen atoms constituting the nitrogen-containing layer 1a, and silver The diffusion distance of atoms on the surface of the nitrogen-containing layer 1a is reduced, and a continuous silver film is formed. Therefore, in general, a silver thin film that is easily isolated in an island shape by film growth of a nuclear growth type (Volume-Weber: VW type) is a single-layer growth type (Frank-van der Merwe: FM type). As a result, a film is formed. Therefore, the electrode layer 1b having a uniform film thickness can be obtained even though the film thickness is small.
- a nuclear growth type Volume-Weber: VW type
- Frank-van der Merwe FM type
- the effective action energy ⁇ Eef shown in the above formula (1) is defined as the energy that interacts between the compound that constitutes the nitrogen-containing layer 1a and the silver that constitutes the electrode layer 1b.
- the nitrogen-containing layer 1a was configured using a compound satisfying ⁇ 0.4 ⁇ ⁇ Eef ⁇ ⁇ 0.10. This makes it possible to form the nitrogen-containing layer 1a using a compound that can reliably obtain the effect of “suppressing the aggregation of silver” as described above. This is confirmed from the fact that an electrode layer 1b capable of measuring sheet resistance is formed on such a nitrogen-containing layer 1a even though it is an extremely thin film, as will be described in detail in a later example. It was done.
- the transparent electrode 1 having the above-described configuration can be used for various electronic devices.
- Examples of electronic devices include organic electroluminescent elements, LEDs (light emitting diodes), liquid crystal elements, solar cells, touch panels, etc.
- As electrode members that require light transmission in these electronic devices A transparent electrode 1 can be used.
- an organic electroluminescent element using transparent electrodes as an anode and a cathode will be described.
- FIG. 3 is a cross-sectional configuration diagram showing a first example of an organic electroluminescent element using the transparent electrode 1 described above as an example of the electronic device of the present invention. The configuration of the organic electroluminescent element will be described below based on this figure.
- the organic electroluminescent element EL-1 shown in FIG. 3 is provided on the substrate 13, and in order from the substrate 13 side, the light-emitting functional layer 3 configured using the counter electrode 5-1, an organic material, and the like, and a transparent The electrode 1 is laminated in this order.
- the organic electroluminescent element EL-1 is characterized in that the transparent electrode 1 of the present invention described above is used as the transparent electrode 1. For this reason, the organic electroluminescent element EL-1 is configured as a top emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the side opposite to the substrate 13.
- the overall layer structure of the organic electroluminescent element EL-1 is not limited and may be a general layer structure.
- the transparent electrode 1 is disposed on the cathode (ie, cathode) side, and the electrode layer 1b mainly functions as the cathode, while the counter electrode 5-1 functions as the anode (ie, anode).
- the light emitting functional layer 3 is formed by laminating [hole injection layer 3a / hole transport layer 3b / light emitting layer 3c / electron transport layer 3d / electron injection layer 3e] in this order from the counter electrode 5-1 side which is an anode.
- the light emitting layer 3c composed of at least an organic material.
- the hole injection layer 3a and the hole transport layer 3b may be provided as a hole transport / injection layer.
- the electron transport layer 3d and the electron injection layer 3e may be provided as an electron transport / injection layer.
- the electron injection layer 3e may be made of an inorganic material.
- the nitrogen-containing layer 1a may also serve as an electron injection layer or may serve as an electron transport / injection layer.
- the light emitting functional layer 3 may be laminated with a hole blocking layer, an electron blocking layer, or the like as required. Furthermore, the light emitting layer 3c has each color light emitting layer for generating emitted light in each wavelength region, and each color light emitting layer may be laminated through a non-light emitting intermediate layer to form a light emitting layer unit. good.
- the intermediate layer may function as a hole blocking layer and an electron blocking layer.
- the counter electrode 5-1 as an anode may also have a laminated structure as necessary. In such a configuration, only a portion where the light emitting functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5-1 becomes a light emitting region in the organic electroluminescent element EL-1.
- the auxiliary electrode 15 may be provided in contact with the electrode layer 1 b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1.
- the organic electroluminescent element EL-1 having the above-described configuration is a transparent sealing material 17 described later on the substrate 13 for the purpose of preventing deterioration of the light emitting functional layer 3 formed using an organic material or the like. It is sealed.
- the transparent sealing material 17 is fixed to the substrate 13 side through an adhesive 19.
- the terminal portions of the transparent electrode 1 and the counter electrode 5-1 are provided on the substrate 13 so as to be exposed from the transparent sealing material 17 while being insulated from each other by the light emitting functional layer 3. To do.
- the details of the main layers for constituting the organic electroluminescent element EL-1 described above will be described in addition to the substrate 13, the transparent electrode 1, the counter electrode 5-1, the light emitting layer 3c of the light emitting functional layer 3, and the light emitting functional layer 3.
- the layer, the auxiliary electrode 15, and the transparent sealing material 17 will be described in this order. Thereafter, a method for producing the organic electroluminescent element EL-1 will be described.
- the substrate 13 is the same as the base material on which the transparent electrode 1 of the present invention described above is provided. However, when the organic electroluminescent element EL-1 is a double-sided light emitting type that also takes out the emitted light h from the counter electrode 5-1, the transparent material having light transmittance is selected from the base material 11 and used. It is done.
- the transparent electrode 1 is the transparent electrode 1 described above, and has a configuration in which a nitrogen-containing layer 1a and an electrode layer 1b are sequentially formed from the light emitting functional layer 3 side.
- the electrode layer 1b of the present invention constituting the transparent electrode 1 is a substantial cathode.
- a nitrogen-containing layer 1a made of an organic material is disposed between the light emitting functional layer 3 and the electrode layer 1b used as a substantial cathode. Become. For this reason, the nitrogen-containing layer 1 a of the transparent electrode 1 in the present embodiment is also regarded as a layer constituting a part of the light emitting functional layer 3.
- Such a nitrogen-containing layer 1a is preferably constituted by using a material having an electron transporting property or an electron injecting property among materials satisfying the above-described formula (1) or formula (2). Further, such a nitrogen-containing layer 1a may be configured using a material satisfying the formula (1) or the formula (2) among the materials exemplified as an electron transport material hereinafter.
- the nitrogen-containing layer 1a since the nitrogen-containing layer 1a is regarded as the light emitting functional layer 3, it can be said that the transparent electrode 1 has a single-layer structure composed of only the electrode layer 1b.
- the nitrogen-containing layer 1a may be disposed only between the light emitting functional layer 3 and the electrode layer 1b as illustrated, or may be disposed adjacent to the entire surface of the electrode layer 1b.
- the counter electrode 5-1 is an electrode film that functions as an anode for supplying holes to the light emitting functional layer 3, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 and oxide semiconductors such as SnO 2 .
- the counter electrode 5-1 can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the counter electrode 5-1 is several hundred ⁇ / sq.
- the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the organic electroluminescent element EL-1 is a double-sided light emitting type that takes out the emitted light h from the counter electrode 5-1 side, a conductive material having good light transmittance among the conductive materials described above is used.
- the counter electrode 5-1 may be configured by selection.
- the light emitting layer 3c used in the present invention contains, for example, a phosphorescent compound as a light emitting material.
- the light emitting layer 3c is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer 3d and holes injected from the hole transport layer 3b, and the light emitting portion is the light emitting layer 3c. Even within the layer, it may be the interface between the light emitting layer 3c and the adjacent layer.
- the light emitting layer 3c is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers 3c.
- the total thickness of the light emitting layer 3c is preferably in the range of 1 to 100 nm, more preferably 1 to 30 nm because a lower driving voltage can be obtained.
- the sum total of the film thickness of the light emitting layer 3c is a film thickness also including the said intermediate
- the thickness of each light emitting layer is preferably adjusted to a range of 1 to 50 nm, more preferably adjusted to a range of 1 to 20 nm.
- the plurality of stacked light emitting layers correspond to blue, green, and red light emitting colors, there is no particular limitation on the relationship between the film thicknesses of the blue, green, and red light emitting layers.
- the light emitting layer 3c as described above is formed by forming a light emitting material or a host compound described later by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. be able to.
- the light emitting layer 3c may be a mixture of a plurality of light emitting materials, or a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer 3c.
- the structure of the light emitting layer 3c preferably contains a host compound (also referred to as a light emitting host or the like) and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
- a host compound also referred to as a light emitting host or the like
- a light emitting material also referred to as a light emitting dopant compound
- a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in the light emitting layer 3c.
- a known host compound may be used alone, or a plurality of types may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent element EL-1 can be increased. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
- the host compound used may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
- the known host compound a compound having a hole transporting ability and an electron transporting ability, preventing an increase in the wavelength of light emission and having a high Tg (glass transition temperature) is preferable.
- the glass transition point (Tg) here is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
- H1 to H79 Specific examples (H1 to H79) of host compounds that can be used in the present invention are shown below, but are not limited thereto.
- a phosphorescent compound As a light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound or a phosphorescent material) can be given.
- a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, a phosphorescent compound emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 at 25 ° C. Although defined as the above compounds, the preferred phosphorescence quantum yield is 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when using a phosphorescent compound in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
- phosphorescent compounds There are two types of light emission principles of phosphorescent compounds. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound.
- the other is a carrier trap type in which the phosphorescent compound becomes a carrier trap, and carriers are recombined on the phosphorescent compound to emit light from the phosphorescent compound. In any case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.
- the phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer of a general organic electroluminescent device, but preferably contains a metal of group 8 to 10 in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
- At least one light emitting layer 3c may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer 3c varies in the thickness direction of the light emitting layer 3c. It may be.
- the phosphorescent compound is preferably 0.1% by volume or more and less than 30% by volume with respect to the total amount of the light emitting layer 3c.
- the compound (phosphorescent compound) contained in the light emitting layer 3c is preferably a compound represented by the following general formula (3).
- the phosphorescent compound represented by the general formula (3) (also referred to as a phosphorescent metal complex) is contained as a light emitting dopant in the light emitting layer 3c of the organic electroluminescent element EL-1.
- it may be contained in a light emitting functional layer other than the light emitting layer 3c.
- P and Q each represent a carbon atom or a nitrogen atom
- A1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocycle with PC.
- A2 represents an atomic group that forms an aromatic heterocycle with QN.
- P1-L1-P2 represents a bidentate ligand
- P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
- L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
- j1 represents an integer of 1 to 3
- j2 represents an integer of 0 to 2
- j1 + j2 is 2 or 3.
- M1 represents a group 8-10 transition metal element in the periodic table.
- P and Q each represent a carbon atom or a nitrogen atom.
- examples of the aromatic hydrocarbon ring that A1 forms with PC include a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a chrysene ring, Naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, Examples include a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
- the aromatic heterocycle formed by A1 together with P—C includes a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, Benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, azacarbazole A ring etc. are mentioned.
- the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
- the aromatic heterocycle formed by A2 together with QN includes an oxazole ring, an oxadiazole ring, an oxatriazole ring, an isoxazole ring, a tetrazole ring, a thiadiazole ring, a thiatriazole ring, Examples include a thiazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, a pyrazole ring, and a triazole ring.
- P1-L1-P2 represents a bidentate ligand
- P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom
- L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
- Examples of the bidentate ligand represented by P1-L1-P2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, acetylacetone, picolinic acid, and the like.
- j1 represents an integer of 1 to 3
- j2 represents an integer of 0 to 2
- j1 + j2 represents 2 or 3
- j2 is preferably 0.
- M1 is a transition metal element of group 8 to group 10 (also simply referred to as a transition metal) in the periodic table of elements, and is preferably iridium.
- Z represents a hydrocarbon ring group or a heterocyclic group.
- P and Q each represent a carbon atom or a nitrogen atom
- A1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring together with P—C.
- each of R01 and R02 represents a hydrogen atom or a substituent.
- P1-L1-P2 represents a bidentate ligand
- P1 and P2 each independently represent a carbon atom, a nitrogen atom, or an oxygen atom.
- L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
- j1 represents an integer of 1 to 3
- j2 represents an integer of 0 to 2
- j1 + j2 is 2 or 3.
- M1 represents a group 8-10 transition metal element in the periodic table.
- examples of the hydrocarbon ring group represented by Z include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or have a substituent described later.
- aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl. Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
- R3 of -C (R3) represented by E51 to E66 and E71 to E88, respectively, in the general formula (1).
- examples of the heterocyclic group represented by Z include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
- examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ - Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring
- R3 of -C (R3) represented by E51 to E66 and E71 to E88, respectively, in the general formula (1).
- aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
- oxazolyl group 1,2,3-triazol-1-yl group, etc.
- benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
- R3 of -C (R3) represented by E51 to E66 and E71 to E88, respectively, in the general formula (1).
- the group represented by Z is an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
- the aromatic hydrocarbon ring that A1 forms with P—C includes benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring , Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
- the aromatic heterocycle formed by A1 together with PC includes furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzo Imidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, And azacarbazole ring.
- the azacarbazole ring means one in which at least one carbon atom of the benzene ring constituting the carbazole ring is replaced with a nitrogen atom.
- examples of the bidentate ligand represented by P1-L1-P2 include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabole, acetylacetone, and picolinic acid. .
- J1 represents an integer of 1 to 3
- j2 represents an integer of 0 to 2
- j1 + j2 represents 2 or 3
- j2 is preferably 0.
- transition metal elements of Group 8 to Group 10 in the periodic table of elements represented by M1 are the same as those in the periodic table of elements represented by M1 in the general formula (3). Synonymous with group 8-10 transition metal elements.
- R 03 represents a substituent
- R 04 represents a hydrogen atom or a substituent
- a plurality of R 04 may be bonded to each other to form a ring.
- n01 represents an integer of 1 to 4.
- R 05 represents a hydrogen atom or a substituent, and a plurality of R 05 may be bonded to each other to form a ring.
- n02 represents an integer of 1 to 2.
- R 06 represents a hydrogen atom or a substituent, and may combine with each other to form a ring.
- n03 represents an integer of 1 to 4.
- Z1 represents an atomic group necessary for forming a 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle together with C—C.
- Z2 represents an atomic group necessary for forming a hydrocarbon ring group or a heterocyclic group.
- P1-L1-P2 represents a bidentate ligand, and P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom.
- L1 represents an atomic group that forms a bidentate ligand together with P1 and P2.
- j1 represents an integer of 1 to 3
- j2 represents an integer of 0 to 2
- j1 + j2 is 2 or 3.
- M1 represents a group 8-10 transition metal element in the periodic table.
- R 03 and R 06 , R 04 and R 06, and R 05 and R 06 may be bonded to each other to form a ring.
- examples of the 6-membered aromatic hydrocarbon ring formed by Z1 together with C—C include a benzene ring.
- the 5-membered or 6-membered aromatic heterocycle formed by Z1 together with C—C includes, for example, an oxazole ring, oxadiazole ring, oxatriazole ring, isoxazole ring, tetrazole ring, thiadiazole And a ring, a thiatriazole ring, an isothiazole ring, a thiophene ring, a furan ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, a pyrazole ring, and a triazole ring.
- examples of the hydrocarbon ring group represented by Z2 include a non-aromatic hydrocarbon ring group and an aromatic hydrocarbon ring group, and examples of the non-aromatic hydrocarbon ring group include a cyclopropyl group. , Cyclopentyl group, cyclohexyl group and the like. These groups may be unsubstituted or have a substituent described later.
- aromatic hydrocarbon ring group examples include, for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl.
- phenyl group p-chlorophenyl group
- mesityl group tolyl group
- xylyl group naphthyl group
- anthryl group azulenyl.
- acenaphthenyl group fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like.
- R3 of —C (R3) ⁇ represented by E51 to E66 and E71 to E88, respectively, in the general formula (1).
- examples of the heterocyclic group represented by Z2 include a non-aromatic heterocyclic group and an aromatic heterocyclic group.
- examples of the non-aromatic heterocyclic group include an epoxy ring and an aziridine group. Ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ - Caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran
- aromatic heterocyclic group examples include a pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1,2,4-triazol-1-yl).
- oxazolyl group 1,2,3-triazol-1-yl group, etc.
- benzoxazolyl group thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, benzofuryl group, dibenzofuryl group , Benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), quinoxalinyl Group, pyridazinyl group, triazinyl group, Nazoriniru group, phthalazinyl group, and the like.
- These rings may be unsubstituted, and may further have a substituent represented by R3 of —C (R3) ⁇ represented by E51 to E66 and E71 to E88 in the general formula (1). .
- the group formed by Z1 and Z2 is preferably a benzene ring.
- the bidentate ligand represented by P1-L1-P2 has the same meaning as the bidentate ligand represented by P1-L1-P2 in the general formula (3). .
- the transition metal elements of groups 8 to 10 in the periodic table of elements represented by M1 are the transition metal groups of groups 8 to 10 in the periodic table of elements represented by M1 in the general formula (3). Synonymous with metal element.
- the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer 3c of the organic electroluminescent element EL-1.
- the phosphorescent compound according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). Rare earth complexes, most preferably iridium compounds.
- Pt-1 to Pt-3, A-1, Ir-1 to Ir-50 Specific examples (Pt-1 to Pt-3, A-1, Ir-1 to Ir-50) of the phosphorescent compounds according to the present invention are shown below, but the present invention is not limited thereto.
- m and n represent the number of repetitions.
- phosphorescent compounds also referred to as phosphorescent metal complexes and the like
- Fluorescent materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes Examples thereof include dyes, polythiophene dyes, and rare earth complex phosphors.
- injection layer hole injection layer 3a, electron injection layer 3e
- the injection layer is a layer provided between the electrode and the light emitting layer 3c in order to lower the driving voltage and improve the light emission luminance.
- the injection layer can be provided as necessary.
- the hole injection layer 3a may be present between the anode and the light emitting layer 3c or the hole transport layer 3b, and the electron injection layer 3e may be present between the cathode and the light emitting layer 3c or the electron transport layer 3d.
- JP-A-9-45479 JP-A-9-260062, JP-A-8-288069, and the like.
- Specific examples include phthalocyanine represented by copper phthalocyanine.
- examples thereof include a layer, an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
- the electron injection layer 3e is desirably a very thin film, and the film thickness is preferably in the range of 1 nm to 10 ⁇ m although it depends on the material.
- the hole transport layer 3b is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer 3a and the electron blocking layer are also included in the hole transport layer 3b.
- the hole transport layer 3b can be provided as a single layer or a plurality of layers.
- the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
- triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
- Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
- the hole transport layer 3b is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. be able to.
- the film thickness of the hole transport layer 3b is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the hole transport layer 3b may have a single layer structure composed of one or more of the above materials.
- Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- the electron transport layer 3d is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer 3e and a hole blocking layer (not shown) are also included in the electron transport layer 3d.
- the electron transport layer 3d can be provided as a single layer structure or a multi-layer structure.
- an electron transport material also serving as a hole blocking material
- electrons injected from the cathode are used. What is necessary is just to have the function to transmit to the light emitting layer 3c.
- any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
- a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are also used as the material for the electron transport layer 3d.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, A metal complex replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material of the electron transport layer 3d.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer 3d.
- a distyrylpyrazine derivative exemplified also as a material of the light emitting layer 3c can be used as a material of the electron transport layer 3d, and n-type Si, n, like the hole injection layer 3a and the hole transport layer 3b.
- An inorganic semiconductor such as type-SiC can also be used as the material of the electron transport layer 3d.
- the electron transport layer 3d can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
- the film thickness of the electron transport layer 3d is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the electron transport layer 3d may have a single layer structure composed of one or more of the above materials.
- the electron transport layer 3d contains potassium or a potassium compound.
- the potassium compound for example, potassium fluoride can be used.
- the material (electron transporting compound) of the electron transport layer 3d a compound represented by the following general formula (6) can be preferably used.
- n1 represents an integer of 1 or more
- Y1 represents a substituent when n1 is 1, and represents a simple bond or an n1-valent linking group when n1 is 2 or more
- Ar1 represents a group represented by the general formula (A) described later.
- n1 is 2 or more
- a plurality of Ar1s may be the same or different.
- the compound represented by the general formula (6) has at least two condensed aromatic heterocycles in which three or more rings are condensed in the molecule.
- examples of the substituent represented by Y1 are represented by E51 to E66 and E71 to E88 in the general formula (1) shown as the compounds constituting the nitrogen-containing layer 1a of the transparent electrode 1, respectively.
- -C (R3) is the same as the substituent represented by R3.
- n1-valent linking group represented by Y1 in General Formula (6) include a divalent linking group, a trivalent linking group, and a tetravalent linking group.
- an alkylene group for example, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group, 2,2,4-trimethylhexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, cyclohexylene group (for example, 1,6-cyclohexanediyl group, etc.), Cyclopentylene group (for example, 1,5-cyclopentanediyl group and the like), alkenylene group (for example, vinylene group, propenylene group, butenylene group, pentenylene group, 1-methylvinylene group, 1-methylpropenylene group, 2-methylpropenylene group, 1-methylpentenylene group, 3-methyl Pentenylene group, 1-ethylvinylene group,
- alkenylene group for example, vinylene group, propeny
- acridine ring benzoquinoline ring, carbazole ring, phenazine ring, phenanthridine ring, phenanthroline ring, carboline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodithia Gin ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (representing any one of carbon atoms constituting carboline ring replaced by nitrogen atom), phenanthroline ring, dibenzofuran Ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring Benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafur
- examples of the trivalent linking group represented by Y1 include ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, and octanetriyl.
- the tetravalent linking group represented by Y1 is a group in which one trivalent group is further added to the above trivalent group, such as a propanediylidene group, 1,3-propane.
- divalent linking group trivalent linking group
- Y1 preferably represents a group derived from a condensed aromatic heterocycle formed by condensation of three or more rings, and the three or more rings.
- a condensed aromatic heterocyclic ring formed by condensing a dibenzofuran ring or a dibenzothiophene ring is preferable.
- n1 is preferably 2 or more.
- the compound represented by the general formula (6) has at least two condensed aromatic heterocycles in which three or more rings are condensed in the molecule.
- Y1 represents an n1-valent linking group
- Y1 is preferably non-conjugated in order to keep the triplet excitation energy of the compound represented by the general formula (6) high, and further, Tg (glass transition In view of improving the point, also referred to as glass transition temperature, it is preferably composed of an aromatic ring (aromatic hydrocarbon ring + aromatic heterocycle).
- non-conjugated means that the linking group cannot be expressed by repeating a single bond (also referred to as a single bond) and a double bond, or the conjugation between aromatic rings constituting the linking group is sterically cleaved. Means.
- Ar1 in the general formula (6) represents a group represented by the following general formula (A).
- X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
- E1 to E8 represent —C (R1) ⁇ or —N ⁇ .
- R, R ′ and R1 each represent a hydrogen atom, a substituent or a linking site with Y1. * Represents a linking site with Y1.
- Y2 represents a simple bond or a divalent linking group.
- Y3 and Y4 each represent a group derived from a 5-membered or 6-membered aromatic ring, and at least one represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring constituent atom.
- n2 represents an integer of 1 to 4.
- the divalent linking group represented by Y2 has the same meaning as the divalent linking group represented by Y1 in the general formula (6).
- At least one of the groups derived from a 5-membered or 6-membered aromatic ring represented by Y3 and Y4 represents a group derived from an aromatic heterocycle containing a nitrogen atom as a ring constituent atom
- the aromatic heterocycle containing a nitrogen atom as the ring constituent atom include an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a diazine ring, a triazine ring, an imidazole ring, an isoxazole ring, a pyrazole ring, Examples include a triazole ring.
- the group represented by Y3 is preferably a group derived from the above 6-membered aromatic ring, and more preferably a group derived from a benzene ring.
- the group represented by Y4 is preferably a group derived from the 6-membered aromatic ring, more preferably an aromatic heterocycle containing a nitrogen atom as a ring constituent atom. Particularly preferably, Y4 is a group derived from a pyridine ring.
- a preferred embodiment of the group represented by the general formula (A) is represented by any one of the following general formulas (A-1), (A-2), (A-3), or (A-4) Groups.
- X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
- R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
- Y2 represents a simple bond or a divalent linking group.
- E11 to E20 each represent —C (R2) ⁇ or —N ⁇ , and at least one represents —N ⁇ .
- R2 represents a hydrogen atom, a substituent or a linking site. However, at least one of E11 and E12 represents —C (R2) ⁇ , and R2 represents a linking site.
- n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (6).
- X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
- R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
- Y2 represents a simple bond or a divalent linking group.
- R2 represents a hydrogen atom, a substituent or a linking site
- R3 and R4 represent a hydrogen atom or a substituent.
- at least one of E21 or E22 represents —C (R2) ⁇
- R2 represents a linking site
- n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (6).
- X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
- R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
- Y2 represents a simple bond or a divalent linking group.
- R2 represents a hydrogen atom, a substituent or a linking site
- R3 and R4 represent a hydrogen atom or a substituent.
- at least one of E32 or E33 is represented by —C (R2) ⁇
- R2 represents a linking site
- n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (6).
- X represents —N (R) —, —O—, —S— or —Si (R) (R ′) —
- R, R 'and R1 each represent a hydrogen atom, a substituent, or a linking site with Y1.
- Y2 represents a simple bond or a divalent linking group.
- E41 to E50 each represent —C (R2) ⁇ , —N ⁇ , —O—, —S— or —Si (R3) (R4) —, and at least one of them represents —N ⁇ .
- R2 represents a hydrogen atom, a substituent or a linking site
- R3 and R4 represent a hydrogen atom or a substituent.
- n2 represents an integer of 1 to 4. * Represents a linking site with Y1 in the general formula (6).
- the divalent linking group represented by Y2 is a divalent group represented by Y1 in the general formula (6). It is synonymous with the linking group.
- the general formula (7) includes the general formula (1) shown as a compound constituting the nitrogen-containing layer 1a of the transparent electrode 1.
- the compound represented by the general formula (7) will be described.
- Y5 represents a divalent linking group composed of an arylene group, a heteroarylene group, or a combination thereof.
- E51 to E66 each represent —C (R3) ⁇ or —N ⁇ , and R3 represents a hydrogen atom or a substituent.
- Y6 to Y9 each represents a group derived from an aromatic hydrocarbon ring or a group derived from an aromatic heterocycle, and at least one of Y6 or Y7 and at least one of Y8 or Y9 is an aromatic group containing an N atom.
- n3 and n4 represent an integer of 0 to 4, and n3 + n4 is an integer of 2 or more.
- Y5 in the general formula (7) is synonymous with Y5 in the general formula (1).
- E51 to E66 in the general formula (7) are synonymous with E51 to E66 in the general formula (1).
- Y6 to Y9 are each an aromatic hydrocarbon ring used for forming a group derived from an aromatic hydrocarbon ring, such as a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring.
- the aromatic hydrocarbon ring may have a substituent represented by R 3 of —C (R 3) ⁇ represented by E 51 to E 66 in the general formula (1).
- Y6 to Y9 are each an aromatic heterocycle used for forming a group derived from an aromatic heterocycle, for example, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, or a pyridine ring.
- the aromatic hydrocarbon ring may have a substituent represented by R 3 of —C (R 3) ⁇ represented by E 51 to E 66 in the general formula (1).
- an aromatic heterocycle containing an N atom used for forming a group derived from an aromatic heterocycle containing an N atom represented by at least one of Y6 or Y7 and at least one of Y8 or Y9.
- the ring include oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring.
- Indazole ring Indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, carbazole ring, carboline ring, diazacarbazole ring (carboline ring) Configure It shows a ring in which one atom is further substituted with a nitrogen atom), and the like.
- the groups represented by Y7 and Y9 each preferably represent a group derived from a pyridine ring.
- the groups represented by Y6 and Y8 each preferably represent a group derived from a benzene ring.
- the compound represented by the general formula (1) shown as the compound constituting the nitrogen-containing layer 1a of the transparent electrode 1 is exemplified as a more preferable embodiment.
- the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
- the hole blocking layer has the function of the electron transport layer 3d in a broad sense.
- the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
- the structure of the electron carrying layer 3d mentioned later can be used as a hole-blocking layer based on this invention as needed.
- the hole blocking layer is preferably provided adjacent to the light emitting layer 3c.
- the electron blocking layer has the function of the hole transport layer 3b in a broad sense.
- the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
- the structure of the positive hole transport layer 3b mentioned later can be used as an electron blocking layer as needed.
- the film thickness of the hole blocking layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
- the auxiliary electrode 15 is provided for the purpose of reducing the resistance of the transparent electrode 1, and is provided in contact with the electrode layer 1 b of the transparent electrode 1.
- the material forming the auxiliary electrode 15 is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface 17a.
- Examples of the method for forming the auxiliary electrode 15 include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
- the line width of the auxiliary electrode 15 is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode 15 is preferably 1 ⁇ m or more from the viewpoint of conductivity.
- the transparent sealing material 17 covers the organic electroluminescent element EL-1 and is a plate-shaped (film-shaped) sealing member that is fixed to the substrate 13 by the adhesive 19. It may be a sealing film.
- the surface of the transparent sealing material 17 serves as a light extraction surface 17a for extracting the emitted light h of the organic electroluminescent element EL-1.
- Such a transparent sealing material 17 is provided in a state of covering at least the light emitting functional layer 3 in a state in which the terminal portions of the transparent electrode 1 and the counter electrode 5-1 in the organic electroluminescent element EL-1 are exposed.
- an electrode may be provided on the transparent sealing material 17 so that the electrode is electrically connected to the terminal portions of the transparent electrode 1 and the counter electrode 5-1 of the organic electroluminescent element EL-1.
- the plate-like (film-like) transparent sealing material 17 include a glass substrate and a polymer substrate, and these substrate materials may be used in the form of a thinner film.
- the glass substrate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- the transparent sealing material 17 in which a polymer substrate is formed into a thin film can be preferably used.
- the polymer substrate in the form of a film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and JIS K 7129-1992.
- the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method based on the above is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable.
- the above substrate material may be processed into a concave plate shape and used as the transparent sealing material 17.
- the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a concave shape.
- An adhesive 19 for fixing the plate-like transparent sealing material 17 to the substrate 13 side seals the organic electroluminescent element EL-1 sandwiched between the transparent sealing material 17 and the substrate 13. Used as a sealing agent to stop.
- Specific examples of such an adhesive 19 include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture curing types such as 2-cyanoacrylates, and the like. Can be mentioned.
- an adhesive 19 there can be mentioned epoxy-based heat and chemical curing type (two-component mixing).
- hot-melt type polyamide, polyester, and polyolefin can be mentioned.
- a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
- the adhesive 19 is preferably one that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive 19.
- Application of the adhesive 19 to the bonding portion between the transparent sealing material 17 and the substrate 13 may be performed using a commercially available dispenser or may be printed like screen printing.
- this gap when a gap is formed between the plate-shaped transparent sealing material 17, the substrate 13, and the adhesive 19, this gap has an inert gas such as nitrogen or argon or fluoride in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrocarbon or silicon oil. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
- an inert gas such as nitrogen or argon or fluoride in the gas phase and the liquid phase. It is preferable to inject an inert liquid such as hydrocarbon or silicon oil. A vacuum is also possible.
- a hygroscopic compound can also be enclosed inside.
- hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
- metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
- sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
- metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
- perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
- anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
- the transparent sealing material 17 when a sealing film is used as the transparent sealing material 17, the light emitting functional layer 3 in the organic electroluminescent element EL-1 is completely covered, and the transparent electrode 1 and the counter electrode 5-1 in the organic electroluminescent element EL-1 are covered.
- a sealing film is provided on the substrate 13 with the terminal portions thereof exposed.
- Such a sealing film is composed of an inorganic material or an organic material.
- it is made of a material having a function of suppressing entry of a substance that causes deterioration of the light emitting functional layer 3 in the organic electroluminescent element EL-1, such as moisture and oxygen.
- a material for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride is used.
- a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
- the method for forming these films is not particularly limited.
- vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- a protective film or a protective plate may be provided between the substrate 13 and the organic electroluminescent element EL and the transparent sealing material 17.
- This protective film or protective plate is for mechanically protecting the organic electroluminescent element EL, and in particular, when the transparent sealing material 17 is a sealing film, it is mechanical for the organic electroluminescent element EL. Since protection is not sufficient, it is preferable to provide such a protective film or protective plate.
- a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, a polymer material film or a metal material film is applied.
- a polymer film because it is light and thin.
- the counter electrode 5-1 serving as an anode is formed on the substrate 13 by an appropriate film forming method such as a vapor deposition method or a sputtering method.
- a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e are formed in this order on this, and the light emitting functional layer 3 is formed.
- the film formation of each of these layers includes spin coating, casting, ink jet, vapor deposition, sputtering, printing, etc., but it is easy to obtain a uniform film and it is difficult to generate pinholes.
- a vacuum deposition method or a spin coating method is particularly preferable. Further, different film forming methods may be applied for each layer.
- the vapor deposition conditions vary depending on the type of compound used, etc., but generally a boat heating temperature of 50 ° C. to 450 ° C., a degree of vacuum of 10 ⁇ 6 Pa to 10 ⁇ 2 Pa, It is desirable to select each condition as appropriate within a deposition rate range of 0.01 nm / second to 50 nm / second, a substrate temperature of ⁇ 50 ° C. to 300 ° C., and a film thickness of 0.1 ⁇ m to 5 ⁇ m.
- a nitrogen-containing layer 1a made of a compound containing nitrogen atoms is formed to a thickness of 1 ⁇ m or less, preferably 10 nm to 100 nm.
- an electrode layer 1b made of silver (or an alloy containing silver as a main component) is formed to a thickness of 4 nm to 12 nm, and the transparent electrode 1 on the cathode side is manufactured.
- These nitrogen-containing layer 1a and electrode layer 1b can be formed by spin coating, casting, ink jet, vapor deposition, sputtering, printing, etc., but it is easy to obtain a uniform film and pinholes are generated. Vacuum vapor deposition is particularly preferred from the standpoint of difficulty.
- a pattern is formed in a shape in which a terminal portion is drawn from the upper side of the light emitting functional layer 3 to the periphery of the substrate 13 while maintaining the insulating state with respect to the counter electrode 5-1 by the light emitting functional layer 3.
- a pattern of the auxiliary electrode 15 is formed as necessary.
- organic electroluminescent element EL-1 is obtained.
- a transparent sealing material 17 covering at least the light emitting functional layer 3 is provided in a state where the electrode layer 1b of the transparent electrode 1 and the terminal portion of the counter electrode 5-1 in the organic electroluminescent element EL-1 are exposed.
- the adhesive 19 is used to adhere the transparent sealing material 17 to the substrate 13 side, and the organic electroluminescent element EL-1 is sealed between the transparent sealing material 17 and the substrate 13.
- a desired organic electroluminescence element EL-1 is obtained on the substrate 13.
- the light emitting functional layer 3 is consistently produced from the counter electrode 5-1 by one evacuation, but the substrate 13 is removed from the vacuum atmosphere in the middle. You may take out and perform a different film-forming method. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
- the counter electrode 5-1 as an anode has a positive polarity
- the electrode layer 1b as a cathode has a negative polarity.
- a voltage of about 2 V to 40 V is applied, light emission can be observed.
- An alternating voltage may be applied.
- the alternating current waveform to be applied may be arbitrary.
- the organic electroluminescent element EL-1 described above uses the electrode layer 1b of the transparent electrode 1 having both conductivity and light transmittance of the present invention as a cathode, and emits light on the nitrogen-containing layer 1a side of the transparent electrode 1.
- the functional layer 3 and the counter electrode 5-1 serving as the anode are provided in this order. For this reason, a sufficient voltage is applied between the electrode layer 1b and the counter electrode 5-1 to realize high-intensity light emission in the organic electroluminescent element EL-1, while the emitted light h from the transparent electrode 1 side is emitted. It is possible to increase the luminance by improving the extraction efficiency. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
- FIG. 4 is a cross-sectional configuration diagram illustrating a second example of an organic electroluminescent element using the above-described transparent electrode as an example of the electronic device of the present invention.
- the organic electroluminescent element EL-2 of the second example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG. 3 in that the transparent electrode 1 is provided on the transparent substrate 13 ′.
- the light emitting functional layer 3 and the counter electrode 5-2 are laminated in this order on the upper portion.
- a detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic electroluminescence element EL-2 in the second example will be described.
- the organic electroluminescent element EL-2 shown in FIG. 4 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 having the electrode layer 1b serving as an anode, the light emitting functional layer 3, and A counter electrode 5-2 serving as a cathode is laminated.
- the transparent electrode 1 is characterized in that the transparent electrode 1 of the present invention described above is used.
- the organic electroluminescent element EL-2 is configured as a bottom emission type in which the emitted light h is extracted from at least the transparent substrate 13 'side.
- the overall layer structure of the organic electroluminescent element EL-2 is not limited, but may be a general layer structure, as in the first example.
- a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d / an electron injection layer are formed above the electrode layer 1b in the transparent electrode 1 functioning as an anode.
- 3e is laminated in this order, and a configuration in which a counter electrode 5-2 serving as a cathode is further laminated on top of this is illustrated.
- the electron transport layer 3d also serves as the electron injection layer 3e, and may be provided as an electron transport layer 3d having electron injection properties.
- the light emitting functional layer 3 adopts various configurations as necessary, as described in the first example, and a hole blocking layer and an electron not shown here are omitted.
- a blocking layer may be provided. In the configuration as described above, only the portion where the light emitting functional layer 3 is sandwiched between the transparent electrode 1 and the counter electrode 5-2 becomes a light emitting region in the organic electroluminescent element EL-2, as in the first example. It is.
- the light emitting functional layer 3 is provided directly on the electrode layer 1b that substantially functions as an anode in the transparent electrode 1. Therefore, the nitrogen-containing layer 1a of the electrode layer 1b may be configured using a material that satisfies the above-described formula (1) or (2), and it is not necessary to use a material having an electron transporting property or an electron injecting property. . Furthermore, as long as the transparent electrode 1 includes the electrode layer 1b having the above-described configuration, the transparent electrode 1 may be configured by only the electrode layer 1b without the nitrogen-containing layer 1a.
- the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same.
- the counter electrode 5-2 provided as a cathode above the light emitting functional layer 3 is made of a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof.
- metals such as gold (Au), oxide semiconductors such as copper iodide (CuI), ITO, ZnO, TiO 2 , and SnO 2 .
- the counter electrode 5-2 as described above can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the counter electrode 5-2 is several hundred ⁇ / sq.
- the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
- the sealing material 17 ′ for sealing such a bottom emission type organic electroluminescent element EL-2 does not need to have light transmittance.
- a material composed of a metal material can be used in addition to the same material as the transparent sealing material used in the first example.
- the metal material include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- the material constituting the counter electrode 5-2 is light among the conductive materials described above.
- a conductive material with good permeability may be selected and used.
- a transparent sealing material having light transmittance is used as the sealing material 17 ′.
- the electrode layer 1b of the transparent electrode 1 having both conductivity and light transmittance according to the present invention is used as an anode, and a light emitting functional layer 3 and a counter electrode serving as a cathode are formed thereon. 5-2. Therefore, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5-2 to realize high-luminance light emission in the organic electroluminescent element EL-2, while the transparent electrode 1 It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the side. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
- FIG. 5 is a cross-sectional configuration diagram showing a third example of an organic electroluminescent element using the above-described transparent electrode as an example of the electronic device of the present invention.
- the organic electroluminescent element EL-3 of the third example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG. 3 in that the transparent electrode 1 is also formed on the transparent substrate 13 ′ side.
- the light emitting functional layer 3 is sandwiched between the two transparent electrodes 1.
- the detailed description of the same components as those in the first example will be omitted, and the characteristic configuration of the organic electroluminescent element EL-3 in the third example will be described.
- the organic electroluminescent element EL-3 shown in FIG. 5 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 having the electrode layer 1b serving as an anode, the light emitting functional layer 3, and A transparent electrode 1 having an electrode layer 1b serving as a cathode is laminated in this order.
- the two transparent electrodes 1 are characterized in that the transparent electrode 1 of the present invention described above is used.
- the organic electroluminescent element EL-3 is configured as a double-sided light emitting type in which the emitted light h is extracted from both the transparent substrate 13 'side and the transparent sealing material 17 side opposite to the transparent substrate 13' side.
- the overall layer structure of the organic electroluminescent element EL-3 is not limited, but may be a general layer structure, as in the first example.
- a configuration in which a hole injection layer 3a / a hole transport layer 3b / a light emitting layer 3c / an electron transport layer 3d are provided in this order on the transparent electrode 1 serving as an anode is illustrated.
- a configuration in which the transparent electrode 1 serving as a cathode is laminated on the upper portion is exemplified.
- the electron transport layer 3d also serves as the electron injection layer and also serves as the nitrogen-containing layer 1a of the transparent electrode 1.
- the light emitting functional layer 3 may have various configurations as necessary, and may be provided with a hole blocking layer or an electron blocking layer that is not shown here. . In the above configuration, only the portion sandwiched between the two transparent electrodes 1 becomes the light emitting region in the organic electroluminescent element EL-3, as in the first example.
- the transparent electrode 1 provided on the transparent substrate 13 ′ side is provided in the order of the nitrogen-containing layer 1a and the electrode layer 1b from the transparent substrate 13 ′ side.
- the light emitting functional layer 3 is directly provided on the electrode layer 1b functioning as an anode. Therefore, the nitrogen-containing layer 1a of the electrode layer 1b may be configured using a material that satisfies the above-described formula (1) or (2), and it is not necessary to use a material having an electron transporting property or an electron injecting property. .
- the transparent electrode 1 provided on the transparent substrate 13 ′ side has been described as a laminated structure of the nitrogen-containing layer 1a and the electrode layer 1b. However, the transparent electrode 1 is a single layer only of the electrode layer 1b. It may be a structure.
- the transparent electrode 1 provided on the light emitting functional layer 3 is provided in order of the nitrogen-containing layer 1a and the electrode layer 1b from the light emitting functional layer 3 side, and emits light with the electrode layer 1b substantially functioning as a cathode.
- the nitrogen-containing layer 1a is disposed between the functional layer 3 and the functional layer 3.
- the nitrogen-containing layer 1 a also serves as a layer constituting a part of the light emitting functional layer 3.
- Such a nitrogen-containing layer 1a is preferably configured using a material having an electron transporting property or an electron injecting property among materials satisfying the above-described formula (1) or formula (2).
- a material satisfying the formula (1) or the formula (2) is selected from the electron transport materials represented by the general formulas (6) and (7) and the general formula (1) exemplified as the electron transport material.
- the electron transport material represented by the general formulas (6) and (7) and the general formula (1) exemplified as the electron transport material are selected from the electron transport materials represented by the general formulas (6) and (7) and the general formula (1) exemplified as the electron transport material.
- the nitrogen-containing layer 1a provided on the light emitting functional layer 3 is regarded as the light emitting functional layer 3, it can be said that the transparent electrode 1 on the light emitting functional layer 3 has a single-layer structure including only the electrode layer 1b. .
- the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the two transparent electrodes 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same as one example.
- this organic electroluminescent element EL-3 is a double-sided light emitting type, it is sealed with a transparent sealing material 17 having light transmittance.
- the organic electroluminescent element EL-3 described above has a configuration in which the transparent electrode 1 having both conductivity and light transmittance of the present invention is used as an anode and a cathode, and the light emitting functional layer 3 is sandwiched therebetween. For this reason, as in the first example, a sufficient voltage is applied between the two transparent electrodes 1 to realize high-intensity light emission in the organic electroluminescent element EL-3, and light emission from the two transparent electrodes 1 side. It is possible to increase the brightness by improving the extraction efficiency of the light h. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
- FIG. 6 is a cross-sectional configuration diagram showing a fourth example of an organic electroluminescent element using the above-described transparent electrode as an example of the electronic device of the present invention.
- the organic electroluminescent element EL-4 of the fourth example shown in this figure is different from the organic electroluminescent element EL-1 of the first example described with reference to FIG.
- the electrode 1), the light emitting functional layer 3, and the anode (counter electrode 5-4) are provided and the stacking order is reversed.
- a detailed description of the same components as those in the first example will be omitted, and a characteristic configuration of the organic electroluminescence element EL-4 in the fourth example will be described.
- the organic electroluminescent element EL-4 shown in FIG. 6 is provided on the transparent substrate 13 ′, and in order from the transparent substrate 13 ′ side, the transparent electrode 1 having the electrode layer 1b serving as a cathode, the light emitting functional layer 3, and A counter electrode 5-4 serving as an anode is laminated in this order.
- the transparent electrode 1 is characterized in that the transparent electrode 1 of the present invention described above is used.
- the organic electroluminescent element EL-4 is configured as a bottom emission type in which the emitted light h is extracted from at least the transparent substrate 13 ′ side.
- the overall layer structure of the organic electroluminescent element EL-4 is not limited, and may be a general layer structure, as in the first example.
- an electron injection layer 3e / electron transport layer 3d / light emitting layer 3c / hole transport layer 3b / hole injection layer 3a are provided in this order on the electrode layer 1b serving as a cathode.
- a configuration in which a counter electrode 5-4 serving as an anode is laminated on the upper portion is illustrated.
- the light emitting functional layer 3 may have various configurations as necessary, and may be provided with a hole blocking layer or an electron blocking layer that is not shown here. . In the above configuration, only the portion sandwiched between the transparent electrode 1 and the counter electrode 5-4 becomes the light emitting region in the organic electroluminescent element EL-4, as in the first example.
- the transparent electrode 1 provided on the transparent substrate 13 ′ side is provided with the light emitting functional layer 3 directly on the electrode layer 1b substantially functioning as a cathode. It will be in the state. Therefore, the nitrogen-containing layer 1a of the electrode layer 1b may be configured using a material that satisfies the above-described formula (1) or formula (2), and it is necessary to use a material having a hole transporting property or a hole injecting property. There is no.
- the transparent electrode 1 provided on the transparent substrate 13 ′ side has been described as a laminated structure of the nitrogen-containing layer 1a and the electrode layer 1b. However, the transparent electrode 1 is a single layer only of the electrode layer 1b. It may be a structure.
- the auxiliary electrode 15 may be provided in contact with the electrode layer 1b of the transparent electrode 1 for the purpose of reducing the resistance of the transparent electrode 1. It is the same.
- the counter electrode 5-4 provided as the anode above the light emitting functional layer 3 is made of the same metal, alloy, organic or inorganic conductive compound as the anode of the first example, and a mixture thereof.
- a configuration in which the anode on the light emitting functional layer 3 is also the transparent electrode 1 is exemplified.
- the electrode layer 1b provided on the light emitting functional layer 3 via the nitrogen-containing layer 1a is a substantial anode.
- the nitrogen-containing layer 1 a provided on the light emitting functional layer 3 also serves as a part of the light emitting functional layer 3.
- Such a nitrogen-containing layer 1a is preferably configured using a material having a hole transporting property or a hole injecting property among materials satisfying the above-described formula (1) or formula (2).
- the nitrogen-containing layer 1a provided on the light emitting functional layer 3 is regarded as the light emitting functional layer 3, it can be said that the transparent electrode 1 on the light emitting functional layer 3 has a single-layer structure including only the electrode layer 1b.
- the organic electroluminescent element EL-4 described above uses the transparent electrode 1 having both conductivity and light transmittance according to the present invention as a cathode, and a light emitting functional layer 3 and a counter electrode 5-4 serving as an anode on the upper side. Are provided in this order. Therefore, as in the first example, a sufficient voltage is applied between the transparent electrode 1 and the counter electrode 5-4 to realize high luminance light emission in the organic electroluminescent element EL-4, while the transparent electrode 1 It is possible to increase the luminance by improving the extraction efficiency of the emitted light h from the side. Further, it is possible to improve the light emission life by reducing the drive voltage for obtaining a predetermined luminance.
- organic electroluminescent devices are surface light emitters as described above, they can be used as various light emission sources.
- lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, Examples include, but are not limited to, a light source of an optical sensor, and can be effectively used as a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
- the organic electroluminescent device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
- the area of the light emitting surface may be increased by so-called tiling, in which the light emitting panels provided with the organic electroluminescent elements are joined together in a plane, in accordance with the recent increase in the size of lighting devices and displays.
- the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
- a color or full-color display device can be produced by using two or more organic electroluminescent elements of the present invention having different emission colors.
- a lighting device will be described as an example of the application, and then a lighting device having a light emitting surface enlarged by tiling will be described.
- Lighting device-1 >> The illuminating device of this invention has the said organic electroluminescent element.
- the organic electroluminescent element used in the illumination device of the present invention may be designed such that each organic electroluminescent element having the above-described configuration has a resonator structure.
- Examples of the purpose of use of the organic electroluminescence device configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not. Moreover, you may use for the said use by making a laser oscillation.
- the material used for the organic electroluminescent element of this invention is applicable to the organic electroluminescent element (it is also called a white organic electroluminescent element) which produces substantially white light emission.
- a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
- the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green and blue, or two using the complementary colors such as blue and yellow, blue green and orange. The thing containing the light emission maximum wavelength may be used.
- the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials that emit light, fluorescent materials or phosphorescent materials, and light from the luminescent materials. Any combination with a dye material that emits light as light may be used, but in a white organic electroluminescent element, a combination of a plurality of light-emitting dopants may be used.
- Such a white organic electroluminescent element is different from a configuration in which organic electroluminescent elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic electroluminescent element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
- the light emitting material used for the light emitting layer of such a white organic electroluminescent element is not particularly limited.
- a backlight in a liquid crystal display element is adapted to a wavelength range corresponding to the CF (color filter) characteristics.
- any metal complex according to the present invention or a known light emitting material may be selected and combined to be whitened.
- the white organic electroluminescent element described above it is possible to produce a lighting device that emits substantially white light.
- FIG. 7 shows a cross-sectional configuration diagram of a lighting device in which a plurality of organic electroluminescent elements having the above-described configurations are used to increase the light emitting surface area.
- a plurality of light emitting panels 21 each provided with the above-described organic electroluminescent element EL-2 of the second example are arranged on a support substrate 23 on a transparent substrate 13 ′ (ie, a tie type).
- the light emitting surface is increased in area by ringing).
- the support substrate 23 may also serve as the sealing material 17 ′.
- Each of the support substrates 23 and the transparent substrate 13 ′ of the light-emitting panel 21 holds the organic electroluminescent element EL-2 in a sandwiched state.
- the light emitting panel 21 is tiled.
- An adhesive 19 may be filled between the support substrate 23 and the transparent substrate 13 ′, thereby sealing the organic electroluminescent element EL-2.
- the edge part of the electrode layer 1b of the transparent electrode 1 which is an anode, and the counter electrode 5-2 which is a cathode are exposed around the light emission panel 21. FIG. However, only the exposed portion of the counter electrode 5-2 is shown in the drawing.
- each light emitting panel 21 is a light emitting area A, and a non-light emitting area B is generated between the light emitting panels 21.
- a light extraction member for increasing the light extraction amount from the non-light emitting region B may be provided in the non-light emitting region B of the light extraction surface 13a.
- a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
- the light emitting panel 21 tiling on the support substrate 23 is exemplified by the one provided with the organic electroluminescent element EL-2.
- the light emitting panel 21 includes the above-described first to fourth examples.
- Each organic electroluminescent element can be used, and when the support substrate 23 is on the light extraction side, the support substrate 23 having optical transparency may be used.
- each of the transparent electrodes of Samples 1-1 to 1-19 was fabricated such that the area of the conductive region was 5 cm ⁇ 5 cm.
- a transparent electrode having a single layer structure composed of an electrode layer using silver was prepared.
- Samples 1-2 to 1-15 as shown in Table 1 below, a transparent electrode having a laminated structure of a nitrogen-containing layer (or an underlayer) composed of each compound and an electrode layer using silver on the upper side. was made.
- compound 10 is a compound included in general formula (1).
- Compound No. 11 is a compound included in the general formula (2) and is also used in Example 2 below.
- a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum tank of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber. Next, after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, the resistance heating boat was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second, and the single layer made of silver having a film thickness of 8 nm. A transparent electrode having a layer structure was formed.
- the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing each compound, with a deposition rate of 0.1 nm / sec to 0.2 nm / sec.
- a nitrogen-containing layer (or underlayer) composed of each compound having a film thickness of 25 nm was provided on the substrate.
- the base material formed up to the nitrogen-containing layer (or underlayer) was transferred to the second vacuum chamber while maintaining a vacuum, and after the pressure of the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, a heated boat containing silver was energized and heated.
- an electrode layer made of silver with each film thickness (3 nm to 15 nm) was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and a nitrogen-containing layer (or a base layer) and the upper electrode layer were formed.
- the transparent electrodes of Samples 1-2 to 1-14 having the laminated structure were obtained. Table 1 shows the film thicknesses of the electrode layers in Samples 1-1 to 1-14.
- FIG. 8A shows a secondary electron image (SEM image) of the electrode layer produced as Sample 1-1 by a scanning electron microscope.
- FIG. 8B shows a processed image obtained by binarizing the contrast of the SEM image by image processing, and further shows a surface area S of 500 nm ⁇ 500 nm.
- the black display portion in FIG. 8B corresponds to the opening a.
- FIGS. 9 to 11 show secondary electron images and processed images of Sample 1-4, Sample 1-11, and Sample 1-12, respectively. Table 1 shows the total perimeter of the openings obtained in this way.
- Example 1 As is apparent from Table 1, the transparent electrodes of Samples 1-4 to 1-13 and Samples 1-15 to 1-19, that is, having a film thickness of 12 nm or less capable of measuring sheet resistance, and having a thickness of 500 nm ⁇ 500 nm
- the transparent electrode of the present invention having an electrode layer composed of silver having a total circumference of the opening obtained by processing the electron microscope image of the surface region of 3000 nm or less has a light transmittance of 50% or more. there were.
- the transparent electrodes of Samples 1-1 to 1-3 that is, the transparent electrodes outside the scope of the present invention in which the total perimeter of the opening exceeds 3000 nm, not only cannot measure the sheet resistance but also transmit light.
- the transparent electrode of Sample 1-14 that is, the transparent electrode having an electrode layer having a film thickness of 15 nm or more, had a low light transmittance of 37%, although the sheet resistance could be measured.
- the transparent electrode of the configuration of the present invention has both high light transmittance and conductivity.
- the light transmittances of the same samples 1-9 to 1-14 other than the electrode layer thickness are compared, the light transmittance shows a maximum value when the electrode layer thickness is about 5 nm to 8 nm. In the film thickness range beyond this, the light transmittance was lowered. This confirmed that the optimum film thickness of the electrode layer using silver was in the range of 5 nm to 8 nm.
- the above tendency was the same even when the electrode layer was formed by a sputtering method or when the electrode layer was composed of an alloy containing silver as a main component. The same was true when the substrate was changed to a plastic material such as PET or PEN.
- each of the transparent electrodes of Samples 2-1 to 2-12 was fabricated such that the area of the conductive region was 5 cm ⁇ 5 cm.
- Sample 2-1 a transparent electrode having a single-layer structure composed of a 5 nm-thick electrode layer using silver was produced.
- Samples 2-2 to 2-12 a transparent electrode having a laminated structure of a nitrogen-containing layer composed of each compound and an electrode layer having a film thickness of 5 nm using silver on the top was prepared.
- compounds No. 03 and No. 08 are compounds included in the general formula (1)
- compound No. 11 is a compound included in the general formula (2)
- Compound No. 4 is Compound 31 previously shown as the material constituting the nitrogen-containing layer.
- Compound No. 5 is the compound 34 previously shown as the material constituting the nitrogen-containing layer.
- Compound No. 6 is the compound 33 previously shown as the material constituting the nitrogen-containing layer.
- Compound No. 8 is Compound 10 previously shown as a material constituting the nitrogen-containing layer.
- Table 2 below shows the number of nitrogen atoms [n] in the compound stably binding to silver (Ag) for each of the compounds No. 02 to No. 11 used in Samples 2-3 to 2-12.
- the interaction energy [ ⁇ E] between silver (Ag) and nitrogen (N) in the compound, the surface area [s] of the compound, and the effective action energy [ ⁇ Eef] calculated from these were shown.
- the dihedral angles [D] and [ ⁇ E] formed by the nitrogen atom and silver with respect to the ring containing the nitrogen atom in the compound for obtaining [n] are Gaussian 03 (Gaussian, Inc., Wallingford, CT , 2003).
- nitrogen atoms having a dihedral angle D ⁇ 10 degrees were counted in a number [n].
- Compound No. 02 has an effective action energy [ ⁇ Eef] indicating a relationship between a nitrogen atom (N) contained in the compound and silver (Ag) constituting the electrode layer, and ⁇ Eef> ⁇ 0.1.
- the compounds No. 03 to No. 11 satisfy ⁇ Eef ⁇ ⁇ 0.1.
- ⁇ Procedure for producing transparent electrode of sample 2-1> a transparent alkali-free glass substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus and attached to a vacuum tank of the vacuum deposition apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the said vacuum chamber. Next, after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, the resistance heating boat was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second, and the single layer made of silver having a film thickness of 5 nm. A transparent electrode having a layer structure was formed.
- the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing each compound, with a deposition rate of 0.1 nm / sec to 0.2 nm / sec.
- a nitrogen-containing layer (or underlayer) composed of each compound having a film thickness of 25 nm was provided on the substrate.
- the base material formed up to the nitrogen-containing layer (or underlayer) was transferred to the second vacuum chamber while maintaining a vacuum, and after the pressure of the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, a heated boat containing silver was energized and heated.
- an electrode layer made of silver having a film thickness of 5 nm is formed at a deposition rate of 0.1 nm / second to 0.2 nm / second, and has a laminated structure of a nitrogen-containing layer (or an underlayer) and the upper electrode layer.
- Each transparent electrode of Sample 2-2 to 2-12 was obtained.
- Example 2> As is apparent from Table 2, the transparent electrodes of Samples 2-4 to 2-12, in which the nitrogen-containing layer is composed of the compounds No. 03 to No. 11 in which the effective action energy ⁇ Eef is ⁇ Eef ⁇ ⁇ 0.1,
- the electrode layer using silver that carries substantial conductivity is an ultra-thin film having a thickness of 5 nm, it is possible to measure the sheet resistance value, and a single-layer growth type (Frank-van der Merwe: FM type) film. It was confirmed that the film was formed with a substantially uniform film thickness by the growth.
- the transparent electrode of Sample 2-1 having a single layer structure without a nitrogen-containing layer
- the transparent electrode of Sample 2-2 having a nitrogen-containing layer formed using Compound No. 1 containing no nitrogen
- the transparent electrode of Sample 2-3 in which the nitrogen-containing layer was formed using Compound No. 02 where ⁇ Eef> ⁇ 0.1, the sheet resistance could not be measured.
- FIG. 12 shows the relationship between the effective action energy ⁇ Eef for the compounds No. 03 to No. 11 constituting the nitrogen-containing layer and the sheet resistance measured for each transparent electrode. From FIG. 12, it is clear that the sheet resistance of the transparent electrode tends to decrease as the value of ⁇ Eef decreases in the range where the effective action energy ⁇ Eef is confirmed to be ⁇ 0.4 ⁇ ⁇ Eef ⁇ ⁇ 0.1. When the effective action energy ⁇ Eef is in the range of ⁇ 0.4 ⁇ ⁇ Eef ⁇ ⁇ 0.2, the sheet resistance is 1000 [ ⁇ / sq. It is further preferable that the following is maintained.
- an electrode film that is, a transparent electrode that is a thin film but has a low resistance in order to obtain light transmittance can be obtained. It was confirmed.
- a double-sided organic electroluminescent element using each of the transparent electrodes of Samples 1-1 to 1-16 produced in Example 1 as a cathode was produced. A manufacturing procedure will be described with reference to FIG.
- a light-transmitting counter electrode 5-1 made of ITO as an anode was formed on the transparent substrate 13 by a sputtering method.
- the transparent substrate 13 was fixed to a substrate holder of a sputtering apparatus to which an ITO target was attached as a counter electrode material.
- a film was formed at a film formation rate of 0.3 nm / second to 0.5 nm / second, and a light-transmitting counter electrode 5-1 made of ITO having a film thickness of 150 nm was formed as an anode.
- the transparent substrate 13 on which the counter electrode 5-1 is formed is transferred from the sputtering apparatus to a commercially available vacuum deposition apparatus, fixed to the substrate holder of the vacuum deposition apparatus, and deposited on the surface where the counter electrode 5-1 is formed. Masks were placed facing each other. Moreover, each material which comprises the light emission functional layer 3 was filled with the optimal quantity for film-forming of each layer in each heating boat in a vacuum evaporation system. In addition, the heating boat used what was produced with the resistance heating material made from tungsten.
- each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
- a hole-transporting material that serves as both a hole-injecting layer and a hole-transporting layer made of ⁇ -NPD is heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole-transporting injection material.
- the injection layer 31 was formed on the counter electrode 5-1. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 20 nm.
- each of the heating boat containing the host material H4 having the structural formula shown above and the heating boat containing the phosphorescent compound Ir-4 having the structural formula shown above were energized independently to each other.
- a light emitting layer 32 composed of H4 and the phosphorescent compound Ir-4 was formed on the hole transport / injection layer 31.
- the film thickness was 30 nm.
- a hole-blocking layer 33 made of BAlq was formed on the light-emitting layer 32 by heating by heating a heating boat containing BAlq represented by the following structural formula as a hole-blocking material.
- the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 10 nm.
- a heating boat containing the compound 10 having the structural formula shown above as an electron transporting material and a heating boat containing potassium fluoride are energized independently to transport the electron consisting of the compound 10 and potassium fluoride.
- a layer 34 was formed on the hole blocking layer 33.
- the film thickness was 30 nm.
- a heating boat containing potassium fluoride as an electron injection material was energized and heated, and an electron injection layer 35 made of potassium fluoride was formed on the electron transport layer 34.
- the deposition rate was 0.01 nm / sec to 0.02 nm / sec, and the film thickness was 1 nm.
- each transparent electrode 1 described in Example 1 was used as a cathode to form a film on the electron injection layer 35.
- the organic electroluminescent element EL was formed on the transparent substrate 13.
- the procedure for forming each transparent electrode 1 is as described in the first embodiment.
- the organic electroluminescent element EL is covered with a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m, and the adhesive 19 (between the sealing material 17 and the transparent substrate 13 is surrounded by the organic electroluminescent element EL. Sealing material) was filled.
- a sealing material 17 made of a glass substrate having a thickness of 300 ⁇ m
- the adhesive 19 between the sealing material 17 and the transparent substrate 13 is surrounded by the organic electroluminescent element EL. Sealing material
- an epoxy photocurable adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) was used.
- the adhesive 19 filled between the sealing material 17 and the transparent substrate 13 is irradiated with UV light from the glass substrate (sealing material 17) side, and the adhesive 19 is cured to form the organic electroluminescent element EL. Sealed.
- the organic electroluminescent element EL In the formation of the organic electroluminescent element EL, a vapor deposition mask is used for forming each layer, and the central 4.5 cm ⁇ 4.5 cm of the 5 cm ⁇ 5 cm transparent substrate 13 is defined as the light emitting region A, and the entire light emitting region A is formed. A non-light emitting region B having a width of 0.25 cm was provided on the circumference.
- the counter electrode 5-1 as the anode and the transparent electrode 1 as the cathode are insulated from each other by the light-emitting functional layer 3 from the hole transport / injection layer 31 to the electron injection layer 35. The terminal part was formed in the shape pulled out.
- the organic electroluminescent elements EL were provided on the transparent substrate 13, and the light emitting panels of Samples 3-1 to 3-14 were obtained, which were sealed with the sealing material 17 and the adhesive 19.
- each color of emitted light h generated in the light emitting layer 32 is extracted from both the transparent electrode 1 side, that is, the transparent substrate 13 side, and the counter electrode 5-1 side, that is, the sealing material 17 side. .
- Example 3 As is apparent from Table 3, the organic electroluminescence devices of Samples 3-4 to 3-13 and Samples 3-15 and 3-16 using the transparent electrode 1 of the present invention as the cathode have a device transmittance. The emission was 40% or more, and light emission due to application of a driving voltage was confirmed. On the other hand, the organic electroluminescence elements of Samples 3-1 to 3-3 and 3-14, in which the transparent electrode that is not the structure of the present invention is used as the cathode, have an element transmittance of less than 40%. -1 to 3-3 did not emit light even when a voltage was applied.
- the organic electroluminescence device using the transparent electrode of the present invention can emit light with high luminance at a low driving voltage.
- the driving voltage for obtaining the predetermined luminance can be reduced and the light emission life can be improved.
- SYMBOLS 1 Transparent electrode, 1b . Electrode layer, EL, EL-1, EL-2, EL-3, EL-4 ... Organic electroluminescent element (electronic device), a ... Opening, S ... Surface area (500 nm x 500 nm)
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
1.透明電極
2.透明電極の用途
3.有機電界発光素子の第1例(トップエミッション型)
4.有機電界発光素子の第2例(ボトムエミッション型)
5.有機電界発光素子の第3例(両面発光型)
6.有機電界発光素子の第4例(逆積み構成)
7.有機電界発光素子の用途
8.照明装置-1
9.照明装置-2
図1は、本発明の透明電極の構成を説明するための平面模式図である。また図2は、本発明の透明電極の一構成例を示す断面模式図である。これらの図に示すように、透明電極1は、窒素含有層1aに隣接して設けられた電極層1bを有する構成であり、電極層1bのみを透明電極1としても良く、窒素含有層1aと電極層1bとの積層構造を透明電極としても良い。このような透明電極1は、例えば基材11の上部に、窒素含有層1a、電極層1bの順に設けられている。このうち、透明電極1における電極部分を構成する電極層1bが、以降に詳細に説明するように、所定の膜厚と成膜状態を有しているところが特徴的である。また、電極層1bと隣接して設けられた窒素含有層1aは、例えば電極層1bを構成する電極材料との間に特定の関係を有する材料を用いて構成された層である。
電極層1bは、導電性材料を用いて構成された層であって、例えば窒素含有層1a上に成膜された層である。この電極層1bは、シート抵抗の測定が可能な12nm以下の膜厚を有する。電極層1bは、シート抵抗の測定が可能な膜厚とすることにより、電極層1bを構成する導電性材料の面内方向においての2次元的な連続性を備えたものとなり、電極用の膜としての実用性が確保されている。また電極層1bは、12nm以下の膜厚であることにより、電極層1bにおける光の吸収成分または反射成分が低く抑えられ、透明電極1の光透過率が確保されている。
窒素含有層1aは、図2の断面模式図に示すように、電極層1bの下地として設けられる層である。この窒素含有層1aは、例えば有機材料で構成された層であって、この上部に単層成長型(Frank-van der Merwe:FM型)の膜成長によって電極層1bが成膜されるような材料で構成されて良い。一例として、電極層1bが銀または銀を主成分とした合金で構成される場合であれば、窒素含有層1aは窒素原子(N)を含む有機材料を用いた構成が例示される。以下、電極層1bが銀または銀を主成分とした合金で構成される場合においての窒素含有層1aの詳細な構成を説明する。
以下に、窒素含有層1aを構成する化合物の具体例化合物(1~134)を示すが、これらに限定されない。尚、ここでは、上記一般式(1)および一般式(2)には含まれない化合物も例示している。また本発明の透明電極1を構成する窒素含有層1aは、以下に例示される化合物(1~134)のうちから、上述した式(1)または式(2)に当てはまる化合物が選択して用いられる。
以下に代表的な化合物の合成例として、化合物5の具体的な合成例を示すが、これに限定されない。
窒素雰囲気下、2,8-ジブロモジベンゾフラン(1.0モル)、カルバゾール(2.0モル)、銅粉末(3.0モル)、炭酸カリウム(1.5モル)を、DMAc(ジメチルアセトアミド)300ml中で混合し、130℃で24時間撹拌した。これによって得た反応液を室温まで冷却後、トルエン1Lを加え、蒸留水で3回洗浄し、減圧雰囲気下において洗浄物から溶媒を留去し、その残渣をシリカゲルフラッシュクロマトグラフィー(n-ヘプタン:トルエン=4:1~3:1)にて精製し、中間体1を収率85%で得た。
室温、大気下で中間体1(0.5モル)をDMF(ジメチルホルムアミド)100mlに溶解し、NBS(N-ブロモコハク酸イミド)(2.0モル)を加え、一晩室温で撹拌した。得られた沈殿を濾過し、メタノールで洗浄し、中間体2を収率92%で得た。
窒素雰囲気下、中間体2(0.25モル)、2-フェニルピリジン(1.0モル)、ルテニウム錯体[(η6-C6H6)RuCl2]2(0.05モル)、トリフェニルホスフィン(0.2モル)、炭酸カリウム(12モル)を、NMP(N-メチル-2-ピロリドン)3L中で混合し、140℃で一晩撹拌した。
以上のような透明電極1が形成される基材11は、例えばガラス、プラスチック等を挙げることができるが、これらに限定されない。また、基材11は透明であっても不透明であってもよい。本発明の透明電極1が、基材11側から光を取り出す電子デバイスに用いられる場合には、基材11は透明であることが好ましい。好ましく用いられる透明な基材11としては、ガラス、石英、透明樹脂フィルムを挙げることができる。
以上のような透明電極1は、当該透明電極1を構成する電極層1bが、シート抵抗の測定が可能な12nm以下の膜厚であることにより、電極用の膜としての実用性を確保しつつも光の吸収成分または反射成分が低く抑えられたものとなる。また特に電極層1bは、走査型電子顕微鏡で得られた500nm×500nmの表面領域の画像を処理して得られた開口aの周長が、合計で3000nm以下であることにより、上述したように12nm以下と言った極薄膜でありながらも、確実にシート抵抗の測定が可能な導電性を有するものとなる。また、開口aの周長は、合計で1000nm以下であれば、さらにシート抵抗を低い値に抑えることができる。
上述した構成の透明電極1は、各種電子デバイスに用いることができる。電子デバイスの例としては、有機電界発光素子、LED(light Emitting Diode)、液晶素子、太陽電池、タッチパネル等が挙げられ、これらの電子デバイスにおいて光透過性を必要とされる電極部材として、上述の透明電極1を用いることができる。
以下では、用途の一例として、透明電極をアノードおよびカソードとして用いた有機電界発光素子の実施の形態を説明する。
<有機電界発光素子EL-1の構成>
図3は、本発明の電子デバイスの一例として、上述した透明電極1を用いた有機電界発光素子の第1例を示す断面構成図である。以下にこの図に基づいて有機電界発光素子の構成を説明する。
基板13は、先に説明した本発明の透明電極1が設けられる基材と同様のものが用いられる。ただしこの有機電界発光素子EL-1が、対向電極5-1側からも発光光hを取り出す両面発光型である場合、基材11のうちから光透過性を有する透明なものが選択して用いられる。
透明電極1は、先に説明した透明電極1であり、発光機能層3側から順に、窒素含有層1aおよび電極層1bを順に成膜した構成である。ここでは特に、透明電極1を構成する本発明構成の電極層1bが実質的なカソードとなる。また本実施形態の有機電界発光素子EL-1においては、発光機能層3と、実質的なカソードとして用いられる電極層1bとの間に、有機材料からなる窒素含有層1aが配置された構成となる。このため本実施形態における透明電極1の窒素含有層1aは、発光機能層3の一部を構成する層であるともみなされる。このような窒素含有層1aは、上述した式(1)または式(2)を満たす材料のなかから、さらに電子輸送性または電子注入性を有する材料を用いて構成されることが好ましい。またこのような窒素含有層1aは、以降において電子輸送材料として例示する材料のなかから、さらに式(1)または式(2)を満たす材料を用いて構成されても良い。またこの場合、窒素含有層1aが発光機能層3とみなされるため、透明電極1は電極層1bのみからなる単層構造であるとも言える。尚、窒素含有層1aは、図示した様に発光機能層3と電極層1bとの間のみに配置されていても良いし、電極層1bの全面にわたって隣接して配置されていても良い。
対向電極5-1は、発光機能層3に正孔を供給するためのアノードとして機能する電極膜であり、金属、合金、有機または無機の導電性化合物、およびこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO2、SnO2等の酸化物半導体などが挙げられる。
本発明に用いられる発光層3cは、発光材料として例えば燐光発光化合物が含有されている。
発光層3cに含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに好ましくは燐光量子収率が0.01未満である。また、発光層3cに含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
本発明で用いることのできる発光材料としては、燐光発光性化合物(燐光性化合物、燐光発光材料ともいう)が挙げられる。
発光層3cに含まれる化合物(燐光発光性化合物)は、下記一般式(3)で表される化合物であることが好ましい。
一般式(3)で表される化合物の中でも、下記一般式(4)で表される化合物であることがさらに好ましい。
上記一般式(4)で表される化合物の好ましい態様の一つとして、下記一般式(5)で表される化合物が挙げられる。
蛍光発光材料としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層3cの間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層3aと電子注入層3eとがある。
正孔輸送層3bは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層3a、電子阻止層も正孔輸送層3bに含まれる。正孔輸送層3bは単層または複数層設けることができる。
電子輸送層3dは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層3e、正孔阻止層(図示せず)も電子輸送層3dに含まれる。電子輸送層3dは単層構造または複数層の積層構造として設けることができる。
一般式(6)中におけるAr1は、下記一般式(A)で表される基を表す。
一般式(A)において、Y3で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、ベンゼン環から導出される基である。
一般式(A)において、Y4で表される基としては、上記6員の芳香族環から導出される基であることが好ましく、さらに好ましくは、窒素原子を環構成原子と含む芳香族複素環から導出される基であり、特に好ましくは、Y4がピリジン環から導出される基であることである。
一般式(A)で表される基の好ましい態様としては、下記一般式(A-1)、(A-2)、(A-3)、または(A-4)のいずれかで表される基が挙げられる。
本発明では、上記一般式(6)で表される化合物の中でも、下記一般式(7)で表される化合物が好ましい。この一般式(7)は、透明電極1の窒素含有層1aを構成する化合物として示した一般式(1)を含む。以下、一般式(7)で表される化合物について説明する。
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に、必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
補助電極15は、透明電極1の抵抗を下げる目的で設けるものであって、透明電極1の電極層1bに接して設けられる。補助電極15を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面17aからの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極15の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極15の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極15の厚さは、導電性の観点から1μ以上であることが好ましい。
透明封止材17は、有機電界発光素子EL-1を覆うものであって、板状(フィルム状)の封止部材であって接着剤19によって基板13側に固定されるものであっても良く、封止膜であっても良い。この透明封止材17の表面は、有機電界発光素子EL-1の発光光hを取り出す光取り出し面17aとなっている。このような透明封止材17は、有機電界発光素子EL-1における透明電極1および対向電極5-1の端子部分を露出させる状態で、少なくとも発光機能層3を覆う状態で設けられている。また透明封止材17に電極を設け、有機電界発光素子EL-1の透明電極1および対向電極5-1の端子部分と、この電極とを導通させるように構成されていても良い。
尚、ここでの図示は省略したが、基板13との間に有機電界発光素子ELおよび透明封止材17を挟んで保護膜もしくは保護板を設けても良い。この保護膜もしくは保護板は、有機電界発光素子ELを機械的に保護するためのものであり、特に透明封止材17が封止膜である場合には、有機電界発光素子ELに対する機械的な保護が十分ではないため、このような保護膜もしくは保護板を設けることが好ましい。
ここでは一例として、図3に示す有機電界発光素子EL-1の製造方法を説明する。
以上説明した有機電界発光素子EL-1は、本発明の導電性と光透過性とを兼ね備えた透明電極1の電極層1bをカソードとして用い、この透明電極1における窒素含有層1a側に、発光機能層3とアノードとなる対向電極5-1とをこの順に設けた構成である。このため、電極層1bと対向電極5-1との間に十分な電圧を印加して有機電界発光素子EL-1での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
<有機電界発光素子の構成>
図4は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第2例を示す断面構成図である。この図に示す第2例の有機電界発光素子EL-2が、図3を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’上に透明電極1を設け、この上部に発光機能層3と対向電極5-2とをこの順に積層したところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第2例の有機電界発光素子EL-2の特徴的な構成を説明する。
以上説明した有機電界発光素子EL-2は、本発明の導電性と光透過性とを兼ね備えた透明電極1の電極層1bをアノードとして用い、この上部に発光機能層3とカソードとなる対向電極5-2とを設けた構成である。このため、第1例と同様に、透明電極1と対向電極5-2との間に十分な電圧を印加して有機電界発光素子EL-2での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
<有機電界発光素子の構成>
図5は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第3例を示す断面構成図である。この図に示す第3例の有機電界発光素子EL-3が、図3を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’側にも透明電極1を設け、2つの透明電極1間に発光機能層3を挟持させたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第3例の有機電界発光素子EL-3の特徴的な構成を説明する。
以上説明した有機電界発光素子EL-3は、本発明の導電性と光透過性とを兼ね備えた透明電極1をアノードおよびカソードとして用い、この間に発光機能層3を挟持した構成である。このため、第1例と同様に、2つの透明電極1間に十分な電圧を印加して有機電界発光素子EL-3での高輝度発光を実現しつつ、2つの透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
<有機電界発光素子の構成>
図6は、本発明の電子デバイスの一例として、上述した透明電極を用いた有機電界発光素子の第4例を示す断面構成図である。この図に示す第4例の有機電界発光素子EL-4が、図3を用いて説明した第1例の有機電界発光素子EL-1と異なるところは、透明基板13’側から順にカソード(透明電極1)、発光機能層3、アノード(対向電極5-4)を設けて積層順を逆にしたところにある。以下、第1例と同様の構成要素についての重複する詳細な説明は省略し、第4例の有機電界発光素子EL-4の特徴的な構成を説明する。
以上説明した有機電界発光素子EL-4は、本発明の導電性と光透過性とを兼ね備えた透明電極1をカソードとして用い、この上部に発光機能層3とアノードとなる対向電極5-4とをこの順に設けたを構成である。このため、第1例と同様に、透明電極1と対向電極5-4との間に十分な電圧を印加して有機電界発光素子EL-4での高輝度発光を実現しつつ、透明電極1側からの発光光hの取り出し効率が向上することによる高輝度化を図ることが可能である。さらに、所定輝度を得るための駆動電圧の低減による発光寿命の向上を図ることも可能になる。
上述した各構成の有機電界発光素子は、上述したように面発光体であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明などの照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではなく、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の照明装置は、上記有機電界発光素子を有する。
図7には、上記各構成の有機電界発光素子を複数用いて発光面を大面積化した照明装置の断面構成図を示す。この図に示す照明装置は、例えば透明基板13’上に、上述した第2例の有機電界発光素子EL-2を設けた複数の発光パネル21を、支持基板23上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化した構成である。支持基板23は、封止材17’を兼ねるものであっても良く、この支持基板23と、発光パネル21の透明基板13’との間に有機電界発光素子EL-2を挟持する状態で各発光パネル21をタイリングする。支持基板23と透明基板13’との間には接着剤19を充填し、これによって有機電界発光素子EL-2を封止しても良い。尚、発光パネル21の周囲には、アノードである透明電極1の電極層1bおよびカソードである対向電極5-2の端部を露出させておく。ただし図面においては対向電極5-2の露出部分のみを図示した。
以下に説明するように、試料1-1~1-19の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で、膜厚8nmの銀からなる単層構造の透明電極を形成した。
透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、上記アントラセン、TPD、および他の各化合物をそれぞれタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
試料1-11の作製手順において、電極層の成膜をスパッタ法に変更した。
試料1-1の作製手順において、電極層の成膜をスパッタ法に変更した。
上記表1に示すように、基材にそれぞれの材料を用い、電極層として銅(Cu)を3atm%で含有するAgCuをスパッタ法で成膜した。
以上のようにして作製した試料1-1~1-19の電極層の表面について、走査型電子顕微鏡画像を撮影し、これを画像処理することにより、500nm×500nmの表面領域に存在する全ての開口の周長を合計した。図8Aには、試料1-1として作製した電極層の走査型電子顕微鏡による二次電子像(SEM画像)を示す。また図8Bには、このSEM画像のコントラストを画像処理によって二値化した処理画像を示し、さらに500nm×500nmの表面領域Sを示す。図8B中の黒表示部が開口aに相当する。同様に、図9~図11には、それぞれ試料1-4,試料1-11,試料1-12の二次電子像と、その処理画像を示す。上記表1には、これによって得られた開口の周長の合計を示した。
上記で作製した試料1-1~1-19の各透明電極について、光透過率を測定した。光透過率の測定は、分光光度計(日立製作所製U-3300)を用い、試料と同じ基材をベースラインとして行った。この結果を上記表1に合わせて示した。
上記で作製した試料1-1~1-19の各透明電極について、シート抵抗値を測定した。シート抵抗値の測定は、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で行った。この結果を上記表1に合わせて示した。
表1から明らかなように、試料1-4~1-13および試料1-15~1-19の透明電極、すなわちシート抵抗の測定が可能な12nm以下の膜厚を有すると共に、500nm×500nmの表面領域についての電子顕微鏡画像を処理して得られた開口の周長が、合計で3000nm以下の銀で構成された電極層を有する本発明構成の透明電極は、光透過率が50%以上であった。これに対して、試料1-1~1-3の透明電極、すなわち開口の周長の合計が3000nmを超える本発明の範囲外の透明電極は、シート抵抗が測定不可なだけではなく、光透過率も42%以下と低かった。また、試料1-14の透明電極、すなわち膜厚が15nm以上の電極層を有する透明電極は、シート抵抗は測定可能であるものの、光透過率が37%と低かった。
以下に説明するように、試料2-1~2-12の各透明電極を、導電性領域の面積が5cm×5cmとなるように作製した。
先ず、透明な無アルカリガラス製の基材を、市販の真空蒸着装置の基材ホルダーに固定し、真空蒸着装置の真空槽に取り付けた。またタングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で、膜厚5nmの銀からなる単層構造の透明電極を形成した。
透明な無アルカリガラス製の基材を市販の真空蒸着装置の基材ホルダーに固定した。また、各透明電極の作製において、上記各化合物No.01~No.11をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
上記で作製した試料2-1~2-12の各透明電極について、シート抵抗値を測定した。シート抵抗値の測定は、抵抗率計(三菱化学社製MCP-T610)を用い、4端子4探針法定電流印加方式で行った。この結果を上記表1に合わせて示す。
表2から明らかなように、有効作用エネルギーΔEefがΔEef≦-0.1である化合物No.03~No.11を用いて窒素含有層を構成した試料2-4~2-12の透明電極は、実質的な導電性を担う銀を用いた電極層が5nmと極薄膜でありながらも、シート抵抗値の測定が可能であり、単層成長型(Frank-van der Merwe:FM型)の膜成長によってほぼ均一な膜厚で形成されていることが確認された。これに対して、窒素含有層を設けていない単層構造の試料2-1の透明電極、窒素を含有しない化合物No.1を用いて窒素含有層を構成した試料2-2の透明電極、およびΔEef>-0.1である化合物No.02を用いて窒素含有層を構成した試料2-3の透明電極は、シート抵抗の測定が不可能であった。
試料3-1~3-16で作製した有機電界発光素子ELについて、素子の光透過率(素子透過率)を測定した。光透過率の測定は、分光光度計(日立製作所製U-3300)を用い、試料と同じ基材をベースラインとして行った。この結果を下記表3に合わせて示す。
試料3-1~3-16で作製した有機電界発光素子ELについて、駆動電圧を測定した。この結果を下記表3に合わせて示す。駆動電圧の測定においては、各有機電界発光素子ELの透明電極1側(すなわち透明基板13側)と、対向電極5-1側(すなわち封止材17側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧として測定した。尚、輝度の測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。得られた駆動電圧の数値が小さいほど、好ましい結果であることを表わす。
表3から明らかなように、試料3-4~3-13、および試料3-15,3-16の、本発明構成の透明電極1をカソードに用いた有機電界発光素子は、素子透過率が40%以上であり、駆動電圧の印加による発光が確認された。これに対して、試料3-1~3-3、3-14の、本発明構成ではない透明電極をカソードに用いた有機電界発光素子は、素子透過率が40%未満であり、さらに試料3-1~3-3は電圧を印加しても発光しなかった。
Claims (4)
- シート抵抗の測定が可能な12nm以下の膜厚を有すると共に、500nm×500nmの表面領域についての走査型電子顕微鏡の画像を処理して得られた開口の周長が、合計で3000nm以下の銀で構成された電極層を備えた
透明電極。 - 前記開口の周長が、合計で1000nm以下である
請求項1記載の透明電極。 - 請求項1または2に記載の透明電極を有する
電子デバイス。 - 前記電子デバイスが有機電界発光素子である
請求項3に記載の電子デバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013558720A JP6241281B2 (ja) | 2012-02-15 | 2013-02-14 | 透明電極および電子デバイス |
US14/377,368 US9923166B2 (en) | 2012-02-15 | 2013-02-14 | Transparent electrode and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-030612 | 2012-02-15 | ||
JP2012030612 | 2012-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013122131A1 true WO2013122131A1 (ja) | 2013-08-22 |
Family
ID=48984240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053501 WO2013122131A1 (ja) | 2012-02-15 | 2013-02-14 | 透明電極および電子デバイス |
Country Status (3)
Country | Link |
---|---|
US (1) | US9923166B2 (ja) |
JP (1) | JP6241281B2 (ja) |
WO (1) | WO2013122131A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013215522A1 (de) * | 2013-08-07 | 2015-02-12 | Robert Bosch Gmbh | Sensorvorrichtung zur Bestimmung wenigstens eines Parameters eines durch einen Kanal strömenden fluiden Mediums |
TWI629811B (zh) * | 2017-03-21 | 2018-07-11 | 機光科技股份有限公司 | Organic light emitting device |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
JP7198389B2 (ja) * | 2020-08-04 | 2022-12-28 | 株式会社東芝 | 電極評価方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009132831A (ja) * | 2007-11-30 | 2009-06-18 | Mitsubishi Chemicals Corp | 有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子及び有機elディスプレイ |
JP2009194211A (ja) * | 2008-02-15 | 2009-08-27 | Fujifilm Corp | 有機電界発光素子及び表示装置 |
JP2011015828A (ja) * | 2009-07-09 | 2011-01-27 | Hitachi Medical Corp | モニタ管理システム及び輝度情報管理装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002015623A (ja) | 2000-04-27 | 2002-01-18 | Mitsui Chemicals Inc | 透明電極 |
JP2006164961A (ja) | 2004-11-09 | 2006-06-22 | Ulvac Seimaku Kk | 積層型透明電極層の製造方法及びこの方法に使用する積層型透明電極形成用の積層体 |
JP2007149633A (ja) * | 2005-10-31 | 2007-06-14 | Shinko Electric Ind Co Ltd | 透光性導電膜基板の製造方法 |
EP1895545B1 (en) * | 2006-08-31 | 2014-04-23 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
JP2008293129A (ja) | 2007-05-22 | 2008-12-04 | Tokai Rubber Ind Ltd | タッチパネル |
JP2009151963A (ja) | 2007-12-19 | 2009-07-09 | Institute Of Physical & Chemical Research | 透明電極およびその製造方法 |
EP2479234B1 (en) * | 2008-05-13 | 2017-06-21 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, display device and lighting device |
JP5577186B2 (ja) * | 2009-09-04 | 2014-08-20 | 株式会社ジャパンディスプレイ | 有機el表示装置 |
JP2011165653A (ja) * | 2010-01-14 | 2011-08-25 | Canon Inc | 有機el素子およびそれを用いた発光装置 |
JP2011150828A (ja) * | 2010-01-20 | 2011-08-04 | Panasonic Corp | 有機el装置およびその製造方法 |
-
2013
- 2013-02-14 WO PCT/JP2013/053501 patent/WO2013122131A1/ja active Application Filing
- 2013-02-14 JP JP2013558720A patent/JP6241281B2/ja active Active
- 2013-02-14 US US14/377,368 patent/US9923166B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009132831A (ja) * | 2007-11-30 | 2009-06-18 | Mitsubishi Chemicals Corp | 有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子及び有機elディスプレイ |
JP2009194211A (ja) * | 2008-02-15 | 2009-08-27 | Fujifilm Corp | 有機電界発光素子及び表示装置 |
JP2011015828A (ja) * | 2009-07-09 | 2011-01-27 | Hitachi Medical Corp | モニタ管理システム及び輝度情報管理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013122131A1 (ja) | 2015-05-18 |
US9923166B2 (en) | 2018-03-20 |
US20160013439A1 (en) | 2016-01-14 |
JP6241281B2 (ja) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6070567B2 (ja) | 透明電極、および電子デバイス | |
JP6003981B2 (ja) | 透明電極、電子デバイス、および有機電界発光素子 | |
JP6128117B2 (ja) | 透明電極の製造方法 | |
JP6020472B2 (ja) | 透明電極、透明電極の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子 | |
JP5943005B2 (ja) | 透明電極、電子デバイス、有機電界発光素子、および有機電界発光素子の製造方法 | |
JP6137170B2 (ja) | 有機電界発光素子 | |
JP6256349B2 (ja) | 透明電極、及び、電子デバイス | |
WO2013035490A1 (ja) | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 | |
JP6119742B2 (ja) | 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子 | |
JP2013206649A (ja) | 透明電極、透明電極の製造方法及び電子デバイス | |
JP6112107B2 (ja) | 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子 | |
JP6241281B2 (ja) | 透明電極および電子デバイス | |
JP5998789B2 (ja) | 透明電極、及び電子デバイス | |
JP6366221B2 (ja) | 透明電極、及び電子デバイス | |
WO2013137234A1 (ja) | 透明電極、電子デバイス、および透明電極の製造方法 | |
JP6241282B2 (ja) | 透明電極および電子デバイス | |
JP6119605B2 (ja) | 有機エレクトロルミネッセンス素子及び照明装置 | |
WO2014181640A1 (ja) | 発光素子および表示装置 | |
JP5817557B2 (ja) | 透明バリア膜、および電子デバイス | |
WO2014098014A1 (ja) | 透明電極、及び、電子デバイス | |
JP2014229555A (ja) | 透明電極、透明電極の製造方法、及び、電子デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13749227 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013558720 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14377368 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13749227 Country of ref document: EP Kind code of ref document: A1 |