WO2013121921A1 - 分離膜モジュールの洗浄方法 - Google Patents

分離膜モジュールの洗浄方法 Download PDF

Info

Publication number
WO2013121921A1
WO2013121921A1 PCT/JP2013/052545 JP2013052545W WO2013121921A1 WO 2013121921 A1 WO2013121921 A1 WO 2013121921A1 JP 2013052545 W JP2013052545 W JP 2013052545W WO 2013121921 A1 WO2013121921 A1 WO 2013121921A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
activated carbon
membrane module
separation membrane
Prior art date
Application number
PCT/JP2013/052545
Other languages
English (en)
French (fr)
Inventor
池田 啓一
新谷 昌之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013121921A1 publication Critical patent/WO2013121921A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for cleaning a microfiltration membrane (MF membrane) module or an ultrafiltration membrane (UF membrane) module obtained by membrane filtration of raw water.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the membrane separation method has features such as energy saving, space saving, and improvement of filtered water quality, and therefore, its use in various fields is expanding.
  • the application of microfiltration membranes and ultrafiltration membranes to water purification processes that produce industrial water and tap water from river water, groundwater and sewage treated water, and pretreatment in seawater desalination reverse osmosis membrane treatment processes Can be given.
  • the powdered activated carbon has a higher adsorbing power with the separation membrane than inorganic particles such as kaolin and bentonite, and is difficult to remove by back-pressure washing with the separation membrane module filled with water. For this reason, when the powdered activated carbon remains in the separation membrane module and subsequently washed with air, the powdered activated carbon peels off from the separation membrane, but there is a problem that the peeled powdered activated carbon causes membrane abrasion. .
  • Patent Document 6 discloses that after the water on the primary side of the separation membrane module is discharged out of the system, the reverse pressure cleaning wastewater in the separation membrane module is discharged while performing the reverse pressure cleaning. Then, a physical cleaning method has been proposed in which the membrane primary side in the separation membrane module is filled with water to perform air cleaning.
  • This physical cleaning method once drains the water on the primary side of the membrane (preferably the water on the primary side of the membrane so that the water level on the primary side of the membrane in the separation membrane module is below the lower end of the separation membrane.
  • the product is discharged outside the system), and back pressure cleaning is performed in a state where the periphery of the primary side of the membrane is gas. Therefore, in the reverse pressure cleaning, the powdered activated carbon is more easily peeled off from the surface of the membrane than the liquid primary side where the water pressure is applied to the membrane primary side, and the peeled powdered activated carbon is easily discharged out of the system as it is.
  • the present invention relates to a separation membrane module washing method after adding powdered activated carbon and a flocculant and filtering the mixed raw water.
  • An object of the present invention is to provide a cleaning method that can be discharged to the outside.
  • the separation membrane module cleaning method of the present invention has the following characteristics.
  • the raw carbon powder activated carbon addition concentration is A (g / m 3 )
  • the powdered activated carbon is added
  • the mixed raw membrane filtration flux is B (m 3 / (m 2 ⁇ d))
  • the powder activated carbon adhesion amount A ⁇ B ⁇ C / 1440 (g / m 2 ) per unit membrane area is 0.
  • the membrane filtration method according to (1) which is 1 (g / m 2 ) or more and 10 (g / m 2 ) or less.
  • powdered activated carbon is added at the start of filtration, the mixed raw water is filtered to form a powdered activated carbon concentration layer formed of powdered activated carbon on the membrane surface, followed by powdered activated carbon and The raw water mixed with the flocculant is filtered, and the filtration step is carried out so as to form a floc floc concentrated layer formed of the powdered activated carbon and the flocculant outside the powdered activated carbon concentrated layer.
  • back pressure washing is performed in a state where the periphery of the membrane primary side becomes a gas.
  • FIG. 1 is an apparatus schematic flow diagram showing an example of a fresh water generator to which the present invention is applied.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the fresh water generator of the present invention includes an activated carbon slurry storage tank 1 that stores powdered activated carbon slurry, a slurry supply pump 2 that supplies powdered activated carbon to raw water, raw water, and powdered activated carbon.
  • Oxidizing agent is supplied to the counter pressure cleaning valve 14 that is opened when the counter pressure cleaning is performed and water that satisfies the membrane primary side during the air cleaning (that is, raw water or membrane filtrate used as counter pressure cleaning water).
  • a drain valve 20 is provided which is open in some cases.
  • a powdered activated carbon concentrated layer forming step is performed at the start of filtration.
  • the powdered activated carbon concentrated layer forming step the powdered activated carbon slurry stored in the activated carbon slurry storage tank 1 is supplied to the raw water storage tank 4 by the slurry supply pump 2.
  • the raw water mixed and stirred with the powdered activated carbon by the stirrer 3 is supplied to the membrane primary side in the MF / UF membrane module 10 by operating the raw water supply pump 5 and opening the raw water valve 9.
  • pressure filtration of the MF / UF membrane module 10 is started by opening the filtrate water valve 11.
  • the membrane filtrate is transferred from the membrane secondary side to the filtrate storage tank 12 through the filtrate valve 11.
  • the air vent valve 17, the counter pressure washing valve 14, the air washing valve 18, and the drain valve 20 are all closed.
  • the powdered activated carbon concentration layer forming step when powdered activated carbon is added from the start of filtration and the mixed raw water is filtered, a powdered activated carbon concentration layer composed of powdered activated carbon with the contaminant adsorbed on the membrane surface is gradually formed.
  • the flocculant supply pump 7 is operated to supply the flocculant stored in the flocculant storage tank 6 to the raw water mixed and stirred with the powdered activated carbon, and mixed by the static mixer 8. After stirring, it is filtered through the MF / UF membrane module 10.
  • membrane filtration water is obtained from raw water while forming a floc activated floc concentrated layer formed of powdered activated carbon, flocculant and contaminants on the outer surface of the powdered activated carbon concentrated layer formed of powdered activated carbon on the membrane surface Perform the process.
  • the conditions for forming the powdered activated carbon concentration layer composed of powdered activated carbon on the membrane surface are: A (g / m 3 ) of powdered activated carbon added concentration of raw water, powdered activated carbon added When the mixed raw water membrane filtration flux is B (m 3 / (m 2 ⁇ d)), powdered activated carbon is added, and the mixed raw water is filtered by C (min), it corresponds to the powdered activated carbon concentration layer
  • the amount of powdered activated carbon adhered per unit membrane area A ⁇ B ⁇ C / 1440 (g / m 2 ) is preferably 0.1 (g / m 2 ) or more and 10 (g / m 2 ) or less, more preferably Is preferably 0.1 (g / m 2 ) or more and 2 (g / m 2 ) or less.
  • the flocculant supply pump 7 may be operated to start forming an aggregated floc concentrated layer formed of powdered activated carbon and the flocculant.
  • the powder activated carbon adhesion amount per unit membrane area is set to 0.1 (g / m 2 ) or more, it is possible to sufficiently obtain the action of peeling the aggregated floc concentrated layer when the membrane is washed.
  • the raise of the cake filtration resistance derived from the powder activated carbon concentration layer in a filtration process can be suppressed by making the powder activated carbon adhesion amount per unit membrane area into 10 (g / m ⁇ 2 >) or less.
  • the membrane is washed, for example, as follows.
  • the raw water valve 9 and the filtrate water valve 11 are closed, the slurry supply pump 2, the raw water supply pump 5, and the coagulant supply pump 7 are stopped, and the filtration process of the MF / UF membrane module 10 is stopped. Thereafter, the MF / UF membrane module 10 is washed in order to discharge the powder activated carbon concentration layer formed on the membrane surface and the aggregated floc concentration layer formed outside the powder activated carbon concentration layer to the outside of the system. At this time, first, the air vent valve 17 and the drain valve 20 are opened.
  • the membrane primary side in the MF / UF membrane module 10 is a side that supplies raw water to be filtered, and the membrane secondary side is membrane filtered water obtained by filtering raw water through a membrane.
  • the water on the primary side of the membrane in the MF / UF membrane module 10 may remain, but at least half of the membrane is above the water surface so as to be in contact with the gas.
  • water is discharged until the water level becomes 1/3 or less of the vertical length of the separation membrane, more preferably the entire membrane is above the water surface and the entire membrane is in contact with gas.
  • the reverse pressure washing valve 14 is opened while the air vent valve 17 and the drain valve 20 are opened, and the reverse pressure washing pump 13 is operated, so that the reverse using the membrane filtrate in the filtrate storage tank 12 is performed.
  • Perform pressure washing. membrane filtration water is pushed in from the membrane secondary side to the membrane primary side in the direction opposite to the membrane filtration direction, and the powdered activated carbon concentration layer and the aggregated floc concentration layer are excluded from the membrane surface on the membrane primary side. Perform physical cleaning.
  • the back pressure washing waste water pushed out to the membrane primary side in the MF / UF membrane module 10 is discharged from the drain valve 20 below the MF / UF membrane module 10.
  • powdered activated carbon was added at the start of filtration, mixed raw water was filtered, then powdered activated carbon and flocculant were added, mixed raw water was filtered, and formed on the membrane surface with powdered activated carbon Since the powdered activated carbon concentration layer and the flocified floc concentration layer formed with the powdered activated carbon and the flocculant are formed outside the powder activated carbon concentration layer and the filtration step is completed, the separation is performed between the membrane surface and the flocculent floc concentration layer.
  • the agglomerated floc concentration layer also peels off and drops from the bottom of the MF / UF membrane module 10 It is discharged out of the system through the drain valve 20 as it is.
  • the back pressure washing flow rate is controlled so that the water level on the primary side of the membrane in the MF / UF membrane module 10 is maintained at least 1/3 or less of the separation membrane length. It is preferable.
  • the wastewater flow rate discharged from the lower part of the MF / UF membrane module 10 by its own weight is MF / UF.
  • MF / UF wastewater flow rate discharged from the lower part of the MF / UF membrane module 10.
  • the water level on the primary side of the membrane rises and water pressure may be applied to the primary side of the membrane. Therefore, it is preferable to appropriately control the back pressure cleaning flow rate according to the structure of the MF / UF membrane module 10.
  • the drain valve 20 is closed, the membrane primary side in the MF / UF membrane module 10 is filled with water, the air cleaning valve 18 is opened, and the air blower 19 is operated, so that the lower side of the MF / UF membrane module 10 Gas is supplied from and air cleaning is performed.
  • the raw water valve 9 When performing air cleaning, as a method of filling the primary side of the membrane in the MF / UF membrane module 10 with water, the raw water valve 9 may be opened and the raw water supply pump 5 may be operated to supply the raw water.
  • the backwashing pump 13 may be operated by opening the pressure wash valve 14 to supply the membrane filtrate as backwash water. It is better to add the oxidant by operating the oxidant supply pump 15 to the raw water or the membrane filtrate supplied at this time (that is, the water that will fill the membrane primary side in the MF / UF membrane module 10 at the time of air washing). It is preferable because it has an effect of decomposing and removing organic substances accumulated on the membrane surface and membrane pores.
  • the aggregated floc concentrated layer in the MF / UF membrane module 10 could not be sufficiently peeled off from the membrane surface, so that the oxidant added to the raw water or the membrane filtered water accumulates on the membrane surface or membrane pores.
  • the organic substances that have been used up are almost consumed by the powdered activated carbon before being decomposed and removed, in the present invention, it is possible to make maximum use of the oxidizing agent.
  • the air washing valve 18 is closed and the air blower 19 is stopped to finish the air washing.
  • the raw water valve 9 and the back pressure cleaning valve 14 are also closed, and the raw water supply pump 5, It is preferable that the back pressure washing pump 13 and the oxidant supply pump 15 are also stopped and the raw water supply and the back pressure washing are finished.
  • the drain valve 20 is closed, the raw water valve 9 is opened, the raw water supply pump 5 is operated to supply water, and the membrane primary side of the MF / UF membrane module 10 is filled with water. Thereafter, if the air vent valve 17 is closed and the filtrate water valve 11 is opened, the MF / UF membrane module 10 returns to the filtration step, and the above steps are repeated from the powdered activated carbon concentration layer forming step to continue the water production. Can do.
  • the powdered activated carbon concentrated layer forming step may be performed every time before the start of filtration, or may be sometimes performed in combination with another cleaning method.
  • the discharged back pressure washing wastewater, the air washing wastewater discharged from the air vent valve 17 on the upper part of the MF / UF membrane module 10 or the drain valve 20 below the MF / UF membrane module 10 during or after the air washing is performed. It is preferable to separate the precipitate and reuse the supernatant water as raw water because the water recovery rate is increased.
  • coagulation sedimentation separation In addition to sedimentation separation, coagulation sedimentation separation, pressurized flotation separation, centrifugation, sand filtration separation, microfiltration / ultrafiltration membrane filtration separation, filter cloth filtration separation, fibrous filter filtration separation, cartridge filter Filtration separation, disk filter separation, filter press, belt press, vacuum dewatering, multiple disk dewatering, etc. can be selected, but the suspended solids contained in the wastewater are mainly coagulated flocs and are highly settled. Separation is suitable. Also, precipitation separation is preferable from the viewpoint of equipment cost, processing cost, and the like.
  • the particle diameter of the powdered activated carbon in the present invention is defined as a powder shape that is less than 150 ⁇ m as described in JIS K 1474: 2007.
  • powdered activated carbon based on other standards is defined as having a powder shape of less than 150 ⁇ m.
  • the smaller the particle size the larger the specific surface area and the higher the adsorption capacity, which is preferable.
  • any of woody materials such as coconut shells and sawdust and coal-based materials such as peat, lignite and bituminous coal may be used.
  • the flocculant in the present invention has the effect of reducing the polymer organic substance concentration during membrane filtration.
  • organic flocculants include dimethylamine-based and polyacrylamide-based cationic polymer flocculants.
  • polyaluminum chloride, polyaluminum sulfate, ferric chloride, ferric sulfate, ferric sulfate, polysilica iron, etc. can be used as the inorganic flocculant.
  • the MF / UF membrane module 10 may be an external pressure type or an internal pressure type, but the external pressure type is preferable from the viewpoint of simplicity of pretreatment.
  • the membrane filtration method may be a total filtration module or a cross flow filtration module, but a complete filtration module is preferred from the viewpoint of low energy consumption. Further, it may be a pressurization type module or an immersion type module, but the pressurization type module is preferable from the viewpoint that a high flux is possible.
  • the separation membrane used in the MF / UF membrane module 10 is not particularly limited as long as it is porous, but an MF membrane (microfiltration membrane) or a UF membrane (limited (Outer filtration membrane) is used, or both are used in combination.
  • an MF membrane microfiltration membrane
  • a UF membrane limited (Outer filtration membrane) is used, or both are used in combination.
  • MF membrane microfiltration membrane
  • UF membrane limited (Outer filtration membrane)
  • the shape of the separation membrane includes a hollow fiber membrane, a flat membrane, a tubular membrane, etc., but any of them may be used.
  • Materials for the separation membrane include polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of fluoroethylene-perfluoroalkyl vinyl ether copolymers, and chlorotrifluoroethylene-ethylene copolymers, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone.
  • PVDF Polyvinylidene fluoride
  • the separation membrane made of the organic polymer resin described above has lower hardness than powdered activated carbon, it can be preferably used in the method for cleaning the separation membrane module of the present invention.
  • the control method of the filtration operation may be constant flow filtration or constant pressure filtration, but constant flow filtration is preferable from the viewpoint that a constant amount of treated water is obtained and the overall control is easy.
  • the oxidant supplied to the water that fills the primary side of the membrane at the time of air cleaning is selected from sodium hypochlorite, chlorine dioxide, chloramine, hydrogen peroxide, ozone, etc. after setting the concentration so that the membrane does not deteriorate. It is preferable to contain at least one of the above.
  • the cake filtration resistance derived from the coagulated floc concentrated layer can be suppressed, and stable operation with a low membrane filtration differential pressure over a long period of time is possible.
  • it cannot be completely adsorbed by the coagulated floc-concentrated layer or powdered activated carbon, and it is difficult to completely remove organic substances derived from raw water adhering to the membrane surface, and iron, manganese, etc. oxidized by the oxidizing agent gradually precipitate on the membrane surface.
  • the membrane filtration pressure difference has reached near the breakdown voltage limit of MF / UF membrane module 10 is preferably carried out at a high concentration of chemical cleaning.
  • the chemical used for the cleaning can be selected after appropriately setting the concentration and holding time to such an extent that the film does not deteriorate.
  • At least one of sodium hypochlorite, chlorine dioxide, hydrogen peroxide, ozone and the like can be selected. It is preferable to contain it because the cleaning effect on the organic matter is increased.
  • Example 1 In the apparatus shown in FIG. 1, one MF / UF membrane module 10 used was an external pressure PVDF ultra-hollow fiber membrane module HFU-2020 (membrane area 72 m 2 ) manufactured by Toray Industries, Inc. First, the raw water valve 9 and the filtered water valve 11 are opened, the slurry supply pump 2 and the raw water supply pump 5 are operated, and the river water in which the additive concentration of the powdered activated carbon is adjusted to 30 g / m 3 in the raw water storage tank 4. Was used to start constant flow filtration with a membrane filtration flux of 1.5 m 3 / (m 2 ⁇ d).
  • the flocculant supply pump 7 is operated, and the river water adjusted to 1 g-Al / m 3 of polyaluminum chloride and 30 g / m 3 of powdered activated carbon is membrane filtered.
  • the flow rate was filtered at a flow rate of 1.5 m 3 / (m 2 ⁇ d) for 25 minutes, and the constant flow rate was filtered for a total of 30 minutes.
  • the raw water valve 9 and the filtered water valve 11 are closed, the slurry supply pump 2, the raw water supply pump 5, and the coagulant supply pump 7 are stopped, and the filtration process of the MF / UF membrane module 10 is stopped.
  • the air vent valve 17 and the drain valve 20 were opened, and all the water on the membrane primary side in the MF / UF membrane module 10 was discharged.
  • the counter pressure cleaning valve 14 is opened, the counter pressure cleaning pump 13 is operated, and the counter pressure cleaning of the flux 2 m 3 / (m 2 ⁇ d) is performed for 1 min. Carried out.
  • the back pressure washing valve 14 and the drain valve 20 are closed, the back pressure washing pump 13 is stopped, and at the same time the raw water valve 9 and the air washing valve 18 are opened, and the raw water supply pump 5 and the air blower 19 are operated.
  • air cleaning for supplying air at an air flow rate of 100 L / min was performed for 1 min while supplying 75 L / min of raw water to the membrane primary side of the MF / UF membrane module 10.
  • the raw water valve 9 and the air washing valve 18 were closed, the raw water supply pump 5 and the air blower 19 were stopped, and at the same time, the drain valve 20 was opened, and all the water on the membrane primary side in the MF / UF membrane module 10 was discharged.
  • the raw water valve 9 is opened, the slurry supply pump 2 and the raw water supply pump 5 are operated, and the membrane primary side in the MF / UF membrane module 10 is made of raw water containing powdered activated carbon.
  • the filtration water valve 11 was opened, the air vent valve 17 was closed, the process was returned to the filtration step, and the above steps were repeated.
  • the membrane filtration differential pressure of the MF / UF membrane module 10 was stable at 43 kPa even after 4 months, compared with 18 kPa immediately after the start of operation.
  • the membrane filtration pressure difference of the MF / UF membrane module 10 increased rapidly to 120 kPa after 83 days, compared with 18 kPa immediately after the start of operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 粉末活性炭と凝集剤が結合した凝集フロックが膜表面から剥離されやすく、分離膜モジュール系外に排出することが可能な洗浄方法を提供する。粉末活性炭および凝集剤を添加、混合した原水をろ過した後の分離膜モジュールの洗浄方法において、ろ過開始時に粉末活性炭を添加、混合した原水をろ過し、続いて粉末活性炭および凝集剤を添加、混合した原水をろ過して、ろ過工程を終了した後、分離膜モジュール内の膜一次側の水を系外に排出し、次いで、逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出し、次いで分離膜モジュール内の膜一次側を水で満たして空気洗浄を行う工程(a)または分離膜モジュール内の膜一次側に水を給水しながら空気洗浄を行う工程(b)を実施し、その後、分離膜モジュール内の膜一次側の水を系外に排出する。

Description

分離膜モジュールの洗浄方法
 本発明は、原水を膜ろ過した、精密ろ過膜(MF膜)モジュールまたは限外ろ過膜(UF膜)モジュールの洗浄方法に関するものである。
 膜分離法は、省エネルギー・省スペース、およびろ過水質向上等の特長を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜の、河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理への適用があげられる。
 さらに、それらの膜処理の過程において、原水に色度成分や臭気物質等の溶解性物質あるいは油分が多量に含有している場合、溶解性物質あるいは油分の除去を目的として原水に粉末活性炭を添加してから膜ろ過することもある(例えば特許文献1参照)。加えて、硫酸アルミニウムやポリ塩化アルミニウム等の凝集剤を添加、混合することでさらに良好な水質の膜ろ過水を得ることができる(例えば特許文献2参照)。
 ろ過を継続することで、膜表面に凝集フロックの付着量が増大していき、ろ過流量の低下あるいは膜ろ過差圧の上昇が起こる。このため、膜一次側(原水側)に気泡を導入し、膜を揺動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄や、膜二次側(ろ過水側)から膜一次側へ膜のろ過方向とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔内に付着していた汚染物質を排除する逆圧洗浄等の物理洗浄が実用化されている(例えば特許文献3、4、5参照)。しかし、粉末活性炭は分離膜との吸着力がカオリンやベントナイトなどの無機粒子と比べて高く、分離膜モジュール内を水で満たした状態での逆圧洗浄では除去されにくい。このため、粉末活性炭が分離膜モジュール内に残留し、引き続いて空気洗浄を行った場合には、粉末活性炭は分離膜から剥離するものの、剥離した粉末活性炭によって膜擦過が起きるという問題点があった。
 この問題を解決するために、特許文献6には、分離膜モジュール内の膜一次側の水を系外に排出した後に、逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出し、次いで、分離膜モジュール内の膜一次側を水で満たして空気洗浄を行う物理洗浄方法が提案されている。
 この物理洗浄方法は一旦、膜一次側の水を系外に排出して(好ましくは分離膜モジュール内の膜一次側の水位が分離膜の下端よりも下となるように膜一次側の水を系外に排出して)、膜一次側周囲が気体となった状態で逆圧洗浄を実施する。そのため、逆圧洗浄において、膜一次側に水圧がかかる膜一次側周囲が液体の状態よりも粉末活性炭が膜表面から剥離されやすく、また、剥離した粉末活性炭がそのまま系外に排出されやすい。そして、その後に従来よりも短時間の空気洗浄を実施することによって、膜表面から剥離しきれなかった残りの粉末活性炭がほぼ完全に排出される。そのため、空気洗浄による粉末活性炭由来の膜擦過を大幅に低減することが可能である。また、引き続きろ過工程に供される際には、膜表面の粉末活性炭由来のケークろ過抵抗を抑制し、長期間にわたる低い膜ろ過差圧での安定運転が可能である。
 ところが、粉末活性炭に加えて凝集剤を添加、混合した原水をろ過した場合、前記洗浄方法の逆圧洗浄を実施しても粉末活性炭と凝集剤が結合した凝集フロックが粘着質であるため、膜表面から剥離されにくかった。さらに、その後に実施する空気洗浄においても凝集フロックが分離膜モジュールの系外に排出されにくかったことから、膜表面の凝集フロック由来のケークろ過抵抗が増大していき、安定運転が困難であった。これらの問題が原水に粉末活性炭および凝集剤を添加、混合しての膜処理を採用する際の障害となっていた。
日本国特開平10-309567号公報 日本国特開2002-336616号公報 日本国特開平11-342320号公報 日本国特開2000-140585号公報 日本国特開2007-289940号公報 国際公開第2011/122289号
 本発明は、粉末活性炭および凝集剤を添加、混合した原水をろ過した後の分離膜モジュールの洗浄方法において、粉末活性炭と凝集剤が結合した凝集フロックが膜表面から剥離されやすく、分離膜モジュール系外に排出することが可能な洗浄方法を提供することにある。
 上記課題を解決するため、本発明の分離膜モジュールの洗浄方法は、次の特徴を有するものである。
(1)粉末活性炭および凝集剤を添加、混合した原水をろ過した後の分離膜モジュールの洗浄方法において、ろ過開始時に粉末活性炭を添加、混合した原水をろ過する粉末活性炭濃縮層形成工程を行い、続いて粉末活性炭および凝集剤を添加、混合した原水をろ過するろ過工程を行った後、分離膜モジュール内の膜一次側の水を系外に排出し、次いで、逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出し、次いで、以下(a)(b)のいずれかの工程を実施し、その後、分離膜モジュール内の膜一次側の水を系外に排出する、分離膜モジュールの洗浄方法。
(a)分離膜モジュール内の膜一次側を水で満たして空気洗浄を行う工程
(b)分離膜モジュール内の膜一次側に水を給水しながら空気洗浄を行う工程
(2)前記粉末活性炭濃縮層形成工程において、原水の粉末活性炭添加濃度をA(g/m3)、粉末活性炭を添加、混合した原水の膜ろ過流束をB(m3/(m2・d))、粉末活性炭を添加、混合した原水をろ過する時間をC(min)とした場合、単位膜面積あたりの粉末活性炭付着量A×B×C/1440(g/m2)が0.1(g/m2)以上10(g/m2)以下である、(1)に記載の膜ろ過方法。
(3)前記(a)の工程では、逆圧洗浄水および/または原水で膜一次側を満たして空気洗浄を行う、(1)または(2)に記載の分離膜モジュールの洗浄方法。
(4)前記(b)の工程では、逆圧洗浄水および/または原水を膜一次側に給水しながら空気洗浄を行う、(1)または(2)に記載の分離膜モジュールの洗浄方法。
(5)ろ過終了後、分離膜モジュール内の膜一次側の水位が少なくとも分離膜長さの1/3以下になるまで分離膜モジュール内の膜一次側の水を系外に排出する、(1)~(4)のいずれかに記載の分離膜モジュールの洗浄方法。
(6)ろ過終了後、分離膜モジュール内の膜一次側の水を全量系外に排出する、(1)~(4)のいずれかに記載の分離膜モジュールの洗浄方法。
(7)逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出しているときに、分離膜モジュール内の膜一次側の水位が少なくとも分離膜長さの1/3以下を維持するように、逆圧洗浄流量を制御する、(1)~(6)のいずれかに記載の分離膜モジュールの洗浄方法。
(8)前記(a)または(b)の工程で使用する水に酸化剤を添加する、(1)~(7)のいずれかに記載の分離膜モジュールの洗浄方法。
 本発明の分離膜モジュールの洗浄方法においては、ろ過開始時に粉末活性炭を添加、混合した原水をろ過して、膜表面に粉末活性炭で形成された粉末活性炭濃縮層を形成し、続いて粉末活性炭および凝集剤を添加、混合した原水をろ過して、粉末活性炭濃縮層の外側に粉末活性炭および凝集剤で形成された凝集フロック濃縮層を形成するように、ろ過工程を実施する。ろ過工程を終了した後、膜一次側周囲が気体となった状態で逆圧洗浄を実施する。
 従来のように、ろ過開始時から粉末活性炭および凝集剤を添加、混合した原水をろ過した後に逆圧洗浄した場合、膜表面に直接粘着質の凝集フロック濃縮層を形成しているため、凝集フロック濃縮層が膜表面から剥離されにくかった。これに対し本発明では、膜表面と凝集フロック濃縮層の間に剥離、分散されやすい粉末活性炭濃縮層を介在させるようにしたため、凝集フロック濃縮層が剥離されやすくなり、分離膜モジュール系外に排出されやすい。そして、その後に従来よりも短時間の空気洗浄を実施することによって、膜表面から剥離しきれなかった残りの凝集フロック濃縮層がほぼ完全に排出される。そのため、引き続きろ過工程に供される際には、凝集フロック濃縮層由来のケークろ過抵抗を抑制し、長期間にわたる低い膜ろ過差圧での安定運転が可能である。
 これより、原水に色度成分や臭気物質等の溶解性物質あるいは油分等の汚染物質が多量に含有している原水であっても、粉末活性炭および凝集剤を添加、混合しての膜ろ過が容易となり、良好な水質の膜ろ過水を得ることができる。
図1は、本発明が適用される造水装置の一例を示す装置概略フロー図である。
 以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本明細書において、分離膜モジュールの好適な例として精密ろ過膜(MF膜)モジュールまたは限外ろ過膜(UF膜)モジュールを選び、その洗浄方法を説明する。本発明は以下の実施態様に限定されるものではない。
 本発明で対象となる造水装置は、例えば、図1に示すように、粉末活性炭スラリーを貯留する活性炭スラリー貯留槽1と、原水に粉末活性炭を供給するスラリー供給ポンプ2と、原水と粉末活性炭を混合撹拌する攪拌機3と、原水を貯留する原水貯留槽4と、原水を供給する原水供給ポンプ5と、凝集剤を貯留する凝集剤貯留槽6と、原水に凝集剤を供給する凝集剤供給ポンプ7と、原水と凝集剤を混合撹拌するスタティックミキサー8と、原水供給時に開となる原水弁9と、原水をろ過するMF/UF膜モジュール10と、膜ろ過時に開となるろ過水弁11と、MF/UF膜モジュール10によって得られた膜ろ過水を貯留するろ過水貯留槽12と、膜ろ過水をMF/UF膜モジュール10に供給して逆圧洗浄する逆圧洗浄ポンプ13と、逆圧洗浄する時に開となる逆圧洗浄弁14と、空気洗浄時に膜一次側を満たすことになる水(すなわち原水、あるいは逆圧洗浄水として使用される膜ろ過水)に酸化剤を供給する酸化剤供給ポンプ15と、酸化剤を貯留する酸化剤貯留槽16と、逆圧洗浄や空気洗浄する場合などに開となるエア抜き弁17と、空気をMF/UF膜モジュール10の下方に供給し空気洗浄する場合に開となる空気洗浄弁18と、MF/UF膜モジュール10の空気洗浄の空気供給源であるエアブロワー19と、MF/UF膜モジュール10の膜一次側の水を排出する場合に開となる排水弁20が設けられている。
 上述の膜ろ過造水装置において、ろ過開始時に粉末活性炭濃縮層形成工程を行う。粉末活性炭濃縮層形成工程では、活性炭スラリー貯留槽1に貯留している粉末活性炭スラリーをスラリー供給ポンプ2で原水貯留槽4に供給する。攪拌機3で粉末活性炭と混合撹拌した原水は、原水供給ポンプ5を稼動し原水弁9を開にすることで、MF/UF膜モジュール10内の膜一次側に供給される。さらにろ過水弁11を開にすることでMF/UF膜モジュール10の加圧ろ過を開始する。膜ろ過水は膜二次側からろ過水弁11を経てろ過水貯留槽12へと移送される。全量ろ過の場合、エア抜き弁17、逆圧洗浄弁14、空気洗浄弁18、排水弁20はいずれも閉である。
 粉末活性炭濃縮層形成工程において、ろ過開始から粉末活性炭を添加、混合した原水をろ過していくと、次第に膜表面に汚染物質を吸着した粉末活性炭からなる粉末活性炭濃縮層が形成される。粉末活性炭濃縮層を形成した後、続いて凝集剤供給ポンプ7を稼働して、凝集剤貯留槽6に貯留している凝集剤を粉末活性炭と混合撹拌した原水に供給し、スタティックミキサー8で混合攪拌後、MF/UF膜モジュール10でろ過する。このろ過によって、膜表面に粉末活性炭で形成された粉末活性炭濃縮層のさらに外側に粉末活性炭、凝集剤および汚染物質で形成された凝集フロック濃縮層を形成しながら、原水から膜ろ過水を得るろ過工程を実施する。
 上記ろ過開始時の粉末活性炭濃縮層形成工程において、膜表面に粉末活性炭からなる粉末活性炭濃縮層を形成する条件としては、原水の粉末活性炭添加濃度をA(g/m3)、粉末活性炭を添加、混合した原水の膜ろ過流束をB(m3/(m2・d))、粉末活性炭を添加、混合した原水をろ過する時間をC(min)とした場合、粉末活性炭濃縮層に相当する単位膜面積あたりの粉末活性炭付着量A×B×C/1440(g/m2)が0.1(g/m2)以上10(g/m2)以下であることが好ましく、より好ましくは0.1(g/m2)以上2(g/m2)以下であるとよい。単位膜面積あたりの粉末活性炭付着量がこの範囲内になれば、凝集剤供給ポンプ7を稼働して、粉末活性炭および凝集剤で形成された凝集フロック濃縮層を形成し始めればよい。単位膜面積あたりの粉末活性炭付着量を0.1(g/m2)以上にすることにより、膜を洗浄するとき凝集フロック濃縮層を剥離させる作用を十分に得ることができる。また単位膜面積あたりの粉末活性炭付着量を10(g/m2)以下にすることにより、ろ過工程における粉末活性炭濃縮層由来のケークろ過抵抗の上昇を抑制することができる。
 ろ過工程終了後、膜の洗浄を例えば次のように実施する。
 まず、原水弁9とろ過水弁11を閉にして、スラリー供給ポンプ2、原水供給ポンプ5、凝集剤供給ポンプ7を停止してMF/UF膜モジュール10のろ過工程を停止する。その後、膜表面に形成された粉末活性炭濃縮層および粉末活性炭濃縮層の外側に形成された凝集フロック濃縮層を系外に排出するため、MF/UF膜モジュール10の洗浄を行う。このとき、まず、エア抜き弁17と排水弁20を開く。MF/UF膜モジュール10内の膜一次側の水がMF/UF膜モジュール10下方の排水弁20から膜モジュール系外に排出されると、MF/UF膜モジュール10の水位が下がっていき、膜一次側周囲が気体となった状態となる。ここで、MF/UF膜モジュール10内における膜一次側とはろ過対象となる原水を供給する側のことであり、膜二次側とは原水を膜でろ過することで得られた膜ろ過水が存在する側のことをいう。MF/UF膜モジュール10内の膜一次側の水は残っていてもかまわないが、少なくとも膜の半分が水面より上となり、気体に触れるようにする。好ましくは、水位が分離膜の上下方向の長さの1/3以下になるまで、より好ましくは膜全体が水面よりも上となり、膜全体が気体に触れるように、水を排出する。
 その後、エア抜き弁17と排水弁20を開にしたまま逆圧洗浄弁14を開にして、逆圧洗浄ポンプ13を稼動させることで、ろ過水貯留槽12内の膜ろ過水を用いた逆圧洗浄を行う。これにより、膜二次側から膜一次側へ、膜のろ過方向とは逆方向に、膜ろ過水が圧力で押し込まれ、粉末活性炭濃縮層および凝集フロック濃縮層を膜一次側の膜表面から排除する物理洗浄を行う。このとき、MF/UF膜モジュール10内の膜一次側へ押し出された逆圧洗浄排水はMF/UF膜モジュール10下方の排水弁20から排出される。
 従来はろ過工程開始時から粉末活性炭および凝集剤を添加、混合した原水をろ過していたため、粘着質である粉末活性炭と凝集剤が結合した凝集フロック濃縮層が膜表面に直接付着してしまうため、膜一次側に水圧がかからない状態で逆圧洗浄を実施したとしても、凝集フロックが膜表面から剥離しにくかった。
 これに対し、本発明では、ろ過開始時に粉末活性炭を添加、混合した原水をろ過し、続いて粉末活性炭および凝集剤を添加、混合した原水をろ過して、膜表面に粉末活性炭で形成された粉末活性炭濃縮層とこの粉末活性炭濃縮層の外側に粉末活性炭および凝集剤で形成された凝集フロック濃縮層を形成してろ過工程を終了することから、膜表面と凝集フロック濃縮層の間に剥離、分散されやすい粉末活性炭濃縮層があるため、粉末活性炭濃縮層が膜表面から剥離するに伴って、凝集フロック濃縮層も剥離し、膜表面をしたたり落ちながら、MF/UF膜モジュール10の下方から排水弁20を経由してそのまま系外に排出される。
 MF/UF膜モジュール10内の逆圧洗浄排水を排出しながら逆圧洗浄を実施するとき、逆圧洗浄中に継続して膜一次側に水圧がかからないほうが、粉末活性炭濃縮層およびその外側に位置する凝集フロック濃縮層の剥離効果が上がることから、MF/UF膜モジュール10内の膜一次側の水位が少なくとも分離膜長さの1/3以下を維持するように、逆圧洗浄流量を制御することが好ましい。逆圧洗浄流量を高くするほど、粉末活性炭濃縮層およびその外側に位置する凝集フロック濃縮層の剥離効果が上がるものの、MF/UF膜モジュール10の下方から自重で排出される排水流量はMF/UF膜モジュール10の排水口の大きさによって限界があり、膜一次側の水位が上昇して膜一次側に水圧がかかってしまうことがある。よってMF/UF膜モジュール10の構造に応じて逆圧洗浄流量を適宜制御することが好ましい。
 その後、排水弁20を閉にして、MF/UF膜モジュール10内の膜一次側に水を満たし、空気洗浄弁18を開、エアブロワー19を稼動することで、MF/UF膜モジュール10の下方から気体を供給し、空気洗浄を行う。
 空気洗浄を行うとき、MF/UF膜モジュール10内の膜一次側に水を満たす方法としては、原水弁9を開にして原水供給ポンプ5を稼動して原水を供給してもよいし、逆圧洗浄弁14を開にして逆圧洗浄ポンプ13を稼動して膜ろ過水を逆圧洗浄水として供給してもよい。この時供給する原水あるいは膜ろ過水(すなわち、空気洗浄時にMF/UF膜モジュール10内の膜一次側を満たすことになる水)には酸化剤供給ポンプ15を稼動して酸化剤を添加したほうが、膜表面や膜細孔内に蓄積していた有機物を分解除去する効果があるので好ましい。従来の物理洗浄では、MF/UF膜モジュール10内の凝集フロック濃縮層が膜表面から充分に剥離できなかったため、原水や膜ろ過水に添加された酸化剤は膜表面や膜細孔内に蓄積していた有機物を分解除去する前に粉末活性炭にほとんど消費されてしまったのに対し、本発明では酸化剤を最大限活用することが可能である。
 空気洗浄は、(a)予めMF/UF膜モジュール10内の膜一次側が水で満たされた状態で開始しても、(b)MF/UF膜モジュール10内の膜一次側に水を供給しながら(すなわち空気洗浄中にMF/UF膜モジュール10内に原水を供給したり、逆圧洗浄を行ったりしながら)行ってもよい。ただし、水を供給しながら空気洗浄を行うほうが、洗浄効果が高まるので好ましい。
 その後、空気洗浄弁18を閉にするとともにエアブロワー19を停止して空気洗浄を終了する。なお、空気洗浄中にMF/UF膜モジュール10内に原水を供給したり、逆圧洗浄を継続している場合には、原水弁9、逆圧洗浄弁14も閉にし、原水供給ポンプ5、逆圧洗浄ポンプ13、酸化剤供給ポンプ15も停止して、原水供給や逆圧洗浄も終了したほうが好ましい。
 次いで、排水弁20を開にすることで、膜面や膜細孔内から剥離してMF/UF膜モジュール10内で浮遊している懸濁物質を系外に排出する。
 排水終了後には、排水弁20を閉、原水弁9を開とし、原水供給ポンプ5を稼動して給水を行い、MF/UF膜モジュール10の膜一次側を満水にする。その後、エア抜き弁17を閉、ろ過水弁11を開とすれば、MF/UF膜モジュール10はろ過工程に戻り、上記工程を粉末活性炭濃縮層形成工程から繰り返すことで造水を継続することができる。
 本発明の洗浄方法は、ろ過開始前に粉末活性炭濃縮層形成工程を毎回行っても構わないし、別の洗浄方法と組み合わせて時々行ってもかまわない。逆圧洗浄を実施する前にMF/UF膜モジュール10下方の排水弁20から排出された膜一次側の水や、逆圧洗浄を実施したときのMF/UF膜モジュール10下方の排水弁20から排出された逆圧洗浄排水や、空気洗浄の実施中あるいは実施後にMF/UF膜モジュール10の上部のエア抜き弁17やMF/UF膜モジュール10下方の排水弁20から排出された空気洗浄排水を沈殿分離して、その上澄水を原水として再使用するほうが、水回収率が高くなるので好ましい。沈殿分離の他に、凝集沈殿分離、加圧浮上分離、遠心分離、砂ろ過分離、精密ろ過膜/限外ろ過膜のろ過分離、ろ布のろ過分離、繊維状フィルターのろ過分離、カートリッジフィルターのろ過分離、ディスクフィルター分離、フィルタープレス、ベルトプレス、真空脱水、多重円板脱水などの手段が選択できるが、排水に含まれる懸濁物質は凝集フロックが主体であり、沈降性が高いことから沈殿分離が適している。また、設備コスト、処理コストなどの観点からも沈殿分離が好ましい。
 本発明における粉末活性炭の粒子径は、粉末活性炭の場合、JIS K 1474:2007に記載されている通り、150μm未満のものを粉末形状と定義する。その他の規格に基づく粉末活性炭についても同様に150μm未満のものを粉末形状と定義する。また、粒子径は小さければ小さいほど比表面積が大きくなり、吸着能が高くなるので好ましい。但し、膜ろ過水に混入しないようMF/UF膜モジュール10の分離膜の孔径より大きくする必要がある。
 粉末活性炭の原料としては、ヤシ殻やおが屑などの木質系や泥炭、亜炭、瀝青炭などの石炭系のいずれでも構わない。
 本発明における凝集剤とは膜ろ過中の高分子有機物濃度を低減する効果がある。有機系凝集剤としては、ジメチルアミン系やポリアクリルアミド系のカチオン高分子凝集剤、などを使用することができる。一方、無機系凝集剤としては、ポリ塩化アルミニウムやポリ硫酸アルミニウム、塩化第二鉄、ポリ硫酸第二鉄、硫酸第二鉄、ポリシリカ鉄等を使用できる。
 MF/UF膜モジュール10としては、外圧式でも内圧式であっても差し支えはないが、前処理の簡便さの観点から外圧式が好ましい。また膜ろ過方式としては全量ろ過型モジュールでもクロスフローろ過型モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から全量ろ過型モジュールが好ましい。さらに加圧型モジュールであっても浸漬型モジュールであっても差し支えはないが、高流束が可能であるという点から加圧型モジュールが好ましい。
 MF/UF膜モジュール10で使用される分離膜としては、多孔質であれば特に限定しないが、所望の処理水の水質や水量によって、MF膜(精密ろ過膜)を用いたり、UF膜(限外ろ過膜)を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合はMF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いるのが好ましい。
 分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。
 分離膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン-エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホン等からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。なお、上述した有機高分子樹脂製の分離膜は、粉末活性炭よりも硬度が低いため、本発明の分離膜モジュールの洗浄方法において、好ましく使用することができる。
 ろ過運転の制御方法としては、定流量ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流量ろ過が好ましい。
 空気洗浄時に膜一次側を満たす水に供給する酸化剤としては、膜が劣化しない程度の濃度を適宜設定した上で、次亜塩素酸ナトリウム、二酸化塩素、クロラミン、過酸化水素、オゾンなどから選ばれる少なくとも1つを含有した方が好ましい。
 以上の本発明によれば、凝集フロック濃縮層由来のケークろ過抵抗を抑制し、長期間にわたる低い膜ろ過差圧での安定運転が可能である。ただし、凝集フロック濃縮層や粉末活性炭で吸着しきれず、膜表面に付着した原水由来の有機物を完全に除去することは難しく、酸化剤によって酸化された鉄やマンガン等が膜面に徐々に析出したりすることがある。そのため、膜ろ過差圧がMF/UF膜モジュール10の耐圧限界近くまで到達した場合には、高濃度の薬品洗浄を実施することが好ましい。
 該洗浄に用いる薬品としては、膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1つ含有した方が、有機物に対して洗浄効果が高くなるので好ましい。また、塩酸、硫酸、硝酸、クエン酸、シュウ酸等を少なくとも1つ含有した方が、アルミニウム、鉄、マンガン等に対して洗浄効果が高くなるので好ましい。
   (実施例1)
 図1に示す装置にて、MF/UF膜モジュール10には東レ(株)製の外圧式PVDF限外中空糸膜モジュールHFU-2020(膜面積72m2)を1本使用した。まず、原水弁9とろ過水弁11を開にして、スラリー供給ポンプ2と原水供給ポンプ5を稼動して、原水貯留槽4内で粉末活性炭の添加濃度を30g/m3に調整した河川水を用いて膜ろ過流束1.5m3/(m2・d)の定流量ろ過を開始した。定流量ろ過開始から5min後には凝集剤供給ポンプ7を稼働して、ポリ塩化アルミニウムの添加濃度を1g-Al/m3と粉末活性炭の添加濃度を30g/m3に調整した河川水を膜ろ過流束1.5m3/(m2・d)で25min定流量ろ過し、トータル30minの定流量ろ過を実施した。そのときの粉末活性炭濃縮層に相当する単位膜面積あたりの粉末活性炭付着量は30×1.5×5/1440=0.156g/m2であった。定流量ろ過開始から30min後に原水弁9とろ過水弁11を閉にして、スラリー供給ポンプ2、原水供給ポンプ5、凝集剤供給ポンプ7を停止してMF/UF膜モジュール10のろ過工程を停止した後、エア抜き弁17と排水弁20を開にして、MF/UF膜モジュール10内の膜一次側の水を全量排出した。その後、エア抜き弁17と排水弁20を開にしたまま、逆圧洗浄弁14を開、逆圧洗浄ポンプ13を稼動し、流束2m3/(m2・d)の逆圧洗浄を1min実施した。その後、逆圧洗浄弁14と排水弁20を閉にして、逆圧洗浄ポンプ13を停止すると同時に原水弁9と空気洗浄弁18を開にして、原水供給ポンプ5とエアブロワー19を稼動して、MF/UF膜モジュール10の膜一次側に75L/minの原水を供給しながらエア流量100L/minの空気を供給する空気洗浄を1min実施した。その後、原水弁9と空気洗浄弁18を閉じ、原水供給ポンプ5とエアブロワー19を停止すると同時に、排水弁20を開け、MF/UF膜モジュール10内の膜一次側の水を全量排出した。その後、排水弁20を閉じると同時に、原水弁9を開き、スラリー供給ポンプ2と原水供給ポンプ5を稼動して、MF/UF膜モジュール10内の膜一次側を、粉末活性炭を含有した原水で満たした後、ろ過水弁11を開にして、エア抜き弁17を閉にして、ろ過工程に戻り、上記工程を繰り返していった。
 その結果、MF/UF膜モジュール10の膜ろ過差圧は運転開始直後18kPaに対し、4ヶ月後も43kPaと安定運転を行うことができた。
   (比較例1)
 図1に示す装置にて、MF/UF膜モジュール10には東レ(株)製の外圧式PVDF限外中空糸膜モジュールHFU-2020(膜面積72m2)を1本使用し、原水弁9とろ過水弁11を開いて、スラリー供給ポンプ2と原水供給ポンプ5と凝集剤供給ポンプ7を稼動して、ポリ塩化アルミニウムの添加濃度を1g-Al/m3と粉末活性炭の添加濃度を30g/m3に調整した河川水を膜ろ過流束1.5m3/(m2・d)で30min定流量ろ過し、粉末活性炭濃縮層を形成せず凝集フロック濃縮層のみを形成した以外は実施例1と全く同じにした。
 その結果、MF/UF膜モジュール10の膜ろ過差圧は運転開始直後18kPaに対し、83日後には120kPaに急上昇した。
 1  活性炭スラリー貯留槽
 2  スラリー供給ポンプ
 3  攪拌機
 4  原水貯留槽
 5  原水供給ポンプ
 6  凝集剤貯留槽
 7  凝集剤供給ポンプ
 8  スタティックミキサー
 9  原水弁
10  MF/UF膜モジュール
11  ろ過水弁
12  ろ過水貯留槽
13  逆圧洗浄ポンプ
14  逆圧洗浄弁
15  酸化剤供給ポンプ
16  酸化剤貯留槽
17  エア抜き弁
18  空気洗浄弁
19  エアブロワー
20  排水弁

Claims (8)

  1.  粉末活性炭および凝集剤を添加、混合した原水をろ過した後の分離膜モジュールの洗浄方法において、ろ過開始時に粉末活性炭を添加、混合した原水をろ過する粉末活性炭濃縮層形成工程を行い、続いて粉末活性炭および凝集剤を添加、混合した原水をろ過して、ろ過工程を終了した後、分離膜モジュール内の膜一次側の水を系外に排出し、次いで、逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出し、次いで、以下(a)(b)のいずれかの工程を実施し、その後、分離膜モジュール内の膜一次側の水を系外に排出する、分離膜モジュールの洗浄方法。
    (a)分離膜モジュール内の膜一次側を水で満たして空気洗浄を行う工程
    (b)分離膜モジュール内の膜一次側に水を給水しながら空気洗浄を行う工程
  2.  前記粉末活性炭濃縮層形成工程において、原水の粉末活性炭添加濃度をA(g/m3)、粉末活性炭を添加、混合した原水の膜ろ過流束をB(m3/(m2・d))、粉末活性炭を添加、混合した原水をろ過する時間をC(min)とした場合、単位膜面積あたりの粉末活性炭付着量A×B×C/1440(g/m2)が0.1(g/m2)以上10(g/m2)以下である、請求項1に記載の膜ろ過方法。
  3.  前記(a)の工程では、逆圧洗浄水および/または原水で膜一次側を満たして空気洗浄を行う、請求項1または2に記載の分離膜モジュールの洗浄方法。
  4.  前記(b)の工程では、逆圧洗浄水および/または原水を膜一次側に給水しながら空気洗浄を行う、請求項1または2に記載の分離膜モジュールの洗浄方法。
  5.  ろ過終了後、分離膜モジュール内の膜一次側の水位が少なくとも分離膜長さの1/3以下になるまで分離膜モジュール内の膜一次側の水を系外に排出する、請求項1~4のいずれかに記載の分離膜モジュールの洗浄方法。
  6.  ろ過終了後、分離膜モジュール内の膜一次側の水を全量系外に排出する、請求項1~4のいずれかに記載の分離膜モジュールの洗浄方法。
  7.  逆圧洗浄を実施しながら分離膜モジュール内の逆圧洗浄排水を排出しているときに、分離膜モジュール内の膜一次側の水位が少なくとも分離膜長さの1/3以下を維持するように、逆圧洗浄流量を制御する、請求項1~6のいずれかに記載の分離膜モジュールの洗浄方法。
  8.  前記(a)または(b)の工程で使用する水に酸化剤を添加する、請求項1~7のいずれかに記載の分離膜モジュールの洗浄方法。
PCT/JP2013/052545 2012-02-16 2013-02-05 分離膜モジュールの洗浄方法 WO2013121921A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031559A JP2015085206A (ja) 2012-02-16 2012-02-16 分離膜モジュールの洗浄方法
JP2012-031559 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013121921A1 true WO2013121921A1 (ja) 2013-08-22

Family

ID=48984035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052545 WO2013121921A1 (ja) 2012-02-16 2013-02-05 分離膜モジュールの洗浄方法

Country Status (3)

Country Link
JP (1) JP2015085206A (ja)
TW (1) TW201338851A (ja)
WO (1) WO2013121921A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698593A (zh) * 2016-09-13 2017-05-24 龙吉林 一种净水机的更新水箱水质的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693804B2 (ja) * 2016-05-10 2020-05-13 オルガノ株式会社 排水回収システムおよび排水回収方法
DE102016125482A1 (de) * 2016-12-22 2018-06-28 Strecker Wassertechnik Gmbh Verfahren und Vorrichtung zum Filtern eines eine Verschmutzung enthaltenden Rohfluids mittels mindestens einer Membranfiltereinheit sowie eine Verwendung hierzu
CN110921780A (zh) * 2019-11-22 2020-03-27 河海大学 一种含表面活性剂废水的净化系统及净化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114722A (ja) * 1990-09-04 1992-04-15 Asahi Chem Ind Co Ltd 有機物を含む液の濾過方法
JPH05212374A (ja) * 1992-01-31 1993-08-24 Toshiba Corp 界面活性剤除去装置
JPH0957292A (ja) * 1995-08-24 1997-03-04 Mitsubishi Rayon Co Ltd 廃水処理装置
JPH10249170A (ja) * 1997-03-14 1998-09-22 Kawasaki Heavy Ind Ltd 炭素系吸着剤を用いる廃水処理方法及び装置
JP2006223921A (ja) * 2005-02-15 2006-08-31 Toray Ind Inc 水処理方法
JP2009101981A (ja) * 2007-10-02 2009-05-14 Osumo:Kk 洗車方法及び洗車装置
WO2011122289A1 (ja) * 2010-03-30 2011-10-06 東レ株式会社 分離膜モジュールの洗浄方法および造水方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114722A (ja) * 1990-09-04 1992-04-15 Asahi Chem Ind Co Ltd 有機物を含む液の濾過方法
JPH05212374A (ja) * 1992-01-31 1993-08-24 Toshiba Corp 界面活性剤除去装置
JPH0957292A (ja) * 1995-08-24 1997-03-04 Mitsubishi Rayon Co Ltd 廃水処理装置
JPH10249170A (ja) * 1997-03-14 1998-09-22 Kawasaki Heavy Ind Ltd 炭素系吸着剤を用いる廃水処理方法及び装置
JP2006223921A (ja) * 2005-02-15 2006-08-31 Toray Ind Inc 水処理方法
JP2009101981A (ja) * 2007-10-02 2009-05-14 Osumo:Kk 洗車方法及び洗車装置
WO2011122289A1 (ja) * 2010-03-30 2011-10-06 東レ株式会社 分離膜モジュールの洗浄方法および造水方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698593A (zh) * 2016-09-13 2017-05-24 龙吉林 一种净水机的更新水箱水质的方法

Also Published As

Publication number Publication date
TW201338851A (zh) 2013-10-01
JP2015085206A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP4968413B2 (ja) 分離膜モジュールの洗浄方法および造水方法
JP5954182B2 (ja) 分離膜モジュールの洗浄方法
JP5933854B1 (ja) 被処理水の濾過膜の洗浄方法及び洗浄装置、並びに水処理システム
JP2001070967A (ja) 洗濯排水の浄化システム
CN101337752B (zh) 造纸废水深度处理工艺
WO2013111826A1 (ja) 造水方法および造水装置
KR101662521B1 (ko) 전착도장의 수세폐수 재활용 장치
WO2013121921A1 (ja) 分離膜モジュールの洗浄方法
JP2013202481A (ja) 分離膜モジュールの洗浄方法
JP2007289847A (ja) 水道原水の浄水処理方法及びその装置
WO2013047466A1 (ja) 膜モジュールの洗浄方法
WO2017159303A1 (ja) 高硬度排水の処理方法
KR100617479B1 (ko) 전기응집 활성탄 여과장치
KR100352740B1 (ko) 가압부상조 및 연속식 정밀여과기를 이용한 하·폐수재이용 시스템의 전처리 방법
JPH0899097A (ja) 水浄化方法および装置
JP2002370089A (ja) 洗濯排水浄化システム
CN107892409A (zh) 一种羽绒工业废水高效回用方法及其装置
JP2005270906A (ja) 膜の洗浄方法および膜分離装置
JP2003135936A (ja) 水処理方法および水処理装置
JP2005161113A (ja) 膜分離装置
WO2009113521A1 (ja) 多孔質ろ過膜の前処理方法および前処理された多孔質ろ過膜を用いるろ水処理方法
JP2007245049A (ja) 水処理方法
KR20140141231A (ko) 역세수 회수공정을 구비한 정수시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP