WO2013118318A1 - モータ駆動システムおよびモータ駆動方法 - Google Patents

モータ駆動システムおよびモータ駆動方法 Download PDF

Info

Publication number
WO2013118318A1
WO2013118318A1 PCT/JP2012/064695 JP2012064695W WO2013118318A1 WO 2013118318 A1 WO2013118318 A1 WO 2013118318A1 JP 2012064695 W JP2012064695 W JP 2012064695W WO 2013118318 A1 WO2013118318 A1 WO 2013118318A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
harmonic component
component
induced voltage
Prior art date
Application number
PCT/JP2012/064695
Other languages
English (en)
French (fr)
Inventor
鉄也 小島
辰也 森
瀧口 隆一
迪 廣谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013557350A priority Critical patent/JP5755342B2/ja
Publication of WO2013118318A1 publication Critical patent/WO2013118318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/07Trapezoidal waveform
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor drive system and a motor drive method for driving a motor used in, for example, an electric power steering apparatus.
  • the induced voltage of the motor a trapezoidal wave (rectangular wave) with odd harmonics superimposed, the peak value of the induced voltage remains the same and the fundamental wave component is increased, improving the output of the motor.
  • the method of making it known is known.
  • Patent Documents 1 and 2 Although it has been studied to improve the output of the motor by focusing on the induced voltage waveform and current waveform of the motor, the voltage waveform of the voltage application unit that drives the motor There is a problem that nothing is taken into consideration.
  • the present invention has been made to solve the above-described problems, and a motor drive system and a motor drive capable of improving the output of the motor in consideration of the voltage waveform of the voltage application unit that drives the motor.
  • the purpose is to obtain a method.
  • the motor drive system includes a motor, a current detection unit that detects a motor current of the motor, a magnetic pole position detection unit that detects a magnetic pole position of the motor, a motor current, a magnetic pole position, and operating conditions given from the outside. And a voltage application unit that applies a drive voltage to the motor based on the voltage command.
  • the motor has a motor drive voltage waveform that expands a sine wave into a trapezoidal waveform. A harmonic component is superimposed on the fundamental wave component of the induced voltage of the motor so as to have a shape.
  • the motor driving method is based on a current detection step for detecting the motor current of the motor, a magnetic pole position detection step for detecting the magnetic pole position of the motor, the motor current, the magnetic pole position, and operating conditions given from the outside.
  • a voltage applying step for applying a driving voltage to the motor based on the voltage command, and the motor has a shape in which the driving voltage waveform of the motor is a sine wave expanded into a trapezoidal waveform. As shown, the harmonic component is superimposed on the fundamental wave component of the induced voltage of the motor.
  • the motor has a harmonic component in the fundamental component of the induced voltage of the motor so that the drive voltage waveform of the motor has a shape in which a sine wave is expanded in a trapezoidal shape. Are superimposed. Therefore, in consideration of the voltage waveform of the voltage application unit that drives the motor, the output of the motor can be improved by effectively using the voltage of the voltage application unit by superimposing the harmonic component on the induced voltage of the motor. .
  • FIG. 1 is a block configuration diagram showing a motor drive system according to Embodiment 1 of the present invention.
  • the motor drive system includes a motor 1, a current detection unit 2, a magnetic pole position detection unit 3, a control unit 4, and a voltage application unit 5.
  • the motor 1 is a three-phase synchronous motor in which a permanent magnet is used for the rotor, and a harmonic component as described later is superimposed on the induced voltage.
  • the current detection unit 2 detects motor currents iu, iv and iw of the motor 1 and outputs them to the control unit 4.
  • the magnetic pole position detector 3 detects the magnetic pole position ⁇ re of the motor 1 and outputs it to the controller 4.
  • the control unit 4 outputs three-phase voltage commands vu1 * , vv1 * , vw1 * to the voltage application unit 5 based on the motor currents iu, iv, iw, the magnetic pole position ⁇ re, and operating conditions given from the outside.
  • the voltage application unit 5 supplies a drive voltage to the motor 1 based on the voltage commands vu1 * , vv1 * , vw1 * .
  • functions of the current detection unit 2, the control unit 4, and the voltage application unit 5 will be described in detail.
  • the current detector 2 detects motor currents iu, iv, iw of the motor 1.
  • the current is detected for all three phases, but two-phase components may be detected and the three-phase current may be obtained using the fact that the sum of the three-phase currents is zero. Further, the three-phase current may be calculated based on the inverter bus current, the current flowing through the switching element, and the state of the switching element.
  • the control unit 4 includes a torque controller 41, a three-phase / two-phase converter 42, a first coordinate converter 43, a current controller 44, a second coordinate converter 45, and a two-phase / three-phase converter 46.
  • the torque controller 41 generates a D-axis current command id * and a Q-axis current command iq * on rotational coordinates synchronized with the magnetic pole position ⁇ re of the motor 1 based on a desired torque (operating condition) given from the outside.
  • a speed controller that generates current commands id * and iq * based on a desired speed (operating conditions) given from the outside may be used.
  • the three-phase / two-phase converter 42 converts the motor currents iu, iv, iw into the currents i ⁇ , i ⁇ on the stationary biaxial coordinates.
  • the first coordinate converter 43 converts the currents i ⁇ and i ⁇ on the stationary biaxial coordinates into the D axis current id and the Q axis current iq on the rotational coordinates.
  • the current controller 44 performs, for example, proportional-integral control on the difference between the D-axis current command id * and the D-axis current id and the difference between the Q-axis current command iq * and the Q-axis current iq, respectively.
  • vd * Q-axis voltage command vq * is generated.
  • Second coordinate converter 45 the voltage command on the rotating coordinate vd *, the vq *, the voltage command on the stationary two-axis coordinate v? *, Converted into v? *.
  • Two-phase-three phase converter 46 the voltage command on the stationary two-axis coordinate v? *, The v? *, Voltage command vu1 *, vv1 *, converted to vw1 *.
  • the voltage application unit 5 supplies a drive voltage to the motor 1 by a power conversion device such as an inverter based on the voltage commands vu1 * , vv1 * , and vw1 * .
  • the maximum voltage that can be output by the voltage application unit 5 is limited by the DC voltage when a DC power source or a battery is used as an input, and the AC input voltage when a converter including a diode or a switching element is used. And the rating of the converter.
  • the maximum value of the line voltage peak value of the drive voltage to be output is Vlim.
  • FIG. 2 shows a motor operation waveform under a certain operation condition selected from the operation conditions where the output voltage of the voltage application unit 5 shown in FIG. 1 is maximum.
  • the drive voltage output from the voltage application unit has the line voltage peak value reaching the maximum value Vlim, which limits the output of the motor.
  • FIG. 3 shows motor operation waveforms of the motor drive system according to Embodiment 1 of the present invention under the same operating conditions as described above.
  • a harmonic component is superimposed on the induced voltage of the motor 1 so that the drive voltage is substantially trapezoidal.
  • the fundamental wave component of the drive voltage, the fundamental wave component of the induced voltage, and the motor current are the same as those in FIG. 2, which is a general case.
  • FIG. 3 shows that the amplitude peak value of the drive voltage is smaller than the maximum value Vlim of the line voltage peak value while keeping the fundamental wave component equal. That is, in the first embodiment of the present invention, compared with the general case where the induced voltage of the motor 1 is sinusoidal, the output voltage of the voltage application unit 5 is effectively used to improve the output of the motor 1. be able to.
  • R a is the winding resistance of the motor
  • L a is the inductance of the motor
  • v ⁇ and v ⁇ are driving voltages on the stationary biaxial coordinates
  • i ⁇ and i ⁇ are on the stationary biaxial coordinates.
  • Motor currents e ⁇ and e ⁇ respectively indicate the induced voltages of the motor on the stationary biaxial coordinates.
  • FIG. 4 shows a motor operation waveform when the induced voltage is trapezoidal while keeping the fundamental wave component equal under the same operating conditions as above.
  • FIG. 4 shows that the induced voltage has a trapezoidal waveform, but the motor drive voltage does not have a trapezoidal waveform.
  • FIG. 5 shows motor operation waveforms when the motor current is trapezoidal while keeping the fundamental wave component equal under the same operating conditions as above.
  • FIG. 5 shows that the motor current has a trapezoidal wave shape, but a large harmonic component is superimposed on the motor drive voltage, and the peak value greatly exceeds the maximum value Vlim.
  • FIG. 6 shows motor operation waveforms when the induced voltage and the motor current are both trapezoidal while maintaining the same fundamental wave component under the same operating conditions as described above.
  • FIG. 6 shows that both the induced voltage and the motor current are trapezoidal, but the motor drive voltage is not trapezoidal, and the peak value greatly exceeds the maximum value Vlim.
  • the driving voltage of the motor does not become trapezoidal, and the motor output is not improved considering the output voltage limitation of the voltage application unit. It was.
  • the motor output is not improved in consideration of the output voltage limitation of the voltage application unit.
  • the output voltage of the voltage applying unit 5 is Can be used effectively to improve the output of the motor 1.
  • the motor has a harmonic component superimposed on the fundamental wave component of the induced voltage of the motor so that the motor drive voltage waveform has a shape obtained by expanding a sine wave into a trapezoidal waveform.
  • the output of the motor can be improved by effectively using the voltage of the voltage application unit by superimposing the harmonic component on the induced voltage of the motor.
  • Embodiment 2 FIG. In the first embodiment, the output voltage of the motor 1 is improved by making the drive voltage of the motor 1 trapezoidal in consideration of the output voltage limitation of the voltage application unit 5.
  • the second embodiment shows that the output voltage of the motor 1A is improved by further effectively using the output voltage of the voltage application unit 5.
  • FIG. 7 is a block configuration diagram showing a motor drive system according to Embodiment 2 of the present invention.
  • the motor drive system includes a motor 1A and a magnetic pole position detector 3A in place of the motor 1 and the magnetic pole position detector 3 shown in FIG. A harmonic component different from that in the first embodiment is superimposed on the motor 1A.
  • the magnetic pole position detection unit 3A estimates the magnetic pole position ⁇ re of the motor 1A, for example, by a method disclosed in International Publication No. 2002/091558. To describe the outline, the magnetic pole position detection unit 3A determines the voltage commands vd * and vq * on the rotation coordinates, the currents id and iq on the rotation coordinates, the motor model and constants, and the estimated speed and magnetic pole position of the estimated motor 1A. Based on this, the estimated current, estimated magnetic flux, estimated speed, and magnetic pole position of the motor 1A are calculated.
  • the magnetic pole position detection unit 3A determines that the estimated speed and The magnetic pole position is calculated, and the estimated magnetic pole position ⁇ re is output.
  • the magnetic pole position detection unit may be configured to estimate the magnetic pole position from the voltage or current and the motor model.
  • FIG. 8 shows a voltage waveform that can maximize the fundamental wave component of the output voltage of the voltage application unit 5 in this case.
  • the fundamental wave component is improved by about 10% as compared with the case of a sine wave like the drive voltage shown in FIG. 2 and the amplitude peak value being Vlim.
  • Embodiment 2 of the present invention harmonic components are superimposed on the induced voltage of the motor 1A so that the drive voltage has the shape shown in FIG.
  • the motor operation waveform in this case is shown in FIG.
  • the case where the fundamental wave component is equal to that in the first embodiment is shown.
  • FIG. 9 shows that the amplitude peak value of the drive voltage is reduced from the operation waveform when the drive voltage shown in FIG. 3 is trapezoidal. That is, in the second embodiment of the present invention, the output of the motor 1A can be greatly improved by effectively using the output voltage of the voltage application unit 5 as compared with the case where the induced voltage of the motor 1A is trapezoidal. .
  • Embodiment 3 In the first embodiment, the output voltage of the motor 1 is improved by making the drive voltage of the motor 1 trapezoidal in consideration of the output voltage limitation of the voltage application unit 5. In the third embodiment, it is shown that the output of the motor 1B is improved by superimposing the fifth and seventh harmonic components.
  • FIG. 10 is a block diagram showing a motor drive system according to Embodiment 3 of the present invention.
  • this motor drive system includes a motor 1B and a magnetic pole position detector 3B in place of the motor 1 and the magnetic pole position detector 3 shown in FIG. A harmonic component different from that in the first embodiment is superimposed on the motor 1B.
  • the magnetic pole position detector 3B includes a position estimation voltage generator 31 and a position estimator 32, and estimates the magnetic pole position ⁇ re of the motor 1B by, for example, a method disclosed in International Publication No. 2009/040965. To explain the outline, the position estimation voltage generator 31 estimates the position of the magnetic pole of the motor 1B so that the three-phase voltage commands vu1 * , vv1 * , vw1 * have different frequencies from the position estimation voltage commands vu2 * , vv2 * and vw2 * are output.
  • the motor currents iu, iv, iw of the motor 1B include the same frequency components as the position estimation voltage commands vu2 * , vv2 * , vw2 * .
  • the position estimator 32 is such that the amplitude of the frequency components of the position estimation voltage commands vu2 * , vv2 * , vw2 * included in the motor currents iu, iv, iw changes in a cosine function according to the position of the motor 1B. Is used to estimate the magnetic pole position of the motor 1B, and the estimated magnetic pole position ⁇ re is output. Note that the magnetic pole position detection unit may be configured to estimate the magnetic pole position from the same frequency component included in the motor current when a position estimation voltage command is applied.
  • V f which is a fundamental component of the driving voltage of the motor 1B
  • V 5 which is a fifth harmonic component
  • V 7 which is a seventh harmonic component
  • the voltage phases are all expressed with a three-phase voltage reference.
  • V f is the amplitude of the fundamental component of the motor drive voltage
  • ⁇ v is the phase of the fundamental component of the motor drive voltage relative to the induced voltage fundamental component
  • V 5 Is the amplitude of the fifth harmonic component of the motor drive voltage
  • ⁇ v5 is the phase of the fifth harmonic component of the motor drive voltage
  • ⁇ v5vf is the phase of the fifth harmonic component of the motor drive voltage relative to the fundamental component
  • V 7 is the amplitude of the seventh harmonic component of the motor drive voltage
  • ⁇ v7 is the phase of the seventh harmonic component of the motor drive voltage
  • ⁇ v7vf is the fundamental component of the seventh harmonic component of the motor drive voltage.
  • FIG. 11 shows how the output of the drive voltage of the motor 1B is improved by superimposing the fifth and seventh harmonic components.
  • the phase ⁇ v5vf with respect to the fundamental wave component of the fifth harmonic component of the drive voltage of the motor 1B and the phase ⁇ v7vf with respect to the fundamental wave component of the seventh harmonic component are set to zero.
  • the horizontal axis indicates the sum of absolute values of the amplitudes V 5 and V 7 of the superimposed fifth and seventh harmonic components as a percentage display with respect to the fundamental component V f .
  • the vertical axis indicates the output improvement. When the peak value is increased by 57 times by superimposing the 5th and 7th harmonic components, the output is increased by 1 / k 57 times. It is converted to become.
  • the motor 1B before and after superimposing the fifth and seventh harmonic components is added.
  • the drive voltage waveform is shown in FIG. FIG. 13 shows that the fundamental wave component can be increased because the peak value is reduced.
  • FIG. 14 shows that the effect of improving the output voltage is greatest when the phase of the fifth and seventh harmonic components with respect to the fundamental component is 0 degree on the three-phase voltage basis. Also, if the phase is in the range of ⁇ 60 degrees, the output voltage can be improved. If the phase is in the range of ⁇ 30 degrees (almost 0 degrees), the effect of improving the output voltage by about half of the maximum is expected. it can.
  • the 5th and 7th harmonic components are superimposed on the drive voltage at a phase of approximately 0 degrees with respect to the phase of the fundamental wave component under any operating condition where it is desired to improve the output.
  • the fifth and seventh harmonic components are superimposed on the induced voltage of the motor 1B.
  • the motor operation waveform in this case is shown in FIG.
  • the sum of the absolute values of the amplitudes V 5 and V 7 of the fifth and seventh harmonic components to be superimposed was 12.5%.
  • the fundamental wave component is equal to that in the first embodiment is shown.
  • the output voltage of the voltage application unit 5 is effectively used to improve the output of the motor 1B. be able to.
  • the output voltage of the voltage application unit 5 is effectively used by using a simpler method of superimposing the fifth and seventh harmonic components.
  • the output of the motor 1B can be improved.
  • Embodiment 4 FIG.
  • the motor current is sinusoidal, but when a harmonic component is superimposed on the induced voltage, torque ripple occurs.
  • the fourth embodiment it is shown that the output of the motor 1C is improved while suppressing the torque ripple.
  • FIG. 16 is a block configuration diagram showing a motor drive system according to Embodiment 4 of the present invention.
  • this motor drive system includes a motor 1C instead of the motor 1 shown in FIG.
  • this motor drive system includes a torque ripple suppression unit 6. A harmonic component different from that in the first embodiment is superimposed on the motor 1C.
  • the fifth harmonic component is superimposed on the induced voltage of the motor 1C.
  • the effect of superimposing the fifth-order harmonic component will be described.
  • FIG. 17 shows how the output of the drive voltage of the motor 1C is improved by superimposing the fifth harmonic component.
  • the phase ⁇ v5vf with respect to the fundamental wave component of the fifth harmonic component of the drive voltage of the motor 1C is set to zero.
  • the horizontal axis indicates the amplitude V 5 of the superimposed fifth-order harmonic component as a percentage display with respect to the fundamental wave component V f .
  • the vertical axis shows the output improvement. When the peak value is increased by 5 times by superimposing the 5th harmonic component, the output improvement is converted when the output is increased by 1 / k 5 times. ing.
  • FIG. 18 shows drive voltage waveforms of the motor 1C before and after superimposing the fifth harmonic component when the amplitude V 5 of the superimposed fifth harmonic component is 5%.
  • FIG. 18 shows that the fundamental wave component can be increased because the peak value is reduced.
  • FIG. 19 shows the degree of improvement in output voltage when the phase ⁇ v5vf with respect to the fundamental wave component of the fifth harmonic component of the drive voltage of the motor 1C is changed.
  • the amplitude V 5 of the fifth harmonic component to be superimposed was set to 5%.
  • FIG. 19 shows that the effect of improving the output voltage is greatest when the phase of the fifth harmonic component with respect to the fundamental component is 0 degree on the basis of the three-phase voltage. Also, if the phase is in the range of ⁇ 60 degrees, the output voltage can be improved. If the phase is in the range of ⁇ 30 degrees (almost 0 degrees), the effect of improving the output voltage by about half of the maximum is expected. it can.
  • the induced voltage of the motor 1C is superimposed on the driving voltage of the motor 1C so that the fifth harmonic component is superimposed on the driving voltage of the motor 1C at a phase of approximately 0 degrees with respect to the phase of the fundamental wave component while suppressing the torque ripple.
  • a method of superimposing the harmonic component on will be described.
  • E f that is the fundamental wave component of the induced voltage of the motor 1C and I f that is the fundamental wave component of the motor current are expressed by the following equations (4-1) and (4-2), respectively.
  • R a is the motor winding resistance
  • L a is the motor inductance
  • is the motor magnetic flux
  • ⁇ re is the motor rotating electrical angular velocity
  • ⁇ re is the motor magnetic pole position
  • I q represents the motor Q-axis current
  • ⁇ i represents the phase of the motor current fundamental wave component with respect to the induced voltage.
  • C which is a matrix for converting from three-phase coordinates to stationary biaxial coordinates
  • C inv which is an inverse matrix thereof are expressed by the following equations (4-3) and (4-4), respectively.
  • E 5 that is the fifth harmonic component superimposed on the induced voltage of the motor 1C and I 5 that is the fifth harmonic component of the motor current are expressed by the following equations (4-5) and (4-6), respectively. To express.
  • Equations (4-5) and (4-6) E 5 is the amplitude of the fifth harmonic component of the induced voltage of the motor, ⁇ e5 is the phase of the fifth harmonic component of the induced voltage of the motor, and I 5 is the motor current 5
  • the amplitude of the second harmonic component, ⁇ i5 indicates the phase of the motor current fifth harmonic component.
  • V ⁇ 5 can be calculated by the following equations (4-9) to (4-11), respectively.
  • E ⁇ 5E5 is E shows the fifth harmonic component of the induced voltage of the motor based on the phase of E ⁇ 5 .
  • phase difference between the amplitude V 5 of the fifth harmonic component superimposed on the drive voltage of the motor 1C and the magnitude E 5 of the induced voltage to be superimposed on the induced voltage of the motor 1C is expressed by the following equation (4-16). expressed.
  • phase ⁇ e5 of the induced voltage to be superimposed on the induced voltage of the motor 1C is set so that ⁇ v5 , which is the phase of the fifth harmonic component of the driving voltage of the motor 1C, becomes 0 with respect to the fundamental wave component.
  • ⁇ v5 which is the phase of the fifth harmonic component of the driving voltage of the motor 1C
  • phase ⁇ e5 of the induced voltage to be superimposed on the induced voltage of the motor 1C is expressed by the following equation (4-18).
  • the torque ripple suppression unit 6 includes a three-phase / two-phase converter 61 and a coordinate converter 62, and converts the motor current I 5 that suppresses the torque ripple of the motor 1C into the three-phase / two-phase converter 61 and the coordinate converter. 62 is converted into current commands id5 * and iq5 * on rotational coordinates synchronized with the magnetic pole position ⁇ re of the motor 1C and added to the current commands id * and iq * generated by the torque controller 41.
  • Embodiment 4 of the present invention when a motor current that makes torque ripple zero is applied under any operating condition where output is desired to be improved, the drive voltage is approximately 0 degrees with respect to the phase of the fundamental component.
  • the fifth-order harmonic component is superimposed on the induced voltage of the motor 1C so that the fifth-order harmonic component is superimposed at the phase.
  • the motor operation waveform in this case is shown in FIG.
  • the amplitude V 5 of the fifth harmonic component to be superimposed was set to 5%.
  • FIG. 21 shows a motor operation waveform when harmonic components are not superimposed under the same operating conditions.
  • FIG. 20 shows that the crest value of the drive voltage is lower than that shown in FIG. 21 in which no harmonic component is superimposed. That is, in the fourth embodiment of the present invention, compared with the general case where the induced voltage and the motor current of the motor 1C are sinusoidal, the output voltage of the motor 1C is effectively utilized by using the output voltage of the voltage application unit 5. Can be improved. Furthermore, the induced voltage and the motor current of the motor 1C include a fifth harmonic component, but the torque is constant, that is, the torque ripple is suppressed to zero.
  • the output of the motor 1C can be improved by effectively using the output voltage of the voltage application unit 5 while suppressing the torque ripple to zero. Further, in the fourth embodiment of the present invention, the output of the motor 1C is effectively obtained by effectively using the output voltage of the voltage application unit 5 by using a simple method of superimposing only the fifth harmonic component. Can be improved.
  • Embodiment 5 FIG. In the fifth embodiment, as in the fourth embodiment, the output of the motor 1D is improved while the torque ripple is suppressed.
  • FIG. 22 is a block configuration diagram showing a motor drive system according to Embodiment 5 of the present invention.
  • the motor drive system includes a motor 1D instead of the motor 1 shown in FIG.
  • the motor drive system includes a torque ripple suppression unit 6D. A harmonic component different from that in the first embodiment is superimposed on the motor 1D.
  • the seventh harmonic component is superimposed on the induced voltage of the motor 1D.
  • FIG. 23 shows how the output of the driving voltage of the motor 1D is improved by superimposing the seventh harmonic component.
  • the phase ⁇ v7vf with respect to the fundamental wave component of the seventh harmonic component of the drive voltage of the motor 1D is set to zero.
  • the horizontal axis indicates the amplitude V 7 of the superimposed seventh-order harmonic component as a percentage display with respect to the fundamental wave component V f .
  • the vertical axis shows the output improvement. When the peak value is increased by 7 times by superimposing the 7th harmonic component, the output improvement is converted when the output becomes 1 / k 7 times. ing.
  • FIG. 24 shows drive voltage waveforms of the motor 1D before and after superimposing the seventh harmonic component when the amplitude V 7 of the superimposed seventh harmonic component is 2.5%.
  • FIG. 24 shows that the fundamental wave component can be increased because the peak value is reduced.
  • FIG. 25 shows the degree of improvement in output voltage when the phase ⁇ v7vf with respect to the fundamental component of the seventh harmonic component of the drive voltage of the motor 1D is changed.
  • the amplitude V 7 of the seventh harmonic component to be superimposed was 2.5%.
  • FIG. 25 shows that the effect of improving the output voltage is greatest when the phase of the seventh harmonic component relative to the fundamental component is 180 degrees on a three-phase voltage basis.
  • the output voltage can be improved. Therefore, if the phase is in the range of 180 ⁇ 30 degrees (approximately 180 degrees), the output voltage can be improved by about half of the maximum. Can be expected.
  • the induced voltage of the motor 1D is superimposed on the driving voltage of the motor 1D so that the seventh harmonic component is superimposed on the driving voltage of the motor 1D at a phase of approximately 180 degrees with respect to the phase of the fundamental wave component while suppressing the torque ripple.
  • a method of superimposing the harmonic component on will be described.
  • E 7 that is the seventh harmonic component superimposed on the induced voltage of the motor 1D and I 7 that is the seventh harmonic component of the motor current are expressed by the following equations (5-1) and (5-2), respectively. .
  • E 7 is the amplitude of the induced voltage 7th harmonic component of the motor
  • ⁇ e7 is the phase of the induced voltage 7th harmonic component of the motor
  • I 7 is the motor current 7
  • the amplitude of the second harmonic component, ⁇ i7 indicates the phase of the seventh harmonic component of the motor current.
  • V ⁇ 7 can be calculated by the following equations (5-5) to (5-7), respectively.
  • E ⁇ 7E7 is E shows the seventh harmonic component of the induced voltage of the motor based on the phase of E ⁇ 7 .
  • the magnitude E 7 of the induced voltage to be superimposed on the induced voltage of the motor 1D is expressed by the following equation (5-10) with respect to the amplitude V 7 of the seventh harmonic component superimposed on the driving voltage of the motor 1D. Is obtained by solving
  • phase difference between the amplitude V 7 of the seventh harmonic component superimposed on the drive voltage of the motor 1D and the magnitude E 7 of the induced voltage to be superimposed on the induced voltage of the motor 1D is expressed by the following equation (5-12). expressed.
  • phase ⁇ e7 of the induced voltage to be superimposed on the induced voltage of the motor 1D is such that ⁇ v7 which is the phase of the seventh harmonic component of the driving voltage of the motor 1D is 180 degrees with respect to the fundamental component.
  • the phase ⁇ v7 of the seventh harmonic component of the driving voltage of the motor 1D is expressed by the following equation (5-13).
  • phase ⁇ e7 of the induced voltage to be superimposed on the induced voltage of the motor 1D is expressed by the following equation (5-14).
  • the torque ripple suppression unit 6D suppresses the torque ripple and reduces the harmonic component V 7 (vu7, vv7, vw7) that can reduce the peak value of the drive voltage of the motor 1D to the three-phase voltage commands vu1 * , vv1 * , vw1. Add to * .
  • the drive voltage is approximately 180 degrees with respect to the phase of the fundamental wave component.
  • the 7th harmonic component is superimposed on the induced voltage of the motor 1D so that the 7th harmonic component is superimposed at the same phase.
  • the motor operation waveform in this case is shown in FIG.
  • the amplitude V 7 of the seventh harmonic component to be superimposed was 2.5%.
  • the operating conditions are the same as those in the fourth embodiment.
  • the crest value of the drive voltage is lower than that shown in FIG. 21 in which no harmonic component is superimposed. That is, in the fifth embodiment of the present invention, compared with the general case where the induced voltage and motor current of the motor 1D are sinusoidal, the output voltage of the motor 1D is effectively utilized by using the output voltage of the voltage application unit 5. Can be improved. Further, the induced voltage and the motor current of the motor 1D include a seventh harmonic component, but the torque is constant, that is, the torque ripple is suppressed to zero.
  • the output of the motor 1D can be improved by effectively using the output voltage of the voltage application unit 5 while suppressing the torque ripple to zero. Further, in the fifth embodiment of the present invention, the output of the motor 1D is effectively utilized by effectively using the output voltage of the voltage application unit 5 by using a simple method of superimposing only the seventh harmonic component. Can be improved.
  • a synchronous motor using a permanent magnet has been described as an example.
  • the present invention is not limited to this, and a synchronous machine using a field winding or a linear motor is used. Even so, the same effects as in the first to fifth embodiments can be obtained.
  • the peak value of the motor drive voltage has a margin with respect to the peak value Vlim limited by the voltage application unit. This is because the fundamental wave component is equal to the case where the voltage is a sine wave and the peak value is Vlim. Actually, the peak value of the drive voltage of the motor after applying the first to fifth embodiments may be set to Vlim.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 モータを駆動する電圧印加部の電圧波形を考慮して、モータの出力を向上させることができるモータ駆動システムおよびモータ駆動方法を得る。 モータと、モータのモータ電流を検出する電流検出部と、モータの磁極位置を検出する磁極位置検出部と、モータ電流、磁極位置および外部から与えられる運転条件に基づいて、電圧指令を生成する制御部と、電圧指令に基づいて、モータに駆動電圧を印加する電圧印加部と、を備え、モータは、モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、モータの誘起電圧の基本波成分に高調波成分が重畳されているものである。

Description

モータ駆動システムおよびモータ駆動方法
 この発明は、例えば電動パワーステアリング装置等に用いられるモータを駆動するモータ駆動システムおよびモータ駆動方法に関する。
 従来から、モータの誘起電圧を、奇数次高調波が重畳された台形波(矩形波)状にすることにより、誘起電圧の波高値は同じまま基本波成分を大きくして、モータの出力を向上させる方法が知られている。
 このような方法として、誘起電圧に奇数次高調波を重畳して、誘起電圧の波形を平坦で拡がった形状にすることにより、モータの出力を向上させることが提案されている(例えば、特許文献1参照)。
 また、異なる二相間の相間誘起電圧を台形波状とすることにより、相電流を台形波状にして、モータの出力を向上させることも提案されている(例えば、特許文献2参照)。
 なお、高調波を重畳する等して、モータの誘起電圧を生成する方法については、これらの他にも様々な方法が研究されている。
特開2006-174692号公報 国際公開第2008/047698号
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1、2に記載された発明では、モータの誘起電圧波形および電流波形に着目して、モータの出力を向上させることが検討されているものの、モータを駆動する電圧印加部の電圧波形については、何等考慮されていないという問題がある。
 この発明は、上記のような課題を解決するためになされたものであり、モータを駆動する電圧印加部の電圧波形を考慮して、モータの出力を向上させることができるモータ駆動システムおよびモータ駆動方法を得ることを目的とする。
 この発明に係るモータ駆動システムは、モータと、モータのモータ電流を検出する電流検出部と、モータの磁極位置を検出する磁極位置検出部と、モータ電流、磁極位置および外部から与えられる運転条件に基づいて、電圧指令を生成する制御部と、電圧指令に基づいて、モータに駆動電圧を印加する電圧印加部と、を備え、モータは、モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、モータの誘起電圧の基本波成分に高調波成分が重畳されているものである。
 また、この発明に係るモータ駆動方法は、モータのモータ電流を検出する電流検出ステップと、モータの磁極位置を検出する磁極位置検出ステップと、モータ電流、磁極位置および外部から与えられる運転条件に基づいて、電圧指令を生成する制御ステップと、電圧指令に基づいて、モータに駆動電圧を印加する電圧印加ステップと、を備え、モータは、モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、モータの誘起電圧の基本波成分に高調波成分が重畳されているものである。
 この発明に係るモータ駆動システムおよびモータ駆動方法によれば、モータは、モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、モータの誘起電圧の基本波成分に高調波成分が重畳されている。
 そのため、モータを駆動する電圧印加部の電圧波形を考慮して、モータの誘起電圧に高調波成分を重畳することで、電圧印加部の電圧を有効利用して、モータの出力を向上できることができる。
この発明の実施の形態1に係るモータ駆動システムを示すブロック構成図である。 この発明の実施の形態1と比較した従来技術(正弦波)のモータ動作波形を示す説明図である。 この発明の実施の形態1に係るモータ駆動システムのモータ動作波形を示す説明図である。 この発明の実施の形態1と比較した従来技術(誘起電圧台形波)のモータ動作波形を示す説明図である。 この発明の実施の形態1と比較した従来技術(モータ電流台形波)のモータ動作波形を示す説明図である。 この発明の実施の形態1と比較した従来技術(誘起電圧台形波・モータ電流台形波)のモータ動作波形を示す説明図である。 この発明の実施の形態2に係るモータ駆動システムを示すブロック構成図である。 この発明の実施の形態2に係るモータ駆動システムにおいて、電圧印加部の出力電圧の基本波成分を最も大きくすることができる駆動電圧波形を示す説明図である。 この発明の実施の形態2に係るモータ駆動システムのモータ動作波形を示す説明図である。 この発明の実施の形態3に係るモータ駆動システムを示すブロック構成図である。 この発明の実施の形態3に係るモータ駆動システムにおいて、駆動電圧に5次・7次高調波成分を重畳した場合の駆動電圧の出力向上を示す説明図である。 図11において、駆動電圧に重畳された5次・7次高調波成分の重畳量を示す説明図である。 この発明の実施の形態3に係るモータ駆動システムにおいて、駆動電圧に5次・7次高調波成分を重畳する前後の駆動電圧波形を示す説明図である。 この発明の実施の形態3に係るモータ駆動システムにおいて、駆動電圧に重畳される5次・7次高調波成分の位相と駆動電圧の出力向上との関係を示す説明図である。 この発明の実施の形態3に係るモータ駆動システムのモータ動作波形を示す説明図である。 この発明の実施の形態4に係るモータ駆動システムを示すブロック構成図である。 この発明の実施の形態4に係るモータ駆動システムにおいて、駆動電圧に5次高調波成分を重畳した場合の駆動電圧の出力向上を示す説明図である。 この発明の実施の形態4に係るモータ駆動システムにおいて、駆動電圧に5次高調波成分を重畳する前後の駆動電圧波形を示す説明図である。 この発明の実施の形態4に係るモータ駆動システムにおいて、駆動電圧に重畳される5次高調波成分の位相と駆動電圧の出力向上との関係を示す説明図である。 この発明の実施の形態4に係るモータ駆動システムのモータ動作波形を示す説明図である。 この発明の実施の形態4と比較した従来技術のモータ動作波形を示す説明図である。 この発明の実施の形態5に係るモータ駆動システムを示すブロック構成図である。 この発明の実施の形態5に係るモータ駆動システムにおいて、駆動電圧に7次高調波成分を重畳した場合の駆動電圧の出力向上を示す説明図である。 この発明の実施の形態5に係るモータ駆動システムにおいて、駆動電圧に7次高調波成分を重畳する前後の駆動電圧波形を示す説明図である。 この発明の実施の形態5に係るモータ駆動システムにおいて、駆動電圧に重畳される7次高調波成分の位相と駆動電圧の出力向上との関係を示す説明図である。 この発明の実施の形態5に係るモータ駆動システムのモータ動作波形を示す説明図である。
 以下、この発明に係るモータ駆動システムおよびモータ駆動方法の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1に係るモータ駆動システムを示すブロック構成図である。図1において、このモータ駆動システムは、モータ1、電流検出部2、磁極位置検出部3、制御部4および電圧印加部5を備えている。
 モータ1は、回転子に永久磁石が用いられた三相同期モータであり、その誘起電圧には、後述するような高調波成分が重畳されている。電流検出部2は、モータ1のモータ電流iu、iv、iwを検出して制御部4に出力する。磁極位置検出部3は、モータ1の磁極位置θreを検出して制御部4に出力する。
 制御部4は、モータ電流iu、iv、iw、磁極位置θreおよび外部から与えられる運転条件に基づいて、電圧印加部5に三相電圧指令vu1*、vv1*、vw1*を出力する。電圧印加部5は、電圧指令vu1*、vv1*、vw1*に基づいて、モータ1に駆動電圧を供給する。以下、電流検出部2、制御部4および電圧印加部5の機能について詳細に説明する。
 電流検出部2は、モータ1のモータ電流iu、iv、iwを検出する。なお、図1では、電流を三相とも検出しているが、二相分を検出し、三相電流の和が0であることを利用して、三相電流を求めてもよい。また、インバータ母線電流やスイッチング素子に流れる電流とスイッチング素子の状態とに基づいて、三相電流を演算してもよい。
 制御部4は、トルク制御器41、三相・二相変換器42、第1座標変換器43、電流制御器44、第2座標変換器45および二相・三相変換器46を有している。トルク制御器41は、外部から与えられる所望のトルク(運転条件)に基づいて、モータ1の磁極位置θreに同期した回転座標上のD軸電流指令id*、Q軸電流指令iq*を生成する。なお、外部から与えられる所望の速度(運転条件)に基づいて、電流指令id*、iq*を生成する速度制御器を用いてもよい。
 三相・二相変換器42は、モータ電流iu、iv、iwを、静止二軸座標上の電流iα、iβに変換する。第1座標変換器43は、静止二軸座標上の電流iα、iβを、回転座標上のD軸電流id、Q軸電流iqに変換する。電流制御器44は、D軸電流指令id*とD軸電流idとの差分、およびQ軸電流指令iq*とQ軸電流iqとの差分を、それぞれ例えば比例積分制御して、D軸電圧指令vd*、Q軸電圧指令vq*を生成する。
 第2座標変換器45は、回転座標上の電圧指令vd*、vq*を、静止二軸座標上の電圧指令vα*、vβ*に変換する。二相・三相変換器46は、静止二軸座標上の電圧指令vα*、vβ*を、電圧指令vu1*、vv1*、vw1*に変換する。
 電圧印加部5は、電圧指令vu1*、vv1*、vw1*に基づいて、インバータ等の電力変換装置により、モータ1に駆動電圧を供給する。電圧印加部5の出力可能な最大電圧は、入力として直流電源やバッテリを用いた場合には、その直流電圧によって制限され、ダイオードやスイッチング素子を含む変換器を用いた場合には、交流入力電圧や変換器の定格等によって制限される。ここで、出力する駆動電圧の線間電圧波高値の最大値は、Vlimであるとする。
 次に、従来技術と比較しながら、このモータ駆動システムの動作について説明する。まず、従来の、モータの誘起電圧が正弦波状である一般的な場合について説明する。図1に示した電圧印加部5の出力電圧が最大となる運転条件の中から選択した、ある運転条件でのモータ動作波形を図2に示す。図2より、電圧印加部の出力する駆動電圧は、線間電圧波高値が最大値Vlimに達しており、これによってモータの出力が制限されていることが分かる。
 続いて、上記と同じ運転条件における、この発明の実施の形態1に係るモータ駆動システムのモータ動作波形を図3に示す。ここでは、駆動電圧がほぼ台形波状になるように、モータ1の誘起電圧に高調波成分が重畳されている。また、駆動電圧の基本波成分、誘起電圧の基本波成分およびモータ電流は、一般的な場合である図2のものと等しい。
 図3より、駆動電圧は、基本波成分を等しく保ったまま、その振幅ピーク値が線間電圧波高値の最大値Vlimよりも小さくなっていることが分かる。すなわち、この発明の実施の形態1では、モータ1の誘起電圧が正弦波状である一般的な場合と比較して、電圧印加部5の出力電圧を有効利用して、モータ1の出力を向上させることができる。
 ここで、この発明の実施の形態1の設計方法および動作理論について説明する。まず、モータ1の電圧方程式は、静止二軸座標上において次式(1-1)で表される。
Figure JPOXMLDOC01-appb-M000003
 式(1-1)において、Raはモータの巻線抵抗、Laはモータのインダクタンス、vα,vβは静止二軸座標上の駆動電圧、iα,iβは静止二軸座標上のモータ電流、eα,eβは静止二軸座標上のモータの誘起電圧をそれぞれ示している。
 また、式(1-1)の基本波成分を次式(1-2)に示し、高調波成分を次式(1-3)に示す。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、モータ電流が正弦波状であり、高調波成分が0であるとすると、高調波成分に関する式(1-3)は、次式(1-4)となる。
Figure JPOXMLDOC01-appb-M000006
 したがって、任意に選択した、出力を向上させたい運転条件において、駆動電圧を台形波状にするための高調波成分と等しい高調波成分が、モータ1の誘起電圧に重畳されるようにすればよいことが分かる。
 次に、上記と同じ運転条件において、誘起電圧を、その基本波成分を等しく保ったまま台形波状にした場合のモータ動作波形を図4に示す。図4より、誘起電圧は、台形波状になっているが、モータの駆動電圧は、台形波状になっていないことが分かる。
 これは、上記式(1-1)~(1-3)のように、駆動電圧と誘起電圧とは、モータ巻線抵抗およびインダクタンスによる電圧降下分だけ位相がずれているためである。このとき、図4に示すように、駆動電圧の振幅波高値が増加して波高値が最大値Vlimを超えるが、最大値Vlimを超えた電圧分は、電圧印加部では出力できないので、実際の電圧印加部の出力電圧およびモータの出力は低下する。
 また、上記と同じ運転条件において、モータ電流を、その基本波成分を等しく保ったまま台形波状にした場合のモータ動作波形を図5に示す。図5より、モータ電流は、台形波状になっているが、モータの駆動電圧には、大きな高調波成分が重畳して波高値が最大値Vlimを大きく超えていることが分かる。
 これは、モータ電流を高調波成分が含まれた台形波状にするために、特に高調波成分のインダクタンスの電圧下降分が大きくなるためである。したがって、実際の電圧印加部の出力電圧およびモータの出力は大きく低下する。
 さらに、上記と同じ運転条件において、誘起電圧およびモータ電流を、それぞれの基本波成分を等しく保ったまま、ともに台形波状にした場合のモータ動作波形を図6に示す。図6より、誘起電圧およびモータ電流は、ともに台形波状になっているが、モータの駆動電圧は、台形波状とならず、波高値が最大値Vlimを大きく超えていることが分かる。
 これは、上述したように、駆動電圧と誘起電圧とは、モータ巻線抵抗およびインダクタンスによる電圧降下分だけ位相がずれていること、およびモータ電流を高調波成分が含まれた台形波状にするために、特に高調波成分のインダクタンスの電圧下降分が大きくなるためである。この場合も、駆動電圧の波高値が最大値Vlimを超えるので、実際の電圧印加部の出力電圧およびモータの出力は低下する。
 以上、従来技術のようにモータの誘起電圧を台形波状にしても、モータの駆動電圧は、台形波状にならず、電圧印加部の出力電圧制限を考慮すると、モータの出力が向上しないことを示した。また、モータ電流や、モータの誘起電圧およびモータ電流を台形波状にした場合についても、電圧印加部の出力電圧制限を考慮すると、モータの出力が向上しないことを示した。
 これに対して、この発明の実施の形態1では、モータ1の駆動電圧が台形波状になるように、モータ1の誘起電圧に高調波成分が重畳されているので、電圧印加部5の出力電圧を有効に利用して、モータ1の出力を向上させることができる。
 以上のように、実施の形態1によれば、モータは、モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、モータの誘起電圧の基本波成分に高調波成分が重畳されている。
 そのため、モータを駆動する電圧印加部の電圧波形を考慮して、モータの誘起電圧に高調波成分を重畳することで、電圧印加部の電圧を有効利用して、モータの出力を向上できることができる。
 実施の形態2.
 上記実施の形態1では、電圧印加部5の出力電圧制限を考慮して、モータ1の駆動電圧を台形波状にすることで、モータ1の出力を向上させることを示した。この実施の形態2では、電圧印加部5の出力電圧をさらに有効利用して、モータ1Aの出力を向上させることを示す。
 図7は、この発明の実施の形態2に係るモータ駆動システムを示すブロック構成図である。図7において、このモータ駆動システムは、図1に示したモータ1および磁極位置検出部3に代えて、モータ1Aおよび磁極位置検出部3Aを備えている。モータ1Aには、上記実施の形態1とは異なる高調波成分が重畳される。
 磁極位置検出部3Aは、例えば国際公開2002/091558号に示された方法により、モータ1Aの磁極位置θreを推定する。概要について説明すると、磁極位置検出部3Aは、回転座標上の電圧指令vd*、vq*、回転座標上の電流id、iq、モータモデルおよび定数、並びに推定したモータ1Aの推定速度および磁極位置に基づいて、モータ1Aの推定電流、推定磁束、推定速度および磁極位置を演算する。
 また、磁極位置検出部3Aは、推定電流と回転座標上の電流id、iqとの誤差である推定電流誤差が0に収束するように、推定電流誤差と推定磁束とに基づいて、推定速度および磁極位置を演算し、推定磁極位置θreを出力する。なお、磁極位置検出部として、電圧や電流とモータモデルとから磁極位置を推定するような構成を採用してもよい。
 ここで、電圧印加部5の出力可能な最大電圧は、上記実施の形態1で説明したように、出力する駆動電圧の線間電圧波高値の最大値Vlimであるとする。この場合において、電圧印加部5の出力電圧の基本波成分を最も大きくすることができる電圧波形を図8に示す。このとき、その基本波成分は、図2に示した駆動電圧のような正弦波状で振幅波高値がVlimの場合と比較して、約10%向上する。
 この発明の実施の形態2では、出力を向上させたい任意の運転条件において、駆動電圧が図8に示した形状になるように、モータ1Aの誘起電圧に高調波成分が重畳されている。この場合のモータ動作波形を図9に示す。なお、比較のために、基本波成分が上記実施の形態1と等しくなる場合について示している。
 図9より、駆動電圧は、図3に示した駆動電圧を台形波状にした場合の動作波形よりも、振幅ピーク値が低減されていることが分かる。すなわち、この発明の実施の形態2では、モータ1Aの誘起電圧が台形波状である場合よりも、さらに電圧印加部5の出力電圧を有効利用して、モータ1Aの出力を大きく向上させることができる。
 実施の形態3.
 上記実施の形態1では、電圧印加部5の出力電圧制限を考慮して、モータ1の駆動電圧を台形波状にすることで、モータ1の出力を向上させることを示した。この実施の形態3では、5次・7次高調波成分を重畳して、モータ1Bの出力を向上させることを示す。
 図10は、この発明の実施の形態3に係るモータ駆動システムを示すブロック構成図である。図10において、このモータ駆動システムは、図1に示したモータ1および磁極位置検出部3に代えて、モータ1Bおよび磁極位置検出部3Bを備えている。モータ1Bには、上記実施の形態1とは異なる高調波成分が重畳される。
 磁極位置検出部3Bは、位置推定用電圧発生器31および位置推定器32を有し、例えば国際公開2009/040965号に示された方法により、モータ1Bの磁極位置θreを推定する。概要について説明すると、位置推定用電圧発生器31は、モータ1Bの磁極位置を推定するために、三相電圧指令vu1*、vv1*、vw1*とは周波数の異なる位置推定用電圧指令vu2*、vv2*、vw2*を出力する。
 これにより、電圧指令vu1*、vv1*、vw1*に電圧指令vu2*、vv2*、vw2*を加えたものが新たな電圧指令vu3*、vv3*、vw3*となり、電圧印加部5からモータ1Bに出力される。このとき、モータ1Bのモータ電流iu、iv、iwには、位置推定用電圧指令vu2*、vv2*、vw2*と同一の周波数成分が含まれている。
 位置推定器32は、モータ電流iu、iv、iwに含まれる位置推定用電圧指令vu2*、vv2*、vw2*の周波数成分の振幅が、モータ1Bの位置に応じて余弦関数的に変化することを利用してモータ1Bの磁極位置を推定し、推定磁極位置θreを出力する。なお、磁極位置検出部として、位置推定用電圧指令を印加した場合に、モータ電流に含まれる同一の周波数成分から磁極位置を推定するような構成を採用してもよい。
 以下、5次・7次高調波成分を重畳することの効果について説明する。まず、モータ1Bの駆動電圧の基本波成分であるVf、5次高調波成分であるV5および7次高調波成分であるV7を、それぞれ次式(3-1)~(3-3)で表す。ここで、この発明の各実施の形態では、電圧位相が、すべて三相電圧基準で表現されている。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式(3-1)~(3-3)において、Vfはモータの駆動電圧の基本波成分の振幅、βvはモータの駆動電圧の基本波成分の誘起電圧基本波成分に対する位相、V5はモータの駆動電圧の5次高調波成分の振幅、θv5はモータの駆動電圧の5次高調波成分の位相、θv5vfはモータの駆動電圧の5次高調波成分の基本波成分に対する位相、V7はモータの駆動電圧の7次高調波成分の振幅、θv7はモータの駆動電圧の7次高調波成分の位相、θv7vfはモータの駆動電圧の7次高調波成分の基本波成分に対する位相をそれぞれ示している。
 5次・7次高調波成分を重畳することにより、モータ1Bの駆動電圧の出力が向上する様子を図11に示す。ただし、モータ1Bの駆動電圧の5次高調波成分の基本波成分に対する位相θv5vfおよび7次高調波成分の基本波成分に対する位相θv7vfを、0としている。
 図11において、横軸は、重畳した5次・7次高調波成分の振幅V5、V7の絶対値の和を、基本波成分Vfに対するパーセント表示で示している。また、縦軸は、出力向上を示し、出力向上は、5次・7次高調波成分を重畳することにより、波高値がk57倍になった場合には、出力が1/k57倍になると換算している。
 また、図11の横軸である、重畳した5次・7次高調波成分の振幅V5、V7の絶対値の和に対して、5次高調波成分V5および7次高調波成分V7をそれぞれ重畳した量を図12に示す。
 さらに、重畳した5次・7次高調波成分の振幅V5、V7の絶対値の和が12.5%である場合について、5次・7次高調波成分を重畳する前後のモータ1Bの駆動電圧波形を図13に示す。図13より、波高値が低減されているので、基本波成分を大きくできることが分かる。
 また、モータ1Bの駆動電圧の5次高調波成分の基本波成分に対する位相θv5vfおよび7次高調波成分の基本波成分に対する位相θv7vfを、θv5vf=θv7vfとして変化させた場合の出力電圧の向上度を図14に示す。ただし、重畳する5次・7次高調波成分の振幅V5、V7の絶対値の和を12.5%とした。
 図14より、5次・7次高調波成分の基本波成分に対する位相が、三相電圧基準で0度の場合において、出力電圧向上の効果が最も大きいことが分かる。また、位相が±60度の範囲であれば、出力電圧を向上させることができるので、±30度(ほぼ0度)の範囲であれば、最大時の約半分の出力電圧向上の効果が期待できる。
 この発明の実施の形態3では、出力を向上させたい任意の運転条件において、駆動電圧に、その基本波成分の位相に対してほぼ0度の位相で、5次・7次高調波成分が重畳されるように、モータ1Bの誘起電圧に5次・7次高調波成分が重畳されている。この場合のモータ動作波形を図15に示す。ただし、重畳する5次・7次高調波成分の振幅V5、V7の絶対値の和を12.5%とした。なお、比較のために、基本波成分が上記実施の形態1と等しくなる場合について示している。
 図15より、駆動電圧は、図2に示したモータ1Bの誘起電圧が正弦波状である一般的な場合の動作波形よりも、振幅ピーク値が低減されていることが分かる。すなわち、この発明の実施の形態3では、モータ1Bの誘起電圧が正弦波状である一般的な場合と比較して、電圧印加部5の出力電圧を有効利用して、モータ1Bの出力を向上させることができる。
 また、上記実施の形態1、2では、モータの誘起電圧に重畳される高調波成分が急峻に変化するようにモータまたはモータ制御系を設計する必要がある。これに対して、この発明の実施の形態3によれば、5次・7次高調波成分を重畳するというより簡易な方法を用いて、効果的に、電圧印加部5の出力電圧を有効利用して、モータ1Bの出力を向上させることができる。
 実施の形態4.
 上記実施の形態1~3では、モータ電流を正弦波状としたが、誘起電圧に高調波成分を重畳した場合には、トルクリップルが発生する。この実施の形態4では、トルクリップルを抑制したまま、モータ1Cの出力を向上させることを示す。
 図16は、この発明の実施の形態4に係るモータ駆動システムを示すブロック構成図である。図16において、このモータ駆動システムは、図1に示したモータ1に代えて、モータ1Cを備えている。また、このモータ駆動システムは、図1に示したモータ駆動システムに加えて、トルクリップル抑制部6を備えている。モータ1Cには、上記実施の形態1とは異なる高調波成分が重畳される。
 この発明の実施の形態4では、モータ1Cの誘起電圧に、5次高調波成分を重畳する。まず、5次高調波成分を重畳することの効果について説明する。5次高調波成分を重畳することにより、モータ1Cの駆動電圧の出力が向上する様子を図17に示す。ただし、モータ1Cの駆動電圧の5次高調波成分の基本波成分に対する位相θv5vfを、0としている。
 図17において、横軸は、重畳した5次高調波成分の振幅V5を、基本波成分Vfに対するパーセント表示で示している。また、縦軸は、出力向上を示し、出力向上は、5次高調波成分を重畳することにより、波高値がk5倍になった場合には、出力が1/k5倍になると換算している。
 さらに、重畳した5次高調波成分の振幅V5が5%である場合について、5次高調波成分を重畳する前後のモータ1Cの駆動電圧波形を図18に示す。図18より、波高値が低減されているので、基本波成分を大きくできることが分かる。
 また、モータ1Cの駆動電圧の5次高調波成分の基本波成分に対する位相θv5vfを変化させた場合の出力電圧の向上度を図19に示す。ただし、重畳する5次高調波成分の振幅V5を5%とした。
 図19より、5次高調波成分の基本波成分に対する位相が、三相電圧基準で0度の場合において、出力電圧向上の効果が最も大きいことが分かる。また、位相が±60度の範囲であれば、出力電圧を向上させることができるので、±30度(ほぼ0度)の範囲であれば、最大時の約半分の出力電圧向上の効果が期待できる。
 続いて、トルクリップルを抑制しつつ、モータ1Cの駆動電圧に、その基本波成分の位相に対してほぼ0度の位相で、5次高調波成分が重畳されるように、モータ1Cの誘起電圧に高調波成分を重畳する方法について説明する。
 まず、モータ1Cの誘起電圧の基本波成分であるEfおよびモータ電流の基本波成分であるIfを、それぞれ次式(4-1)、(4-2)で表す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 式(4-1)、(4-2)において、Raはモータ巻線抵抗、Laはモータインダクタンス、Φはモータ磁束、ωreはモータ回転電気角速度、θreはモータ磁極位置、IdはモータD軸電流、IqはモータQ軸電流、βiはモータ電流基本波成分の誘起電圧に対する位相をそれぞれ示している。
 また、三相座標上から静止二軸座標上に変換する行列であるCおよびその逆行列であるCinvを、それぞれ次式(4-3)、(4-4)で表す。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 次に、モータ1Cの誘起電圧に重畳する5次高調波成分であるE5およびモータ電流の5次高調波成分であるI5を、それぞれ次式(4-5)、(4-6)で表す。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(4-5)、(4-6)において、E5はモータの誘起電圧5次高調波成分の振幅、θe5はモータの誘起電圧5次高調波成分の位相、I5はモータ電流5次高調波成分の振幅、θi5はモータ電流5次高調波成分の位相をそれぞれ示している。
 ここで、モータ1Cの出力電力を演算すると、次式(4-7)で表される。
Figure JPOXMLDOC01-appb-M000016
 したがって、6θre成分のトルクリップルを相殺する条件は、次式(4-8)で表される。
Figure JPOXMLDOC01-appb-M000017
 また、静止二軸座標上におけるモータ1Cの誘起電圧の5次高調波成分であるEαβ5、モータ電流の5次高調波成分であるIαβ5およびモータ1Cの駆動電圧の5次高調波成分であるVαβ5は、それぞれ次式(4-9)~(4-11)のように演算できる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 ここで、モータ1Cの駆動電圧の5次高調波成分Vαβ5を、モータ1Cの誘起電圧の5次高調波成分Eαβ5の位相を基準として表すと、次式(4-12)となる。
Figure JPOXMLDOC01-appb-M000021
 式(4-12)において、Vαβ5E5はEαβ5の位相を基準としたモータ駆動電圧5次高調波成分、Iαβ5E5はEαβ5の位相を基準としたモータ電流5次高調波成分、Eαβ5E5はEαβ5の位相を基準としたモータの誘起電圧5次高調波成分をそれぞれ示している。
 また、式(4-12)を、式(4-8)~(4-10)を用いて展開すると、次式(4-13)となる。
Figure JPOXMLDOC01-appb-M000022
 このことから、モータ1Cの誘起電圧に重畳すべき誘起電圧の大きさE5は、モータ1Cの駆動電圧に重畳する5次高調波成分の振幅V5に対して、次式(4-14)を解くことで求められる。
Figure JPOXMLDOC01-appb-M000023
 ここで、式(4-14)を解くと、次式(4-15)が得られる。
Figure JPOXMLDOC01-appb-M000024
 また、モータ1Cの駆動電圧に重畳する5次高調波成分の振幅V5とモータ1Cの誘起電圧に重畳すべき誘起電圧の大きさE5との位相差は、次式(4-16)で表される。
Figure JPOXMLDOC01-appb-M000025
 また、モータ1Cの誘起電圧に重畳すべき誘起電圧の位相θe5は、モータ1Cの駆動電圧の5次高調波成分の位相であるθv5が、その基本波成分に対して0になるようにする。すなわち、モータ1Cの駆動電圧の5次高調波成分の位相θv5は、次式(4-17)で表される。
Figure JPOXMLDOC01-appb-M000026
 したがって、モータ1Cの誘起電圧に重畳すべき誘起電圧の位相θe5は、次式(4-18)で表される。
Figure JPOXMLDOC01-appb-M000027
 なお、トルクリップルを相殺するためのモータ電流の5次高調波成分は、上記式(4-8)で表されたものである。
 続いて、トルクリップル抑制部6の機能について説明する。トルクリップル抑制部6は、三相・二相変換器61および座標変換器62を有し、モータ1Cのトルクリップルを抑制するモータ電流I5を、三相・二相変換器61および座標変換器62を用いて、モータ1Cの磁極位置θreに同期した回転座標上の電流指令id5*、iq5*に変換し、トルク制御器41の生成する電流指令id*、iq*に加算する。
 この発明の実施の形態4では、出力を向上させたい任意の運転条件において、トルクリップルを0にするモータ電流を通電する場合に、駆動電圧に、その基本波成分の位相に対してほぼ0度の位相で、5次高調波成分が重畳されるように、モータ1Cの誘起電圧に5次高調波成分が重畳されている。この場合のモータ動作波形を図20に示す。ただし、重畳する5次高調波成分の振幅V5を5%とした。なお、比較のために、同じ運転条件で、高調波成分を重畳しない場合のモータ動作波形を図21に示す。
 図20より、駆動電圧は、高調波成分を重畳しない図21に示したものよりも、波高値が低減されていることが分かる。すなわち、この発明の実施の形態4では、モータ1Cの誘起電圧およびモータ電流が正弦波状である一般的な場合と比較して、電圧印加部5の出力電圧を有効利用して、モータ1Cの出力を向上させることができる。さらに、モータ1Cの誘起電圧およびモータ電流には、5次高調波成分が含まれているが、トルクは一定、すなわちトルクリップルは0に抑制されている。
 以上のように、この発明の実施の形態4では、トルクリップルを0に抑制したまま、電圧印加部5の出力電圧を有効利用して、モータ1Cの出力を向上させることができる。また、この発明の実施の形態4では、5次高調波成分のみを重畳するという簡易な方法を用いて、効果的に、電圧印加部5の出力電圧を有効利用して、モータ1Cの出力を向上させることができる。
 実施の形態5.
 この実施の形態5では、上記実施の形態4と同様に、トルクリップルを抑制したまま、モータ1Dの出力を向上させることを示す。
 図22は、この発明の実施の形態5に係るモータ駆動システムを示すブロック構成図である。図22において、このモータ駆動システムは、図1に示したモータ1に代えて、モータ1Dを備えている。また、このモータ駆動システムは、図1に示したモータ駆動システムに加えて、トルクリップル抑制部6Dを備えている。モータ1Dには、上記実施の形態1とは異なる高調波成分が重畳される。
 この発明の実施の形態5では、モータ1Dの誘起電圧に、7次高調波成分を重畳する。まず、7次高調波成分を重畳することの効果について説明する。7次高調波成分を重畳することにより、モータ1Dの駆動電圧の出力が向上する様子を図23に示す。ただし、モータ1Dの駆動電圧の7次高調波成分の基本波成分に対する位相θv7vfを、0としている。
 図23において、横軸は、重畳した7次高調波成分の振幅V7を、基本波成分Vfに対するパーセント表示で示している。また、縦軸は、出力向上を示し、出力向上は、7次高調波成分を重畳することにより、波高値がk7倍になった場合には、出力が1/k7倍になると換算している。
 さらに、重畳した7次高調波成分の振幅V7が2.5%である場合について、7次高調波成分を重畳する前後のモータ1Dの駆動電圧波形を図24に示す。図24より、波高値が低減されているので、基本波成分を大きくできることが分かる。
 また、モータ1Dの駆動電圧の7次高調波成分の基本波成分に対する位相θv7vfを変化させた場合の出力電圧の向上度を図25に示す。ただし、重畳する7次高調波成分の振幅V7を2.5%とした。
 図25より、7次高調波成分の基本波成分に対する位相が、三相電圧基準で180度の場合において、出力電圧向上の効果が最も大きいことが分かる。また、位相が180±60度の範囲であれば、出力電圧を向上させることができるので、180±30度(ほぼ180度)の範囲であれば、最大時の約半分の出力電圧向上の効果が期待できる。
 続いて、トルクリップルを抑制しつつ、モータ1Dの駆動電圧に、その基本波成分の位相に対してほぼ180度の位相で、7次高調波成分が重畳されるように、モータ1Dの誘起電圧に高調波成分を重畳する方法について説明する。
 まず、モータ1Dの誘起電圧に重畳する7次高調波成分であるE7およびモータ電流の7次高調波成分であるI7を、それぞれ次式(5-1)、(5-2)で表す。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 式(5-1)、(5-2)において、E7はモータの誘起電圧7次高調波成分の振幅、θe7はモータの誘起電圧7次高調波成分の位相、I7はモータ電流7次高調波成分の振幅、θi7はモータ電流7次高調波成分の位相をそれぞれ示している。
 ここで、モータ1Dの出力電力を演算すると、次式(5-3)で表される。
Figure JPOXMLDOC01-appb-M000030
 したがって、6θre成分のトルクリップルを相殺する条件は、次式(5-4)で表される。
Figure JPOXMLDOC01-appb-M000031
 また、静止二軸座標上におけるモータ1Dの誘起電圧の7次高調波成分であるEαβ7、モータ電流の7次高調波成分であるIαβ7およびモータ1Dの駆動電圧の7次高調波成分であるVαβ7は、それぞれ次式(5-5)~(5-7)のように演算できる。
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
 ここで、モータ1Dの駆動電圧の7次高調波成分Vαβ7を、モータ1Dの誘起電圧の7次高調波成分Eαβ7の位相を基準として表すと、次式(5-8)となる。
Figure JPOXMLDOC01-appb-M000035
 式(5-8)において、Vαβ7E7はEαβ7の位相を基準としたモータ駆動電圧7次高調波成分、Iαβ7E7はEαβ7の位相を基準としたモータ電流7次高調波成分、Eαβ7E7はEαβ7の位相を基準としたモータの誘起電圧7次高調波成分をそれぞれ示している。
 また、式(5-8)を、式(5-4)~(5-6)を用いて展開すると、次式(5-19)となる。
Figure JPOXMLDOC01-appb-M000036
 このことから、モータ1Dの誘起電圧に重畳すべき誘起電圧の大きさE7は、モータ1Dの駆動電圧に重畳する7次高調波成分の振幅V7に対して、次式(5-10)を解くことで求められる。
Figure JPOXMLDOC01-appb-M000037
 ここで、式(5-10)を解くと、次式(5-11)が得られる。
Figure JPOXMLDOC01-appb-M000038
 また、モータ1Dの駆動電圧に重畳する7次高調波成分の振幅V7とモータ1Dの誘起電圧に重畳すべき誘起電圧の大きさE7との位相差は、次式(5-12)で表される。
Figure JPOXMLDOC01-appb-M000039
 また、モータ1Dの誘起電圧に重畳すべき誘起電圧の位相θe7は、モータ1Dの駆動電圧の7次高調波成分の位相であるθv7が、その基本波成分に対して180度になるようにする。すなわち、モータ1Dの駆動電圧の7次高調波成分の位相θv7は、次式(5-13)で表される。
Figure JPOXMLDOC01-appb-M000040
 したがって、モータ1Dの誘起電圧に重畳すべき誘起電圧の位相θe7は、次式(5-14)で表される。
Figure JPOXMLDOC01-appb-M000041
 なお、トルクリップルを相殺するためのモータ電流の7次高調波成分は、上記式(5-4)で表されたものである。
 続いて、トルクリップル抑制部6Dの機能について説明する。トルクリップル抑制部6Dは、トルクリップルを抑制し、かつモータ1Dの駆動電圧の波高値を低減できる高調波成分V7(vu7、vv7、vw7)を、三相電圧指令vu1*、vv1*、vw1*に加算する。
 この発明の実施の形態5では、出力を向上させたい任意の運転条件において、トルクリップルを0にするモータ電流を通電する場合に、駆動電圧に、その基本波成分の位相に対してほぼ180度の位相で、7次高調波成分が重畳されるように、モータ1Dの誘起電圧に7次高調波成分が重畳されている。この場合のモータ動作波形を図26に示す。ただし、重畳する7次高調波成分の振幅V7を2.5%とした。なお、比較のため、運転条件は、実施の形態4と同様とする。
 図26より、駆動電圧は、高調波成分を重畳しない図21に示したものよりも、波高値が低減されていることが分かる。すなわち、この発明の実施の形態5では、モータ1Dの誘起電圧およびモータ電流が正弦波状である一般的な場合と比較して、電圧印加部5の出力電圧を有効利用して、モータ1Dの出力を向上させることができる。さらに、モータ1Dの誘起電圧およびモータ電流には、7次高調波成分が含まれているが、トルクは一定、すなわちトルクリップルは0に抑制されている。
 以上のように、この発明の実施の形態5では、トルクリップルを0に抑制したまま、電圧印加部5の出力電圧を有効利用して、モータ1Dの出力を向上させることができる。また、この発明の実施の形態5では、7次高調波成分のみを重畳するという簡易な方法を用いて、効果的に、電圧印加部5の出力電圧を有効利用して、モータ1Dの出力を向上させることができる。
 なお、上記実施の形態1~5では、永久磁石を用いた同期モータを例に挙げて説明したが、これに限定されず、界磁巻線を用いた同期機や、リニアモータを用いた場合であっても、上記実施の形態1~5と同様の効果を得ることができる。
 また、上記実施の形態1~5のモータ動作波形の説明では、モータの駆動電圧の波高値は、電圧印加部で制限される波高値Vlimに対して余裕を持つが、これは、モータの駆動電圧が正弦波状でその波高値がVlimである場合と基本波成分が等しくなる条件で示したためである。実際には、上記実施の形態1~5を適用後のモータの駆動電圧の波高値がVlimとなるようにすればよい。
 また、モータの駆動電圧の波高値を低減して電圧利用率を向上させる方法、さらに同時にトルクリップルを抑制する方法を、モータの数式モデルに基づいて説明したが、シミュレーションや実験、電磁界解析によって求めてもよい。
 また、モータの磁極位置を推定する方法として、電圧指令、電流指令およびモータモデルから推定する方法と、位置推定用電圧指令を重畳する方法を示したが、これらを組み合わせた方法を用いてもよい。
 1、1A、1B、1C、1D モータ、2 電流検出部、3、3A、3B 磁極位置検出部、4 制御部、5 電圧印加部、6、6D トルクリップル抑制部、31 位置推定用電圧発生器、32 位置推定器、41 トルク制御器、42 三相・二相変換器、43 第1座標変換器、44 電流制御器、45 第2座標変換器、46 二相・三相変換器、61 三相・二相変換器、62 座標変換器。

Claims (12)

  1.  モータと、
     前記モータのモータ電流を検出する電流検出部と、
     前記モータの磁極位置を検出する磁極位置検出部と、
     前記モータ電流、前記磁極位置および外部から与えられる運転条件に基づいて、電圧指令を生成する制御部と、
     前記電圧指令に基づいて、前記モータに駆動電圧を印加する電圧印加部と、を備え、
     前記モータは、前記モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、前記モータの誘起電圧の基本波成分に高調波成分が重畳されている
     ことを特徴とするモータ駆動システム。
  2.  前記モータは、前記モータの駆動電圧波形が、正弦波を、その振幅ピーク値を低減した台形波状に拡げた形状になるように、前記モータの誘起電圧の基本波成分に高調波成分が重畳されている
     ことを特徴とする請求項1に記載のモータ駆動システム。
  3.  前記モータの誘起電圧に重畳される高調波成分と、前記電圧指令に含まれる高調波成分とは、互いに等しく、
     前記モータ電流は、ほぼ正弦波状に制御される
     ことを特徴とする請求項1または請求項2に記載のモータ駆動システム。
  4.  前記モータの誘起電圧に重畳される高調波成分と、前記モータ電流とにより発生するトルクリップルをほぼ0にするように、前記モータ電流を制御するトルクリップル抑制部をさらに備えた
     ことを特徴とする請求項1または請求項2に記載のモータ駆動システム。
  5.  前記モータの誘起電圧に重畳される高調波成分は、5次高調波成分および7次高調波成分の少なくとも一方である
     ことを特徴とする請求項1から請求項4までの何れか1項に記載のモータ駆動システム。
  6.  前記モータの駆動電圧が、その基本波成分に対する位相が三相電圧基準でほぼ0度となる5次高調波成分および7次高調波成分を含むように、前記モータの誘起電圧に高調波成分が重畳される
     ことを特徴とする請求項1から請求項4までの何れか1項に記載のモータ駆動システム。
  7.  前記モータの駆動電圧が、その基本波成分に対する位相が三相電圧基準でほぼ0度となる5次高調波成分を含むように、前記モータの誘起電圧に高調波成分が重畳される
     ことを特徴とする請求項1から請求項4までの何れか1項に記載のモータ駆動システム。
  8.  前記モータの誘起電圧に重畳される高調波成分および前記モータ電流の5次高調波成分は、次式で表され、
    Figure JPOXMLDOC01-appb-M000001
     この式において、V5は駆動電圧に重畳する5次高調波成分の振幅、E5はモータの誘起電圧5次高調波成分の振幅、θe5はモータの誘起電圧5次高調波成分の位相、I5はモータ電流5次高調波成分の振幅、θi5はモータ電流5次高調波成分の位相、Raはモータの巻線抵抗、Laはモータのインダクタンスをそれぞれ示し、
     任意の運転条件において、Efはモータの誘起電圧基本波成分、Ifはモータ電流基本波成分、ωreはモータ回転電気角速度、βvはモータ駆動電圧基本波成分の誘起電圧基本波成分に対する位相、βiはモータ電流基本波成分の誘起電圧に対する位相である
     ことを特徴とする請求項7に記載のモータ駆動システム。
  9.  前記モータの駆動電圧が、その基本波成分に対する位相が三相電圧基準でほぼ180度となる7次高調波成分を含むように、前記モータの誘起電圧に高調波成分が重畳される
     ことを特徴とする請求項1から請求項4までの何れか1項に記載のモータ駆動システム。
  10.  前記モータの誘起電圧に重畳される高調波成分および前記モータ電流の7次高調波成分は、次式で表され、
    Figure JPOXMLDOC01-appb-M000002
     この式において、V7は駆動電圧に重畳する7次高調波成分の振幅、E7はモータの誘起電圧7次高調波成分の振幅、θe7はモータの誘起電圧7次高調波成分の位相、I7はモータ電流7次高調波成分の振幅、θi7はモータ電流7次高調波成分の位相、Raはモータの巻線抵抗、Laはモータのインダクタンスをそれぞれ示し、
     任意の運転条件において、Efはモータの誘起電圧基本波成分、Ifはモータ電流基本波成分、ωreはモータ回転電気角速度、βvはモータ駆動電圧基本波成分の誘起電圧基本波成分に対する位相、βiはモータ電流基本波成分の誘起電圧に対する位相である
     ことを特徴とする請求項9に記載のモータ駆動システム。
  11.  モータのモータ電流を検出する電流検出ステップと、
     前記モータの磁極位置を検出する磁極位置検出ステップと、
     前記モータ電流、前記磁極位置および外部から与えられる運転条件に基づいて、電圧指令を生成する制御ステップと、
     前記電圧指令に基づいて、前記モータに駆動電圧を印加する電圧印加ステップと、を備え、
     前記モータは、前記モータの駆動電圧波形が正弦波を台形波状に拡げた形状になるように、前記モータの誘起電圧の基本波成分に高調波成分が重畳されている
     ことを特徴とするモータ駆動方法。
  12.  前記モータは、前記モータの駆動電圧波形が、正弦波を、その振幅ピーク値を低減した台形波状に拡げた形状になるように、前記モータの誘起電圧の基本波成分に高調波成分が重畳されている
     ことを特徴とする請求項11に記載のモータ駆動方法。
PCT/JP2012/064695 2012-02-09 2012-06-07 モータ駆動システムおよびモータ駆動方法 WO2013118318A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013557350A JP5755342B2 (ja) 2012-02-09 2012-06-07 モータ駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026682 2012-02-09
JP2012-026682 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013118318A1 true WO2013118318A1 (ja) 2013-08-15

Family

ID=48947116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064695 WO2013118318A1 (ja) 2012-02-09 2012-06-07 モータ駆動システムおよびモータ駆動方法

Country Status (2)

Country Link
JP (1) JP5755342B2 (ja)
WO (1) WO2013118318A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152250A1 (ja) * 2015-03-24 2016-09-29 株式会社 日立産機システム モータ制御装置
JP2020014350A (ja) * 2018-07-19 2020-01-23 東芝三菱電機産業システム株式会社 多相電動機駆動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345283A (ja) * 2001-05-15 2002-11-29 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006020381A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
JP2006174692A (ja) * 2004-11-19 2006-06-29 Nippon Densan Corp ブラシレスモータ
JP2006217795A (ja) * 2002-11-28 2006-08-17 Nsk Ltd モータ及びその駆動制御装置
WO2008047698A1 (fr) * 2006-10-16 2008-04-24 Mitsuba Corporation Moteur sans balai et procédé de commande d'un moteur sans balai
JP2012135100A (ja) * 2010-12-21 2012-07-12 Hitachi Ltd 同期モータ制御装置および制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345283A (ja) * 2001-05-15 2002-11-29 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2006217795A (ja) * 2002-11-28 2006-08-17 Nsk Ltd モータ及びその駆動制御装置
JP2006020381A (ja) * 2004-06-30 2006-01-19 Hitachi Ltd モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
JP2006174692A (ja) * 2004-11-19 2006-06-29 Nippon Densan Corp ブラシレスモータ
WO2008047698A1 (fr) * 2006-10-16 2008-04-24 Mitsuba Corporation Moteur sans balai et procédé de commande d'un moteur sans balai
JP2012135100A (ja) * 2010-12-21 2012-07-12 Hitachi Ltd 同期モータ制御装置および制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152250A1 (ja) * 2015-03-24 2016-09-29 株式会社 日立産機システム モータ制御装置
JP2016181968A (ja) * 2015-03-24 2016-10-13 株式会社日立産機システム モータ制御装置
JP2020014350A (ja) * 2018-07-19 2020-01-23 東芝三菱電機産業システム株式会社 多相電動機駆動装置
JP7013342B2 (ja) 2018-07-19 2022-01-31 東芝三菱電機産業システム株式会社 多相電動機駆動装置

Also Published As

Publication number Publication date
JPWO2013118318A1 (ja) 2015-05-11
JP5755342B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
KR100655702B1 (ko) 영구자석 동기 모터 제어방법
JP4631672B2 (ja) 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
WO2013124991A1 (ja) 電動機の磁極位置推定装置およびそれを用いた制御装置
US9722522B2 (en) Method for controlling torque in permanent magnet motor drives
JP2017169251A (ja) オープン巻線誘導機の零相電流抑制制御装置
TW200524265A (en) Controller for synchronous motor, electric appliance and module
JP5856438B2 (ja) 電力変換装置
WO2018061546A1 (ja) 電力変換器の制御装置
JP2014180148A (ja) モータ制御装置
WO2020105204A1 (ja) 電力変換装置
JP6113651B2 (ja) 多相電動機駆動装置
JP4596906B2 (ja) 電動機の制御装置
JP5755342B2 (ja) モータ駆動システム
JP2014072935A (ja) 交流電動機のpwm制御法および駆動システム
JP2004289927A (ja) モーター制御装置
WO2021079919A1 (ja) 電力変換装置
JP2016220364A (ja) 永久磁石同期電動機の制御装置
JP2009044908A (ja) 回転機の回転角度推定装置及び駆動システム
JP2008199868A (ja) 永久磁石同期電動機の駆動制御装置
JP2017181034A (ja) 磁石温度推定方法、及び、磁石温度推定装置
JP2017017918A (ja) 回転機駆動装置の制御装置
Mengoni et al. Sensorless multiphase induction motor drive based on a speed observer operating with third-order field harmonics
JP2015133793A (ja) 電動機駆動装置の制御装置および電動機駆動システム
JP5399955B2 (ja) 電力変換装置および電力変換装置の制御方法
JP7385776B2 (ja) 電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867988

Country of ref document: EP

Kind code of ref document: A1