WO2013121610A1 - 内視鏡装置及び医用システム - Google Patents

内視鏡装置及び医用システム Download PDF

Info

Publication number
WO2013121610A1
WO2013121610A1 PCT/JP2012/072768 JP2012072768W WO2013121610A1 WO 2013121610 A1 WO2013121610 A1 WO 2013121610A1 JP 2012072768 W JP2012072768 W JP 2012072768W WO 2013121610 A1 WO2013121610 A1 WO 2013121610A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
image
calculation unit
wavelength band
fluorescent
Prior art date
Application number
PCT/JP2012/072768
Other languages
English (en)
French (fr)
Other versions
WO2013121610A8 (ja
Inventor
美沙 高橋
竹腰 聡
健夫 鈴木
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP12868476.8A priority Critical patent/EP2732752B1/en
Priority to CN201280042226.7A priority patent/CN103906458B/zh
Priority to JP2013528430A priority patent/JP5444510B1/ja
Priority to US13/928,961 priority patent/US8827896B2/en
Publication of WO2013121610A1 publication Critical patent/WO2013121610A1/ja
Publication of WO2013121610A8 publication Critical patent/WO2013121610A8/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3616Magnifying glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/3941Photoluminescent markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4238Evaluating particular parts, e.g. particular organs stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body

Definitions

  • the present invention relates to an endoscope apparatus and a medical system, and more particularly to an endoscope apparatus and a medical system capable of observing fluorescence emitted from a fluorescent substance in a living body.
  • a diagnostic technique using a fluorescent agent targeting a biological protein that is specifically expressed in a predetermined lesion such as cancer is known.
  • excitation light is irradiated to a test part in a living body to which a fluorescent agent has been administered in advance, and fluorescence emitted from the test part with the irradiation of the excitation light is received.
  • a diagnostic method is known in which a diagnosis of the presence or absence of a lesion or the like in the test part is performed using a fluorescence image generated based on the received fluorescence.
  • Japanese Patent Application Laid-Open No. 2011-136005 discloses that in a medical system, an image of a mark provided on a treatment instrument installed in the vicinity of a portion to be examined is captured and the size of the captured mark image is set. Based on this, a technique for acquiring distance information between the test portion and the distal end of the endoscope insertion portion is disclosed.
  • Japanese Patent Application Laid-Open No. 2011-136005 does not particularly mention a configuration for estimating the actual size of a lesion included in the above-described fluorescence image, that is, the treatment for the lesion is long. There is still a problem of time.
  • the present invention has been made in view of the above-described circumstances, and it is possible to reduce the time spent in the treatment for the lesion included in the fluorescence image as compared with the conventional case, and it is preferable according to the size of the lesion. It is an object of the present invention to provide an endoscope apparatus and a medical system that can perform various treatments.
  • An endoscope apparatus includes a first wavelength band for exciting a first fluorescent substance accumulated in a test portion in a body cavity, and a second wavelength band different from the first wavelength band.
  • a light source device that emits excitation light in a wavelength band including a wavelength band, and a first light emitted when the first fluorescent material integrated in the test portion is excited by light in the first wavelength band Fluorescence and fluorescence obtained by imaging the second fluorescence emitted when the second fluorescent material provided in the treatment instrument for treating the test portion is excited by the light of the second wavelength band
  • An imaging unit configured to generate an image, an information storage unit storing shape information including information related to the shape of the second fluorescent material, the shape information, and the shape information in the fluorescent image Calculation for calculating the scaling ratio based on the size of the second fluorescence drawing area And performing an operation for estimating the actual size of the first fluorescence generation area based on the calculated scaling ratio and the size of the first fluorescence drawing area in the fluorescence image. And an arithmetic
  • the medical system includes a first wavelength band for exciting a first fluorescent substance accumulated in a test portion in a body cavity, and a second wavelength band different from the first wavelength band.
  • a light source device that emits excitation light in a wavelength band including: a second fluorescent material that is excited by light in the second wavelength band, and configured to perform treatment of the test portion The first fluorescence emitted from the first fluorescent material accumulated in the test portion with the irradiation of the excitation light, and the second fluorescence disposed in the vicinity of the test portion.
  • An imaging unit configured to capture a second fluorescence emitted from the fluorescent material and generate a fluorescent image, and shape information including information on the shape of the second fluorescent material is stored.
  • An information storage unit the shape information, and the first information in the fluorescence image. And calculating the enlargement / reduction ratio based on the size of the fluorescence drawing area, and further, based on the calculated enlargement / reduction ratio and the size of the first fluorescence drawing area in the fluorescence image.
  • a calculation unit that performs a calculation for estimating an actual size of the first fluorescence generation region.
  • FIG. 3 is a diagram illustrating an example of a configuration of an imaging unit according to the present embodiment.
  • 1 is a diagram illustrating an example of the configuration of an image processing device and a light source device according to an embodiment.
  • the figure which shows an example of a structure of the treatment part periphery in the forceps of FIG. The figure which shows an example in the case of inserting the hard insertion part and forceps which concern on a present Example in a body cavity, and performing the treatment of a to-be-examined part.
  • FIG. 6 is a diagram illustrating an example of table data used for processing of the image processing apparatus according to the present embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a main part of an endoscope apparatus according to an embodiment of the present invention.
  • the endoscope apparatus 1 includes a light source device 2 capable of supplying excitation light for fluorescence observation and white light for white light observation as illumination light, and illumination light supplied from the light source device 2.
  • a rigid endoscope imaging apparatus 10 that irradiates a subject, images return light emitted from the subject as the illumination light is irradiated, and outputs an image corresponding to the captured return light, and outputs from the rigid endoscope imaging apparatus 10
  • the image processing apparatus 3 performs various processes on the processed image, and the monitor 4 displays an image or the like processed by the image processing apparatus 3.
  • the rigid endoscope imaging apparatus 10 includes a rigid insertion portion 30 that is inserted into a body cavity, and an imaging unit 20 that captures the return light of the subject guided by the rigid insertion portion 30. Configured. Further, as shown in FIG. 1, the rigid endoscope imaging device 10 is configured so that the light source device 2 and the hard insertion portion 30 can be connected via an optical cable LC, and the image processing device 3 via a cable 5. And the imaging unit 20 can be connected.
  • the hard insertion portion 30 is configured to have an elongated cylindrical shape that can be inserted into the body cavity of the subject.
  • a connection member (not shown) for detachably connecting the imaging unit 20 and the optical cable LC is provided at the rear end portion of the hard insertion portion 30.
  • a light guide configured to transmit illumination light supplied from the light source device 2 via the optical cable LC to the distal end portion of the hard insertion portion 30 via the optical cable LC, although not shown,
  • An illumination window configured to irradiate the subject with the transmitted illumination light from the distal end portion of the hard insertion portion 30, and a return light emitted from the subject along with the illumination light irradiation after the hard insertion portion 30
  • a lens group configured to guide light to the end portion is provided.
  • FIG. 2 is a diagram illustrating an example of the configuration of the imaging unit according to the present embodiment.
  • the imaging unit 20 includes a fluorescence imaging system that captures fluorescence as return light guided by a lens group in the hard insertion portion 30 during fluorescence observation, and generates a fluorescence image, and white light observation
  • a white light imaging system that generates a white light image by capturing reflected light of white light as return light that is sometimes guided by a lens group in the hard insertion portion 30.
  • the fluorescence imaging system and the white light imaging system are divided into two optical axes orthogonal to each other by a dichroic prism 21 having spectral characteristics that reflect white light and transmit fluorescence.
  • the fluorescence imaging system of the imaging unit 20 has an excitation light cut filter 22 having spectral characteristics that cut light in the same wavelength band as the wavelength band of excitation light emitted from the light source device 2 (wavelength bands EW1 and EW2 described later).
  • An imaging optical system 23 that forms an image of the fluorescence that has passed through the dichroic prism 21 and the excitation light cut filter 22, and an imaging device 24 that images the fluorescence imaged by the imaging optical system 23.
  • the image sensor 24 is a monochrome high-sensitivity image sensor, images the fluorescence imaged by the imaging optical system 23, and generates and outputs a fluorescence image corresponding to the imaged fluorescence.
  • the white light imaging system of the imaging unit 20 includes an imaging optical system 25 that forms an image of white light reflected by the dichroic prism 21 and an imaging element 26 that images the white light imaged by the imaging optical system 25. And.
  • the imaging element 26 is configured by providing RGB color filters on the imaging surface, captures white light imaged by the imaging optical system 25, and generates a white light image corresponding to the captured white light. Output.
  • the imaging unit 20 performs predetermined signal processing (correlated double sampling processing, gain adjustment processing, and A / D processing) on the fluorescent image output from the imaging device 24 and the white light image output from the imaging device 26.
  • a signal processing unit 27 that outputs the fluorescent image and the white light image subjected to the predetermined signal processing to the image processing device 3 (via the cable 5).
  • FIG. 3 is a diagram illustrating an example of the configuration of the image processing device and the light source device according to the present embodiment.
  • the image processing apparatus 3 includes a white light image input controller 31, a fluorescence image input controller 32, an image processing unit 33, a memory 34, a display control unit 35, an input operation unit 36, A TG (timing generator) 37, a CPU 38, and an information storage unit 39 are included.
  • the white light image input controller 31 includes a line buffer having a predetermined capacity, and is configured to temporarily store a white light image for each frame output from the signal processing unit 27 of the imaging unit 20.
  • the white light image stored in the white light image input controller 31 is stored in the memory 34 via the bus BS in the image processing device 3.
  • the fluorescent image input controller 32 includes a line buffer having a predetermined capacity, and is configured to temporarily store a fluorescent image for each frame output from the signal processing unit 27 of the imaging unit 20.
  • the fluorescent image stored in the fluorescent image input controller 32 is stored in the memory 34 via the bus BS.
  • the image processing unit 33 is configured to read an image stored in the memory 34, perform predetermined image processing on the read image, and output the image to the bus BS.
  • the display control unit 35 is configured to perform various processes according to the control of the CPU 38 and the like on the image output from the image processing unit 33 to generate a video signal, and to output the generated video signal to the monitor 4. ing.
  • the input operation unit 36 includes various input interfaces that can give various instructions to the CPU 38 according to an input operation by an operator or the like.
  • the input operation unit 36 includes, for example, an observation mode switching switch that can instruct switching between white light observation and fluorescence observation.
  • the TG 37 is configured to output a driving pulse signal for driving the image sensors 24 and 26 of the imaging unit 20.
  • the CPU 38 is configured to perform various controls and processes according to instructions given in the input operation unit 36.
  • the CPU 38 When the CPU 38 detects that an instruction relating to the execution of white light observation is given by the observation mode changeover switch of the input operation unit 36, the CPU 38 drives the image pickup device 26 of the image pickup unit 20 and stops driving the image pickup device 24. Such control is performed on the TG 37.
  • the CPU 38 detects that an instruction related to the white light observation is given by the observation mode changeover switch of the input operation unit 36, the CPU 38 causes the white light source 40 of the light source device 2 to emit light and the excitation light source 44 to turn on. Control to turn off the light.
  • the CPU 38 When the CPU 38 detects that an instruction relating to the execution of the fluorescence observation is made at the observation mode changeover switch of the input operation unit 36, the CPU 38 drives the image pickup device 24 of the image pickup unit 20 and stops driving the image pickup device 26. Such control is performed on the TG 37. In addition, when the CPU 38 detects that an instruction relating to the execution of fluorescence observation is given by the observation mode changeover switch of the input operation unit 36, the CPU 38 drives the excitation light source 44 of the light source device 2 and drives the excitation light source 44. Control to stop.
  • the CPU 38 provides observation support information for supporting the fluorescence observation based on the fluorescence image subjected to the predetermined image processing by the image processing unit 33 and the information stored in the information storage unit 39 during the fluorescence observation. While performing the acquisition process, the display control unit 35 is configured to perform control for displaying the acquired observation support information on the monitor 4. The details of the processing related to the acquisition of the observation support information will be described later.
  • the information storage unit 39 stores in advance various information (described later) used when the CPU 38 performs processing related to the acquisition of observation support information.
  • the light source device 2 includes a white light source 40 configured by a xenon lamp or the like that emits broadband white light, and a condensing lens 42 that condenses the white light emitted from the white light source 40.
  • the dichroic mirror 43 is configured to transmit white light collected by the condenser lens 42, reflect excitation light described later, and make the white light and the excitation light enter the incident end of the optical cable LC.
  • a diaphragm 41 is provided between the white light source 40 and the condenser lens 42 to operate so that the diaphragm amount is controlled according to the control of the diaphragm controller 48.
  • the light source device 2 excites a wavelength band EW1 for exciting a fluorescent agent to be administered to a subject and a phosphor 161 provided at a predetermined position of a forceps 6 described later.
  • An excitation light source 44 configured to emit excitation light in a wavelength band including the wavelength band EW2, a condensing lens 45 that condenses the excitation light emitted from the excitation light source 44, and a condensing lens 45.
  • a mirror 46 that reflects the excitation light collected by the laser beam toward the dichroic mirror 43.
  • the wavelength band EW1 and the wavelength band EW2 are different (not overlapping).
  • the endoscope apparatus 1 when the input operation unit 36 is instructed to perform white light observation (when white light is observed), the white light image is displayed. A white light image (color image) corresponding to is displayed on the monitor 4. Further, according to the endoscope apparatus 1 having the above-described configuration, when an instruction relating to the execution of fluorescence observation is given by the input operation unit 36 (at the time of fluorescence observation), it corresponds to the fluorescence image.
  • the fluorescent image (monochrome image) and the observation support information acquired by the processing of the CPU 38 are displayed together on the monitor 4.
  • the endoscope apparatus 1 of the present embodiment is not limited to a configuration that can acquire a white light image and a fluorescence image, but includes a configuration that can acquire only a fluorescence image, for example. May be.
  • FIG. 4 is a diagram illustrating an example of the configuration of the forceps according to the present embodiment.
  • the forceps 6 includes a treatment portion 6 a configured to be able to perform treatment of a test portion by grasping a tissue, a handle portion 6 b having an elongated cylindrical shape, and a treatment portion.
  • An operation portion 6c capable of performing an operation for operating 6a and a continuous operation from the distal end side are formed.
  • FIG. 5 is a diagram illustrating an example of a configuration around a treatment unit in the forceps of FIG. 4.
  • a phosphor that has a predetermined shape and is excited by light in the wavelength band EW2 included in the excitation light emitted from the light source device 2. 161 is provided. Specifically, the phosphor 161 is provided with a band shape having an actual length (actual size) WS as shown in FIG. 5, for example.
  • the fluorescence wavelength band (hereinafter also referred to as the wavelength band FW1) emitted when the fluorescent agent previously administered to the subject is excited by the light of the wavelength band EW1, and the forceps 6
  • the wavelength band of fluorescence emitted when the phosphor 161 is excited by light in the wavelength band EW2 (hereinafter also referred to as wavelength band FW2) is different (not overlapping).
  • each wavelength band is set so that the fluorescence of the wavelength bands FW1 and FW2 is not cut by the excitation light cut filter 22.
  • FIG. 6 is a diagram illustrating an example of a case where a hard insertion portion and forceps are inserted into a body cavity to perform treatment on a test portion.
  • FIG. 7 is a diagram illustrating an example of a fluorescence image used for processing in the image processing apparatus according to the present embodiment.
  • the operator or the like moves the distal end portion of the hard insertion portion 30 to a position where a white light image including the test portion and the phosphor 161 of the forceps 6 can be displayed on the monitor 4 as shown in FIG. After that, an instruction relating to the execution of fluorescence observation is given at the observation mode switch of the input operation unit 36.
  • the excitation light which comprises wavelength band EW1 and EW2 is irradiated to the to-be-tested part from the front-end
  • the fluorescence of the wavelength band FW1 is emitted from the region where the fluorescent agent of the test part is accumulated (hereinafter also simply referred to as the fluorescence region), and the wavelength band FW2 is emitted from the phosphor 161 arranged in the vicinity of the test part.
  • the fluorescence (return light) having the wavelength bands FW1 and FW2 is guided and incident on the imaging unit 20.
  • the imaging unit 20 captures the fluorescence guided by the hard insertion unit 30 to generate a fluorescence image, performs predetermined signal processing on the generated fluorescence image, and outputs the fluorescence image to the image processing apparatus 3.
  • the fluorescent image input controller 32 temporarily stores a fluorescent image for each frame output from the imaging unit 20.
  • the fluorescent image stored in the fluorescent image input controller 32 is stored in the memory 34 via the bus BS.
  • the image processing unit 33 reads the fluorescent image stored in the memory 34, performs predetermined image processing on the read fluorescent image, and outputs it to the bus BS.
  • the generation state of the fluorescence in the wavelength band FW1 in the fluorescence region and the fluorescence is acquired.
  • the treatment portion 6 a and the handle portion 6 b that are objects that are substantially invisible when the fluorescent image is visualized are indicated by dotted lines for convenience.
  • the CPU 38 information on the wavelength band FW1 of the fluorescence emitted from the fluorescent agent, information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161, the two-dimensional shape of the phosphor 161 and the actual size in the two-dimensional shape.
  • shape information including (for example, the value of the actual length WS) from the information storage unit 39 and performing processing based on the read information and the fluorescence image output from the image processing unit 33, fluorescence is obtained.
  • information on the wavelength band FW1 of the fluorescence emitted from the fluorescent agent, information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161, the two-dimensional shape of the phosphor 161, and the two-dimensional shape thereof are stored in advance.
  • the CPU 38 information on the wavelength band FW1 of the fluorescence emitted from the fluorescent agent, information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161, the two-dimensional shape of the phosphor 161, and a predetermined actual value in the two-dimensional shape.
  • the shape information of the phosphor 161 including the long value for example, the value of the actual length WS
  • the shape information of the relatively bright (bright) region in the fluorescent image matches or substantially matches the shape information.
  • a region drawn with a shape is detected as a drawing region of the phosphor 161, and a region drawn with a shape significantly different from the shape information is detected as a drawing region of the fluorescent region.
  • the CPU 38 draws the drawing width WA of the phosphor 161 drawn in the fluorescence image based on the shape information of the phosphor 161 and the detection result of the drawing area of the phosphor 161 in the fluorescence image (see FIG. 7). ) Is calculated, and the value of the enlargement / reduction ratio RA is obtained by performing an operation (WA / WS) for dividing the actual length WS from the calculated drawing width WA. That is, the scaling factor RA described above is a value obtained by standardizing the size of the phosphor 161 in the fluorescence image with reference to the size of the actual phosphor 161, or the fluorescence when the size of the actual phosphor 161 is 1. It is calculated as a value corresponding to the drawing magnification of the phosphor 161 in the image.
  • the CPU 38 calculates the horizontal (horizontal) drawing width LX of the fluorescent region and the vertical drawing width LY of the fluorescent region based on the detection result of the fluorescent region in the fluorescent image. To do.
  • the CPU 38 calculates the value of the horizontal width SX obtained by performing the calculation (LX ⁇ RA) of multiplying the drawing width LX by the enlargement / reduction ratio RA as an estimated value of the actual length of the horizontal width of the fluorescent region (lesioned portion),
  • the value of the vertical width SY obtained by multiplying the drawing width LY by the enlargement / reduction ratio RA (LY ⁇ RA) is calculated as an estimated value of the actual length of the fluorescent region (lesioned portion). That is, the CPU 38 estimates the actual size of the fluorescent region (lesioned portion) from the values of the horizontal width SX and the vertical width SY (as observation support information) calculated by performing the above-described calculation.
  • FIG. 8 is a diagram illustrating an example of a display mode of a fluorescent image processed by the image processing apparatus according to the present embodiment.
  • the display control unit 35 Based on the control of the CPU 38, the display control unit 35 generates a video signal by superimposing information indicating the values of the horizontal width SX and the vertical width SY on the fluorescent image output from the image processing unit 33, and the generated video signal is displayed. Output to the monitor 4. Then, by such an operation of the display control unit 35, for example, an observation image having a display mode as shown in FIG. 8 is displayed on the monitor 4.
  • the treatment portion 6 a and the handle portion 6 b that are objects that are substantially invisible on the screen of the monitor 4 are indicated by dotted lines for convenience.
  • the surgeon or the like can estimate the actual size of the fluorescent region (lesion) by confirming the observation image displayed on the monitor 4 as shown in FIG. It is possible to easily determine whether or not forceps suitable for the actual size of the lesion) are used. As a result, the time spent in the treatment for the lesion included in the fluorescent image can be shortened compared to the conventional case. Further, the operator or the like can easily estimate the actual size of the fluorescent region (lesion) by confirming the observation image displayed on the monitor 4 as shown in FIG. As a result, suitable treatment according to the size of the fluorescent region (lesion) can be performed.
  • the CPU 38 is not limited to acquiring the values of the horizontal width SX and the vertical width SY as observation support information.
  • the average value of the luminance value of the fluorescent region and the actual distance from the distal end portion of the hard insertion portion 30 are used.
  • the table data TB1 indicating the correlation and the table data TB2 indicating the correlation between the average value of the luminance values of the phosphor 161 and the actual distance from the distal end of the hard insertion portion 30 are stored in the information storage unit 39 in advance.
  • the distance SZ value corresponding to the estimated value of the actual distance between the fluorescent region and the phosphor 161 may be further acquired as observation support information.
  • the CPU 38 calculates the average value of the luminance values of the drawing region obtained as the detection result based on the detection result of the drawing region of the fluorescent region in the fluorescence image output from the image processing unit 33, Further, based on the comparison result obtained by comparing the average value of the calculated luminance values with the table data TB1 described above, the distance L1 from the distal end portion of the hard insertion portion 30 corresponding to the average value of the calculated luminance values. To get.
  • the CPU 38 calculates the average value of the luminance values of the drawing area obtained as the detection result based on the detection result of the drawing area of the phosphor 161 in the fluorescence image output from the image processing unit 33, and Based on the comparison result obtained by comparing the average value of the calculated luminance values with the table data TB2 described above, the distance L2 from the tip of the hard insertion portion 30 corresponding to the average value of the calculated luminance values is acquired. To do.
  • the CPU 38 uses the value of the distance SZ obtained by performing the calculation (L1-L2) for subtracting the value of the distance L2 from the value of the distance L1 as an estimated value of the actual distance between the fluorescent region and the phosphor 161. Calculate as That is, the CPU 38 estimates the actual distance between the fluorescent region and the phosphor 161 based on the value of the distance SZ (as observation support information) calculated by performing the above-described calculation.
  • the CPU 38 is not limited to the calculation for calculating the value of the distance SZ using the table data TB1 and TB2 described above.
  • the average value of the luminance values of the drawing area of the fluorescent area and the phosphor 161 are calculated.
  • An operation for calculating the value of the distance SZ may be performed based on a comparison result obtained by comparing the average value of the luminance values of the drawing area. According to such a calculation, for example, as the average value of the two types of luminance values approaches relatively, the value obtained as the distance SZ becomes close to 0. As the average values are relatively apart from each other, the value obtained as the distance SZ moves away from zero.
  • FIG. 9 is a diagram illustrating an example different from FIG. 8 of the display mode of the fluorescent image processed by the image processing apparatus according to the present embodiment.
  • the display control unit 35 generates a video signal by superimposing the horizontal width SX, the vertical width SY, and the distance SZ on the fluorescent image output from the image processing unit 33 based on the control of the CPU 38, and monitors the generated video signal on the monitor 4. Output to. Then, by such an operation of the display control unit 35, for example, an observation image having a display mode as shown in FIG. In FIG. 9, the treatment portion 6 a and the handle portion 6 b that are objects that are substantially invisible on the screen of the monitor 4 are indicated by dotted lines for convenience.
  • the time spent in the treatment for the lesion included in the fluorescent image can be shortened compared to the conventional case.
  • the operator or the like can easily estimate the actual size of the fluorescent region (lesion) by confirming the observation image displayed on the monitor 4 as shown in FIG. As a result, suitable treatment according to the size of the fluorescent region (lesion) can be performed.
  • the CPU 38 is not limited to acquiring the horizontal width SX and the vertical width SY as observation support information.
  • the CPU 38 calculates the area of the actual fluorescent region acquired by calculation based on the scaling ratio RA calculated as described above and the detection result of the drawing region of the fluorescent region in the fluorescent image. Any one of the estimated value, the estimated value of the width in the major axis direction, the estimated value of the width in the minor axis direction, the estimated position of the center point, and the estimated position of the center of gravity is used as the size of the actual fluorescent region. It may be further acquired as observation support information that can be used for the estimation of.
  • FIG. 10 is a diagram illustrating an example of table data used for processing of the image processing apparatus according to the present embodiment.
  • the CPU 38 for example, as shown in FIG. 10, table data in which the correspondence relationship between the shape information of the phosphor 161 and the information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161 is associated for each type of forceps.
  • table data in which the correspondence relationship between the shape information of the phosphor 161 and the information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161 is associated for each type of forceps.
  • the shape of the phosphor 161 (shape information) and the type of the forceps 6 are in a correspondence relationship, and the fluorescence wavelength band (wavelength band FW2) of the phosphor 161 and the actual diameter of the forceps 6 (handle 6b).
  • the CPU 38 identifies the type and actual size of the forceps 6 estimated to be included in the fluorescence image based on the table data TB3 and the detection result of the drawing area of the phosphor 161, and further, the identification When it is detected that the actual size of the forceps 6 is greatly different from the horizontal width SX and the vertical width SY, the treatment efficiency is improved by replacing the forceps 6 (currently used) with another forceps.
  • the display control unit 35 may be controlled to display a character string or the like to be notified to the surgeon.
  • FIG. 11 is a diagram illustrating an example different from FIGS. 8 and 9 of the display mode of the fluorescent image processed by the image processing apparatus according to the present embodiment.
  • the CPU 38 for example, information on the shape of the phosphor 161, information on the wavelength band FW2 of the fluorescence emitted from the phosphor 161, the appearance shape of the forceps provided with the phosphor 161, and the fluorescence in the appearance shape of the forceps.
  • table data TB4 in which the correspondence relationship between the arrangement position of the body 161 and each of the plurality of forceps is associated is stored in advance in the information storage unit 39, the detection result of the drawing area of the table data TB4 and the phosphor 161 Based on the above, the type, actual size and orientation of the forceps 6 estimated to be included in the fluorescence image are identified, and control is performed to display a virtual image of the external shape of the forceps 6 according to the identified result. You may perform with respect to the display control part 35. FIG. Then, by performing such control, an observation image that can estimate the position of the treatment unit 6a with respect to the position of the fluorescent region, for example, as shown in FIG.
  • the CPU 38 detects that at least one of the fluorescent region and the phosphor 161 (the drawing region) is present in the fluorescent image, the detected fluorescent region and / or each fluorescent region is detected.
  • FIG. 12 is a diagram illustrating an example different from that of FIG. 7 of the fluorescent image used for processing in the image processing apparatus according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of the display mode of the fluorescent image processed by the image processing apparatus according to the present embodiment, which is different from those in FIGS. 8, 9, and 11.
  • the CPU 38 calculates the vertical width SY for each of the plurality of fluorescent regions F1 to F7 in the fluorescent image (observation image) as shown in FIG. 12, and the calculated vertical width SY is equal to or greater than a predetermined value. 13 is displayed on the monitor 4 by controlling the display control unit 35 so as to display only the image (only F1 and F6 in FIG. 12). It may be.
  • the treatment portion 6 a and the handle portion 6 b that are objects that are substantially invisible on the screen of the monitor 4 are indicated by dotted lines for convenience.
  • the predetermined condition described above is not limited to the one based on the vertical width SY, but based on at least one of the values (the horizontal width SX, the luminance value, etc.) acquired in this embodiment (and the modification). It may be set.
  • FIG. 14 is a diagram illustrating an example of the display mode of the fluorescent image processed by the image processing apparatus according to the present embodiment, which is different from the examples illustrated in FIGS. 8, 9, 11, and 13.
  • the CPU 38 selects a fluorescent region F5 from among a plurality of fluorescent regions F1 to F7 in a fluorescent image (observation image) as shown in FIG.
  • the display control unit 35 is controlled to enlarge the selected fluorescent region F5 so that a fluorescent image (observed image) as shown in FIG. You may make it display.
  • the above-described predetermined display mode is not limited to the display of one desired fluorescent region or phosphor 161 selected by the input operation of the input operation unit 36 in an enlarged manner.
  • the phosphor 161 may be displayed in a centering manner, or the desired single fluorescent region or phosphor 161 may be displayed in a tracking manner.

Abstract

 本発明の内視鏡装置は、第1の蛍光物質を励起するための第1の波長帯域と、第2の波長帯域と、を含む波長帯域の光を発する光源装置と、第1の蛍光物質が励起された際に発せられる第1の蛍光と、処置具に設けられた第2の蛍光物質が励起された際に発せられる第2の蛍光と、を撮像して蛍光画像を生成する撮像部と、第2の蛍光物質の形状に関する情報を含む形状情報が格納された情報格納部と、形状情報及び第2の蛍光の描画領域のサイズに基づいて算出した拡縮率と、第1の蛍光の描画領域のサイズと、に基づいて第1の蛍光の発生領域の実際のサイズを推定するための演算を行う演算部と、を有する。

Description

内視鏡装置及び医用システム
 本発明は、内視鏡装置及び医用システムに関し、特に、生体内の蛍光物質から発せられる蛍光を観察することが可能な内視鏡装置及び医用システムに関するものである。
 癌等の所定の病変において特異的に発現する生体タンパク質をターゲットとした蛍光薬剤を用いた診断手法が従来知られている。具体的には、例えば、蛍光薬剤が予め投与された生体内の被検部に対して励起光を照射し、当該励起光の照射に伴って当該被検部から発せられる蛍光を受光し、当該受光した蛍光に基づいて生成される蛍光画像により当該被検部における病変の有無等の診断を行う、という診断手法が従来知られている。
 一方、例えば日本国特開2011-136005号公報には、医用システムにおいて、被検部の近傍に設置される処置具に設けられたマークの像を撮像し、当該撮像したマーク画像の大きさに基づいて当該被検部と内視鏡挿入部先端との距離情報を取得する技術が開示されている。
 ところで、前述の蛍光画像においては、例えば被検部の周辺に存在する粘膜等のような、当該被検部に含まれる組織以外の対象物を略視認できないことに起因し、当該被検部における蛍光の発生状態が病変の状態を知るための略唯一の有意な情報として扱われる。
 従って、例えば、前述の蛍光画像に含まれる病変に対して処置が行われるような場合においては、当該病変の実際のサイズを推定することが困難であるため、当該病変に対する処置に適した処置具が選択されず、結果的に、当該病変に対する処置が長時間化してしまう、という課題が従来生じている。
 一方、日本国特開2011-136005号公報には、前述の蛍光画像に含まれる病変の実際のサイズを推定するための構成等について特に言及等されておらず、すなわち、当該病変に対する処置が長時間化してしまう、という課題が依然として生じている。
 本発明は、前述した事情に鑑みてなされたものであり、蛍光画像に含まれる病変に対する処置の際に費やされる時間を従来に比べて短縮することができるとともに、病変の大きさに応じた好適な処置の実施を可能とする内視鏡装置及び医用システムを提供することを目的としている。
 本発明の一態様の内視鏡装置は、体腔内の被検部に集積する第1の蛍光物質を励起するための第1の波長帯域と、前記第1の波長帯域とは異なる第2の波長帯域と、を含む波長帯域の励起光を発する光源装置と、前記被検部に集積した前記第1の蛍光物質が前記第1の波長帯域の光により励起された際に発せられる第1の蛍光と、前記被検部の処置を行う処置具に設けられた第2の蛍光物質が前記第2の波長帯域の光により励起された際に発せられる第2の蛍光と、を撮像して蛍光画像を生成することができるように構成された撮像部と、前記第2の蛍光物質の形状に関する情報を含む形状情報が格納された情報格納部と、前記形状情報と、前記蛍光画像内における前記第2の蛍光の描画領域のサイズと、に基づいて拡縮率を算出する演算を行い、さらに、当該算出した拡縮率と、前記蛍光画像内における前記第1の蛍光の描画領域のサイズと、に基づいて前記第1の蛍光の発生領域の実際のサイズを推定するための演算を行う演算部と、を有する。
 本発明の一態様の医用システムは、体腔内の被検部に集積する第1の蛍光物質を励起するための第1の波長帯域と、前記第1の波長帯域とは異なる第2の波長帯域と、を含む波長帯域の励起光を発する光源装置と、前記第2の波長帯域の光により励起される第2の蛍光物質を具備し、前記被検部の処置を行うことができるように構成された処置具と、前記励起光の照射に伴い、前記被検部に集積した前記第1の蛍光物質から発せられる第1の蛍光と、前記被検部の近傍に配置された前記第2の蛍光物質から発せられる第2の蛍光と、を撮像して蛍光画像を生成することができるように構成された撮像部と、前記第2の蛍光物質の形状に関する情報を含む形状情報が格納された情報格納部と、前記形状情報と、前記蛍光画像内における前記第2の蛍光の描画領域のサイズと、に基づいて拡縮率を算出する演算を行い、さらに、当該算出した拡縮率と、前記蛍光画像内における前記第1の蛍光の描画領域のサイズと、に基づいて前記第1の蛍光の発生領域の実際のサイズを推定するための演算を行う演算部と、を有する。
本発明の実施例に係る内視鏡装置の要部の構成の一例を示す図。 本実施例に係る撮像ユニットの構成の一例を示す図。 本実施例に係る画像処理装置及び光源装置の構成の一例を示す図。 本実施例に係る鉗子の構成の一例を示す図。 図4の鉗子における処置部周辺の構成の一例を示す図。 本実施例に係る硬質挿入部及び鉗子を体腔内に挿入して被検部の処置を行う場合の一例を示す図。 本実施例に係る画像処理装置における処理に用いられる蛍光画像の一例を示す図。 本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の一例を示す図。 本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8とは異なる例を示す図。 本実施例に係る画像処理装置の処理に用いられるテーブルデータの一例を示す図。 本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8及び図9とは異なる例を示す図。 本実施例に係る画像処理装置における処理に用いられる蛍光画像の、図7とは異なる例を示す図。 本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8、図9及び図11とは異なる例を示す図。 本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8、図9、図11及び図13とは異なる例を示す図。
 以下、本発明の実施の形態について、図面を参照しつつ説明を行う。
 図1から図14は、本発明の実施例に係るものである。図1は、本発明の実施例に係る内視鏡装置の要部の構成の一例を示す図である。
 内視鏡装置1は、図1に示すように、蛍光観察用の励起光及び白色光観察用の白色光を照明光として供給可能な光源装置2と、光源装置2から供給された照明光を被写体へ照射し、当該照明光の照射に伴って当該被写体から発せられる戻り光を撮像し、当該撮像した戻り光に応じた画像を出力する硬性鏡撮像装置10と、硬性鏡撮像装置10から出力された画像に対して種々の処理を施す画像処理装置3と、画像処理装置3により処理が施された画像等を表示するモニタ4と、を有して構成されている。
 硬性鏡撮像装置10は、図1に示すように、体腔内に挿入される硬質挿入部30と、硬質挿入部30により導光された被写体の戻り光を撮像する撮像ユニット20と、を有して構成されている。また、硬性鏡撮像装置10は、図1に示すように、光ケーブルLCを介して光源装置2と硬質挿入部30とを接続できるように構成されているとともに、ケーブル5を介して画像処理装置3と撮像ユニット20とを接続できるように構成されている。
 硬質挿入部30は、被検者の体腔内に挿入可能な細長の円柱形状を具備して構成されている。また、硬質挿入部30の後端部には、撮像ユニット20及び光ケーブルLCをそれぞれ着脱自在に接続するための接続部材(図示せず)が設けられている。
 一方、硬質挿入部30には、図示しないが、光ケーブルLCを介して光源装置2から供給された照明光を硬質挿入部30の先端部へ伝送するように構成されたライトガイド、当該ライトガイドにより伝送された照明光を硬質挿入部30の先端部から被写体へ照射するように構成された照明窓、及び、当該照明光の照射に伴って当該被写体から発せられる戻り光を硬質挿入部30の後端部へ導光するように構成されたレンズ群がそれぞれ設けられている。
 図2は、本実施例に係る撮像ユニットの構成の一例を示す図である。
 撮像ユニット20は、図2に示すように、蛍光観察時に硬質挿入部30内のレンズ群により導光された戻り光としての蛍光を撮像して蛍光画像を生成する蛍光撮像系と、白色光観察時に硬質挿入部30内のレンズ群により導光された戻り光としての白色光の反射光を撮像して白色光画像を生成する白色光撮像系と、を具備している。そして、蛍光撮像系及び白色光撮像系は、白色光を反射しかつ蛍光を透過させるような分光特性を有するダイクロイックプリズム21により、互いに直交する2つの光軸に分けられている。
 撮像ユニット20の蛍光撮像系は、光源装置2から発せられる励起光の波長帯域(後述の波長帯域EW1及びEW2)と同じ波長帯域の光をカットするような分光特性を備えた励起光カットフィルタ22と、ダイクロイックプリズム21および励起光カットフィルタ22を透過した蛍光を結像する結像光学系23と、結像光学系23により結像された蛍光を撮像する撮像素子24と、を備えている。
 撮像素子24は、モノクロの高感度撮像素子であり、結像光学系23により結像された蛍光を撮像し、当該撮像した蛍光に応じた蛍光画像を生成して出力する。
 また、撮像ユニット20の白色光撮像系は、ダイクロイックプリズム21により反射された白色光を結像する結像光学系25と、結像光学系25により結像された白色光を撮像する撮像素子26と、を備えている。
 撮像素子26は、撮像面にRGBのカラーフィルタを設けて構成されており、結像光学系25により結像された白色光を撮像し、当該撮像した白色光に応じた白色光画像を生成して出力する。
 一方、撮像ユニット20は、撮像素子24から出力される蛍光画像及び撮像素子26から出力される白色光画像に対して所定の信号処理(相関二重サンプリング処理、ゲイン調整処理、及び、A/D変換処理)を施し、さらに、当該所定の信号処理を施した蛍光画像及び白色光画像を、(ケーブル5を介して)画像処理装置3へ出力する信号処理部27を具備している。
 図3は、本実施例に係る画像処理装置及び光源装置の構成の一例を示す図である。
 画像処理装置3は、図3に示すように、白色光画像入力コントローラ31と、蛍光画像入力コントローラ32と、画像処理部33と、メモリ34と、表示制御部35と、入力操作部36と、TG(タイミングジェネレータ)37と、CPU38と、情報格納部39と、を有して構成されている。
 白色光画像入力コントローラ31は、所定容量のラインバッファを具備し、撮像ユニット20の信号処理部27から出力される1フレーム毎の白色光画像を一時的に記憶できるように構成されている。そして、白色光画像入力コントローラ31に記憶された白色光画像は、画像処理装置3内のバスBSを介してメモリ34に格納される。
 蛍光画像入力コントローラ32は、所定容量のラインバッファを具備し、撮像ユニット20の信号処理部27から出力される1フレーム毎の蛍光画像を一時的に記憶できるように構成されている。そして、蛍光画像入力コントローラ32に記憶された蛍光画像は、バスBSを介してメモリ34に格納される。
 画像処理部33は、メモリ34に格納された画像を読み出し、当該読み出した画像に対して所定の画像処理を施してバスBSへ出力するように構成されている。
 表示制御部35は、CPU38の制御等に応じた種々の処理を画像処理部33から出力される画像に施して映像信号を生成し、当該生成した映像信号をモニタ4へ出力するように構成されている。
 入力操作部36は、術者等の入力操作に応じた種々の指示をCPU38に対して行うことが可能な種々の入力インターフェースを具備して構成されている。具体的には、入力操作部36は、例えば、白色光観察と蛍光観察とを切り替える指示を行うことが可能な観察モード切替スイッチ等を具備して構成されている。
 TG37は、撮像ユニット20の撮像素子24及び26を駆動するための駆動パルス信号を出力するように構成されている。
 CPU38は、入力操作部36においてなされた指示等に応じた種々の制御及び処理を行うように構成されている。
 CPU38は、入力操作部36の観察モード切替スイッチにおいて白色光観察の実施に係る指示がなされたことを検出した場合には、撮像ユニット20の撮像素子26を駆動させるとともに、撮像素子24を駆動停止させるような制御をTG37に対して行う。また、CPU38は、入力操作部36の観察モード切替スイッチにおいて白色光観察の実施に係る指示がなされたことを検出した場合には、光源装置2の白色光源40を発光させるとともに、励起光源44を消光させるような制御を行う。
 CPU38は、入力操作部36の観察モード切替スイッチにおいて蛍光観察の実施に係る指示がなされたことを検出した場合には、撮像ユニット20の撮像素子24を駆動させるとともに、撮像素子26を駆動停止させるような制御をTG37に対して行う。また、CPU38は、入力操作部36の観察モード切替スイッチにおいて蛍光観察の実施に係る指示がなされたことを検出した場合には、光源装置2の励起光源44を駆動させるとともに、励起光源44を駆動停止させるような制御を行う。
 CPU38は、蛍光観察時において、画像処理部33により所定の画像処理が施された蛍光画像と、情報格納部39に格納された情報と、に基づき、蛍光観察を支援するための観察支援情報を取得する処理を行うとともに、当該取得した観察支援情報をモニタ4に表示させるための制御を表示制御部35に対して行うように構成されている。なお、このような観察支援情報の取得に係る処理の詳細については、後程説明する。
 情報格納部39には、CPU38が観察支援情報の取得に係る処理を行う際に用いる種々の情報(後述)が予め格納されている。
 一方、光源装置2は、図3に示すように、広帯域な白色光を発するキセノンランプ等により構成された白色光源40と、白色光源40から発せられた白色光を集光する集光レンズ42と、集光レンズ42により集光された白色光を透過させ、後述する励起光を反射し、さらに、当該白色光及び当該励起光を光ケーブルLCの入射端に入射させるように構成されたダイクロイックミラー43と、を具備している。また、白色光源40と集光レンズ42との間には、絞り制御部48の制御に応じた絞り量となるように動作する絞り41が設けられている。
 また、光源装置2は、図3に示すように、被検者に投与される蛍光薬剤を励起するための波長帯域EW1と、後述の鉗子6の所定の位置に設けられた蛍光体161を励起するための波長帯域EW2と、を含む波長帯域の励起光を発するように構成された励起光源44と、励起光源44から発せられた励起光を集光する集光レンズ45と、集光レンズ45により集光された励起光をダイクロイックミラー43に向けて反射するミラー46と、を具備している。なお、本実施例においては、波長帯域EW1と波長帯域EW2とが相互に異なる(重複しない)ものとする。
 すなわち、以上に述べたような構成を具備する内視鏡装置1によれば、入力操作部36において白色光観察の実施に係る指示がなされた場合(白色光観察時)には、白色光画像に応じた白色光画像(カラー画像)がモニタ4に表示される。また、以上に述べたような構成を具備する内視鏡装置1によれば、入力操作部36において蛍光観察の実施に係る指示がなされた場合(蛍光観察時)には、蛍光画像に応じた蛍光画像(モノクロ画像)と、CPU38の処理により取得された観察支援情報と、がモニタ4に併せて表示される。
 なお、本実施例の内視鏡装置1は、白色光画像及び蛍光画像を取得できるような構成を具備するものに限らず、例えば、蛍光画像のみを取得できるような構成を具備するものであってもよい。
 ところで、本実施例においては、被検者の体腔内の被検部に対する処置が行われる際に、例えば図4に示すような鉗子6が内視鏡装置1に併せて用いられる。図4は、本実施例に係る鉗子の構成の一例を示す図である。
 鉗子6は、図4に示すように、組織の把持等により被検部の処置を行うことができるように構成された処置部6aと、細長の円柱形状を具備する柄部6bと、処置部6aを動作させるための操作を行うことが可能な操作部6cと、を先端側から順に連設して形成されている。図5は、図4の鉗子における処置部周辺の構成の一例を示す図である。
 また、柄部6bの先端部における処置部6aの近傍の外周面上には、所定の形状を具備し、光源装置2から発せられる励起光に含まれる波長帯域EW2の光により励起される蛍光体161が設けられている。具体的には、蛍光体161は、例えば図5に示すような、実長(実寸)WSの幅の帯形状を具備して設けられている。
 なお、本実施例においては、被検者に予め投与された蛍光薬剤が波長帯域EW1の光で励起された際に発せられる蛍光の波長帯域(以降、波長帯域FW1とも称する)と、鉗子6の蛍光体161が波長帯域EW2の光で励起された際に発せられる蛍光の波長帯域(以降、波長帯域FW2とも称する)と、が相互に異なる(重複しない)ものとする。また、本実施例においては、波長帯域FW1及びFW2の蛍光が励起光カットフィルタ22によりカットされないように、各波長帯域が設定されているものとする。
 次に、本実施例の作用について説明する。なお、以降においては、簡単のため、蛍光観察時の処理及び動作についての具体的な説明を行うとともに、白色光観察時の処理及び動作については適宜省略しつつ説明を進める。また、以降においては、簡単のため、波長帯域EW1の光により励起される蛍光薬剤が被検者に対して予め投与され、さらに、当該投与された蛍光薬剤が被検部(に存在する病変部)において十分集積しているものとして説明を進める。
 まず、術者等は、図1に例示したように内視鏡装置1の各部を接続し、当該各部の電源を投入し、さらに、入力操作部36の観察モード切替スイッチにおいて白色光観察の実施に係る指示を行う。図6は、硬質挿入部及び鉗子を体腔内に挿入して被検部の処置を行う場合の一例を示す図である。
 その後、術者等は、モニタ4に表示される白色光画像を確認しながら、被検者の体壁の相互に異なる位置に設置したトロッカー(図示せず)を介し、当該被検者の体腔内へ硬質挿入部30及び鉗子6を挿入するとともに、例えば図6に示すように、当該体腔内の被検部が存在する臓器に硬質挿入部30の先端部及び鉗子6の処置部6aを近づけてゆく。図7は、本実施例に係る画像処理装置における処理に用いられる蛍光画像の一例を示す図である。
 さらに、術者等は、例えば図7に示すような、被検部と鉗子6の蛍光体161とを含む白色光画像をモニタ4に表示可能な位置に硬質挿入部30の先端部を移動させた後、入力操作部36の観察モード切替スイッチにおいて蛍光観察の実施に係る指示を行う。
 そして、このような蛍光観察の実施に係る指示に伴い、硬質挿入部30の先端部から被検部へ波長帯域EW1及びEW2を具備する励起光(照明光)が照射され、当該励起光の照射に伴い、当該被検部の蛍光薬剤が集積した領域(以降、単に蛍光領域とも称する)から波長帯域FW1の蛍光が発せられ、当該被検部の近傍に配置された蛍光体161から波長帯域FW2の蛍光が発せられ、波長帯域FW1及びFW2を具備する蛍光(戻り光)が導光されて撮像ユニット20に入射される。
 撮像ユニット20は、硬質挿入部30により導光された蛍光を撮像して蛍光画像を生成し、当該生成した蛍光画像に所定の信号処理を施して画像処理装置3へ出力する。
 蛍光画像入力コントローラ32は、撮像ユニット20から出力される1フレーム毎の蛍光画像を一時的に記憶する。そして、蛍光画像入力コントローラ32に記憶された蛍光画像は、バスBSを介してメモリ34に格納される。
 画像処理部33は、メモリ34に格納された蛍光画像を読み出し、当該読み出した蛍光画像に対して所定の画像処理を施してバスBSへ出力する。
 ここで、画像処理部33により所定の画像処理が施された時点においては、例えば図7に示すような、蛍光領域における波長帯域FW1の蛍光の発生状態と、(帯形状で描画された)蛍光体161における波長帯域FW2の蛍光の発生状態と、をそれぞれ視認できる一方で、これら以外の対象物を略視認できない蛍光画像が取得される。なお、図7においては、蛍光画像が可視化された際に略視認できない対象物である処置部6a及び柄部6bを、便宜上点線で示している。
 一方、CPU38は、蛍光薬剤から発せられる蛍光の波長帯域FW1の情報と、蛍光体161から発せられる蛍光の波長帯域FW2の情報と、蛍光体161の2次元形状及び当該2次元形状における実際のサイズ(例えば実長WSの値)を含む形状情報と、を情報格納部39から読み込み、当該読み込んだ各情報と、画像処理部33から出力される蛍光画像と、に基づく処理を行うことにより、蛍光観察を支援するための観察支援情報を取得する。すなわち、本実施例においては、蛍光薬剤から発せられる蛍光の波長帯域FW1の情報と、蛍光体161から発せられる蛍光の波長帯域FW2の情報と、蛍光体161の2次元形状及び当該2次元形状における実際のサイズ(例えば実長WSの値)を含む形状情報と、が情報格納部39に予め格納されている。
 ここで、CPU38による観察支援情報の取得に係る具体的な処理について、図7に示した蛍光画像を当該処理に用いた場合を例に挙げて説明する。
 まず、CPU38は、蛍光薬剤から発せられる蛍光の波長帯域FW1の情報と、蛍光体161から発せられる蛍光の波長帯域FW2の情報と、蛍光体161の2次元形状及び当該2次元形状における所定の実長の値(例えば実長WSの値)を含む蛍光体161の形状情報と、に基づき、蛍光画像内における相対的に高輝度な(明るい)領域のうち、当該形状情報に一致または略一致する形状で描画された領域を蛍光体161の描画領域として検出し、さらに、当該形状情報に対して大きく異なる形状で描画された領域を蛍光領域の描画領域として検出する。
 次に、CPU38は、蛍光体161の形状情報と、蛍光画像内における蛍光体161の描画領域の検出結果と、に基づき、蛍光画像内に描画された蛍光体161の描画幅WA(図7参照)を算出し、さらに、当該算出した描画幅WAから実長WSを除する演算(WA/WS)を行うことにより拡縮率RAの値を求める。すなわち、前述の拡縮率RAは、実際の蛍光体161のサイズを基準として蛍光画像内の蛍光体161のサイズを規格化した値、または、実際の蛍光体161のサイズを1とした場合における蛍光画像内の蛍光体161の描画倍率に相当する値として算出される。
 一方、CPU38は、蛍光画像内における蛍光領域の描画領域の検出結果に基づき、当該蛍光領域の横方向(水平方向)の描画幅LXと、当該蛍光領域の縦方向の描画幅LYと、を算出する。
 また、CPU38は、描画幅LXに拡縮率RAを乗ずる演算(LX×RA)を行うことにより得られる横幅SXの値を、蛍光領域(病変部)の横幅の実長の推定値として算出し、描画幅LYに拡縮率RAを乗ずる演算(LY×RA)を行うことにより得られる縦幅SYの値を、蛍光領域(病変部)の縦幅の実長の推定値として算出する。すなわち、CPU38は、前述のような演算を行って算出した(観察支援情報としての)横幅SX及び縦幅SYの値により、蛍光領域(病変部)の実際のサイズを推定する。
 その後、CPU38は、前述のように取得した横幅SX及び縦幅SYを画像処理部33から出力される蛍光画像に併せて表示させる制御を表示制御部35に対して行う。図8は、本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の一例を示す図である。
 表示制御部35は、CPU38の制御に基づき、横幅SX及び縦幅SYの値を示す情報を画像処理部33から出力される蛍光画像に重畳して映像信号を生成し、当該生成した映像信号をモニタ4へ出力する。そして、このような表示制御部35の動作により、例えば、図8に示すような表示態様を具備する観察画像がモニタ4に表示される。なお、図8においては、モニタ4の画面上で略視認できない対象物である処置部6a及び柄部6bを、便宜上点線で示している。
 図8に例示した表示態様の観察画像によれば、画像処理部33から出力される蛍光画像に併せ、横幅SXの値を示す情報が「横=○mm」としてモニタ4に表示され、さらに、縦幅SYの値を示す情報が「横=△mm」としてモニタ4に表示される。すなわち、術者等は、図8に示したようにモニタ4に表示される観察画像を確認することにより、蛍光領域(病変部)の実際のサイズを推定することができ、さらに、蛍光領域(病変部)の実際のサイズに適した鉗子を使用しているか否かを容易に判断できる。その結果、蛍光画像に含まれる病変に対する処置の際に費やされる時間を、従来に比べて短縮することができる。また、術者等は、図8に示したようにモニタ4に表示される観察画像を確認することにより、蛍光領域(病変部)の実際の大きさを容易に推定することができる。その結果、蛍光領域(病変部)の大きさに応じた好適な処置の実施が可能となる。
 なお、CPU38は、横幅SX及び縦幅SYの値を観察支援情報として取得するものに限らず、例えば、蛍光領域の輝度値の平均値と硬質挿入部30の先端部からの実際の距離との相関を示すテーブルデータTB1と、蛍光体161の輝度値の平均値と硬質挿入部30の先端部からの実際の距離との相関を示すテーブルデータTB2と、が情報格納部39に予め格納されている場合において、蛍光領域と蛍光体161との間の実際の距離の推定値に相当する距離SZの値を観察支援情報としてさらに取得するものであってもよい。
 具体的には、CPU38は、画像処理部33から出力される蛍光画像内における蛍光領域の描画領域の検出結果に基づき、当該検出結果として得られた描画領域の輝度値の平均値を算出し、さらに、当該算出した輝度値の平均値と前述のテーブルデータTB1とを比較して得た比較結果に基づき、当該算出した輝度値の平均値に相当する硬質挿入部30の先端部からの距離L1を取得する。
 また、CPU38は、画像処理部33から出力される蛍光画像内における蛍光体161の描画領域の検出結果に基づき、当該検出結果として得られた描画領域の輝度値の平均値を算出し、さらに、当該算出した輝度値の平均値と前述のテーブルデータTB2とを比較して得た比較結果に基づき、当該算出した輝度値の平均値に相当する硬質挿入部30の先端部からの距離L2を取得する。
 そして、CPU38は、距離L1の値から距離L2の値を減ずる演算(L1-L2)を行うことにより得られる距離SZの値を、蛍光領域と蛍光体161との間における実際の距離の推定値として算出する。すなわち、CPU38は、前述のような演算を行って算出した(観察支援情報としての)距離SZの値により、蛍光領域と蛍光体161との間における実際の距離を推定する。
 なお、CPU38は、前述のテーブルデータTB1及びTB2を用いて距離SZの値を算出するための演算を行うものに限らず、例えば、蛍光領域の描画領域の輝度値の平均値と、蛍光体161の描画領域の輝度値の平均値と、を比較して得た比較結果に基づいて距離SZの値を算出するための演算を行うものであってもよい。そして、このような演算によれば、例えば、前述の2種類の輝度値の平均値同士が相対的に近づくにつれ、距離SZとして得られる値が0に近くなり、前述の2種類の輝度値の平均値同士が相対的に離れるにつれ、距離SZとして得られる値が0から遠ざかる。
 一方、CPU38は、横幅SXと、縦幅SYと、距離SZと、を画像処理部33から出力される蛍光画像に併せて表示させる制御を表示制御部35に対して行う。図9は、本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8とは異なる例を示す図である。
 表示制御部35は、CPU38の制御に基づき、横幅SX、縦幅SY及び距離SZを画像処理部33から出力される蛍光画像に重畳して映像信号を生成し、当該生成した映像信号をモニタ4へ出力する。そして、このような表示制御部35の動作により、例えば、図9に示すような表示態様を具備する観察画像がモニタ4に表示される。なお、図9においては、モニタ4の画面上で略視認できない対象物である処置部6a及び柄部6bを、便宜上点線で示している。
 図9に例示した表示態様の観察画像によれば、画像処理部33から出力される蛍光画像に併せ、横幅SXを示す情報が「横=○mm」としてモニタ4に表示され、縦幅SYを示す情報が「横=△mm」としてモニタ4に表示され、さらに、距離SZを示す情報が「距離=□cm」としてモニタ4に表示される。すなわち、術者等は、図9に示したようにモニタ4に表示される観察画像を確認することにより、蛍光領域(病変部)の実際のサイズを精度よく推定することができ、さらに、蛍光領域(病変部)の実際のサイズに適した鉗子を使用しているか否かを容易に判断できる。その結果、蛍光画像に含まれる病変に対する処置の際に費やされる時間を、従来に比べて短縮することができる。また、術者等は、図9に示したようにモニタ4に表示される観察画像を確認することにより、蛍光領域(病変部)の実際の大きさを容易に推定することができる。その結果、蛍光領域(病変部)の大きさに応じた好適な処置の実施が可能となる。
 なお、CPU38は、横幅SX及び縦幅SYを観察支援情報として取得するものに限らず、例えば、前述のように算出した拡縮率RAと、蛍光画像内における蛍光領域の描画領域の検出結果と、に基づき、実際の蛍光領域のサイズの推定に利用可能な種々の情報を観察支援情報としてさらに取得するものであってもよい。
 具体的には、CPU38は、例えば、前述のように算出した拡縮率RAと、蛍光画像内における蛍光領域の描画領域の検出結果と、に基づく演算により取得される、実際の蛍光領域の面積の推定値、長軸方向の幅の推定値、短軸方向の幅の推定値、中心点の推定位置、及び、重心点の推定位置のうちのいずれか1つの情報を、実際の蛍光領域のサイズの推定に利用可能な観察支援情報としてさらに取得するものであってもよい。
 図10は、本実施例に係る画像処理装置の処理に用いられるテーブルデータの一例を示す図である。
 なお、CPU38は、例えば図10のような、蛍光体161の形状情報と、蛍光体161から発せられる蛍光の波長帯域FW2の情報と、の対応関係を複数の鉗子の種類毎に関連付けたテーブルデータTB3が情報格納部39に予め格納されている場合において、当該テーブルデータTB3と蛍光体161の描画領域の検出結果とに基づいて蛍光画像内に含まれるものと推定される鉗子6の種類及び実サイズを識別し、当該識別した結果に応じた観察支援情報を取得するものであってもよい。図10は、蛍光体161の形状(形状情報)と鉗子6の種類とが対応関係にあり、かつ、蛍光体161の蛍光波長帯域(波長帯域FW2)と鉗子6の実際の直径(柄部6bの実際の太さ)とが対応関係にある場合のテーブルデータTB3の一例を示している。
 さらに、CPU38は、前述のテーブルデータTB3と蛍光体161の描画領域の検出結果とに基づいて蛍光画像内に含まれるものと推定される鉗子6の種類及び実サイズを識別し、さらに、当該識別した鉗子6の実サイズが横幅SX及び縦幅SYに対して大きく異なることを検出した際に、(現在使用中の)当該鉗子6を他の鉗子に交換することにより処置効率が向上する旨を術者等に報知する文字列等を表示させるような制御を表示制御部35に対して行うものであってもよい。
 図11は、本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8及び図9とは異なる例を示す図である。
 一方、CPU38は、例えば、蛍光体161の形状情報と、蛍光体161から発せられる蛍光の波長帯域FW2の情報と、蛍光体161が設けられた鉗子の外観形状と、当該鉗子の外観形状における蛍光体161の配置位置と、の対応関係を複数の各鉗子毎に関連付けたテーブルデータTB4が情報格納部39に予め格納されている場合において、当該テーブルデータTB4と蛍光体161の描画領域の検出結果とに基づいて蛍光画像内に含まれるものと推定される鉗子6の種類、実サイズ及び向きを識別し、当該識別した結果に応じた鉗子6の外観形状の仮想画像を表示させるような制御を表示制御部35に対して行うものであってもよい。そして、このような制御が行われることにより、例えば図11に示すような、蛍光領域の位置に対する処置部6aの位置を推定可能な観察画像がモニタ4に表示される。
 なお、CPU38は、例えば、蛍光領域及び蛍光体161のうちの少なくとも一方(の描画領域)が蛍光画像内に複数存在することを検出した場合において、当該検出した各蛍光領域及び(または)各蛍光体161に対して1、2、3、・・・等の番号をそれぞれ付与する処理と、当該検出した各蛍光領域及び(または)各蛍光体161に対してA、B、C、・・・等の符号(名称)をそれぞれ付与して付与する処理と、当該検出した各蛍光領域及び(または)各蛍光体161を所定の条件に適合する順にランク付けする処理と、のうちの少なくとも1つを行うものであってもよい。
 また、CPU38は、例えば、蛍光領域及び蛍光体161のうちの少なくとも一方(の描画領域)が蛍光画像内に複数存在することを検出した場合において、当該検出した各蛍光領域及び(または)各蛍光体161の中から所定の条件に適合するもののみを表示させるような制御を表示制御部35に対して行うものであってもよい。図12は、本実施例に係る画像処理装置における処理に用いられる蛍光画像の、図7とは異なる例を示す図である。図13は、本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8、図9及び図11とは異なる例を示す図である。
 具体的には、CPU38は、例えば、図12に示すような蛍光画像(観察画像)内の複数の蛍光領域F1~F7について縦幅SYをそれぞれ算出し、当該算出した縦幅SYが所定値以上のもののみ(図12においてはF1及びF6のみ)を表示させるような制御を表示制御部35に対して行うことにより、図13に示すような蛍光画像(観察画像)をモニタ4に表示させるようにしてもよい。なお、図12及び図13においては、モニタ4の画面上で略視認できない対象物である処置部6a及び柄部6bを、便宜上点線で示している。
 なお、前述の所定の条件は、縦幅SYに基づくものに限らず、本実施例(及び変形例)において取得される各値(横幅SX及び輝度値等)のうちの少なくとも1つに基づいて設定してもよい。
 また、CPU38は、例えば、蛍光領域及び蛍光体161のうちの少なくとも一方(の描画領域)が蛍光画像内に複数存在することを検出した場合において、入力操作部36の入力操作により選択された所望の1つの蛍光領域または蛍光体161を所定の表示態様で表示させるような制御を表示制御部35に対して行うものであってもよい。図14は、本実施例に係る画像処理装置により処理が施された蛍光画像の表示態様の、図8、図9、図11及び図13とは異なる例を示す図である。
 具体的には、CPU38は、例えば、入力操作部36から出力される指示に基づき、図12に示すような蛍光画像(観察画像)内の複数の蛍光領域F1~F7の中から蛍光領域F5が選択されたことを検出すると、当該選択された蛍光領域F5を拡大表示させるような制御を表示制御部35に対して行うことにより、図14に示すような蛍光画像(観察画像)をモニタ4に表示させるようにしてもよい。
 なお、前述の所定の表示態様は、入力操作部36の入力操作により選択された所望の1つの蛍光領域または蛍光体161を拡大表示させるものに限らず、例えば、当該所望の1つの蛍光領域または蛍光体161をセンタリング表示させるものであってもよく、または、当該所望の1つの蛍光領域または蛍光体161を追尾表示させるものであってもよい。
 本発明は、上述した実施例及び変形例に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
 本出願は、2012年2月17日に日本国に出願された特願2012-32903号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (20)

  1.  体腔内の被検部に集積する第1の蛍光物質を励起するための第1の波長帯域と、前記第1の波長帯域とは異なる第2の波長帯域と、を含む波長帯域の励起光を発する光源装置と、
     前記被検部に集積した前記第1の蛍光物質が前記第1の波長帯域の光により励起された際に発せられる第1の蛍光と、前記被検部の処置を行う処置具に設けられた第2の蛍光物質が前記第2の波長帯域の光により励起された際に発せられる第2の蛍光と、を撮像して蛍光画像を生成することができるように構成された撮像部と、
     前記第2の蛍光物質の形状に関する情報を含む形状情報が格納された情報格納部と、
     前記形状情報と、前記蛍光画像内における前記第2の蛍光の描画領域のサイズと、に基づいて拡縮率を算出する演算を行い、さらに、当該算出した拡縮率と、前記蛍光画像内における前記第1の蛍光の描画領域のサイズと、に基づいて前記第1の蛍光の発生領域の実際のサイズを推定するための演算を行う演算部と、
     を有することを特徴とする内視鏡装置。
  2.  前記演算部は、前記蛍光画像内における前記第1の蛍光の描画領域の輝度値と、前記蛍光画像内における前記第2の蛍光の描画領域の輝度値と、を比較して得た比較結果に基づき、前記第1の蛍光の発生領域と前記第2の蛍光物質との間の実際の距離を推定するための演算を行うことを特徴とする請求項1に記載の内視鏡装置。
  3.  前記情報格納部には、前記形状情報と、前記第2の蛍光の波長帯域と、が複数の処置具の種類毎に関連付けられたテーブルデータが格納されており、
     前記演算部は、前記テーブルデータに基づいて前記蛍光画像内に含まれるものと推定される前記処置具の種類を識別する
     ことを特徴とする請求項1に記載の内視鏡装置。
  4.  前記演算部は、前記テーブルデータに基づいて前記蛍光画像内に含まれるものと推定される前記処置具の種類を識別し、さらに、当該識別した結果に応じた前記処置具の外観形状の仮想画像を表示させるための制御を行う
     ことを特徴とする請求項3に記載の内視鏡装置。
  5.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から、所定の条件に適合するもののみを表示させるための制御を行う
     ことを特徴とする請求項1に記載の内視鏡装置。
  6.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から選択された所望の1つの描画領域を、所定の表示態様で表示させるための制御を行う
     ことを特徴とする請求項1に記載の内視鏡装置。
  7.  前記演算部は、前記第2の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から、所定の条件に適合するもののみを表示させるための制御を行う
     ことを特徴とする請求項1に記載の内視鏡装置。
  8.  前記演算部は、前記第2の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から選択された所望の1つの描画領域を、所定の表示態様で表示させるための制御を行う
     ことを特徴とする請求項1に記載の内視鏡装置。
  9.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域を所定の条件に適合する順にランク付けする処理、及び、当該検出した各描画領域に対して符号を付与する処理のうちの少なくとも一方の処理を行う
     ことを特徴とする請求項1に記載の内視鏡装置。
  10.  前記演算部は、前記第1の蛍光の発生領域の幅及び面積のうちの少なくともいずれか一方に関する値を取得する演算を行うことにより、前記第1の蛍光の発生領域の実際のサイズを推定する
     ことを特徴とする請求項1に記載の内視鏡装置。
  11.  体腔内の被検部に集積する第1の蛍光物質を励起するための第1の波長帯域と、前記第1の波長帯域とは異なる第2の波長帯域と、を含む波長帯域の励起光を発する光源装置と、
     前記第2の波長帯域の光により励起される第2の蛍光物質を具備し、前記被検部の処置を行うことができるように構成された処置具と、
     前記励起光の照射に伴い、前記被検部に集積した前記第1の蛍光物質から発せられる第1の蛍光と、前記被検部の近傍に配置された前記第2の蛍光物質から発せられる第2の蛍光と、を撮像して蛍光画像を生成することができるように構成された撮像部と、
     前記第2の蛍光物質の形状に関する情報を含む形状情報が格納された情報格納部と、
     前記形状情報と、前記蛍光画像内における前記第2の蛍光の描画領域のサイズと、に基づいて拡縮率を算出する演算を行い、さらに、当該算出した拡縮率と、前記蛍光画像内における前記第1の蛍光の描画領域のサイズと、に基づいて前記第1の蛍光の発生領域の実際のサイズを推定するための演算を行う演算部と、
     を有することを特徴とする医用システム。
  12.  前記演算部は、前記蛍光画像内における前記第1の蛍光の描画領域の輝度値と、前記蛍光画像内における前記第2の蛍光の描画領域の輝度値と、を比較して得た比較結果に基づき、前記第1の蛍光の発生領域と前記第2の蛍光物質との間の実際の距離を推定するための演算を行うことを特徴とする請求項11に記載の医用システム。
  13.  前記情報格納部には、前記形状情報と、前記第2の蛍光の波長帯域と、が複数の処置具の種類毎に関連付けられたテーブルデータが格納されており、
     前記演算部は、前記テーブルデータに基づいて前記蛍光画像内に含まれるものと推定される前記処置具の種類を識別する
     ことを特徴とする請求項11に記載の医用システム。
  14.  前記演算部は、前記テーブルデータに基づいて前記蛍光画像内に含まれるものと推定される前記処置具の種類を識別し、さらに、当該識別した結果に応じた前記処置具の外観形状の仮想画像を表示させるための制御を行う
     ことを特徴とする請求項13に記載の医用システム。
  15.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から、所定の条件に適合するもののみを表示させるための制御を行う
     ことを特徴とする請求項11に記載の医用システム。
  16.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から選択された所望の1つの描画領域を、所定の表示態様で表示させるための制御を行う
     ことを特徴とする請求項11に記載の医用システム。
  17.  前記演算部は、前記第2の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から、所定の条件に適合するもののみを表示させるための制御を行う
     ことを特徴とする請求項11に記載の医用システム。
  18.  前記演算部は、前記第2の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域の中から選択された所望の1つの描画領域を、所定の表示態様で表示させるための制御を行う
     ことを特徴とする請求項11に記載の医用システム。
  19.  前記演算部は、前記第1の蛍光の描画領域が前記蛍光画像内に複数存在することを検出した場合において、当該検出した各描画領域を所定の条件に適合する順にランク付けする処理、及び、当該検出した各描画領域に対して符号を付与する処理のうちの少なくとも一方の処理を行う
     ことを特徴とする請求項11に記載の医用システム。
  20.  前記演算部は、前記第1の蛍光の発生領域の幅及び面積のうちの少なくともいずれか一方に関する値を取得する演算を行うことにより、前記第1の蛍光の発生領域の実際のサイズを推定する
     ことを特徴とする請求項11に記載の医用システム。
PCT/JP2012/072768 2012-02-17 2012-09-06 内視鏡装置及び医用システム WO2013121610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12868476.8A EP2732752B1 (en) 2012-02-17 2012-09-06 Medical system
CN201280042226.7A CN103906458B (zh) 2012-02-17 2012-09-06 内窥镜装置和医用系统
JP2013528430A JP5444510B1 (ja) 2012-02-17 2012-09-06 内視鏡装置及び医用システム
US13/928,961 US8827896B2 (en) 2012-02-17 2013-06-27 Endoscope apparatus and medical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012032903 2012-02-17
JP2012-032903 2012-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/928,961 Continuation US8827896B2 (en) 2012-02-17 2013-06-27 Endoscope apparatus and medical system

Publications (2)

Publication Number Publication Date
WO2013121610A1 true WO2013121610A1 (ja) 2013-08-22
WO2013121610A8 WO2013121610A8 (ja) 2014-04-17

Family

ID=48983756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072768 WO2013121610A1 (ja) 2012-02-17 2012-09-06 内視鏡装置及び医用システム

Country Status (5)

Country Link
US (1) US8827896B2 (ja)
EP (1) EP2732752B1 (ja)
JP (1) JP5444510B1 (ja)
CN (1) CN103906458B (ja)
WO (1) WO2013121610A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137008A (ja) * 2015-01-26 2016-08-04 富士フイルム株式会社 内視鏡用のプロセッサ装置、及び作動方法、並びに制御プログラム
WO2016152346A1 (ja) * 2015-03-25 2016-09-29 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
WO2016157998A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
WO2017018126A1 (ja) * 2015-07-30 2017-02-02 オリンパス株式会社 内視鏡用カメラヘッド及びこれを有する内視鏡装置
US9715727B2 (en) 2012-02-23 2017-07-25 Smith & Nephew, Inc. Video endoscopic system
JP2020141728A (ja) * 2019-03-04 2020-09-10 株式会社島津製作所 イメージング装置およびイメージング方法
JP2021090781A (ja) * 2014-05-05 2021-06-17 バイカリアス サージカル インク. 仮想現実外科手術デバイス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180377A (ja) * 2013-03-19 2014-09-29 Canon Inc 内視鏡システム
DK3228254T3 (da) * 2014-02-21 2020-03-23 3Dintegrated Aps Sæt omfattende et kirurgisk instrument
US11020144B2 (en) 2015-07-21 2021-06-01 3Dintegrated Aps Minimally invasive surgery system
WO2017012624A1 (en) 2015-07-21 2017-01-26 3Dintegrated Aps Cannula assembly kit, trocar assembly kit, sleeve assembly, minimally invasive surgery system and method therefor
JP6138386B1 (ja) * 2015-09-18 2017-05-31 オリンパス株式会社 内視鏡装置及び内視鏡システム
DK178899B1 (en) 2015-10-09 2017-05-08 3Dintegrated Aps A depiction system
JPWO2018211885A1 (ja) * 2017-05-17 2020-03-19 ソニー株式会社 画像取得システム、制御装置及び画像取得方法
JP7320620B2 (ja) * 2019-12-26 2023-08-03 富士フイルム株式会社 内視鏡及び内視鏡システム
CN112807096A (zh) * 2021-02-23 2021-05-18 珠海维尔康生物科技有限公司 一种新型光学设计的荧光摄像头及其成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281105A (ja) * 1994-02-21 1995-10-27 Olympus Optical Co Ltd 内視鏡装置
JP2003111722A (ja) * 2001-10-03 2003-04-15 Pentax Corp 内視鏡用測長具
JP2008245838A (ja) * 2007-03-29 2008-10-16 Olympus Medical Systems Corp 内視鏡装置に搭載されるロボティクスアームシステム
JP2010259582A (ja) * 2009-05-01 2010-11-18 Olympus Medical Systems Corp 内視鏡システム
JP2011110272A (ja) * 2009-11-27 2011-06-09 Fujifilm Corp 内視鏡装置
JP2011136005A (ja) 2009-12-28 2011-07-14 Fujifilm Corp 内視鏡装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980763A (en) * 1989-06-12 1990-12-25 Welch Allyn, Inc. System for measuring objects viewed through a borescope
US5047848A (en) * 1990-07-16 1991-09-10 Welch Allyn, Inc. Elastomeric gage for borescope
US5202758A (en) * 1991-09-16 1993-04-13 Welch Allyn, Inc. Fluorescent penetrant measurement borescope
US5669871A (en) * 1994-02-21 1997-09-23 Olympus Optical Co., Ltd. Endoscope measurement apparatus for calculating approximate expression of line projected onto object to measure depth of recess or the like
US5573492A (en) * 1994-12-28 1996-11-12 Olympus America Inc. Digitally measuring scopes using a high resolution encoder
US5967968A (en) * 1998-06-25 1999-10-19 The General Hospital Corporation Apparatus and method for determining the size of an object during endoscopy
US20020026093A1 (en) * 2000-08-23 2002-02-28 Kabushiki Kaisha Toshiba Endscope system
US7922654B2 (en) * 2004-08-09 2011-04-12 Boston Scientific Scimed, Inc. Fiber optic imaging catheter
FR2868550B1 (fr) * 2004-04-02 2006-09-29 Tokendo Soc Par Actions Simpli Dispositif de metrologie par pointage laser pour sonde videoendoscopique
US20070161854A1 (en) * 2005-10-26 2007-07-12 Moshe Alamaro System and method for endoscopic measurement and mapping of internal organs, tumors and other objects
WO2008131093A2 (en) * 2007-04-17 2008-10-30 Fox Chase Cancer Center Method and apparatus for endoscopic examination of lesions
US7995798B2 (en) * 2007-10-15 2011-08-09 Given Imaging Ltd. Device, system and method for estimating the size of an object in a body lumen
TW201029620A (en) * 2009-02-06 2010-08-16 Medical Intubation Tech Corp Contact-type measurement endoscopic device
TW201245761A (en) * 2011-05-10 2012-11-16 Medical Intubation Tech Corp Endoscope capable of displaying scale for determining size of image-captured object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281105A (ja) * 1994-02-21 1995-10-27 Olympus Optical Co Ltd 内視鏡装置
JP2003111722A (ja) * 2001-10-03 2003-04-15 Pentax Corp 内視鏡用測長具
JP2008245838A (ja) * 2007-03-29 2008-10-16 Olympus Medical Systems Corp 内視鏡装置に搭載されるロボティクスアームシステム
JP2010259582A (ja) * 2009-05-01 2010-11-18 Olympus Medical Systems Corp 内視鏡システム
JP2011110272A (ja) * 2009-11-27 2011-06-09 Fujifilm Corp 内視鏡装置
JP2011136005A (ja) 2009-12-28 2011-07-14 Fujifilm Corp 内視鏡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732752A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715727B2 (en) 2012-02-23 2017-07-25 Smith & Nephew, Inc. Video endoscopic system
US10783626B2 (en) 2012-02-23 2020-09-22 Smith & Nephew, Inc. Video endoscopic system
US11744660B2 (en) 2014-05-05 2023-09-05 Vicarious Surgical Inc. Virtual reality surgical device
JP7260190B2 (ja) 2014-05-05 2023-04-18 バイカリアス サージカル インク. 仮想現実外科手術デバイス
JP2021090781A (ja) * 2014-05-05 2021-06-17 バイカリアス サージカル インク. 仮想現実外科手術デバイス
WO2016121556A1 (ja) * 2015-01-26 2016-08-04 富士フイルム株式会社 内視鏡用のプロセッサ装置、及びその作動方法、並びに制御プログラム
JP2016137008A (ja) * 2015-01-26 2016-08-04 富士フイルム株式会社 内視鏡用のプロセッサ装置、及び作動方法、並びに制御プログラム
JP2016182161A (ja) * 2015-03-25 2016-10-20 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
US10813541B2 (en) 2015-03-25 2020-10-27 Fujifilm Corporation Endoscopic diagnosis apparatus, image processing method, program, and recording medium
WO2016152346A1 (ja) * 2015-03-25 2016-09-29 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
JP2016189861A (ja) * 2015-03-31 2016-11-10 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
WO2016157998A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
JP6147455B1 (ja) * 2015-07-30 2017-06-14 オリンパス株式会社 内視鏡用カメラヘッド及びこれを有する内視鏡装置
US10376136B2 (en) 2015-07-30 2019-08-13 Olympus Corporation Camera head for endoscope and endoscope apparatus having the same
WO2017018126A1 (ja) * 2015-07-30 2017-02-02 オリンパス株式会社 内視鏡用カメラヘッド及びこれを有する内視鏡装置
JP2020141728A (ja) * 2019-03-04 2020-09-10 株式会社島津製作所 イメージング装置およびイメージング方法

Also Published As

Publication number Publication date
CN103906458A (zh) 2014-07-02
EP2732752A4 (en) 2015-07-08
CN103906458B (zh) 2016-03-09
EP2732752B1 (en) 2019-05-01
EP2732752A1 (en) 2014-05-21
WO2013121610A8 (ja) 2014-04-17
US8827896B2 (en) 2014-09-09
JP5444510B1 (ja) 2014-03-19
JPWO2013121610A1 (ja) 2015-05-11
US20130345513A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5444510B1 (ja) 内視鏡装置及び医用システム
JP5810248B2 (ja) 内視鏡システム
JP3853931B2 (ja) 内視鏡
JP5492030B2 (ja) 画像撮像表示装置およびその作動方法
WO2017159335A1 (ja) 医療用画像処理装置、医療用画像処理方法、プログラム
JP6013665B1 (ja) 診断支援装置及び診断支援情報表示方法
JP2012065698A (ja) 手術支援システムおよびそれを用いた手術支援方法
WO2018123613A1 (ja) 医療用画像処理装置、医療用画像処理方法、プログラム
JP2008161551A (ja) 蛍光内視鏡システム
JP6001219B1 (ja) 内視鏡システム
JP2007244746A (ja) 観察システム
JP7328432B2 (ja) 医療用制御装置、医療用観察システム、制御装置及び観察システム
JP2006223850A (ja) 電子内視鏡システム
JP2008043383A (ja) 蛍光観察内視鏡装置
JP4495513B2 (ja) 蛍光内視鏡装置
JP2008229026A (ja) 蛍光内視鏡装置
WO2012165370A1 (ja) 画像処理装置
JP2008086680A (ja) Pdt用内視鏡
JP2002238839A (ja) 内視鏡システム
WO2022059197A1 (ja) 生体組織の採取方法および生検支援システム
WO2022230040A1 (ja) 光治療装置、光治療方法および光治療プログラム
US20230347169A1 (en) Phototherapy device, phototherapy method, and computer-readable recording medium
JP2005040181A (ja) 自家蛍光観察装置
JP2004024392A (ja) 蛍光診断補助装置
JP2005342431A (ja) 光源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280042226.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013528430

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012868476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE