WO2016157998A1 - 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体 - Google Patents

内視鏡診断装置、画像処理方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2016157998A1
WO2016157998A1 PCT/JP2016/053120 JP2016053120W WO2016157998A1 WO 2016157998 A1 WO2016157998 A1 WO 2016157998A1 JP 2016053120 W JP2016053120 W JP 2016053120W WO 2016157998 A1 WO2016157998 A1 WO 2016157998A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
endoscopic image
image
size
pixel
Prior art date
Application number
PCT/JP2016/053120
Other languages
English (en)
French (fr)
Inventor
孝明 齋藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16771882.4A priority Critical patent/EP3278707B1/en
Publication of WO2016157998A1 publication Critical patent/WO2016157998A1/ja
Priority to US15/688,878 priority patent/US20170354315A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Definitions

  • the present invention relates to an endoscope diagnostic apparatus, an image processing method, a program, and a recording medium having a function of measuring the size of a lesioned part or the like when an endoscope scope is inserted into a subject for observation. is there.
  • An endoscopic diagnostic apparatus is used to observe the inside of the subject.
  • an endoscope scope is inserted into the body cavity of the subject, and, for example, white light is irradiated from the distal end portion onto the observation region, and the reflected light is received to receive the endoscope.
  • a mirror image is taken.
  • the captured endoscopic image is displayed on the display unit, and the endoscopic image is observed by the operator of the endoscopic diagnostic apparatus.
  • tumors that exceed a certain size (size) are excised and tumors smaller than that There is a demand to measure the size of the lesion for the purpose of preserving and watching the situation.
  • a method using a treatment tool such as a measure forceps for measuring the size of a lesion.
  • a measure forceps is inserted from the entrance of the forceps opening of the endoscope scope and protruded from the exit of the forceps opening at the distal end.
  • a scale for measuring the size is engraved on the tip of the measuring forceps. The flexible tip is pressed against the observation area, bent, and the scale engraved on the tip is read. The size of the tumor in the observation area is measured.
  • Patent Documents 1 and 2 there are Patent Documents 1 and 2 and the like.
  • Patent Document 1 relates to an endoscope apparatus.
  • a flow of water is output from the two openings at the distal end of the insertion portion of the endoscope to the lesion, and the distance between the two streams is equal to the distance between the two openings. It is described that it is determined whether or not the value is greater than or equal to the value.
  • Patent Document 2 relates to a robotics arm system mounted on an endoscope apparatus. This document describes that a plurality of measurement points are set around a lesion using a distal end of a treatment tool and the like, and the size of the lesion is obtained by calculation based on coordinate information of the measurement points. Yes.
  • the endoscope apparatus of Patent Document 1 a dedicated endoscope scope having two openings for outputting two water flows from the distal end portion of the insertion portion is necessary. There is a problem that the size of the part cannot be measured.
  • the endoscope apparatus of Patent Document 2 requires a robot arm in order to measure the size of a lesioned part, and further operates a complicated robot arm to set a plurality of measurement points around the lesioned part. There is a problem that it must be set.
  • An object of the present invention is to eliminate the problems of the prior art and to easily measure the size of a lesioned part or the like from an endoscopic image taken by a normal operation without performing a special operation.
  • a mirror diagnosis apparatus, an image processing method, a program, and a recording medium are provided.
  • the present invention provides an imaging unit having a plurality of pixels that capture an endoscopic image of a subject from the distal end of an endoscope scope; A display unit for displaying an endoscopic image; An input unit for receiving an instruction for designating a position on an endoscopic image input from an operator; An area detection unit that detects an area having a periodic structure of a biological tissue of a subject from a position on an endoscopic image in accordance with an instruction to specify a position; An imaging size calculation unit that calculates an imaging size on an endoscopic image of a period in a periodic structure of a biological tissue in units of pixels for an area having the periodic structure of the biological tissue; A size information holding unit for holding information representing the actual size of the period in the periodic structure of the biological tissue; A pixel size calculation unit that calculates an actual size corresponding to one pixel of the endoscopic image based on the imaging size and information representing the actual size; A scale generating unit that generates a scale representing the actual size of the subject on the endoscopic image based on the actual size
  • the imaging size calculation unit calculates the imaging size based on a ratio of pixel values of each pixel in a spectral image of different color components of the endoscope image.
  • the imaging size calculation unit calculates the imaging size based on the frequency characteristics of the pixel value distribution of each pixel in the region having the periodic structure of the biological tissue.
  • the frequency characteristic is a power spectrum.
  • the input unit receives an instruction to specify the positions of two points on the endoscopic image
  • the region detection unit detects a region between the two point positions on the endoscopic image as a region having a periodic structure of the biological tissue in response to an instruction for specifying the two point positions.
  • the imaging size calculation unit calculates a ratio of pixel values of each pixel in the spectral image of the two color components of the endoscopic image, sets a line area in an area between the positions of the two points, It is preferable to calculate the power spectrum of the ratio of the pixel values of each pixel, detect the frequency peak from the power spectrum, and calculate the imaging size according to the frequency peak interval.
  • the imaging size calculation unit calculates an average value of a plurality of frequency peak intervals on the line region, and sets the average value as the imaging size.
  • the imaging size calculation unit sets a plurality of line regions in the region between the positions of the two points, calculates an average value of the intervals of a plurality of frequency peaks on the line region for each line region, It is preferable to calculate an average value of frequency peak intervals in a plurality of line regions and set the average value of the average values as the imaging size.
  • the input unit further receives an instruction to start and end detection of a region having a periodic structure of biological tissue, respectively, before and after receiving an instruction to specify a position; It is preferable that the area detection unit starts the area detection in response to an instruction to start the area detection and ends the area detection in response to an instruction to end the area detection.
  • the input unit further receives an instruction to start detection of a region having a periodic structure of biological tissue before receiving an instruction to specify a position;
  • the region detection unit starts detection of the region in response to an instruction to start detection of the region, and after a predetermined time has elapsed since the endoscopic image and the scale are combined and displayed on the display unit, It is preferable to end the detection.
  • the periodic structure of the biological tissue is a microvascular network of the gland duct structure of the large intestine, and the period of the periodic structure of the biological tissue is the interval between the microvessels in the microvascular network of the gland duct structure of the large intestine. Preferably there is.
  • the periodic structure of the biological tissue is a microvascular network existing in the outermost layer of the mucosa of the esophagus
  • the periodicity in the periodic structure of the biological tissue is a microvessel in the microvascular network existing in the outermost layer of the mucosa of the esophagus. It is preferable that the distance is between them.
  • the size information holding unit holds information representing the actual size of the period in the periodic structure of the biological tissue of the subject;
  • An input unit receiving an instruction for designating a position on an endoscopic image input from an operator;
  • a region detecting unit detecting a region having a periodic structure of biological tissue from a position on an endoscopic image in response to an instruction to specify a position;
  • An imaging size calculation unit for an area having a periodic structure of biological tissue, calculating an imaging size on an endoscopic image of a period in the periodic structure of biological tissue in units of pixels;
  • a step in which a pixel size calculation unit calculates an actual size corresponding to one pixel of the endoscopic image based on the imaging size and information representing the actual size;
  • a scale generating unit generating a scale representing the actual size of the subject on the endoscopic image based on the actual size corresponding
  • the imaging size calculation unit calculates the imaging size based on a ratio of pixel values of each pixel in a spectral image of different color components of the endoscope image.
  • the imaging size calculation unit calculates the imaging size based on the frequency characteristics of the pixel value distribution of each pixel in the region having the periodic structure of the biological tissue.
  • the frequency characteristic is a power spectrum.
  • the input unit receives an instruction to specify the positions of two points on the endoscopic image
  • the region detection unit detects a region between the two point positions on the endoscopic image as a region having a periodic structure of the biological tissue in response to an instruction for specifying the two point positions.
  • the imaging size calculation unit calculates a ratio of pixel values of each pixel in the spectral image of the two color components of the endoscopic image, sets a line area in an area between the positions of the two points, It is preferable to calculate the power spectrum of the ratio of the pixel values of each pixel, detect the frequency peak from the power spectrum, and calculate the imaging size according to the frequency peak interval.
  • the imaging size calculation unit calculates an average value of a plurality of frequency peak intervals on the line region, and sets the average value as the imaging size.
  • the imaging size calculation unit sets a plurality of line regions in the region between the positions of the two points, calculates an average value of the intervals of a plurality of frequency peaks on the line region for each line region, It is preferable to calculate an average value of frequency peak intervals in a plurality of line regions and set the average value of the average values as the imaging size.
  • the present invention also provides a program for causing a computer to execute each step of the image processing method described above.
  • the present invention also provides a computer-readable recording medium on which a program for causing a computer to execute each step of the image processing method described above is recorded.
  • the present invention it is possible to easily reduce the size of a lesioned part or the like by using an endoscope image photographed by a normal operation, not an endoscope image photographed for measuring the size of a lesioned part or the like. It can be measured.
  • FIG. 1 is an external view of an embodiment showing a configuration of an endoscope diagnostic apparatus of the present invention. It is a block diagram showing the internal structure of the endoscope diagnostic apparatus shown in FIG. It is a conceptual diagram showing the structure of the front-end
  • FIG. 1 is an external view of an embodiment showing the configuration of the endoscope diagnosis apparatus of the present invention
  • FIG. 2 is a block diagram showing the internal configuration.
  • the endoscope diagnosis apparatus 10 shown in these drawings includes a light source device 12, an endoscope scope 14 that captures an endoscope image of an observation region of a subject using light emitted from the light source device 12, A processor device 16 that performs image processing on an endoscopic image captured by the endoscope scope 14, a display device 18 that displays an endoscopic image after image processing output from the processor device 16, and an input device that accepts an input operation 20.
  • the light source device 12 includes a light source control unit 22, a laser light source LD, and a coupler (branching filter) 26.
  • the laser light source LD emits a narrow band light having a central wavelength of 445 nm and having a certain blue wavelength range (for example, center wavelength ⁇ 10 nm).
  • the laser light source LD is a light source that emits excitation light for generating white light (pseudo white light) from a phosphor described later as illumination light, and is a light source control unit that is controlled by a control unit of the processor device 16 described later. On / off (lighting off / on) control and light amount control are performed by 22.
  • the laser light source LD a broad area type InGaN laser diode can be used, and an InGaNAs laser diode, a GaNAs laser diode, or the like can also be used.
  • the white light source for generating white light is not limited to the combination of excitation light and phosphor, and any light source that emits white light may be used.
  • a xenon lamp, a halogen lamp, a white LED (light emitting diode) Etc. can also be used.
  • the wavelength of the laser light emitted from the laser light source LD is not limited to the above example, and laser light having a wavelength that plays the same role can be selected as appropriate.
  • Laser light emitted from the laser light source LD is input to an optical fiber via a condensing lens (not shown), split into two systems of light by the coupler 26, and transmitted to the connector portion 32A.
  • the coupler 26 includes a half mirror, a reflection mirror, and the like.
  • the endoscope scope 14 includes an illumination optical system that emits two systems (two lights) of illumination light from the distal end surface of the endoscope insertion portion that is inserted into the subject, and an endoscope in the observation region.
  • An electronic endoscope having an imaging optical system of one system (one eye) that captures an image.
  • the endoscope scope 14 includes an endoscope insertion unit 28, an operation unit 30 that performs an operation for bending and observing the distal end of the endoscope insertion unit 28, and the endoscope scope 14 with the light source device 12 and the processor.
  • Connector portions 32A and 32B that are detachably connected to the device 16 are provided.
  • the endoscope insertion portion 28 includes a flexible soft portion 34, a bending portion 36, and a tip portion (hereinafter also referred to as an endoscope tip portion) 38.
  • the bending portion 36 is provided between the flexible portion 34 and the distal end portion 38 and is configured to be bent by a turning operation of the angle knob 40 disposed in the operation portion 30.
  • the bending portion 36 can be bent in an arbitrary direction and an arbitrary angle according to a portion of the subject in which the endoscope scope 14 is used, and the endoscope distal end portion 38 is directed to a desired observation portion. Can do.
  • the distal end surface 46 of the endoscope insertion portion 28 has two illumination windows 42 ⁇ / b> A and 42 ⁇ / b> B that irradiate light to the observation region, and one system that images reflected light from the observation region.
  • a forceps port 74 serving as an outlet of a treatment instrument or the like inserted into a forceps channel provided inside the observation window 44 or the endoscope insertion portion 28, and an air / water feeding port serving as an outlet of an air / water feeding channel. 76 etc. are arranged.
  • the observation window 44, the forceps port 74, and the air / water supply port 76 are arranged at the center of the distal end surface 46.
  • the illumination windows 42A and 42B are disposed on both sides of the observation window 44.
  • the optical fiber 48A is accommodated in the back of the illumination window 42A.
  • the optical fiber 48A is laid from the light source device 12 to the endoscope distal end portion 38 via the connector portion 32A.
  • a phosphor 54A is disposed at the tip of the optical fiber 48A (on the illumination window 42A side), and an optical system such as a lens 52A is attached to the tip of the phosphor 54A.
  • an optical fiber 48B having an optical system such as a phosphor 54B and a lens 52B at the tip is housed.
  • the phosphors 54A and 54B absorb a part of the blue laser light from the laser light source LD and excite and emit green to yellow, for example, a plurality of types of fluorescent materials (for example, YAG-based fluorescent materials or BAM (BaMgAl 10 O 17 )). A fluorescent substance).
  • fluorescent materials for example, YAG-based fluorescent materials or BAM (BaMgAl 10 O 17 )
  • BAM BaMgAl 10 O 17
  • a fluorescent substance When excitation light for white light observation is irradiated onto the phosphors 54A and 54B, green to yellow excitation light (fluorescence) emitted from the phosphors 54A and 54B and the phosphors 54A and 54B are transmitted without being absorbed. Combined with the blue laser light, white light (pseudo white light) is generated.
  • FIG. 4 is a graph showing an emission spectrum obtained by converting the wavelength of blue laser light and blue laser light from a blue laser light source with a phosphor.
  • the blue laser light emitted from the laser light source LD is represented by a bright line having a central wavelength of 445 nm, and the excitation light emitted from the phosphors 54A and 54B by the blue laser light has a light emission intensity that increases in the wavelength range of approximately 450 nm to 700 nm. Intensity distribution.
  • the pseudo white light described above is formed by the combined light of the excitation light and the blue laser light.
  • the white light referred to in the present invention is not limited to one that strictly includes all wavelength components of visible light.
  • the illumination optical systems on the illumination window 42A side and the illumination window 42B side have the same configuration and function, and basically the same illumination light is emitted from the illumination windows 42A and 42B at the same time. Different illumination light can be irradiated from the illumination windows 42A and 42B. It is not essential to have an illumination optical system that emits two systems of illumination light. For example, an illumination optical system that emits one or four systems of illumination light can realize the same function.
  • An optical system such as an objective lens unit 56 for capturing image light of the observation region of the subject is attached to the back of the observation window 44, and further, image information of the observation region is displayed behind the objective lens unit 56.
  • An image pickup device 58 (first image pickup device) such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor is attached.
  • the imaging element 58 corresponds to an imaging unit of the present invention having a plurality of pixels that capture an endoscopic image of a subject from the distal end portion of the endoscope scope 14.
  • the imaging element 58 receives light from the objective lens unit 56 on the imaging surface (light receiving surface), photoelectrically converts the received light, and outputs an imaging signal (analog signal).
  • the R color about 580 nm to 760 nm
  • G color about 450 nm to 630 nm
  • B color having a spectral transmittance that divides the wavelength range of about 370 to 720 nm of visible light into three parts
  • a color filter of about 380 nm to 510 nm is provided, and a plurality of sets of pixels are arranged in a matrix form with a set of three pixels of R, G, and B pixels.
  • the light guided from the light source device 12 by the optical fibers 48A and 48B is irradiated from the endoscope distal end portion 38 toward the observation region of the subject. Then, the state of the observation region irradiated with the illumination light is imaged on the imaging surface of the imaging device 58 by the objective lens unit 56, and photoelectrically converted by the imaging device 58 and imaged.
  • the imaging element 58 outputs an imaging signal (analog signal) of an endoscopic image of the observed region of the subject that has been imaged.
  • the imaging signal (analog signal) of the endoscopic image output from the imaging device 58 is input to the A / D converter 64 through the scope cable 62.
  • the A / D converter 64 converts an image signal (analog signal) from the image sensor 58 into an image signal (digital signal).
  • the converted image signal is input to the image processing unit of the processor device 16 via the connector unit 32B.
  • the processor device 16 includes an image processing unit 70, a region detection unit 78, an imaging size calculation unit 80, a size information holding unit 82, a pixel size calculation unit 84, a scale generation unit 86, and a control unit 68. And a storage unit 72. Further, the display device 18 and the input device 20 are connected to the control unit 68. The processor device 16 controls the light source control unit 22 of the light source device 12 on the basis of an instruction input from the imaging switch 66 of the endoscope scope 14 or the input device 20, and the endoscope input from the endoscope scope 14. The image signal of the mirror image is subjected to image processing, and the endoscope image after the image processing is output to the display device 18.
  • the display device 18 corresponds to a display unit of the present invention that displays an endoscopic image, and buttons and the like arranged on the input device 20 and the operation unit 30 of the endoscope scope 14 are various types of input from an operator. This corresponds to the input unit of the present invention that receives an instruction.
  • the image processing unit 70 performs various kinds of preset image processing on the image signal of the endoscope image input from the endoscope scope 14 and outputs the image signal of the endoscope image after the image processing. .
  • the image signal of the endoscope image after the image processing is sent to the control unit 68.
  • the region detection unit 78 determines the period of the biological tissue of the subject from the position on the endoscopic image corresponding to the image signal of the endoscopic image. An area having a target structure is detected.
  • the periodic structure of the biological tissue is a structure in which specific biological tissues are arranged in a regular cycle in a normal part of the biological tissue.
  • a periodic structure is not present in the lesioned part of the biological tissue due to the influence of the lesion, but the normal part includes a part in which specific biological tissue is arranged in a certain cycle.
  • the microvessel network of the gland duct structure of the large intestine and the microvessels in the microvessel network that exists on the outermost layer of the mucosa of the esophagus are not spaced by humans, regardless of gender, age, etc. They are arranged side by side (distance).
  • the periodic structure of the biological tissue is not limited to the above example, and the actual size of the periodicity in the periodic structure of the biological tissue is known, and when the endoscopic image is captured, together with the region to be observed There is no limitation as long as it is in the normal region of the living tissue that can be imaged.
  • the imaging size calculation unit 80 captures the period of the periodic structure of the biological tissue on the endoscopic image of the region having the periodic structure of the biological tissue detected by the area detection unit 78.
  • the size (distance) is calculated in units of pixels.
  • the imaging size is an endoscopic image of the interval between the microvessels in the microvascular network. The number of pixels.
  • the imaging size calculation unit 80 calculates the imaging size on the endoscopic image of the period of the periodic structure of the biological tissue for the region having the periodic structure of the biological tissue.
  • the ratio of the pixel value of each pixel in the spectral image of different color components of the endoscopic image, or the frequency characteristics of the pixel value distribution of each pixel in the region having the periodic structure of the biological tissue, for example, the power spectrum The imaging size can be calculated based on the above.
  • the size information holding unit 82 holds information representing the actual size (distance) of the period in the periodic structure of the biological tissue.
  • the actual size of the period in the periodic structure of biological tissue is the microvascular network of the gland duct structure of the large intestine or the microvascular network existing in the outermost layer of the mucosa of the esophagus. Is the actual size of the interval between the microvessels.
  • the pixel size calculation unit 84 is based on the imaging size in units of the number of pixels calculated by the imaging size calculation unit 80 and the information indicating the actual size held in the size information holding unit 82. The actual size (distance) corresponding to one pixel is calculated.
  • the actual size corresponding to one pixel of the endoscopic image can be calculated by Y / X.
  • the scale generation unit 86 is based on the actual size corresponding to one pixel of the endoscopic image calculated by the pixel size calculation unit 84, like a scale bar, and the like. A scale representing the actual size is generated.
  • control unit 68 causes the display device 18 to display the endoscope image after the image processing.
  • the control unit 68 controls the operation of the light source control unit 22 of the light source device 12 based on an instruction from the imaging switch 66 of the endoscope scope 14 or the input device 20, or, for example, one sheet (one frame)
  • the endoscope image is stored in the storage unit 72 as a unit.
  • the laser light source LD When capturing an endoscopic image, the laser light source LD is turned on with a predetermined light emission amount under the control of the light source control unit 22. Laser light having a central wavelength of 445 nm emitted from the laser light source LD is applied to the phosphors 54A and 54B, and white light is emitted from the phosphors 54A and 54B. White light emitted from the phosphors 54A and 54B is applied to the subject, and the reflected light is received by the imaging device 58, and an endoscopic image of the observation region of the subject is captured.
  • the imaging signal (analog signal) of the endoscopic image output from the imaging element 58 is converted into an image signal (digital signal) by the A / D converter 64, and various image processing is performed by the image processing unit 70.
  • An image signal of an endoscopic image after image processing is output.
  • the control unit 68 displays an endoscopic image corresponding to the image signal of the endoscopic image after image processing on the display device 18, and the image signal of the endoscopic image is stored in the storage unit 72 as necessary. Is remembered.
  • information representing the actual size of the interval between the microvessels in the microvessel network of the gland duct structure of the large intestine is input via the input device 20 by the operator of the endoscope diagnosis apparatus 10.
  • Information representing the actual size of the interval between the microvessels is held in the size information holding unit 82.
  • the operator for example, when a lesion such as a tumor is found in the observed region, as shown by being surrounded by a dotted line in FIG. Observation is performed so that the microvascular network of the gland duct structure is included in the endoscopic image.
  • the microvessels in the microvessel network of the gland duct structure of the large intestine in the normal part are arranged side by side with an interval of 20 ⁇ m to 30 ⁇ m.
  • the operator pushes a button or the like disposed on the operation portion 30 of the endoscope scope 14 to thereby change the periodic structure of the living tissue.
  • An instruction to start the detection of the area having the input is input.
  • the operator After the instruction to start the detection of the area is input, the operator displays the area of the microvessel network of the gland duct structure of the large intestine on the display device 18 as shown in FIG. Instructions for designating two positions 88 and 90 are input via the input device 20 so as to sandwich the fine blood vessel network of the gland duct structure of the large intestine on the endoscopic image.
  • the region detection unit 78 causes the gland duct structure of the large intestine from the two positions 88 and 90 on the endoscopic image. Detection of the region of the microvascular network is started. In this case, the area detection unit 78 responds to an instruction for designating the positions 88 and 90 of the two points, and an area 92 between the positions of the two points on the endoscopic image, which is surrounded by a dotted line in FIG. Detect as a microvascular network region of the gland duct structure of the large intestine.
  • the imaging size calculation unit 80 performs the interval between the microvessels in the microvessel network on the endoscopic image.
  • the imaging size is calculated in units of the number of pixels.
  • the imaging size calculation unit 80 can calculate the imaging size on the endoscopic image of the interval between the microvessels in the microvessel network of the gland duct structure of the large intestine, for example, as follows.
  • the ratio of the pixel value of each pixel in the spectral image of the two color components of the endoscopic image is calculated.
  • the ratio G / B of the pixel values of each pixel in the G (green) and B (blue) spectral images of the endoscopic image is calculated.
  • a spectral image is not limited to a spectral image of each color component of a white light image captured using white light, but is also a special image captured using special light such as a short wavelength laser beam of BLI (Blue Laser Imaging). Light images can be used as well.
  • BLI Blue Laser Imaging
  • 90 that is, a line region 94 is set in the region of the microvessel network of the gland duct structure of the large intestine.
  • the power spectrum of the ratio of the pixel values of each pixel on the line region 94 set in the region of the microvascular network of the gland duct structure of the large intestine is calculated.
  • the B component is Since it becomes smaller, the value of the ratio G / B becomes larger, and an upward frequency peak appears at a substantially constant period.
  • a frequency peak is detected from the power spectrum, and the imaging size on the endoscopic image of the interval between the microvessels in the microvessel network of the gland duct structure of the large intestine is determined according to the frequency peak interval. calculate.
  • an average value of a plurality of frequency peak intervals on the line region 94 is calculated, and this average value is captured on an endoscopic image of the interval between the microvessels in the microvessel network of the gland duct structure of the large intestine.
  • a plurality of line regions 94 are set in a region 92 between the two positions 88 and 90, and for each line region 94, an average value of a plurality of frequency peak intervals on the line region 94 is calculated. Then, the average value of the average value of the frequency peak intervals in the plurality of line regions 94 is calculated.
  • the average value of the average values may be the imaging size on the endoscopic image of the interval between the microvessels in the microvessel network of the large intestine gland duct structure. Thereby, the imaging size can be calculated more accurately.
  • the pixel size calculation unit 84 calculates the imaging size in units of the number of pixels of the interval between the microvessels in the microvascular network of the large intestine duct structure calculated by the imaging size calculation unit 80, and the size information holding unit 82.
  • the actual size corresponding to one pixel of the endoscopic image is calculated on the basis of the information representing the actual size of the interval between the microvessels in the microvessel network of the gland duct structure of the large intestine held in FIG.
  • the scale generation unit 86 generates a scale representing the actual size of the subject on the endoscopic image based on the actual size corresponding to one pixel of the endoscopic image.
  • the endoscopic image and the scale are combined and displayed on the display device 18.
  • a scale for example, as shown in FIG. 5, a scale bar that can understand a length of 1 mm is displayed on the screen of the display device 18.
  • the region detection unit 78 ends the detection of the region of the microvessel network of the gland duct structure of the large intestine from the two positions of the endoscopic image. As a result, the scale display disappears from the display device 18.
  • the region detection unit 78 makes the two points of the endoscopic image after the fixed time has elapsed after the endoscopic image and the scale are combined and displayed on the display device 18. Detection of the region of the microvessel network of the gland duct structure of the large intestine from the position may be terminated.
  • the operator inputs information indicating the actual size of the interval between the microvessels in the microvessel network existing on the outermost layer of the mucosa of the esophagus via the input device 20.
  • the size information is held in the size information holding unit 82.
  • the operator can observe the microvascular network existing in the outermost layer of the mucosa of the esophagus of the lesion and the normal part of the lesion. Is observed so as to be included in the endoscopic image.
  • the fine blood vessels in the fine blood vessel network existing in the outermost layer of the mucosa of the normal part of the esophagus are arranged side by side at intervals of 100 ⁇ m to 200 ⁇ m.
  • the operator pushes a button or the like disposed on the operation portion 30 of the endoscope scope 14 to thereby change the periodic structure of the living tissue.
  • An instruction to start the detection of the area having the input is input.
  • the region detecting unit 78 applies the two points 88 and 90 on the endoscopic image to the outermost layer of the mucosa of the esophagus. Detection of the existing microvascular network region is started. In this case, the area detection unit 78 responds to an instruction for designating the positions 88 and 90 of the two points, and an area 92 between the positions of the two points on the endoscopic image, which is surrounded by a dotted line in FIG. It is detected as a region of the microvascular network existing in the outermost layer of the mucosa of the esophagus.
  • the imaging size calculation unit 80 causes the interval between the fine blood vessels in the fine blood vessel network to be displayed on the endoscopic image.
  • the imaging size at is calculated in units of the number of pixels.
  • the image size in the unit of the number of pixels of the interval between the microvessels in the microvessel network existing in the outermost layer of the esophageal mucosa calculated by the image size calculation unit 80 by the pixel size calculation unit 84 and size information holding
  • the actual size corresponding to one pixel of the endoscopic image is calculated based on the information representing the actual size of the interval between the microvessels in the microvessel network existing in the outermost layer of the mucosa of the esophagus held in the part 82. Is done.
  • the subsequent operation is the same as that in the first embodiment, and the endoscope image and the scale are synthesized by the control of the control unit 68, and, for example, as shown in FIG. Is displayed on the screen of the display device 18.
  • the endoscope diagnostic apparatus 10 uses an endoscopic image photographed by a normal operation instead of an endoscopic image photographed to measure the size of a lesioned part or the like, and thereby uses a lesion part. Etc. can be easily measured.
  • each component included in the apparatus may be configured by dedicated hardware, or each component may be configured by a programmed computer.
  • the method of the present invention can be implemented by a program for causing a computer to execute each step. It is also possible to provide a computer-readable recording medium in which this program is recorded.
  • the present invention is basically as described above. Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and it is needless to say that various improvements and modifications may be made without departing from the gist of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

特別な操作を行うことなく、通常の操作で撮影された内視鏡画像から病変部等のサイズを容易に計測することができる内視鏡診断装置、画像処理方法、プログラムおよび記録媒体を提供する。領域検出部が、位置を指定する指示に応じて、内視鏡画像上の位置から、生体組織の周期的構造物を有する領域を検出する。撮像サイズ算出部が、周期的構造物を有する領域に対し、その周期的構造物における周期の内視鏡画像上での撮像サイズを画素数単位で算出する。画素サイズ算出部が、撮像サイズと、サイズ情報保持部に保持された周期的構造物における周期の現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズを算出する。目盛り生成部が、1画素に対応する現実のサイズに基づいて、内視鏡画像上での被検体の現実のサイズを表す目盛りを生成し、制御部が、内視鏡画像と目盛りとを合成して表示部に表示させる。

Description

内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
 本発明は、被検体内に内視鏡スコープを挿入して観察を行う場合に、病変部等のサイズを計測する機能を備える内視鏡診断装置、画像処理方法、プログラムおよび記録媒体に関するものである。
 被検体内を観察するために、内視鏡診断装置が用いられている。被検体内の観察を行う場合、内視鏡スコープが被検体の体腔内に挿入されて、その先端部から、例えば、白色光が被観察領域に照射され、その反射光を受光して内視鏡画像が撮像される。撮像された内視鏡画像は表示部に表示され、内視鏡診断装置の操作者により、内視鏡画像の観察が行われる。
 また、被検体内で撮像された内視鏡画像を見て、腫瘍等の病変部の有無を確認するだけでなく、あるサイズ(大きさ)を超える腫瘍は切除し、それ以下のサイズの腫瘍は温存して様子を見るなどの目的から、病変部のサイズを計測したいという要求がある。
 病変部のサイズを計測するために、メジャー鉗子等の処置具を利用する手法が知られている。この手法では、内視鏡スコープの鉗子口の入口からメジャー鉗子を挿入して先端部の鉗子口の出口から突出させる。メジャー鉗子の先端部には、サイズを計測するための目盛りが刻まれており、柔軟性のある先端部を被観察領域に押し当てて折り曲げ、先端部に刻まれた目盛りを読み取ることにより、被観察領域の腫瘍等のサイズを計測する。
 また、本発明に関連性のある先行技術文献として、特許文献1,2等がある。
 特許文献1は、内視鏡装置に関するものである。同文献には、内視鏡の挿入部の先端部の2つ開口から水流を病変部に出力し、2つの水流間の距離が2つの開口間の距離と等しいことから、病変部が処置基準値以上であるか否かを判定することが記載されている。
 特許文献2は、内視鏡装置に搭載されるロボティクスアームシステムに関するものである。同文献には、処置具等の先端部を用いて、病変部の周囲に複数の測定点を設定し、測定点の座標情報に基づき、演算により病変部の大きさを求めることが記載されている。
特開2011-183000号公報 特開2008-245838号公報
 しかし、この手法では、病変部のサイズを計測するためだけに、メジャー鉗子を内視鏡スコープの鉗子口に挿入する必要があるため、その操作に時間がかかるだけでなく、作業が繁雑で面倒であった。また、メジャー鉗子の先端部を被検体の被観察領域に押し当てて折り曲げて計測するため、計測精度が低く、部位によっては、先端部を被検体の被観察領域に押し当てることが難しいなど、計測しづらい場合があった。
 更にまた、特許文献1の内視鏡装置では、挿入部の先端部から2つの水流を出力する2つの開口を備える専用の内視鏡スコープが必要であり、この内視鏡スコープでなければ病変部のサイズを計測することができないという問題がある。
 加えて、特許文献2の内視鏡装置では、病変部のサイズを計測するために、ロボットアームが必要であり、さらに、煩雑なロボットアームを操作して病変部の周囲に複数の測定点を設定しなければならないという問題がある。
 本発明の目的は、従来技術の問題点を解消し、特別な操作を行うことなく、通常の操作で撮影された内視鏡画像から病変部等のサイズを容易に計測することができる内視鏡診断装置、画像処理方法、プログラムおよび記録媒体を提供することにある。
 上記目的を達成するために、本発明は、内視鏡スコープの先端部から被検体の内視鏡画像を撮像する複数の画素を有する撮像部と、
 内視鏡画像を表示する表示部と、
 操作者から入力された内視鏡画像上の位置を指定する指示を受け取る入力部と、
 位置を指定する指示に応じて、内視鏡画像上の位置から、被検体の生体組織の周期的構造物を有する領域を検出する領域検出部と、
 生体組織の周期的構造物を有する領域に対し、生体組織の周期的構造物における周期の内視鏡画像上での撮像サイズを画素数単位で算出する撮像サイズ算出部と、
 生体組織の周期的構造物における周期の現実のサイズを表す情報を保持するサイズ情報保持部と、
 撮像サイズと現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズを算出する画素サイズ算出部と、
 内視鏡画像の1画素に対応する現実のサイズに基づいて、内視鏡画像上での被検体の現実のサイズを表す目盛りを生成する目盛り生成部と、
 内視鏡画像と目盛りとを合成して表示部に表示させる制御部とを備えることを特徴とする内視鏡診断装置を提供するものである。
 ここで、撮像サイズ算出部は、内視鏡画像の異なる色成分の分光画像における各画素の画素値の比率に基づいて、撮像サイズを算出することが好ましい。
 また、撮像サイズ算出部は、生体組織の周期的構造物を有する領域内における各画素の画素値の分布の周波数特性に基づいて、撮像サイズを算出することが好ましい。
 また、周波数特性がパワースペクトルであることが好ましい。
 また、入力部は、内視鏡画像上の2点の位置を指定する指示を受け取り、
 領域検出部は、2点の位置を指定する指示に応じて、内視鏡画像上の2点の位置の間の領域を、生体組織の周期的構造物を有する領域として検出することが好ましい。
 また、撮像サイズ算出部は、内視鏡画像の2つの色成分の分光画像における各画素の画素値の比率を算出し、2点の位置の間の領域に線領域を設定し、線領域上の各画素の画素値の比率のパワースペクトルを算出し、パワースペクトルの中から周波数のピークを検出し、周波数のピークの間隔に応じて、撮像サイズを算出することが好ましい。
 また、撮像サイズ算出部は、線領域上における複数の周波数のピークの間隔の平均値を算出し、平均値を撮像サイズとすることが好ましい。
 また、撮像サイズ算出部は、2点の位置の間の領域に複数の線領域を設定し、線領域毎に、線領域上における複数の周波数のピークの間隔の平均値を算出し、さらに、複数の線領域における周波数のピークの間隔の平均値の平均値を算出し、平均値の平均値を撮像サイズとすることが好ましい。
 入力部は、さらに、位置を指定する指示を受け取る前および後に、それぞれ、生体組織の周期的構造物を有する領域の検出を開始および終了する指示を受け取り、
 領域検出部は、領域の検出を開始する指示に応じて、領域の検出を開始し、領域の検出を終了する指示に応じて、領域の検出を終了することが好ましい。
 入力部は、さらに、位置を指定する指示を受け取る前に、生体組織の周期的構造物を有する領域の検出を開始する指示を受け取り、
 領域検出部は、領域の検出を開始する指示に応じて、領域の検出を開始し、内視鏡画像と目盛りとが合成されて表示部に表示されてから一定時間が経過した後に、領域の検出を終了することが好ましい。
 また、生体組織の周期的構造物は、大腸の腺管構造の微細血管網であり、生体組織の周期的構造物における周期は、大腸の腺管構造の微細血管網における微細血管同士の間隔であることが好ましい。
 また、生体組織の周期的構造物は、食道の粘膜最表層に存在する微細血管網であり、生体組織の周期的構造物における周期は、食道の粘膜最表層に存在する微細血管網における微細血管同士の間隔であることが好ましい。
 また、本発明は、サイズ情報保持部が、被検体の生体組織の周期的構造物における周期の現実のサイズを表す情報を保持するステップと、
 制御部が、複数の画素を有する撮像部により内視鏡スコープの先端部から撮像された被検体の内視鏡画像を表示部に表示させるステップと、
 入力部が、操作者から入力された内視鏡画像上の位置を指定する指示を受け取るステップと、
 領域検出部が、位置を指定する指示に応じて、内視鏡画像上の位置から、生体組織の周期的構造物を有する領域を検出するステップと、
 撮像サイズ算出部が、生体組織の周期的構造物を有する領域に対し、生体組織の周期的構造物における周期の内視鏡画像上での撮像サイズを画素数単位で算出するステップと、
 画素サイズ算出部が、撮像サイズと現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズを算出するステップと、
 目盛り生成部が、内視鏡画像の1画素に対応する現実のサイズに基づいて、内視鏡画像上での被検体の現実のサイズを表す目盛りを生成するステップと、
 制御部が、内視鏡画像と目盛りとを合成して表示部に表示させるステップとを含むことを特徴とする画像処理方法を提供する。
 ここで、撮像サイズ算出部は、内視鏡画像の異なる色成分の分光画像における各画素の画素値の比率に基づいて、撮像サイズを算出することが好ましい。
 また、撮像サイズ算出部は、生体組織の周期的構造物を有する領域内における各画素の画素値の分布の周波数特性に基づいて、撮像サイズを算出することが好ましい。
 また、周波数特性がパワースペクトルであることが好ましい。
 また、入力部は、内視鏡画像上の2点の位置を指定する指示を受け取り、
 領域検出部は、2点の位置を指定する指示に応じて、内視鏡画像上の2点の位置の間の領域を、生体組織の周期的構造物を有する領域として検出することが好ましい。
 また、撮像サイズ算出部は、内視鏡画像の2つの色成分の分光画像における各画素の画素値の比率を算出し、2点の位置の間の領域に線領域を設定し、線領域上の各画素の画素値の比率のパワースペクトルを算出し、パワースペクトルの中から周波数のピークを検出し、周波数のピークの間隔に応じて、撮像サイズを算出することが好ましい。
 また、撮像サイズ算出部は、線領域上における複数の周波数のピークの間隔の平均値を算出し、平均値を撮像サイズとすることが好ましい。
 また、撮像サイズ算出部は、2点の位置の間の領域に複数の線領域を設定し、線領域毎に、線領域上における複数の周波数のピークの間隔の平均値を算出し、さらに、複数の線領域における周波数のピークの間隔の平均値の平均値を算出し、平均値の平均値を撮像サイズとすることが好ましい。
 また、本発明は、上記に記載の画像処理方法の各々のステップをコンピュータに実行させるためのプログラムを提供する。
 また、本発明は、上記に記載の画像処理方法の各々のステップをコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。
 本発明によれば、病変部等のサイズの計測を行うために撮影された内視鏡画像ではなく、通常の操作で撮影された内視鏡画像を用いて、病変部等のサイズを容易に計測することができる。
本発明の内視鏡診断装置の構成を表す一実施形態の外観図である。 図1に示す内視鏡診断装置の内部構成を表すブロック図である。 内視鏡スコープの先端部の構成を表す概念図である。 青色レーザ光源からの青色レーザ光及び青色レーザ光が蛍光体により波長変換された発光スペクトルを示すグラフである。 大腸の内視鏡画像を表す概念図である。 大腸の腺管構造の微細血管網の様子を表す概念図である。 微細血管網の領域を指定する様子を表す概念図である。 微細血管網の領域に設定された線領域上の各画素の画素値の比率のパワースペクトルを表すグラフである。 食道の粘膜最表層に存在する微細血管網の内視鏡画像を表す概念図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の内視鏡診断装置、画像処理方法、プログラムおよび記録媒体を詳細に説明する。
 図1は、本発明の内視鏡診断装置の構成を表す一実施形態の外観図、図2は、その内部構成を表すブロック図である。これらの図に示す内視鏡診断装置10は、光源装置12と、光源装置12から発せられる光を用いて被検体の被観察領域の内視鏡画像を撮像する内視鏡スコープ14と、内視鏡スコープ14で撮像された内視鏡画像を画像処理するプロセッサ装置16と、プロセッサ装置16から出力される画像処理後の内視鏡画像を表示する表示装置18と、入力操作を受け付ける入力装置20とによって構成されている。
 まず、光源装置12は、光源制御部22と、レーザ光源LDと、カプラ(分波器)26とによって構成されている。
 本実施形態において、レーザ光源LDからは、中心波長が445nmである、青色の一定の波長範囲(例えば、中心波長±10nm)の狭帯域光が発せられる。レーザ光源LDは、照明光として、後述する蛍光体から白色光(疑似白色光)を発生させるための励起光を発する光源であって、後述するプロセッサ装置16の制御部によって制御される光源制御部22によりオンオフ(点灯消灯)制御および光量制御が行われる。
 レーザ光源LDとしては、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオード等を用いることもできる。
 なお、白色光を発生するための白色光光源は、励起光および蛍光体の組合せに限定されず、白色光を発するものであればよく、例えば、キセノンランプ、ハロゲンランプ、白色LED(発光ダイオード)などを利用することもできる。また、レーザ光源LDから発せられるレーザ光の波長は上記例に限定されず、同様の役割を果たす波長のレーザ光を適宜選択することができる。
 レーザ光源LDから発せられるレーザ光は、集光レンズ(図示略)を介して光ファイバに入力され、カプラ26により2系統の光に分波されてコネクタ部32Aに伝送される。カプラ26は、ハーフミラー、反射ミラー等によって構成される。
 続いて、内視鏡スコープ14は、被検体内に挿入される内視鏡挿入部の先端面から2系統(2灯)の照明光を出射する照明光学系と、被観察領域の内視鏡画像を撮像する1系統(1眼)の撮像光学系とを有する、電子内視鏡である。内視鏡スコープ14は、内視鏡挿入部28と、内視鏡挿入部28の先端の湾曲操作や観察のための操作を行う操作部30と、内視鏡スコープ14を光源装置12およびプロセッサ装置16に着脱自在に接続するコネクタ部32A,32Bとを備えている。
 内視鏡挿入部28は、可撓性を持つ軟性部34と、湾曲部36と、先端部(以降、内視鏡先端部とも呼称する)38とから構成されている。
 湾曲部36は、軟性部34と先端部38との間に設けられ、操作部30に配置されたアングルノブ40の回動操作により湾曲自在に構成されている。この湾曲部36は、内視鏡スコープ14が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部38を、所望の観察部位に向けることができる。
 図3に示すように、内視鏡挿入部28の先端面46には、被観察領域へ光を照射する2系統の照明窓42A,42B、被観察領域からの反射光を撮像する1系統の観察窓44、内視鏡挿入部28の内部に設けられている鉗子チャンネルに挿入される、処置具等の出口となる鉗子口74、同じく送気・送水チャンネルの出口となる送気・送水口76等が配置されている。
 観察窓44、鉗子口74、送気・送水口76は、先端面46の中央部に配置されている。照明窓42A,42Bは、観察窓44を挟んでその両脇側に配置されている。
 照明窓42Aの奥には、光ファイバ48Aが収納されている。光ファイバ48Aは、光源装置12からコネクタ部32Aを介して内視鏡先端部38まで敷設されている。光ファイバ48Aの先端部(照明窓42A側)の先には蛍光体54Aが配置され、さらに蛍光体54Aの先にレンズ52A等の光学系が取り付けられている。同様に、照明窓42Bの奥には、先端部に蛍光体54Bおよびレンズ52B等の光学系を有する光ファイバ48Bが収納されている。
 蛍光体54A,54Bは、レーザ光源LDからの青色レーザ光の一部を吸収して緑色~黄色に励起発光する複数種の蛍光物質(例えばYAG系蛍光物質、或いはBAM(BaMgAl1017)等の蛍光物質)を含んで構成される。白色光観察用の励起光が蛍光体54A,54Bに照射されると、蛍光体54A,54Bから発せられる緑色~黄色の励起発光光(蛍光)と、蛍光体54A,54Bにより吸収されず透過した青色レーザ光とが合わされて、白色光(疑似白色光)が生成される。
 図4は、青色レーザ光源からの青色レーザ光及び青色レーザ光が蛍光体により波長変換された発光スペクトルを示すグラフである。レーザ光源LDから発せられる青色レーザ光は、中心波長445nmの輝線で表され、青色レーザ光による蛍光体54A,54Bからの励起発光光は、概ね450nm~700nmの波長範囲で発光強度が増大する分光強度分布となる。この励起発光光と青色レーザ光との合波光によって、上述した疑似白色光が形成される。
 ここで、本発明でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えば、上述した疑似白色光を始めとして、基準色であるR(赤)、G(緑)、B(青)等、特定の波長帯の光を含むものであればよい。つまり、本発明のいう白色光には、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含まれるものとする。
 照明窓42A側および照明窓42B側の照明光学系は同等の構成および作用のものであって、照明窓42A,42Bからは、基本的に同時に同等の照明光が照射される。なお、照明窓42A,42Bからそれぞれ異なる照明光を照射させることもできる。また、2系統の照明光を出射する照明光学系を有することは必須ではなく、例えば、1系統や4系統の照明光を出射する照明光学系でも同等の機能を実現することができる。
 観察窓44の奥には、被検体の被観察領域の像光を取り込むための対物レンズユニット56等の光学系が取り付けられ、さらに対物レンズユニット56の奥には、被観察領域の画像情報を取得するCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子58(第1撮像素子)が取り付けられている。撮像素子58は、内視鏡スコープ14の先端部から被検体の内視鏡画像を撮像する複数の画素を有する本発明の撮像部に相当する。
 撮像素子58は、対物レンズユニット56からの光を撮像面(受光面)で受光し、受光した光を光電変換して撮像信号(アナログ信号)を出力する。撮像素子58の撮像面には、可視光の約370~720nmの波長範囲を3分割する分光透過率を有する、R色(約580nm~760nm)、G色(約450nm~630nm)、B色(約380nm~510nm)のカラーフィルタが設けられ、R画素、G画素、B画素の3色の画素を1組として、複数組の画素がマトリクス状に配列されている。
 光源装置12から光ファイバ48A,48Bによって導光された光は、内視鏡先端部38から被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域の様子が対物レンズユニット56により撮像素子58の撮像面上に結像され、撮像素子58により光電変換されて撮像される。撮像素子58からは、撮像された被検体の被観察領域の内視鏡画像の撮像信号(アナログ信号)が出力される。
 撮像素子58から出力される内視鏡画像の撮像信号(アナログ信号)は、スコープケーブル62を通じてA/D変換器64に入力される。A/D変換器64は、撮像素子58からの撮像信号(アナログ信号)を画像信号(デジタル信号)に変換する。変換後の画像信号は、コネクタ部32Bを介してプロセッサ装置16の画像処理部に入力される。
 続いて、プロセッサ装置16は、画像処理部70と、領域検出部78と、撮像サイズ算出部80と、サイズ情報保持部82と、画素サイズ算出部84と、目盛り生成部86と、制御部68と、記憶部72とを備えている。また、制御部68には、表示装置18および入力装置20が接続されている。プロセッサ装置16は、内視鏡スコープ14の撮像スイッチ66や入力装置20から入力される指示に基づき、光源装置12の光源制御部22を制御するとともに、内視鏡スコープ14から入力される内視鏡画像の画像信号を画像処理し、画像処理後の内視鏡画像を表示装置18に出力する。
 表示装置18は、内視鏡画像を表示する本発明の表示部に相当し、入力装置20および内視鏡スコープ14の操作部30に配置されたボタン等は、操作者から入力された各種の指示を受け取る本発明の入力部に相当する。
 画像処理部70は、内視鏡スコープ14から入力される内視鏡画像の画像信号に対してあらかじめ設定された各種の画像処理を施し、画像処理後の内視鏡画像の画像信号を出力する。画像処理後の内視鏡画像の画像信号は、制御部68に送られる。
 領域検出部78は、後述する、内視鏡画像上の位置を指定する指示に応じて、内視鏡画像の画像信号に対応する内視鏡画像上の位置から、被検体の生体組織の周期的構造物を有する領域を検出するものである。
 ここで、生体組織の周期的構造物とは、生体組織の正常部において、特定の生体組織が一定の周期で並んで配置されているものである。生体組織の病変部には、病変の影響により周期的構造物は存在しないが、正常部には、特定の生体組織が一定の周期で並んで配置されている部分がある。例えば、大腸の腺管構造の微細血管網や、食道の粘膜最表層に存在する微細血管網における微細血管同士は、人によらず、また、性別や年齢等にもよらず、ほぼ一定の間隔(距離)で並んで配置されている。
 なお、生体組織の周期的構造物は、上記例に限らず、生体組織の周期的構造物における周期の現実のサイズが既知で、かつ、内視鏡画像の撮像時に、被観察領域と一緒に撮像することができる生体組織の正常部の領域にあるものであれば何ら制限はない。
 続いて、撮像サイズ算出部80は、領域検出部78により検出された、生体組織の周期的構造物を有する領域に対し、生体組織の周期的構造物における周期の内視鏡画像上での撮像サイズ(距離)を画素数単位で算出するものである。
 ここで、撮像サイズとは、大腸の腺管構造における微細血管網や、食道の粘膜最表層に存在する微細血管網の場合、その微細血管網における微細血管同士の間隔の内視鏡画像上での画素数である。
 なお、撮像サイズ算出部80が、生体組織の周期的構造物を有する領域に対し、生体組織の周期的構造物における周期の内視鏡画像上での撮像サイズを算出する方法は何ら限定されない。例えば、内視鏡画像の異なる色成分の分光画像における各画素の画素値の比率や、生体組織の周期的構造物を有する領域内における各画素の画素値の分布の周波数特性、例えば、パワースペクトル等に基づいて、撮像サイズを算出することができる。
 サイズ情報保持部82は、生体組織の周期的構造物における周期の現実のサイズ(距離)を表す情報を保持するものである。
 ここで、生体組織の周期的構造物における周期の現実のサイズとは、大腸の腺管構造の微細血管網や、食道の粘膜最表層に存在する微細血管網の場合には、その微細血管網における微細血管同士の間隔の現実のサイズである。
 画素サイズ算出部84は、撮像サイズ算出部80により算出された、画素数単位での撮像サイズと、サイズ情報保持部82に保持された現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズ(距離)を算出するものである。
 例えば、撮像サイズがX画素、現実のサイズがYmmの場合、内視鏡画像の1画素に対応する現実のサイズは、Y/Xにより算出することができる。
 目盛り生成部86は、画素サイズ算出部84により算出された、内視鏡画像の1画素に対応する現実のサイズに基づいて、スケールバー等のように、内視鏡画像上での被検体の現実のサイズを表す目盛りを生成するものである。
 最後に、制御部68は、画像処理後の内視鏡画像を表示装置18に表示させるものである。この場合、制御部68の制御により、内視鏡画像と、目盛り生成部86により生成された目盛りとを合成して表示装置18に表示させることができる。また、制御部68は、内視鏡スコープ14の撮像スイッチ66や入力装置20からの指示に基づいて、光源装置12の光源制御部22の動作を制御したり、例えば、1枚(1フレーム)の内視鏡画像を単位として記憶部72に記憶させたりする。
 次に、内視鏡診断装置10の動作を説明する。
 まず、内視鏡画像を撮像する場合の動作を説明する。
 内視鏡画像の撮像時には、光源制御部22の制御により、レーザ光源LDがあらかじめ設定された一定の発光量で点灯される。レーザ光源LDから発せられる中心波長445nmのレーザ光が蛍光体54A,54Bに照射され、蛍光体54A,54Bから白色光が発せられる。蛍光体54A,54Bから発せられる白色光は被検体に照射され、その反射光が撮像素子58で受光されて被検体の被観察領域の内視鏡画像が撮像される。
 撮像素子58から出力される内視鏡画像の撮像信号(アナログ信号)は、A/D変換器64により画像信号(デジタル信号)に変換され、画像処理部70により各種の画像処理が施され、画像処理後の内視鏡画像の画像信号が出力される。そして、制御部68により、画像処理後の内視鏡画像の画像信号に対応する内視鏡画像が表示装置18上に表示され、必要に応じて、内視鏡画像の画像信号が記憶部72に記憶される。
 続いて、被検体の被観察領域の現実のサイズを計測する場合の動作を説明する。
 まず、第1の実施例として、大腸の腺管構造の微細血管網を利用して、内視鏡画像上での被検体の現実のサイズを計測する場合について説明する。
 まず、内視鏡診断装置10の操作者により、大腸の腺管構造の微細血管網における微細血管同士の間隔の現実のサイズを表す情報が入力装置20を介して入力される。この微細血管同士の間隔の現実のサイズを表す情報はサイズ情報保持部82に保持される。
 続いて、操作者により、内視鏡スコープ14が被検体内に挿入され、表示装置18に表示された内視鏡画像を確認しながら、内視鏡スコープ14の先端部が、大腸の被観察領域まで移動される。
 ここで、操作者は、大腸観察時に、例えば、図5に点線で囲んで示すように、被観察領域に腫瘍等の病変部が発見された場合、この病変部とその周辺の正常部における大腸の腺管構造の微細血管網が内視鏡画像に含まれるように観察を行う。図6に示すように、正常部の大腸の腺管構造の微細血管網における微細血管同士は、20μm~30μmの間隔で並んで配置されている。
 内視鏡スコープ14の先端部が被観察領域まで移動されると、操作者により、内視鏡スコープ14の操作部30に配置されたボタン等を押すことにより、生体組織の周期的構造物を有する領域の検出を開始する指示が入力される。
 領域の検出を開始する指示が入力された後、さらに、大腸の腺管構造の微細血管網の領域を指定するために、図7に示すように、操作者により、表示装置18に表示された内視鏡画像上の、大腸の腺管構造の微細血管網を挟むように、2点の位置88、90を指定する指示が入力装置20を介して入力される。
 内視鏡画像上の2点の位置88、90を指定する指示が入力されると、領域検出部78により、内視鏡画像上の2点の位置88、90からの、大腸の腺管構造の微細血管網の領域の検出が開始される。
 この場合、領域検出部78は、この2点の位置88、90を指定する指示に応じて、図7に点線で囲んで示す、内視鏡画像上の2点の位置の間の領域92を、大腸の腺管構造の微細血管網の領域として検出する。
 続いて、領域検出部78により検出された大腸の腺管構造の微細血管網の領域に対し、撮像サイズ算出部80により、その微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズが画素数単位で算出される。
 撮像サイズ算出部80は、例えば、以下のようにして、大腸の腺管構造の微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズを算出することができる。
 まず、内視鏡画像の2つの色成分の分光画像における各画素の画素値の比率を算出する。
 例えば、内視鏡画像のG(緑)およびB(青)の分光画像における各画素の画素値の比率G/Bを算出する。これにより、生体組織の特徴的な構造、本実施例の場合には、大腸の腺管構造の微細血管網を浮き出させて抽出することができる。
 なお、分光画像は、白色光を用いて撮像された白色光画像の各色成分の分光画像に限らず、BLI(Blue Laser Imaging)の短波長レーザ光のような特殊光を用いて撮像された特殊光画像も同様に使用することができる。
 続いて、図7に示すように、内視鏡画像上の2点の位置88、90を指定する指示に応じて、領域検出部78により検出された内視鏡画像上の2点の位置88、90の間の領域92、つまり、大腸の腺管構造の微細血管網の領域に線領域94を設定する。
 続いて、大腸の腺管構造の微細血管網の領域に設定された線領域94上の各画素の画素値の比率のパワースペクトルを算出する。
 図8に示すように、線領域94上の位置を横軸、2つの色成分の分光画像における各画素の画素値の比率G/Bを縦軸にとると、血管の位置において、B成分が小さくなるため、比率G/Bの値が大きくなり、ほぼ一定の周期で上向きの周波数のピークが現れる。
 続いて、パワースペクトルの中から周波数のピークを検出し、周波数のピークの間隔に応じて、大腸の腺管構造の微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズを算出する。
 例えば、線領域94上における複数の周波数のピークの間隔の平均値を算出し、この平均値を、大腸の腺管構造の微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズとすることができる。これにより、撮像サイズを正確に算出することができる。
 また、2点の位置88、90の間の領域92に複数の線領域94を設定し、線領域94毎に、線領域94上における複数の周波数のピークの間隔の平均値を算出し、さらに、複数の線領域94における周波数のピークの間隔の平均値の平均値を算出する。そして、この平均値の平均値を、大腸の腺管構造の微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズとしてもよい。これにより、撮像サイズをさらに正確に算出することができる。
 続いて、画素サイズ算出部84により、撮像サイズ算出部80により算出された、大腸の腺管構造の微細血管網における微細血管同士の間隔の画素数単位での撮像サイズと、サイズ情報保持部82に保持された大腸の腺管構造の微細血管網における微細血管同士の間隔の現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズが算出される。
 続いて、目盛り生成部86により、内視鏡画像の1画素に対応する現実のサイズに基づいて、内視鏡画像上での被検体の現実のサイズを表す目盛りが生成される。
 続いて、制御部68の制御により、内視鏡画像と目盛りとが合成されて表示装置18に表示される。目盛りとして、例えば、図5に示すように、1mmの長さが分かるようなスケールバーが表示装置18の画面に表示される。
 続いて、操作者により、内視鏡スコープ14の操作部30に配置されたボタン等を押すことにより、生体組織の周期的構造物を有する領域の検出を終了する指示が内視鏡診断装置10に入力される。
 領域の検出を終了する指示が入力されると、領域検出部78により、内視鏡画像の2点の位置からの、大腸の腺管構造の微細血管網の領域の検出が終了される。これにより、目盛りの表示が表示装置18から消える。
 なお、終了の指示を入力する代わりに、内視鏡画像と目盛りとが合成されて表示装置18に表示されてから一定時間が経過した後に、領域検出部78により、内視鏡画像の2点の位置からの、大腸の腺管構造の微細血管網の領域の検出が終了されるようにしてもよい。
 次に、第2の実施例として、食道の粘膜最表層に存在する微細血管網を利用して、内視鏡画像上での被検体の現実のサイズを計測する場合について説明する。
 第1の実施例の場合と同様に、まず、操作者により、食道の粘膜最表層に存在する微細血管網における微細血管同士の間隔の現実のサイズを表す情報が入力装置20を介して入力され、サイズ情報保持部82に保持される。
 続いて、操作者により、内視鏡スコープ14が被検体内に挿入され、表示装置18に表示された内視鏡画像を確認しながら、内視鏡スコープ14の先端部が、食道の被観察領域まで移動される。
 ここで、操作者は、食道観察時に、同様に、被観察領域に腫瘍等の病変部が発見された場合、この病変部とその周辺の正常部の食道の粘膜最表層に存在する微細血管網が内視鏡画像に含まれるように観察を行う。図9に示すように、正常部の食道の粘膜最表層に存在する微細血管網における微細血管同士は、100μm~200μmの間隔で並んで配置されている。
 内視鏡スコープ14の先端部が被観察領域まで移動されると、操作者により、内視鏡スコープ14の操作部30に配置されたボタン等を押すことにより、生体組織の周期的構造物を有する領域の検出を開始する指示が入力される。
 領域の検出を開始する指示が入力された後、さらに、食道の粘膜最表層に存在する微細血管網の領域を指定するために、同様に、図7に示すように、操作者により、表示装置18に表示された内視鏡画像上の、食道の粘膜最表層に存在する微細血管網を挟むように、2点の位置88、90を指定する指示が入力装置20を介して入力される。
 内視鏡画像上の2点の位置88、90を指定する指示が入力されると、領域検出部78により、内視鏡画像の2点の位置88、90からの、食道の粘膜最表層に存在する微細血管網の領域の検出が開始される。
 この場合、領域検出部78は、この2点の位置88、90を指定する指示に応じて、図7に点線で囲んで示す、内視鏡画像上の2点の位置の間の領域92を、食道の粘膜最表層に存在する微細血管網の領域として検出する。
 続いて、領域検出部78により検出された食道の粘膜最表層に存在する微細血管網の領域に対し、撮像サイズ算出部80により、その微細血管網における微細血管同士の間隔の内視鏡画像上での撮像サイズが画素数単位で算出される。
 続いて、画素サイズ算出部84により、撮像サイズ算出部80により算出された、食道の粘膜最表層に存在する微細血管網における微細血管同士の間隔の画素数単位での撮像サイズと、サイズ情報保持部82に保持された食道の粘膜最表層に存在する微細血管網における微細血管同士の間隔の現実のサイズを表す情報とに基づいて、内視鏡画像の1画素に対応する現実のサイズが算出される。
 これ以後の動作は、第1の実施例の場合と同様であり、制御部68の制御により、内視鏡画像と目盛りとが合成されて、例えば、図9に示すように、1mmの長さが分かるようなスケールバーが表示装置18の画面に表示される。
 このように、内視鏡診断装置10では、病変部等のサイズの計測を行うために撮影された内視鏡画像ではなく、通常の操作で撮影された内視鏡画像を用いて、病変部等のサイズを容易に計測することができる。
 本発明の装置は、装置が備える各々の構成要素を専用のハードウェアで構成してもよいし、各々の構成要素をプログラムされたコンピュータで構成してもよい。
 本発明の方法は、上記のように、その各々のステップをコンピュータに実行させるためのプログラムにより実施することができる。また、このプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供することもできる。
 本発明は、基本的に以上のようなものである。
 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 10 内視鏡診断装置
 12 光源装置
 14 内視鏡スコープ
 16 プロセッサ装置
 18 表示装置
 20 入力装置
 22 光源制御部
 26 カプラ(分波器)
 28 内視鏡挿入部
 30 操作部
 32A、32B コネクタ部
 34 軟性部
 36 湾曲部
 38 先端部
 40 アングルノブ
 42A、42B 照明窓
 44 観察窓
 46 先端面
 48A、48B 光ファイバ
 52A、52B レンズ
 54A、54B 蛍光体
 56 対物レンズユニット
 58 撮像素子
 62 スコープケーブル
 64 A/D変換器
 66 撮像スイッチ
 68 制御部
 70 画像処理部
 72 記憶部
 74 鉗子口
 76 送気・送水口
 78 領域検出部
 80 撮像サイズ算出部
 82 サイズ情報保持部
 84 画素サイズ算出部
 86 目盛り生成部
 88、90 位置
 92 領域
 94 線領域
 LD レーザ光源

Claims (22)

  1.  内視鏡スコープの先端部から被検体の内視鏡画像を撮像する複数の画素を有する撮像部と、
     前記内視鏡画像を表示する表示部と、
     操作者から入力された前記内視鏡画像上の位置を指定する指示を受け取る入力部と、
     前記位置を指定する指示に応じて、前記内視鏡画像上の位置から、前記被検体の生体組織の周期的構造物を有する領域を検出する領域検出部と、
     前記生体組織の周期的構造物を有する領域に対し、前記生体組織の周期的構造物における周期の前記内視鏡画像上での撮像サイズを画素数単位で算出する撮像サイズ算出部と、
     前記生体組織の周期的構造物における周期の現実のサイズを表す情報を保持するサイズ情報保持部と、
     前記撮像サイズと前記現実のサイズを表す情報とに基づいて、前記内視鏡画像の1画素に対応する現実のサイズを算出する画素サイズ算出部と、
     前記内視鏡画像の1画素に対応する現実のサイズに基づいて、前記内視鏡画像上での前記被検体の現実のサイズを表す目盛りを生成する目盛り生成部と、
     前記内視鏡画像と前記目盛りとを合成して前記表示部に表示させる制御部とを備えることを特徴とする内視鏡診断装置。
  2.  前記撮像サイズ算出部は、前記内視鏡画像の異なる色成分の分光画像における各画素の画素値の比率に基づいて、前記撮像サイズを算出する請求項1に記載の内視鏡診断装置。
  3.  前記撮像サイズ算出部は、前記生体組織の周期的構造物を有する領域内における各画素の画素値の分布の周波数特性に基づいて、前記撮像サイズを算出する請求項1に記載の内視鏡診断装置。
  4.  前記周波数特性がパワースペクトルである請求項3に記載の内視鏡診断装置。
  5.  前記入力部は、前記内視鏡画像上の2点の位置を指定する指示を受け取り、
     前記領域検出部は、前記2点の位置を指定する指示に応じて、前記内視鏡画像上の前記2点の位置の間の領域を、前記生体組織の周期的構造物を有する領域として検出する請求項1~4のいずれか1項に記載の内視鏡診断装置。
  6.  前記撮像サイズ算出部は、前記内視鏡画像の2つの色成分の分光画像における各画素の画素値の比率を算出し、前記2点の位置の間の領域に線領域を設定し、前記線領域上の各画素の画素値の比率のパワースペクトルを算出し、前記パワースペクトルの中から周波数のピークを検出し、前記周波数のピークの間隔に応じて、前記撮像サイズを算出する請求項5に記載の内視鏡診断装置。
  7.  前記撮像サイズ算出部は、前記線領域上における複数の前記周波数のピークの間隔の平均値を算出し、前記平均値を前記撮像サイズとする請求項6に記載の内視鏡診断装置。
  8.  前記撮像サイズ算出部は、前記2点の位置の間の領域に複数の線領域を設定し、前記線領域毎に、前記線領域上における複数の前記周波数のピークの間隔の平均値を算出し、さらに、前記複数の線領域における前記周波数のピークの間隔の平均値の平均値を算出し、前記平均値の平均値を前記撮像サイズとする請求項6に記載の内視鏡診断装置。
  9.  前記入力部は、さらに、前記位置を指定する指示を受け取る前および後に、それぞれ、前記生体組織の周期的構造物を有する領域の検出を開始および終了する指示を受け取り、
     前記領域検出部は、前記領域の検出を開始する指示に応じて、前記領域の検出を開始し、前記領域の検出を終了する指示に応じて、前記領域の検出を終了する請求項1~8のいずれか1項に記載の内視鏡診断装置。
  10.  前記入力部は、さらに、前記位置を指定する指示を受け取る前に、前記生体組織の周期的構造物を有する領域の検出を開始する指示を受け取り、
     前記領域検出部は、前記領域の検出を開始する指示に応じて、前記領域の検出を開始し、前記内視鏡画像と前記目盛りとが合成されて前記表示部に表示されてから一定時間が経過した後に、前記領域の検出を終了する請求項1~8のいずれか1項に記載の内視鏡診断装置。
  11.  前記生体組織の周期的構造物は、大腸の腺管構造の微細血管網であり、前記生体組織の周期的構造物における周期は、前記大腸の腺管構造の微細血管網における微細血管同士の間隔である請求項1~10のいずれか1項に記載の内視鏡診断装置。
  12.  前記生体組織の周期的構造物は、食道の粘膜最表層に存在する微細血管網であり、前記生体組織の周期的構造物における周期は、前記食道の粘膜最表層に存在する微細血管網における微細血管同士の間隔である請求項1~10のいずれか1項に記載の内視鏡診断装置。
  13.  サイズ情報保持部が、被検体の生体組織の周期的構造物における周期の現実のサイズを表す情報を保持するステップと、
     制御部が、複数の画素を有する撮像部により内視鏡スコープの先端部から撮像された前記被検体の内視鏡画像を表示部に表示させるステップと、
     入力部が、操作者から入力された前記内視鏡画像上の位置を指定する指示を受け取るステップと、
     領域検出部が、前記位置を指定する指示に応じて、前記内視鏡画像上の位置から、前記生体組織の周期的構造物を有する領域を検出するステップと、
     撮像サイズ算出部が、前記生体組織の周期的構造物を有する領域に対し、前記生体組織の周期的構造物における周期の前記内視鏡画像上での撮像サイズを画素数単位で算出するステップと、
     画素サイズ算出部が、前記撮像サイズと前記現実のサイズを表す情報とに基づいて、前記内視鏡画像の1画素に対応する現実のサイズを算出するステップと、
     目盛り生成部が、前記内視鏡画像の1画素に対応する現実のサイズに基づいて、前記内視鏡画像上での前記被検体の現実のサイズを表す目盛りを生成するステップと、
     前記制御部が、前記内視鏡画像と前記目盛りとを合成して前記表示部に表示させるステップとを含むことを特徴とする画像処理方法。
  14.  前記撮像サイズ算出部は、前記内視鏡画像の異なる色成分の分光画像における各画素の画素値の比率に基づいて、前記撮像サイズを算出する請求項13に記載の画像処理方法。
  15.  前記撮像サイズ算出部は、前記生体組織の周期的構造物を有する領域内における各画素の画素値の分布の周波数特性に基づいて、前記撮像サイズを算出する請求項13に記載の画像処理方法。
  16.  前記周波数特性がパワースペクトルである請求項15に記載の画像処理方法。
  17.  前記入力部は、前記内視鏡画像上の2点の位置を指定する指示を受け取り、
     前記領域検出部は、前記2点の位置を指定する指示に応じて、前記内視鏡画像上の前記2点の位置の間の領域を、前記生体組織の周期的構造物を有する領域として検出する請求項13~16のいずれか1項に記載の画像処理方法。
  18.  前記撮像サイズ算出部は、前記内視鏡画像の2つの色成分の分光画像における各画素の画素値の比率を算出し、前記2点の位置の間の領域に線領域を設定し、前記線領域上の各画素の画素値の比率のパワースペクトルを算出し、前記パワースペクトルの中から周波数のピークを検出し、前記周波数のピークの間隔に応じて、前記撮像サイズを算出する請求項17に記載の画像処理方法。
  19.  前記撮像サイズ算出部は、前記線領域上における複数の前記周波数のピークの間隔の平均値を算出し、前記平均値を前記撮像サイズとする請求項18に記載の画像処理方法。
  20.  前記撮像サイズ算出部は、前記2点の位置の間の領域に複数の線領域を設定し、前記線領域毎に、前記線領域上における複数の前記周波数のピークの間隔の平均値を算出し、さらに、前記複数の線領域における前記周波数のピークの間隔の平均値の平均値を算出し、前記平均値の平均値を前記撮像サイズとする請求項18に記載の画像処理方法。
  21.  請求項13~20のいずれか1項に記載の画像処理方法の各々のステップをコンピュータに実行させるためのプログラム。
  22.  請求項13~20のいずれか1項に記載の画像処理方法の各々のステップをコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体。
PCT/JP2016/053120 2015-03-31 2016-02-03 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体 WO2016157998A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16771882.4A EP3278707B1 (en) 2015-03-31 2016-02-03 Endoscopic diagnostic device, image processing method, program, and recording medium
US15/688,878 US20170354315A1 (en) 2015-03-31 2017-08-29 Endoscopic diagnosis apparatus, image processing method, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070715A JP6266559B2 (ja) 2015-03-31 2015-03-31 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
JP2015-070715 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/688,878 Continuation US20170354315A1 (en) 2015-03-31 2017-08-29 Endoscopic diagnosis apparatus, image processing method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2016157998A1 true WO2016157998A1 (ja) 2016-10-06

Family

ID=57004149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053120 WO2016157998A1 (ja) 2015-03-31 2016-02-03 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体

Country Status (4)

Country Link
US (1) US20170354315A1 (ja)
EP (1) EP3278707B1 (ja)
JP (1) JP6266559B2 (ja)
WO (1) WO2016157998A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044987A2 (en) * 2015-09-10 2017-03-16 Nitesh Ratnakar Novel 360-degree panoramic view formed for endoscope adapted thereto with multiple cameras, and applications thereof to reduce polyp miss rate and facilitate targeted polyp removal
WO2018098196A1 (en) * 2016-11-23 2018-05-31 Clear Guide Medical, Inc. System and methods for navigating interventional instrumentation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165792A (ja) * 1985-01-17 1986-07-26 株式会社東芝 スケ−ル表示装置
JP2003111722A (ja) * 2001-10-03 2003-04-15 Pentax Corp 内視鏡用測長具
JP2008194156A (ja) * 2007-02-09 2008-08-28 Hoya Corp 電子内視鏡装置
WO2013121610A1 (ja) * 2012-02-17 2013-08-22 オリンパスメディカルシステムズ株式会社 内視鏡装置及び医用システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980763A (en) * 1989-06-12 1990-12-25 Welch Allyn, Inc. System for measuring objects viewed through a borescope
JP4464894B2 (ja) * 2005-09-09 2010-05-19 オリンパスメディカルシステムズ株式会社 画像表示装置
US20140296866A1 (en) * 2009-06-18 2014-10-02 Endochoice, Inc. Multiple Viewing Elements Endoscope Having Two Front Service Channels
JP5802440B2 (ja) * 2011-06-02 2015-10-28 オリンパス株式会社 蛍光観察装置
EP2823754A4 (en) * 2012-03-07 2015-12-30 Olympus Corp Image processing device, program and image processing method
US10750947B2 (en) * 2014-01-08 2020-08-25 Board Of Regents Of The University Of Texas System System and method for intraoperative fluorescence imaging in ambient light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165792A (ja) * 1985-01-17 1986-07-26 株式会社東芝 スケ−ル表示装置
JP2003111722A (ja) * 2001-10-03 2003-04-15 Pentax Corp 内視鏡用測長具
JP2008194156A (ja) * 2007-02-09 2008-08-28 Hoya Corp 電子内視鏡装置
WO2013121610A1 (ja) * 2012-02-17 2013-08-22 オリンパスメディカルシステムズ株式会社 内視鏡装置及び医用システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278707A4 *

Also Published As

Publication number Publication date
JP2016189861A (ja) 2016-11-10
EP3278707A1 (en) 2018-02-07
US20170354315A1 (en) 2017-12-14
EP3278707B1 (en) 2019-07-10
JP6266559B2 (ja) 2018-01-24
EP3278707A4 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5450527B2 (ja) 内視鏡装置
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP5159904B2 (ja) 内視鏡診断装置
US20130245411A1 (en) Endoscope system, processor device thereof, and exposure control method
US20140152790A1 (en) Endoscope system and operating method thereof
CN110461209B (zh) 内窥镜系统及处理器装置
US10806336B2 (en) Endoscopic diagnosis apparatus, lesion portion size measurement method, program, and recording medium
US9307910B2 (en) Optical measurement apparatus and endoscope system
WO2016117277A1 (ja) 内視鏡システム
JP2012050618A (ja) 画像取得表示方法および画像撮像表示装置
JP2013005830A (ja) 内視鏡システム、プロセッサ装置及び撮影距離測定方法
US10813541B2 (en) Endoscopic diagnosis apparatus, image processing method, program, and recording medium
JP2012152460A (ja) 医療システム、医療システムのプロセッサ装置、及び画像生成方法
JP2012170640A (ja) 内視鏡システム、および粘膜表層の毛細血管の強調画像表示方法
JP5554288B2 (ja) 内視鏡システム、プロセッサ装置及び画像補正方法
JP2011005002A (ja) 内視鏡装置
JP6266559B2 (ja) 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
JP5191327B2 (ja) 画像取得装置および画像取得装置の作動方法
JP2005319212A (ja) 蛍光内視鏡装置
US10802265B2 (en) Endoscopic diagnostic apparatus and lesion part volume measuring method
JP2012100733A (ja) 内視鏡診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771882

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016771882

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE